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Abstract

Connected Autonomous Vehicles (AV)s can transform urban transportation
systems and have the potential to improve the safety and efficiency, since
human errors and distractions are removed. However, these systems are
vulnerable to model uncertainties, communication impairments associated
with the wireless communication, and external disturbances. As a result,
vehicles need to drive at low speed and have a large safety distance between
vehicles in order to guarantee a safe traveling in the road network. In addition,
intersections along the road network inherently slow down the speed of the
traffic stream, which may result in congestion. However, when the traffic
flow rate is high and approaches the maximum capacity of the intersection,
vehicles need to fully stop for periods of time. This has a significant impact
on the efficiency of the transportation system.

In the work presented in this thesis, we explore Autonomous Intersection
Management (AIM) methods based on different control strategies with the
ultimate goal to develop control methods that can be deployed in operational
systems. We have mainly investigated the feasibility and implementation
challenges of control strategies in a fully autonomous system in the presence
of communication impairments associated with wireless channels. We design
a solution, a hierarchical control strategy, which is safe and robust against
uncertainties, and also works for high traffic demands and speeds.

We evaluated the robustness, scalability and performance of the investi-
gated strategies in a realistic urban mobility simulator Simulation of Urban
MObility (SUMO) in the presence of communication impairments associated
with wireless channels.
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Acronyms and Symbols

Here, important acronyms, abbreviations, and symbols are listed, which are
recurring throughout the thesis.

ACRONYMS AND ABBREVIATIONS

AIM Autonomous Intersection Management
AV Autonomous Vehicle

BBU BaseBand Unit

C-V2X Cellular Vehicle-to-Everything
CAM Cooperative Awareness Message
C-AV Cooperative Autonomous Vehicle System
C-ITS Cooperative Intelligent Transportation System
CPM Cooperative Perception Message

DSRC Dedicated Short Range Communications

FCFS First Come First Serve

GCL Global Centralized Layer

ICU Intersection Coordination Unit
ITS Intelligent Transportation System

LDL Local Decentralized Layer
LIDAR LIght Detection and Ranging
LP linear programming
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LV leading vehicle

MEC Mobile Edge Computing
MILP mixed-integer linear programming
mMTC massive Machine Type Communications
MPC Model Predictive Control

OBU On Board Unit

QoS Quality of Service

RADAR RAdio Detection and Ranging

SUMO Simulation of Urban MObility

TOA Time of Arrival
TraCI Traffic Control Interface

URLLC Ultra reliable Low Latency Communication

V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VANET Vehicular Ad hoc Network
VOA Velocity of Arrival
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1
Introduction

Intersections inherently present higher risk of conflicts between those who
travel through them. Intersection collisions are very common cause of injuries
and fatalities in the world. According to the European Transport Safety
Council’s (ETSC) report on urban transportation networks, 18,844 people lost
their lives in road traffic in the EU during 2020 and about 40% of these deaths
occurred on urban roads [1]. Also, the Federal Highway Administration’s
(FHWA’s) Office of Research reported that in the United States, more than half
of all car accidents leading to fatal injuries occur at or near intersections [2].

Despite the development and successful deployment of innovative signal-
ized intersections, i.e. controlled by traffic lights and/or signs, to improve
safety, research shows that a large number of factors that contribute to an
accident are directly attributable to the drivers [3]. These factors include inat-
tentive, fatigue, and impairment, from drugs or alcohol, driving. According
to reports published by [4, 5] the following human factors are very common
in accident investigations:

• Drunk and fatigue driver
• Distraction and inattention
• Impaired judgment or reduced reasoning power
• Delayed or false sensation
• Poor risk perception due to lack of experience
• Violations of traffic laws

Driver assistance technologies are introduced to address safety issues
associated with traditional traffic management methods. Driver assistance
technologies help to identify safety risks and act or warn the driver to avoid
a crash.

3
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Figure 1.1: An example of signalized intersection issues

In addition to safety concerns, in urban transportation networks, traffic
congestion is more likely to occur at traffic intersections. The characteristics of
a signalized intersection, such as signal timing, and unnecessary braking are
significant factors causing traffic congestion [6]. Traffic congestion increases
the operating costs and decreases the efficiency of traffic networks by longer
travel time, limited reliability of the transportation system and higher energy
consumption [7].

To address the traffic congestion problem, processing and analysis of data
on vehicles’ mobility patterns, speed, travel time, and road network perfor-
mance can improve traffic management and help to have an efficient traffic
operation. Therefore, Autonomous Vehicles (AVs) equipped with Vehicle-
to-Everything (V2X) communication, which allows vehicles to share road
network data, have the potential to optimize the entire road network’s traffic
efficiency.

The continuing evolution of sensing, information processing, machine
learning, control theory, and automotive technology aims to deliver even
greater safety and throughput efficiency benefits. Fully automated vehicles
can handle the whole task of driving and eliminate human factors.

1.1 OUTLINE

The ultimate goal of our work is to develop a safe, robust and scalable Au-
tonomous Intersection Management (AIM) control strategy for a Cooperative
Autonomous Vehicle System that can be deployed in operational intersection
systems. To this aim, we have investigated different AIM approaches with
different control strategies in our three papers.

4



1 Introduction

This thesis is structured as follows; Chapter 2 describes the general concepts
related to the research in this thesis. Section 2.1 presents required technologies
for a cooperative AIM. Sections 2.2 and 2.3 provides our vision on the
challenges of modelling the described system, and a definition of suitable
performance metrics for deployment of operational AIM systems.

In Chapter 3, we describe our simulation framework that is used to model
a close to real world environment. In Chapter 4, we provide a conclusion
on how the work in each paper continued from the previous one, as well as
our planned work following the research scope presented in this thesis. The
second part of the thesis contains the publications.
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2
Background

In this chapter, we will introduce the general concepts related to the
research including required technologies for fully autonomous system, inter-
section modelling, control strategies. We will also present a high level discus-
sion on challenges for implementing Autonomous Intersection Management
(AIM) methods in real world.

2.1 REQUIRED TECHNOLOGIES FOR COOPERATIVE AUTONOMOUS IN-
TERSECTION MANAGEMENT SYSTEM

Several key technologies are applied to serve cooperative Intelligent Trans-
portation Systems’ (ITS)s’ objectives including sensors, wireless communica-
tion, path planning, and traffic control. In this section, we will first list com-
munication, sensing and processing technologies essential for AIM. Then in
the next section, we will discuss different methods to model intersections and
different control strategies for AIM. We discuss each one of these technologies
in enough detail to provide an introduction to operational requirements for
AIM.

2.1.1 SENSING, PROCESSING AND COMMUNICATION TECHNOLOGIES FOR
AUTONOMOUS INTERSECTION MANAGEMENT

New developments in software and hardware technologies have enhanced the
capabilities of collecting traffic data. Vehicles are aware of their surrounding
area by using built-in cameras and sensors, such as RAdio Detection and
Ranging (RADAR) and LIght Detection and Ranging (LIDAR). However,
to have an efficient traffic management sharing information between road

7
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network entities is crucial. Therefore, the collected data must be exchanged
via a reliable wireless communication technology. Cooperative perception
enables vehicles and road infrastructure to share traffic data which is built on
sensing and fusion data, and communication technologies.

Generally, vehicles can be aware of their surrounding area in three different
ways. Sensing can be performed by using On Board Units (OBU)s , such
as RADAR and LIDAR. For example, Tesla equips each vehicle with eight
surround cameras that provide 360 degrees of visibility around the car, and
twelve updated ultrasonic sensors complement the car’s visibility, allowing
for detection of both hard and soft objects [8]. Also, sensing can be performed
by Cooperative Awareness Message (CAM) where the vehicle sends out its
data, e.g., position and speed, via Vehicle-to-Everything (V2X) communication
and inform the other network entities about its situation. In addition, a
combination of OBU sensing and CAM methods that is called Cooperative
Perception Message (CPM) can be used in a Cooperative Intelligent Trans-
portation System (C-ITS).

The sensor fusion is the process that combines collected data from different
sources to have information with less uncertainty. Despite all advances in
sensing and fusing technologies, there are still challenges such as sensor
accuracy, fusion reliability, latency, and computational resources that must be
considered in modelling real world systems. For sensor fusion and storage of
collected data, neither on-board processing capabilities nor cloud computing
will be sufficient because of the limited resource of on-board computers
and the long latency and massive data transmission bottlenecks of cloud
computing. To have a connected intelligent vehicles system, the storage
and computing resources need to be deployed at the wireless network edge,
including edge caching, edge computing using a Mobile Edge Computing
(MEC) or Multi-access Edge Computing network architecture, running on
BaseBand Unit (BBU) servers at base stations or radio access points along the
roadside.

Various forms of wireless communications technologies have been pro-
posed for intelligent transportation systems. For example, Intelligent Trans-
port System G5 (ITS-G5), based on 802.11p in Europe and Dedicated Short
Range Communications (DSRC) in the United States, is the medium range
communication approach in the 5.9 GHz spectrum that is dedicated to
Vehicle-to-Vehicle (V2V) communication. The technology enables vehicles to
communicate with each other and other road users directly, without involving
cellular or other infrastructures. However, current existing ITSs operating in
the 5.9 GHz spectrum will not meet the speed and bandwidth requirements
for many of the new proposed applications.

8



2 Background

Figure 2.1: The three main 5G use cases and examples of associated applica-
tions

The essential communication in a road network may also be performed
over cellular networks, such as LTE or 5G Cellular Vehicle-to-Everything (C-
V2X) [9]. For example massive Machine Type Communications (mMTC) is a
service category of 5G that is focused on providing connectivity to a massive
number of narrow-bandwidth devices that send or receive small volumes of
data such as sensors. Further, Ultra reliable Low Latency Communication
(URLLC) is another service category of 5G aimed at mission-critical commu-
nications with a target latency of 1 millisecond and a requirement of 99.999
percent reliability [9]. In an agreement regarding the three main use cases that
5G technology must support, the communication characteristics of ITS and in
particular AIM application are labelled in between the URLLC and mMTC
[10], as shown in Figure 2.1. Although 5G technologies are designed for high
reliability and low latency communication, The communication Quality of
Service (QoS) highly depends on distance.

2.2 CONTROL SYSTEM

An efficient and safe management of connected Autonomous Vehicles (AVs
obtained when all involved vehicles follow the agreed instructions. Therefore,

9
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in order to fulfill AIM requirements, the control system needs to be effective,
safe, and robust to uncertainties. In this section we provide a methodological
review on AIM approaches and a framework of different control strategies
and intersection modelling in the literature, with critical evaluation of these
works.

2.2.1 INTERSECTION MODELS

Generally, AIM strategies are usually based on one of the following three
different approaches:

1. A reservation based approach, where the intersection is the shared
resource that is being requested by vehicles, and the intersection man-
ager’s task is to make space-time reservations.

2. A trajectory planning based approach, where the vehicles’ position are
modelled as a function of time and the intersection manager’s task is to
plan collision free trajectories.

3. A collision avoidance approach in the collision region, which is a combi-
nation of reservation based and trajectory planning approaches, where
the collision region of two vehicles is predictable and the intersection
manager’s task is to avoid that two vehicles reach their corresponding
collision region simultaneously.

The reservation based approach is based on intersection discretization
where discretization is a process that transfers continuous functions of space
or time models into discrete counterparts [11]. By dividing the intersection
into small square blocks as depicted in Figure 2.2, the small square blocks
modelled as the resources must be shared between vehicles. Generally,
the problem has been considered as a scheduling, resource allocation or
optimization problem, where time slots and geographical space are discrete
and must be allocated to passing vehicles [12]. In this model, a higher
granularity, or smaller tiles, helps to model the intersection in more detail,
but it introduces higher complexities for algorithm design [13].

In AIM methods based on trajectory planning, a vehicle’s trajectory is
defined as the path that the vehicle in motion follows through space as a
function of time Figure 2.3. The task is to identify whether two vehicles’
trajectories are in conflict or not and avoid collision by steering or acceleration
controlling [14]. Several factors can have an effect on the vehicle’s trajectory,
and it varies with the vehicle’s type, interactions between the vehicles, the
road environment and the driving behavior.

However, in an intersection vehicles generally follow certain routes when
passing the intersection area. This means that the path for vehicles from
different directions with different intentions can be seen as pre-defined, as seen
in Figure 2.4. Therefore, a vehicle’s trajectory planning can be simplified,

10



2 Background

Figure 2.2: Illustration of intersection discretization

Figure 2.3: Illustration of Trajectory.

and easily be represented mathematically by a state-space model with a set
of input, output and state variables. Further, the potential collision regions
can be predicted by combining the above reservation based and trajectory
planning approaches, and where the intersection is be modelled as a set
of possible conflict points, shown in Figure 2.4. This helps to reduce the
complexity of the time slots, and results in a space reservation problem [15].

2.2.2 CONTROL STRATEGIES

Papers proposing AIM control systems usually formulate the intersection
control strategies based on three different categories centralized, decentralized
or hybrid control strategies [13].

Centralized intersection control strategies rely on a coordination unit, which
is called Intersection Coordination Unit (ICU) in this thesis. When a vehicle
enters the coverage area of the intersection, it sends a request to the ICU
through a wireless Vehicle-to-Infrastructure (V2I) communication link. The

11
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Figure 2.4: Illustration of collision regions

ICU collects information from all vehicles and make decisions based on
collected data and the current road situation. The instructions are sent to
each vehicle via the V2I communication link. [16–19].

In decentralized intersection control strategies, all vehicles communicate
with each other and thereby form a Vehicular Ad hoc Network (VANET).
Decisions are made locally by each vehicle, and the decisions are based on
sensor observations and data collected through the V2V communication [20–
22].

A hybrid intersection control strategy is a combination of centralized and
decentralized control strategies [23–25]. In the hybrid control strategies, the
decision can be made locally in each vehicle or globally in the ICU. The
vehicles in the intersection area can communicate with other vehicles and
the ICU through C-V2X communication links.

In this thesis, we have investigated the performance and operational issues
in the AIM control systems for an ordinary crossroad intersection with dif-
ferent traffic volumes. In next section, we summarized some implementation
challenges for AIM system with different types of control strategies.

2.3 IMPLEMENTATION CHALLENGES OF DIFFERENT CONTROL STRATE-
GIES

In this section, we will describe our opinions on challenges and some major
drawbacks of previously proposed AIM methods. We discuss the operational
issues of the proposed AIM methods that makes them insufficient to be
implemented in real-world scenarios.
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2 Background

2.3.1 DRAWBACKS OF UNREALISTIC ASSUMPTIONS

There has been much research on AIM methods during the last two decades.
The majority of the papers focus on a high level problem with many hy-
potheses to simplify the problem formulation and facilitate discussion. In
most cases, the proposed AIM methods are focused on improving the overall
performance of the intersection, for example increasing the intersection’s
throughput or minimizing the fuel consumption of passing vehicles. Usually,
it is the optimization formulation itself that is the main research focus, not the
overall system performance. Further, they are not evaluated for high vehicle
densities or uncertainties caused by the wireless communication.

We believe that the essential goal of proposing an AIM method should be
that it can be implemented in a real operational intersection. Therefore, the
proposed method must guarantee a safe crossing of vehicles and make sure
that all road users are protected even in places with high traffic densities
and/or limited visibility. Therefore, it will be crucial to evaluate the AIM
method in close to real world scenarios including the wireless communication.

2.3.2 CHALLENGES FOR CENTRALIZED CONTROL STRATEGIES

AIM methods based on a centralized control strategies have some major
challenges. For example, the optimization problem must scale well with
increasing vehicle densities. Otherwise, finding an exact solution may become
intractable for realistic vehicle densities. More details can be found in our
first paper (Paper I) that focus on AIM methods using centralized control
strategies [26].

2.3.3 CHALLENGES FOR DECENTRALIZED STRATEGY

AIM methods based on decentralized control strategies have been proposed to
tackle the imposed complexities of the centralized techniques [26]. However,
the result may be sub-optimal due to the lack of global information. In our
second paper (Paper II), we deeply discussed the implementation challenges
for a decentralized AIM. We have shown that a decentralized control strategy
is not robust to wireless channel impairments. Therefore, the solution may
not be reliable in presence of packet loss and delay, that means the control
system may not be able to keep a collision probability of zero.

2.3.4 CHALLENGES FOR HYBRID STRATEGY

Hybrid AIM methods can be developed as a solution to the challenges with
the centralized and decentralized AIM strategies. In hybrid methods, a com-
bination of centralized controller in the ICU and decentralized controller in

13
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each vehicle can be used [27]. However, in our opinion, the current published
hybrid AIM methods have some major drawbacks. For example, The vehicle
trajectory is decided by the centralized controller and then transmitted to the
vehicle. This means that the local controller in each vehicle is designed to only
perfectly follow commands from the central controller, which still requires
a perfect centralized control strategy and a perfect wireless communication
link. By not introducing any local independent intelligence in the vehicles, the
vehicles cannot avoid any potential collision situations that are independent
of the centralized control management, for example, situations caused by
pedestrians or vehicles that do not follow the commands from the central
controller.

In our third paper (Paper III), we proposed our solution to manage au-
tonomous vehicles’ movements in a safe manner at an intersection with
different traffic densities based on hybrid strategy. A centralized coordinator
in a higher layer that is used to balance the network load and improve the
traffic efficiency, and a second layer in each vehicle with a local controller
that is responsible for following the rules from the higher layer and ensure a
collision free and safe crossing.
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3
Simulation Framework and
Evaluation Methodologies

In this chapter, we describe our simulation environment and our experi-
ments to evaluate the performance of a cooperative autonomous intersection.
Our goal is to investigate the system performance in terms of safety, scalabil-
ity, and robustness. To this aim, we explain our definition of a well performed
control strategy for each performance metric.

