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Abstract

With today’s improved measurement and data storing technologies it has be-
come common to collect data in search for hypotheses instead of for testing
hypotheses—to do exploratory data analysis. Finding patterns and structures in
data is the main goal. This thesis deals with two kinds of structures that can
convey relationships between different parts of data in a high-dimensional space:
manifolds and clusters. They are in a way opposites of each other: a manifold
structure shows that it is plausible to connect two distant points through the
manifold, a clustering shows that it is plausible to separate two nearby points by
assigning them to different clusters. But clusters and manifolds can also be the
same: each cluster can be a manifold of its own.

The first paper in this thesis concerns one specific aspect of a manifold struc-
ture, namely its dimension, also called the intrinsic dimension of the data. A
novel estimator of intrinsic dimension, taking advantage of “the curse of dimen-
sionality”, is proposed and evaluated. It is shown that it has in general less bias
than estimators from the literature and can therefore better distinguish manifolds
with different dimensions.

The second and third paper in this thesis concern cluster analysis of data
generated by flow cytometry—a high-throughput single-cell measurement tech-
nology. In this area, clustering is performed routinely by manual assignment of
data in two-dimensional plots, to identify cell populations. It is a tedious and
subjective task, especially since data often has four, eight, twelve or even more
dimensions, and the analysts need to decide which two dimensions to look at
together, and in which order.

In the second paper of the thesis a new pipeline for automated cell population
identification is proposed, which can process multiple flow cytometry samples in
parallel using a hierarchical model that shares information between the clusterings
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of the samples, thus making corresponding clusters in different samples similar
while allowing for variation in cluster location and shape.

In the third and final paper of the thesis, statistical tests for unimodality are
investigated as a tool for quality control of automated cell population identifica-
tion algorithms. It is shown that the different tests have different interpretations
of unimodality and thus accept different kinds of clusters as sufficiently close to
unimodal.
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Populärvetenskaplig
sammanfattning

Att söka strukturer i data — Intrinsisk dimension och klust-
ring

År 1604 lyckades Kepler efter mer än 40 försök med olika ovala figurer anpassa
en ellips till de mätningar av Mars planetära bana som Tycho Brahe under åratal
nedtecknat. Före detta genombrott var Kopernicus heliocentriska världsbild lika
komplicerad som den tidigare geocentriska. Argumenten för Kopernicus världs-
bild var till stor del teologiska. Nu kunde man börja hävda en vetenskaplig grund
i modern bemärkelse. En ellips, en matematisk struktur, gav modellen en enkelhet
som inte bara gjorde den mer trolig, utan även gjorde det möjligt för Newton åttio
år senare att förklara planeternas rörelser med gravitationskraften och mekanikens
lagar.

Letandet efter två olika typer av strukturer i data är huvudtemat i denna av-
handling. Den första typen är så kallade mångfalder inbäddade i högre dimen-
sioner. Exempelvis är en kurva en endimensionell mångfald, som vi är vana att
se i avbildad i två eller tre dimensioner, men som rent matematiskt likaväl kan
finnas i ett sju- eller hundradimensionellt rum. En yta är på motsvarande sätt
en tvådimensionell mångfald. Forskningen i avhandlingen handlar om att avgöra
dimensionen hos en mångfald beskriven genom data. Det mest förvånande resul-
tatet är att vi med god precision kan avgöra dimensionen hos en mångfald som
har högre dimension än antalet datapunkter. Till exempel, om man har tre punk-
ter kan man alltid hitta ett plan som går precis genom de tre punkterna. Hur kan
vi då veta att de egentligen kommer från en mångfald av högre dimension?

Den andra typen av struktur är så kallade kluster, med andra ord gruppering-
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ar av näraliggande datapunkter. Hur kan man matematiskt avgöra vilka punkter
som borde tillhöra samma kluster/grupp? I avhandlingen studeras två frågeställ-
ningar relaterade till klustring. Den ena frågeställningen som studeras är hur vi
med statistiskt pålitliga metoder kan avgöra huruvida data kommer från ett eller
flera kluster. Den andra handlar om klustring av data från upprepade experiment.
I de olika experimenten förväntar vi oss att se samma ungefär grupperingar, men
variation mellan experimenten gör att varje grupp kan ha förändrats något: den
kan ha flyttats, ändrat form och/eller ändrat storlek. Vi har tagit fram en metod
som genom en hierarkisk matematisk modell kan dela information om vilka grup-
peringar som finns mellan datan från de olika experimenten. Modellen kan även
ta hänsyn till tidigare erfarenhet om grupperingar man är intresserad av. Att stu-
dera dessa klustringsproblem behövs för att förbättra analysmetoder av avancerade
mätningar på celler som görs med en så kallad flödescytometer. Vi återkommer
till flödescytometri och klustring senare, först ska vi titta närmare på beräkning av
dimension.

Dimension av mångfalder

Bilderna A-C visar tre datamängder med tre punkter vardera som är genererade
från tre mångfalder med dimension 1, 2 respektive 100 och där bildplanet har
anpassats till de tre punkterna. Kan du gissa vilken datamängd som kommer från
vilken mångfald? Naturligtvis är det ett omöjligt problem, om vi inte gör några

A B C

ytterligare antaganden om mångfalderna. Till exempel kan vi för alla tre data-
mängderna dra en kurva genom alla punkter som passar perfekt. Men om vi antar
att mångfalden har låg kurvatur, alltså att den inte kröker särskilt mycket? Då kan
du nog direkt gissa att C kommer från en endimensionell mångfald. Men för att
komma vidare behöver vi förstå en del om geometri i högdimensionella rum. An-
ta att du befinner dig i ett rum av dimension n. Allt som befinner sig inom ett
avstånd r från dig kallar vi din r-omgivning. Den här omgivningen blir ett klot,

viii



som du befinner dig i centrum av. Rakt ovanför ditt huvud finns en punkt som
vi kallar Nordpolen. Om klotet hade varit tredimensionellt, som vanliga klot, så
hade du med hjässan fortfarande riktad mot Nordpolen kunnat se rakt ut över en
yta, ett tvådimensionellt rum, alltså ett rum med två riktningar som var vinkel-
räta mot varandra. Men i det n-dimensionella rummet kan du med hjässan mot
Nordpolen titta i n � 1 olika riktningar som är vinkelräta mot varandra. Faktum
är att området i de här n � 1 olika riktningarna som befinner sig inuti klotet som
är din r-omgivning bildar ett n � 1-dimensionellt klot. Ett tvådimensionellt klot
är en cirkelskiva, och i det vanliga tredimensionella klotet handlar det om den
skiva man får om man gör ett tvärsnitt vid ekvatorn. Ett märkligt fenomen i höga
dimensioner är att även om man gör detta tvärsnitt väldigt tunt tar det en allt
större andel av det totala klotets volym. I höga dimensioner upptar skivan nästan
hela klotets volym. Om man slumpar ut en punkt i klotet kommer den alltså med
största sannolikhet att ligga i denna skiva. Det leder till att relativt riktningen till
vår referenspunkt, Nordpolen, så kommer den utslumpade punkten att ligga i en
riktning som är vinkelrät.

I avhandlingen har vi tagit fram en metod för att skatta dimensionen hos
en datamängd baserat på denna idé—att mäta vinklar mellan riktningarna från
en referenspunkt till punkter i datamängden och avgöra hur nära vinkelräta rikt-
ningarna är. Detta görs med referenspunkter på många ställen i datamängden,
och för att antagandet om låg kurvatur ska vara riktigt inkluderas bara punkter
nära referenspunkten. På så sätt får man en lokal skattning av dimensionen. Det
visar sig att vår metod har betydligt lägre systematiskt fel för skattningar av di-
mension än andra metoder och att detta leder till att man bättre kan skilja mellan
datamängder med olika dimension.

Hur var det då med mängderna A och B? Vi börjar med att lägga en refe-
renspunkt i tyngdpunkten av de tre punkterna i varje mängd. Sedan mäter vi
vinklarna mellan riktningarna till de tre datapunkterna. I A får vi två vinklar som
är nära 180�och en vinkel som är liten, alltså är riktningarna ganska långt ifrån
vinkelräta. I B är vinklarna närmre 90�, vilket innebär att det är mycket troligare
att B kommer ifrån en mångfald med hög dimension. Alltså A är 2-dimensionell,
B är 100-dimensionell och C är 1-dimensionell!

ix



Tvådimensionellt (vänster) respektive endimensionellt (höger) histogram av flödescyto-
metridata. Datan är hämtad från R-paketet healthyFlowData.

Klustring och flödescytometri

Allt sedan Newtons och Keplers dagar är datainsamling och anpassande av mate-
matiska modeller till insamlade data en hörnsten inom vetenskap. Mer detaljerade
data kan avslöja brister i gängse förklaringsmodeller eller leda till nya banbrytande
hypoteser. Därför har jakten på nya data varit en motor inom vetenskapen, biome-
dicin är inget undantag. Mätinstrument och datalagringsteknologi har genomgått
en revolutionerande utveckling det senaste decenniet och idag produceras i ett
enskilt experiment mer data än någon kan överblicka. En DNA-sekvenserare kan
på några timmar läsa av alla tre miljarder baser i en människas genetiska kod. En
flödescytometer kan på några minuter ge 15-dimensionella mätningar på cellnivå
av 100 000 enskilda celler. Det skulle ta en halvtimme för en forskare att bara
scrolla igenom datan från ett enda sådant experiment i ett Excel-ark. Detta inne-
bär att datan måste behandlas och sammanfattas med olika algoritmer innan den
presenteras för forskaren. Så länge ett fåtal parametrar är uppmätta per objekt, till
exempel om man mäter en eller två egenskaper per cell, har datan låg dimension
och kan sammanfattas väl med en- eller tvådimensionella histogram.

I histogrammen av ett flödescytometriprov kan vi se att vi får grupper av
celler. Det vanligaste sättet att sammanfatta ett sådant prov på är att rita in en in-
delning i cellpopulationer i histogrammen och därefter beräkna egenskaper såsom
antal celler och medelvärde för de olika parametrarna som är uppmätta, för varje
cellpopulation. Ett klassiskt exempel där detta används är övervakning av HIV-
infektioner, där en cellpopulation med celler med högt uttryck av två markörer,
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som kallas CD3 och CD4, blir mindre allt eftersom sjukdomen förvärras. Idag
är det vanligt att man använder flödescytometriprov med betydligt fler markörer,
ofta runt ett tiotal, både inom forskning kring och diagnostik av blodsjukdomar
och sjukdomar hos immunsystemet.

Men att göra en indelning genom att rita i histogram fungerar bara rent prak-
tiskt i upp till två dimensioner. Har man mätt fler parametrar väljer man ut en
eller två i taget, gör en indelning, och delar sedan in de populationer man får i
subpopulationer genom att välja ut nya parametrar. Man behöver alltså en strate-
gi för vilken sekvens av parametrar man ska välja. På detta sätt blir indelningen i
populationer subjektiv och dessutom suboptimal eftersom man inte kan ta hän-
syn till alla parametrar samtidigt. Det är också arbetskrävande, särskilt som man
kan ha hundratals prover som man behöver göra analysen på. Därför vill man ta
fram automatiserade metoder för indelning i populationer. Ett sätt att göra det-
ta är att bygga en modell för hur en cellpopulation ser ut och sedan kombinera
sådana modeller för att beskriva hela datamängden. Till exempel i det endimen-
sionella histogrammet över flödescytometridata ovan ser det ut ungefär som att
det finns två överlagrade normalfördelningar. Vår modell kan alltså vara att varje
cellpopulation beskrivs av en normalfördelning. Det fungerar bra även för hög-
re dimensioner; då använder man sig av den multivariata normalfördelningen.
Ett flödescytometriprov i fyra dimensioner kan kanske beskrivas väl av ett tiotal
överlagrade multivariata normalfördelningar.

Men, eftersom cellpopulationerna överlappar varandra och normalfördelning-
en bara är en approximation och inte beskriver datan exakt, så kan det finnas flera
modeller som passar datan ungefär lika bra. Av slump kan då en variant väljas
för ett flödescytometriprov och en helt annan för ett ett annat prov i samma un-
dersökning. Det innebär att man inte kan jämföra cellpopulationerna från olika
prov med varandra. För att hantera detta presenteras i avhandlingen en hierarkisk
modell för flödescytometridata, där det finns en grundnivå som är en modell för
en enskilt prov och en metanivå som kombinerar parametrarna från olika prov.

Ett exempel på hur modellen fungerar visas i figuren ovan, där modellens
grundnivå är illustrerad för tre flödescytometriprov med ellipser som visar de mul-
tivariata normalfördelningarnas form. Längst till höger illustreras metanivån som
samlar grundmodellerna för de olika proverna. I avhandlingen applicerar vi vår
modell på en välkänd referensdatamängd och visar att vi får en indelning i cell-
populationer som är mer jämförbar mellan olika prover än indelningar gjorda
antingen manuellt eller med andra automatiserade metoder. Modellen är formu-
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Hierarkisk modell för flödescytometridata. Proverna har mycket gemensamt, men är
samtidigt lite olika.

lerad i ett Bayesianskt ramverk där vi ovanför metanivån även har en a priori-nivå
som beskriver den kunskap vi har om cellpopulationerna i förväg. Vi visar att det-
ta särskilt kan vara till hjälp för att hitta små populationer som annars inte hade
detekterats. Som nämndes i inledningen så har ytterligare en frågeställning kring
klustring av flödescytometridata studerats — nämligen hur man kan avgöra om en
grupp mätningar tillhör en eller flera populationer. Men om två cellpopulationer
är väldigt lika för de parametrar man uppmätt, kan man då avgöra att det faktiskt
är två populationer? Nej, ibland är det är omöjligt! Vi måste formulera om frågan:
Är rimligt att den data vi mäter upp kan komma från en enda cellpopulation? Nu
vill vi inte anta att cellpopulationerna följer en viss fördelning, t.ex. normalför-
delningen, eftersom detta ofta är för restriktivt, utan ha en mer generell modell
för vår population. Den modell vi utnyttjar oss av gör det enda antagandet att
fördelningen som en cellpopulation följer ska vara så kallat unimodal. Det bety-
der ungefär att i ett histogram över datan ska det bara finnas en topp. Mer precist
gäller detta bara om man har oändligt mycket data, eftersom man med ändligt
mycket data kan få små extra toppar av slump, som man kan se i det endimen-
sionella histogrammet ovan. Eftersom man i praktiken alltid har ändligt mycket
data betyder det att man behöver avgöra om de små toppar man har är signifikan-
ta och bryter mot antagandet för unimodalitet. I den statistiska litteraturen finns
det framför allt två tester för unimodalitet som har studerats väl: dip-testet och
bandbreddstestet. Genom att applicera testerna på data som blivit manuellt inde-
lad i färdiga cellpopulationer kan vi se om de statistiska testerna överensstämmer
med den traditionella bilden av hur cellpopulationer ska se ut. Vi kommer fram
till att dip- och bandbreddstestet tolkar unimodalitet på olika sätt och att båda
sätten kan vara viktiga för att beskriva cellpopulationer i flödescytometridata.
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Chapter 1

Introduction

This thesis treats three topics: intrinsic dimension, cluster analysis and flow cy-
tometry data. The chapters 2–4 give an introduction to each of these topics, to
prepare for and give context to the three papers which are the main contributions
of this thesis.

In Chapter 2 intrinsic dimension is introduced and defined in various ways.
The different definitions are related to each other and to estimators of intrinsic
dimension. Furthermore, one section is devoted to the “curse of dimensionality”
and the concentration phenomenon, since these are the basis for the estimators
presented in Paper I. For the non-expert reader a warning should be issued that
this is the most technical chapter.

In Chapter 3 an introduction to clustering and clustering algorithms is given,
with a focus on model-based clustering. Bayesian hierarchical models and infer-
ence for such models are introduced to give background to the clustering algo-
rithm presented in Paper II. Finally cluster evaluation methods are discussed, to
put the methods presented in Paper III into perspective.

Chapter 4 gives an introduction to flow cytometry and flow cytometry data
analysis, and gives background and motivation for the cell population identifica-
tion pipeline BayesFlow presented in Paper II.

Finally, Chapter 5 gives an outlook for the methods presented in this thesis.

1.1 Contributions

This thesis is built upon three papers:
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CHAPTER 1

PAPER I

K. Johnsson, C. Soneson and M. Fontes. Low bias intrinsic dimension estimation
from expected simplex skewness. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(1): 196–202, 2015.

In this paper, we propose a set of new estimators of intrinsic dimension. We char-
acterize the estimators on synthetic as well as real data and and prove consistency
for the estimators. Compared to other estimators of intrinsic dimension it has
lower bias, which makes it better at distinguishing between data sets of different
dimension.

Author contributions: MF suggested the topic of study. MF and KJ con-
structed the ESS estimator. KJ did the literature survey and implemented all the
evaluated estimators. KJ, CS and MF designed the experiments and they were
run by KJ. KJ developed the theoretical results of the ESS estimator with the help
of MF. KJ wrote the paper with the help of MF and CS. All authors read and
approved the final version of the manuscript.

PAPER II

K. Johnsson, J. Wallin and M. Fontes. BayesFlow: latent modeling of flow cy-
tometry cell populations. BMC Bioinformatics, 17(25), 2015.

In this paper, we propose a pipeline for automated cell population identification
in flow cytometry data. At the heart of the pipeline is a Bayesian hierarchical
model for joint clustering of multiple flow cytometry samples in a batch. We
show that the pipeline gives results which are more comparable across samples
compared to competing methods.

Author contributions: KJ, JW and MF conceived and planned the study.
JW and KJ designed the statistical model and the inference procedure. KJ, JW
and MF designed the experiments. JW and KJ implemented BayesFlow and ran
the experiments. KJ and JW wrote the article with the help of MF. All authors
read and approved the final version of the manuscript. KJ and JW assert equal
contributions to the paper.

PAPER III

K. Johnsson and M. Fontes. What is a ‘unimodal’ cell population? — Investigat-

2



1.1. Contributions

ing calibrated dip and bandwidth tests for quality control of gating of flow
cytometry data. Submitted for publication.

In this paper, the calibrated dip and bandwidth tests of unimodality are investi-
gated with the purpose of describing how they can be used for quality control of
the cell population identification process of flow cytometry data. The tests are
shown to have complementary properties for matching populations assigned by
application experts.

Author contributions: KJ conceived and planned the study. KJ did the
literature survey and the implementation work. KJ designed the experiments
under some discussion with MF. KJ wrote the paper with the help of MF. Both
authors read and approved the final version of the manuscript.
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Chapter 2

Intrinsic dimension

A data set typically consists of measurements made on a sequence of objects or
instances. Each kind of measurement is represented by a variable, and the number
of variables is called the (extrinsic) dimension of the data. In many cases the
measurements are related; an example is given in Fig. 2.1. For each data point we
have an x and a y coordinate, but it could equally well be represented with an
angle—which gives a one-dimensional data set. Finding a better representation
shows that the data set has lower complexity than what the extrinsic dimension
would suggest.

However, to find such a representation is often hard—even when you can
manage it, how can you know that there is not an even better one with fewer
variables? Estimators of intrinsic dimension can measure data complexity without
the need to find lower-dimensional representations.

A suite of such estimators is proposed in Paper I. To clarify precisely what is
estimated, this chapter discusses definitions of intrinsic dimension. As we will see
it is non-trivial to make a stringent definition, but an attempt is made in Defi-
nition 2.4. Other definitions used in the literature are discussed in Sections 2.2
and 2.3. The chapter is concluded by introducing “the curse of dimensionality”
and the concentration of measure phenomenon, which are not only important
for the estimators proposed in Paper I, but also gives some further intuition about
high-dimensional data sets.
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Figure 2.1: A two-dimensional data set with intrinsic dimension 1.

2.1 Manifold-based definition of intrinsic dimension

Following (Bruske and Sommer, 1998, Costa and Hero III, 2004, Hein and Au-
dibert, 2005, Raginsky and Lazebnik, 2005), the definition of intrinsic dimension
used in Paper I is based on the notion of a smooth manifold. A basic requirement
for a set M to be a manifold is being a topological Hausdorff space, i.e. it needs
a topology with the Hausdorff property. In our treatment we always have that
M ⇢ RD, where D is the extrinsic dimension of the data, and M has the topol-
ogy induced from RD, which is Hausdorff and even normal.

Definition 2.1. The topological Hausdorff space M is a manifold with dimension
n if for each p 2 M there is an open set U 3 p and a mapping x : U ! Rn

that is continuous with x(U) open, and whose inverse x�1
: x(U) ! U also is

continuous.

This means that for each point p in a manifold with dimension n there is
a neighborhood that is a continuous deformation of an open set in Rn. Any
point in this neighborhood can be described by n parameters, using the map x�1

and the usual coordinates in Rn. But continuity of x and x�1 is not enough to
ensure that an open ball around p is well approximated by an open ball on an
n-dimensional subspace of Rd. For this, the mappings also need to be smooth.

Definition 2.2. A manifold M is smooth if it is equipped with an atlas of local

6



2.1. Manifold-based definition of intrinsic dimension

mappings A = {(U
↵

, x
↵

)}, ↵ 2 I such that

[

↵2I

U
↵

� M

and for all ↵, � 2 I

x
�

� x�1
↵

|
x↵(U↵\U�)

: x
↵

(U
↵

\ U
�

) ⇢ Rn ! Rn

is smooth, i.e. infinitely differentiable.

Defining intrinsic dimension also requires the concept of a smooth function
on M.

Definition 2.3. A function f : M ! R on a smooth manifold equipped with an
atlas A is smooth if for every (U, x) 2 A we have that f �x�1

: x(U) ⇢ Rn ! R
is smooth.

The stage is now set for defining intrinsic dimension. It seems natural to
define the intrinsic dimension of a data set to be n if it is sampled from a smooth
density on a smooth manifold of dimension n. This is not appropriate however,
for two reasons. First, the manifold model might not be exact; the data might
be close to the manifold instead of directly on the manifold. Second, even when
data set is sampled from a smooth density on a smooth manifold of dimension n
it is always possible to fit smooth manifolds of dimensions m < n to the data—
for example, for any finite set of data points we can draw a smooth curve, i.e. a
1-dimensional manifold, passing through them. Thus we cannot define intrinsic
dimension for a data set itself, but only for the process generating it.

Definition 2.4. A process generating data Y
i

has intrinsic dimension n if Y
i

can
be written as Y

i

= X
i

+ ✏
i

, where X
i

is sampled according to a probability
measure with a smooth density that is supported on a smooth n-dimensional
manifold M and ✏

i

is a noise component which is small on a scale where M is
well approximated by an n-dimensional subspace.

To estimate intrinsic dimension for a data set thus actually means estimating
the intrinsic dimension of the process that has generated it. We show in Appendix
C of Paper I that the proposed estimators are consistent in the case where we have
no noise, and illustrate why it is not possible to obtain consistency when we do
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have noise. The reason for this is that on very small scales the noise will be domi-
nant and the intrinsic dimension of the noise will be estimated instead of the data
dimension. In practice, it will be a prerequisite to have a way to define neigh-
borhoods in the data where the noise level is assumed to be small in comparison
to the neighborhood size at the same time as the manifold is approximately flat
in the neighborhoods. We have empirically investigated the impact of noise to
estimators of intrinsic dimension in Section 3.3 and Appendix F of Paper I.

There are two variants of the above definition that have been used frequently
in intrinsic dimension estimation papers, and sometimes have been claimed to
be equivalent with the above definition (Fukunaga and Olsen, 1971, Camastra,
2003, Carter et al., 2010). In fact they are not, as will be explained below.

The first variant is perhaps most clearly stated by Bennett (Bennett, 1969)
who defines intrinsic dimension as “the number of free parameters required in a
hypothetical signal generator capable of producing a close approximation to each
signal in the collection” (Bennett, 1969, Fukunaga and Olsen, 1971, Levina and
Bickel, 2004). In mathematical terms this translates to that each data point Y

i

can
be written as Y

i

= g(X
i

)+✏
i

, where X
i

2 Rn gives the n free parameters and g is
the signal generator function. This function is in the general case any continuous
function which is sufficiently smooth, but in some cases (Bennett, 1969) a more
restrictive set is used. (Levina and Bickel, 2004) allowed any “sufficiently smooth”
g, but omitted the noise component ✏

i

.

The second variant of 2.4 is considering the number of parameters to which
data can be reduced without losing much information (Carter et al., 2010). This
is hard to translate to a precise mathematical formulation, since it depends on
how one defines what information is encoded in the data. For example, if we
transform the x and y coordinates in Fig. 2.1 to the interval [0, 2⇡] by t =

arccos y+⇡·I(x < 0), where I is the indicator function, we lose the information
that data close to 0 or close to 2⇡ in the transformed space are very close to each
other in the original data space.

That defining intrinsic dimension by ability to reduce data to a lower-di-
mensional space is much more restrictive than manifold dimension is shown by
the example above. Defining intrinsic dimension by the number of parameters
needed to generate the data set is also more restrictive than manifold dimension:
A manifold requires around each data point a local chart that parametrizes the
neighborhood with n coordinates, but the parametrization does not have to hold
for the entire structure. Generating data from n parameters requires a global
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parametrization.
The manifold-based definition 2.4 uses local properties of the data, whereas

the two variants above are based on global properties. Hence any estimators that
only use local information, such as local distances, or ability to fit a linear sub-
spaces locally to the data comply better with the manifold-based definition.

2.2 Topological dimension

The notions of manifolds and manifold dimension were developed by Riemann
and others from 1850 onwards (Scholz, 1999), but the discoveries of one-to-one
correspondences between a line and a square by Cantor in 1877 and the space-
filling curve by Peano in 1890 challenged the dimension concept (Crilly, 1999).
Was dimension a topological invariant, i.e. constant under homeomorphisms?

This was resolved in the 1910’s by Brouwer, who first proved that Rn is not
homeomorphic to Rm if n 6= m and then constructed a dimension number
that agreed with the number of coordinates for Euclidean space and that was
topologically invariant. A decade later Urysohn and Menger constructed another
invariant which also had these properties. These invariants are called the large and
small inductive dimensions respectively (Crilly, 1999). For all separable metric
spaces, the large and the small inductive dimensions are equal (Hurewicz and
Wallman, 1948, ch. III, prop. 5A).

It is easy to see that manifold dimension agrees with the small inductive di-
mension, as shown below.

Definition 2.5 (Small inductive dimension). The empty set has dimension -1. A
topological space X has dimension n if for any p 2 X and closed set A ⇢ X , p /2
A, there is a closed subset� with dimension less than n such that X\� = B[C,
where B and C are disjoint open sets and p 2 B and A ⇢ C. (Encyclopedia of
Mathematics, “Dimension theory”)

The induction step can be formulated as that p can be separated from A using
a closed set of dimension less than n.

The large inductive dimension is defined in an analogous way, but with a
closed set B disjoint from A replacing p.

Proposition 2.1. A manifold M with dimension n has small inductive dimension
n.

9
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Proof. Suppose that p 2 M and that A is a closed subset of M with p /2 A.
We can find an open set U 3 p so that x : U ! V ⇢ Rn is a homeomorphism.
Since the topology on M is normal, we can also find disjoint open sets P and Q
such that P 3 p and Q � A [ U c. Let A0

= P c.
Now x(A0 \ U) is closed in the subset topology of V and V has small induc-

tive dimension n, so we can find a closed set � with small inductive dimension
less than n and such that V \� = B [ C with B and C disjoint and open,
x(p) 2 B and x(A0 \ U) ⇢ C. If  = x�1

(�), then

M\ = U\ [ U c

= U\ [ Q = x�1
(B) [ (x�1

(C) [ Q),

where x�1
(B) and x�1

(C) [ Q are disjoint and open, p 2 x�1
(B) and A 2

x�1
(C)[Q. Also, is clearly closed and has small inductive dimension less than

n.

A third dimension number tracing back to ideas from Lebesgue is the Lebesgue
covering dimension (Crilly, 1999). For separable metric spaces this is also equal
to the small and large inductive dimensions (Hurewicz and Wallman, 1948, The-
orem V 8).

Definition 2.6 (Lebesgue covering dimension). The dimension of a set X is the
smallest number n with the property that every open covering has a refinement
such that any point appears in at most n + 1 of the sets in the refinement. (Ency-
clopedia of Mathematics, “Dimension theory”)

The term topological dimension usually refers to Lebesgue covering dimen-
sion (Weisstein). Using the above definitions as a basis for dimension estimators
is hard due to their abstractness; a few authors have claimed that their estimators
do estimate topological dimension, but in fact they estimate something else such
as manifold dimension (Bruske and Sommer, 1998, Kégl, 2002).

The main difference between manifold dimension and topological dimension
is that topological dimension is defined for any set in a separable metric space,
whereas manifold dimension is only defined for manifolds. From the definition
of small inductive dimension and Proposition 2.1 it follows immediately that
for a finite disjoint union of manifolds with different manifold dimensions, the
topological dimension is the maximal dimension of these.

