LUND UNIVERSITY

A C++ Class for Polynomial Operations

Eker, Johan; Astrt')m, Karl Johan

1995

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Eker, J., & Astrom, K. J. (1995). A C++ Class for Polynomial Operations. (Technical Reports TFRT-7541).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/e76098a2-25d8-41c5-8579-aee033bcbd32

ISSN 0280-5316
ISRN LUTFD2/TFRT--7541--SE

A C++ Class for Polynomial
Operations

Johan Eker
Karl Johan Astréom

Department of Automatic Control
Lund Institute of Technology
December 1993

P.O. Box 118

Department of Automatic Control
Lund Institute of Technology

S-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

December 1995

Document Number

ISRN LUTFD2/TFRT--7541--SE

Author(s)

Johan Eker and Karl Johan Astrém

Supervisor

Sponsoring organisation

Title and subtitle

A C++ Class for Polynomial Operations

Abstract

applications.

Programmer’s manual for a C++ polynomial class. The class is specially implemented for use in control

Key words

C++ Class, Polynomial, Adaptive Control.

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 15

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

1. Introduction

This report is a part of a research project on autonomous control supported by
NUTEK under contract 9204014P. The project aims at developing controllers
that are highly independent. Such controllers contain modules for parameter
estimators, control design, and diagnostics. Many of these functions are based
on polynomial operations. This C++ implementation provides support for
such operations. It also has features designed for use in real-time control. One
advantage of using an object oriented language for implementing a polyno-
mial package is that arithmetic operators can be redefined, which means that
the polynomials can be treated like any predefined arithmetic data type. This
simplifies programming and it makes the programs easy to read. The main de-
sign goals have been to create a safe, reasonably fast and easy-to-use package.
The class includes overloaded operators for the normal C/C++ operations. It
also has special functions required for control design. All functions are made
reentrant, since the class is intended to be used in a real-time environment.

Parts of the code are adapted from old Pascal programs developed at the
department, an interactive polynomial calculation program PCalc, written by
Tomas Schénthal and a program Toolbox, for real time control, written by
Micael Lundh.

This report is organized as follows. An overview of the implementation
is presented in Section 2. All functions and their attributes are presented in
Section 3. Some examples of use of the package is given in Section 4. It is
assumed that the reader is familiar with control theory and the programming
languages C and C++.

2. Structure and Implementation

The internal representation of a polynomial is a vector where the coefficient of
the highest power is stored at the first position, i.e. position zero. A polynomial

A=qgyz" +a;2" '+ -+ a,
will thus be represented in the following way
A= [a01a1)' ' '7an]

The data type of the polynomial coefficients is called real and is by de-
fault defined as double. If there should be any need to change this it is easily
done by changing the real typedef in polynomial.h. The size of a polyno-
mial can be arbitrarily large since the internal data structure is dynamically
allocated.

To avoid small coefficients as a result of computational errors a constant
epsilon is used to define zero. Epsilon is by default set to 107°. This figure
has been found to work well in most cases, but the results of the polynomial
calculations are very sensitive to changes of epsilon, so it could be wise, if
results are getting strange, to try another value for epsilon.

A simple debug function for presenting the polynomials on screen is pro-
vided.

The class is developed at a SUN SPARCstation running Solaris 2.3. The
compiler used is AT&T CFront 3.0.1 together with SUN C-compiler.