3.1 SIMULATION ENVIRONMENT

Vehicular Networks emerged as a specific application of Mobile Networks
[28]. At the beginning, random models were used to represent vehicles’
mobility and behaviour. However, it soon become clear that these model
produced undesirable results and that they were not suitable for evaluating
new protocols [29]. Therefore, the study of traffic simulators become an open
topic of constant research. A traffic simulator aims to model the vehicular
mobility and dynamics that are close to reality, where the distributions of
vehicles and their speed is non-uniform.

Several simulation environments for vehicular mobility have been pro-
posed. These simulation environments can be categorized according to their
areas of application [30]. Microscopic traffic simulation has proven to be a
useful tool for analysis of various traffic systems at vehicle level [30]. In
microscopic models each individual vehicle’s movements are modelled and
also, the traffic data parameters, such as speed, travel time, fuel consumption,
queues length, flow rate, and traffic density can be collected [31, 32].

In this thesis, we have developed a simulation environment based on
Simulation of Urban MObility (SUMO) [32]. The aim is to have a simulation
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Table 3.1: SUMO configuration

Parameter Value Description

step-length 0.05 s Simulation time step

collision.
mingap-
factor

0 m Collisions detection dis-
tance

collision.action Warn Collision warning is is-
sued

collision.check-
junctions

True Check collisions between
vehicles in the intersec-
tion

environment for heavily congested conditions at vehicle-level. SUMO is an
open source, highly portable, microscopic and continuous traffic simulation
package developed by the German Aerospace Centre DLR in 2001. SUMO
supports the traffic simulation community, such as characteristics of various
vehicle movements, driver behaviour, road topology and statistical data col-
lection.

In our work, for development of new traffic control, the vehicles’ behaviour
must be adjusted dynamically, while the simulation is running. Dynamic
control and V2X communication are not part of SUMO, but can be provided
by external programs. This has been performed via the Traffic Control
Interface (TraCI) that is an interface that allows a client program to retrieve
information and influence the simulation over a network socket [33].

Also, we changed the values of some of SUMO’s default configuration
parameters, as shown in Table 3.3. The vehicles’ speed in SUMO are con-
trolled by our program via TraCI commands setSpeed (0x40) and slowDown
(0x14). However, a vehicle may drive slower or faster than this speed due to
the car following model in SUMO. In order to force the vehicles to follow
our control strategy, we disabled the behavior imposed by the car following
model, by using the speed mode (0xb3) command and set all checks off. In
each SUMO simulation time step, the vehicles’ speed can be calculated based
on the control strategy and perfectly followed.

In our simulations, the road network was modelled as a basic four-way
intersection stored in a network XML-file. In the network file, each crossing
road has two lanes. Each lane is 3.5m wide, and there is a maximum speed
limit of about 72 km/h (vmax = 20 m/s). In addition, the intersection area is
modelled as a circle with radius 150m.
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Table 3.2: Vehicle Type Parameter

Parameter Value Describtion

guiShape passenger The vehicle shape for
drawing.

length 4 m The vehicle’s length

width 2 m The vehicle’s width

minGap 0 m Empty space after leader

accel 5 m/s2 The acceleration ability of
vehicles of this type

decel 5 m/s2 The deceleration ability
of vehicles of this type

emergency
decel

9 m/s2 The maximal physically
possible deceleration for
the vehicle

maxSpeed 200 km/h The vehicle’s maximum
velocity

Further, all vehicles in our simulations have the same physical properties
(summarized Table 3.2), and they arrive at the intersection according to a pre-
generated traffic demand stored in a route XML-file. In the route file, all
four entrance zone have similar traffic flow rates. The vehicles arriving at an
intersection can turn right or left, or continue straight ahead. The vehicles’
arrivals will be randomized using a Poisson distribution and an arriving
vehicle is given a specific path when it arrives. The probability for receiving
a specific path is the same for all paths. SUMO will report a collision when
the physical gap between two vehicles is 0. In the simulation, the collided
vehicles will immediately be removed by TraCI and the rest of the traffic will
continue as before.

3.2 EVALUATION APPROACHES

The ultimate goal of Autonomous Intersection Management systems are to
improve the safety, efficiency, and sustainability of transportation networks.
This will be achieved by less traffic congestion and less number of accidents,
and a decreased severity of those accidents. We believe that safety improve-
ment is the most important potential benefit of AIM systems. However, the
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Table 3.3: SUMO configuration

Parameter Value Description

step-length 0.05 s Simulation time step

collision.
mingap-
factor

0 m Collisions detection dis-
tance

collision.action Warn Collision warning is is-
sued

collision.check-
junctions

True Check collisions between
vehicles in the intersec-
tion

other goal, congestion reduction, may have negative impacts on safety. In
this section, we describe, in our opinion, the necessary evaluation metrics to
verify the performance of an intersection controlled by AIM in terms of safety,
scalability, and robustness to uncertainties.

Since an AIM must be safe in all traffic conditions specially high traffic
densities, we have evaluated the system performance in different traffic
volume, also called traffic flow rates. The traffic flow rate is normally given
in terms of arriving vehicles per hour per lane. All results will be compared
with a conventional intersection control based on traffic lights with 90 second
green phase and 90 second red phase.

The saturation flow rate for an intersection corresponds to the maximum
achievable traffic flow rate when there is a high traffic demand. For an
intersection controlled by traffic lights, the saturation flow rate depends
on several factors, such as the intersection geometry, safety policy and the
surrounding environment [34]. The study in [34] shows that the saturation
flow rate for an intersection controlled by traffic light is almost 900 vehicles
per hour per lane. The saturation flow calculation is based on a 2 seconds
headway between vehicles for safety.

A saturated intersection corresponds to a situation where the maximum
number of vehicles coexist inside the intersection, and the vehicles have
minimum possible safe distance of dmin(m), and assuming that the vehicles
have an average speed of V̄(m/s). Since the intersection is full of vehicles,
at least one vehicle need to leave the intersection for another vehicle to enter.
The time it takes for the first vehicle at the end of an exit lane to leave the
intersection zone is th = dmin/V̄(s). In an intersection with N2 exit lanes and
N1 entrance lanes, the average number of N2 vehicles can leave the intersection
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during period th simultaneously. That means that at maximum of N2 vehicles
can enter from N1 entrance lanes, We are looking for the maximum achievable
traffic flow rate for each lane. Since in each second, maximum min(N2, N1)/th
vehicles can enter from N1 lanes, the maximum traffic flow rate, the system
capacity, in terms of vehicles per hour, can be obtained from Equation (3.1).

C =
3600 ∗min(N2, N1)

th · N1
(3.1)

In our papers, the traffic flow rate is divided in three different traffic volumes,
as in [35]. The peak hour traffic flow rate for a typical intersection in an urban
area is usually 450-650 vehicles/hour/lane, which is defined as High volume
traffic. A traffic flow rate of 150-450 vehicles/hour/lane is defined as Medium
volume traffic. Finally, a traffic flow rate of less than 150 vehicles/hour/lane
is defined as Low volume traffic. In the result graphs, we will highlight the
different traffic volumes by using different background colours: Green for
traffic flow rates corresponding to Low volume traffic, yellow for Medium
volume traffic and red for High volume traffic.

3.3 PERFORMANCE METRICS

In this thesis, we use several performance metrics for the evaluation. In
this section, we describe some of these metrics and how we calculate them
in our simulation environment SUMO. The first two performance metrics,
average speed and fuel consumption are the most used performance metrics in
the literature to evaluate the efficiency of AIM methods. We also include safety
since it will be crucial when deploying an operational AIM system.

3.3.1 AVERAGE SPEED

From Equation (3.1), a higher average speed means a higher capacity for the
intersection. Therefore, the system performs well when vehicles can pass the
intersection with a high speed. We have evaluated the average speed of all
vehicles in the intersection for different traffic flow rates. The average speed
for vehicle i, V̄i is calculated as in Equation (3.2).

V̄i =

´ Tri vi(t)
Tri

(3.2)

Where Tri is the total time vehicle i spends on its path in intersection zone
and is called Traveling time of vehicle i. The vi(t) denote the speed of vehicle
i at time t. The average speed of all vehicles during a simulation run, V̄, is
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obtained by calculating the average speed of all vehicles that have passed the
intersection during the simulation, as shown in Equation (3.3).

V̄ =
∑Nl

i V̄i

Nl
(3.3)

where Nl is the total number of vehicles that have passed the intersection
during the simulation.

3.3.2 FUEL CONSUMPTION

Energy efficiency and emission reduction are other promising benefits of ITS.
An AIM method performs well if it results in a low fuel consumption (or elec-
tricity for electric cars) for the vehicles. Several factors can have an effect on
the fuel consumption, and it varies with the vehicle type, weather condition,
driving behaviors such as rapid acceleration, and speed. The Environmental
Protection Agency (EPA) study [36] shows that the acceleration rates have a
significant effect on a vehicle’s fuel consumption. Therefore, a smooth flow
of vehicles, and thereby, a smooth change of acceleration is desired. In this
thesis, we have used the average absolute acceleration for different traffic flow
rates as a metric for fuel consumption. The average absolute acceleration for
vehicle i, denoted Ui, during its traveling time Tri is calculated as shown in
Equation (3.4).

Ui =

´ Tri |ui(t)|
Tri

(3.4)

Where ui(t) is the acceleration of vehicle i at time t. The average absolute
acceleration for all vehicles during a simulation, U, is obtained by calculating
the average absolute acceleration of all vehicles that have passed the intersec-
tion during the simulation, as shown in Equation (3.5).

U =
∑Nl

i Ui

Nl
(3.5)

3.3.3 TRAFFIC SAFETY

An operational AIM system needs to be totally safe. In this thesis, we have
used an approximation of average number of collisions per hour as the main
performance metric for traffic safety. As explained in Section 3.1, a collision
is defined when the physical distance between two vehicles is zero. For each
traffic flow rate, we ran the simulation several times with different random
seeds (i.e different traffic demand profiles), where each simulation run was
1 hour. We measured the number of collisions that SUMO detected during
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each simulation run, and then calculated an average of the number of detected
collisions per hour, denoted N̄c, as shown in Equation (3.6).

N̄c =
∑Nr

k Nk
C

Nr
(3.6)

where Nr is the total number of simulation runs and Nk
C is the number of

detected collisions in simulation run k. The resulting metric, N̄c, should be
seen as an approximation, not a fact. For example, we used more simulation
runs for lower traffic flow rates than for higher traffic flow rates. The main
aim with this metric is to evaluate if an AIM method can be considered safe or
not. Therefore, the absolute values of N̄c are not relevant, only the comparison
between methods.

3.3.4 ROBUSTNESS

Operational AIM systems need to be robust to uncertainties caused by the
wireless communication. In this thesis, we have evaluated the effect on the
safety when adding packet loss and communication delays, and used these
results as a performance metric for robustness of the system.

3.3.5 SCALABILITY

Another requirement for operational systems is that an AIM method must be
able to handle a large number of vehicle movements. Therefore, it is important
to evaluate the deployed algorithms’ complexity, execution time, problem size,
and maximum traffic flow rate that the AIM method can safely control.
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4
Summary and Contributions

4.1 RESEARCH CONTRIBUTIONS

The three papers included in this thesis are summarised below, which illus-
trates the path of our investigations on AIM systems. This chapter gives an
overview on the content of each paper, and detail my main contributions in
each work and potential future work.

We have investigated the performance and operational issues in the Au-
tonomous Intersection Management systems for an ordinary crossroad inter-
section with different traffic volumes. We started with examining the feasibil-
ity of deploying AIM methods based on centralized control strategies (Paper
I), and continued by investigating the challenges of AIM methods based on
decentralized control strategies (Paper II). Then, we proposed a hierarchical
control strategy (Paper III) based on our experiences and conclusions from
Paper I and Paper II.

4.1.1 PAPER I: CENTRALIZED COORDINATION OF AUTONOMOUS VEHICLES
AT INTERSECTIONS

In this paper, we compared two well-cited [16, 37] AIM methods based on
centralized strategy in a realistic simulation environment. We investigated
the safety and possibility of implementing the proposed algorithms in the
real world. This side by side comparison helped us to gain insight into the
strengths and limitations of these types of control systems. Our investigation
verified the improvement of common performance criteria, such as energy
consumption, travel time and throughput, in comparison with a conventional
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signalized intersection. But, our simulations show that the safety conditions
are not satisfied in high traffic densities, since the collision probabilities rather
quickly become larger than zero when the traffic rate increases. This means
that AIM systems based on centralized control strategies can only can be used
for low traffic rates. In addition, the problem complexity, in particular for high
traffic densities, may make these type of AIM methods infeasible for real time
traffic management scenarios.

Contribution:

I was the primary researcher in this work and my contribution is in system
definition and modelling. I also created my simulation framework based on
SUMO, which allows vehicles to follow my control rules instead of default
control in Simulation of Urban MObility (SUMO). I used the simulation
framework for performance evaluation and analysis.

For this thesis, the paper has been formatted to match the rest of the thesis.

4.1.2 PAPER II: EVALUATION OF DECENTRALIZED ALGORITHMS FOR COOR-
DINATION OF AUTONOMOUS VEHICLES AT INTERSECTIONS

In this paper, we study the safety, scalability, and performance of AIM meth-
ods based on decentralized control strategies, in the presence of communica-
tion impairments associated with wireless channels. Two well-cited [38, 39]
AIM methods are evaluated in realistic simulations in SUMO. We investigate
the safety and feasibility of deploying this type of control strategies in the real
world operational traffic systems. As for centralized control strategies, it can
be shown that decentralized schemes are completely safe and well-performing
for low and medium traffic flow rates. However, our results clearly show
that the safety conditions are not guaranteed for high traffic densities, and
therefore, AIM methods based on decentralized control strategies would only
be usable for low traffic rates. Also, the algorithms are not robust to wireless
channel impairments that results in packet loss. This means that the control
system performance highly depends on wireless channel reliability.

Contribution :

I was the primary researcher in this work and my contribution is in system
definition and modelling. I used my simulation framework in previous
work [26] for a fair performance evaluation and comparison between different
decentralized/centralized control algorithms.

For this thesis, the paper has been formatted to match the rest of the thesis.
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4.1.3 PAPER III: A SAFE AND ROBUST AUTONOMOUS INTERSECTION MAN-
AGEMENT SYSTEM USING A HIERARCHICAL CONTROL STRATEGY AND V2I
COMMUNICATION

In this paper, based on our knowledge of the strengths and limitations of
AIM methods based on centralized and decentralized control strategies, we
propose a new hierarchical control strategy to manage AVs movement at
intersections. In our proposed AIM method, the Intersection Coordination
Unit (ICU) in a Global Centralized Layer (GCL) is responsible for assigning a
safe speed to each vehicle inside the intersection, and ensure that vehicles can
cross the intersection without collision, while maximizing the intersection’s
throughput. In the Local Decentralized Layer (LDL), each vehicle is respon-
sible for tracking the reference speed assigned by the ICU, while avoiding
collisions. In our proposed AIM method, each vehicle can use its own sensors
to monitor its close surroundings, and thereby can take its own decisions on
its movements, independent on the control decisions sent from the ICU. This
means that our proposed AIM method only requires V2I communication, and
no V2V communication. We investigate the safety, scalability and robustness
of our proposed AIM method compared with two AIM methods based on
centralized and decentralized control strategies. Our simulation results show
that the proposed AIM method can safely handle high traffic flow rates.
Also, our simulations results show the robustness of our proposed method
to uncertainties caused by the wireless communication.

Contribution :

In this work, we proposed our own solution for AIM problem. I was the pri-
mary researcher in this work and my contribution is in system definition and
modelling, solution design, simulation development, performance evaluation
and analysis.

For this thesis, the paper has been formatted to match the rest of the thesis.

4.2 CONCLUSIONS AND FUTURE WORK

In this thesis, we have looked at Autonomous Intersection Management
methods in the context of future Intelligent Transportation System. AIM has
the potential to increase the road network safety and efficiency by eliminating
human factors in accident investigations and balancing the roads network
traffic.

In our research, we focused on control strategies for managing autonomous
vehicles’ movements. We have investigated implementation issues of previ-
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ously proposed AIM control strategies in real world scenarios in our first and
second papers (Paper I, II). We also proposed our hierarchical control strategy
in Paper III to tackle with operational limitations imposed by centralized and
decentralized systems.

Despite of all advances in technologies, it will take a long time to transition
to fully autonomous systems. Therefore, intersection control mechanism for
autonomous vehicles management must be compatible with human drives. In
addition, pedestrians and cyclists must also be able to cross intersections in a
safe manner. We will extend our work in Paper III to accommodate scenarios
including humans, whether they are on a bicycle, crossing the intersection, or
driving a conventional non-autonomous car. Further, a real time optimization
of the vehicles’ traffic flow through a network of multiple intersections can be
an interesting practical challenge for our future work.