10



2.3. Fractal dimension as intrinsic dimension

2.3 Fractal dimension as intrinsic dimension

As set theory and measure theory were developed in the early 20th century, an-
other approach of tackling the problem of defining dimension was proposed by
Hausdorff in 1918 (Crilly, 1999, Hausdorff, 1918). Instead of considering topo-
logical properties relating to the connectivity structure of sets he considered metric
properties, i.e. distances between points, and used a construction by Carathéodory
to define a p-dimensional measure that did not depend on the dimension of the
embedding space (Hausdorff, 1918). Here p could be non-integer. The Haus-
dorff dimension of a set was defined as the value of p which either gave a finite
measure or for which any q < p would give infinite measure and any q > p would
give zero measure (Hausdorff, 1918, Falconer, 1990). The Hausdorff dimension
is always larger than or equal to the topological dimension (Hurewicz and Wall-
man, 1948), but for submanifolds of Rd they agree (Falconer, 1990). A closely
related, but much simpler, definition of dimension is the box counting dimen-
sion, which is always larger than or equal to the Hausdorff dimension, but also
equal to the manifold dimension for manifolds (Pontrjagin and Schnirelmann,
1932, Falconer, 1990).

The study of certain sets with non-classical geometries, named fractals, was
popularized by Mandelbrot in the 1980’s (Mandelbrot, 1982, Falconer, 1990).
A characteristic of many fractals is that they have non-integer Hausdorff or box-
counting dimension; the dimension is an essential feature to investigate (Falconer,
1990).

During the 1980’s many fractal sets were studied within the area of dynam-
ical systems. These sets occurred in the form of data generated from so called
strange attractors. For these data it were impractical to estimate Hausdorff or
box counting dimension because—among other reasons—these dimension con-
cepts are based on the support of the data, when a dimension concept based on
the measure generating the data would be preferred. This lead to development
of many new measures of fractal dimension such as information dimension and
correlation dimension. (Cutler, 1991)

The reader is referred to Cutler (1991) for a comprehensive compilation of
different concepts of fractal dimension and how they relate to each other.
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2.4 The curse of dimensionality

If you have ever tried to manually optimize something with more than one or
two parameters you might have experienced the frustration that is captured in the
phrase “the curse of dimensionality” (Bellman, 1961). The number of possible
combinations of parameter values is enormous and as the number of parameters
increase it soon grows infeasible to do a brute force search for an optimum.

Today the phrase “the curse of dimensionality” is used to describe any kind of
phenomenon that becomes problematic when you have a large number of vari-
ables or parameters (François et al., 2007), for example when doing numerical
integration (Donoho, 2000) or nearest neighbor search (Beyer et al., 1999).

Many “curses of dimensionality” can be traced to what is called the concen-
tration phenomenon within mathematics (Pestov, 2008). Pestov (2008) suggested
to estimate intrinsic dimension based on how this phenomenon is reflected in
data and proposed one estimator of intrinsic dimension along these lines. The
estimators in Paper I are also based on this idea, therefore some key elements of
concentration of measure are introduced in the next section.

2.4.1 The concentration of measure phenomenon

Concentration of measure is a concept that Vitali Milman started to promote in
the beginning of the 1970’s (Ledoux, 2005). It been extensively studied within
mathematics and applied in many fields such as probability theory, complexity
theory and functional analysis. A nice and accessible introduction to the subject
viewed from a probabilistic perspective has been written by Talagrand (1996); for
a comprehensive review we refer to (Ledoux, 2005).

The amount of concentration of a measurable metric space (X, d, µ) can be
quantified by the concentration function, defined as

↵(✏) = sup{1 � µ(A
✏

) : A ⇢ X, µ(A) >
1
2
}, ✏ > 0,

where A
✏

consists of all points within distance ✏ of A and µ(X) = 1. A space for
which ↵(✏) decreases fast is said to experience concentration of measure.

A family of measurable metric spaces {(X
n

, d
n

, µ
n

)}1
n=1 with the property

that ↵
n

(diam(X
n

)✏) ! 0 as n ! 1 for any ✏ > 0 is called a Lévy family.
There are many Lévy families where n denotes the dimension of the space, for
example the n-dimensional unit sphere, or any family of compact Riemannian
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manifolds with normalized volume measures which also fulfill certain restrictions
on their curvatures. This is why the concentration phenomenon is often thought
as a phenomenon of high-dimensional spaces.

When (X
n

, d
n

, µ
n

) belongs to a Lévy family and n is high, for any subset
A ⇢ X

n

with µ(A) > 1/2, almost all of the remaining measure is concentrated
close to the boundary of A. In the case of an n-dimensional sphere, this means
that almost all of the measure is concentrated very close to the equator for high
n. ‘Close’ is here defined relative to the sphere’s diameter.

An equivalent characterization of the concentration phenomenon can be ob-
tained using Lipschitz functions. Recall that the Lipschitz constant for a real-
valued function F is defined as

L(F ) = sup

x 6=y

|F (x) � F (y)|/d(x, y),

and when it is finite the function is Lipschitz. Now if m
F

is a median of F , it
can be shown that (Ledoux, 2005)

µ({|F � m
F

| � r})  2↵(r/L(F )), (2.1)

where ↵ is the concentration function defined as before. Furthermore, if � is any
function such that (2.1) holds with � in the place of ↵, then ↵  � (Ledoux,
2005). What the equation (2.1) says is that for spaces with high amount of con-
centration, i.e. when ↵(r) decreases fast, any Lipschitz function will be concen-
trated around its median.

This is in a way similar to the weak law of large numbers, which states that
when X1, X2, . . . , Xn

are iid random variables with finite expectation, their
mean converges in probability to the expected value (Gut, 2009). The concentra-
tion of measure phenomenon says that if the product spaces of X1, X2, . . . , Xn

equipped with the product metric and the product measure form a Lévy fam-
ily {(X⌦n, d⌦n, µ⌦n

)}1
n=1, not only the mean function F (X1, X2, . . . , Xn

) =

n�1
(X1 + X2 + · · · + X

n

) converges in probability to its median value, but any
Lipschitz function does. And convergence in probability to the median implies
that the expected value converges to the median, hence we also get convergence
in probability to the expected value.

Donoho (2000) named concentration of measure a “blessing of dimensional-
ity”, but it can in many cases be seen as a “curse”. Features of data are often mea-
sured by Lipschitz functions (Pestov, 2008)—for example projections onto the
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coordinate axis or distances from a point—and the concentration phenomenon
means that these get non-discriminating in high-dimensions. In the example of
distances to a given point this means that almost all other points in the space will
be almost equidistant to it, making k nearest neighbor methods less meaningful.

It is far from trivial however to show that a sequence of product spaces form a
Lévy family, and results such as concentration of distances under certain circum-
stances have been shown by entirely different means (Beyer et al., 1999). But we
conclude this section with a powerful result from the theory of concentration of
measure that can explain many curses of dimensionality, for example concentra-
tion of distances in a quite general setting.

Theorem 2.1 (Talagrand concentration inequality (Talagrand, 1995, Tao, 2012)).
Let K > 0, and let X1, X2, . . . , Xn

be independent complex random variables with
|X

i

| < K for i = 1, . . . , n. Let F : Cn ! R be a 1-Lipschitz convex function.
Then for any � there are constants c, C such that

Pr(|F (X) � m
F

| � �K)  C exp(�c�2
)

and
Pr(|F (X) � E(F (X))| � �K)  C exp(�c�2

).
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Cluster analysis

To group or systematize objects and phenomena is a basic human instinct. It is
the basis for interpreting our perceptions and our language is largely constructed
from labels we put onto these groups. We put the label “orange” onto things we
perceive as similar to 612 nm light. We put the label “walking” onto the act of
transporting oneself on foot while always having at least one foot on the ground.
Objects have multiple labels and sometimes there is disagreement on whether a
certain label should be put on a certain object or not.

For science and science-based professions, grouping and classification is fun-
damental for organizing and communicating knowledge. Knowing that an entity
belongs to a group makes it possible to make predictions about how it will behave
under varying circumstances. When a doctor knows that a patient has the diag-
nosis “diabetes”, she will predict that intake of insulin will be instrumental for the
patient’s well-being. Had the diagnosis been “leukemia”, insulin would not have
been prescribed.

Sometimes it is not the members of the group themselves that are of interest,
but rather a collective property, such as group size, that is the predictor. If a
disproportionate amount of blood cells in a blood sample belongs to the group of
white blood cells, a doctor might predict that the patient has leukemia.

The problem of defining reasonably well-separated groups in data sets is called
clustering. There should be reason to believe that the objects in one group are
more similar to each other than to objects of other groups, that the grouping re-
veals some hidden structure. This problem is significantly harder than the classifi-
cation problem, where the possible set of labels is known and the task is to choose
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which one is most appropriate. Grouping plants and animals into species, symp-
toms into syndromes, events into epochs are all examples of clustering. When a
clustering has been made, new objects can be assigned to groups by classification.

Milligan (1996) and Hennig and Liao (2013) have made good overviews of
the different steps of a cluster analysis. The first things to consider are what data
to base the grouping on and how differences between measurements are valued.
What characteristics of the objects are believed to give a partitioning that is rel-
evant for the area of research? Are all variables equally important? How should
differences across variables be combined? The next step is to decide on a method
for grouping the data—the clustering algorithm. The choice of algorithm will
have crucial effect on the result. The final steps in a cluster analysis are evalua-
tion and interpretation of the obtained partition. The evaluation can be used to
compare different clustering algorithms against each other, or to select parameters.

Paper II describes a clustering algorithm tailored for grouping measurements
of cells in flow cytometry data—cell population identification. Paper III ad-
dresses the last (and often under-appreciated) part of the cluster analysis—the
evaluation—for the specific case of cell population identification, by investigating
tests for unimodality.

3.1 Clustering algorithms

There are hundreds of clustering algorithms in the literature. A 2005 survey
included almost 300 references, with algorithms grouped into ten categories (Xu
and Wunsch, 2005). The book Cluster analysis (Everitt et al., 2011) devotes five
out of nine chapters to clustering algorithms, and has around 600 references. One
reason for this abundance is that clustering is central to many fields of science,
which have developed their own algorithms (Xu and Wunsch, 2005). But there
are also many well-motivated reasons for the plethora of algorithms from a data
analysis perspective: 1) The algorithms can have different objectives. Is a soft
clustering sought after, where each data point is given a probability of belonging
to each cluster, or is a hard partitioning the goal? Or a hierarchical tree of clusters?
(Jain et al., 1999) 2) The measured variables can be continuous, discrete, binary
and/or categorical (Jain et al., 1999, Hennig and Liao, 2013). 3) Different cluster
shapes can be acceptable depending on the type of data (Banfield and Raftery,
1993, Jain et al., 1999). 4) High-dimensional data might need special treatment
due to the curse of dimensionality (Parsons et al., 2004, Bouveyron and Brunet-
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3.1. Clustering algorithms

Saumard, 2014). 5) The size and dimension of the data can put restrictions on
algorithm complexity (Xu and Wunsch, 2005, Berkhin, 2006).

The main reason that the algorithm presented i Paper II stands out is that
it accomplishes parallel clustering of many related data sets. The clusters in the
different data sets are expected to be similar, but vary in a number of pre-specified
ways.

The algorithm in Paper II belongs to the group of model-based clustering
algorithms (Fraley and Raftery, 2002). Properties of this group of algorithms
will be further discussed below—to enlighten this discussion a brief overview of
groups of clustering algorithms is given first. There are of course many ways to
do such a grouping, but here is a rough division into four categories:

Model-based methods: For these algorithms a statistical model is built for the
data. This is based on separate models for each cluster, which are combined in
a mixture model. Parameter inference leads to detection and description of the
clusters.

Density-based methods: Density estimation is a non-parametric statistical ap-
proach. These methods do not necessarily estimate the density explicitly, but
rather use some specific aspects of the density, such as local maxima or low-density
regions, to form clusters. Examples include mean-shift clustering (Fukunaga and
Hostetler, 1975) and DBSCAN (Ester et al., 1996).

Objective-based methods: These methods define an objective function that de-
scribes how well-separated or how tight the clusters are in a given clustering and
tries to optimize for that. For example, the classical k-means algorithm tries to
minimize the total squared distance to the cluster centers (MacQueen, 1967) and
graph-based methods such as min-cut (Papadimitriou and Steiglitz, 1982) and
normalized cut (Shi and Malik, 2000), which form the basis for spectral cluster-
ing, tries to find the best separation.

Algorithm-based methods: This category includes clustering methods that are
most easily described by how the algorithm is designed. Hierarchical clustering
(Everitt et al., 2011)—possibly the most widely used clustering methodology—is
an example of this. Agglomerative versions of hierarchical clustering start with
each data point as a separate cluster and then in each step uses some rule to decide
which two clusters to merge next. Divisive versions work the other way, starting
with a single cluster. Either the entire tree is given as the clustering result, or
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some stopping criteria, such as a given number of sought-after clusters, is used to
determine when the final clustering is obtained. An entirely different algorithm
falling into this category is affinity propagation (Frey and Dueck, 2007).

3.2 Model-based clustering

The central element of a model-based clustering algorithm is the finite mixture
model (McLachlan and Peel, 2000, Frühwirth-Schnatter, 2006). With this model
the probability density describing the data set can be written as

f(y) =

KX

k=1

⇡
k

f
k

(y), (3.1)

where f
k

is the probability density function for mixture component k and ⇡
k

is
the weight of component k. The mixture density (3.1) is thus a combination of K
classes, where the variation within each class k is described by f

k

, and ⇡
k

describes
the relative size of class k. Usually component densities are assumed to come from
the same parametric family, i.e. f
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(y) = g(y;⇥

k
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are the parameters.
A common choice for g is the normal distribution, then ⇥
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= (µ
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,⌃
k

). This
important special case is called a Gaussian mixture model (GMM).

When no further constraints are taken into account, i.e. when (3.1) is the
complete description of the model, and when K is assumed to be known, the
parameters ⇥

k

and ⇡
k

can be estimated by maximum likelihood through the
expectation-maximization (EM) algorithm (Dempster et al., 1977, McLachlan and
Peel, 2000). The idea behind the EM algorithm is to add cluster allocation vari-
ables x

i

for each data point y
i

, i = 1, . . . , n and treat them as missing data. In
the expectation step the conditional distribution for each x

i

given the current set
of parameters {⇥

k

}K
k=1 is computed. This means that one computes the proba-

bilities for y
i

to belong to each component, denoted p
i1, pi2, . . . , piK . Based on

this, one can write the expected log-likelihood as
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The expected log-likelihood (3.2) is then maximized over {⇥
k

}K
k=1 component-

wise in the maximization step.
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3.2. Model-based clustering

Dempster et al. (1977) showed that each EM step gives a monotonically in-
creasing likelihood for (3.1) and the algorithm is run until the likelihood has
converged to a local maximum. But in many cases—for example for Gaussian
mixture models—the likelihood is unbounded, which for the Gaussian case hap-
pens when some eigenvalue of one ⌃

k

approaches zero. McLachlan and Peel
(2000) discusses how to detect if the algorithm is trapped in a spurious local max-
imum on the way to infinite likelihood, so that such solutions can be discarded.

When the number of components K is not known in advance a common
solution is to fit the model for multiple values of K and use some model selection
criterion to choose among them (Frühwirth-Schnatter, 2006). Another solution
is to use Dirichlet mixtures (Escobar and West, 1995), which can automatically
determine the value of K.

To get a clustering, each data point is either assigned to the component that
it is most likely to belong to, or the probabilities of belonging to different compo-
nents are returned to give a soft clustering. In some cases, for example in Paper II,
components are combined to form clusters (Baudry et al., 2010, Hennig, 2010),
otherwise each component corresponds to a separate cluster.

The component density function g can have a variety of forms, which gives
mixture models much flexibility. Even for Gaussian mixture models there are
many possibilities since one can put restrictions on µ

k

and ⌃
k

. Examples include
using a common ⌃

k

for all components, or letting ⌃
k

be diagonal or even pro-
portional to the identity matrix (Banfield and Raftery, 1993). Other options are
using skew probability densities and densities with fat tails (Frühwirth-Schnatter
and Pyne, 2010) or densities describing discrete or binary data, possibly com-
bined with continuous densities to describe so called mixed data (Hennig and
Liao, 2013).

Another type of flexibility comes from the possibility of incorporating (3.1)
into a larger model if we have some additional information about ⇥

k

, as is done
in Paper II through the use of a Bayesian hierarchical model, also called a Bayesian
network.

3.2.1 Bayesian hierarchical models

Bayesian hierarchical models are typically used to model data in multiple related
experiments, or in data that has some hierarchical structure (Gelman et al., 2014).
They have multiple levels, so that the variables parametrizing the data model, for
example µ

k

, ⌃
k

and ⇡
k

in a Gaussian mixture model, are themselves modeled by
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Figure 3.1: Two illustrations of the same directed acyclic graph of a simple
Bayesian hierarchical model, where the right one uses plate notation indicating
repetitions of the variables inside the plate. Square nodes represent observed data
(shaded) or fixed values, and round nodes represent latent variables.

a distribution parametrized by latent variables. The latent variables can be depen-
dent on yet other latent variables or on a prior distribution. Bayesian hierarchical
models can be used to describe deep hierarchies and complicated dependence
structures. To convey the structure of a Bayesian hierarchical model it is usually
illustrated by a directed acyclic graph (DAG), where an arrow from A to B means
that when A is given, B is conditionally independent to those parts of the model
to which it is only connected through A. An example of a DAG is Fig. 1 in Paper
II, a much simpler one is given here for illustration in Fig. 3.1.

Despite the complicated structures of Bayesian hierarchical models there are
ways to estimate the posterior distribution, the most common being Markov
chain Monte Carlo sampling (Gelman et al., 2014). An excellent introduction
to the theory behind Markov chain Monte Carlo is (Geyer, 2011), some of which
is recaptured next.

The aim of Monte Carlo methods is to compute expected values using sam-
pling. Suppose that we have observed the data Y and our model has the latent
variables ⇥. If we can estimate E[g(⇥)|Y] for any g, we can learn things such
as expected values and variance of the posterior for⇥.

Now if {⇥(m)}M
m=1 are independent samples from the distribution of⇥|Y,
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the central limit theorem gives that

1
M
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M
) (3.3)

for large M , where µ
g

is the expected value of g(⇥)|Y and⌃
g

is the covariance
matrix, so with large M we will get close to the expected value.

The idea behind Markov chain Monte Carlo is to generate samples approxi-
mating the posterior distribution using a Markov chain, i.e. a sequence of random
variables X1, X2, . . . , where X

n+1 only depends on X
n

. The conditional distri-
bution ⇡(X

n+1|Xn

) is called the transition probabilities, and together with the
initial distribution ⇡(X1) this defines the Markov chain.

Under certain conditions on the transition probabilities and the initial distri-
bution the Markov chain central limit theorem (Markov chain CLT) holds, which
can replace the central limit theorem when {⇥(m)}1

m=1 is a realization of a
Markov chain {⇥

m

}1
m=1 that has ⇥|Y as a stationary distribution (meaning

that the transition probabilities preserve the distribution). In the Markov chain
CLT, (3.3) also holds, but with

⌃
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= Cov[g(⇥
m

|Y)] + 2
1X

k=1

Cov[g(⇥
m

|Y), g(⇥
m+k

|Y)].

The Metropolis-Hastings algorithm, Gibbs sampling (which is a special case
of Metropolis-Hastings) and the reversible jump method (Green, 1995) are ways
to construct transition distributions for which the posterior distribution is re-
versible and thus stationary.

For countable state spaces it is sufficient that the Markov chain is irreducible
(any state can be reached from any other state), aperiodic (each state can be revis-
ited after an arbitrary number of time steps) for the Markov chain CLT to hold
for any initial distribution (Billingsley, 1986). But for uncountable state spaces it
is not possible to have irreducibility; these conditions can then be replaced with a
condition called Harris recurrence (Roberts and Rosenthal, 2006).

If as for the EM algorithm, the component allocation indicators x
i

are added
as variables, Gibbs sampling can be used to study the posterior distribution (Tan-
ner and Wong, 1987). In Gibbs sampling the conditional distributions of each of
the variables given all other variables are used as transition distributions.
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3.2.2 Considerations when using model-based clustering

As seen above, model-based clustering algorithms are very flexible. Many types
of data can be modeled, and the shapes of the clusters can be controlled. For
example, in a Gaussian mixture model that allows covariance matrices that are
not proportional to the identity matrix, data with different scales is automatically
handled. This stands especially in contrast to objective-based methods, where data
have to be scaled carefully and distance metrics chosen so that distances between
data points truly reflect how likely it is that they occur in the same cluster (Jain
et al., 1999).

Hierarchical clustering and density-based clustering allow different kinds of
cluster shapes than model-based clustering. In Gaussian mixture models clusters
are approximately ellipsoidal, and though using skew distributions the set of pos-
sible shapes can be enlarged, cluster shapes will still be blob-like. Hierarchical
clustering and density based clustering can result in banana-shaped or spiral clus-
ters not attainable by mixture models unless you combine a very large number
of components. On the other hand, Gaussian mixture models can handle over-
lapping clusters and clusters with disparate densities well. A good overview of
different kinds of cluster shapes that the most used clustering algorithms allow
is given in documentation of the Python machine learning package scikit-learn
(Pedregosa et al., 2011), the relevant parts being the submodules sklearn.mixture
and sklearn.cluster (scikit-learn developers, 2015).

In model-based clustering all assumptions on the data are specified through
the model. After clustering, model checking procedures can be used to validate
the results (Gelman et al., 2014). In other types of clustering, parameters need
to be set that also imply assumptions on the data, but it is not always clear how
to relate them to the specific data set under study and how assumptions can be
checked.

The downside of assuming a specific model is the well-known fact that all
models are simplifications (Box, 1976), and when the model does not fit the data
well, unexpected results can be obtained when maximizing the likelihood. It is
therefore crucial to validate results from model-based clusterings, as is discussed
in Paper II.
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3.3 Evaluating clusterings and finding the number of
modes

Data sets from different application areas have different kinds of patterns of in-
terest and therefore different cluster types. Thus there does not exist any univer-
sally good clustering algorithm (Guyon et al., 2009, Jain et al., 1999). Cluster
algorithms or clustering results thus need to be evaluated with the application in
mind. Model-based clusterings can be evaluated with model selection criteria such
as BIC (Schwarz, 1978) and AIC (Akaike, 1974), but one has to remember that
these are based on the fit of the assumed model to the data. In Paper II another
approach is taken, the simplest model (i.e. with the least number of components)
that describes the data sufficiently well (as determined by some quality criteria) is
chosen.

Guyon et al. (2009) argues that clustering algorithms have to be evaluated
based on the purpose of the clustering. They mention two kinds of purposes
for clustering: data preprocessing and exploratory analysis. Both of these are for
example relevant for the cell population identification problem in flow cytometry
treated in Paper II and Chapter 3. Cell population identification often acts as a
preprocessing step, where the main interest is in the cell population sizes, which
are then related to other variables, or used for diagnosis (O’Neill et al., 2013). In
other cases, the researcher is interested in finding new populations of interest and
describe their properties. In this case the population identification is exploratory.

When the purpose is data preprocessing, Guyon et al. (2009) hold that the
end result should be used to evaluate the performance of the clustering algorithm—
the better clustering is the one which gives the better end results. But when the
purpose is exploratory, measures of statistical significance for clusterings can be
valuable to sort out those clusterings which are worthy of the researcher’s atten-
tion.

There are many different evaluation criteria for clusterings, many of them
designed especially to determine the number of clusters; a review from a model-
based perspective is given in (Frühwirth-Schnatter, 2006, Sec. 7.1.4). However, it
should be noted that the problem of determining the number of cell populations
in flow cytometry data is slightly different from the typical interpretation of the
problem of determining the number of clusters. In clustering, a partition of the
data that has little overlap between clusters is sought for. Criteria for determining
the number of clusters often fails with highly overlapping clusters (Frühwirth-
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Schnatter, 2006, Tibshirani et al., 2001) as can be found in flow cytometry data.
To evaluate the evidence for multiple cell populations, Paper III proposes to

do testing for unimodality. It has been proven that it is impossible to give statis-
tical upper bounds on the number of modes of a probability density (Donoho,
1988). With finite data you cannot exclude the possibility that a small bump actu-
ally is due to multimodality of the density, however it can be possible to determine
that such a bump could have occurred by chance from a unimodal distribution
with high probability. On the other hand Donoho (1988) also proved that it is
possible to determine lower bounds for the number of modes; which is natural
since if you have two clear bumps in the data the number of modes must be at
least two.
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Flow cytometry data

Paper II and III in this thesis concern analysis of flow cytometry data. This chapter
gives an introduction to flow cytometry, including a brief overview of its appli-
cations and an introduction to the cell population identification problem. The
rationale for introducing the automated population identification method pre-
sented in Paper II is to handle variation between flow cytometry data samples. To
give a deeper understanding of how variation can arise one section is devoted to
various sources of technical variation that can occur in flow cytometry analyses.

4.1 What is flow cytometry?

Cytometry refers to quantitative measurements on single cells. Ever since the 17th
century, when Robert Hooke looked at cork in a microscope and coined the term
cell to describe the honey-comb like structures he saw, depicted in Fig. 4.1, the
technology for looking at cells and using the properties one sees to learn some-
thing about the organism they are taken from, have advanced steadily. But since
the 1930’s (Shapiro, 2005, ch. 1) in parallel to development of microscopes and
data analysis of images from these, flow cytometry has developed as a technol-
ogy to make measurements on single cells without actually looking at them. The
basic idea is that the cells pass by a measurement apparatus one by one in a fluid
stream. Today the most common way to make these measurements is by attaching
fluorescent probes to cells and using lasers to detect them.

One of the advantages of flow cytometry as compared to microscopy is that
one can get a very high throughput—tens of thousands of cells can be processed
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Figure 4.1: Left: Cells in cork sample, drawn by Robert Hooke. From Micro-
graphia, 1665. Right: A flow cytometer. Cells enter the fluid stream through a
nozzle. The light from one or multiple lasers of different wavelengths hits each
cell, exciting fluorophores attached to the cells. For each fluorophore the emitted
light is measured by a fluorescent channel. Front scatter is the amount of non-
direct light scattered by the cell in the direction of the laser beam; side scatter
is the amount of light scattered by the cell in directions orthogonal to the laser
beam.

each second (BD Biosciences, 2013). Another advantage is that fluorescence flow
cytometry technology can be used for sorting cells into groups, which in itself has
a wide array of applications. However, one loses all structural information, on the
tissue level as well as on the subcellular level. Therefore it is most common to use
flow cytometry analysis on non-structured tissues, i.e. fluid—most notably blood
(Shapiro, 2005, ch. 1).

Other quantitative single-cell measurement technologies include single-cell
PCR of targeted transcripts and single-cell RNA or DNA sequencing. However,
the throughput of these are many orders of magnitude lower than for flow cytom-
etry (Bendall and Nolan, 2012).
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4.2 Fluorescence flow cytometry

Flow cytometry is based on attaching probes to specific cell structures and measur-
ing how many probes that attach to each cell. One can use different specificities
of binding of the probes, but today it is most common to use antibodies binding
to a specific protein on the cell surface as probes (Shapiro, 2005, Ch. 7). For ex-
ample, T cells (a kind of immune cell), have thousands of T cell receptor (TCR)
and co-receptor proteins on their cell surface. This receptor is used for signaling
to the cell when it should activate (Murphy et al., 2012). Using an antibody that
attaches to the T cell co-receptor one can determine if a cell is a T cell or not.

To detect the antibodies that are used as probes, they have to be labeled with
fluorescent markers. This is typically either small organic molecules that react
with amines on the antibodies, or certain fluorescent proteins derived from algae,
phycobiliproteins (Invitrogen, 2010, Ch. 1), (Shapiro, 2005, Ch. 7). Recently,
the repertoire of labels have been expanded by so called quantum dots made from
semiconductors (Perfetto et al., 2004, Invitrogen, 2010), and certain conducting
organic polymers (Chattopadhyay et al., 2012), which enables more sensitive de-
tection of probes due to brighter fluorescence as well as the use of more fluorescent
markers in parallel due to a better use of the spectrum.

A schematic drawing of a flow cytometer is shown in Fig. 4.1. Lasers are used
to excite the fluorophores, and the amount of each fluorescent marker is mea-
sured by filtering the emitted and scattered light from the cell so that mainly light
from this fluorophore is obtained. The filtered light is then amplified by a pho-
tomultiplier tube before reaching a detector. In addition to fluorescent markers
the amount of scattered light in the direction of the laser beam (front scatter) and
in directions orthogonal to the laser beam (side scatter) are measured. The front
scatter roughly increases with cell size and the side scatter increases with internal
complexity and granularity of the cell. Front and side scatter measurements are
often used to distinguish major cell types. (Shapiro, 2005, Ch. 1)

When fluorescence flow cytometers were first developed in the late 1960’s,
only one fluorescent marker could be measured in addition to front and side scat-
ter. The technology gradually developed so that in the mid 1980’s four colors
could be measured simultaneously by the most advanced instruments. However,
few laboratories saw the need to use instruments measuring more than two mark-
ers. It was the AIDS epidemic that triggered the more widespread use of three-
and four-color instruments, since certain cell subsets relevant for studying AIDS
could only be detected using three or four fluorescent markers. (De Rosa et al.,
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2003)
The number of possible markers that could be measured simultaneously in-

creased steadily during the 1990’s and 2000’s and today’s state of the art instru-
ments can measure up to 18 colors (Perfetto et al., 2004, BD Biosciences, 2013).
The major obstacle when adding more markers is overlap of the emission spectra
of the fluorophores (Perfetto et al., 2004). The most common way to account for
this overlap is by first using calibration beads to measure how large spill into other
channel each fluorophore gives. Then when doing measurements on cells the
measured data is multiplied with the inverse of the spill matrix, which amounts
to subtracting an estimate of the spillover (Bagwell and Adams, 1993). This pro-
cess, called compensation, is problematic if there is high spectral overlap or if the
cells have high autofluorescence.