3. Operators

One of the greatest advantages of an object-oriented language like C++- is the
possibility to overload operators.the following set of arithmetic operators are
implemented in the package:

Operator Function Use
+ add. <polynomial> + <polynomial>
— sub. <polynomial> — <polynomial>
<polynomial> x <polynomial>
* mul, <polynomial> % <real>
<real>*<polynomial >
/ div. <polynomial> / <polynomial>
<polynomial> / <real>
= assign <polynomial >=<polynomial >
% mod. (remainder) | <polynomial> % <polynomial>
+ = add. and assign | <polynomial> 4 =<polynomial>
- = sub. and assign | <polynomial> — =<polynomial>
* = mul. and assign | <polynomial> % =<polynomial>
<polynomial> x =<real>
J= div. and assign. | <polynomial> / =<polynomial>
<polynomial> / =<real>
% = mod. and assign | <polynomial> % =<polynomial>

The results of the operations are always of type polynomial. Two com-
parison operators ==(equal) and !=(not equal) are also included. It is difficult
to find a good way to determine if two polynomials are equal. In this im-
plementation a very straightforward approach is used. The second operand is
simply subtracted from the first and the result is examined. If all the coeffi-
cients of the resulting polynomial are smaller than the constant epsilon then
the operands are regarded as equal. The != operator is implemented using the
== operator, so at least the operators are mutually exclusive. An example of
the convenience of using overloaded operators is illustrated below.

Polynomial A, B, C;

A

= (B * C)/(2 % A) + A \YC;
B = A + 3.1416%C;
C *= 10;

4. Class Messages and Attributes
In this section a detailed description of polynomial class is given.

Constructors

Polynomial();

Constructs a polynomial of degree zero with the only coefficient equal to
Z€ero.

Polynomial(int Degree,real *Coefficients);

Constructs a polynomial of degree Degree with the coefficients from
Coefficients. The first element in both the input vector Coefficients
and the resulting polynomial represents the the highest power coefficient.

Polynomial(int Degree,real *Coefficients, char *str) ;

This constructor works in the same way as the one above, but has in
addition the ability to give a name to the polynomial. This feature is
mainly used for debug purposes. The program example below uses this
constructor to create the polynomial A = ¢ + 1.5¢ — 2.

#include "polynomial.h"
main()
{
int deg;
real coeff[3];
Polynomial *opA;

deg = 2;
coeff[0] = 1;
coeff[1]
coeff[2]

non

I =
N -
- on

opA = new Polynomial(deg, coeff, "A");
opA->Display()
),

This program generates the following output.
A=1.0q2+1.5q- 2.0

Operators

Below is an overview of all the overloaded operators.

Member Operators:

Polynomial% operator = (const Polynomial p);
Polynomial% operator += (const Polynomial p);
Polynomial% operator -= (const Polynomial p);

Polynomial& operator *= (const Polynomial p);
Polynomial% operator *= (real r);
Polynomial® operator /= (const Polynomial p);
Polynomial%& operator /= (real r);
Polynomial% operator %= (const Polynomial p);

Friend Operators:

Polynomial operator * (const PolynomialZ p, real T);
Polynomial operator * (real r, const Polynomialk P);
Polynomial operator * (comst Polynomial& pi,

const Polynomial& p2);
Polynomial operator / (comst Polynomial% p,real den);

Polynomial operator / (const Polynomial& num,
const Polynomial& den);
Polynomial operator % (const Polynomial& num,
const Polynomial% den);
Polynomial operator + (const Polynomial& pl,
const Polynomial& p2);
Polynomial operator - (const Polynomial& pil,
const Polynomial&% p2);
void PolDiv(const Polynomial num, const Polynomial den,
Polynomial& quotient, Polynomialk remainder);

int operator == (const Polynomial% pl, const Polynomialk P2);
int operator != (const Polynomialk pl, const Polynomial& P2);
Attributes

real *coeff;

This is the vector that contains the coefficients of the polynomial. The
coefficient of the highest power is stored at the first position i.e. position
Zero.

int deg;
The degree of the polynomial.

char name[namelength+1];

This character vector holds the name of the polynomial instance and is
used mainly for debug purposes. The Display function, see below uses
name by default when writing the polynomial to the console. The constant
namelenght is set in Polynomial.h

Operations on Attributes
These are member functions, which provide a way for the user to manip-
ulate the class attributes without having direct access to them.

void Set(int Degree,real *Coefficients);