In addition, the deployment of a cooperative ITS is expected to lead to bet-
ter traffic management by increasing efficiency and safety. Therefore, before
autonomous vehicles hit the streets, it is necessary to build new technologies,
testbeds and applications that will give us insight into this new technologies.
We plan to build our testbed by using mini-cars, e.g. 1/10 scale model cars,
to test self-driving technology and in particular AIM application. To build
our testbed we hope to do a collaboration in a variety of research areas such
as path planning, accurate positioning, sensor fusion, energy efficiency, and
cyber-security.
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I
Centralized Coordination of

Autonomous Vehicles at
Intersections

Recent advances in autonomous vehicles present new opportunities in Intel-
ligent transportation systems (ITS)s to address urban transport challenges.
Therefore, urban traffic scenarios, and in particular intersections as a bot-
tleneck of transportation network, has received significant attention. In this
paper we investigate intelligent traffic control mechanisms for autonomous
vehicles at intersections as a replacement of traditional intersection control.
An edge cloud controller is used to deliver services that provide traffic
safety and efficiency to vehicles. Two well-cited optimization algorithms
for cooperative vehicles are compared with realistic simulations in SUMO.
We investigated the safety and possibility of implementing the proposed
algorithms in the real world. This side by side comparison helps to gain
insight into the strengths and limitations of these types of algorithms.
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1 INTRODUCTION

Intelligent Transportation Systems and in particular autonomous vehicles
(AVs) will likely have significant effect on future traffic management systems.
As automated vehicles become more common, the traffic control strategies,
for example intersection management (IM), have to be improved in order to
increase the driving safety. Road intersections are currently managed by using
traffic lights, which often result in many vehicles unnecessarily braking and
can significantly increase travel times. By leveraging the capacities of AVs, it is
possible to remove traditional intersection managers and rely on coordination
among the involved vehicles at an intersection.

In cooperative intersection control, there is usually an intersection control
unit that can exchange information with the vehicles. In this paper, we
assume that all vehicles crossing the intersection can be manipulated by
the control unit through two-way communication. Cooperative intersection
control could, besides providing safe crossings for the vehicles, optimize
overall costs such as travel times, traffic throughput and fuel consumption.

The idea of Autonomous Intersection Management (AIM) was first pro-
posed by Drenser and Stone [1]. They designed a central decision maker,
which manages time-space reservations in the intersection to avoid collisions.
After that, a number of papers has been published on methods to design the
best intersection management system as well as several metrics to evaluate
such systems. For example, a vehicle scheduling problem was proposed in [2].
In their algorithm, vehicle agents are allowed to determine control actions
among a set of controlled inputs. Another example is [3], where the authors
proposed a decomposition scheme that gives an approximation solution to
an optimal control problem. Further, a convex modelling for optimal control
of autonomous vehicles at intersections was provided in [4]. Their proposed
method includes problem transformation from time to space domain. Also,
in [5], a communication strategy was proposed that minimized the use of
communication resources for the intersection management.

In Kamal et al. [6] a Model Predictive Control (MPC) problem is formulated
that generates feasible trajectories for autonomous vehicles. Their control
algorithm optimises the control inputs of the vehicles in a given time horizon
to minimise the risk of cross-collisions. They assume a constant number of
vehicles approaching to the intersection and input traffic into all the sections
is set at equal rate.

In Zohdy et al. [7], a system for intersection control is developed that
optimizes vehicle trajectories within an intersection zone. In their strategy,
vehicles pass the critical area with a time difference to avoid collision. They
assume that vehicles approach the intersection zone with their maximum

36



I Centralized Coordination of Autonomous Vehicles at Intersections

possible velocity and the proposed mechanism reduce this speed if it is
required.

The overall aim of our research work is to develop a robust centralised
controller in a scenario where vehicles are cooperative and connected to an
edge cloud based on a 5G infrastructure. The controller should generate
optimal route decisions for all vehicles based on the intersection state, and
then communicate these decisions to the vehicles that follows the decisions
when crossing the intersection. Obviously, an autonomous intersection con-
trol algorithm must guarantee total safety for passengers, that is, no collision
can occur, which means that the collision probability must be zero for all
possible scenarios. Further, the execution time of an algorithm must be
limited, in order for it to be feasible to run in real-time.

In this paper, we compare the previously mentioned algorithms [6] [7] by
implementing them in the realistic simulation environment SUMO [8]. We
have chosen these two algorithms because they have different optimization
objectives for the same type of intersection control, and they are well cited in
the literature. Both algorithms have been shown to work well in numerical
simulations and theoretical analysis. In this paper, we evaluate the safety and
possibility of implementing the proposed algorithms in the real world. Our
investigation shows the performance of the two algorithms compared with
traditional signalised method. Our main conclusion is that these algorithms
can only be used for low traffic densities, since the collision probability
rather quickly becomes larger than zero when the traffic increases. Also, the
execution times of the algorithms makes them rather infeasible for realistic
traffic scenarios.

2 TARGETED SYSTEM

In urban transportation network, intersections are a bottleneck in generating
traffic congestion. Traffic flow pattern in an intersection depends on its
geometry, location and possible movement to and from its various lanes. Con-
gestion wastes a massive amount of time, fuel and creates more uncertainty
for traveller. Coordinated intersection traffic management is an important
component of the intelligent transportation system. It enables a vehicle to
communicate with roadside equipment or other vehicles, and help to improve
the road traffic safety and efficiency.

We consider the problem of autonomous vehicle coordination at a crossroad
intersection without traffic lights, as depicted in Figure 1, The system is
composed of vehicles equipped with On Board Units (OBU)s, which may
employ a wide range of sensors types, and an Intersection Coordination
Unit (ICU) that will be deployed at the intersection and act as a computing
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Figure 1: Targeted System and Intersection layout

resource pool. The OBUs and the ICU communicates via some type of high
bandwidth radio communication, for example using 5G. However, the focus
in this paper is on the control part, not the communication part, and therefore,
the communication technology is not specified, and we just assume a wireless
communication link with negligible packet loss and delay.

We consider a typical crossroad intersection where vehicles are allowed
to make left and right in addition to through movement. We split the
intersection area into three zones: the entrance zone, the critical zone and the
exit zone. The entrance zone represents the area where vehicles approaches
the intersection boundary. In the critical area, there is a risk of lateral vehicle
collisions. The exit zone includes vehicles leaving the intersection.

Each vehicle periodically sends its status information to the ICU, as part
of the ITS facilities layer [9]. The ICU will periodically orchestrate vehicles,
aggregate data, and provide control based on the system’s objectives. Also,
the ICU will determine whether there is any danger according to the driving
status of the vehicles. Collisions between two vehicles are prevented by
controlling the speed of the vehicles. All vehicles are assumed to always
follow the ICU’s decisions.

3 INVESTIGATED ALGORITHMS

In this paper, we investigate the performance of two AIM algorithms, the
Model Predictive Control Algorithm [6] and the Delay Minimization Algorithm
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[7], by implementing them in the realistic simulation environment SUMO [8].
In this section, we first describe our general system model and then present
high level descriptions of the two algorithms.

3.1 SYSTEM MODEL

In this section we present the system model that is used by the AIM algo-
rithms for intersection control. A collection of N = {1, 2, . . . , N} autonomous
vehicles approaches a coordination area of an intersection with L lanes. For
each i ∈ N a predetermined path is given and perfectly followed.

The vehicle dynamics are described as a second order integrator, where
the vehicle is modeled as a point on the path coordinates. Given vehicle
i, pi,t is defined to show the position (distance from the beginning of the
critical zone) at time t and vi,t = ṗi,t is the speed of vehicle and ui,t = p̈i,t the
acceleration [10]. The longitudinal motion of each vehicle, xi,t = [pi,t, vi,t]

ᵀ,
can be controlled by its acceleration. We assume the control input is updated
in discrete time τ. The discrete time state model of vehicle i at time tτ is given
in equation (1).

It is assumed that the vehicles will follow the acceleration decided by
ICU through communication link describe in Section 2. Each vehicle will
transmit its basic driving information, including current position, velocity,
and destination once entered into the intersection zone to initialised the
problem at the ICU.

xi,t+1 =

[
1 −τ

0 1

]
xi,t +

[
− 1

2 τ2

τ

]
ui,t (1)

We consider a limited speed and acceleration: vi,t ∈ Vi = [vmin, vmax] and
ui,t ∈ Ui = [umin, umax]. However, maximum and minimum acceleration of
each vehicle depends on its current velocity and speed limitation.

3.2 MODEL PREDICTIVE CONTROL ALGORITHM

In this section, we give a high-level description of the AIM algorithm for in-
tersection control proposed in [6]. This algorithm will in the rest of the paper
be called the Model Predictive Control (MPC) algorithm. The algorithm defines
an optimization problem that minimize the risk of collision between a pair of
vehicles at their possible conflict point during a finite time horizon. Therefore,
the algorithm introduces a risk function F t

i,j that is used to determine whether
a vehicle pair (i, j) poses a potential risk of collision at time t. The risk function
is given in equation (2) below:

F t
i,j = δi,jexp{−αi(pi,t + Cij)

2 − αj(pj,t + Cji)
2} (2)
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Here, αi and αj are positive constants that depend on the two vehicles’ sizes.
δi,j is a binary variable that states whether the pair vehicles (i, j) have the
potential to collide or not. Cij and Cji are the distances from the conflict point
of the pair vehicles (i, j) to the beginning of the critical zone at intersection for
vehicle i and j respectively.

In order to avoid any rear-ends collisions, a minimum separation distance
between two vehicle on the same lane, dmin, is defined. Since the vehicles
are modeled as a point on their path, In the real world dmin is the minimum
distance between the centre point of two vehicles. The following constraint in
Equation (3) is defined to prevent rear-ends collisions between vehicles i and
j at time t:

|pi,t − pj,t| ≥ dmin (3)

The variable pi,t will always have a positive value in the entrance zone.
For ensuring that no collisions occur between two vehicles form different
approaching lanes inside the critical zone, a linear inequality constraint is
defined as in equation (4) below:

pi,t + Cij + pj,t + Cji ≥ Rmin (4)

Here, Rmin is a constant that denotes the minimum separation distance
between the centers of two vehicles from different approaching path.

A Model Predictive Control (MPC) framework is used to minimize the
system’s cost over predefined time horizon. An MPC problem with the time
horizon of T steps allows the system be optimized in current time slot, while
keeping next T − 1 time slots in account [11], [12]. For this purpose at each
time step an optimization problem is solved to drive the optimal control input
for the system by predicting the system state over the defined time horizon.

The objective of the optimization is to achieve a smooth and comfortable
flow of vehicles where the vehicles cross the intersection with almost constant
and high speed, while minimizing the risk of collisions and energy consump-
tion. Therefore, The system cost, J is defined as in Equation (5). One of the
term in cost function attempts to minimise error between the speed of vehicle
i and its desired speed, vi

d, Minimizing the acceleration, ui,t and the last term
related to collision avoidance risk function.

J =
T−1

∑
t=0

N

∑
i=1

wvi (vi,t+1 − vi
d)

2

+
T−1

∑
t=0

N

∑
i=1

wui (ui,t)
2 +

T−1

∑
t=0

N−1

∑
i=1

N

∑
j=i+1

w fF t
i,j

(5)
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Here, wvi ,wui and w f are weight coefficients and J is the problem objective
to be minimised, subject to the given current states of the vehicles as defined
in Equation (1) and constraints as defined in Equations (3) and (4). The speed
and acceleration is bounded as described in Section 3.1.

3.3 DELAY MINIMIZATION ALGORITHM

In this section, we give a high-level description of the AIM algorithm for
intersection control proposed in [7]. The algorithm will in the rest of the
paper be called the Delay minimization algorithm. In this algorithm, vehicles
are assumed arrive at entrance zone with their maximum allowed speed. The
ideal profile entails traveling the entire intersection zone without deceleration.
This means that in the absence of obstacles, a vehicle should be able to cross
the intersection at the same maximum speed. In order to avoid collisions,
The algorithm adjusts the vehicles’ speed, so that all vehicles can cross the
intersection at their respective maximum movement speed without colliding
with other vehicles.

Decisions of arrival times of each vehicle to critical zone are made by the
optimization module. The objective of the algorithm is to find the optimal
deceleration to minimize the total traveling time for all vehicles inside the
intersection by considering the safety criteria. The minimum time for a vehicle
to travel between the beginning of entrance zone and the beginning line of
critical zone without deceleration is called the optimum time, denoted OTi for
vehicle i. The algorithm tries to minimise the extra delay (Di) that is added to
the optimum time in case of necessary deceleration.

In order to avoid any rear-ends collision, a minimum separation headway
time of Hmin between two vehicle on the same lane is defined.

|(OTi + Di)− (OTj + Dj)| ≥ Hmin (6)

To ensure that no collisions occur between a pair of vehicles form different
approaching lanes inside the critical zone, the vehicles have to pass their
possible conflict point with a minimum time separation ∆τ. Therefore, a
linear inequality constraint is defined as in equation (7) below:

|(OTi + Di + τij)− (OTj + Dj + τji)| ≥ ∆τδi,j (7)

Here, δi,j is a binary variable that states whether the pair vehicles (i, j)
have the potential to collide or not. τij and τji are defined as the travelling
times from the conflict point of pair (i, j) to the beginning of the lane i and j
respectively.
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The system cost, J is defined as the sum of the required delay for all vehicles
inside the intersection zone to avoid collision. J is given by Equation (8).

J =
N1

∑
i=1

Di (8)

Here N1 = {1, 2, . . . , N1} is the set of vehicles that approaches the intersec-
tion zone in the current time step.

Also, N0 = {1, 2, . . . , N0} is the set of arriving vehicles at the intersection
during the past time steps that are still in the entrance zone. The total number
of vehicles inside the entrance zone is N = N1 + N0, since only vehicles in
N1 are optimised in the current time step, The reserved time for each conflict
point for vehicles inN0 from the previous time step is used as a new constraint
for the following time step. This assumption will add the following constraint
to the problem.

OTi + Di + τmn ≥ max[(OTj + Dj + τmn), (OTk + Dk + τmn))] (9)

For all i ∈ N1 and j, k ∈ N0, τmn is an arbitrary conflict point. The algorithm
defines an optimization problem to minimize the system cost, J at each time
step by considering the current states of the vehicle as described in equation
Equation (1) and constraints as defined in Equations (6) and (7).

4 EVALUATION

In this section, we describe our simulation environment and experiments.

4.1 EVALUATION ENVIRONMENT

To evaluate and compare control methods, a realistic simulation program
based on Simulation of Urban Mobility (SUMO) [8] has been developed.
SUMO is an open source, highly portable, microscopic and continuous traffic
simulation that gives the user control over all aspects of the network, such
as vehicle type, driver behaviour, intersection control, and statistical data
collection. In our work, we have modified SUMO by allowing each vehicle’s
speed to be manipulated by a central controller (i.e. the ICU) instead of using
their default microscopic flow algorithms in SUMO.

4.2 EXPERIMENT

In this work, we consider a four-way intersection with two lanes in each way.
Each lane is 3.5m wide with a maximum speed limit of 20m/s, i.e about 70
km/h. We assume that the intersection area can be modelled as a circle with
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Table I: Simulation Parameters

MPC

vd 16 m/s

umax 5 m/s2

umin -6 m/s2

vmax 23 m/s

vmin 3 m/s

T 12 s

Rmin 7 m

dmin 7 m

Delay minimization

Vmax 16 m/s

umax 0 m/s2

umin -6 m/s2

Hmin 2 s

∆τ 4 s

radius 150m. Table I summarize the simulation parameters and specifications
that we used for each algorithm.

The two intersection control algorithms were evaluated for different traffic
flow rates. Traffic flow rate is defined as the rate at which vehicles pass a
given point on the roadway, and it is normally given in terms of vehicles per
hour. Based on the collected data from drivers using a navigation service in
China [13] and , the the deployed intersections for a transportation project
Michigan [14], we can divide the flow rate range in three different volumes.
The peak hour flow rate for a typical intersection in an urban area is between
450 vehicles/hour and 600 vehicles/hour, and we define this as a high volume
traffic. Further, a traffic rate between 150 vehicles/hour and 450 vehicles/hour
is defined as a medium volume traffic in an urban area. Finally, a traffic rate of
less than 150 vehicles/hour is defined as a low volume traffic in an urban area.

The maximum possible rate of vehicles crossing the counter point, that is
the maximum capacity of the intersection, is defined as the saturation flow rate.
In saturated intersection all vehicles move one after each other with minimum
safe distance. In this paper, we assume that each vehicle has an average length
of 4 meters. A safe gap distance of 2.5 meters is required between a pair of
vehicles. Therefore, the maximum possible number of vehicles inside the
intersection area is 92 vehicles that will be reached at saturation flow rate.

In this paper, we use the following performance metrics when we evaluate
the two intersection control algorithms:

• Average speed of vehicles inside the intersection zone.
• Average number of vehicles inside the intersection zone.
• Collision probability.
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• Execution time.

Also, all results will be compared with a standard signalised (traffic light)
with 90 second green phase and 90 second red phase intersection management
method.

The first two performance metrics are the most used metrics in the literature
when evaluating the performance of an intersection control algorithm. There-
fore, when considering the average speed and the average number of vehicles
in the intersection, we expect both algorithms to improve the performance of
the system when compared with the signalised method.

However, the objective of our work is to find intersection control algorithms
that can be implemented in real world systems. Therefore, the third perfor-
mance metric, collision probability, will be crucial, since this is the metric that
checks the safety condition.

In addition, we expect that the number of objective function calculations
and non-linear constraints for the MPC is higher than for the Delay minimisa-
tion algorithm, which can result in a problem for real applications due to the
required processing times. Therefore, we decided to also show the resulting
execution times for the algorithms as a comparison metric.

5 RESULTS AND DISCUSSION

We performed simulations to compare the two algorithms and evaluate the
feasibility to deploy them in reality.

5.1 AVERAGE SPEEDS AND AVERAGE NUMBER OF VEHICLES

Figure 2 illustrates the average speed of each vehicle in one time slot for
different flow rates. In the MPC algorithm, the acceleration can have either
a positive or negative value. In the Delay minimization approach, the
acceleration is limited to negative values, since they are always related to
the maximum speed. Therefore, as expected, the system average speed for
the MPC algorithm is much higher compared to the Delay minimization
algorithm and the traditional signalized method.