A more efficient way to use the information in the emitted light is to measure
the entire emission spectrum and use spectral deconvolution algorithms to esti-
mate the abundance of each marker (Nolan and Condello, 2013). This approach
is called spectral flow cytometry. The first commercially available spectral flow cy-
tometers were released in 2013; they can measure up to 15 fluorescent markers
simultaneously (Sony, 2013).

4.3 Mass cytometry

Instead of using fluorescent labels to tag probes it is possible to use metal parti-
cles with differential mass. To detect these, mass spectrometers are used. This
technology is called mass cytometry or CyToF (Bandura et al., 2009). The main
advantage of mass cytometry is that more markers can be studied in parallel, to-
day in a single experiment more than 40 parameters can be measured for each
cell (Fluidigm, 2015). In this thesis we will only consider data generated using
fluorescence flow cytometry, but the methods applies in principle also to mass cy-
tometry data; the data characteristics are quite similar. However, one must beware
the curse of dimensionality.

4.4 Sources of technical variation

There are many possible sources of technical variation in flow cytometry data
acquisition that can affect downstream data analysis. The major ones are listed
below.
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Sample handling: Biological samples, e.g. blood or bone marrow, are treated in
various ways before running it through the flow cytometer. Factors that can affect
the flow cytometry data is whether they are frozen or preserved in other ways,
for example to enable delayed analysis; the time between sample acquisition and
analysis; if subsets of cells are extracted, for example through centrifugation or by
lysis (dissolving) of certain cell types such as red blood cells; how staining with
the markers is performed, i.e. how the probes are attached to the cells; and how
solid tissue is cut up and homogenized (Maecker et al., 2010, Kalina et al., 2012,
Hasan et al., 2015).

Panel design: A panel is a predefined set of probe targets combined with a specific
set of fluorescent labels. Panels have to be carefully designed to minimize spectral
overlap and to get optimal signals. As the number of colors increase this becomes
increasingly important (De Rosa et al., 2003). For example a protein that has low
abundance requires a bright label to be detected. Certain dyes are also non-stable
(Hasan et al., 2015).

Probe selection: The probes that attach to the cells are monoclonal antibodies, i.e.
antibodies produced from cells which have been cloned (Murphy et al., 2012).
However, clones from different manufacturers, and even different clones from the
same manufacturer, have different protein binding properties (Kalina et al., 2012,
Hasan et al., 2015). Certain antibodies are also incompatible with each other
(Chattopadhyay and Roederer, 2012).

Calibration and compensation settings: The settings for the laser, photomul-
tiplier tubes and detectors have to be adjusted regularly in order to detect as
much signal as possible; this is called calibration. To minimize variation this
should be done according to standard operating procedures, preferably with as
much automation as possible, for example using calibration beads to which flu-
orophores are attached (Maecker et al., 2010, Kalina et al., 2012, Hasan et al.,
2015). However, automated procedures for calibrating instruments might be dif-
ferent between instruments from different manufacturers (Maecker et al., 2010).

Using many colors simultaneously reduces the need to use multiple panels for
the same biological sample, thus minimizing sample handling variation (Maecker
et al., 2010). On the other hand it makes the data more affected by the spillover
matrix, and even when this is correctly estimated non-intuitive artifacts can occur
(De Rosa et al., 2003). To estimate the amount of spillover in other fluorescent
channels, compensation beads to which the fluorescence labeled probes attach can
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be used, or a stained reference sample (Kalina et al., 2012, Hasan et al., 2015).
Compensation settings also have to be updated regularly.

Instrument performace: Regular quality control needs to be performed on the
flow cytometer; when the quality criteria is not met the instrument might need to
be cleaned or serviced (Kalina et al., 2012).

The cell population identification pipeline presented in Paper II is designed to
handle variation in location and shape of the cell populations in the measurement
space, so that samples despite this can be analyzed simultaneously. A variation in
location means that the measured mean fluorescence intensities are changed, and
a variation in shape means that the fluorescence pattern is changed differently for
different cells. Such changes are most likely to be due to sample handling, probe
selection or calibration and compensation settings.

4.5 Applications

Studying properties of single cells enables the understanding of heterogeneity of
seemingly homogeneous groups (Bendall and Nolan, 2012). One such group is
lymphocytes—a kind of white blood cell that looks quite boring in a microscope:
it is fairly round with a large nucleus and not much structure in its cytoplasm.
Lymphocytes look like inactive cells and it was long before any of their functions
were discovered (Murphy et al., 2012). Today they are the most studied cell type
within immunology, since they are responsible for the adaptive immune system.

It is primarily the need for better analyses of the lymphocyte cell popula-
tion that has driven the technical development of flow cytometers (Perfetto et al.,
2004), and they have grown into a formidable tool for this. Studying the adap-
tive immune system through lymphocyte subpopulations is key to understanding
infectious diseases such as HIV (Betts et al., 2006), hepatitis C (Evans et al.,
2007) and tuberculosis (Fuhrmann et al., 2008); autoimmune diseases such as
allergies (Cheung et al., 2008), diabetes (Tang et al., 2006) and multiple sclerosis
(Du et al., 2009); for developing vaccines (Kool et al., 2008) and for monitoring
organ transplants (Maguire et al., 2014, Jaye et al., 2012).

Understanding and monitoring the adaptive immune system is also crucial in
cancer immunotherapy, where the patient’s own immune system is triggered to
attack the tumor. But even though the basic idea is simple, the immune system–
tumor interactions are very complex and thus hard to control (Gupta et al., 2016).
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Cancer immunotherapy is an area that has been studied for decades, but recently
it has received much increased interest due to discoveries of successful therapies
for melanoma and prostate cancer (Mellman et al., 2011, Pardoll, 2012).

Another area where flow cytometry has major importance is studying, diag-
nosing and monitoring leukemias and lymphomas (Vardiman et al., 2009, Swerd-
low et al., 2016, Van Dongen et al., 2012). For evaluation of minimal residual dis-
ease after treatment, which is an important prognostic factor, the high throughput
of flow cytometry has proven especially useful (van Dongen et al., 2015).

The applications of flow cytometry have also spread widely beyond the study
of lymphocytes. Some recent examples are research on stem cells (Mich et al.,
2014, Kumar et al., 2015), discovery of new taxa of marine microbes (Petersen
et al., 2012) and analysis of extracellular vesicles with potential use as biomarkers,
e.g. for thrombosis (van der Vlist et al., 2012, Mooberry and Key, 2016)

4.6 Data properties

A flow cytometry data set has as many dimensions as the number of fluorescent
markers plus three: front scatter, side scatter and time. The time variable can
be used to detect problems during a run, for example due to variations in fluid
dynamics, and can be used for data cleaning (Fletez-Brant et al., 2016), but it
is otherwise typically not considered. For each of the the other variables there
are actually three measurements: the area, the height and the width of the mea-
sured pulse. The height and the width measurements are usually only used for
preprocessing though. The variables for fluorescent markers are typically trans-
formed using a log-like transform (Finak et al., 2010), for example logicle (Parks
et al., 2006), that also can handle negative values (negative values can arise due to
compensation). This facilitates viewing the data in scatter plots and histograms.

Each data point is called an event and corresponds usually to a single cell, but
could also be multiple cells clogged together, a doublet, or debris (Shapiro, 2005,
ch. 1). A flow cytometry sample has typically from 104 to 106 events. In the
course of a study, everything from a few samples to thousands of flow cytometry
samples can be analyzed (Hasan et al., 2015).

4.7 Cell population identification

Hasan et al. (2015) describes typical data analysis procedures for flow cytometry
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data: First doublets are removed by considering the area versus the height, or the
width, of the front and/or side scatter pulse, then the group of cells of interest
is singled out, e.g. T-cells, by using markers for this cell type. These two first
steps can also be integrated. After this the cells of interest are partitioned into
subpopulations using some of the remaining markers. Finally, for the obtained
cell populations, cell population size and mean fluorescence intensities (MFI) are
reported. In each analysis step one or two-dimensional scatter plots or histograms
are used to draw a gate, marking which cells to use for further analysis.

The process described above is called gating or manual gating. It has been
recognized that the gating process induces much non-biological variation in cell
population sizes, since it is a subjective process to choose the gating strategy, i.e. in
which order markers should be considered, and to draw the gates (Maecker et al.,
2005, Welters et al., 2012).

To remove the subjectivity and the gating variation, many methods for au-
tomated gating have been developed. Such methods can be devised for specific
tasks such as finding small cell populations (Naim et al., 2014) or finding pop-
ulations that differ most between two samples (Bruggner et al., 2014). Through
the FlowCAP project, http://flowcap.flowsite.org, (Aghaeepour et al.,
2013), different algorithms for flow cytometry data analysis have been compared
through a number of challenges. These challenges give a good overview of the
types of analysis that are aimed at for automated gating.

The first FlowCAP round, in 2010, was aimed at reproducing manual gating.
Four data sets gated by manual operators were used as ground truth. There were
four different challenges, where different amounts of information were given, such
as the true number of populations or some cells in each population. In FlowCAP
II, the challenges were to do sample classification, for example to classify blood
samples taken from patients with acute myeloid leukemia and normal blood sam-
ples. FlowCAP III contained four challenges on different topics: to identify a
rare cell population in new samples given samples where it had been identified,
to predict survival time for a patient based on a flow cytometry sample and train-
ing data from other patients, to classify flow cytometry samples into one of two
categories given training data, and to reproduce a manual gating given the gating
strategy. The last round up to date, FlowCAP IV, had one challenge where time
until progression to AIDS should be predicted given two flow cytometry samples
from each patient and a population of training samples.

For many of the FlowCAP challenges it is not necessary to actually identify
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the relevant cell populations, for example in FlowCAP II many machine learning
methods using other types of features than cell population sizes performed well
(Aghaeepour et al., 2013). However, typically it is not the classification itself
that is of scientific interest, but finding features or cell populations that can help
classification, i.e. that are biomarkers for a specific condition. In FlowCAP IV
participants were asked not only to provide a prediction of time until progression,
but also to describe the features that were most important for the prediction.
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Conclusions

We are in an era of massive data collection, and many times data are collected
without knowing exactly what one is looking for. Donoho (2000) notes that:
“[...] it has become much cheaper to gather data than to worry much about what
data to gather”. The sheer amount of data means that to learn something from it,
it has to be structured and summarized. The methods presented in this thesis can
support various aspects of this process.

The dimension estimator presented in Paper I has the aim to give an un-
derstanding of data complexity. In an exploratory data analysis pipeline, it will
probably serve its most important role as an initial diagnosis tool, guiding other
data analysis methods. The tests for unimodality investigated in Paper III will
probably have their largest roles in the other end of the pipeline—in the quality
control of acquired results.

BayesFlow, the clustering algorithm presented in Paper II integrates many
central elements of analysis of flow cytometry data: fitting a mixture model,
merging components to form clusters and doing quality checks and supportive
visualizations of the result. Cell population identification in flow cytometry data
provides an exciting opportunity for further development of clustering algorithms
and cluster evaluation methods. Despite much work on automated methods,
manual gating is still the state of the art—for good reasons. BayesFlow shows
an important direction to be explored further, where information can be shared
between samples during the clustering process, and prior knowledge can be inte-
grated.

Guyon et al. (2009) hold that when clustering is used as a preprocessing
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step—as can be argued is the case for most cases of cell population identification—
it should be evaluated based on the usefulness of the result. The straightfor-
ward way to define this is as how well the cluster features can be used to pre-
dict or diagnose medical conditions of interest. But communicating results to a
wider audience, including researchers in the field and the person giving out diag-
noses, requires understanding and understanding requires something more than a
machine-learning feature. When a certain cell population, as defined by a cluster
of cells expressing a certain combination of markers, is seen to be the predictor for
a medical condition, this can guide further research. This is why finding biologi-
cally plausible cell populations is so important. When automated cell population
identification methods are developed this always has to be kept in mind.
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Low bias local intrinsic dimension
estimation from expected simplex

skewness

Kerstin Johnsson, Charlotte Soneson and Magnus Fontes

Abstract

In exploratory high-dimensional data analysis, local intrinsic dimension estima-
tion can sometimes be used in order to discriminate between data sets sampled
from different low-dimensional structures. Global intrinsic dimension estimators
can in many cases be adapted to local estimation, but this leads to problems with
high negative bias or high variance. We introduce a method that exploits the
curse/blessing of dimensionality and produces local intrinsic dimension estima-
tors that have very low bias, even in cases where the intrinsic dimension is higher
than the number of data points, in combination with relatively low variance. We
show that our estimators have a very good ability to classify local data sets by their
dimension compared to other local intrinsic dimension estimators; furthermore
we provide examples showing the usefulness of local intrinsic dimension estima-
tion in general and our method in particular for stratification of real data sets.

1 Introduction

High-dimensional data sets are now collected at an unprecedented rate in many
areas of science and engineering. Unsupervised learning methods with the pur-
pose to find structures in such data are thus naturally an area of much interest.
When non-linear functional relations exist between variables it is natural to use

53



PAPER I

a manifold corrupted with noise as a model for the data. The manifold model
can be used in various ways: in manifold learning it is used in order to find a
lower-dimensional representation for the data (Lee and Verleysen, 2007), intrin-
sic dimension estimation methods use it to find a measure of the local complexity
of the data, and in computational topology topological features such as holes are
used to gain qualitative information about the data (Carlsson, 2009).

Local intrinsic dimension estimation can also be used if multiple manifolds
build the underlying structure of the data. Many interesting applications of local
dimension estimation have recently been put forward (Carter et al., 2010, Haro
et al., 2008), where clustering based on local dimensionality (stratification) plays a
central role. They include image segmentation, image classification, and network
anomaly detection. Using a small number of data points for dimension estimation
is necessary for local intrinsic dimension estimation, but it means that we get a
large bias and/or high variance for most estimators, especially if the data has a
high intrinsic dimension.

In this paper we present new estimators based on angular information, which
are almost unbiased and also have a relatively low variance. Consequently, in
comparison to other estimators they have a better or similar ability to distinguish
between data sets of different dimensions and can estimate dimension more ac-
curately. The new estimators can in particular accurately estimate dimensions
higher than the number of sample points in a local data set. The estimators are
computationally fast, simple to implement and have no parameters to tune.

The method that we use to derive these estimators we call Expected Simplex
Skewness (ESS); it exploits the concentration phenomenon, the mathematical
equivalent of one of the curses (or blessings) of dimensionality (Donoho, 2000).
Using the concentration phenomenon for dimension estimation opens up many
possibilities, of which some have recently been explored (Pestov, 2008, Rozza
et al., 2012, Ceruti et al., 2012). One implication of the concentration phe-
nomenon is that Lipschitz functions from the unit sphere Sn or Sn⇥ · · ·⇥Sn to
Rd concentrate around their medians to a higher and higher degree when the di-
mension n increases. In high dimensions this means that Lipschitz functions are
essentially constant. One example is the projection of Sn to any coordinate axis:
As n ! 1 the pushforward measure of the uniform measure on Sn approaches
the Gaussian measure that has probability density function

p
n/2⇡e�nx

2
/2 (Gro-

mov, 1999). This implies two things that we use in the ESS method: 1) The av-
erage length of vectors going from the origin to Sn projected onto any coordinate
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axis will approach zero as n ! 1 and 2) pairs of vectors going from the origin
to Sn will tend to be close to orthogonal as n ! 1.

The asymptotic distribution of angles as n ! 1 was used in (Ceruti et al.,
2012) for construction of the DANCo dimension estimator, but with the ESS
method instead of using an asymptotic distribution we use distributions that are
valid for finite dimensions n.

It might seem paradoxical that we can estimate intrinsic dimensions that are
higher than the number of data points, since N data points always can be embed-
ded into an (N�1)-dimensional subspace. However, even though the data points
can be embedded into an (N �1)-dimensional subspace it can sometimes be seen
that it is very unlikely that they are generated from an (N � 1)-dimensional dis-
tribution. In our case this happens when vectors going from the centroid to the
data points in the local data set are on average closer to orthogonal than would be
expected if they were generated from an (N � 1)-dimensional distribution.

1.1 Related Work

We restrict this overview to methods that can be used for local dimension es-
timation, which means that among other things we exclude methods based on
manifold learning. We also exclude methods that require a very large number of
data points, such as those who estimate box-counting (capacity) dimension. For
a survey which includes many of the dimension estimation methods which are
omitted here we refer to (Rozza et al., 2012).

Almost all local dimension estimation methods fall into three categories: 1)
methods that use eigenvalues of the local covariance matrix (local PCA), 2) meth-
ods that use the local distances between points, and 3) methods that use geometric
objects constructed from data points, such as vectors with data points as endpoints
and Voronoi cells. The second category is the largest and includes many meth-
ods for fractal dimension estimation. One recent method (Ceruti et al., 2012)
integrates information from both distances and angles between vectors, but on
the large this is an area that is yet to be explored. A more general approach is
taken by Pestov (Pestov, 2008) who defines dimension from the concentration
phenomenon in a way that applies also to binary data and relational data. He
presents an estimator of dimension that fits into this framework and another such
estimator is presented in (Chávez et al., 2001).

Fukunaga and Olsen were the first to propose to use the local covariance ma-
trix/local PCA to determine intrinsic dimension (Fukunaga and Olsen, 1971).
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The main issue for these methods is how to determine how many of the eigen-
values that are significant; the dimension estimate is the number of significant
eigenvalues. This means that if a hyperplane exactly fit the local data set the di-
mension estimate can at most be the dimension of that hyperplane, hence if the
intrinsic dimension is higher than the number of data points we cannot get an
accurate estimate.

The original Fukunaga-Olsen method says that any eigenvalue that is at least
↵ (= 5 %) of the largest eigenvalue is significant. A recent method by Fan et al.
(Fan et al., 2010) uses both gaps in the eigenvalues and total variance to determine
which eigenvalues that are significant. Based on the probabilistic formulation of
PCA (Tipping and Bishop, 1999) there are many recent Bayesian methods for
determining the number of significant singular values in PCA, which could also be
used locally. However these methods usually assume latent Gaussian data, which
is not applicable to local data, which we assume is approximately uniform. The
method by Hoff (Hoff, 2007) does not assume this, but it is very computationally
demanding.

There are numerous ways of using the distribution of local distances that have
been exploited for dimension estimation. The first was the maximum-likelihood
estimator by Hill (Hill, 1975, Harte, 2001); a similar method much used for (cor-
relation) dimension estimation of fractals was developed later by Takens (Takens,
1985). Hill’s and Takens’ estimators were also studied in (Levina and Bickel,
2004). Another common method for correlation dimension estimation of fractals
is the method by Grassberger and Procaccia (Grassberger and Procaccia, 1983).
Other methods that use the distribution of local distances include (Carter et al.,
2010, Rozza et al., 2012, Pettis et al., 1979, Judd, 1994, Camastra and Vinciarelli,
2002, Costa and Hero III, 2004, 2006). All these methods are based on a model
where the data is uniformly distributed on a manifold that is well approximated
by its tangent plane on the scale where we measure local distances. Some methods
have also included Gaussian noise in the model (Haro et al., 2008, Smith, 1992,
Schouten et al., 1994, Diks, 1996, Oltmans and Verheijen, 1997), and Schreiber
(Schreiber, 1997) has reviewed how Gaussian noise influences the distribution of
local distances.

A problem when using the distribution of local distances is boundary effects,
which distort the distribution and lead to a negative bias especially for high di-
mensions where any manifold with a boundary has almost all of its volume con-
centrated close to the boundary.
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Methods that use other geometric properties than distances are in general
less tested than methods from the two first categories. For some of them it has
not been shown that they work when the intrinsic dimension is higher than 3.
An early method by Trunk (Trunk, 1976) considered for each data point the
angle between the vector going from the data point to its kth nearest neighbor
and the hyperplane spanned by the vectors to the k � 1 nearest neighbors. The
dimension estimate was the minimum value of k for which the average angle
exceeded a threshold. However the threshold is dependent on both the number
of points and k, and no algorithm for determining the thresholds in general was
described. Recent geometric methods for dimension estimation include analyzing
shapes of cells in Voronoi tessellations (Dey et al., 2002), measuring distances to
linear subspaces of best fit in certain neighborhoods (Giesen and Wagner, 2004)
and analyzing shapes of simplices constructed with data points as vertices (Cheng
and Chiu, 2009). The method using simplices (Cheng and Chiu, 2009) showed
promising results for some high-dimensional data sets, but the dependence on
input parameters is unclear and the method is very computationally demanding.

2 Methods

Local dimension estimation means that we first define neighborhoods in the data
set and then estimate the dimension of these. A natural way to define a neigh-
borhood is to start at a data point and take all other data points within a certain
distance, or take the k nearest neighbors as the neighborhood. In this paper we
use the k nearest neighbors in Euclidean distance so that we control the number of
data points in the neighborhood. If the data set follows a model of an n-manifold
with noise—under the conditions that the manifold is sufficiently smooth, the
sampling is dense enough and the noise is not too large—the data set will locally
be well approximated by a uniform distribution on the tangent plane to the man-
ifold. This means that the neighborhood, or local data set as we also call it, will
approximately follow a uniform distribution on an n-dimensional hyperball.

The Expected Simplex Skewness (ESS) method takes local data sets and gives
intrinsic dimension estimates for them. The method has two closely related ver-
sions: ESSa and ESSb. We will start with describing ESSa since it has given ESS
its name.

In ESSa we begin by choosing a target dimension d, which is arbitrary except
that it has to be lower than the intrinsic dimension that we want to estimate.
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Choosing d = 1 is our default option but we want to stress that it is a particular
case of a more general method. For the local data set we consider simplices with
one vertex in the centroid and the other d+1 vertices in data points. We use such
simplices to estimate the expected value of what we call the simplex skewness
measure. The estimation is done by a weighted mean and the result is compared
to the true expected simplex skewness for uniformly distributed n-dimensional
data for various n.

The simplex skewness measure is the volume of a simplex constructed as above
divided by the volume it would have had if the edges incident to the centroid
vertex were orthogonal. A very skew simplex has low simplex skewness measure.

As noted in the Introduction, pairs of vectors going from the origin to Sn

will more often be close to orthogonal when n increases, and it follows directly
that this will also be the case for the edges in the simplex incident to the centroid
vertex if the local data set is uniformly distributed in an n-dimensional hyperball.
Hence, the expected simplex skewness measure will approach 1 as the dimension
increases. Noise and curvature will cause the expected skewness measure to deviate
from this, but as we see in experiments the deviation is not very large.

If the target dimension is d = 1 the simplex skewness measure is sin ✓, where
✓ is the angle between the two edges incident to the centroid vertex. The expected
simplex skewness measure for uniformly distributed data on the unit ball Bn is
then

s(1)
n

=

1
V (n)

Z

B

n
| sin ✓(x)| dV (x) , (1)

where V (n) = ⇡n/2/�(n/2 + 1) is the volume of the unit n-ball and ✓(x) is
the angle between the line through the origin and x 2 Bn and a fixed coordinate
axis.

With target dimension d > 1 the expected simplex skewness measure for
uniformly distributed data on Bn is

s(d)

n

=

1
V (n)

d

Z

B

n⇥···⇥B

n
|u ^ v1

|v1| ^ · · · ^ v
d

|v
d

| |

dV (v1)dV (v2) . . . dV (v
d

), (2)

where u is the unit vector along a reference coordinate axis and ^ denotes the
exterior product.

For the ESSb estimator we consider only target dimension 1 here, but the
method can be generalized to higher target dimensions. As in ESSa we assume that
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we have a local data set and we consider pairs of vectors going from the centroid
to data points. The quantity that we use for dimension estimation is the expected
length of the projection of one vector onto the other after the vectors are scaled
to unit length. As in ESSa this is estimated by a weighted mean and compared
to the expected values for uniformly distributed data. If the angle between two
normalized vectors is ✓ the length of the projection is cos ✓, thus the expected
projection for uniformly distributed data in Bn is

c
n

=

1
V (n)

Z

B

n
| cos ✓(x)| dV (x), (3)

where V (n) and ✓(x) are defined as above. c
n

approaches zero as n ! 1,
as was discussed in the Introduction. More precisely, s(d)

n

increases monoton-
ically with n and it approaches 1 as n ! 1 and c

n

decreases monotonically
with n and it approaches 0 as n ! 1. In Appendix A in the Supplemental
Material, available online at http://doi.ieeecomputersociety.org/10.
1109/TPAMIxxxxxxx, we derive closed expressions for s(d)

n

and c
n

; the result-
ing expressions are

s(d)

n

=

�

�
n

2

�
d+1

�

�
n+1

2

�
d

�

�
n�d

2

� and c
n

=

2V (n � 1)

A(n � 1)

, (4)

where A(n) is the area of the unit n-sphere, i.e. A(n) = (n + 1)V (n + 1).
In order to reduce the impact of noise and the exact position of the centroid

we want points far from the centroid to have higher weights than points that
are close to the centroid. Hence we give to each simplex or vector pair a weight
that equals the product of the lengths of the edges incident to the centroid or
the product of the vectors’ lengths respectively. After centering the local data set
so that the centroid coincides with the origin, the simplex skewness is computed
from the wedge product while the projection length is computed from the dot
product. For a local data set X our estimators of the expected simplex skewness
with d = 1, s(1), and the expected projection length, c, respectively are thus

ŝ(1)
=

P
x,y2X

|x̄ ^ ȳ|
P

x,y2X

|x̄||ȳ| and ĉ =

P
x,y2X

|(x̄, ȳ)|
P

x,y2X

|x̄||ȳ| , (5)

where x̄ is the vector from the centroid of the local data set to the data point x.
The estimator of s(d) for d > 1 is an obvious generalization of (5). If the local
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data set is big, and we have more than 5,000 simplices or vector pairs, we sample
5,000 of them to use for the estimation in order to save computation time, and
we find that the precision is still good enough.

Now we only need to define functions that take ŝ(d) or ĉ and return an es-
timate of the dimension. Given ŝ(d)

= s(d)

n

or ĉ = c
n

respectively we know
from (4) that the dimension estimate should be n. For s(d)

n

< ŝ(d) < s(d)

n+1 or
c
n

< ĉ < c
n+1 we use linear interpolation to determine the dimension estimate,

i.e.

n̂ = n +

ŝ(d) � s(d)

n

s(d)

n+1 � s(d)

n

or n̂ = n +

ĉ � c
n

c
n+1 � c

n

.

Given a local data set with N data points and extrinsic dimension D, the
time complexity of ESSa is O(Nd+1D(d+ 1)

2
) since we get O(Nd+1

) simplices
for which we need to compute the volume through vol(S) =

p
det(SST

)/d!,
where S is a (d + 1) ⇥ D-matrix containing the coordinates of the vertices away
from the origin. The time complexity of ESSb is the same with d = 1.

3 Experiments

We first use five groups of carefully designed synthetic data sets to assess the abil-
ity of different estimators to distinguish between data sets with different intrinsic
dimensions under different circumstances and to assess the precision of the esti-
mators. Then we use a wide range of manifolds previously studied in the context
of global dimension estimation (Rozza et al., 2012) to assess the versatility of the
estimators. We also evaluate stratification of a synthetic data set consisting of data
sampled along two manifolds with different dimensions. Finally we consider three
real data sets, where we see the potential of using intrinsic dimension estimates
for stratification. Further experiments on real and synthetic data are presented in
Appendices F–G in the Supplemental Material, available online.

3.1 Evaluated Estimators

We have compared the ESS estimator to two estimators based on local PCA:
Fukunaga-Olsen (F-O) (Fukunaga and Olsen, 1971) and Fan (Fan et al., 2010);
three estimators based on distributions of distances: Hill (Hill, 1975, Harte,
2001) (also known as MLE (Levina and Bickel, 2004)), TP (Haro et al., 2008)
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and kNN (Carter et al., 2010); and one estimator based on both distance and an-
gular information: DANCo (Ceruti et al., 2012).1 If there is no (estimated) noise
the TP method is the same as the Hill method. We have modified the TP and
kNN estimators slightly: For the TP estimator we utilize the noncentral � distri-
bution instead of the Gaussian approximation of it used in (Haro et al., 2008) to
describe the translation of distances due to noise. For the kNN estimator we use
regular bootstrapping instead of block bootstrapping since block bootstrapping
requires a spatial ordering which is hard to achieve and has little meaning in high
dimensions.

The TP estimator needs as input data an estimate of the noise, both of its
dimension and of its variance. How we compute this is described in Appendix D
in the Supplemental Material, available online. Two parameters, n̂ and ñ, which
are different rough pre-estimates of dimension are used for the computation.

For the F-O and Fan methods we used the parameters in (Fukunaga and
Olsen, 1971) and (Fan et al., 2010) respectively. We experimented with a large
number of different parameters for the Hill, TP, kNN and DANCo estimators
for each neighborhood size. Parameters were chosen to maximize the number
of correct dimension estimates after calibration as described in Section 3.2 for
uniformly distributed local data sets of dimensions 3–9 and the same size as the
neighborhood. For a neighborhood size of 50, this objective is what is reported
in Table 1, column U2�10. Appendix D in the Supplemental Material, available
online, describes the selection process in more detail. The ESS estimators do not
require any tuning of parameters. We use two different values of d (1 and 2) for
ESSa just in order to show that both work well.