Sets the degree of the polynomial to Degree and the coefficients to
Coefficients. Coefficients is a vector with the highest power coeffi-
cient at position zero.

real% operator[](int elem) comst;
real’ operator[](int elem);

This operator returns a reference to the element at position elem. It is
valid both for assigning and returning values.

int GetDegree(void) const;

Returns the degree of the polynomial.

void SetDegree(int d);

Sets the degree of the polynomial to d. If the degree is decreased the poly-
nomial will simple be truncated and in the case where the new degree is
higher then the previous then the new elements are set to zero.

void Display(char *str = "\0");

Displays the polynomial on the console. If the function is called with an
argument it will write the string str followed by the polynomial to the
console. If called with no argument it will use the class attribute name
instead of str. Let the variable opA be defined as in the program example
above, and make the following function call:

opA->Display("This is polynomial A:");
The following output is generated:
This is polynomial A:1.0 q°2 + 1.5 q - 2.0

void Display(char variable, signType sign = positive,
char *str = "\0");

By default the polynomial is presented in the variable q. This Display()
call takes two new arguments. The first argument variable tells the func-
tion which variable to use, and the second argument sign contains the
sign of this variable. The third argument is optional and is used as in the
other Display() call described above.

void Clear(int d);
Sets all the coefficients to zero and the degree to d.

void SetName(char *str)

Sets the class attribute name to str.

real Eval(real r);
real operator()(real r);

These are two identical functions which calculate the value of the poly-
nomial for q = r, i.e. the scalar A(r).

Polynomial Reciprocal()

Returns the reciprocal polynomial. The reciprocal polynomial is defined
as follows:

Let A =3.5¢° + 1.1g + 999, ! then the reciprocal polynomial denoted A*
is A* = 3.5+ 1.1¢ + 999% = ¢?A(¢™1).

More formal:

A*(Q):1+a1*q+...+a:¢qz=qnaA(q_1))

See [Astrom and Wittenmark, 1990] for a full definition.

int IsStable()

This function uses Jury’s Criterion to determine if the polynomial is sta-
ble. The algorithm is described in [Astrém and Wittenmark, 1990]. If the
polynomial is stable 1 is returned otherwise 0 is returned.

1 g is the forward shift operator. The forward shift operator has the property gf(k) =
f(k+1).The backward shift operator denoted g! is the defined as ¢! f(k) = f(k—1).

Miscellaneous Operations

void ShiftForward(real r);

This function shifts the coefficients of the polynomial to the left and sets
the last coefficient to r. Let A = 2.3¢% + 3.5¢ + 1.1, then the following
operation

A.ShiftForward(999);
changes A to A = 3.5¢% + 1.1¢ + 999.

void ShiftBackward(real r);

This function shifts the coefficients of the polynomial to the right and sets
the highest power coefficient to r.

Polynomial& MakeMonic();

MakeMonic makes the polynomial monic by dividing all coeflicients with

the highest power coefficient. In a monic polynomial the highest coefficient

is always 1. For example let A = 2¢®+ ¢+ 10, then the following operation
B = A.MakeMonic();

sets B — ¢ + 0.5¢ + 5.

void Cutpoly(real);
Normalizes the polynomial, i.e. all coefficients that are smaller than the

largest coefficient times epsilon are removed. If necessary the degree of
the polynomial is changed

5. External Functions

In this section the numerical polynomial functions included in the package
are described. The reader is assumed to have knowledge of polynomial design
methods and to be familiar to the notations used in [Astrém and Wittenmark,
1990] and [Astrém and Wittenmark, 1995]. All algorithms in the functions
below originate from those books unless otherwise stated.

void GCD(Polynomial A, Polynomial B, real reps,
Polynomial% G, Polynomial& X, Polynomial% Y,
Polynomial% U, Polynomial& V);

This function calculates the greatest common divisor of polynomials A
and B using Euclid’s algorithm. It also solves the two equations

AX +BY =G (2)