Figure 3 shows the average number of vehicles in the intersection area for
different flow rates. The signalized intersection will be saturated at a flow
rate of about 700 vehicles/hour per lane, which sets an upper limit of the
capacity. It is apparent from Figure 3 that for both the MPC algorithm and
and the Delay minimization algorithm, there are much less vehicles inside
the intersection compared to the signalized intersection. This shows that
both algorithms have the potential to increase the capacity of the intersection.
However, the simulations showed that when the number of vehicles in the
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Figure 2: Average speeds for different flow rates. Flow rates are divided in
three different volumes.

entrance zone increases to more than 20 vehicles at each time step, the solver
may not find a feasible solution to control the vehicles’ speeds in proper
time. Therefore, we can not reach the maximum claimed capacity of 1600
vehicles/hour in [6].

5.2 COLLISION PROBABILITIES

Our simulation results validated the performance of the two employed meth-
ods with respect to traditional signalised approach as reported in [6, 7]. The
intersection capacity and traveling times (vehicle speeds) are improved with
both the MPC algorithm and the Delay minimisation algorithm.

However, in order to deploy the two proposed methods in the real world,
the traffic safety must be evaluated as well, since this will be crucial for
operational systems.

Figure 4 shows the expected collision probabilities for different traffic flows.
A signalized intersection is assumed to have zero probability of collisions
for all flows, since this is the main reason for deploying traffic lights in
intersections.

In the Delay minimization algorithm, the controller avoids collision between
two vehicles by reserving two different time slot for crossing the intersection.
However, even if this control strategy avoids collision inside the critical zone,
it can not guarantee that no collisions occur in the entrance zone.

Figure 4 shows that there is a probability of 0.2% of collisions for a flow
rate of 600 vehicles/hour. This means that 1.2 collisions per hour can be
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Figure 3: Average number of vehicles inside the intersection zone that is
defined as a circle with radius 150m.

expected when using the Delay minimization algorithm, which of course is
not an acceptable traffic safety condition.

On the other hand, the MPC algorithm prevents collisions in the whole
intersection area over the given time horizon (12 sec). However, a problem
occurs when the arriving flow rate increases to more than 500 vehicles/hour.
At this flow rate, it can be expected that new vehicles will enter the inter-
section zone during the problem prediction time horizon. In the algorithm,
the number of vehicles inside the entrance zone is assumed to be constant
during the horizon time, and therefore, this dynamic may cause collision in
intersection.

Figure 4 shows that the collision probability increases exponentially with
the flow rate for the MPC algorithm, which of course is not an acceptable
traffic safety condition.

5.3 EXECUTION TIMES

Another requirement for operational systems will be that an intersection
control algorithm must have a low execution time in order to fulfill the
extreme real-time properties required for these types of systems.

Figure 5 shows the execution times for the two algorithms with 95%
confidence intervals. We used a desktop equipped with an Intel Core i7-4790K
CPU @4 GHz and DDR3 RAM @1600 MT/s. The computer was configured
with an Ubuntu Linux. We set the simulation step time in SUMO to 0.5
seconds.
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Figure 4: Collision probability

The MPC algorithm is a nonlinear optimisation approaches and it needs to
predict the system state in the given prediction time. We expected a higher
execution time for the MPC algorithm compared with the Delay minimization
algorithm. As can be seen in Figure 5, this difference is definitely noticeable
and for higher flow rates the execution time for the MPC algorithm is longer
than the simulation step time, which would mean that the calculations for one
time step will not be completed before the next time step begins. Therefore,
the controller may not be able to make a control decision during a time
step. When the number of vehicles and consequently the size of the problem
increases, the decision making process time increases dramatically, and it will
require more powerful computers to find the solution in proper time.

6 CONCLUSION

The objective of this paper is to evaluate two previously proposed algorithms
for an autonomous intersection management [6, 7] in a realistic simulation
environment, with the ultimate goal to develop control algorithms for au-
tonomous vehicles that can be deployed in operational systems. It is observed
that using these schemes improve the performance of the traditional signal-
ized intersection. However, our simulation shows that the safety conditions
are not satisfied in high traffic densities and only can be used for low traffic
rate. since the collision probability rather quickly becomes larger than zero
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Figure 5: Execution Time

when the traffic increases. Also, the execution times of the algorithms in [6]
makes the algorithm infeasible for realistic traffic scenarios.

7 FUTURE WORK

The design of real time intersection management systems is a complex task
that involves many different steps. Full understanding of all different parts of
the design procedure require deep knowledge of theory. This paper has just
briefly described the principles of different traffic management methods. In
the future, the goal is to design an efficient and scalable control method for
managing vehicles at intersections.
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II
Evaluation of Decentralized

Algorithms for Coordination of
Autonomous Vehicles at

Intersections

Connected Autonomous Vehicles (AV)s with Vehicle-to-Vehicle (V2V) com-
munication are becoming an essential component of the transportation sys-
tem. Self-driving cars have the potential to optimize the roads’ traffic flow,
fuel consumption and remove the possibility of human error and distractions.
In these systems, all involved vehicles must be fully autonomous for max-
imum gain. However, a fully automated system requires major updates in
the transportation and network infrastructure. In this paper, we investigate
intelligent traffic control mechanisms for autonomous vehicles at intersections
as a replacement of traditional intersection control (i.e traffic lights). Two
well-cited decentralized optimization algorithms for cooperative vehicles are
compared with realistic simulations in SUMO. We investigate the safety and
feasibility of deploying the proposed algorithms in the real world. Further,
we study the scalability and performance of the algorithms in the presence
of communication impairments associated with wireless channels. This side-
by-side comparison helps to gain insight into the strengths and limitations of
these types of algorithms.
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1 INTRODUCTION

Intelligent Transportation Systems and in particular Autonomous Vehicle
(AV) combined with cooperative strategies will likely have a significant effect
on future traffic management systems. Currently, road intersections are
controlled by traffic lights. However, these systems are burdened with several
fundamental problems. For example, human recognition errors or vehicles
unnecessarily braking can result in many accidents and significantly increase
travel times [1, 2]. Therefore, there is a rising concern on the efficiency and
safety of traditional intersection management methods. Recent advances
in embedded sensors, on-board computing combining with communication
technologies [3, 4], have enabled the emergence of Autonomous Intersection
Management (AIM) strategies that can remove the need for traffic lights.

Papers proposing traffic control strategies and coordination algorithms
in the context of AV, usually formulates the problem as an optimization
problem. The main objective is to find the best trajectories and vehicles’
passing sequences through negotiation and cooperation between road users
and infrastructure, by considering system dynamics and collision avoidance
constraints. However, imperfect system models for vehicles’ dynamic and
non-ideal wireless communication channel lead to uncertainties that make
the design of a perfect control algorithm challenging.

Cooperative intersection management can be classified into three main cat-
egories: centralized, distributed and hybrid [5]. Centralized methods rely on
a central intersection manager that gives instructions to vehicles based on the
collected information from wireless communications. In distributed methods,
decisions are made locally by each vehicle based on the information achieved
by negotiation between vehicles and observation of the environment through
local sensors. In hybrid methods, vehicles are allowed to communicate with
each other and with a centralized intersection manager in order to have a
more efficient intersection management.

In [6] and [7], centralized optimal intersection controllers for autonomous
vehicles were proposed. Centralized approaches have been shown to work
well in numerical simulations and theoretical analysis. However, our inves-
tigation in [8] shows that centralized methods are poorly scalable when the
vehicle density increases and finding an exact solution becomes intractable for
realistic vehicles densities. Therefore, these algorithms are practically limited
to intersections with low vehicle densities, for example rural areas or city
intersections during night.

In order to solve the complexity and scalability problems of the centralized
approaches, distributed methods can be introduced. Here, each vehicle inside
the intersection area solves a problem that is much smaller and easier to
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solve than in centralized approaches. In [9, 10], a distributed algorithm is
proposed where vehicles sequentially solve a local optimization problem to
avoid collisions. The solution is based on a receding horizon formulation with
a predefined decision order. Authors complement their previous work [9], and
combined the proposed optimal controller with a sequential decision making
in [11]. Each vehicle’s decision depends on already decided and available
solutions from the preceding vehicles.

A non-linear MPC approach was proposed in [12]. At each optimization
step, each vehicle has to find an optimal control input based on the predicted
trajectories of vehicles in the intersection with the objective to minimize travel
times. In [13], a linear non-convex distributed MPC approach was proposed,
where all coordinated vehicles can solve the problem simultaneously.

The overall aim of our research is to develop robust and safe AIM systems
for cooperative vehicles. Obviously, an fully autonomous intersection control
system must guarantee total safety for passengers, that is, no collisions can
occur, which means that the collision probability must be zero for all possible
scenarios. Further, the computational requirement of an algorithm must
be limited, in order to be feasible to run in real-time. Also, the control
system must be robust to communication uncertainties, since the wireless
communication will never be 100% perfect in a vehicular scenario.

In this paper, we compare the previously mentioned decentralized intersec-
tion control algorithms [11, 13] by implementing them in the realistic simula-
tion environment SUMO [14]. We have chosen these two algorithms, since
they have different optimization approaches for the same type of intersection
control, and they are well-cited in the literature. Our investigation shows that
both algorithms have the potential to improve traditional signalized methods
for commonly used performance metrics such as average traveling speed, fuel
consumption and intersection throughput.

However, in order for an AIM algorithm to be deployed in the real world,
where vehicles cannot be allowed to collide, performance metrics as collision
probability, scalability, and robustness will be much more important perfor-
mance metrics. For these performance metrics, both algorithms perform well
only for low traffic densities. When the traffic density increase, none of the
algorithms will be able to keep a collision probability of zero. Also, none
of the algorithms are robust to packet losses, since they both assume that all
information needed for the optimization is delivered with 100% reliability.
Our main conclusion is that these algorithms only work very well for low
traffic densities and in order to use them in high traffic intensity they need to
be modified and combined with centralized methods.
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2 TARGETED SYSTEM

Intersections are the most common cause of traffic congestion in urban
transportation networks [15]. Congestion wastes time, fuel and creates more
uncertainty for travelers [16].

In this papers, we consider the problem of Autonomous Vehicle coordi-
nation at a crossroad intersection without traffic lights. Coordinated inter-
section traffic management enables a vehicle to communicate with roadside
equipment or other vehicles, and thereby improves the road traffic safety and
efficiency. The system is composed of vehicles equipped with On Board Unit
(OBU), which may employ a wide range of sensors. The OBUs are connected
to computing nodes and receive messages from other entities via wireless
communication links.

The fully automated vehicles cooperate by exchanging information through
5G enabled Cellular Vehicle-to-Everything (C-V2X) technology where vehicle
to everything (V2X) communication is enabled with both cellular network
based links through the infrastructure and direct communication links be-
tween vehicles and other entities over sidelink (PC5) interfaces [17]. For 5G,
3GPP Release 16/17 has specified a reliability of 90-99.999% with a maximum
end-to-end latency of 3-100 ms, when considering a data rate of 10-50 Mbps
broadcast messages between vehicles within a communication range of about
360-700 meters for advance driving scenarios [18].

In our scenario, each vehicle can transmit a message informing about its
characteristics, position and movement to all its neighbors within a defined
range through direct inter-vehicle V2V communication links. In order to have
a desired trajectory for vehicles, the longitudinal velocity of each vehicle is
defined as the system output, which should be controlled by the acceleration
at each time step. We consider a limited speed and acceleration, and, since
the vehicles are not allowed to make U-turns at the intersection area, the
minimum speed is always positive along their path. The maximum allowed
speed on the road is defined by vmax. In addition, the maximum acceleration
and deceleration are described by umin and umax, respectively. However,
maximum and minimum acceleration of each vehicle depends on its current
velocity and speed limitation.

3 INVESTIGATED ALGORITHMS

In this paper, we investigate the performance of two decentralized AIM
algorithms. The first algorithm is the MPC algorithm [13], which be called
the MPC algorithm in the rest of the paper. In this algorithm, all coordinated
vehicles solve a local optimization problem in parallel by predicting the
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system model in a given finite prediction horizon. The second algorithm
is the Pure Sequential algorithm [11]. This algorithm defines a linear fast
converging optimization problem for each vehicle to solve sequentially. In
the MPC algorithm, the objective for each vehicle is to maintain a minimum
distance to the vehicle ahead. In the Pure Sequential algorithm, the goal for
each vehicle is to reserve a safe time slot to cross the intersection.

We surveyed the advantages and disadvantages of the algorithms by im-
plementing them in the realistic SUMO [14]. In this section, we first describe
our general system model and then present high level descriptions of the two
algorithms.

3.1 SYSTEM MODEL

In this section we present the system model that is used by the AIM algo-
rithms. Nt = {1, 2, . . . , Nt} AVs exist in a coordination area of an intersection
at time t. Each vehicle i ∈ Nt, has a predetermined path γi that is perfectly
followed. pi(t) is the position (the distance from the center of the intersection)
of vehicle i along its paths at time t. Similarly, vi(t) = ṗi(t) and ui(t) = p̈i(t)
denote the velocity and acceleration of vehicle i.

The longitudinal motion of each vehicle, xi = [pi, vi]
ᵀ ∈ Xi, is defined as

the system state and can be controlled by its acceleration. We assume that the
control input is updated in discrete time τ. The discrete time state model of
vehicle i is given in Equation (1).

xi,t+1 =

[
1 −τ

0 1

]
xi,t +

[
− 1

2 τ2

τ

]
ui,t (1)

The state space model, Equation (1)), represents the relation between the
acceleration as the input of the system and the longitudinal motion of vehicle
i. As described in Section 2, a limited speed and acceleration is considered for
the system states, These above-mentioned limitation result in the following
inequality constraints on the input and the states of the system:

umin ≤ ui,t ≤ umax ∀t ≥ 0

0 ≤ vmin ≤ vi,t ≤ vmax ∀t ≥ 0
(2)

3.2 DATA DISSEMINATION

Information exchange between the involved vehicles is crucial to solve the
optimization problems, regardless of how the control problem is modeled.
Communication between vehicles will be affected by the impairments asso-
ciated with the wireless channels, which will lead to packet drops and/or
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random latency in packet arrivals. In this section we will describe how
information is disseminated between vehicles.

In the MPC approach every vehicle i ∈ Nt solves its local optimization
problem at time t. The optimization problem results, that is, the vehicle
characteristics, position and movement, are immediately broadcast to all its
neighbors within its radio range at time t+ 1. Therefore, in each time instance
the total number of Nt messages are required to be exchanged between
involved vehicles.

In the Pure Sequential approach, vehicles need to sequentially solve the lo-
cal optimization problems. Initially, vehicles cooperatively agree on a decision
order, which enables a sequential decision-making procedure. Each vehicle
solves a local problem and then the expected occupancy times are broadcast
over wireless communication links to the remaining vehicles. Therefore, the
total number of (Nτ + 1)Nt messages are required to be exchanged between
the vehicles, where N is the rate of vehicle arrivals per second.

3.3 MODEL PREDICTIVE CONTROL ALGORITHM

In this section, we give a high-level description of the MPC algorithm pro-
posed in [13].

The MPCs methods are generally used to represent the behavior of com-
plex dynamic systems. An MPC algorithm uses the current measurements,
dynamic system model and the system limitations to predict future changes
and allows the current time slot to be optimized. The MPC is an iterative
optimization model that in each time slot, compute a cost minimizing control
strategy for a time horizon in the future. Only the first step of the calculated
control strategy is implemented and the calculation will be repeated for the
next time slots [19].

In order to use the MPC for our dynamic system represented in Equation (1)
and then calculate the optimal control strategy, ui,t, we need to define the
system cost, which is a function of system’s states xi = [pi,t, vi,t], and the
control input ui,t based on the algorithm objectives. The paper [13] defines
three main objectives for the intersection control algorithm along with safety
constraints. To avoid any rear-end collisions and that every vehicle i ∈ Nt
passes the intersection in a safe way, a minimum separation distance between
two vehicles on the same lane, dmin, is defined. The following constraint in
Equation (3) is defined to prevent rear-ends collisions between vehicle i and
its leading vehicle j ∈ Li,t where Li,t is the set of vehicle’s i leading vehicles.

pi,t − pj,t ≥ dmin j ∈ Li,t, ∀t ≥ 0 (3)
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To ensure that no collisions occur between vehicle i and vehicle j from
different approaching lanes inside the critical zone, i.e a side collision, a linear
inequality constraint is defined as in Equation (4) below.

|pi,t − pj,t| ≥ Rmin pi,t ∧ pj,t ≥ 0, γj ∈ Γi, ∀t ≥ 0 (4)

Where Γi is a set of all paths that have the potential to collide with vehicle i
from path γi. Rmin is a constant that denotes the minimum separation distance
between the centers of two vehicles. Equation (4) is a non-convex inequality,
which results in a non-convex optimization problem.

Further,a problem cost function needs to be defined. The first objective
is that the vehicles should cross the intersection with almost constant and
high speed, which is called the desired speed (vd). The second objective is to
achieve a minimum fuel consumption, which translates into minimizing the
absolute accelerations and acceleration rate. In addition, a smooth flow of
vehicles, and thereby, a smooth change of acceleration is desired. Therefore,
the system cost for vehicle i ∈ Nt, Ji is defined as in Equation (5) where vi,t
and vi

d are the MPC algorithm control and reference variables, respectively,
and ui,t is the manipulated variable.