3.2 Data Analysis

In order to characterize the estimators we do dimension estimation on groups
of data sets, with the data sets in each group generated from the same underly-
ing model. The probability density of the dimension estimates for each group is
estimated with a kernel density estimator. The estimated densities are used for
visualization and densities estimated from ideal local data sets—data sets sam-
pled from uniform distributions on hyperballs—are used for calibrating estima-
tors with large or moderate bias. This means that we can compare classification

1
R implementations of the evaluated estimators, including the ESS estimators, are

available at http://www.maths.lu.se/staff/kerstin-johnsson/research/

manifold-dimension-estimation/.
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performance of estimators with different biases by the frequency of correct cali-
brated dimension estimates.

What the calibration does is to set the thresholds, i.e. decision boundaries, for
classification of dimension so that the probability of classifying the ideal local data
sets correctly is maximized. This means that if we get ⌘ as a dimension estimate of
a data set using an estimator that needs calibration (F-O with D & N , Hill, TP,
kNN, Fan), after calibration the data set is classified as having dimension n, where
n is the dimension of the group of ideal local data sets which gave the highest
kernel density estimate at ⌘. If the estimator does not need calibration (ESS2,
F-O with D ⌧ N , DANCo), n is taken as the one of the dimensions considered
that is closest to ⌘. The TP estimator is the same as the Hill estimator for the ideal
data sets since they are noise-free, hence the same thresholds are used. Examples
of kernel density estimates of ideal local data sets, and the resulting thresholds, are
shown in Fig. S4 in the Supplemental Material, available online.

We use the kernel density estimator from the ks package for R with a Gaussian
kernel (Duong, 2007). We use the plug-in bandwidth selection provided with the
package, except that when we evaluate integer-valued dimension estimators we set
the bandwidth to 0.1 if the discrete structure is dominant and smoothing gives
bad classification performance.

3.3 Dimension Estimation of Synthetic Data Sets

We use four sets of groups of synthetic data sets for testing classification perfor-
mance and one set of groups of data sets for testing precision. For the sets of
groups used to test classification performance, each group consists of 100 data
sets with a given dimension and each data set has 50 data points. The groups in
the first two sets, U2�10 and U20�100, consist of data sets sampled with uniform
density in hyperballs of dimensions 2, 3, . . . , 10 and 20, 30, . . . , 100 respectively.
These data sets are what we call uniformly distributed local data sets and they are
the ideal data sets for local dimension estimation. This is because when we cut
out a piece of an n-manifold with a cut-off radius r it will look approximately like
Bn

(r) if the manifold is flat enough or if r is small enough.
The third set of data set groups, N2�10, represents the ideal case corrupted

with noise. We can think of the data sets as generated the following way: Assume

2Even though there is a bias for high dimensions in the ESS estimators, we think that since it
is relatively small it is better to disregard it so that we can avoid thresholds that depend on specific
realizations of ideal data sets.
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Table 1: Classification performance P based on dimension estima-
tion of local data sets with 50 points.

U2�10 U20�100 N2�10 S2�10

ESSa, d = 1 0.97 0.89 0.58 0.91
ESSa, d = 2 0.98 0.89 0.45 0.92
ESSb 0.96 0.86 0.73 0.89
Hill, k = 35 0.94 0.89 0.58 0.88
TP (exact noise var.) 0.89 0.81 0.78b —
k = 21

TP (estimated noise var.) — — 0.59b 0.88c

k = 20
kNN 0.52a 0.63a 0.43 0.51
k = 9, N = 10, � = 2
p = {25, 28, 31, . . . , 49}

F-O, ↵ = 0.05 1a 0.86a 1 0.79
Fan, ↵ = 10, � = 0.8 0.38a 0.76a 0.27 0.37
DANCo, k = 35 0.83a 0.75 0.34 0.76
a Bandwidth set to 0.1 in order to keep the discrete structure.
b ñ = 6, n̂ = 10.
c ñ = n̂ = D � 1, where D is the extrinsic dimension of data.
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that we can sample an infinite number of data points with uniform density on
a hyperplane through the origin. To these data points 15-dimensional Gaussian
noise with distribution N (0, 0.052I) is added, and those data points that end up
within distance 1 from the origin are candidates for the local data set. Among the
candidates we randomly choose 50 data points for the local data set. If there are
not enough candidates we sample more data points uniformly from the hyper-
plane and repeat the procedure. The data generation is described in more detail
in (Johnsson, 2013). Also for these data sets the intrinsic dimension, i.e. the
dimension of the hyperplane, ranges from 2 to 10.

The fourth set of groups, S2�10, is designed to test how well the estimators
can handle curvature. Local data sets consisting of 50 points each are cut out
from a data set with 1000 points sampled with a uniform density on the surface
of 2–10-dimensional hyperspheres. The procedure for finding a local data set
is to choose a point p at random from the whole data set and using its nearest
neighbors as the local data set. The point p is not put into the local data set since
we want to assume that the local data is drawn from a uniform distribution on a
hyperball, and p will be in the center of the hyperball, not drawn randomly.

When computing classification performance we exclude groups of data sets
with highest and lowest intrinsic dimension (2 and 10 or 20 and 100), since any
arbitrarily low or high dimension estimate will be classified as these dimensions.
Hence the classification performance P is the proportion of correct dimension
estimates for data sets of dimension 3–9 or 30–90, after calibration when needed
(see Section 3.2). In Table 1 P is shown for each estimator for the four sets of
groups of data sets. The ESS methods perform very well in comparison to the
others, especially for U20�100 and S2�10. The methods that give integer estimates
(kNN, F-O, Fan, DANCo) have a disadvantage in classification especially when
the discrete structure is dominant. This can be seen in Fig. S4 in the Supplemental
Material, available online.

The fifth set of groups of synthetic data sets are uniformly distributed local
data, as in U2�10 and U20�100, but with dimensions 5 and 70 and with varying
number of points. To increase interpretability the parameters for the estimators
were the same for all data sets, they were optimized for 30 data points. Fig. 1
shows the average bias of the ESSa, Hill, F-O and DANCo estimators on these
groups of data sets. The ESSa, F-O and DANCo estimators are approximately
unbiased for the 5-dimensional data sets, but for the 70-dimensional data set only
ESSa and DANCo are approximately unbiased. The DANCo estimator includes
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Figure 1: Biases of the ESSa (d = 1), Hill (k = 24), F-O (↵ = 0.05) and
DANCo (k = 26) estimators for local data sets with uniform distribution and
with intrinsic dimensions n = 5 and n = 70. The number of number of data
points vary between 30 and 100.

calibration with dimension estimates on uniformly distributed local data sets as a
final step and has therefore no bias.

To study the estimators’ versatilities, a wide range of data sets generated from
smooth densities on manifolds was used. We refer to (Rozza et al., 2012) and
(Hein and Audibert, 2005) for detailed descriptions of the 17 datasets (M1–
M15, with three versions of M10: M10a, M10b, M10b). The intrinsic dimen-
sions of the data ranged from 1 to 24 and the ratio between intrinsic and extrinsic
dimension ranged from 1:1 to 1:13.

To do local dimension estimation, 100 neighborhoods for each of three differ-
ent neighborhood sizes (30, 50, 100) were sampled from each of the 17 data sets,
all having 2000 points. For a given estimator, data set and neighborhood size,
relative bias (i.e. |bias|/n) and coefficient of variation (i.e. |sdev|/n) was com-
puted. The median and maximum relative bias and coefficient of variation for
the estimators are shown in Table 2. The ESS and DANCo estimators have simi-
lar performance, DANCo has smaller maximal relative bias. The Hill, kNN and
F-O estimators have small CV, but their biases are large. Further results from this
experiment are shown in Fig. S5 in the Supplemental Material, available online.

It takes a few minutes on a standard desktop computer to compute the dimen-
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Table 2: Relative bias and coefficient of variation for local dimension estimation
with neighborhood sizes 30, 50 and 100 of 17 different manifolds studied in
(Rozza et al., 2012).

Relative bias CV
Median/Max Median/Max

ESSa, d = 1 0.05/0.65 0.07/0.17
Hill, 0.44/0.70 0.03/0.06
k30 = 24, k50 = 35, k100 = 63

kNN, N = 10, � = 2 0.33/0.71 0.04/0.22
k30 = 15, p30 = {16, 19, . . . , 28}
k50 = 9, p50 = {25, 28, . . . , 49}
k100 = 6, p100 = {50, 53, . . . , 98}

F-O 0.09/1.00 0.05/0.40
Fan 0.44/6.00 0.37/6.03
DANCo, 0.05/0.40 0.06/0.17
k30 = 26, k50 = 35, k100 = 35

sion estimates of the 900 local data sets in U20�100 with the ESSa estimator for
d = 1 or the ESSb estimator. The ESSa estimator for d = 2 needs approximately
15 minutes. The Hill, F-O and Fan estimators need only a few seconds, whereas
the DANCo estimator needs approximately twice the time of the ESSa (d = 1)
estimator if its calibration data are reused. However, if the number of data points
is very large, the time needed to find the local data sets will be dominant.

3.4 Stratification of Synthetic Data

Stratification means discriminating between points that lie on different manifolds.
Stratification based on local dimension estimates has been extensively studied in
(Haro et al., 2008), where a mixture model and regularization were used together
with local dimension estimates from the TP method. The mixture model and reg-
ularization could be used together with any local dimension estimation method,
and it should benefit from more accurate and well separated estimates. In this sec-
tion we study how fit the output of different estimators of local dimension is for
applying stratification methods. Note that the neighborhoods now might contain
points sampled from two different manifolds.
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Table 3: Area under ROC-curve (AUC-ROC) and root mean squared error
(RMSE) for 5-ball inside 8-sphere.

AUC-ROC RMSEball/RMSEsphere

ESSa, d = 1 0.92 0.68/1.06
Hill, k = 24 0.72 1.91/4.55
TP, 0.79 1.90/3.71
k = 12, ñ = 8, n̂ = 8

kNN, 0.29 2.02/4.69
k = 15, N = 10, � = 2
p = {16, 19, 22, . . . , 48}

F-O, ↵ = 0.05 0.84 1.94/0.83
Fan, ↵ = 10, � = 0.8 0.67 1.73/4.00
DANCo, k = 23 0.70 0.77/1.41

We consider a data set consisting of 200 points on a 5-dimensional hyper-
ball centered at the origin, together with 200 points on an 8-dimensional hyper-
sphere also centered at the origin. We estimate local dimension at each of the 400
data points using neighborhoods with 30 points. To evaluate how well separated
the dimension estimates from the two manifolds are we use classifiers that use a
threshold for intrinsic dimension to separate the two manifolds. Points with a
lower dimension than the threshold are supposed to be on the 5-ball and points
with a higher dimension than the threshold are supposed to be on the 8-sphere.
We use the receiver operating characteristic (ROC) for such classifiers based on
the intrinsic dimension estimates of each estimator. The area under the ROC-
curve is used as a measure of how well separated the two groups are; this and
the mean square errors of the dimension estimates are shown in Table 3. Kernel
density estimates of for the estimators are shown in Fig. S6 in the Supplemental
Material, available online.

ESSa outperforms all the other estimators both in terms of area under ROC-
curve and root mean square error.
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Figure 2: MNIST digits 0-9. For each digit we used 500 images of it as the data
set and constructed 100 neighborhoods with 50 points each where the dimension
was estimated. The extrinsic dimension is 784.

3.5 Dimension Estimation of Real Data

The first real data set we consider is the 28⇥28 pixel images of handwritten digits
in the MNIST database3. This data set has for example been studied in (Haro
et al., 2008), where stratification was used to distinguish handwritten ones from
handwritten twos. From the training data set of 60,000 images we use 500 images
of each digit 0-9. This is to ensure that we get the same number of images for
each digit and to make the neighborhoods cover a relatively large portion of the
whole data set, so that the manifold structure can be seen in neighborhoods and
not only noise. We estimate the dimension of the neighborhood of each image in
our sample, the neighborhood consists of the 50 nearest neighbors of the image.

In Fig. 2 we show dimension estimates from the ESSa, the Hill and the F-O
method for all the ten digits and we see that it is not surprising that ones and
twos are easily distinguished from each other. The overall pattern of the estimates
is very similar for the different estimators, although the values of the estimates
differ. For the digit 1, the dimension estimates of the ESSa and F-O estimators
are similar to what have previously been estimated with global intrinsic dimension
estimators (Rozza et al., 2012). We see that even with noise and high extrinsic
dimension, the ESSa estimator behaves in a reasonable way.

3
http://yann.lecun.com/exdb/mnist/
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3.6 Stratification of Real Data Sets

Finally we use dimension estimation for two stratification applications: image seg-
mentation and gene expression classification. It has been proposed that intrinsic
dimensionality can be used for segmentation based on textures since it is a mea-
sure of the complexity of the data set (Carter et al., 2010). Following (Carter
et al., 2010) we divide an image of a panda (Fig. 3, top left) into patches with
12 ⇥ 12 pixels and consider each patch as a 144-dimensional data point. Then
we make local dimension estimation using the 30 nearest neighbors.

The results are scaled to [0, 255] and printed in Fig. 3. We see that patches
that are on edges in the image have very low dimensionality, but more impor-
tantly the patches in most of the panda fur, both the black and the white parts,
have similar dimensionality, whereas the background in general has lower dimen-
sionality. This means that intrinsic dimensionality actually can be used to find
parts with similar texture. The dark blob in the bottom right is a region where
identical (black) patches occur in the original image. For dimension estimators
that cannot handle a situation with identical patches we remove duplicates. In
Fig. 3 we see that all the tested dimension estimators yielded similar results. The
ESSa estimator handles also this situation in a reasonable way. The Fan estimator,
which compensates for noise, seems to have the best results though.

Our final example is classification of gene expression data. The classifica-
tion task that is considered here—distinguishing between tumor and normal
samples—is not a very hard classification task, however it is a task where we for
some estimators can distinguish groups solely based on dimension estimation. In
general we do not intend to use dimension estimation on its own for classifica-
tion, but as an input to a clustering or classification method (Carter et al., 2010,
Haro et al., 2008).

The data set that we consider is a gene expression data set from ovarian cancer
samples collected through the TCGA project (Bell et al., 2011). The data set con-
sists of 570 tumor samples and 8 samples collected from normal tissue next to the
tumor. The extrinsic dimension of the data is 12981. We perform local dimen-
sion estimation with neighborhoods of size 30, 50 and 100 around each sample.
For all estimators and neighborhood sizes the adjacent normal samples have in
general lower estimated intrinsic dimension of their neighborhoods. However,
in most cases the two groups are not clearly distinguishable. We use the receiver
operating characteristic (ROC) for classification through thresholding at different
dimensions to quantify how well the groups are distinguished for each estimator
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Figure 3: Local dimension estimation of patches in a picture of a panda, us-
ing neighborhoods with 30 points. Light patches means high dimension, dark
patches low dimension. Top row: Original image, ESSa, DANCo; bottom row:
Fan, F-O, Hill and kNN estimators. Estimator parameters as in Table 3. Im-
age source: http://newsdesk.si.edu/sites/default/files/photos/

nzp_Mei_Xiang.jpg

and neighborhood size. The results are shown in Table 4. The ESSa estimator
performs very well for all three neighborhood sizes, only the kNN estimator is
slightly better for neighborhood size 100. Kernel density estimates are shown in
Fig. S7 in the Supplemental Material, available online.

4 Conclusions

We have seen that the ESS estimators perform better than other estimators for
many local dimension estimation tasks. Some estimators have similar perfor-
mance for classification of synthetic data sets, but of these estimators only the
ESS estimators are approximately unbiased even for high dimensions. Moreover,
the biases for most other estimators depend heavily on the number of points used
for estimation. The DANCo estimator has less bias than the ESS estimators re-
gardless of local data size, but its classification performance is worse.

The ESS estimators have a simple formulation, which make them both easy
to implement and amenable to mathematical analysis. Some statistical properties,
including consistency, are discussed in the Appendices B and C of the Supple-
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Table 4: 1 - AUC (area under ROC curve) for discrimination using dimension es-
timates of gene expression data (570 tumor samples, 8 adjacent normal samples).

Neighborhood size 30 50 100

ESSa, d = 1 1e-3 0 3e-3
Hill, k30 = 24, k50 = 35, k100 = 63 2e-3 1e-3 8e-3
kNN, N = 10, � = 2 8e-3 2e-4 2e-3
k30 = 15, p30 = {16, 19, 22, 25, 28}
k50 = 9, p50 = {25, 28, 31, . . . , 49}
k100 = 6, p100 = {50, 53, 56, . . . , 98}

F-O 0.14 5e-3 0.01
Fan 5e-3 5e-3 6e-3
DANCo, k30 = 26, k50 = 35, k100 = 35 0.01 4e-3 0.09

mental Material, available online. Furthermore, they do not require any tuning
of parameters.

The high classification performance and low bias of ESS show that it has good
potential to work as a basis for stratification through mixture modeling. ESSa is
shown to be clearly superior to other methods on a synthetic data example with
two manifolds of different dimensions. We have real data sets where the ESSa
estimator as it is performs better than other dimension estimation methods, and
other data sets where local PCA performs better. A feasible explanation to this is
that ESS is more sensitive to noise than local PCA and it should be investigated
whether noise filtering could be used to improve performance.
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A Closed Expressions for s(d)

n and cn

Let V (n) = ⇡n/2/�(n/2 + 1) denote the volume of the unit n-ball and let
A(n) = (n + 1)V (n + 1) denote the area of the unit n-sphere.
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where ⇡
d

is the d-dimensional hyperplane defined by x
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B Variance of ESS Estimators

In order to further characterize the ESS estimators we want to find the variance of
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in the ideal case where we assume that X is a realization of N i.i.d. variables
{X1, . . . , Xn

}, where each X
i

has uniform distribution on an n-ball for some
n. x̄ denotes the vector going from the center of the ball to the data point x.
Without loss of generality we may assume that the center of the ball is the origin.
Let ✓ : Rn⇥Rn ! R be the function taking (x, y) to the angle between x̄ and ȳ.
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Z
⇡/2

0
(sin

n�2 ✓ � sin

n ✓) d✓

�
✓

2V (n � 1)

A(n � 1)

◆2

for which we can get closed expressions using

Z
⇡/2

0
sin

m ✓ d✓ =

p
⇡

2
�(

m+1
2 )

�(

m+2
2 )

.

In Fig. S1 we see the expected value and standard deviation of ŝ(1) when
N = 50, and we can clearly see how it gets harder to estimate higher intrinsic
dimensions.

C Consistency of ESS Estimators

From Appendix B we see that with M =

�
N

2

�
,

ŝ(1)
=

1
M

MX

k=1

sin⇥

k

and ĉ =

1
M

MX

k=1

| cos⇥

k

|,

where the ⇥
k

are pairwise independent and the sin⇥

k

have finite variance as
well as the | cos⇥

k

|. In the ideal case with data uniformly distributed on a ball
we thus get consistency for both estimators from the weak law of large numbers.

Suppose now that data is sampled with a measure µ with smooth non-uniform
density on a smooth n-submanifold M of RD. Since M is embedded in RD we
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Figure S1: Mean value of ŝ(1) and mean value plus/minus one standard deviation
(dashed lines) for a local data set with 50 data points.

can view the tangent space at p 2 M, T
p

M, as the n-dimensional subspace of
RD consisting of all tangents at p to curves in M going through p. Let P : M !
T
p

M be the orthogonal projection of a point on M onto T
p

M. Let U =

M \ B
✏

(p) for any ✏ that is small enough so that P |
U

is one-to-one and let
V = P (U). Also, let ⌫ be the pushforward measure of µ under P .

If q = p + tv 2 V ✓ T
p

M, where v is a tangent vector of length one and
t 2 R, then |q � P�1

(q)| = O(t2
)  O(✏2

). This means that the difference
of estimating c

n

and s(d)

n

from µ on U instead of from ⌫ on V will be O(✏2
).

Furthermore we get from the triangle inequality that B
✏�C✏

2(p) ✓ V ✓ B
✏

(p).
Since (✏ � C✏2

)

n/✏n ! 1 when ✏ ! 0 we get that ⌫(V ) ! ⌫(B
✏�C✏

2(p)) as
✏ ! 0, so the estimation will asymptotically be the same as if we only consider
points within B

✏�C✏

2(p). Since B
✏�C✏

2(p) is a sphere we now almost have the
ideal case, the difference being that ⌫ is not uniform on B

✏�C✏

2(p). However,
since P is smooth and µ has smooth density, so has ⌫, which means that when
✏ ! 0, ⌫ gets arbitrarily close to uniform measure on B

✏�C✏

2 \ T
p

M.

It should be noted though that in the presence of noise the ESS estimators,
as well as any estimator of local intrinsic dimension, will not be consistent since
then the local intrinsic dimension is not well defined. This is illustrated in Fig.
S2, where we can see that with denser sampling and a fixed number of neighbors
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Figure S2: To the left we have 10 samples from a uniform one-dimensional dis-
tribution with two-dimensional noise, to the right we have 100 samples from the
same distribution. The six nearest neighbors of a point are marked.

(or a smaller cut-off radius) the local data set will eventually get the same intrinsic
dimension as the noise.

D Further Details on Parameters

D.1 Estimation of Noise Parameters for TP Estimator

The TP estimator needs two parameters for the noise in the data: its dimension
and its variance. It is a natural idea to use the extrinsic dimension of the data as
the dimension of the noise, but cutting out a local set from a manifold means that
the part of the noise that is parallel to the manifold is canceled out if the manifold
is flat. Hence we subtract a rough pre-estimate ñ of the dimension of the manifold
from the extrinsic dimension of the data set and use the result as the estimated
dimension of the noise. The variance of the noise is estimated from the local
covariance matrix as follows: Given a preliminary estimate of the dimension n̂,
the estimate of the noise variance is the mean of the D� n̂ smallest eigenvalues of
the covariance matrix for the local data set, where D is the extrinsic dimension of
the data. If n̂ is smaller than n, some relatively large eigenvalues corresponding to
directions along the manifold can result in a significant overestimate of the noise
variance; in order to avoid this one can choose n̂ larger than what is believed to
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be the intrinsic dimension.
We have chosen n̂ and ñ for each experiment in a way that we think can

represent a reasonable guess from a researcher not knowing the true intrinsic di-
mension. For dimension estimation of synthetic data with noise we use both the
exact value of the variance of the noise and the estimate.

D.2 Parameter Selection for Hill, TP, kNN and DANCo

A systematic search was used to find the best parameters for the Hill, TP (ex-
act variance), TP (estimated variance), kNN and DANCo estimators. For the
kNN estimator and neighborhood size M we limited the search to the case N =

10, � = 2 and p 2 {p
min

, p
min

+ 3, . . . , p
min

+ 3m} where p
min

= max(k +

1, M/2) and m was chosen such that p
min

+ 3m 2 (M � 4, M � 1). Hence
only the parameter k needed to be optimized.

The best parameters were defined as those who seemed to give the best classifi-
cation performance (i.e. proportion of correct estimates) of uniformly distributed
local data sets of dimension 3, 4, . . . , 9, with thresholds based on dimension esti-
mates of uniformly distributed local data sets of dimension 2, 3, . . . 10 (see main
paper Section 3.1). A coarse search was first made over a large interval and then
a refined search in the range which gave high classification performances in the
first search. We studied the results in bar charts such as those shown in Fig. S3.
Due to random effects some judgment was still needed to pick parameters. In
Fig. S3 the kNN estimator had the best classification performance in the range
from k = 8 to k = 11, so we selected k = 9 as the parameter. We observed that
the bias increased as k increased, which was a reason to rather choose k = 9 than
k = 10. For the DANCo estimator classification performance was fairly constant
from k = 30 to k = 40, so we selected k = 35 since it was in the middle of this
interval.

E Further Details on Results from Experiments in the
Main Article

The purpose of this section is to provide further details on the results from some
of the experiments in the main article, namely the dimension estimation of U2�10,
U20�100, N2�10 and S2�10, the dimension estimation of the 5-ball together with
the 8-sphere, the dimension estimation of the wide range of synthetic data sets
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Figure S3: Examples of bar charts used for parameter selection. The neighbor-
hood size used for the charts above is 50.

Table 5: Parameters for Hill, TP, kNN and DANCo estimators for varying neigh-
borhood sizes.

Neighborhood size 30 50 100

Hill k = 24 k = 35 k = 63
TP (exact variance) k = 9 k = 21 k = 32
TP (estimated variance) k = 12 k = 20 k = 36
kNN k = 15 k = 9 k = 6
DANCo k = 26 k = 35 k = 35
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and the dimension estimation of the ovarian cancer data set.
In Fig. S4 the kernel density estimates for the high-dimensional set of groups,

U20�100 are shown for the estimators we consider. Here we can see the disadvan-
tage of only providing integer estimates when it comes to classification. Also note
that the decision boundaries are not set optimally for the ESS estimators since
we consider these estimators as unbiased when we do classification. Even though
there is a bias for high dimensions in the ESS estimators, we think that since it is
relatively small it is better to disregard it so that we can avoid decision boundaries
that depend on specific realizations of ideal data sets.

Table 6 shows average bias and standard deviation for the sets U2�10, U20�100,
N2�10 and S2�10. The Hill, TP and Fan estimators have a large bias, but the Hill
and TP estimators have small average standard deviation. The kNN estimator has
higher average standard deviation and somewhat smaller bias. The F-O estimator
has large bias for the high-dimensional set. The DANCo and ESS estimators all
have small bias, but the ESS estimators have smaller average standard deviation.

An overview of the wide range of synthetic data sets previously used for global
dimension estimation (Rozza et al., 2012) can be found in Table 7. The data sets
are sampled from smooth manifolds with a known intrinsic dimension n ranging
from 1 to 24. The extrinsic dimension of the data, D, ranges from 3 to 96. Many
of the data sets are sampled with a non-uniform density over the manifold, but
the density is always smooth.

Results from dimension estimation of these data sets are shown in Fig. S5.
The ESS and DANCo estimators have in general the most accurate results with
a few exceptions where there ESS estimators have a slightly larger bias than other
estimators (M6, M8 and M13). The ESS estimators are versatile and are never
very far off. An interesting feature is that the ESS and DANCo estimators very
seldom underestimates the dimension, and then very slightly, whereas the Hill
estimator never overestimates the dimension. This means that we get an upper
and a lower bound for the intrinsic dimension.

Fig. S6 shows kernel density estimates for the 5-ball/8-sphere data set that
was used to investigate stratification properties in the main article (Section 3.3).
Also here we see the advantage of providing non-integer dimension estimates. In
the left part of Fig. S6 the true identities of the data points have been used to
compute kernel density estimates and decision boundaries, but we see that for the
estimators which give approximately bimodal kernel density estimates when all
neighborhoods are considered together (the ESS, Hill, kNN and Fan estimators),
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Figure S4: Kernel density estimates of dimension estimates for U20�100, i.e. local
uniformly distributed data sets with 50 data points each, with intrinsic dimension
20, 30, . . . , 100 in each group.
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Table 6: Average bias and average standard deviation for local
data sets with 50 points (cf. main article Table 1).

U2�10 U20�100 N2�10 S2�10

ESSa, d = 1
0.02 -1.74 0.43 0.19 bias
0.19 2.2 0.21 0.21 sd

ESSa, d = 2
0.02 -1.73 0.51 0.22 bias
0.17 2.2 0.19 0.19 sd

ESSb
0.02 -1.77 0.36 0.16 bias
0.22 2.4 0.23 0.23 sd

Hill
-2.46 -46.1 -2.28 -2.40 bias
0.10 0.38 0.10 0.095 sd

TP (ex. var.)
-1.9 -42 -1.9a — bias
0.16 0.66 0.18 — sd

TP (est. var.)
— — -2.0a -1.9b bias
— — 0.42 0.16 sd

kNN
-1.64 -39.7 -1.39 -1.61 bias
0.34 1.1 0.39 0.35 sd

F-O
0 -22.8 0 0.19 bias
0 0.71 0 0.27 sd

Fan
-2.73 -43.0 -1.98 -2.31 bias
0.34 0.41 0.20 0.25 sd

DANCo
0.02 0.21 0.71 0.21 bias
0.38 4.0 0.5 0.43 sd

a ñ = 6, n̂ = 10.
b ñ = n̂ = D � 1, where D is the extrinsic dimension of

data.
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Figure S5: Intrinsic dimension estimation on synthetic data sets with intrinsic
dimension n and extrinsic dimension D for neighborhood size N = 30, 50, 100.
Parameters for the DANCo, Hill and kNN estimators are given in Table 5. The
shaded red area shows the region within one standard deviation from the mean of
the local intrinsic dimension estimates. The dashed line shows the true intrinsic
dimension.
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Table 7: Synthetic data sets previously used for global dimension estimation.

Data set Intr. dim. Size Source Comment

M1 � M13 1–24 2000 ⇥ D (Hein and Audibert, 2005)
M14 � M15 18, 24 2000 ⇥ D a

a Generated as described in (Rozza et al., 2012).

a similar decision boundary would have been obtained only using bimodality.
In Fig. S7 the dimension estimates of the ovarian cancer gene expression data

set are shown. The large green bars which correspond to adjacent normal samples
have on average lower dimension estimates than the tumor samples.

F Further Experiments on Synthetic Data Sets

In this section we use a few more sets of groups of local data to characterize the
estimators.