Ji =
T

∑
t=0

(wvi (vi,t+1 − vi
d)

2 + wui (ui,t)
2)+

T−1

∑
t=0

wu(ui,t+1 − ui,t)
2

(5)

Here, wvi ,wui and wu are weight coefficients and Ji is the problem cost
for vehicle i to be minimized, subject to the given current states of the
vehicles as defined in Equation (1) and constraints as defined in Equations (2)
to (4). Solving the optimization problem with these safety constraints is a
challenging task due to its non-convex nature. To cope with non-convex
limitation a semi-definite programming relaxation is applied in the paper,
which is achieved by introducing a priority scheme on vehicles, such that
a vehicle with lower priority must give right of way in case of a potential
conflict.

3.4 PURE SEQUENTIAL ALGORITHM

In this section, we give a high-level description of the Pure Sequential algo-
rithm proposed in [11]. This collision avoidance solution relies on the design
of a controller that prevents the system of reaching a given configuration.
The paper [11] defines, for each vehicle i, the critical set Ci as the set of all
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displacements along its path leading to a potential collision. Thus, Ci can be
defined as:

Ci
∆
= {xi,t ∈ Xi|pi,t ∈ [L, H]} (6)

Where [L, H] describes the junction boundary. Therefore, the set of all con-
flicting configurations that result in collision at intersection can be represented
as in Equation (7).

S = {x ∈ Rn : ∃(i, j) ∈ Nt, (xi,t ∈ Ci ∧ xj,t ∈ Cj)} (7)

Safety is ensured if only one vehicle, i, is allowed to cross the critical area at
time t. To avoid collision, vehicle i ∈ Nt needs to reserve a time slot to cross
the critical zone. Therefore, the safe state set for vehicle i can be defined as
follow:

Csa f e
i = {xi,t ∈ Xi|pi,t ∈ [L, H], t ∈ Ki} (8)

Where Ki is a unique time slot, Ki 6= Kj, when only vehicle i is allowed to
cross the intersection. The objective of each vehicle i is to find the Ki. For
this aim, the already reserved time slots need to be known as a constraint,
in order to solve the local control problem. Therefore, it is necessary to
define a decision order set for the vehicles in Nt. The decision order O is
a permutation of the indices in Nt, where vehicles will solve the optimization
problem sequentially based on this decision order set. Let Ob

i and Oa
i be the

sets having the indices of all vehicles j 6= i appearing before and after i in O
respectively. For simplicity, in this paper, a first-come-first-served protocol is
used for the decision order policy. This means that if vehicle j arrives earlier
than vehiclei, then j ∈ Oi

b.
Vehicle i in the decision order will solve the two sub-problem explained as

follows.
Problem A: Finding the optimal control policy such that vehicle i enters

the intersection only after all preceding vehicle(s) j ∈ Ob
i have crossed the

intersection.
Problem B: Finding the optimal control policy such that vehicle i exits

the intersection only before any preceding vehicle(s) j ∈ Ob
i enters the

intersection.
For each vehicle i ∈ Nt, the expected occupancy time of the intersection at

time t can be expressed as Equation (9), and the sum of the occupancy times
of all preceding vehicles of vehicle i is shown in equation Equation (9a)

Ii = {k ∈ R : xi,t+k ∈ Ci} (9)

Ti = ∑
j∈Oi

b

Ij (9a)
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Therefore, for vehicle i in Problem A, the earliest intersection entry time is
Tmax = max{Ti} and the latest intersection exit time in Problem B is Tmin =
min{Ti}. The Problems A and B can then be formulated as the following
constrained linear quadratic regulator (LQR) programs in Equation (10).

min
ui,t

J(xi,t, ui,t) (10)

s.t (1), (2) (10a)

pi,Tmax < L If Problem A (10b)

pi,Tmin < H If Problem B (10c)

The constraints Equations (10b) and (10c) are sufficient to ensure that vehicle
i is outside the critical area during Ti. Both problems A and B are the
combination of two optimization sub-problems. First, a finite time solution
optimization problem defines a collision free trajectory up to time Tmax (Tmin
for problem B). Second, an infinite optimization problem defines the trajectory
for all times after Tmax (Tmin for problem B).

The algorithm considers the same cost function for all vehicles and given as
Equation (11) for finite sum-problem A:

Ji =
Tmax

∑
t=0

wvi (vi,t+1 − vi
d)

2 + wui (ui,t)
2 (11)

The same holds for the cost function of the finite sub-problem for B, if
Tmax is replaced by Tmin in Equation (11). For the second sub-problem, it is
assumed that the only objective is to minimize the deviation of the vehicle’s
speed from the desired value. Therefore, the infinite optimization problem
can be defined as ∑T

t=0(vi,t+1 − vi
d)

2 subject to Equations (1) and (2) where T
is an arbitrary time step.

4 EVALUATION

In this section, we describe our simulation environment and experiments with
the objective to evaluate the performance of the proposed decentralized algo-
rithms, and investigate the safety, scalability and feasibility of implementing
them in the real world.

4.1 EVALUATION ENVIRONMENT

To evaluate and compare the control methods, a realistic simulation program
based on SUMO [14] has been developed. SUMO is an open source, highly
portable, microscopic traffic simulator that gives the user control over all
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aspects of the network. In our work, we have modified SUMO by allowing
each vehicle’s movement to be controlled by proposed algorithm control
strategy instead of using the default microscopic flow algorithms.

In our simulation all vehicles have the same physical properties and they
arrive to the intersection according to a pre-generated traffic demand stored
in a route XML-file. In route file the vehicles’ arrivals are randomized based
on a Poisson distribution and the probability that trips will start/end at the
different entrance/exit lanes are the same.

4.2 EXPERIMENTS

In this work, we consider a four-way intersection with two lanes in each
way. Each lane is 3.5m wide with a maximum speed limit of 20m/s, i.e.,
about 70 km/h. We assume that the vehicles enter the intersection with an
arbitrary initial speed close to desired speed. In addition, the intersection area
is modelled as a circle with radius 150m. Table I summarizes the simulation
parameters and specifications that we used in our simulation program.

The scalability and the feasibility of the control algorithms were evaluated
for different traffic flow rates, i.e. the rate at which vehicles pass a given point
on the roadway.

4.3 EVALUATION METRICS

In this paper, we use the following performance metrics when we evaluate the
algorithms:

• Average speed of vehicles. An algorithm is well performed in term
of speed when all vehicles travel at similar velocity and the relative
movement is smooth.

• Fuel consumption is a form of thermal efficiency, and an algorithm
with lower fuel consumption is desired.

• Throughput An intersection can be modeled as a queuing system where
the maximum throughput of an intersection can be calculated as either
the maximum number of vehicles that can coexist in an intersection, or
the minimum time a vehicle spends in the intersection.

• Safety: AIM methods usually perform well for low traffic density.
However, for high flow rates, a feasible solution with safety constraints,
may be harder to find. An infeasible solution may lead to car crashes.
Therefore, the expected collision probability increases when the algo-
rithm can not find a solution for the optimisation problem within a
sampling period.

• Scalability: AIM methods must be able to handle a large number of ve-
hicle movements. Therefore, it is important to evaluate the algorithms’
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Table I: Simulation Parameters

General Parameters

vi
d 16

m/s
Targeted Speed

umax 5
m/s2

Maximum acceleration

umin -6
m/s2

Maximum deceleration

vmax 20
m/s

Maximum speed

vmin 0 m/s Minimum speed

MPC

T 10 s Prediction horizon

Rmin 7 m Minimum separation distance
between vehicles from different
approaching lane

dmin 7 m Minimum separation distance
between vehicles in the same
lane

Pure Sequential

L 7 m Junction lower bound

H -7 m Junction upper bound

complexity, and problem size, when the traffic flow rate increases. In
this paper the maximum scalability of an AIM algorithm translates to
a minimum increase in the required iterations to solve the optimization
problem when the flow rate increases.

• Robustness: An AIM method is robust to the limitations set by the
wireless channel such as packet loss and latency, when these limita-
tions have a minimum impact on the algorithm’s performance. The
maximum robustness is calculated as the maximum probability of a
reliable solution in the presence of wireless channel impairments.

The first three performance metrics are the most used metrics in the
literature when evaluating the performance of intersection control algorithms.
However, the objective of our work is to find intersection control algorithms
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that can be implemented in the real world. Therefore, we have added three
more performance metrics in our investigation, that is collision probability,
scalability and robustness. These performance metrics will be crucial when
deploying an algorithm in an operational systems.

In addition, all results will be compared with a standard signalized, con-
trolled by traffic light, intersection with 90 second green phase and 90 second
red phase.

5 RESULTS AND DISCUSSION

We performed simulations to compare the two algorithms and evaluate
them according to the performance metrics described above. All results are
compared with the results that would be achieved in an intersection controlled
by traffic lights, assuming perfect driving behavior for all vehicles.

5.1 AVERAGE SPEED AND FUEL CONSUMPTION

Figure 1.a illustrates the average speed of each vehicle during one time slot for
different flow rates. It is apparent that both the MPC and the Pure Sequential
perform better compared to an intersection controlled by traffic lights.

Since in the MPC algorithm, one objective of the optimization problem is
to drive in a smooth and comfortable acceleration, the vehicles controlled by
this algorithm avoid high acceleration changes. Therefore, in comparison with
the Pure Sequential algorithm, where a given vehicle can reach the maximum
speed faster, the MPC has a lower average speed.

Several factors can have an effect on the fuel consumption, and it varies
with the vehicle type, weather condition, driving behaviors such as rapid
acceleration, speed. The Environmental Protection Agency (EPA) study [20]
shows that the acceleration rates have a significant effect on a vehicle’s fuel
consumption. In our experiments, we assumed that all vehicles are of the
same type. Therefore, the main factor in fuel efficiency will be the driving
behavior.

Figure 1.b shows an estimation of the average fuel consumption for each
vehicle during one time slot. Figure 1.b shows that the MPC algorithm results
in the lowest fuel consumption, and this is due to that the minimum accelera-
tion and the acceleration rate are defined as costs of the optimization problem.
As expected, intersections controlled by traffic lights, where many vehicles
unnecessarily brake, will have the maximum average fuel consumption for
each vehicle.
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5.2 THROUGHPUT

Figures 1.c and 1.d illustrate the average number of vehicles that coexist
in the intersection, and the average time a vehicle spends in the system,
respectively. Both algorithms improve the intersection throughput compared
with an intersection controlled by traffic lights. As can be seen in Figure
1.d, the average traveling time for vehicles controlled by the Pure Sequential
algorithm at flow rate 500 vehicles/hour is about 50% (21 sec) of the traveling
time in an intersection controlled by traffic lights. The same holds for the
average number of vehicles inside the intersection. It is clear that, for both the
MPC algorithm and Pure Sequential algorithm, there are much less vehicles
inside the intersection, and the vehicles have lower traveling time compared
to the signalized intersection. This result shows that the algorithms have the
potential to increase the capacity of the intersection.

5.3 SAFETY

In order to evaluate the traffic safety, we have also estimated the collision
probabilities for each algorithm and traffic flow rate, as shown in Figure 2.
The collision probability is calculated as the expected number of colli-
sions/hour/vehicle. For example, a collision probability of 0.2% for a flow
rate of 500 vehicles/hour correspond to, in average, that about one collision
per hour can be expected in the intersection. An intersection controlled by
traffic light is assumed to have zero probability of collisions for all flows,
since this is the main reason for deploying traffic lights in intersections.
The Pure Sequential algorithm performs safe for flow rates less than 200
vehicles/hour. However, for arrival rate higher than 300 vehicles/hour the
collision probability increases exponentially. In the Pure Sequential only one
vehicle is allowed to exist in the critical area at each time instance. For traffic
intensity higher than 400 vehicles/hour/lane the arrival rate to critical area
is higher than 1600 vehicles/hour (2 sec/vehicle). Therefore, the probability
of a feasible solution for optimization problem decreases with increasing flow
rate.

In the MPC algorithm, several vehicles are allowed to coexist in the critical
area at the same time. The algorithm prevents collisions in the whole
intersection area over the given time horizon (10 sec) by keeping vehicles at
a safe distance to each other. However, a problem occurs when the arriving
flow rate increases to more than 400 vehicles/hour. At this flow rate, the
vehicles’ initial speed may stop the optimizer from finding a feasible solution
that keeps a safe distance to all other vehicles and thereby avoids collisions
in a specific time slot. The decentralized MPC performs almost the same
as the centralized MPC algorithm [8]. However, by increasing flow rate
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Figure 2: Collision probability in different traffic intensity

and consequently increasing the problem size finding the exact solutions for
centralized algorithm become intractable.

5.4 SCALABILITY

Scalability is another crucial requirement for operational systems to fulfill the
extreme real-time properties of these types of systems. An intersection control
algorithm must be scalable in order to handle a large number of vehicles
inside an intersection in a real-world scenario.

To evaluate and compare the algorithms’ scalability, the average number
of iterations that each optimization solver needs to have in order to find a
feasible solution for increasing flow rates, are shown in Figure 3. The MPC
algorithm needs to predict the system states of all vehicles involved in the
intersection for the prediction horizon. Therefore, by increasing the flow
rate, thereby the problem size, the number of required iterations increases
exponentially. On the other hand, the Pure Sequential is a linear convex
optimization problem and the other vehicles’ occupancy time is the only
constraint imposed from other entities. Therefore, the problem size and the
number of required iterations is almost constant when increasing the number
of vehicles involved in the control problem.

As it is shown in Figure 3, when the flow rate is 600 vehicles/hour/lane
(that is an average number of 24 vehicles within the intersection, see Figure 1.c,
the MPC algorithm needs on average 32 iterations, while the Pure Sequential
algorithm needs only 13 iterations to find a feasible solution.
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5.5 ROBUSTNESS

Figure 4.a illustrates the maximum required number of messages that needs
to be transmitted at each time instance for each control algorithm. These
messages include the occupancy time for Pure Sequential and initial states
for MPC. In most evaluations of AIM algorithms, it is assumed that the
limitations set by the wireless communication, that is the packet losses and
delay, are negligible. However, this is not a correct assumption for real world
scenarios with current technologies. The measurements in [21] for C-V2X
show that the average end-to-end latency in PC5-based communication is
30ms with almost 2.5% packet loss (i.e. 97.5% reliability).

For the Pure Sequential algorithm, each vehicle will start its local optimiza-
tion problem when it has collected all message(s) from all preceding vehicle(s)
Therefore, if only one message is dropped, the optimization problem cannot
be formulated and the algorithm fails.

For the MPC algorithm, the vehicles work in parallel, and each vehicle can
solve its local problem regardless of the other vehicles’ problem formulation.
Therefore, packet loss for one vehicle has no effect on the other vehicle(s) local
optimization problems. However, an unreliable solution for one vehicle can
increase the collision probability of the entire system. Therefore, it is crucial
to evaluate how robust the algorithms are to channel impairment.
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Figure 4.b shows the probability that each vehicle receives all messages it
needs to solve its local optimization problem for a specific time slot. We
provide the results when the wireless channel has the reliability of 99.999%,
which is the standard for C-V2X 5G, Ultra Reliable Low Latency Communi-
cation (URLLC), in Release 16, and the reliability of 97.5% that was measured
in [21] for existing technologies. The simulation results confirm that both
algorithms perform well in an URLLC wireless channel. However, a packet
loss rate of 2.5% can reduce the reliability if the algorithms significantly. For
instance, in Figure 4.b for a flow rate of 600 vehicles/hour, when deploying
the MPC algorithms, vehicles are not aware of 30% of the other vehicles. For
the Pure Sequential algorithm, there is, for the same flow rate, a probability
of 40% that a vehicle will not receive all messages from preceding vehicle(s)
and, therefore, the optimization problem will fail in this time step.

In order to have a safe intersection all vehicles inside the intersection need
to find a reliable solution during each time step. Therefore, Figure 4.c shows
the average probability that all vehicle(s) involved in the intersection receive
their messages in each time step. From Figure 4.c it is apparent that MPC
algorithm performs better than the Pure Sequential algorithm for low flow
rates. For example, with a flow rate of 300 vehicles/hour, the MPC algorithm
will have a probability of 62% that all vehicle(s) receive the messages from
other vehicles. For the Pure Sequential, this probability is only 41%. However,
for high flow rates both algorithms perform poor with regards to packet loss,
and the probability of a completely safe intersection is almost zero. This
means that the algorithms’ performance highly depends on the reliability of
the wireless communication channel and the algorithms are, therefore, not
robust to packet loss.

6 CONCLUSION

The objective of this paper is to evaluate two previously proposed and well-
cited algorithms for autonomous intersection management [13] [11] in a
realistic simulation environment.

It is seen that using these schemes improve the performance for low vehicle
flow rates compared with intersections controlled with traffic lights. However,
our results clearly show that the safety conditions are guaranteed for high
traffic densities, and therefore, the algorithms would only be usable for low
traffic rate. When increasing the flow rate, the collision probability rather
quickly becomes larger than zero. Also, the algorithms are not robust to
wireless channel impairments that results in packet loss. So to summarize,
new types of Autonomous Intersection Management algorithms are required
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in order to fulfil the visions of completely autonomous and cooperated
vehicles.

7 FUTURE WORK

The design of real time intersection management systems is a complex task
that involves many different steps. Full understanding of all distinct parts
of the design procedure requires deep knowledge of theory. In this paper
and our previous work [8], we briefly describe the principles of different
centralized and decentralized traffic management methods. In the future, the
goal is to design an efficient, scalable and robust control method for managing
vehicles at intersections.
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Figure 4: a) Maximum number of required messages in each time step b)
The average probability that a vehicle receives the required information from
all other vehicle(s) inside the intersection. c) The average probability that all
vehicles receive the required information during each time step. All results
are shown with packet dropping rates of 0.1% and 2.5%
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III
A Safe and Robust Autonomous

Intersection Management System
using a Hierarchical Control

Strategy and V2I communication

Connected Autonomous Vehicle can significantly improve the safety and
throughput of urban transportation systems. However, these systems are
vulnerable to model uncertainties, wireless communication impairments, and
external disturbances. In this paper, we investigate an Autonomous Intersec-
tion Management (AIM) system based on a hierarchical control strategy. In
our proposed method, the Intersection Coordination Unit (ICU) in a Global
Centralized Layer is responsible for assigning a safe speed to each vehicle
while minimizing the system’s cost. In the Local Decentralized Layer, each
vehicle is responsible for tracking the reference speed assigned by the ICU,
while avoiding collisions. In our method, each vehicle can use its own sensors
to monitor its close surroundings, and take its own decisions on its move-
ments, independent on the control decisions sent from the ICU. We investigate
the safety, scalability and robustness of proposed method compared with
two AIM methods based on centralized and decentralized control strategies.
For the evaluation, we use the realistic urban mobility simulator SUMO.
Further, we study the scalability and performance of the algorithms in the
presence of communication impairments associated with wireless channels.
Our simulation results show the proposed method can safely handle high
traffic flow rates. Also, our method is robust to uncertainties caused by the
wireless communication.
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1 INTRODUCTION

According to the European Transport Safety Council’s (ETSC) report on urban
transportation networks, 18,844 people lost their lives in road traffic in the EU
during 2020, despite the Covid-19 restrictions on travels. About 40% of these
deaths occurred on urban roads [1]. Therefore, safe urban traffic management
methods, and in particular intersection management methods, are crucial. Re-
cent advances in intelligent transportation systems, in particular Autonomous
Vehicle (AV) combined with Vehicle-to-Everything (V2X) technologies, and
the introduction of cooperative Autonomous Vehicle present new opportunities
to address urban transport challenges. By taking advantage of Vehicle-
to-Everything (V2X) communication, Autonomous Intersection Management
(AIM) systems have the potential to remove traditional intersection managers
(i.e traffic lights), provide a safe crossing for vehicles, and optimize overall
costs such as travel times, traffic throughput and fuel consumption [2].

Papers proposing AIM systems and methods usually formulate the inter-
section control problem as an optimization problem. The aim of the opti-
mization is usually to find the vehicles’ optimal trajectories. Here, a vehicle’s
trajectory is a time function representing a vector of the vehicle’s spatial
locations. The optimization is based on some objectives, considering system
dynamics, and collision avoidance constraints. The required information is
collected through negotiation and cooperation between road users and the
infrastructure. An AIM method is generally based on centralized, decentralized
or hybrid control strategies [3]. Centralized control strategies rely on a central
Intersection Coordination Unit (ICU) that orchestrates the intersection and
gives specific movement instructions to each vehicle. Centralized control
strategies are always based on information collected from all vehicles in the
intersection. Several papers have proposed and evaluated AIM methods
based on centralized control strategies. For example, Drenser and Stone [4]
designed an AIM method, which is based on time-space reservations in
the intersection to avoid collisions. Lee and Park [5] proposed an AIM
method based on a nonlinear constrained optimization problem with the
objective to enhance the throughput performance of the intersection. The
authors of [6] proposed a platoon-based AIM method, where vehicles in one
platoon can accelerate or brake simultaneously. In [7], an AIM method is
proposed with aim to minimise the total travel time using a mixed-integer
linear programming (MILP) and a linear programming (LP) model.

However, AIM methods based on centralized control strategies have some
major drawbacks. For example, the optimization problem will not scale
well with increasing vehicle densities. Finding an exact solution becomes
intractable for realistic vehicle densities, and thereby, the collision probability
will be non-zero for high traffic volumes, which we have shown in [8]. In
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[8], we compare two well-cited AIM methods based on centralized control
strategies. Our conclusion in [8] is that AIM methods based on centralized
control strategies are unsuitable for deployment in operational systems.

AIM methods based on decentralized control strategies have been proposed
to tackle the imposed complexities of the centralized techniques [8]. In AIM
methods based on decentralized control strategies, decisions are made locally
by each vehicle. The local decisions are based on information collected
from other vehicles and/or observations of the environment through local
sensors. Several papers have proposed and evaluated AIM methods based
on decentralized control strategies. For example, in [9] an AIM method is
proposed that dynamically adjusts the vehicles’ speed in order to provide both
safety and comfort of the drivers. In [10], a decentralized optimization model
is formulated with objective to find a collision-free trajectory for each vehicle.
In [11], an AIM method based on a decentralized non-linear Model Predictive
Control (MPC) approach was proposed, with the objective to minimize travel
times. In [12], an AIM method based on a linear non-convex MPC approach
was proposed.

However, also AIM methods based on decentralized control strategies have
major drawbacks, in particular for high vehicle densities. In [13], we compare
two well-cited AIM methods based on decentralized control strategies. Our
conclusion is that the safety conditions, particularly in large-scale problems,
may not be satisfied. Further, the solution may be sub-optimal due to the lack
of global information.

Hybrid AIM methods can be developed as a solution to the crucial draw-
backs with centralized and decentralized AIM methods. In hybrid methods,
a combination of centralized control in the ICU and decentralized control
in each vehicle can be used. Vehicles can communicate both with the ICU
and/or with other vehicles, in order to achieve a more efficient intersection
management [14]. Hybrid AIM methods usually include two layers of control:
a centralized coordinator in a higher layer that is used to balance the network
load and improve the traffic, and a second layer in each vehicle with a local
controller that is responsible for following the rules from the higher layer and
ensure a collision free crossing. For example, in the proposed hybrid AIM
method [15], a centralized coordinator is responsible to assign a safe Time of
Arrival and Velocity of Arrival for each approaching vehicle. Then, in each
vehicle, a PID controller is responsible for keeping the trajectories obtained
from the centralized coordinator. In [16], a bi-level MPC is proposed, where
a centralized intersection manager allocates a time slot to each vehicle, and in
each vehicle, the control commands for this vehicle are computed.

However, the current published hybrid AIM methods have some major
drawbacks. For example, the lower layer control in a vehicle is only used for
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following this specific vehicle’s trajectory. The vehicle trajectory is decided by
the higher layer controller and then transmitted to the vehicle. This means that
the local controller in each vehicle only follows commands from the central
controller, which requires a perfect centralized control strategy and a perfect
wireless communication link. By not introducing any local independent
intelligence in the vehicles, the vehicles cannot avoid any potential collision
situations that are independent of the centralized control management, for
example, situations caused by pedestrians or vehicles that do not follow the
commands from the central controller.

In order for an AIM method to be deployable in real operational systems (i.e
real intersections), the AIM method needs to guarantee that the intersection is
totally safe in all situations. For example, the control strategy used in the AIM
method must be scalable in order to handle a large number of vehicles without
compromising safety. Further, there will always be packet losses and delays in
the wireless communication. This means that the wireless communication will
lead to uncertainties that will cause many challenges when designing control
strategies for AIM systems. Therefore, an AIM method must be robust, in
order to guarantee safety when there are uncertainties in the system. In, for
example [17, 18], measurements in operational autonomous vehicle systems
showed delays of several milliseconds due to the wireless communication
network and packet losses of about 3% due to disturbances on the wireless
links. However, most current papers do not consider any uncertainties. For
example, most papers do not model the wireless channel at all. Further,
the proposed methods are usually evaluated only with numerical methods
or simple simulation models, not by using well-known realistic simulation
environments or testbeds. The optimization problem itself is usually the main
focus, not the system performance. For example, most papers do not consider
collision probability as an important performance metric.

In this paper, we propose a both safe and robust AIM system. Our AIM
method is based on a hierarchical control strategy consisting of two control
layers: a Global Centralized Layer (GCL) placed in the ICU and a Local
Decentralized Layer (LDL) placed in each vehicle. Each vehicle can use its
own sensors and local information to control its own movements, as modern
vehicles equipped with advanced collision avoidance functions or self-driving
capabilities. Each vehicle disseminates its local information to the ICU. The
GCL calculates the optimal speed for all vehicles in the intersection using an
MPC controller, and sends a reference speed to each vehicle. A local fast MPC
controller in a vehicle tracks its assigned reference speed and ensure collision
avoidance. By dividing the optimization control problem into two layers,
and tackling a simpler optimization control problem with lower dimension
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Figure 1: Targeted System and Intersection layout

on each layer, the computational complexity of the optimization problem is
reduced.

We evaluate our AIM method in the well-known realistic simulation en-
vironment SUMO [19]. We show that our proposed method can guarantee
a collision-free intersection for all vehicle densities, and significantly improve
the intersection throughput and vehicles’ fuel consumption. Further, we show
that our method is robust against uncertainties imposed by impairments in
the wireless communication channels.

2 TARGETED SYSTEM

In this paper, we consider the problem of Autonomous Vehicle coordination
at a crossroad intersection without traffic lights, as depicted in Figure 1.
The intersection’s traffic flow pattern mainly depends on the intersection’s
geometry, location, and vehicle movements to and from the various lanes. We
split the intersection area into three zones: the entrance zone, the critical zone,
and the exit zone. The entrance zone is the area where vehicles approach the
intersection boundary. In the critical area, there is a risk of collisions and
coordination is crucial. The exit zone includes all vehicles that have passed
the intersection, and thereby are leaving the system.
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The intersection control is performed in an ICU and in all vehicles. The
vehicles are equipped with On Board Unit (OBU), which employ a wide range
of sensors. Further, each vehicle has a local computing node connected to the
OBU, and can use optimization algorithms to avoid dangerous situations. The
OBUs and the ICU exchange data through, for example, 5G-enabled Cellular
Vehicle-to-Everything (C-V2X) technology.

Each vehicle periodically sends an information message to the ICU inform-
ing about its characteristics, position, and movement. Information messages
are sent over Vehicle-to-Infrastructure (V2I) links provided by the wireless
network. A modern vehicle with advanced collision avoidance functions, has
the power of perception. For example, vehicles can detect other vehicles
in front, by using cameras or radar sensors, and use this information to
avoid collisions. This capability extends to a 360-degree field around the
vehicle, enabling the car to detect and track all moving and static objects in
its surroundings. Each vehicle can see both other vehicles in its surroundings
and road obstacles with the help of its sensors. Therefore, in our proposed
method there is no need for V2V communication.

The ICU will orchestrate vehicles, aggregate data, and provide a reference
speed to each vehicle, based on the system’s objectives. The ICU will predict
and avoid dangerous situation according to the driving status of the vehicles.
The system objectives are to balance the entire intersection traffic density,
and obtain a smooth flow of vehicles with optimal system’s speed and fuel
consumption performance.

The OBUs use the received reference speeds in a local fast optimization
algorithm, which controls the vehicle’s movements so that the reference speed
is maintained without causing collisions with other vehicles. An OBU can
perform its optimization algorithm independent from the ICU, in order to
avoid any collisions due to lost or delayed messages from the ICU.

The OBU should provide also the ordinary collision avoidance functions
for the vehicle, in order for the system to be safe also for unforeseen potential
collision situations, for example due to pedestrians or uncontrolled vehicles.
However, these situations are not in the focus of this paper. Therefore, these
types of events are not part of our optimization algorithms. However, our
proposed AIM method can easily be extended to also include unforeseen
potential collision situations caused by, for example, pedestrians, cyclists, or
uncontrolled vehicles. Basically, we only need to include these events in the
system model and the optimization algorithm in the OBU.
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3 PROPOSED ALGORITHM

In this paper, we propose a new AIM method based on a hierarchical control
strategy, which can guarantee all safety requirements of an operational AIM
system, in particular for high vehicle densities and uncertainties caused by
the wireless communication links. In this section, we first discuss some, in
our opinion, major drawbacks of previously proposed AIM methods, and
describe the approach we have used in order to solve the major challenges.
Then, we describe an overview of our AIM method. After this, we proceed by
describing the system model we have used, and finally we present high level
descriptions of the algorithms used in the AIM method.

3.1 PREVIOUS RESEARCH AND OUR APPROACH

There has been much research on AIM methods. In most cases, proposed
AIM methods are focused on improving the overall performance of the inter-
section, for example increasing the intersection’s throughput or minimizing
the fuel consumption of passing vehicles. Usually, it is the optimization
formulation itself that is the main research focus, not the overall system
performance. Further, most proposed methods are not evaluated for high
vehicle densities or uncertainties caused by the wireless communication.

This means that previously proposed AIM methods skip all difficult sce-
narios, where collision avoidance may be a major challenge. Also, collision
probability is seldom considered as a performance metric. Further, the
proposed methods are usually only evaluated with numerical approaches or
simple simulation models. Often, realistic system models are not used.

This means, in our opinion, that previous papers proposing AIM methods
cannot guarantee a safe intersection in an operational system.

We believe that the essential goal of proposing an AIM method should
be that it some day can be implemented in a real operational intersection.
Therefore, the proposed method must guarantee a safe crossing of vehicles
and make sure that all road users are protected even in places with high traffic
densities and/or limited visibility. Therefore, it will be crucial to evaluate
the AIM method in close to real world scenarios including the wireless
communication.

Our proposed AIM method builds on a two-layer MPC controller, and we
have used the following approach:

• We consider safety as the main performance metric. The expected
number of collisions is calculated for all scenarios, in order to validate
that our proposed AIM method can protect the users.
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• We evaluate our proposed AIM method for different vehicle densities,
in order to validate that our method can safely manage also high vehicle
densities, corresponding to rush hour scenarios.

• We evaluate how packet loss and communication delay impact the sys-
tem performance, in order to validate that our proposed AIM method
is robust to uncertainties caused by the wireless communication.

• In our proposed AIM method, the local MPC in each vehicle can take
independent decisions about its movements, as modern vehicles with
advanced collision avoidance functions or self-driving capabilities, in
order to always guarantee a safe driving.

• We evaluate our proposed method in real world scenarios using Sim-
ulation of Urban MObility (SUMO), which is a microscopic traffic
simulation package designed to handle large networks.

3.2 OVERVIEW OF OUR PROPOSED AUTONOMOUS INTERSECTION MANAGE-
MENT METHOD

Our proposed AIM method includes two layers: a Global Centralized Layer
placed in the ICU and a Local Decentralized Layer placed in each vehicle.
The main uniqueness of our proposed AIM method compared with AIM
methods based on hybrid control strategies is that the local controller placed
in each vehicle can take its own intelligent decisions, independent of the
global controller placed in the ICU. In other propsed AIM methods, the local
controller only follows the commands coming from the global controller.

Our proposed AIM method employs Model Predictive Control (MPC)
algorithms in each layer in order to control the vehicles’ movements. MPC
is an iterative optimization model that is computed in sampling intervals.
For each sampling interval, a cost minimizing control strategy is computed.
The optimization is performed both for the current sampling interval, and
for future sampling intervals, called the time horizon. Only the first step of
the calculated control strategy is implemented, and the calculation will be
repeated in the next sampling interval [20].

The first layer, the Global Centralized Layer, employs an MPC algorithm that
is based on data from all vehicles in the intersection. The overall objective of
the Global Centralized Layer is to control the speed of each vehicle involved in
the intersection, in order provide a smooth flow of vehicles without collisions.
This optimal speed for each vehicle, called the reference speed, is then sent to
each vehicle.

The reference speed is used in the second layer, the Local Decentralized
Layer, where each vehicle performs a local optimization based on the system’s
objectives. The main goal of the Local Decentralized Layer is to avoid
collisions, and follow the reference speed obtain from the GCL. To ensure
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a minimum distance to the vehicle ahead, all vehicles solve a local MPC
optimization problem. The MPC algorithm is based on the reference speed
received from the ICU and the collected data from the on-board sensors.
Each vehicle periodically sends information messages to the ICU containing
its current position, speed and acceleration. This local control is performed
with shorter sampling intervals compared with the centralized control, which
means that the vehicle quickly can react to changes in its close surroundings.

In perfect situations, the two control layers will function as described above.
However, there will always be situations that are not ideal. For example, in
some situations, the GCL may not find a feasible solution for all vehicles [8].
Also, the information messages sent between the ICU and vehicles may be
delayed or dropped, due to uncertainties in the wireless communication. In
these situations, the Local Decentralized Layer will make its own decisions,
based only on its local data, until a reference speed from the ICU is received.

3.3 SYSTEM MODEL

In this section we present the general system model that is used by our
proposed AIM method.

3.3.1 Intersection

The intersection is modeled as a circle with radius R, which is divided into
three zones: the entrance zone, the critical zone, and the exit zone. The
entrance zone is the area where vehicles approach the intersection boundary,
and it contains one or several lanes, denoted entrance lanes. We denote all
entrance lanes with a set E = {1, 2, . . . , E}. The exit zone includes all lanes,
denoted exit lanes, where the vehicles leave the intersection. We denote all
exit lanes with a set K = {1, 2, . . . , K}. In the critical zone, there is a risk
of side collisions. The entrance lanes and exit lanes are connected through
internal lanes inside the critical zone. We denote all internal lanes with a set
I = {I = e + k|e ∈ E , k ∈ K}, where e + k implies that lane e is connected to
lane k.

A vehicle that enters the intersection will follow a path, which starts from
one entrance lane, cross one internal lane and end in one exit lane. We
describe all possible paths in the intersection with the set Γ = {(e, k)|e ∈
E , e ∈ K}. Since the intersection is modeled as a circle, all different paths have
almost the same length.