Two aspects that were not studied separately in the main article were the
effect of scaling of the data and edge effects. We also want to study the effect
of high-dimensional noise more in detail. Hence we consider four additional
sets of groups of data. C2�10 consists of one group of 100 data sets for each
dimension 2, 3, . . . 9. Each data set in the group with intrinsic dimension n is
first generated from a uniform distribution on the unit ball and then half of the
variables (rounded down) are scaled with a factor 2. But since we consider local
dimension estimation where neighborhoods are determined by a cut-off radius
(the cut-off radius is the distance to the N th neighbor when we consider data sets
of size N ) we exclude data points that are moved outside the unit ball. If we do
not get enough data points inside the unit ball we generate more data points in
the same way. E2�10 consists of data points uniformly distributed in the upper
hemisphere of the unit ball (i.e. the first coordinate has a positive value), which
simulates a situation close to a manifold boundary. Hence edge effects should be
more pronounced in this data set. To study high-dimensional noise we use the
sets N0.01

20�100 and N0.05
20�100, where N0.05

20�100 is generated in the same way as N2�10

but with intrinsic dimensions 20, 30, . . . , 100 and noise dimension 150, and
N0.01

20�100 is also generated in this way, but with covariance matrix 0.012I instead
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Figure S6: Kernel density estimates of local dimension estimates of 5-ball inside
8-sphere. In the left image prior knowledge about which manifold each data point
belongs to is used to construct kernel density estimates. The right image shows
kernel density estimates of the dimension estimates of all data points.
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Figure S7: Dimension estimates of ovarian cancer data and kernel density esti-
mates of these. The large green bars show dimension estimates of adjacent normal
samples and the small blue bars show dimension estimates of tumor samples. The
curve is the kernel density estimate of all dimension estimates together.
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Table 8: Classification performance P based on dimension
estimation of local data sets with 50 points.

C2�10 E2�10 N0.01
20�100

ESSa, d = 1 0.97 0.81 0.92
ESSa, d = 2 0.97 0.86 0.91
ESSb 0.96 0.72 0.89
Hill, k = 35 0.84 0.76 0.83
TP (exact noise var.) — — 0.58a

k = 21
TP (estimated noise var.) — — 0.78a

k = 20
kNN 0.50 0.48 0.60
k = 9, N = 10,
p = {25, 28, 31, . . . , 49}

F-O, ↵ = 0.05 1 1
Fan, ↵ = 10, � = 0.8 0.39 0.41 0.59
DANCo, k = 35 0.85 0.67 0.73
a ñ = 60, n̂ = 100.

of 0.052I . The classification performance of the estimators on C2�10, E2�10 and
N0.01

20�100 are shown in Table 8.

The classification performance P on N0.05
20�100 is zero for all estimators, due to

high bias. The dimension estimation results are shown in Fig. S8. We can see that
for most estimators (not F-O, Fan and TP with exact noise variance) the classifi-
cation performance would be decent if the decision boundaries were set based on
the noisy data sets themselves, instead of data sets without noise. This means that
when comparing between noisy data sets with similar noise but different intrinsic
dimensions there is still a good chance of distinguishing between them.

It is interesting to note that for the data sets with high-dimensional noise the
TP method with estimated noise variance works much better than the TP method
with exact noise variance. This shows that the estimate of the dimension of the
noise is important, and not only the variance.
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Figure S8: Dimension estimation of N0.05
20�100. Classification boundaries are based

on U20�100. The filled areas correspond to estimates that are correctly classified.
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G Further Experiments on Real Data Sets

In this section we use six real data sets previously used for global intrinsic dimen-
sion estimation (Rozza et al., 2012) to further test ESS and other local intrinsic
dimension estimators. As in the previous section we adopt the experimental setup
for local dimension estimation, which means that we pick 100 local data sets with
N points from each data set, with N = 30, 50, 100. An overview of the data sets
are shown in Table 9.

Table 9: Real data sets.

Data set Intr. dim. Size Source Comment

MFaces 3 698 ⇥ 4096 (Tenenbaum et al., 2000)
MMNIST1 6742 ⇥ 784 (LeCun et al., 1998) Training

points for
digit 1.

MSantaFe 9 1000 ⇥ 50 (Gershenfeld and Weigend, 1994) Data set
D2. a

MIsolet 7797 ⇥ 617 (Bache and Lichman, 2013)
MDSVC1 250 ⇥ 20 (Aguirre et al., 1997) a

MParis14e 785 ⇥ 20 (Klein Tank et al., 2002) a, b

a As in (Rozza et al., 2012) the method of delays is used so that the one-
dimensional time series data is embedded into a higher-dimensional space.

b Daily mean temperatures from Paris 14-E Parc Montsouris, from January
1st 1958 to December 25 2000. The end date is earlier than reported
in (Rozza et al., 2012), but this is necessary to get the correct number of
samples.

The data sets MFaces and MSantaFe have a ground truth since they are actually
synthetically generated, but not from a manifold model and hence considered as
real data. For the other data sets, MMNIST1, MIsolet, MDSVC1 and MParis14e, we
can only compare with other estimators; here we use global dimension estimates
from (Rozza et al., 2012) as a reference (we remove outliers and results from
estimators based on global linear embeddings).

The MFaces set is also known as the ISOMAP face data set (Tenenbaum et al.,
2000), it consists of 698 64 ⇥ 64 pixel images of faces. Each pixel is considered
as a variable, so the extrinsic dimension is 4096. This data set has three degrees of
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freedom (two degrees of freedom for pose and one degree of freedom for lightning
direction), this is the intrinsic dimension. The MSantaFe set is the D2 time series
from the Santa Fe time series competition (Gershenfeld and Weigend, 1994). It
has 50,000 1-dimensional data points. The data set describes a particle in motion
and it has nine degrees of freedom (four for position, four for velocity and one for
time). The degrees of freedom in the Santa Fe data set correspond to the intrinsic
dimension of the data set when it is embedded in a higher-dimensional space by
the method of delays.

The MMNIST1 data set we also studied in the main article, it is the images
of handwritten ones from the training set of the MNIST data (LeCun et al.,
1998). However, the setting is not exactly the same since in the main article we
looked at a sample of 500 points from the MNIST training data set. Here we take
neighborhoods based on the whole data set.

The MDSVC1 data set consists of a time series from a chaotic system with a
strange attractor. The model for the data is not a smooth distribution along a
manifold, but a smooth distribution along a fractal. The various definitions of
fractal dimension coincide with manifold dimension for data sets that are man-
ifolds, but otherwise they can differ among themselves. The Hill estimator is
constructed so that it measures the fractal dimension known as correlation dimen-
sion, but the other estimators considered here have not a well-defined behavior
for fractal sets since they are based on manifold models.

The MIsolet data set contains features computed from recordings of spoken
letters (Bache and Lichman, 2013), and the MParis14e data set consists of a long
time of temperatures from Paris, spanning over a period of approximately 40 years
(Klein Tank et al., 2002).

The results of dimension estimation on these data sets are shown in Fig. S9.
The ESS and DANCo estimators are the only estimators with correct mean

for the MSantaFe data set (the ESS estimators have sligthly larger variance than
DANCo). For the other data set with ground truth, MFaces, these estimators
overestimate dimension (ESS estimators more than DANCo). Also estimators
which in most cases underestimate dimension (Hill and kNN) overestimate the
dimension of the MFaces data set, however not as much as ESS and DANCo.
When increasing the neighborhood size the estimated dimensions increase for all
estimators on this data set. Since the extrinsic dimension of the data set is very
high (4096) a plausible explanation for this is that the tangent space approxima-
tion of the manifold is not good inside the neighborhood, i.e. that the manifold
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is curved inside the neighborhood. When the neighborhood size increases the
approximation gets worse.

For three of the other data sets (MMNIST1, MIsolet and MParis14e) the dimen-
sion estimates from the ESS and DANCo estimators are higher than or in the top
part of the reference interval. The reference is based on global dimension estima-
tors, which since they use more information than local dimension estimators can
be considered more accurate when the whole data set has the same dimension,
but many of them still suffer from negative bias (Rozza et al., 2012) and this has
to be considered when looking at the reference.

For the MMNIST1 data set we get slightly higher dimension estimates here
than in the main article, which is due to that the whole data set is used when con-
structing neighborhoods. This means that the sampling of the manifold is denser
and the effect of noise gets more pronounced, cf. Fig. S2. When neighborhood
size is increased the dimension estimates decrease since noise gets less dominant.
For the Fan and kNN estimators the estimated dimension increases with neigh-
borhood size, but these estimator have in general a negative bias which decreases
with increasing neighborhood size (see Fig. S5).

Also for the MIsolet data we see that estimated dimension decreases with in-
creasing neighborhood size for ESSa, ESSb and DANCo. In (Kivimäki et al.,
2010) it was reported that with smaller neighborhoods the dimension increased a
lot for this data set.

For the MDSVC1 data set the ESS estimators are within the reference interval.
For this fractal data set many estimators that cannot incorporate fractal sets in the
model that they are built upon still gave good results.
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Figure S9: Intrinsic dimension estimation on real data sets with extrinsic dimen-
sion D for neighborhood size N = 30, 50, 100. Parameters for the DANCo,
Hill and kNN estimators are given in Table 5. The ground truth or reference
for intrinsic dimension is n. The shaded red area shows the region within one
standard deviation from the mean of the local intrinsic dimension estimates. The
dashed line shows the true intrinsic dimension and the area shaded with lines
shows the the interval where the reference global dimension estimates are for data
sets without ground truth.
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BayesFlow: Latent modeling of flow
cytometry cell populations

Kerstin Johnsson, Jonas Wallin and Magnus Fontes

Abstract

Background: Flow cytometry is a widespread single-cell measurement technology
with a multitude of clinical and research applications. Interpretation of flow cy-
tometry data is hard; the instrumentation is delicate and can not render absolute
measurements, hence samples can only be interpreted in relation to each other
while at the same time comparisons are confounded by inter-sample variation.
Despite this, most automated flow cytometry data analysis methods either treat
samples individually or ignore the variation by for example pooling the data. A
key requirement for models that include multiple samples is the ability to visualize
and assess inferred variation, since what could be allowed as technical variation in
one setting are different phenotypes in another.

Results: We introduce BayesFlow, a pipeline for latent modeling of flow cytome-
try cell populations built upon a Bayesian hierarchical model. The model system-
atizes variation in location as well as shape. Expert knowledge can be incorporated
through informative priors and the results can be supervised through compact and
comprehensive visualizations.

BayesFlow is applied to two synthetic and two real flow cytometry data sets.
The first real data set is from the FlowCAP I challenge. BayesFlow does not
only give a gating which would place it among the top performers in FlowCAP
I for this dataset, it also gives a more consistent treatment of different samples
than either manual gating or other automated gating methods. The second real
data set contains replicated flow cytometry measurements of samples from healthy
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individuals. BayesFlow gives here cell populations with clear expression patterns
and small technical intra-donor variation as compared to biological inter-donor
variation.

Conclusions Modeling latent relations between samples through BayesFlow en-
ables a systematic analysis of inter-sample variation. As opposed to other joint
gating methods, effort is put at ensuring that the obtained partition of the data
corresponds to actual cell populations, and the result is therefore directly biologi-
cally interpretable. BayesFlow is freely available at GitHub.

1 Introduction

In a flow cytometer a number of characteristics for each individual cell in a sample
of ⇠104 to ⇠106 cells are quantified as they pass through the cytometer in a fluid
stream. The data that are obtained are most often summarized by grouping cells
into cell populations; properties of these cell populations are used in many clin-
ical applications—for example monitoring HIV infection and diagnosing blood
cancers—and in many branches of medical research (Shapiro, 2005, Nolan and
Yang, 2007). Defining the cell populations based on the measured characteristics
is in state-of-the-art analyses still done manually by trained operators looking at
two-dimensional projections of the data. The importance of automated methods
has risen along with an increase of the dimension of typical flow cytometry data
sets due to developments in flow cytometry technology (O’Neill et al., 2013) and
the emergence of studies with large numbers of flow cytometry samples (Chen
et al., 2015). Furthermore, manual so called gating of cell populations is a sub-
jective process where operators have to take more or less arbitrary decisions for
example when there are overlapping populations (Welters et al., 2012).

Automatic cell population identification is hard since flow cytometry mea-
surements are not absolute, while at the same time different samples cannot be
directly compared due to technical variation—especially apparent when samples
are analyzed at different laboratories (Welters et al., 2012)—and intrinsic biolog-
ical variation within and between subjects. Despite this, research into automated
population identification methods has focused on individual or pooled flow cy-
tometry samples, sometimes attempting to align data at first through normaliza-
tion procedures (Hahne et al., 2010).

Automated methods with the aim to replace manual gating must be able to
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treat multiple samples jointly and take variation between samples into account,
while at the same time make it possible for the user to monitor that variation so
that it is not too high for the application at hand. For example it needs to be
decided if a shift in location of a population in a sample can be seen as technical
variation and accepted or if the changed marker expression means that it is a
different cell phenotype. These kinds of methods also need to be able to take
prior information into account—in manual gating the experience of the operator
can be necessary to define a population. We have developed BayesFlow, a method
which models variation in cell population location as well as shape, can include
prior information for example about cell population location, and gives a result
that can be assessed in compact and comprehensive visualizations.

Partitioning the cell measurements in a sample into cell populations is es-
sentially a clustering problem. In the context of flow cytometry data analysis
clustering is called automated gating, as opposed to the manual gating performed
by operators. Model-based clustering using mixture models has been the most
used approach for automated gating (Lo et al., 2008, Boedigheimer and Ferbas,
2008, Chan et al., 2008, Pyne et al., 2009, Hu et al., 2013, Naim et al., 2014).
Mixture models are very well suited to describe flow cytometry data because they
have a natural biological interpretation based on the cell populations. Examples
of other approaches that have been used for automated gating are grid based den-
sity clustering (Qian et al., 2010), spectral clustering (Zare et al., 2010), hierar-
chical clustering (Qiu et al., 2011, Bruggner et al., 2014) and k-means clustering
(Aghaeepour et al., 2011, Ge and Sealfon, 2012). An evaluation of a wide range of
automated gating methods was performed in the FlowCAP I challenge (Aghaeep-
our et al., 2013). The discrepancy with manual gating was often quite large even
for the best methods, with average F-measures around 0.9 for both completely au-
tomated and manually tuned methods. Large discrepancies between manual and
automatically gated samples can be acceptable since the arbitrary decisions taken
in manual gating means that the gates could just as well have been set another
way. However, it is important that the gating is consistent between samples so
that they can be compared against each other.

Joint identification of cell populations in a collection of samples can be ac-
complished by pooling the samples (Qiu et al., 2011, Naim et al., 2014) or match-
ing populations identified separately in the samples (Pyne et al., 2009, Azad et al.,
2013). However, in the first approach no variation between samples is taken into
account and in the second approach no information is shared between samples.
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Recently a third approach has been explored, where a Bayesian hierarchical model
is used to share information between samples while at the same time allowing for
variation. This was first utilized for flow cytometry gating by Cron et al. (Cron
et al., 2013), with a hierarchical Dirichlet process model with fixed locations and
shapes of cell populations. An extension of this model, also modeling variation in
cell population locations has been used to create ASPIRE, a method for anoma-
lous sample detection (Dundar et al., 2014).

BayesFlow follows this third approach, but use a differently structured model
than what has been used previously, favoring explicit modeling instead of implicit,
parametric instead of non-parametric (or massively parametric). This follows the
philosophy that mathematical models can never perfectly fit reality, thus it is im-
portant to be able to convey the constructed model and its parameters and in
what ways it simplifies the data.

For example, in addition to variation in location BayesFlow explicitly mod-
els variation in cell population shape, whereas ASPIRE models shape variations
implicitly by combining Gaussian components with the same shape. This means
that an aberrant shape variation of a cell population in a sample can be detected
in BayesFlow by examining the parameters of the model, which is not possible
in ASPIRE. Perhaps more importantly, BayesFlow gives a parsimonious model
which much fewer parameters—each individual parameter for the components
in BayesFlow can be assessed through compact visualizations and thus undesired
behaviors can be detected and corrected for by change of setup. Moreover, a
restriction in ASPIRE which is avoided by BayesFlow is that the variation of com-
ponent location within and between samples is connected to the shape of the
components.

In BayesFlow, the cells in a sample are clustered using a multivariate Gaus-
sian mixture model (GMM), where K components describe true and artificial
cell populations and one component describes outliers. Artificial cell populations
are measurements that cluster together and behave otherwise like real cell popu-
lations, but arise for example from dead cells, non-specific binding of markers or
doublets; doublets are pairs or groups of cells that pass through the flow cytome-
ter at the same time. Measurements which are not clearly grouped but spread out
over the measurement space, for example due to measurement noise, are modeled
as outliers.

For each component not representing outliers its mean and covariance matrix
is linked to a latent cluster which collects corresponding components across all
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samples. In practice this is done by assuming a normal prior for the means and an
inverse Wishart prior for the covariance matrices of the components linked to a
given latent cluster. The parameters of sample and latent components are jointly
estimated by Markov Chain Monte Carlo (MCMC) sampling. The variation in
location and shape between corresponding mixture components across samples
is controlled by the priors on parameters of the latent clusters. The location of
component means and shape of components can also be restricted if there is prior
information supporting this. To allow for that flow cytometry data frequently
have missing cell populations, we include the possibility that not all components
are present in every sample.

A challenge that has to be addressed when analyzing flow cytometry data is
that cell populations can be skewed and/or have heavy tails and are then not well
described by a single Gaussian component (Lo et al., 2008, Pyne et al., 2009,
Frühwirth-Schnatter and Pyne, 2010). To handle this we use multiple compo-
nents to model such populations, an approach that have often been employed for
flow cytometry data (Finak et al., 2009, Chan et al., 2008, Baudry et al., 2010,
Naim et al., 2014) and has the further advantage that the number of cell popula-
tions can be automatically detected. We merge Gaussian components into super
components with a procedure based on a systematic study of methods for merging
mixture components (Hennig, 2010).

Results from the MCMC sampling and subsequent merging are evaluated in
a number of quality tests. This is a crucial step since what is deemed as a good
clustering is application dependent. In some settings a given amount of variation
in location or shape is expected from biological or technical reasons, whereas in
others the same variation would indicate a different population. This also means
that it is necessary for the user to choose prior parameters for their application.
To simplify this process we have derived parametrizations so that the same value
of the parameters gives a similar effect of the prior on data sets of different sizes.

We verified the ability of the sampling scheme to recover model parameters
by fitting the model to a small three-dimensional synthetic data set with 1.2 mil-
lion cells in total and a large synthetic data set with in total 28 million cells in 8
dimensions. Then we applied BayesFlow to one of the datasets in the FlowCAP
I challenge, the GvHD dataset, which contains samples from patients who have
had organ transplants and might have early signs of graft-versus-host disease. We
show that BayesFlow does not only give a result which has the same degree of
accordance with manual gating as the best performing methods in FlowCAP I—
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which is much higher than what is obtained for other methods based on joint gat-
ing with Bayesian hierarchical models—it does also give a more similar treatment
of different samples than manual gating and the best methods from FlowCAP
I. Finally we applied BayesFlow, ASPIRE (Dundar et al., 2014) and HDPGMM
(Cron et al., 2013) to a data set with replicated samples from four healthy individ-
uals. The ratio between intra-donor technical variation and inter-donor biological
variation was similar between BayesFlow and HDPGMM, which was lower than
for ASPIRE. Moreover, BayesFlow was the only of the three methods which gave
cell populations with clear expression patterns.

2 Methods

2.1 Model

Let Y
ij

denote vector valued measurement number i in sample j. Here i 2
{1, . . . , n

j

}, where n
j

is the number of cells in sample j, and j 2 {1, . . . , J},
where J is the number of samples. We let the dimension of the observations be
denoted d. With K mixture components describing cell populations the prob-
ability density for cell measurement i of a flow cytometry sample j is modeled
as

f(Y
ij

) =

KX

k=1

⇡
jk

N(Y
ij

; µ
jk

,⌃
jk

) + ⇡
j0N(Y

ij

; µ
j0,⌃j0), (1)

where N(Y; µ,⌃) denotes the probability density function of the normal dis-
tribution with mean µ and covariance matrix ⌃ evaluated at Y. To facilitate
interpretation, the number K should be chosen as small as possible, given that
the model pass quality requirements (described under Quality control). The last
component represents outliers and its parameters µ

j0 = µ0 and ⌃
j0 = ⌃0 are

identical across samples. Outliers are often modeled by a uniform density over
the measurement space (Fraley and Raftery, 1998); however due to the curse of
dimensionality (Lee and Verleysen, 2007), this is not well behaved when we have
more than a few dimensions, in which case a Gaussian should perform better.
Noise coming from for example dead cells can also be captured in artificial cell
populations, and can be excluded in downstream analyses based on the expression
patterns.

The vector ⇡
j

= {⇡
j0, . . . , ⇡jK

} contains the mixing proportions, i.e. the
proportion of cells described by the component. To connect cell populations
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between samples we use a latent layer, assuming that for a given k each µ
jk

and
⌃

jk

is drawn from a normal and an inverse Wishart distribution respectively.
Specifically, in our model, for k = 1, . . . , K,

µ
jk

|✓
k

,⌃
✓k

⇠ N(✓
k

,⌃
✓k

), ⌃
jk

| 
k

, ⌫
k

⇠ IW ( 
k

, ⌫
k

) (2)

where ✓
k

, ⌃
✓k

,  
k

and ⌫
k

are hyper-parameters describing latent cluster k.
These parameters describes the variability between flow cytometry samples, in
contrast to µ

jk

,⌃
jk

which describe the distribution of cell measurements within
a sample. The normal and inverse Wishart distributions are conjugate priors to
the mean and the covariance respectively of the normal distribution, enabling
efficient sampling, however they are not jointly conjugate.

We call ✓
k

and  
k

/(⌫
k

� d � 1) the latent cluster mean and latent cluster
covariance matrix respectively, since they are the a priori expected values of µ

jk

and ⌃
jk

.
For the hyper-parameters describing the latent clusters and the mixing pro-

portions we use the following prior distributions:
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 k),

where W denotes the Wishart distribution and D denotes the Dirichlet distribu-
tion, which is conjugate prior to the multinomial distribution. For each ⌫

k

we
assign a exponential prior on the positive natural numbers. The complete struc-
ture of the model is displayed through a directed acyclic graph (DAG) in Fig.
1.

The parameters t
k

and S
k

define the prior belief of the locations of the la-
tent means ✓

k

, whereas the parameters Q
k

and n
✓k

control the spread of mixture
component means within a latent cluster and are hence important to control the
variation across samples. A large n

✓k
along with a small Q

k

forces the µ
jk

to-
gether; it makes large deviations between ⌃

✓k
and Q

k

unlikely. The parameters
H

k

and n
 k control the expected values and the variation of latent covariance

matrices as well as the variation among mixture component covariance matrices
in a latent cluster. If n

 k is large each ⌃
jk

will be close to 
k

/(⌫
k

� d � 1) for
any k, since a high n

 k makes high ⌫
k

more probable.
Finally, to simplify sampling from the posterior distribution of the parame-

ters, we add an component assignment variable x
ij

2 {0, 1, . . . , K} describing
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j = 1 . . . J

k = 1 . . .K

Figure 1: Directed acyclic graph describing the Bayesian hierarchical model.
Square boxes indicate that the values are known.

which component Y
ij

is drawn from. To comply with (1), the a priori uncer-
tainty of component membership is modeled by x

ij

⇠ Mult(⇡
j

, 1), where
Mult denotes the multinomial distribution.

The resulting posterior distribution of all the parameters, denoted jointly by
⇥, and x given the data Y is given in the Supplementary material, Section A. In
Section B we describe the Markov chain Monte Carlo (MCMC) sampling scheme
used to generate posteriors for our model parameters.

The computational bottleneck of the sampling scheme is the sampling of x,
with a computational complexity bounded by O(Jd3K max

j

n
j

). To handle
high dimensions diagonal covariance matrices can be used instead, in which case
the complexity is bounded by O(JdK max

j

n
j

). However, for datasets with
more than 20 dimensions the mathematical feasibility of using Gaussian mixture
models without any prior dimension reduction needs to be seriously considered
first, due to the curse of dimensionality (Lee and Verleysen, 2007).

106



2. Methods

Absent components

In some flow cytometry data sets not all cell populations are present in all sam-
ples. In our model this corresponds to that ⇡

jk

= 0 for some (j, k). How-
ever, mixture component parameters for empty clusters will still affect the mix-
ing of the MCMC for the parameters of the latent cluster. It can also happen
that if a cluster is empty that the mixture component moves and split a neigh-
boring cluster in two. To avoid this in such data sets we extend the model
by introducing a variable Z

j

2 {0, 1}K that says which components are ac-
tive in sample j. This has the further advantage that when sampling from the
posterior distribution of the model we get the probability for each cluster that
it is present in a sample. We impose a prior on Z

j

which is proportional to
exp(�c

s

P
K

k=1 Zj

)I(

P
K

k=1 Zj

> 0) where I denotes the indicator function
and c

s

> 0. The prior makes the model prefer fewer activated clusters so that if
there is a very small cluster the likelihood will be larger if it is inactivated, which
prevents spurious clusters. The strength of this prior can be adjusted to the ex-
pected size of the smallest clusters.

The changes to (1)–(3) required by this extension are straightforward but in-
ference of the model becomes a bit more involved since removing components
reduces the dimension of the model. To accommodate for this we have included
a reversible jump step in our sampling algorithm. Details are given in the Supple-
mentary Material, Section B.

2.2 Merging latent clusters

To determine the “correct” number of clusters in a data set directly from the data
is an ill-defined problem, since what should be considered to be a separate cluster
depends on the interpretation of the data. Nevertheless, there are many differ-
ent criteria which can be used to guide the decision about the number of pop-
ulations (Frühwirth-Schnatter, 2006, Hennig, 2010). We use overlap between
components—measured by Bhattacharyya distance—and unimodality of the re-
sulting super clusters—measured by Hartigan’s dip test (Hartigan and Hartigan,
1985)—to determine which latent clusters to merge and to indicate our confi-
dence in the mergers.

In an evaluation of criteria for merging Gaussian components to represent
more complex distributions, the Bhattacharyya distance performed well (Hen-
nig, 2010). Bhattacharyya distance merges clusters according to a pattern-based
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cluster concept as opposed to a modality-based concept (Hennig, 2010). With a
pattern-based cluster concept a small dense cluster inside a sparse cluster—for ex-
ample a well specified cell population inside a region with sparse outliers—will be
considered to be different clusters. This would not be the case for the modality-
based cluster concept as long as the generating probability density is unimodal.

The Bhattacharyya distance between N(µ1,⌃1) and N(µ2,⌃2) is

dbhat = 1/8 · (µ1 � µ2)
>

¯⌃
�1

(µ1 � µ2) + 1/2 · log

⇣
| ¯⌃|/

p
|⌃2||⌃2|

⌘
, (4)

where ¯⌃ = (⌃1 +⌃2)/2 (Fukunaga, 1990). In order to measure Bhattacharyya
distance between mixtures of Gaussian distributions, which is necessary for decid-
ing if super clusters should be merged with other clusters, we approximate each
mixture with a Gaussian distribution. The means and the covariance matrices are
estimated using a soft clustering of the data points inferred from the sampling of
x
ij

, detailed in the Supplementary material, Section C.
However, it is not obvious how to set a threshold for dbhat, since the appro-

priate threshold depends on the distribution of the data (Hennig, 2010), which is
unknown. Because of this we use a low soft threshold d1 and a high hard thresh-
old d2. Two clusters closer to each other than d1 are always merged, two clusters
whose distance is between d1 and d2 are only merged if they fulfill an additional
criterion based on Hartigan’s dip test for unimodality.

Unimodality is an appealing heuristic for defining cell populations, and it has
frequently been used for automated gating (Chan et al., 2008, Ge and Sealfon,
2012, Naim et al., 2014). It has two main limitations. The first one, that pop-
ulations intuitively should be separate if they have very different densities—even
when they overlap so that their combined distribution is unimodal—can be by-
passed by combining unimodality with a pattern-based merging criterion such
as Bhattacharyya distance. The second one, that it is difficult to determine if
a multi-dimensional empirical distribution is multimodal, is usually handled by
considering one-dimensional projections (Hennig, 2010, Naim et al., 2014). This
is the approach we take here, using Hartigan’s dip test of unimodality for each of
the projections onto the coordinate axes where Bhattacharyya overlap is low, and
for the projection onto Fisher’s discriminant coordinate. If for a proposed merger,
any of these projections is found to be multimodal, the clusters are not merged.
Further details of the merging procedure are given in the Supplementary material,
Section C.
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2.3 Quality control

To verify that the output of BayesFlow fulfills the user’s requirements, a number
of checks are performed:

• Convergence of the MCMC sampler is established by viewing trace plots
of sampled parameters, such as in Fig. S1.

• To ensure that variation of the two different populations are not confused
with each other, we require that the Bhattacharyya distance as well as the
Euclidean distance from each sample component to its corresponding la-
tent component should be smaller than these distances to any other latent
component which does not belong to the same super cluster.

• To ensure that the obtained clusters should not be divided further, Harti-
gan’s dip test is computed for the projections onto the coordinate axes of
all super clusters. Projections which have a dip test p-value below 0.28—
the threshold for merging components (see Supplemental Material Section
C)—are visualized using histograms of quantiles of the weighted data be-
longing to the cluster, as in Fig. S3 in the Supplemental material.

• To ensure that the model fits the data reasonably well, samples from the
posterior predictive is compared to the true data in one- and two-dimensional
histograms such as Fig. 3, Fig. 4 and Fig. 12.

• To ensure that there are no outliers among the cluster centers, the centers
for each cluster are plotted together along one dimension, such as in Fig.
13 (a).

• Additionally, to detect components with aberrant shapes, the eigenvectors
corresponding to the largest eigenvalues, multiplied with the corresponding
eigenvalues, can be viewed as in Fig. S4 in the Supplemental Material.