Two different paths may intersect inside the critical zone. The vehicles on
these paths while crossing their corresponding internal lanes have a potential
risk of collision in this specific intersect point, called the conflict point (CP) of
the corresponding paths. We describe all possible conflict points in the critical
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zone with the set CP = {CP(γi, γj)|γi, γj ∈ Γ, γi ⊥ γj, i 6= j} where γi ⊥ γj
implies that γi and γj are intersecting paths.

3.3.2 Vehicles

A set of Nt = {1, 2, . . . , Nt} AV exist in area of the intersection at time t. Each
vehicle i ∈ Nt has a predetermined path γi = (ei, ki) ∈ Γ and the path is
perfectly followed. A vehicle will not change its path while crossing the
intersection. The total time vehicle i spends on its path is called Traveling
time and denoted by Tri.

A vehicle is modeled as a point on its path. Within the intersection area,
a vehicle i has a position, pi(t), at time t, on a lane li ∈ E ⊕ K ⊕ I . The
vehicle’s position corresponds to the remaining distance from the center of
the corresponding path. Note that the sign of pi(t) changes when the vehicle
cross the center of Ii. Therefore, pi(t) always has positive values when the
vehicle is on ei and negative values when the vehicle is on ki. Similarly,
vi(t) = ṗi(t) and ui(t) = p̈i(t) denote the speed and acceleration of vehicle
i at time t. The maximum deceleration (i.e the minimum acceleration) and
maximum acceleration are described by umin and umax, respectively. Vehicles
are not allowed to make U-turns in the intersection area, which means that
the minimum speed is always positive along the trajectory of a vehicle. There
is a maximum speed limit in the intersection, which is denoted vmax.

The overall aim of the control algorithm is to find an optimal safe (i.e
collision-free) trajectory for each vehicle, where a vehicle’s trajectory is de-
fined as a time function representing the vehicle’s position at any time [21]. A
safe trajectory for vehicle i is achieved by controlling the motion of the vehicles
along their paths such that only one vehicle can access a specific conflict point
at a specific time.

Since vehicles’ positions depend on their speeds and accelerations, we
need to define a system model, which is a function of position, speed and
acceleration. We have decided to use a discrete system model. The discrete
longitudinal motion of the vehicle, denoted by xi,n = [pi,n, vi,n]

ᵀ, is the system
state. The system state can be controlled by its acceleration ui,n. pi,n, vi,n and
ui,n are the position, speed and acceleration of vehicle i at time t = nτ, where
τ is the model’s sampling interval. As described later, the GCL and the LDL
use this system model with different sampling intervals.

Since vehicles have a limited maximum speed and acceleration, there are
the following inequality constraints on the vehicle’s movement parameters:

umin ≤ ui,n ≤ umax ∀n ≥ 0

0 ≤ vmin ≤ vi,n ≤ vmax ∀n ≥ 0
(1)
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3.4 GLOBAL CENTRALIZED LAYER

In this section, we give a high-level description of the MPC algorithm used in
the Global Centralized Layer.

The main objective of the Global Centralized Layer optimization is to
achieve a safe intersection, with a smooth and comfortable flow of all vehicles.
The optimization is performed every sampling interval τc, for a predefined
time horizon Tc. The output of the optimization is a reference speed for each
vehicle, which is then sent to each vehicle, and used in the Local Decentralized
Layer.

3.4.1 Space state model

The control system is updated in discrete sampling intervals τc. The discrete
space state model of vehicles i ∈ Nt in sampling interval n is given in
Equation (2).

xi,n+1 =

[
1 −τc

0 1

]
xi,n +

[
− 1

2 τ2
c

τc

]
ui,n 0 ≤ n ≤ Tc, ∀i ∈ Nt (2)

The initial value, xi,0, to start the algorithm is obtained from the latest
information message collected from vehicle i. This means that the GCL
algorithm is robust to uncertainties in the wireless communication. Some
information messages can be lost, and the GCL algorithm will still be able to
function properly.

3.4.2 Constraints

The objective of the constraints is to avoid collisions by keeping a safe distance
between all vehicles. The constraints are a function of all vehicles states xi,n =
[pi,n, vi,n], and the control input ui,n.

To avoid rear-end collisions, a minimum separation distance between two
vehicles on the same lane, dmin, is defined. dmin corresponds to the minimum
distance between the center point of two vehicles, since vehicles are modeled
as a point on the road. The following constraint in Equation (3) is defined to
prevent rear-end collisions between vehicle i and its leading vehicle j, where
j ∈ Nt is the vehicle in front of vehicle’s i, leading vehicle (LV), at step n = 0.

pi,n − pj,n ≥ dmin ∀i ∈ Nt, j = LV(i), 1 ≤ n ≤ Tc + 1 (3)

To ensure that no collisions occur between vehicle i and vehicle j within
the critical zone, i.e to ensure that only one vehicle enters a conflict point
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CP(γi, γj) at a specific time, a linear inequality constraint is defined as in
Equation (4) below.

|pi,n − Ci,j − pj,n + Cj,i| ≥ Rmin li, lj ∈ E ⊕ I , γj ∈ Γi,

1 ≤ n ≤ Tc + 1
(4)

where Ci,j and Cj,i are the remaining distance from the center of the
corresponding path, γi and γj, to the conflict point CP(γi, γj) of vehicles i
and j, inside the critical zone, as described in Section 3.3. Γi is a set of all
paths, γj, which have the potential to collide with vehicle i from path γi
inside the critical zone. The constraint li, lj ∈ E ⊕ I ensures that neither
vehicle i nor j already have crossed the intersection. Rmin is a constant that
denotes the minimum separation distance between two vehicles within the
critical zone. Equation (4) is a non-convex inequality, which leads to a non-
convex optimization problem.

To cope with the non-convex limitation, a semi-definite programming
relaxation is applied, which is achieved by introducing a priority scheme on
vehicles, such that a vehicle with lower priority must give right of way in
case of a potential conflict. In this paper, we use a simple First-Come-First-
Serve priority scheme with a basic right of way rule, as commonly used in
many uncontrolled intersections. Therefore, the constraint Equation (4) can
be modified to the following convex constraint Equation (5).

pi,n − pj,n ≥ Rmin + ri,j j ∈ Pi, ri,j = Ci,j − Cj,i

li, lj ∈ E ⊕ I
|pi,0 − pj,0 − ri,j| ≤ Rmin

1 ≤ n ≤ Tc + 1

(5)

Where Pi is a set of all vehicles j from γj ∈ Γi, which have priority on
vehicle i. The constraint |pi,0 − pj,0 − ri,j| ≤ Rmin ensures that the vehicles i
and j have almost the same distance from their corresponding conflict point
at the first sampling interval.

3.4.3 System cost and optimization

The MPC requires a system cost function that should be minimized. In
this paper, we have based the system cost on the vehicles’ speed and fuel
consumption, however, the system cost can of course be based on other
metrics as well.

Th first objective of the control system is that vehicles should drive with
as high speed as possible. For this objective, we use a so called Target speed,
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which is the reference speed value that the optimization algorithm should aim
for. The Target speed should of course be less than or equal to the maximum
speed limit, however, the strategy for setting the Target speed is out of the
scope of this paper. We denote the Target speed with a time varying variable
vt

d. Therefore, the first objective of the control system is that the vehicles’
speed should be as close as possible to the current Target speed, vt

d.
The second objective of the control function is to achieve a minimum fuel

consumption. Several factors can have an effect on the fuel consumption,
and it varies with the vehicle type, weather condition, driving behaviors such
as rapid acceleration, speed. The Environmental Protection Agency (EPA)
study [22] shows that the acceleration rates have a significant effect on a
vehicle’s fuel consumption. Therefore, minimum fuel consumption translates
into minimizing the absolute accelerations and the acceleration rates. In addition,
a smooth flow of vehicles, and thereby, a smooth change of acceleration is
desired.

Therefore, the system cost, J is defined as in Equation (6). where vi,n (the
speed of vehicle i at time interval n) and vt

d (the Target speed at time t) are the
MPC control and reference variables, respectively, and ui,n (the acceleration
of vehicle i at time interval n) is the manipulated variable.

J =
Tc

∑
n=0

N

∑
i=1

(wvi (vi,n+1 − vt
d)

2 + wui (ui,n)
2)

+
T−1

∑
n=0

N−1

∑
i=1

w′ui
(ui,n+1 − ui,n)

2

(6)

Here, wvi ,wui and w′ui
are weight coefficients, and J is the problem cost to

be minimized, subject to the given current states of the vehicles as defined in
Equation (2) and constraints as defined in Equations (1), (3) and (5).

The ICU will calculate the optimal speed for each vehicles involved in the
intersection and send the results to the corresponding vehicles, which will be
used as a reference speed for the Local Decentralized Layer control problem in
the vehicle during the next sampling interval τc. The Algorithm 1 summarizes
the method used in the Global Centralized Layer.

Since the Local Decentralized Layer can guarantee a safe movement, in-
dependent from the Global Centralized Layer results, the sampling interval
in Equation (2) , τc, can have a greater value compared with conventional
centralized MPC methods. Therefore, the method complexity is reduced.

3.5 LOCAL DECENTRALIZED LAYER

In this section, we give a high-level description of the MPC algorithm used
in the Local Decentralized Layer. The main objective of the LDL optimization
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Algorithm 1 Global Centralized Layer, ICU level

1: for Every centralized sampling interval τc do
2: Collect pi,0 , vi,0 and γi from vehicles i ∈ Nt as to form initial states.
3: Estimate vehicles’ future states by Equation (2) ∀i ∈ Nt.
4: Calculate the targeted acceleration for each vehicle ,ui,0, to minimize

cost Equation (6) subject to constraints Equations (1), (3) and (5) and
system model Equation (2).

5: Calculate the reference speed for each vehicle to be used for second
layer control algorithm, vi,1, from Equation (2).

6: Send v̂t
i = vi,1 to vehicle i ∈ Nt as reference speed.

7: end for

is to determine the vehicle’s movements, according to the vehicle’s path γi,
aiming for its reference speed, using the latest v̂t

i received from the ICU, while
avoiding other vehicles detected by the sensors.

3.5.1 Space state model

The optimization is performed every sampling interval τd, for a predefined
time horizon Td. The discrete space state model of vehicle i is given in
Equation (7).

xi,n+1 =

[
1 −τd

0 1

]
xi,n +

[
− 1

2 τ2
d

τd

]
ui,n 0 ≤ n ≤ Td (7)

Where xi,0 is the vehicle’s current state (position and speed).

3.5.2 Constraints

The GCL control algorithm should have calculated a reference speed that
guarantees that a vehicle has exclusive access to each conflict point on its
path. However, to ensure robustness, the LDL control algorithm will not
blindly follow the reference speed coming from the GCL. The objective of
the constraints in the LDL control algorithm is to continuously ensure a safe
distance to surrounding vehicles, which can be seen by the on-board sensors,
and thereby avoid unforeseen collisions. To this aim, the following constraint
in equation Equation (8) is defined.

pi,n − p̂j,n ≥ dmin i ∈ Nt, j = O(i), 1 ≤ n ≤ Td + 1 (8)

where dmin is the minimum separation distance between two vehicles and
O(i) is the leading vehicle of vehicle i.
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3.5.3 System cost and optimization

The general objective of the control system is to achieve a safe and smooth
flow of vehicles. Therefore, as in Section 3.4, the system cost is defined as a
function of the vehicle’s speed and acceleration. The algorithm’s reference
speed, v̂t

i at time t, is received from the latest Global Centralized Layer
optimization results.

Ji =
Td

∑
n=0

(wvi δi(vi,n+1 − v̂t
i)

2 + wui (ui,n)
2)

+
Td−1

∑
n=0

w′ui
(ui,n+1 − ui,n)

2

(9)

Here, wvi ,wui and wu are the same weight coefficients as in Equation (6), and
δi is a binary variable that states whether v̂t

i has been received from the ICU
or not. The algorithm will ensure collision free movements during the MPC
prediction horizon Td even if the reference speed has not been received.

Ji is the system cost for vehicle i, which is to be minimized for the time
horizon Td, subject to the given current states of the vehicles as defined in
Equation (7) and constraints as defined in Equation (8). The Algorithm 2
summarizes the control algorithm used in the Global Centralized Layer.

Algorithm 2 Local Decentralized Layer, vehicle level

1: for all i ∈ Nt in parallel do
2: for Every sampling interval τd do
3: Received v̂t

i from ICU
4: if Vehicle i has not received v̂t

i then
5: δi = 0 in Equation (9)
6: end if
7: Estimate the vehicle’s future states by Equation (7).
8: Calculate the optimal acceleration ,ui,0, to minimize cost Equation (9)

subject to constraints Equation (8).
9: Apply the obtained acceleration.

10: Send the updated state to ICU through the wireless network.
11: end for
12: end for

4 EVALUATION

In this section, we describe our simulation environment and our experiments.
The main objective of our experiments is to evaluate the performance of an
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intersection controlled by our proposed AIM method. We have investigated
the system performance in terms of safety, scalability, and robustness.

4.1 SIMULATION ENVIRONMENT

We have developed a simulation environment based on Simulation of Urban
MObility (SUMO) [19]. SUMO is an open source, highly portable, micro-
scopic and continuous traffic simulation package that gives the user control
over all aspects of the networked system, such as road topology, vehicle
type, driver behaviour, intersection control, and statistical data collection. In
our work, we have modified SUMO so that, instead of using the default
microscopic flow algorithms in SUMO, the speed of each vehicle can be
manipulated by our control strategy. This has been performed via the Traffic
Control Interface (TraCI) in SUMO. Also, we changed the values of some of
SUMO’s default configuration parameters, as shown in Table I.

The vehicles’ speed in SUMO can be controlled by TraCI with commands
setSpeed (0x40) and slowDown (0x14). However, a vehicle may drive slower
or faster than this speed due to the car following model in SUMO. In
order to force the vehicles to follow our control strategy, we disabled the
behavior imposed by the car following model by using the speed mode (0xb3)
command and set all checks off. In each SUMO simulation time step, the
vehicles’ speed can be calculated based on the control strategy calculated in
Equation (9) and perfectly followed.

In our simulations, all vehicles have the same physical properties and they
arrive to the intersection according to a pre-generated traffic demand stored
in a route XML-file. In the route file, the vehicles’ arrivals will be randomized
using a Poisson distribution and an arriving vehicle is given a specific path
when it arrives. The probability for receiving a specific path is the same for
all paths. SUMO will report a collision when the physical gap between two
vehicles is 0. In the simulation, the collided vehicles will immediately be
removed by TracI.

4.2 EXPERIMENTS

In this paper, we consider a basic four-way intersection where each crossing
road has two lanes. Each lane is 3.5m wide, and there is a maximum speed
limit of about 72 km/h (vmax = 20 m/s). We assume that the vehicles enter
the intersection with an initial speed that is slightly lower than the maximum
speed limit. In addition, the intersection area is modelled as a circle with
radius 150m. In our simulations, all four entrance zone have similar traffic
flow rates. In our simulations, we used a fixed Target speed of 16 m/s
(about 57 km/h), however, we will in the results also discuss the effects of
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Table I: SUMO configuration

Parameter Value Description

step-length 0.05 s Simulation time step

collision.
mingap-
factor

0 m Collisions detection dis-
tance

collision.action Warn Collision warning is is-
sued

collision.check-
junctions

True Check collisions between
vehicles in the intersec-
tion

a dynamic Target speed. Table II summarizes the simulation parameters and
the specifications that we used in our simulations.

We have evaluated our proposed method for different traffic volume, also
called traffic flow rates. The traffic flow rate is normally given in terms of
arriving vehicles per hour per lane.

All results will be compared with 1) a conventional intersection control
based on traffic lights with 90 second green phase and 90 second red phase;
2) an AIM method based on a centralized control strategy using an MPC
algorithm, and 3) an AIM method based on a decentralized control strategy
using an MPC algorithm. The AIM methods we used in the comparison
are published in well-cited papers, and they have previously been evaluated
in [8] and [13]. The MPC algorithm in these AIM methods has the objective
to prevent collisions in the whole intersection area over a given time horizon
of 10 seconds with a sampling interval of 1 second, by keeping vehicles at a
safe distance to each other. To ensure a fair comparison, the traffic demands
and initial speed of each vehicle are the same for all evaluated AIM methods.

The saturation flow rate for an intersection corresponds to the maximum
achievable traffic flow rate when there is a high traffic demand. For an
intersection controlled by traffic lights, the saturation flow rate depends
on several factors, such as the intersection geometry, safety policy and the
surrounding environment [23]. The study in [23] shows that the saturation
flow rate for an intersection controlled by traffic light is almost 900 vehicles
per hour per lane. The saturation flow calculation is based on a 2 seconds
headway between vehicles for safety.

In this paper, a saturated intersection corresponds to a situation where
the maximum number of vehicles coexist inside the intersection, and the
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Table II: Simulation Parameters

Intersection parameters

R 150 m The radius of intersection zone

umax 5 m/s2 Maximum allowed acceleration

umin -6 m/s2 Maximum allowed deceleration

vmax 20 m/s Maximum allowed speed

vmin 0 m/s Minimum allowed speed

System Parameters

Rmin 7 m Minimum separation distance be-
tween the centre of two vehicles
from different approaching lanes

dmin 6 m Minimum separation distance be-
tween the centre of two vehicles in
the same lane

vt
d 16 m/s Target speed at intersection ∀t

wvi 1 Weighting coefficient ∀i

wui 0.1 Weighting coefficient ∀i

w′ui
0.5 Weighting coefficient ∀i

GCL
Parameters

LDL
Parameters

Tc 10 s Td 2 s MPC prediction
horizon

τc 1 s τd 0.1 s MPC sampling
interval

vehicles have a separation distance of dmin. From the optimisation problem
Equation (6), we can expect that the vehicles’ average speed will be very close
to vt

d. Since the intersection is full of vehicles, at least one vehicle need to leave
the intersection for another vehicle to enter in each road. The time it takes for
the first vehicle at the end of an exit lane to leave the intersection zone is
th = dmin/vt

d. In an intersection with N2 exit lanes and N1 entrance lanes,
the average number of N2 vehicles can leave the intersection during period th
simultaneously. That means that at maximum of N2 vehicles can enter from
N1 entrance lanes, We are looking for the maximum achievable traffic flow
rate for each lane. Since in each second, maximum min(N2, N1)/th vehicles
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can enter from N1 lanes, the maximum traffic flow rate in terms of vehicles
per hour, can be obtained from Equation (10).