If any of the quality criteria is not met, the simulation should be rerun, either
using the same or different parameters. Even if the same parameters are used a
different result can be obtained due to randomness in the initialization.
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2.4 Experiments

2.4.1 Simulated data

In order to verify that the proposed sampling scheme can find the correct model
parameters, the MCMC algorithm was applied to two simulated datasets. The
first dataset was three-dimensional, which enables direct visual evaluation. It had
four latent clusters across eighty artificial flow cytometry samples; each sample
had 15,000 cells giving a total of 1.2 million cells. One of the latent clusters was
present only in eight samples and another one was present in 24 samples, so that
the ability to find rare cell populations was tested. Moreover, the cluster which
was present in only eight samples contained only 1% of the total number of cells,
thus also the ability to find small cell populations was tested. The parameters
and the algorithm used for generating the data are given in the Supplementary
material, Section D.1.

The second data set was designed to test the ability to handle large data. It was
eight-dimensional, with eleven latent clusters and 192 artificial flow cytometry
samples. Each sample had measurements of 150,000 cells, giving a total of 28
million cells. Four of the eleven clusters were missing in half of the samples.

Prior parameters and initial values for the MCMC sampler are given in the
Supplementary material, Section D.1. All priors were chosen to be non-informative.
The outlier component was not used for inference in the small dataset, but it was
used for the large dataset. The MCMC sampler ran first for a number of burn-in
iterations, then the posterior distribution was explored in a number of production
iterations. During the production iterations, apart from sampling parameters of
the model, a value of Y was also drawn, i.e. a sample from the posterior predictive.
For the first synthetic data set 10,000 burn-in and 100,000 production iterations
were used. For the second, larger, data set we used 5000 burn-in iterations and
5000 production iterations.

For the second data set the MCMC sampler was run on Amazon Cloud, using
192 cores. Each iteration took on average one second, so that about 2.7 hours was
needed in total.

2.4.2 Flow cytometry data

We analyze two flow cytometry data sets with BayesFlow: the data set GvHD
from the FlowCAP I challenge—with four markers, 12 samples and approxi-
mately 13,000 cells per sample—and a data set obtained from the R package
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Figure 2: Cell population which is hard to detect.

healthyFlowData (Azad, 2013) with technical replicates of PBMC samples from
healthy donors—in total 20 samples with approximately 20,000 cells, also mea-
sured with four markers. In the GvHD dataset we can compare the gating ob-
tained from BayesFlow with manual gating provided from FlowCAP as well as
automated gating from a wide range of other methods. In the healthyFlowData
we can instead compare gating between technical replicates to see if samples are
treated in a consistent manner.

For the healtyFlowData dataset we used an exploratory approach with non-
informative priors. We ran multiple simulations and gradually increased the num-
ber of components until we passed the quality criteria described under Quality
control; we finally arrived at using K = 25 components. For the GvHD data
set we started with an exploratory approach and gradually increased the number
of components, but in the quality checks we noted one population in one of the
samples which was very hard to capture. Then we decided to use an informative
approach for this population. Using a scatter plot, Fig. 2, we set boundaries for
this population in the dimensions given by the CD4 and the CD8b marker and
computed its mean and empirical covariance matrix. We used the mean to set an
informative prior for ✓

k

and the mean and the empirical covariance to initialize
the component. Prior parameters in both the informative and non-informative
case are described in the Supplemental Material, Section E.2.

BayesFlow applies three data preprocessing steps: 1) Data points with extreme
values in at least one dimension (larger than 0.999 times the largest data point or
smaller than 1.001 times the smallest data point) are removed. Such data points
can lead to components with singular covariance matrices, and a well designed
flow cytometry experiment should not have significant populations with such val-
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ues. 2) The data is scaled using the 1% and 99% percentiles q0.01 and q0.99 of the
pooled data, with the same scaling for all samples, so that q0.01 = 0 and q0.99 = 1
for each marker for the pooled data. This is done in order to be able to set in-
formative priors in an intuitive way. 3) Before testing which components should
be merged, a very small amount of noise is added to the data (standard deviation
0.003). This is since the discreteness of the original flow cytometry measurements
can lead to a striped pattern in the flow cytometry data (Roederer, 2001) and also
when it is not visible to the human eye it disturbs the dip test.

After preprocessing, parameters for the MCMC sampler were initialized by
running the EM algorithm on the pooled data, followed by the initialization
scheme used for the large synthetic dataset, detailed in the Supplemental Material,
Section D.4. We ran 16,000 burn-in iterations and 4000 production iterations of
the MCMC sampler for both experiments. The burn-in period consisted of five
phases: In the first phase, the priors on variation in location and shape were mod-
ified to force clusters together. Before the second phase, priors parameters were
set to normal again. After the second phase, components which were considered
to be outliers were turned off. They were forced to stay off during a short third
phase, but from the forth phase and onwards components were allowed to turn
on and off. Label switching was allowed during the initial four phases in order to
escape non-desired local minima, but then disallowed. The values of parameters
controlling the simulation during the burn-in and production period are given in
Table S1 in the Supplemental Material.

We also applied the two other joint gating methods based on Bayesian hi-
erarchical models: ASPIRE (Dundar et al., 2014) and HDPGMM (Cron et al.,
2013). For ASPIRE parameters were chosen according to the strategy recom-
mended by Dundar et al. (Dundar et al., 2014); details are given in the Supple-
mentary Material, Section E.5. For each run we used in total 15,000 iterations, of
which 14,000 were set as burn in iterations. For HDPGMM default parameters
were used, with a burn-in period of 3000 iterations and a production period of
100 iterations.

We ran BayesFlow and ASPIRE on a 3.2 GHz quad core CPU. A BayesFlow
run took 0.5 h for the GvHD dataset and 1.4 h for the healthyFlowData dataset.
ASPIRE took in total 2.4 h for the GvHD dataset and 6.6 h for the healthyFlow-
Data dataset per run. Four runs of ASPIRE was needed to determine the 

i

parameters. HDPGMM was run on a dual core GPU. It needed 0.72 h for the
GvHD dataset and approximately 1 h for the healthyFlowData dataset.
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Figure 3: (a) One and two dimensional histograms for one synthetic flow cytom-
etry sample containing 15,000 data points; (b) histograms of 15,000 data points
drawn uniformly from the pooled data from the synthetic data experiment.

3 Results

3.1 Simulated data

We begin by analyzing the smaller data set. In Fig. 3 we show univariate and
bivariate histograms of all synthetic cell measurements pooled together, as well
as the corresponding histograms of the data from a single flow cytometry sample
where all four clusters are present. Note that the data when pooled together has a
complicated density, as it is in fact a mixture of 232 multivariate normal densities.

In Fig. 4 we show the same univariate and bivariate histograms, but this time
with samples from the posterior predictive distribution of Y. From the synthetic
cell measurements generated from the inferred models of the datasets it is clear
that the inferred models are accurate and capture the variation across samples,
which a model only of pooled data cannot do.

Fig. 5 displays dots at the posterior mean locations of the mixture component
centers µ

jk

whose posterior probability of being active is greater than 1%; the
true locations of the active clusters are displayed as circles. The model is able to
detect which clusters that are active and which are not, and to find the location of
the component means.

Finally in Fig. 7 and Fig. 9, the marginal posterior distributions of the la-
tent cluster parameters ✓

k

and 
k

, subtracted by their true values, are presented.
In Fig. 7 the dot represents the difference between the median of posterior dis-
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Figure 4: (a) One and two dimensional histograms of 15,000 posterior draws of
Y for the flow cytometry sample displayed in Fig. 3 (a); (b) histograms of 15,000

posterior draws of Y drawn uniformly from all the flow cytometry samples, thus
matching Fig. 3 (b).
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the true cluster centers (circles) in the small synthetic data experiment.
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Figure 6: The posterior mean of the mixture component centers, µ
jk

(dots), and
the true cluster centers (circles) in the large synthetic data experiment for the first
three dimensions.

tribution and the true value of each ✓
k

. The vertical lines represent the 2.5%

and 97.5% quantiles. Fig. 9 displays results for each latent covariance matrix
 

k

/(⌫
k

�4) in the same way. From Fig. 7 and Fig. 9 we see that the true param-
eters of both the means and the covariances are all between the 2.5% and 97.5%
quantiles of the posterior distribution.

The true and estimated cluster centers of the 8-dimensional data set cannot
be displayed efficiently with just three dimensions at hand, but a 3-dimensional
projection is shown in Fig. 6. The average error in Euclidean distance in the full

1 2 3
✓1

1 2 3
✓2

1 2 3
✓3

1 2 3
✓4

-0.23

0.28

Figure 7: The difference between the true value of each entry in each ✓
k

and the
approximated marginal posterior distribution generated by the MCMC sampler
in the small synthetic data experiment. The black dot represents the median and
the vertical line goes between the 2.5% and 97.5% quantiles. The light gray
horizontal line is the 0 line.
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Figure 8: The difference between the true value of each entry in each ✓
k

and the
approximated marginal posterior distribution generated by the MCMC sampler
in the large synthetic data experiment. The black dot represents the median and
the vertical line goes between the 2.5% and 97.5% quantiles. To get the axis on
the same scale for all the clusters, they are scaled by the standard deviation of µ

k

.
The light gray horizontal line is the 0 line. The red dot and lines is the same
however where one uses the true µ

k

to estimate ✓
k

, rather then the µ
k

obtained
by taking the posterior means of the mixtures.
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Figure 9: The difference between the true value of each of the entries in
 

k

/(⌫
k

� 4) and the approximated marginal posterior distribution generated by
the MCMC sampler in the synthetic data experiment. The black dot shows the
median, and the black vertical line goes between the 2.5% and 97.5% quantiles.
The light gray horizontal line is the 0 line.
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8-dimensional space is 0.007, which can be compared to the average error had
the latent mean across samples been used, namely 0.110, which is the best that
could have been obtained from a model not including variation between samples.
The outlier component was used for inference in the results presented here, but
omitting it has very small effect.

In Figure 8, we show the posterior distribution of the latent cluster means
where again the dot represents the difference between the median of posterior
distribution and the true value of each ✓

k

. The vertical lines are the 2.5% and
97.5% quantiles. The posterior samples have been divided by the standard devi-
ation of the true ✓

k

so that the scales across the clusters are equal. Some of the
credibility intervals do not contain zero, but this is explained when studying the
intervals that would have been obtained if the true µ

k

were used (shown in red),
since they are almost identical.

We thus see that cluster centers and credibility intervals for latent clusters are
captured well in both synthetic data sets.

3.2 Flow cytometry data

3.2.1 GvHD

For the analysis of the GvHD dataset we did twelve runs of BayesFlow in the
informed setup described above. Seven were excluded due to confusion between
populations, i.e. at least one sample component was closest to the wrong latent
component; of the remaining five, one more run was excluded since it has not
converged, and another two because of multimodal clusters. This leaved two runs
that passed the quality control.

Table 1 reports the accordance with manual gating for the two BayesFlow
runs as well as what is obtained from ASPIRE and HDPGMM, as well as the
top two performing methods for this data set in FlowCAP: flowMeans and Sam-
SPECTRAL.

One of the two BayesFlow runs has the highest accordance with manual gat-
ing, the other one is on par with flowMeans and SamSPECTRAL, which is con-
siderably higher than ASPIRE and HDPGMM. However, as can be seen in Fig.
10, the gating of different samples is arguably most consistent for BayesFlow as
compared to manual gating, flowMeans and SamSPECTRAL.

To get a further understanding of the variability between samples in BayesFlow,
summary statistics for the obtained components and cell populations are shown
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Figure 10: Gated events according to four methods (BayesFlow, manual and the
two top performers in FlowCAP I) of the twelve samples in the GvHD dataset,
projected onto the two first dimensions. For BayesFlow, the run with least ac-
cordance with manual gating, run 2, is shown. Similar plots for ASPIRE and
HDPGMM as well as BayesFlow run 1 are shown in the Supplemental Material,
Fig. S6.
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Table 1: Accordance with manual gating for GvHD data set. For HDPGMM
we also report the result when components are merged according to our merging
procedure. When this procedure is applied to the results obtained by ASPIRE,
no components are merged, i.e. the original result is identical to what is obtained
after merging.

Method F-measure Precision Recall

BayesFlow run 1 0.91 (0.86, 0.95) 0.96 0.89
BayesFlow run 2 0.87 (0.82, 0.92) 0.95 0.84
ASPIRE 0.67 (0.63, 0.72) 0.86 0.63
HDPGMM 0.35 (0.30, 0.39) 0.98 0.23
HDPGMM merged 0.60 (0.54, 0.66) 0.95 0.48
FlowMeans 0.88 (0.82, 0.93) 0.93 0.86
SamSpectral 0.87 (0.81, 0.93) 0.96 0.83
Ensemble FlowCAP 0.88

in Fig. 11.

3.2.2 healthyFlowData

We did 18 runs of BayesFlow with K = 25. Ten of these were excluded due
to confusion between populations, moreover two runs were excluded since they
had clusters with clearly multimodal distributions. For the six runs that passed
the quality control, 3-6 components were turned off across all samples; they are
excluded from visualizations.

In Fig. 12 we visualize model fit and inter-sample variation for the first of the
six runs that passed the quality control by plotting latent and sample components
as well as histograms of real data and synthetic data generated from the model,
for two different samples and for the pooled data. We can thus see how shape
variations are captured by the model.

The output of BayesFlow, ASPIRE and HDPGMM can be compared in Fig.
13. The merging procedure we used for BayesFlow has been applied for both
ASPIRE and HDPGMM, however for ASPIRE no components were merged by
this. In BayesFlow each of the populations correspond to clear expression pat-
terns, which is not the case for the other methods. For example the first popula-
tion is clearly CD4+CD8- T-cells whereas for both ASPIRE and HDPGMM this
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Figure 11: Summary statistics of the six cell populations obtained by BayesFlow
(run 2) in the dataset GvHD. The outlier component has at most 0.0019 of the
cells in a sample. (a) Each panel displays the locations µ
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of all mixture com-
ponents that represent the population, across all samples. Different shades of a
color represent different latent components k. (b) Box plots of the soft clusters
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Figure 12: BayesFlow component parameter representations of inferred latent
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been merged.
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population contains both components which are CD8- and components which
are CD8+.

We also compare intra-donor variation of cell population size to inter-donor
variation for the six BayesFlow runs, as well as for ASPIRE and HDPGMM in
Fig. 14. For ASPIRE there are inter-donor distances which are clearly smaller than
some intra-donor distances, which is not the case for BayesFlow and HDPGMM.

4 Discussion

From different runs of BayesFlow we can get different representations of data, as
in the case of the GvHD dataset. This is because with highly overlapping pop-
ulations there might be multiple models representing the data equally well. But
since all samples are gated jointly in every run, the gated populations can still be
compared across samples. The user might have a preference for one representation
or the other though, and informative priors can be used to guide BayesFlow to a
preferred representation.

BayesFlow is not aimed at discovery of rare cell populations, but it can be used
together with an algorithm specifically designed for detecting rare cell populations
in a sample, such as SWIFT (Naim et al., 2014), and then use informative priors
to find how this population occurs across an entire set of samples, in a similar way
as was done in the GvHD dataset.

How much clusters should be merged is a decision that needs to be taken by
the interpreter of the data. In some settings one might want to be restrictive with
merging and then use higher thresholds. In others one might want additional
mergers after viewing joint 1-dimensional projections of the clusters.

The BayesFlow pipeline does not in itself include any compensation or any of
the non-linear transformations which are often used for flow cytometry data, such
as logicle. Compensation is a linear transformation and Gaussian Mixture Mod-
els are invariant under linear transformations, so they perform equally well on
uncompensated and compensated data. Non-linear transformations such as logi-
cle can make Gaussian populations non-Gaussian, which makes inference harder.
The flow cytometry data we used for the experiments had already been com-
pensated, the healthyFlowData data set had also been transformed with an asinh
transform; details are given in the Supplemental Material, Section E.1.

BayesFlow finds a joint representation of an entire set of samples. In order for
this representation to be reasonable there has to be sufficient correspondences be-
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Figure 13: Summary statistics of inferred cell populations in BayesFlow, ASPIRE
and HDPGMM, ordered by population size. For HDPGMM, the six largest
components after merging are shown, the remaining components have together
at most 0.0013 of the cells in a sample. The noise component in BayesFlow has
at most 0.004 of the cells in a sample. (a) Locations µ

jk

of mixture components
that represent the each population, in each samples, cf. Fig. 11. (b) Box plots of
the soft clusters in the pooled data cf. Fig. 11. (c) Population proportions across
flow cytometry samples.
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Figure 14: Distances within (w) and between (b) donors as measured by `1

distance between vectors of population sizes. For the six BayesFlow runs and
HDPGMM there is very little or no overlap between within-donor and between-
donor distances, whereas for ASPIRE there is clear overlap.

tween samples. Even if for a data set with very little correspondences a joint model
could be obtained by using a very large number of components, it would hard to
gain any insights from such a model. In such a case an entirely computational
pipeline without the cell population identification step would be preferred.

BayesFlow can be computationally intensive if many runs are needed to pass
the quality control. For these cases it would be desirable to complement BayesFlow
e.g. with initialization methods that would allow passing the quality control more
often, so that few runs in BayesFlow would be needed. Fast initialization meth-
ods and early quality checks aiming at this would therefore be of interest for the
community and is something that we propose for further study.

5 Conclusions

In this paper we have presented a new Bayesian hierarchical model designed for
joint cell population identification in many flow cytometry samples. The model
captures the variability in shapes and locations of the populations between the
samples and we have demonstrated its use in an exploratory as well as in a partly
informed setting with some prior information. We showed that for synthetic
datasets generated from the model, the parameters were recovered with high ac-
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curacy through a MCMC sampling scheme. The model was then applied to a real
flow cytometry data set where a manual gating was available, and it was shown to
have very high accordance with manual gating as compared to other automated
gating methods, while at the same time the gating was more consistent across
samples than either the manual gating or other automated gating methods. When
applied to another flow cytometry data set with technical replicates of blood from
healthy donors, BayesFlow gave a parsimonious representation of the data, which
enables visualization and monitoring of its parameters. The obtained cell popula-
tions had clear expression patterns as opposed to the clusters obtained by ASPIRE
and HDPGMM, where for example CD4 + CD8� T-cells where in the same
cluster as CD4 + CD8+ T-cells. The population sizes obtained by BayesFlow
and HDPGMM respectively had lower intra-donor variation compared to inter-
donor variation than what was obtained from ASPIRE.

Many approaches of automated gating of multiple flow cytometry samples in
parallel have been aimed at finding features of the data so that either samples can
be classified into groups, e.g. cancer or normal, or they can be used to predict
an outcome such as expected time to progression of disease. Features are often
designed based on characteristics of cell populations, but usually not so much
attention has been given to ensure that they represent actual cell populations.
BayesFlow takes the opposite approach and gives a representation of the data ac-
cording to cell populations, with the same cell populations across the entire set of
samples (except when some populations only occurs in a subset of the samples).
The advantages to this approach are among others that the result is directly bi-
ologically interpretable and that a rich output is given which can be explored in
many different ways which are familiar to someone who is used to manual gating.
In this way we can join the objectivity and ability to work in high dimensions and
with many samples of automated gating with the flexibility in interpretation of
manual gating.
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Additional Files

Additional file 1 — Supplementary material

The supplementary material contains the posterior in BayesFlow, the MCMC
sampling scheme, additional details on the merging of components, information
about the data generation, priors and initialization for the synthetic data exam-
ple; parameters used for ASPIRE, additional details on healthyFlowData, the pri-
ors and the initialization procedure used when studying this data set and further
results pertaining to the real flow cytometry data set, including fitting Gaussian
mixture models to individual samples of healthyFlowData with the EM algorithm
and scatter plots of GvHD for ASPIRE, HDPGMM and BayesFlow run 1.

Additional file 2 — Data generation files

A Python script for generating the large synthetic dataset, along with means, co-
variances and weights needed for this.

130



Appendix

A Posterior

The posterior distribution given the model (1), (2), the priors (3) and data Y is
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B Sampling from the posterior distribution

We use a Markov Chain Monte Carlo (MCMC) algorithm to generate samples
from the posterior distribution of the parameters Robert and Casella (2004). In
each iteration we draw a value of each of the parameters ⇥ and of x. The back-
bone of our algorithm is a Gibbs sampler, but we need a Metropolis-Hastings step
to sample ⌫

k

. We also use Metropolis-Hastings steps to enable label-switching—
which improves the mixing of the Gibbs sampler—and to turn on and off mixture
components in the extended model with absent clusters.

In a Gibbs sampler samples from the full posterior distribution is obtained
by successively sampling from the conditional posterior distributions of each of
the variables given all other variables. First we sample the component assigment
variables, x, fixing all other parameters. The posterior from which we sample is a
multinomial distribution with
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where ‘. . .’ denotes conditioning on all parameter except the one of interest.
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Let n
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denote the number of i such that x
ij

= k and let Y
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denote the
vector joining all Y
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= k. The following Gibbs steps are derived
from the posterior distribution (5)
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denotes the canonical parameterization of the normal distribution,
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To handle the non-standard conditional distribution of ⌫
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If ⌫⇤
k

is accepted it will be the new sample, otherwise the new sample will be
⌫
k

. The parameter r is updated adaptively to get a desired acceptance rate of
0.3, according to an algorithm by Roberts and Rosenthal Roberts and Rosenthal
(2009).

B.1 Label switching

An issue that frequently occurs, especially with poor starting values, is that a
cluster {µ

jk1
,⌃

jk1 , ⇡jk1} is incorrectly assigned to the latent cluster k1 when
it clearly should belong to k2. When the number cells is large the first row of
(5) will dominate the posterior so that {µ

jk1
,⌃

jk1 , ⇡jk1} or {µ
jk2

,⌃
jk2 , ⇡jk2}

does not change much at all in the updating step and thus in practice the clusters
will never move close enough to each other in order to switch locations.

To remedy this issue, we introduce an extra MH step where labels can be
switched between clusters in each sample j in each iteration. The proposed MH
algorithm has a symmetric transition kernel, where two labels k1 and k2 are sam-
pled from {1, . . . , K} with equal probability. The proposed switch is accepted
with probability

↵(k1, k2) = min

 
1,

⇡(µ
jk2 |✓k1 ,⌃✓k1

)⇡(µ
jk1 |✓k2 ,⌃✓k2

)

⇡(µ
jk1 |✓k1 ,⌃✓k1

)⇡(µ
jk2 |✓k2 ,⌃✓k2

)

⇡(⌃
jk1 | k2 , ⌫k2)⇡(⌃

jk2 | k1 , ⌫k1)

⇡(⌃
jk1 | k1 , ⌫k1)⇡(⌃

jk2 | k2 , ⌫k2)

◆
. (7)

B.2 Cluster activation and deactivation

In the extended model where components can be absent in some samples we use a
reversible jump MH-algorithm Green (1995) to enable changes to the dimension
of the model. We use the indicator variable Z

j

to keep track of which components
that are active; Z

jk

= 1 if component k is active in sample j and Z
jk

= 0
otherwise.

Activation or deactivation is proposed as the last step of each iteration of the
MCMC algorithm. Throughout the activation/deactivation step the component
assignment variables x

ij

are integrated out of the posterior.
A deactivation of an active component is proposed with probability p

d

and
an activation of a component that is not active is proposed with probability p

a

.
The component that is proposed to be deactivated/activated is chosen randomly
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among the clusters that are active or not active respectively with equal probability.
The probability of proposing to deactivate component k in sample j is

q(Z
jk

= 1 ! 0) =

p
dP

K

l=1 Z
jl

.

The probability of proposing to activate component k in sample j is

q(Z
jk

= 0 ! 1) =

p
a

K �PK

l=1 Z
jl

.

If an activation step is proposed it is necessary to generate parameters for the
new component; they are obtained in the following way:

⇡⇤
jk

⇠ Beta(↵, �),

µ⇤
jk

⇠ N(✓
k

,⌃
✓k

),

⌃⇤
jk

⇠ IW ( 
k

, ⌫
k

).

Here ↵ and � is chosen so that the probability ⇡⇤
jk

is typically close to zero. The
transition density q

kj (µ
⇤
jk

,⌃⇤
jk

, ⇡⇤
jk

) is the joint density of these new parameters
when they are sampled as above. For the remaining components we keep the
mean and covariance parameters, µ⇤

jl

= µ
jl

and ⌃⇤
jl

= ⌃
jl

for l 6= k, but
the probabilities ⇡

j

have to be modified. In the reversible jump algorithm this
is done in a dimension matching transform. When activating a cluster we set
⇡⇤
jl

= (1 � ⇡⇤
jk

)⇡
jl

for l 6= k in the transform and when deactivating a cluster
we set ⇡⇤

jl

= ⇡
jl

/(1 � ⇡
jk

) for l 6= k.
In order to make the Markov chain reversible it is necessary to add the Jaco-

bian of the variable change in the dimension matching transform as a factor in
the acceptance probability. Let ⇥⇤ denote the set of parameters in the proposed
model and let ⇥ denote the set of current parameters. In an activation step we
get Richardson and Green (1997)

������
@(⇥⇤

)

@
⇣
⇥, ⇡⇤

jk

, µ⇤
jk

,⌃⇤
jk

⌘

������
= (1 � ⇡⇤

jk

)

PK
l=1 Zjl ,

and in a deactivation step the Jacobian is the inverse.
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We are now ready to define the acceptance probability for a proposed ⇥⇤

which implies activation of component k in sample j. The acceptance probability
equals

↵ (⇥, ⇥⇤
) = min

(
1,

⇡(⇥⇤|Y)q(Z
jk

= 1 ! 0)

⇡(⇥|Y)q
kj (µ

⇤
jk

,⌃⇤
jk

, ⇡⇤
jk

)q(Z⇤
jk

= 0 ! 1)

������
@(⇥⇤

)

@
⇣
⇥, ⇡⇤

jk

, µ⇤
jk

,⌃⇤
jk

⌘

������

9
=

; , (8)

where ⇡(⇥⇤|Y) is the posterior distribution (5) with x
ij

integrated out. This
can be written as

↵ (⇥, ⇥⇤
) = min

(
1,

Q
nj

i=1
P

K

l=1 Z⇤
jl

⇡⇤
jl

N(Y
ij

; µ⇤
jl

,⌃⇤
jl

)

Q
nj

i=1
P

K

l=1 Z
jl

⇡
jl

N(Y
ij

; µ
jl

,⌃
jl

)

·

D(⇡⇤
j

;a) exp(�c
s

)

Beta(⇡⇤
jk

; ↵, �)D(p
j

;a)

pdPK
l=1 Zjl

pb

K�
PK

l=1 Zjl

(1 � ⇡⇤
jk

)

PK
l=1 Zjl

9
=

; .

The acceptance probability for a deactivation step is obtained from the same ex-
pression but with inverse ratio.

When we extend the model and introduce Z
j

the posterior changes so that the
sampling of the other variables has to be modified. As an example the conditional
distribution of 

k

changes to

W

0

@
 
H

k

+

JX

h=1

Z
hk

⌃�1
jk

!�1

, ⌫⇤
+ ⌫

k

JX

h=1

Z
hk

1

A .

We do not display all the changes since they are notationally complicated but
otherwise straightforward, except for the label switching step. Suppose we propose
to change k1 to k2 where k1 is an inactive cluster. Then the acceptance probability
(7) changes to

↵(k1, k2) = min

 
1,

⇡(µ
jk2

|✓
k1 ,⌃✓k1

)⇡(⌃
jk2 | k1 , ⌫k1)

⇡(µ
jk2

|✓
k2 ,⌃µk2

)⇡(⌃
jk2 | k2 , ⌫k2)

!
. (9)
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C Merging latent clusters

The merging of latent clusters is done in a hierarchical fashion. In each step we
have a number of latent super clusters comprising of one or more latent clusters.
The corresponding super components in each sample are mixtures of Gaussians,
a representation which is hard to work with. It is useful to instead use the data
perspective, i.e. to consider the soft clustering of the data induced by the GMM
of each sample.

For each sample we define super cluster k from the probabilities for each of
the data points in that sample to belong to any of the components linked to the
latent super cluster k. We denote cluster k in sample j by �

k,j

= (Y
ij

, w
ijk

)

nj

i=1,
where w

ijk

is the probability that Y
ij

belongs to super cluster k. The parameter
w
ijk

can be estimated from the sampling of x
ij

.
To determine candidates for the subsequent merger, Bhattacharyya distance

is computed between all pairs of current clusters in each sample. To do this we
approximate each �

k,j

with a Gaussian distribution with parameters

µ(kj)

=

njX

i=1

w
ijk

Y
ij

, ⌃(kj)

=

njX

i=1

w
ijk

(Y
ij

� µ(kj)

)(Y
ij

� µ(kj)

)

>

and use formula (4), so

dbhat(�k,j ,�l,j) = 1/8 · (µ(kj) � µ(lj)

)

>
¯⌃

�1
(µ(kj) � µ(lj)

)

+ 1/2 · log

✓
| ¯⌃|/

q
|⌃(kj)||⌃(lj)|

◆
,

where ¯⌃ = (⌃(kj)

+ ⌃(lj)

)/2. The candidates for the subsequent merger are
the pair of clusters (k, l)—which among those pairs who have not previously
been evaluated for merging—has highest minimal value of exp(�dbhat(�kj ,�lj))
across samples j. It is natural to consider exp(�dbhat) instead of dbhat when
comparing Bhattacharyya distances since exp(�dbhat) is an upper bound of the
misclassification probability between the components Fukunaga (1990).