C =
3600 ∗min(N2, N1)

th · N1
(10)

In this paper, the traffic flow rate is divided in three different traffic volumes,
as in [24]. The peak hour traffic flow rate for a typical intersection in an urban
area is usually 450-650 vehicles/hour/lane, which is defined as High volume
traffic. A traffic flow rate of 150-450 vehicles/hour/lane is defined as Medium
volume traffic. Finally, a traffic flow rate of less than 150 vehicles/hour/lane
is defined as Low volume traffic. In the result graphs, we will highlight the
different traffic volumes by using different background colours: Green for
traffic flow rates corresponding to Low volume traffic, yellow for Medium
volume traffic and red for High volume traffic.

4.3 PERFORMANCE METRICS

In this paper, we use several performance metrics in the evaluation. The
first two performance metrics, average speed and fuel consumption, are the most
used performance metrics in the literature, when evaluating the performance
of AIM methods. However, we also include safety, scalability and robustness,
since these performance metrics will be crucial when deploying an operational
AIM system.

4.3.1 Average speed

The system performs well when vehicles can pass the intersection with a high
speed. Therefore, we have evaluated the average speed of all vehicles in the
intersection for different traffic flow rates. The average speed for vehicle i, V̄i
is calculated as in Equation (11).

V̄i =

´ Tri vi(t)
Tri

(11)

where Tri is the Traveling time of vehicle i. The average speed of all vehicles
during a simulation run, V̄, is obtained by calculating the average speed of
all vehicles that have passed the intersection during the simulation, shown in
Equation (12).

V̄ =
∑Nl

i V̄i

Nl
(12)

where Nl is the number of vehicles that have passed the intersection when the
simulation ends.
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4.3.2 Fuel consumption

An algorithm performs well if it results in a low fuel consumption (or
electricity for electric cars) for the vehicles. As described in section 3.4, the
acceleration can have a significant effect on a vehicle’s fuel consumption.
Therefore, we have used the average absolute acceleration for different traffic
flow rates as a metric for fuel consumption. The average absolute acceleration
for vehicle i, denoted Ui, during its traveling time Tri is calculated as shown
in Equation (13).

Ui =

´ Tri |ui(t)|
Tri

(13)

The average absolute acceleration for all vehicles during a simulation, U, is
obtained by calculating the average absolute acceleration of all vehicles that
have passed the intersection during the simulation, as shown in Equation (14).

U =
∑Nl

i Ui

Nl
(14)

4.3.3 Traffic safety

An operational AIM system needs to be totally safe. In this paper, we have
used an approximation of average number of collisions per hour as the main
performance metric for traffic safety. As explained in Section 4.1 a collision
is defined when the physical distance between two vehicles is zero. For each
traffic flow rate, we ran the simulation several times with different random
seeds (i.e different traffic demand profiles), where each simulation run was
1 hour. We measured the number of collisions that SUMO detected during
each simulation run, and then calculated an average of the number of detected
collisions per hour, denoted N̄c, as shown in Equation (15).

N̄c =
∑Nr

k Nk
C

Nr
(15)

where Nr is the total number of simulation runs and Nk
C is the the number

of detected collisions in simulation run k. The resulting metric, N̄c, should be
seen as an approximation, not a fact. For example, we used more simulation
runs for lower traffic flow rates than for higher traffic flow rates. The main
aim with this metric is to evaluate if an AIM method can be considered safe or
not. Therefore, the absolute values of N̄c are not relevant, only the comparison
between methods.
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4.3.4 Scalability

An operational AIM system must be scalable in order to safely control the
intersection also for high traffic flow rates. In this paper, we have used
the maximum traffic flow rate that the AIM method can safely control as the
main performance metric for scalability. An intersection is considered safe
if the average number of collisions per hour (calculated as above) in the
intersection is less than 0.2 collisions/hour. As above, the absolute values
are not important, only the comparison.

4.3.5 Robustness

Operational AIM systems need to be robust to uncertainties caused by the
wireless communication. In this paper, we have evaluated the effect on the
safety when adding packet loss and communication delays, and used these
results as a performance metric for robustness of the system.

5 RESULTS AND DISSUASION

In this section, we show and discuss the results from our evaluation.

5.1 SPEED

Figure 2 illustrates the average speed of each vehicle with 95% confidence
intervals for different traffic flow rates. It is apparent that the AIM methods
perform better compared to an intersection controlled by traffic lights. The
resulting average speed for all traffic flow rates is similar to or slightly below
the Target speed. Also, our proposed AIM method results in similar average
speed as the AIM methods based on centralized and decentralized control
strategies. This is expected, since the overall system objectives for all three
AIM methods are the same.

Figure 3 shows the number of vehicles that coexist within the intersection
area with a traffic flow rate of 700 vehicles/hour/lane during 10 minutes,
starting after 30 minutes since the beginning of the simulation (in order
to have a steady-state situation). The simulation results clearly show that
the steady-state average of the number of vehicles inside an intersection
controlled by our proposed AIM method is almost 5 times less than for an
intersection controlled by traffic lights. Vehicles cross the intersection quickly,
since they do not have to stop for traffic lights. This results in an urban traffic
system without traffic queues.
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Figure 2: The average speed of vehicles while crossing the intersection.
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Figure 3: The number of vehicles that coexist inside the intersection for a
traffic flow rate of 700 vehicles/hour/lane.

5.2 FUEL CONSUMPTION

Both layers of our proposed AIM method include an optimization objective
that the vehicle should move with a smooth and comfortable speed. Therefore,
vehicles will avoid high acceleration changes, which can result in a lower fuel
consumption. Figure 4 shows the average absolute acceleration for the differ-
ent AIM methods with 95% confidence intervals. As expected, intersections
controlled by traffic lights, where many vehicles unnecessarily have to brake
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due to red lights, will have the highest average absolute acceleration. The
three AIM methods will result in rather similar average absolute acceleration
for vehicles crossing the intersection.
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Figure 4: The average absolute acceleration for vehicles crossing the intersec-
tion.

5.3 TRAFFIC SAFETY

Our results regarding speed and fuel consumption validate the typical perfor-
mance metrics of AIM methods in comparison with intersections controlled
by traffic lights. The average speed when crossing the intersection and the
vehicles’ expected fuel consumption are improved using AIM methods, either
based on centralized, decentralized or hybrid control methods. However, in
order to deploy an AIM method in an operational system, the traffic safety
must be evaluated as well, since this will be crucial for operational systems.

In order to evaluate the traffic safety, we have made an approximation of
the average number of collisions per hour, as explained in Section 4.3, for
different traffic flow rates, as shown in Figure 5. An intersection controlled
by traffic lights is assumed to have zero collisions per hour for all traffic flow
rates, since this is the main reason for deploying traffic lights in intersections.
In the simulations shown here, the wireless communication links are assumed
to be perfect, which means that there are no packet losses or communication
delays.

However, this results in major problems for the AIM methods based on
centralized and decentralized control strategies when the traffic flow rate is
higher than 400 vehicles/hour/lane. For these traffic flow rate, the control
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Figure 5: Average number of collisions per hour for different traffic flow rates

algorithms have problems to find solutions that ensure that all vehicles can
keep a safe distance to all other vehicles, and thereby avoid collisions. For
centralized control strategies, the main problem is due to the complexity of the
optimization problem. For decentralized control strategies, the main problem
is that each vehicle does not have full knowledge of the global situation.
These problems result in a non-zero expected number of collisions in the
intersection, also for rather low traffic flow rates, corresponding to Medium
traffic volumes, and perfect wireless communication channels.

In our proposed AIM method, the Local Decentralized Layer can avoid
collisions by keeping a safe distance to other vehicles in its close surroundings,
also when the GCL has not been able to find a feasible solution. Therefore,
our AIM method has a much improved traffic safety performance in compar-
ison with the AIM methods based on centralized and decentralized control
strategies, as shown in Figure 5. For example, with a traffic flow rate of 600
vehicles/hour/lane, 2400 vehicles/hour, the average number of collisions is
almost 6.5 collisions/hour for the compared AIM methods, while the average
number of collisions is only 0.18 collisions/hour for our proposed method.

5.4 ROBUSTNESS

In most evaluations of AIM methods, perfect wireless communication is
assumed, or not taken into consideration. This means that packet loss and
communication delay are not included in the evaluation. However, this is
of course not a correct assumption for real world scenarios with current
communication technologies. For example, the measurements in [17] for
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C-V2X show that the average practical end-to-end communication delay in
current 5G technologies is 10ms with almost 2.5% packet loss (i.e. 97.5%
reliability) for packet transmission when the vehicle speed is around 18 km/h.
In addition, Ford in partnership with Qualcomm (in US) and Datang (in
China) has been testing C-V2X devices since 2017 [25, 26]. The test results
are encouraging, however, they also confirm that the reliability of the wireless
links depends on, for example, the vehicles’ speed, the communication range,
the weather, and environment noise.

Non-ideal wireless communication, i.e wireless communication links with
packet loss and/or communication delays, have different impact on AIM
methods based on centralized and decentralized control strategies. In AIM
methods based on centralized control strategies, the global optimization
algorithm is usually only reliable and can avoid collisions if all messages from
vehicles in the system are received correctly and in due time (i.e before the
next sampling intervals where the vehicle data is used). Therefore, if only
one message is dropped, the algorithm may fail to find a safe trajectory for
all vehicles. The same is valid for the local optimization algorithm in AIM
methods based on decentralized control strategies. However, in decentralized
control strategies, the vehicles work in parallel, and each vehicle can solve
its own local optimization problem regardless of other vehicles’ problem
formulations. Therefore, packet loss or communication delay for one vehicle
have no effect on the other vehicles’ local optimization problems. However,
an unreliable solution for one vehicle can of course increase the collision
probability of the entire system.

Therefore, it is crucial to evaluate how robust the AIM methods are to
non-ideal wireless communication links. We performed simulations for two
scenarios with non-ideal wireless communication links, in the following called
Scenario 1 and Scenario 2. In Scenario 1, the wireless links have a reliability
of 99.999% (i.e. a packet loss probability of 0.001%) and no communication
delays. In Scenario 2, the wireless links have a reliability of 97.5% and an
average communication delay of 20 ms. Scenario 1 corresponds to the reli-
ability for C-V2X 5G, Ultra Reliable Low Latency Communication (URLLC)
[27], but ignoring the communication delays. Scenario 2 corresponds to the
measurements in [18].

Figure 6 shows the traffic safety in terms of average number of collisions
per hour (calculated as before) for the different AIM methods in these two
scenarios. Our results confirm that non-ideal wireless communication links
can significantly reduce the reliability of AIM methods based on centralized
and decentralized control strategies. However, in our proposed AIM method
based on a hierarchical control strategy, the Local Decentralized Layer can
always rely on its own local data if it has not received a new reference
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Figure 6: Average number of collisions per hour for different traffic flow rates
using non-ideal wireless communication links

speed from the GCL. This means that the LDL can find its own collision-
free movements in case of lost messages. Therefore, reasonable packet
loss and communication delays, due to the characteristics of the wireless
communication links in vehicular environments, have minimum effects on
the traffic safety of our proposed method.

5.5 SCALABILITY

Scalability is another crucial requirement for operational AIM systems. An
AIM method must be scalable in order to safely handle a large number of
vehicles crossing the intersection during, for example, peak hour.

To evaluate and compare the AIM methods’ scalability, Figure 7 shows the
maximum traffic flow rate that each AIM method can safely handle. The
figure shows the maximum traffic flow rate where the average number of
collisions per hour is less than 0.2. As before, the calculation of the average
number of collisions per hour is an approximation, and it is the comparison
that is interesting, not the absolute values.

As shown in Figure 7, our proposed AIM method is safe also for High traffic
volumes. However, the AIM methods based on centralized and decentralized
control strategies can ensure a safe intersection only for Low and Medium
traffic volumes.
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Figure 7: Maximum traffic flow rate in order to have less than 0.2 collisions
per hour

5.6 EFFECT OF SYSTEM PARAMETERS

In our evaluations, we have used some parameters, Table II, which is common
in AIM methods based on MPC [28], for example, a Target speed, vt

d, of 16
m/s and minimum separation distance, that is the minimum space between
two vehicles, Rmin and dmin, of around 6-7 m. However, there are not really any
good arguments for why these parameters should have exactly these values.
Therefore, in this section we evaluate the system performance when varying
the Target speed and the minimum separation distance between vehicles.

5.6.1 Target speed

First, we evaluated the system performance when varying the Target speed.
We used three different Target speeds: (1) 30 km/h, representing a low Target
speed; (2) 57 km/h (the Target speed we used in our experiments above),
representing a medium Target speed; and (3) 72 km/h, representing a high
Target speed (the speed limit of the intersection). In all three cases, the traffic
flow rate was set to 700 vehicles/hour/lane.

The results of our simulations are summarized in Table III. As shown in Ta-
ble III, the average number of vehicles that coexist within the intersection, N̄,
is reduced with a higher Target speed, since vehicles can cross the intersection
quicker. So, a higher Target speed means a higher system capacity. However,
the safety will decrease when the Target speed increases. This is mainly
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Table III: Effect of Target speed

vt
d N̄ N̄c

30km/h 30 0

57km/h 14 0.2

70km/h 10 1

due to the safety distance between vehicles that is used in the optimization
algorithms, and the controlled variable, the acceleration. The safety distance
is set in meters, which corresponds to a shorter time period for higher speeds.
An error in the control algorithm will therefore with a higher probability
result in a collision. Also, the controlled variable, the acceleration, will have
the same maximum and minimum values, irrespective of the Target Speed.
This means that for higher speeds, the ability for the algorithm to affect the
speed of vehicles by controlling the acceleration will be reduced, which also
may introduce errors.

5.6.2 Minimum separation distance

Second, we evaluated the system performance with larger minimum separa-
tion distance in order to increase the vehicles’ reaction time in higher speed.
We repeated the simulation with a Target speed of 57 km/h and a traffic flow
rate of 700 vehicles/hour/lane. However, in this case the minimum separation
distance in the GCL was set to 15 m, while the LDL still used a minimum
separation distance of 6m. We compared the safety and speed changes of our
proposed AIM method with the AIM using centralized and decentralized
control strategies for Scenario 1 in Section 5.4.

The results of our simulations are summarized in Table IV. From Equa-
tion (10), the saturation flow rate in the intersection can be calculated to
around 38000 vehicles/hour/lane, which is much higher than 700 vehi-
cles/hour/lane, the traffic flow rate used in the simulation. Therefore,
we expect a smooth flow of vehicles without congestion. As shown in
Table IV, the average number of vehicles that coexist within the intersection,
N̄, increased compared to the simulations with a lower minimum separation
distance (about 14 vehicles), but it is still much lower than number of vehicles
in a saturated intersection, around 80 for a minimum separation distance
of 15m, and also for a traditional intersection controlled by traffic lights,
Figure 3. As expected, the safety is increased for all three AIM methods.
A higher minimum separation distance corresponds to a longer time period
for the algorithm to avoid collisions. The collisions in the AIM methods with
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Table IV: Effect of minimum separation distance

AIM
method

N̄ N̄c

Hierarchical 17 0

Centralized 17 3

Decentralized 17 3.5

centralized and decentralized control strategies are mainly due to that the
controller cannot always find a solution that keeps a minimum separation
distance of 15m for all vehicles inside the intersection, and therefore, the
algorithms fail in some cases. But in our proposed AIM method based on
a hierarchical control strategy, the LDL can avoid collisions, even when the
GCL cannot find a solution.

6 CONVOLUTION

In this paper we propose a new AIM method based on a hierarchical control
strategy for optimal coordination of automated vehicles at intersections. Our
proposed AIM method consists of a Global Centralized Layer where a central-
ized control algorithm allocates an reference speed to each vehicle by solving
an MPC optimization problem, and a Local Decentralized Layer where a de-
centralized control algorithm is responsible for following the allocated speed
and avoid collisions. In our proposed AIM method, each vehicle uses its
own sensors to get local information from its close surroundings. Therefore,
our proposed AIM method will not require any V2V communication, and
each vehicle can take its own decisions on its movements without receiving
control directions from the GCL. Our simulation results, performed in the
realistic simulation environment SUMO, clearly shows that our proposed
AIM method is safe, scalable, and robust to packet loss and delay caused
by wireless communication.

Further, we showed the effects of changing the values of two important
system parameters, Target speed and minimum separation distance. We
showed that the values of these two parameters can have a large effect on the
safety of the system. Therefore, one way to increase the safety and robustness
of the AIM system, is to include a mechanism that selects optimal Target
speed and minimum separation distance, based on the current traffic flow
rate and the current environment (for example, the weather). For example, in
situations with low traffic flow rates and good weather, the Target speed can
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be set higher than in situations with high traffic flow rate is and bad weather.
An adaptive system will probably be crucial to guarantee a totally safe AIM
system with maximum capacity. However, this topic will remain for future
research.
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