If min

j

(exp(�dbhat(�kj ,�lj))) > h1 latent clusters k and l are immediately
merged. On the other hand, if h1 > min

j

(exp(�dbhat(�kj ,�lj))) > h2, they
are merged only if the resulting cluster does not have sufficient evidence of being
multimodal. Finally, if min

j

(exp(�dbhat(�kj ,�lj))) < h2 they are not merged
and the procedure is stopped.
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To evaluate multimodality of potential mergers we apply Hartigan’s dip test
of unimodality Hartigan and Hartigan (1985) to the projection of the merged
cluster onto the coordinate axes which have 1-dimensional Bhattacharyya overlap
below a threshold h(1) and to the projection onto Fisher’s discriminant coordinate
separating the two clusters, namely u = (⌃(kj)

+⌃lj

)

�1
(µ(kj) � µ(lj)

) Fisher
(1936). Hartigan’s dip statistic is computed from the empirical distribution func-
tion, which can readily be computed for these soft clusters from (Y

ij

, w
ijk

)

nj

i=1.
If for any of the projections in any of the samples where the total weight of the
cluster

P
nj

i

w
ijk

is at least 10, we get a p-value below the threshold h
d

we do not
merge.

To determine the thresholds h1, h2 and h
d

we use results from two experi-
ments performed by Hennig Hennig (2010). Synthetic data were generated from
distributions which naturally represent a single cluster and a number of Gaus-
sian components were fitted to the data. For different criteria, threshold values
for merging the components to one cluster in 95% of the cases, were then re-
ported. The experiments were performed over a range of different dimensions
and number of data points. To determine h1, h2 and h

d

, we consider only results
for distributions of dimension two to five and for at least 100 and at most 500
points, since for most of the flow cytometry samples in the data sets studied in
Section 3.2 a small cluster containing 1% of the data points would have about
100–200 data points.

In the first experiment two components were fitted to data generated from
a unimodal mixture of two Gaussian distributions with the property that if the
means were further apart the density would be bimodal. In the second experiment
six Gaussian components were fitted to data generated from uniform distributions
on hypercubes. The merging of the six components were made in a hierarchical
procedure similar to ours.

When Bhattacharyya distance was used as merging criterion the threshold for
exp(�dbhat) varied between 0.40 and 0.53 for the relevant 2- and 5-dimensional
data sets in the first experiment. For the second experiment we considered four
combinations of dimension and number of data points and for these the thresh-
olds were 0.12, 0.17, 0.01 and 0.11 respectively. This lead us to use h1 = 0.47 as
the soft threshold and h2 = 0.08 as the soft threshold.

Hartigan’s dip test was also evaluated as a criterion for merging, but only the
first of the experiments is relevant for our use of it, since we only use the dip
test to evaluate proposed mergers and not select candidates for merging. Only
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projections onto Fisher’s discriminant coordinate were considered in the experi-
ment. The threshold for the p-value varied between 0.15 and 0.41, so we chose
h
d

= 0.28. It should be noted that this cannot be translated into a significance
level since the tests are done in a data-dependent way.

The threshold h(1) was set based on the results in the first experiment for
one-dimensional data sets. For data sets with 50 data points, the threshold for
exp(�dbhat) was 0.201, for data sets with 200 points it was 0.39 and for data
sets with 500 data points it was 0.49. Therefore we let h(1) be dependent on the
weight of the cluster in the following way:

h(1)
(w) =

8
><

>:

0.201 if w  50

0.390 if 50 < w  200

0.490 if w > 200.

D Simulation study

D.1 Data generation

In this section the method for generating the small synthetic dataset is presented.
The Additional file article_simulatedata.py contains the method for gen-
erating the large synthetic dataset. The four latent means are

✓1 = [0, 0, 0], ✓2 = [0, �2, 1], ✓3 = [1, 2, 0], ✓4 = [�2, 2, 1.5].

Each µ
jk

in the simulation is generated by

µ
jk

= ✓
k

+ Z
jk

, k = 1, 2, 3, 4

Z
jk

⇠ N(0,⌃
µk),

where

⌃
µ1 =

2

4
1.27 0.25 0
0.25 0.27 �0.001

0 �0.001 0.001

3

5 , ⌃
µ2 =

2

4
0.06 0.04 �0.03
0.04 0.05 0

�0.03 0. 0.09

3

5 ,

⌃
µ3 =

2

4
0.44 0.08 0.08
0.08 0.16 0
0.08 0 0.16

3

5 , ⌃
µ4 = 0.01I.
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The covariance matrices are generated through

⌃
jk

⇠ IW ((⌫
k

� 3) 
k

, ⌫
k

), k = 1, 2, 3, 4,

where

 1 = 0.1I,  2 = 0.1

2

4
2.0 0.5 0
0.5 2.0 0.5
0 0.5 2.0

3

5 ,

 3 = 0.1

2

4
2.0 �0.5 1.0

�0.5 2.0 �0.5
1.0 �0.5 2.0

3

5 ,  4 = 0.1

2

4
1.0 0.3 0.3
0.3 1.0 0.3
0.3 0.3 1.0

3

5 ,

and ⌫
k

= 100 for all k. Finally, ⇡
j

= [0.49, 0.3, 0.2, 0.01] if all clusters are
present. If one or two clusters are not present the ratio of the probabilities for the
present clusters remains the same.

D.2 Priors

The priors are set to represent non informative priors; the priors are set equal for
all classes. The exact values are:

S
k

= 106I
d

, t
k

= 0,

H
k

= 10�6I
d

, n
 k

= d,

Q
k

= 10�6I
d

, n
✓k

= d,

l
k

= 0.01,

for k = 1, 2, 3, K with K = 4 for the small dataset and K = 11 for the large
dataset. For the small dataset the outlier component was not used for inference.

D.3 Initialization for small dataset

Before running the MCMC sampler to get samples from the posterior distribu-
tion, we utilize the following initialization to get suitable initial parameter values.
First we set all mean parameters µ

jk

and ✓
k

to 0 and all covariance and precision
matrices ⌃

jk

, ⌃
✓k

and  
k

to I. Then after letting the MCMC sampler run for
5000 iterations, without the option of turning off components, we link all the
components across samples through the following procedure:
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1. The first sample is left unchanged.

2. For the second sample the components are first sorted by ⇡2, so we get
ordered components (µ2(i),⌃2(i), ⇡2(i)) for i = 1, 2, 3, 4, where ⇡2(1) �
⇡2(2) � ⇡2(3) � ⇡2(4). Then the first component (µ2(1),⌃2(1), ⇡2(1))

is matched to the component k whose mean µ1k is closest to µ2(1). If
for example we have that µ13 is closest to µ2(1) we set (µ23,⌃23, ⇡23) =

(µ2(1),⌃2(1), ⇡2(1)). This is repeated for (µ2(i),⌃2(i), ⇡2(i)), i = 2, 3, 4,
but indices which have already been assigned to components are excluded
from consideration.

3. For the remaining samples we proceed as for the second sample, with the
exception that the matching of µ

j(k)

is now done to the average of the

j � 1 previously matched clusters means, namely (j � 1)

�1Pj�1
l=1 µ

lk

for
k = 1, 2, 3, 4.

D.4 Initialization for large dataset

Before starting the actual MCMC sampler, we run an initialization scheme that
is designed to make the sampler jump out of local maxima of the likelihood. The
method we use does not give a reversible Markov chain and thus cannot be part
of the actual MCMC run. We do the following steps about ten times for each
GMM without updating the latent parameters:

1. Sample x, µ,⌃, ⇡
j

using the regular Gibbs sampler for ten iterations.

2. Calculate the likelihood for the current parameters µ,⌃, ⇡
j

. Randomly
select a cluster (µ

k

,⌃
k

, ⇡
jk

) and then select a dimension d1 at random.
Remove the cluster (µ

k

,⌃
k

, ⇡
jk

) and the cluster closest to it in d1, draw
two random points and use them as initial points for two new clusters.
Run the Gibbs sampler for ten iterations. If the new parameters has higher
likelihood then the old keep the new, otherwise go back to the old.

3. Calculate the likelihood for the current parameters µ,⌃. Randomly se-
lect a cluster (µ

k

,⌃
k

, ⇡
k

), with a probability of choosing cluster k pro-
portional to 1

⇡jk
so that the smaller the cluster the more likely it is to be

chosen. Remove µ
k

, draw a random point and use it as µ
k

and set ⌃
k

to
the old⌃

k

times ten. Then run the Gibbs sampler for ten iterations. If the
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new parameters has higher likelihood then the old keep the new otherwise
go back to the old.

The two last steps works quite well for destroying clusters that have been stuck in
the wrong shape or removing small clusters that is at the wrong location of the
space.

E Flow cytometry data analysis

E.1 Dataset details

E.1.1 healthyFlowData

Here follows a description of the dataset healthyFlowData: how it was obtained
and how it was preprocessed before we downloaded it from the R package healthy-
FlowData.

Antibodies against CD45, CD19, CD3, CD8 and CD4 linked to fluoro-
chromes were used to mark the PBMC and when passed through the flow cy-
tometer the expression of these markers were measured along with front and side
scatter. A standard transformation called compensation was used to remove effects
of spectral overlap Azad et al. (2013). Following this the data was transformed us-
ing the function asinh(y/c), where c was chosen to minimize Bartlett’s statistic,
with the purpose to stabilize variance between markers; functions for this trans-
formation are available in the R package flowVS Azad (2015). Measurements
corresponding to lymphocytes were selected using front and side scatter by fit-
ting a bivariate normal distribution and filtering based on a likelihood threshold
using the norm2Filter function in the flowCore R package (Azad, personal com-
munication). This resulted in between 6172 and 19,554 cell measurements for
each sample. Since all lymphocytes are CD45+, only the other four markers were
retained.

E.2 Priors

Priors should be set depending on the application, since they specify our tolerance
to variation. However, to simplify this process we want to be able to translate prior
parameters between data sets with different number of samples, cells and compo-
nents. To do this, we consider the sampling scheme (6). Looking at the sampling
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of ✓
k

, we see that the effect of S
k

decreases proportionally to the number of sam-
ples J . Thus we set S

k

= I · s
k

/J for those k for which we want an informative
prior on location. Based on the sampling of µ

jk

we see that ⌃
✓k

should be pro-
portional to 1/n

jk

, thus from the sampling of ⌃
✓k

, n
✓k

should be proportional
to n

jk

. The value n
jk

can be estimated by n/K, where n is the total number of
cells across samples. Furthermore, Q

k

should be proportional to J .
Moving over to shape variation, from the sampling of ⌃

jk

we see that  
k

should be proportional to n
jk

and from the sampling of we see that to achieve
this n k should also be proportional to n

jk

. Furthermore H
k

should be propor-
tional to 1/J . In summary,

n✓k
= nt

k

· n/K, n k = np
k

· n/K,

Q
k

= q
k

· J, H
k

= h
k

/J,

S
k

= s
k

/J · I,
where the parameters nt

k

, np
k

, q
k

, h
k

and s
k

can be reused across data sets of
different sizes and with different number of components. Note that S

k

should
only be set as above when informative priors on latent locations of clusters are
wanted. For the flow cytometry data sets considered in this work we use nt

k

=

0.75, np
k

= 0.25, h
k

= 103 and q
k

= 10�3 for all components k. S
k

was
uninformative in most cases and set to 106, but for the rare phenotype in the
GvHD data set we used s

k

= 0.012.

E.3 Point estimates

During the production iterations of the MCMC sampler we get samples of

⇥(r)

=

⇣
µ(r)

jk

,⌃(r)

jk

, ✓(r)

k

, (r)

k

, ⌫(r)

k

, ⇡(r)

j

⌘
, r = 1, . . . , R.

We use the means of µ(r)

jk

,⌃(r)

jk

, ✓(r)

k

and  (r)

k

/(⌫(r)

k

� d � 1) to get point es-
timates of sample component and latent cluster means and covariance matrices;
the means of ⇡(r)

j

are used to get point estimates of the mixing proportions.

E.4 Quality control

E.4.1 Convergence

We assess the convergence of the MCMC sampler in BayesFlow by looking at
trace plots for ✓

k

and ⌫
k

, where k 2 {1, . . . , K}. The trace plots for the first
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p
sw

p
a

=p
d

Burn-in phase 1a 0.1 0
Burn-in phase 1b 0.1 0
Burn-in phase 2a 0.1 0
Burn-in phase 2b 0.1 0.1
Burn-in phase 3 0 0.1
Production phase 0 0.1

Table 2: Simulation parameters for MCMC sampling for real flow cytometry
data. During the phase 1a, the prior parameters n

✓

and n
 

are increased by a
factor of 100. After phase 1b, outlying sample components are turned off, i.e.
sample components which are closer in Bhattacharyya distance to another latent
component than the one to which they are connected.

accepted run of healthyFlowData and GvHD are shown in Fig. S1 and Fig. S2
respectively.

E.4.2 Unimodality

We want to detect if the distribution of data assigned to a single component or
super component is not unimodal, since it indicates that the latent cluster maybe
should be divided into two or more components. To do this we use Hartigan’s
dip test Hartigan and Hartigan (1985) of unimodality for the one-dimensional
marginal distributions. For cluster–dimension combinations which give dip tests
below 0.28 (our threshold for merging clusters) we consider histograms of quan-
tiles of the clusters as shown in Fig. S3 (usual histograms are less useful since the
clusters are soft). When there are tendencies of bimodality it can be accepted
when it seems unlikely that dividing the cluster further would result in a new
interesting population. This can for example be the case if this tendency exist in
a single sample and it is not in the midrange of expression (around 0.5) where
important splits between positive and negative cells are often made.

E.4.3 Eigenvectors

Thanks to that we explicitly model component shapes we can find patterns among
the shapes by studying the eigenvectors of the sample component covariance ma-
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Figure S1: Trace plots of latent means ✓
k

for k = 1, . . . , 25, ⌫ and MH sampling
interval r, for the first accepted BayesFlow run on healthyFlowData. Burn-in
iterations are plotted on gray background. As can be seen the clusters 20-25 were
turned of during the burn-in iterations.
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Figure S2: Trace plots of latent means ✓
k

for k = 1, . . . , 25, ⌫ and MH sampling
interval r, for the first accepted BayesFlow run on GvHD. Burn-in iterations are
plotted on gray background.
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healthyFlowData run 1
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Figure S3: Histograms of quantiles of soft clusters in one dimension. Only
dimension–cluster combinations which gives dip tests below 0.28 are shown.
Evaluating these is part of the quality control and all the above have been seen
as acceptable. Even if there are tendencies of bimodality it can be accepted when
it seems likely that the cluster consists of a single population based on the expres-
sion.
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trices, as in Fig. S4.
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Figure S4: The two first eigenvectors scaled by their corresponding eigenvalues
of the 19 active components in the first accepted run for the healthyFlowData
dataset. For most components the eigenvectorsj—i.e. the shapes—are very similar
across samples, but we can for example also see that for some components there
are two groups of shapes.

E.5 Parameters and convergence for ASPIRE

As recommended, we first standardize the pooled data and then use the parameter
values s = 150 log(d+ 1)/d, m = d+ 2, 0 = 0.05 and ↵ = � = 1. To decide

i

we tried four different recommended values, {0.1, 0.25, 0.5, 1}. The high-
est mean likelihood during the production iterations was obtained for 

i

= 0.1
for both healthyFlowData and GvHD (see Fig. S5), thus we used results from
this run as the final results. However, we observed that the likelihood increased
monotonically when decreasing 

i

, so for healthyFlowData we also explored ad-
ditional, smaller values of 

i

, namely 0.05, 0.25 and 0.01. We noted a continued
increase in mean likelihood and noted that this was accompanied by a decrease
in the number of latent components and an increase in the number of mixture
components corresponding to each latent component. For 

i

= 0.01, essentially
all data points (> 99.99%) were assigned to the two largest latent components.
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This led us to stick to the value 
i

= 0.1.
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Figure S5: Trace plot of likelihoods for ASPIRE runs with different 
i

. The
shaded areas show burn-in iterations.

E.6 GvHD scatterplots

E.7 Individual GMM models with EM for healthyFlowData

The variation between flow cytometry samples is systematized in the hierarchical
model, results of this can be seen in Fig. 12 and Fig. 13 (a). For comparison, we fit
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Gaussian mixture models using the expectation-maximization algorithm to each
flow cytometry sample separately. In this case there are no clear correspondences
among the mixture components between samples, as seen in Fig. S7. When the
data set was studied previously with an algorithm matching populations found by
separate analysis of the samples, this was only done with a coarse partition of the
cell measurements, with four cell populations Azad et al. (2013).
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BayesFlow run 1

ASPIRE HDPGMM

Figure S6: Gated events according to BayesFow run 1, ASPIRE and HDPGMM
of the twelve samples in the GvHD dataset, projected onto the two first dimen-
sions.
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Figure S7: Component parameter representations of inferred mixture compo-
nents in independent Gaussian mixture models of three flow cytometry samples.
The two samples depicted in the two right columns are technical replicates. Note
that there is no correspondence between colors between columns.
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What is a ‘unimodal’ cell population?
— Investigating calibrated dip and

bandwidth tests for quality control of
gating of flow cytometry data

Kerstin Johnsson and Magnus Fontes

Abstract

Many automated gating algorithms for flow cytometry data are based on the con-
cept of unimodal cell populations. This generally means that one-dimensional
density estimates, such as histograms, have just one mode. It is an intuitively ap-
pealing notion that has potential applications for automated gating quality con-
trol as well as for manual gating protocols. However, there is no canonical way
to make the density estimate—thus defining unimodality is not straightforward.
In the statistics literature this problem has been approached from two perspec-
tives: the dip test measuring the probability mass that needs to be transferred to
render a unimodal distribution function, and the bandwidth test measuring the
critical smoothing required for obtaining a unimodal density. In this paper we
empirically investigate calibrated versions of the dip and bandwidth tests. We il-
lustrate how they can be applied to flow cytometry data and show how they have
complementary properties.

1 Introduction

A key problem in gating of flow cytometry data is how to distinguish when a
cell subset represents one or multiple—possibly overlapping—cell populations.
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In manual gating this is left to the judgment of the analyst, supported by various
visualizations. In automated gating the decision is often based on the concept
of unimodality or that the population should represent a single density peak (Ge
and Sealfon, 2012, Naim et al., 2014, Malek et al., 2015). This allows for a large
variety of cell population shapes—in particular no assumptions about Gaussian-
ity or other distributional assumptions are made. The number of density peaks
has also been used for normalization of flow cytometry data (Hahne et al., 2010)
and in initial steps during automated gating (Aghaeepour et al., 2011). But mea-
suring unimodality is not trivial. That a data set is unimodal really means that
the probability density function generating the data is unimodal, so that if we
had unlimited amounts of data, any histogram describing it would be unimodal.
But in practice data is limited, and with a sufficiently small bin widths there will
always be bumps in the histogram. There is no canonical way to choose the
bin width or the smoothing when estimating the density. This paper investigates
the two main approaches evaluating unimodality from the statistics literature—
the dip test (Hartigan and Hartigan, 1985) and the bandwidth test (Silverman,
1981)—and use manually gated flow cytometry data from the FlowCAP I chal-
lenge (Aghaeepour et al., 2013) to relate what is seen as acceptable cell populations
by the analysts to how deviations from unimodality are assessed by the tests.

Tests for unimodality have been used as part of quality control of automated
gating (Johnsson et al., 2016), but could equally well be applied to manually gated
populations. Quality control of identified cell populations should be an integral
part of any automated gating procedure—the common practice of evaluating au-
tomated gating based on resemblance to manual gating (Aghaeepour et al., 2013)
has to be substituted if automated gating is to replace manual gating. Validation
must be based on gating-independent automatically computed measures; testing
for unimodality gives one such measure.

The tests that are evaluated in this paper apply to univariate data. Multivariate
flow cytometry data is therefore projected onto one dimension at a time before
the tests are applied. This paper uses projections onto the coordinate axes, i.e.
each measured dimension is considered separately. Other linear projections (Naim
et al., 2014, Hennig, 2010) or non-linear projections (Ahmed and Walther, 2012)
could also be used. There are approaches to direct evaluation of multimodality
for multivariate data (Hartigan, 1987, Polonik, 1995, Hartigan and Mohanty,
1992, Rozál and Hartigan, 1994, Burman and Polonik, 2009, Hennig, 2010),
but it is a much harder problem and it has not been shown that such methods
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(a) (b)

Figure 1: (a) Dip test illustration. The blue curve is the closest unimodal function
according to the dip test. The shaded regions indicate the two most significant
modes. (b) Bandwidth test illustration. The blue curve is the closest unimodal
function according to the bandwidth test, i.e. a kernel density estimate with the
critical bandwidth. The dashed red curve is the kernel density estimate with a
bandwidth which is half the critical bandwidth.

have desirable theoretical properties, for example possibility to calibrate the tests
to obtain a correct significance level (Cheng and Hall, 1998b, 1999, Hall and
York, 2001).

The dip test and the bandwidth test takes two fundamentally different ap-
proaches to overcome the problem of density estimation. The dip test does not
compute the density at all, but rather uses the empirical distribution function (the
cumulative density), which is easy to estimate. The unimodal function which has
the distribution function that best approximates the empirical distribution func-
tion (as measured by maximal pointwise distance) is taken as the closest unimodal
function according to the dip test. The density of this unimodal function is illus-
trated for two data sets in Fig. 1 (a). The maximal distance between the empirical
distribution function and the distribution function of the unimodal density is
called the dip. Using an equivalence between the dip test and another test called
excess mass test (Müller and Sawitzki, 1991, Cheng and Hall, 1998a) it is possible
to find the two most influential modes in the data, shown as shaded regions in
Fig. 1 (a). The dip equals half the difference in probability mass between the data
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and the unimodal function in the smallest mode.

The bandwidth test estimates the probability density using a kernel density
estimator with a Gaussian kernel (Silverman, 1986) with the critical bandwidth,
i.e. the smallest bandwidth that gives a unimodal density. According to the band-
width test, this density is the closest unimodal density for the data; it is illustrated
in 1 (b). As can be seen by comparing the dip and bandwidth tests for the bot-
tom data set in Fig. 1 the two tests treat deviations from unimodality differently.
The dip test finds the two most significant modes as two thin modes with high
probability mass close to each other. The bandwidth test uses a critical bandwidth
which smooths the entire data set to unimodality. This bandwidth is not deter-
mined by these thin modes, but by the “shoulder” in the right part of the data.
Even with half the critical bandwidth the two thin modes seen by the dip test are
a single mode in the kernel density estimate. In the experiments on FlowCAP I
data we will later see how this “global” property of the bandwidth test often agrees
with manual gater’s interpretations, but it also makes the bandwidth test sensitive
to outliers and long flat regions. Outliers can be handled though by only count-
ing modes inside a selected interval (Hall and York, 2001); in this paper we use a
data-adaptive approach for selecting this interval.

To perform the calibrated dip and bandwidth tests at significance level ↵, data
is resampled repeatedly from the respective closest unimodal densities. If the dip
or the critical bandwidth for the resampled data is larger than the original dip or
critical bandwidth scaled by a calibration constant �

↵

in less than ↵ of the new
samples, then the data is seen having disproportionately large deviations from
unimodality and the null hypothesis of unimodality is rejected (Cheng and Hall,
1999). The classical dip test (Hartigan and Hartigan, 1985) instead compares the
dip of the data to dips resampled from the uniform distribution. The classical
bandwidth test (Silverman, 1981) uses resampling, but instead of a calibration
constant uses a rescaling to compensate for that the resampled data will have
slightly higher variance.

In this paper we explain what the theoretical results regarding calibration
means and make an empirical investigation of how the calibrated tests compare to
the classical tests in practice. To find the necessary calibration constants we have
devised a probabilistic bisection search procedure.

We also go through the special considerations that need to be taken into ac-
count when applying the dip and bandwidth tests to flow cytometry data, with
regards to truncated and saturated data. Three different ways of blurring the data
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to counter the effects of truncation are investigated. Finally, the tests are applied
to manually gated data from the FlowCAP I challenge (Aghaeepour et al., 2013).
The relation between the dip test and excess mass test is used to find the size of
the modal region and relate it to rejections by the dip and bandwidth tests. A
test looking for flat regions in the data is applied to find differences in rejection
patterns of the dip and bandwidth tests for cell populations with ‘shoulders’.

In summary, this paper makes a comprehensive investigation of dip and band-
width tests, with the aim of furthering the use of these in quality control of au-
tomatically as well as manually gated cell populations. The methods used are
implemented in the Python package modality, available at https://github.
com/kjohnsson/modality/.

2 Methods

2.1 Dip and critical bandwidth

We have implemented algorithms for finding the optimal dip and the critical
bandwidth based on (Hartigan and Hartigan, 1985), (Hartigan, 1985) and (Sil-
verman, 1981). The dip algorithm has been modified to explicitly find and return
the closest unimodal function as well as the dip. Moreover, the connection to the
excess mass test (Müller and Sawitzki, 1991, Cheng and Hall, 1998a) has been
exploited to find the two most influential modes for the dip. For the classical
dip test, p-values are computed using interpolation based on a table from the R
package diptest (Maechler, 2015).

Implementing the bandwidth test requires computation of the number of
modes of a kernel density estimate. In our implementation this is done by eval-
uating the density on a grid. The grid cells have width 0.05h, where h is the
bandwidth. It is shown in the Supplemental Material Section A that this ensures
that no modes higher than 9h�1 · 10�4 are missed. Kernel density estimates are
computed with the Python package scikit-learn (Pedregosa et al., 2011).

2.2 Calibration

The hardest part in constructing tests for unimodality is assessing how extreme
an estimated deviation is—how likely is it to occur by chance? The classical dip
and bandwidth tests are conservative for most unimodal densities (as long as the
bandwidth test is adjusted to disregard outliers), i.e. a p-value of 0.05 means that
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the probability that the deviation could have occurred by chance from a unimodal
density is in fact smaller (Hartigan and Hartigan, 1985, Silverman, 1981). For
the classical dip test the situation is dramatic, especially with a large number of
points (Cheng and Hall, 1998b). This is expected to lead to loss of power and
failure to detect multimodal distributions, which is evaluated in the experiments
on synthetic data.

However, it has been shown that it is possible to calibrate the tests for re-
stricted classes of unimodal functions, namely a class of strictly unimodal dis-
tributions (i.e. with one maximum but without inflection points) and a class of
unimodal distributions with a shoulder (i.e. with one maximum and one inflec-
tion point) (Cheng and Hall, 1998b, 1999, Hall and York, 2001). What this
means this that if S is the statistic under study (dip or bandwidth), S⇤ is the
resampled statistic and �

↵

is a calibration constant depending on the significance
level ↵, the test that rejects unimodality when P (S⇤/S > �

↵

) < ↵—i.e. when
�
↵

S is among the ↵ most extreme statistics—has asymptotically correct level.
Asymptotically correct level means in practice that the null hypothesis is rejected
in precisely ↵ of the cases when S is sampled from the correct class of unimodal
functions and the number of points is large. The definition of a ‘large’ number of
points varies from test to test and between classes of unimodal functions; this is
investigated below in experiments on synthetic data.

The calibration constants �
↵

depend not only on ↵, but also on the type
of test and the class of unimodal functions that is used—strictly unimodal or
unimodal with shoulder. We have developed a probabilistic bisection search algo-
rithm to determine calibration constants, detailed in the Supplemental material
Section B. Following (Hall and York, 2001) we use data with 10,000 points for
the calibration.

2.3 Adaptive resampling

To find out when to reject the calibrated dip or bandwidth test one needs to
estimate if P (S⇤/S > �

↵

) < ↵, where S is the dip or critical bandwidth. The
standard simplest method is to sample S⇤ a fixed number of times and base the
rejection on this. However, some data sets require only a few samples to determine
with high confidence that P (S⇤/S > �

↵

) < ↵, others require many more. To
determine this is part of the probabilistic bisection search method for finding
calibration constants (Supplementary material, Section B.2), which we reuse with
the modification that we use confidence level 0.05 as a standard instead of 0.01.
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2.4 Interval selection for bandwidth test

The bandwidth test is sensitive to data far out in the tails of a distribution, and
if the density does go to zero fast enough, as is for example the case for the Stu-
dent’s t-distribution, data in the tails will very often lead to rejection of the null
hypothesis (Hall and York, 2001). By only considering an interval where the
probability density is sufficiently large when counting modes in the density, this
can be avoided (Hall and York, 2001).

We use k-nearest-neighbor estimation of the density to select such an interval
(Silverman, 1986). The interval boundaries are defined as the leftmost and right-
most points respectively where the estimated density exceeds a threshold. This
density estimate is adaptive to local variations in the true data density, and is
therefore a better alternative than kernel density estimation for this purpose. The
parameter k should be selected such that if there are fewer than k points in a tail,
they can be disregarded. For this paper we use k = 5 and the threshold is set to
0.2 divided by the size of the range of the data.

2.5 Blurring

Due to storage limitations, flow cytometry data are truncated. For example, the
FlowCAP I data used in this paper has at most 1024 different values in each
dimension. Even when the truncation is much smaller in comparison to the
dynamic range, if there are clusters which only span a small part of the dynamic
range they will still be heavily affected by truncation.

To counter the effect of truncation it has been recommended for flow cytom-
etry data to add uniform noise corresponding to the size of the bins (Roederer,
2001, Bagwell and Adams, 1993), blurring the data. Minnotte (1997) proposed
instead to use an algorithm called frequency polygon blurring in the context of
testing for modes, motivated by that this should better preserve the modal struc-
ture of the data.

We have investigated the effects of truncation together with standard blur-
ring, frequency polygon (FP) blurring, or a deterministic variant of FP blurring.
The results are summarized in Supplemental Figure S1. In short, there are no
experimental evidence for favoring any of the three kinds of blurring. We chose
FP blurring for further experiments, due to attractive theoretical properties, see
Supplemental Material Section C.
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2.6 Extreme data points

The dip test and the bandwidth test are non-parametric tests, meaning that we
assume no particular model for the data. This also means that saturated measure-
ments or measurements below the limit of detection, i.e. measurements equal to
zero or the largest possible value in the channel, will rarely add any information.
On the other hand, they can mislead the tests to find modes at the extreme values.
Hence we remove all such data.

3 Experiments

3.1 Data

3.1.1 Synthetic data

We use data generated from known distributions to evaluate the effects of cal-
ibration. The purpose of calibration is to ensure a given rejection rate for the
class of strictly unimodal distributions or the class of distributions with a shoul-
der and at the same time increase the power to detect multimodal distributions.
The theoretical results ensuring a certain number of rejections hold when data
have a ‘large’ number of points (Cheng and Hall, 1999), but how many points
this really is might vary from case to case and is therefore investigated empirically.

We study rejection rates for data with 100, 1000 and 10,000 points generated
from seventeen unimodal distributions—the standard normal distribution and
sixteen unimodal distributions with differently shaped shoulders. The shoulder
distributions can be seen as limiting cases of strictly unimodal distributions—
strictly unimodal distributions can get arbitrarily close to them—so they can be
seen as a worst case for this class.

How the power of the dip and bandwidth tests are affected by calibration are
studied on data sets—also with 100, 1000 and 10,000 points—which are close
to unimodal distributions with a shoulder, but instead of a shoulder have a small
bump. The size b of the bump is measured as the area between the density curve
and the horizontal line through the lowest point, the valley, between the major
mode and the bump, and the sizes vary between 10�4 and 0.03. This size can be
interpreted as the proportion of data points which needs to be removed to make
the distribution unimodal.

Details of all distributions used to generate data are given in the Supplemental
material Section D.1. Since the distributions are known we can select appropriate
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intervals for the bandwidth test beforehand, how this is done is also described in
the Supplemental Material Section D.1.

3.1.2 Flow cytometry data

We use the GvHD and StemCell data sets from the FlowCAP I challenge, in to-
tal 42 samples, and the additional labels provided by eight independent analysts
given the same gating instructions (Aghaeepour et al., 2013), to see how the dip
and bandwidth tests agree with traditional gating practice regarding what is seen
as acceptable distributions. The gating instructions included that the analysts
should separate out any discernible cell populations, so the individual cell popu-
lations should be homogeneous and a reasonable ground truth for unimodality.
That we have labels from many analysts means that they can be compared to find
disagreements and detect cell populations that are not considered homogeneous
by all of the analysts.

We define a measure of gater concurrence for a given cluster by considering
how the data in this cluster are partitioned by the other analysts. For each of the
other analysts the proportion of the largest subcluster is taken as how much they
concur with the cluster. The final concurrence value is defined as the median of
this across analysts. The clusters are put into three categories: low, medium and
high gater concurrence as defined by concurrence values below 0.8, between 0.8
and 0.95 and above 0.95 respectively.

Only populations with at least 10 non-saturated data points are considered
and any dimension where all the non-saturated data are collapsed into a single
point is disregarded. For the GvHD data this means that we study in total 2367
clusters (1462 low/610 medium/295 high concurrence) and for the StemCell data
2132 clusters (658/627/847). Both data sets have six dimensions (GvHD: FSC,
SSC, CD4, CD8b, CD3, CD8 , StemCell: FSC, SSC, CD45.1, Ly64/Mac 1,
Dead cells, CD45.2), to which the tests for unimodality are applied indepen-
dently.

4 Results

4.1 Synthetic data

When calibration works as intended, different distributions in the calibration class
generate data with similar rejection rates when the number of points is large. As
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seen in Fig. 2 the calibrated dip test does indeed have similar rejection rates for dif-
ferent shoulder distributions and for data sets with 1000 and 10,000 data points.
For data sets 100 data points, rejection rates are slightly higher, but still compara-
ble. The calibrated bandwidth test on the other hand show a large variation both
for shoulder shapes and for different number of points. It seems that 10,000 is
not a large enough number for the calibration of the bandwidth test.

Fig. 2 also shows that the bandwidth test calibrated against a shoulder dis-
tribution performs on average similar to the uncalibrated bandwidth test (data
on individual distributions confirming this is shown in Supplemental Material,
Fig. S5), whereas the uncalibrated dip test has much lower rejection rates than
the calibrated versions of it. Furthermore, the dip test calibrated against a normal
distribution is similar to the dip test calibrated against a shoulder distribution, as
could be expected from theory (see Supplemental material Section B.1), but the
different calibrations for the bandwidth test are quite different.

In general, increasing the number of data points increases the power of sta-
tistical tests, meaning that data not following the null hypothesis more often will
lead to rejections. That the rejection rate for the bandwidth test increases with the
number of data points, as also can be seen in Fig. 2, is aligned with the pattern one
would obtain if data did not follow the null hypothesis. In a way the bandwidth
test treats the data generated from shoulder distributions as if they did not follow
the hypothesis of unimodality.

The main advantage of calibration, expect that one “knows what one gets”
in terms of the number of rejections of the null hypothesis, is that the power to
detect multimodal distributions increases. Fig. 3 shows that the calibrated dip test
does indeed much more often reject unimodality for distributions that are only
slightly bimodal, i.e. have a small second mode. The bandwidth test calibrated
against a shoulder distribution is also in this regard similar to the uncalibrated
test, but the version calibrated against the normal distribution has higher power.
Fig. 3 also shows that the expected number of data points in the bump to a large
extent can predict the rejection rate.

4.2 Flow cytometry data

The uncalibrated dip and bandwidth tests, as well as the tests calibrated against a
shoulder distribution were applied to the flow cytometry data, using significance
level 0.05. For the resampling-based tests (i.e. all tests except the uncalibrated
dip test) adaptive sampling was used with a maximum of 12,800 resampled data
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Figure 2: Rejection rates at level 0.05 for data from 16 different shoulder distri-
butions, for dip and bandwidth (bw) tests, uncalibrated or calibrated against a
normal (i.e. strictly unimodal) distribution or a shoulder distribution. Each box
plot summarizes the 16 rejection rates for the different distributions, where each
rejection rate is computed based on 500 data sets sampled from one distribu-
tion. Each test is performed at significance level 0.05, with 1000 resamples for
the resampling-based tests (i.e. no adaptive sampling). The used distributions are
shown in Fig. S2 (a) in the Supplemental material.
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Figure 3: Power (rejection rate) to detect multimodality in data sets where the sec-
ond mode is a small bump, for dip and bandwidth tests performed at significance
level 0.05 with different calibrations. The bump size b is defined in Section 3.1.1
and takes the values 0.001, 0.001, 0.01 and 0.03. The expected number of points
in the bump is b times the total number of data points. All distributions used are
shown in the Supplemental material, Fig. S2 (b). For the resampling-based tests,
1000 resamples were used (i.e. no adaptive sampling).
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Figure 4: Rates of rejection by both calibrated dip and calibrated bandwidth tests
(shoulder reference) in at least one dimension, split by gater concurrence and
cluster size. The gater concurrence categories are defined in Section 3.1.2. The
error bars show Jeffrey’s confidence interval (Brown et al., 2001) computed with
the R package binom (Dorai-Raj, 2014).

sets. The proportion of undecided tests at the maximum number of samples was
0.7%.

A great majority of the cluster dimensions are accepted for each test (Sup-
plemental material Fig. S7). For the most part the tests agree whether to reject
or accept unimodality of a cluster dimension: The calibrated bandwidth and dip
test disagree on whether to accept or reject in 14% of cluster dimensions, the
calibrated and uncalibrated dip test disagree in 7.6% of cases, and the calibrated
and uncalibrated bandwidth test disagree in 1.5% of cases. The disagreements
between the dip and the bandwidth tests are investigated further below. How the
simultaneous rejections by the dip and bandwidth tests relate to cluster size and
gater concurrence is shown in Fig. 4.

Fig. 4 shows that when gater concurrence increase, there is a significant reduc-
tion in the proportion of clusters that are rejected by both the calibrated dip and
bandwidth tests, for all size categories and both data sets except for the clusters
with more than 1000 points for the GvHD data set. However, this category is
small, with only 39 clusters. Also, the differences in rejections between low and
high concurrence increase with the number of data points—additional data points
give more power to detect multimodality (cf. Fig. 3). Fig. S8 in Supplemental ma-
terial shows that similar patterns hold for each of the four tests independently.

To investigate what characteristics of the clusters that lead the tests to reject
unimodality we have investigated the size of modal regions and evidence for flat

167



PAPER III

Size > 1000 1000 ≥  Size > 100 100 ≥  Size ≥ 10

0%

25%

50%

75%

100%

small
medium large

small
medium large

small
medium large

Modal region size

Pr
op

or
tio

n 
of

pe
rfo

rm
ed

 te
st

s
Test results:
      Dip/Bw (cal.)

Reject/Reject

Accept/Reject

Reject/Accept

Accept/Accept

Undecided

Figure 5: Comparison of calibrated dip and bandwidth tests (shoulder reference)
for FlowCAP I data, split by modal region size and data set size. The modal region
is defined as the span from the leftmost part of the left mode to the rightmost
part of the right mode, where the modes are found using excess mass (Müller and
Sawitzki, 1991, Cheng and Hall, 1998a). A small modal region is less than 30%
of the data range, a medium modal region is between 30% and 70% of the data
range, and a large modal region is more than 70% of the data range.

parts in the data. The modal region size is based on the modes found by the
excess mass test (equivalent to the dip test) (Müller and Sawitzki, 1991), and it is
defined as the span from the leftmost part of the left mode to the rightmost part
of the right mode. Flat parts of the data are found by comparing portions of the
data to the uniform distribution using the Anderson-Darling test (Anderson and
Darling, 1952).

Fig. 5 shows that for data sets with more than a hundred data points there
is a striking difference in rejection patterns between those with differently sized
modal regions. A large modal region means high rates of concurrent rejections
and that rejection by dip test together with acceptance by bandwidth test is un-
common. Furthermore, for data sets with small modal regions it is uncommon
with concurrent rejections by dip and bandwidth test. These are the data sets
where rejections are most different between the bandwidth and dip test.

This subset of data sets with small modal regions and for which the calibrated
dip and bandwidth tests disagree is tested for flat regions, the result is shown in
Fig. 6. For data sets with more than a hundred data points, those who have a part
which resembles the uniform distribution more (p > 10�5), i.e. show evidence
of having a flat part or a shoulder, are often rejected by the bandwidth test while
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Figure 6: Test results for calibrated dip and bandwidth test when they disagree,
for data sets with small modal regions, partitioned by evidence of flat regions as
measured by Anderson–Darling test p-values for comparing empirical distribu-
tions of cluster portions to the uniform distribution. The p-values are computed
using the R package goftest (Faraway et al., 2015). The cluster portions consid-
ered span at least 20% of the interval selected as described in Section 2.4 (which
excludes outliers) and contain at least 1% of the data and at least 5 data points.
The maximal p-value over all such portions inside the selected interval is used for
the partitioning.

accepted by the dip test. For those who do not have such a part the situation is
reversed.

5 Discussion

Unimodality is an attractive concept for describing homogeneous cell popula-
tions, that has been used in automated gating in a variety of settings. In the
statistics literature unimodality has been well studied, mainly through the dip test
and bandwidth test approaches. The standard dip and bandwidth tests are more
conservative than the given significance level suggests though, especially the dip
test. From theoretical results for the dip and bandwidth tests (Cheng and Hall,
1999), it should be possible to calibrate them to give accurate levels, at least for
data sets with a large number of points. Experiments on synthetic data show that
for the dip test this works well with data set sizes one can expect in flow cytom-
etry data, whereas the bandwidth test requires a larger number of data points for
the calibration to work as intended. Further experiments showed that calibration
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increased the power to detect multimodal distributions for the dip test, whereas
for the bandwidth test the power did not change so much.

Calibrating the dip test with a shoulder distribution as reference or the normal
distribution did not make a large difference. However, for the bandwidth test the
choice of reference distribution had a large impact, showing that it is sensitive to
whether the distribution generating the data has a shoulder or not; sensitivity to
the shape of the shoulder is further shown in the Supplemental Material, Fig. S4.

Before applying the dip and bandwidth tests to flow cytometry data careful
considerations need to be taken regarding truncation, saturated data, measure-
ments below the limit of detection and outliers. The steps outlined in this paper
can serve as a guide. Also the usual considerations regarding preprocessing and
transformations of flow cytometry data have to be taken into account. It is im-
portant to note that transformations like logicle (Parks et al., 2006) does not
necessarily preserve the number of modes of the density.

Both the dip test and the bandwidth test agreed to a large extent with the
gaters’ assessment that the tested flow cytometry clusters were homogeneous, and
that both tests rejected unimodality showed a strong relation to whether the ma-
jority of the gaters agreed that a cluster was homogeneous. For large or moderately
sized clusters, a large modal region, i.e. two modes far apart or two wide modes,
was a strong indication that both tests would reject unimodality. For small modal
regions there were more disagreements—the bandwidth test gave more rejections
when there were more evidence for a flat region in the data, thus causing the
modal region to be squished into another region, and the dip test gave more re-
jections with less evidence of a flat part, thus indicating that the modal region was
part of a larger mode. Example histograms where the dip test and the bandwidth
test differ are shown in Figs. S9 and S10 in the Supplemental Material.

Clusters with flat regions, which were accepted only by the dip test, as well as
clusters with local modes inside a larger mode, which were accepted only by the
bandwidth test, had been accepted in the manual gating. This showed that the
dip and the bandwidth tests have complementary elements for matching manually
gated populations.

However, one might want to use a different interpretation of homogeneous
clusters than used by the manual gaters of the FlowCAP I data. The results in
this paper can be used to guide selection of a test for unimodality that agrees with
the desired interpretation. For example, if distributions with shoulders are not
acceptable, the bandwidth test should be used, calibrated with a strictly uniform
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distribution as a reference.
In this paper the tests were performed consistently at significance level 0.05.

A researcher might want to use other levels depending on whether it is more
important to detect multimodal populations or to avoid false positives.
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Appendix

A Grid spacing for estimating critical bandwidths

We define the size of a mode as the area between the density curve and the
horizontal line extending from the highest of the two neighboring local min-
ima (valleys). We will consider grids with spacing ah, where h is the band-
width. For the case h = 1 we will show that we cannot miss modes higher than
2a2
p

2/⇡ exp(�3/2), measured from the highest adjacent valley. Since every
kernel density estimate with bandwidth h is a rescaled version of a kernel den-
sity estimate with bandwidth 1, where the height changes by a factor 1/h and the
width changes by a factor h, with bandwidth h we cannot miss modes higher than
2h�1a2

p
2/⇡ exp(�3/2). For a = 0.05 this gives a bound of 9 · 10�4 · h�1.

The key element of the proof is that, since we use Gaussian kernels, a ker-
nel density estimate with bandwidth 1 has a second derivative which is absolutely
bounded by

p
2/⇡ exp(�3/2), which follows immediately from that the stan-

dard normal density has a second derivative bounded by this value.
Suppose that we compute the values of a kernel density estimate with band-

width 1 at grid points spaced a apart and use these values to find local max-
ima, i.e. modes. If there is a mode at x0 that is not found by this method, then
there must be consecutive grid points x1, x2 and x3 such that x0 2 [x1, x2] and
f(x1)  f(x2)  f(x3) or x0 2 [x2, x3] and f(x1) � f(x2) � f(x3). By
symmetry we can assume that x0 2 [x1, x2] and f(x1)  f(x2)  f(x3). Since
f 0

(x0
) = 0, f 00

(x0
)  0 and f(x3) � f(x2) there must be a point x00 2 [x0, x3]

which is a neighboring local minimum (i.e. with f 0
(x00

) = 0). The height of the
mode will then be at most

f(x0
) � f(x00

)  2a · max

x2[x

0
,x

00
]

f 0
(x)

 2a2 · max

x2[x

0
,x

00
]

f 00
(x)  2a2

p
2/⇡ exp(�3/2),

where the second inequality follows from that f 0
(x0

) = f 0
(x00

) = 0.

B Calibration

The calibration constants �
↵

are defined by

PX (PX ⇤|X (S⇤/S > �
↵

) < ↵) = ↵,
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where S is the statistic under study, i.e. either the dip� or the critical bandwidth
hcrit, with the underlying data X sampled from a reference distribution, and S⇤ is
the statistic computed from the resampled data X ⇤ (Cheng and Hall, 1999, Hall
and York, 2001). Following Cheng and Hall (1999), we use as a reference the
standard normal distribution for the class of strictly unimodal densities and the
mixture

1
17

N(�1.25, 0.252
) +

16
17

N(0, 1). (1)

for the class of unimodal densities with a shoulder.
To determine �

↵

we use either a probabilistic bisection search strategy or—
when this is infeasible—an adaptive version that takes into account how hard it is
to distinguish between different possible values of �

↵

.

B.1 Strict unimodality or shoulder?

Cheng and Hall (1998b) showed that n3/5
� ! C1R1 as n ! 1 when the

density belongs to the class of strictly unimodal distribution functions, where
C1 is a constant which cancels when dividing by the resampled statistic �⇤ and
R1 is a random variable that does not depend on the density as long as it be-
longs to the same class. For the class of unimodal distributions with a shoulder
the corresponding limit is instead n4/7

� ! C2R2 (Cheng and Hall, 1999).
Since 4/7 ⇡ 0.57 < 3/5 = 0.6, the dips from densities with shoulders will
be larger than the dips from strictly unimodal densities. For the bandwidth test,
n1/5hcrit ! C3R3 for strictly unimodal densities (Mammen et al., 1992) and
n1/7hcrit ! C4R4 for densities with a shoulder (Cheng and Hall, 1999).

Thus unimodal distributions with a shoulder will be rejected for data sets with
many data points if calibration is done with strictly unimodal distributions. Since
distributions with a shoulder are by definition unimodal, but closer to bimodal
than strictly unimodal distributions, from a statistical viewpoint it is more accu-
rate to use shoulder distributions as a reference. However, since 0.57 is not far
from 0.6, for the dip test it is reasonable to assume that the calibration will not
make a large difference, as is verified by the experiments in the article.

It might be confusing that there are different convergence rate for the two
classes of unimodal densities since strictly unimodal densities can come arbitrarily
close to densities with a shoulder. For a strictly unimodal density that “almost”
has a shoulder, it will behave as a density with a shoulder as long as there are
not sufficiently many data points to distinguish it from a density with a shoul-
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der. However, as n ! 1 it will eventually get the convergence rate of a strictly
unimodal density.

B.2 Probabilistic bisection search

For the probabilistic bisection search for �
↵

we need to evaluate whether a pro-
posed value t is larger or smaller than �

↵

, i.e. we need to test the hypothesis
H0 : �

↵

= t versus the alternative hypotheses H1 : �
↵

< t and H2 : �
↵

> t.
Have we decided that �

↵

< t we set t as a new upper bound for �
↵

; lower bounds
are set in an analogous manner. Given upper and lower bounds for �

↵

, the next
proposal t is the mean of these two.

If we let
PX (PX ⇤|X (S⇤/S > t) < ↵) = �,

H0 translates to � = ↵, H1 translates to � > ↵ and H2 translates to � < ↵.
If {X , . . . , X

N

} are iid samples from the reference distribution we get that

Z
N

=

NX

i=1

I(PX ⇤|Xi
(S⇤/S > t) < ↵) ⇠ Bin(N, �).

We reject H0 in favor of H1 if we observe a value z
n

such that P (Z
N

� z
N

) <
0.01 under the null hypothesis ↵ = �. Similarly we reject H0 in favor of H2 if
P (Z

N

 z
N

) < 0.01 under the null hypothesis. If we cannot reject the null
hypothesis, we increase N and redo the test. We stop the search when we have an
upper and lower bound for �

↵

within 0.01 of each other.
In order to compute z

N

, we need to evaluate whether PX ⇤|Xi
(S⇤/S >

�
↵

) < ↵ or not. Letting PX ⇤|Xi
(S⇤/S > �

↵

) = � we assert that this is true
if we can reject the null hypothesis H 0

0 : ↵ = � in favor of H 0
1 : ↵ > � at

significance level 0.01 and we assert that this is false if we can reject H 0
0 in favor

of H 0
2 : ↵ < � at significance level 0.01. The tests are performed in an analogous

way to the tests between H0, H1 and H2, with independent samples X ⇤
ij

from
the critically smoothed density of X

i

in case of the bandwidth test and from the
closest unimodal distribution in case of the dip test. Since this test has to be per-
formed very many times, to gain speedup we put a bound N

max

on N , and if we
do not have confidence for H1 or H2 at level 0.01 when we have N

max

samples,
we randomly select, with equal probabilities, if we should assert H1 or H2. This
happens in approximately 1% of the tests.
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B.3 Adaptive probabilistic bisection search

When testing H0 versus H1 or H2, a very large number of samples X might be
required. For example, if ↵ = 0.01 and � = 0.009, we will most likely need a
value of N around 50,000 before we can say that � < ↵. In practice, this amount
of precision will rarely be noticed. Hence we construct an interval [↵, ↵] such that
it would require around 5000 tests to distinguish between ↵ or ↵ and ↵. For this
we use quantiles of Bin(5000, ↵); we set ↵ = q↵0.05 and ↵ = q↵0.95.

We stop the bisection search when we are sufficiently sure that � 2 [↵, ↵].
‘Sufficiently sure’ is here defined as: We are confident at a 0.01 level that � < ↵
and also confident at a 0.05 level that � > ↵ or vice versa. We have a less strict
confidence level for the second bound, since this is not subject to multiple testing
during the bisection search.

If we have determined at level 0.01 that � < ↵, but we cannot say at level
0.05 that � > ↵, we increase N if with the current estimated ˆ� = Z

N

/N we
would get significance with fewer than 10,000 tests. If this is not the case we set
the current value of t as a lower bound for �

↵

and continue the bisection search.

C Blurring

To test the effect of different variants of blurring, we used the shoulder density
(1), since this is precisely on the boundary between unimodal and bimodal and
should be more severely affected by blurring than other densities. Apart from
standard blurring, i.e. adding uniform noise, and frequency polygon (FP) blur-
ring (Minnotte, 1993), which resamples the data in each bin following a density
estimated by linear interpolation of the data in the bin and its neighboring bins,
we also use a deterministic variant of FP blurring that spreads data evenly accord-
ing to the frequency polygon density estimate. We call this variant deterministic
FP blurring.

The dynamic range of the data as compared to the truncation, and the num-
ber of data points are the two variables that we believe will influence the effect of
blurring most. The dynamic range was varied by linearly scaling the data so that
the interval [�3, 3] (within which most data lies) was transported to [0, R], where
the range R took the values 10, 100, 1000 and 10,000. Then data was truncated
to integer values before blurring was applied.

The test results for the dip and the bandwidth tests on the original data was
compared to test results after truncation and blurring, on 200 generated data
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Figure S1: Top: Proportion of switches from rejection to acceptance of unimodal-
ity and vice versa by truncation and blurring, for the calibrated dip and bandwidth
tests (shoulder reference). Bottom: Rejection rates for truncated and blurred data,
to be compared with Fig. S3 which shows the same result for non-truncated data
in the ‘Shoulder’ panel. Error bars show the Jeffreys 95% confidence interval
(Brown et al., 2001) computed using the R package binom (Dorai-Raj, 2014).

sets with three replicates of blurring. The adaptive resampling was done three
consecutive times on the original data, and data sets which were not decided after
the maximum number of samples, or which had differing results in the three
rounds were discarded (1.1% of the data sets). Also for tests on blurred data, only
tests result that were ’accept’ or ’reject’ were considered.

Fig. S1 shows that blurring is essential for the dip test when the range is less
than 10,000 for 10,000 data points or less than 1000 for 100 or 1000 data points.
Without it the test result switches in a very large number of cases. It can also be
seen that no blurring variant works for the bandwidth test if the range is only
10 and the number of data points is 100 or 1000. The three blurring methods
perform similarly and it not clear from the experiments that it is advantageous to
use one instead of another.

The FP blurring algorithm is based on a density estimate which is smoother
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than the histogram density estimate on which standard blurring is based (Min-
notte, 1997). Therefore, it should in general yield a better approximation of the
original data than standard blurring. Deterministic FP blurring approximates data
as well as the non-deterministic variant, but it changes the distribution radically
in a qualitative manner, hence we recommend to use it with caution. The advan-
tage of using the deterministic variant is of course that no additional randomness
is introduced into the testing procedure.

D Data

D.1 Synthetic data

All synthetic data are generated from mixtures of the from

f(x; a, w1, w2, �) = w1N(x; 0, 1) + w2N(x; a, �2
),

where w1 + w2 = 1.
To find shoulder distributions we fix the ratio w1/w2 and � and solve numer-

ically the system of equations
(

f 0
(x0; a, w1, w2, �) = 0

f 00
(x0; a, w1, w2, �) = 0

for x0 and a so that f(x; a, w1, w2, �) has a shoulder point at x0. The resulting
distributions are shown in Fig. S2 (a). To find distributions with bumps of given
sizes we define a function B(f) giving the size of the minor mode for a density
f and solve numerically B(f) = b, where b is the wanted bump size. Fig. S2 (b)
shows the bump distributions used.

For the bandwidth test we set the interval where to look for modes to [�1.5, a+

1].

E Synthetic data results

E.1 Reference distributions

In Fig. S3, rejection rates for the distributions used for calibration are shown. The
calibration is done with data sets with 10,000 points, and for these data sets the
rejection rate is 0.05 for the tests with the corresponding calibration.
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Figure S2: Mixtures of the form f(x) = w1N(x; 0, 1) + w2N(x; a, �2
). (a)

Densities with shoulders. (b) Densities with bumps (minor modes) of size b and
shoulder ratio w1 : w2 = 4 : 1.
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Figure S3: Rejection ratios for reference distributions: the standard normal distri-
bution for strictly unimodal null hypothesis, and the mixture 1 for shoulder null
hypothesis. For each number of data points, 500 data sets are drawn from each
reference distribution. The error bars show Jeffrey’s confidence interval (Brown
et al., 2001) computed with the R package binom (Dorai-Raj, 2014).
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Figure S4: Sensitivity of rejection rate to shoulder shape. Each dot shows the
rejection rate across 500 data sets with 10,000 points each, from each of the 16
shoulder densities depicted in Fig. S2 (a).

E.2 Sensitivity to shoulder shape and number of points

Fig. S4 shows that the bandwidth test is more sensitive than dip test to shoulder
shape. Fig. S5 shows how number of data points and shoulder shape interact.

E.3 Power

Fig. S6 shows how shoulder shape and number of points interact for the bimodal
densities with a small second mode. Note that for b = 10�4 the bump has on
average only one point for 10,000 data points, and rejection rates are similar to
those for the corresponding shoulder distributions.

F Flow cytometry data results

Fig. S7 compares test results for the calibrated dip and bandwidth tests and for
the calibrated versus uncalibrated dip and bandwidth tests. The patterns seen are
similar across data set sizes.

Fig. S8 shows for the calibrated and uncalibrated dip and bandwidth tests
how rejection rates vary with gater concurrence.

Figs. S9 and S10 show examples of data distributions where the dip test and
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Figure S5: Rejection rates for data sets with 100, 1000 and 10,000 data points
sampled from the 16 shoulder distributions depicted in Fig. S2 (a). Each rate is
based on 500 data sets. The error bars show Jeffrey’s confidence interval.
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Figure S6: Rejection rates for data sets with 100, 1000 and 10,000 data points
sampled from the 16 densities with a bump depicted in Fig. S2 (b). Each rate
is based on 500 data sets. The error bars show Jeffrey’s confidence interval. For
definition of the bump size b, see Section 3.1.1.
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Figure S7: Agreement and disagreements between tests on FlowCAP I data. All
tests are performed at significance level 0.05. Top: All cluster dimensions, irre-
spective of data set size. Bottom: Data sets partitioned by size.
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Figure S8: Rates of rejection calibrated and uncalibrated dip and bandwidth tests
(shoulder reference) in at least one dimension, split by gater concurrence and
cluster size. The gater concurrence categories are defined in Section 3.1.2. The
error bars show Jeffrey’s confidence interval.
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Figure S9: Histograms of data sets accepted by the dip test and rejected by the
bandwidth test. The black interval shown at the bottom is the interval selected for
the bandwidth test wherein to count for modes. The two yellow intervals show
the two most significant modes for the dip test. The two top rows are the six first
such data sets in the StemCell data set with at least 1000 points, the bottom two
rows are the first such sets in the GvHD data set with at least 1000 points.

bandwidth test disagree. In Fig. S9, which shows data sets which are accepted by
the dip test but rejected by the bandwidth test, it is common with a flat region.
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Figure S10: Histograms of data sets accepted by the bandwidth test and rejected
by the dip test. The black interval shown at the bottom is the interval selected for
the bandwidth test wherein to count for modes. The two yellow intervals show
the two most significant modes for the dip test. The two top rows are the six first
such data sets in the StemCell data set with at least 1000 points, the bottom two
rows are the first such sets in the GvHD data set with at least 1000 points.
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