AU+ BV =0 (3)
G is the greatest common divisor of A and B. A more detailed description

of the algorithm is found in [Astrém and Wittenmark, 1995].

void DiophantineMDS(Polynomial A, Polynomial B, Polynomial Ac,
Polynomial% R, Polynomial& S);

DiophantineMDS finds the minimal degree solution to the equation AR +
BS = A.. The equation is solved in two steps. First the two equations
2 and 3 are solved using the GCD function. Then in the second step the
general solution is found through

R=R"+QU
§=85°+QV
with
R’=XA.divG
SO=YA divG

where G is the greatest common divisor of A and B. The minimal degree
solution is now given by simply choosing

Q = S°divV. The greatest common G must divide A, otherwise the
equation has no solution.

ExaMmPLE 1

#include'"polynomial.h"

main()

{

XX
YY

XX.Display("XX
YY.Display ("YY

Polynomial A, B, C, XX, YV;

real A_datal[l= {1, 2.3, 3.5};
A.Set(2, A_data, "A");

real B_datal] = {1, 1.45};
B.Set(1, B_data, "B");

real C_datal[] = {1, 3.4, 0.8, 2};
C.Set(3, C_data, "C");

DiophantineMDS(A, B, C, XX, YY);

");
");

When running the program above the following output is produced:

1.000 q + 3.629
-2.529 q -7.379

void Sfactorize(Polynomial B, Polynomial& A);

Let
A(z) = 2" + a1 2" A (4)

The reciprocal polynomial of A, denoted A* is obtained by reversing the
order of the coefficients of A.

A*(2) =14 arz 4 -+ + @pe2™ = 2" A(27H). (5)

Sfactorize takes a polynomial B = ee* and returns a stable polynomial
A so that AA* = ee*. This algorithm is described in [Kucera, 1979)].

void DyadicReduction(Polynomial& A, Polynomial&% B, real& Alpha,
real% Beta, int i0, int il, int i2);

Given vectors

a=[lay -a,)7
b=1[1bg- b (6)
and scalars a and 3, find vectors
a=[1dy dy)”
such that L
aaa” + BbbT = qaa® + BbbT (8)

The vectors & and b can be found using dyadic decomposition. DyadicReduction
is very useful when doing square root recursive least square estimations.

For a closer look at the algorithm and its applications see [Astrém and
Wittenmark, 1995].

void RobustIntegralDesign(Polynomial A4, Polynomial B,
Polynomial Ac, Polynomial& R,
Polynomial& S, real xO0, real x1);
This function calculates an integral controller with zero gain at the
Nyquist frequency. Two additional closed loop poles are specified through
x0 and x1 which are coefficients in the X-polynomial, see below.
First the minimal degree solutions R® and S® are calculated. If R°
and S° satisfy
AR’ + BS® = A,

then
R=XR°+YB

S=XS"-YA
are solutions to the equation

AR+ BS = XA,

This gives a controller with the characteristic polynomial A.X, where
X = ¢® + ¢19 + z,. To get the desired controller first let Y = y,q — y1.
Then solve

R(1)=0¢ 0= —X(1)R°(1) + Y (1)B(1)

S(-1) = 0 & 0 = X(-1)8%(~1) - Y (~1)A(-1)

By using those equations the coefficients of the ¥ polynomial can be
calculated.

Y(1)-Y(-1)
W=
() +2Y(—1)

EXAMPLE 2
#include <stream.h>
#include "polynomial.h"

main()

{
Polynomial A, B, Ac, R, S, X, tmp;

real A_data[l= {1, 2.3, 3.5};
A.Set(2, A_data, "A");

real B_data[] = {1, 1.45};
B.Set(1, B_data, "B");

real Ac_data[] = {1, 3.4, 0.8, 2, 2};
Ac.Set(3, Ac_data, "Ac");

RobustIntegralDesign(A, B, Ac, R, S, -1, 0.25);

real X_data[] = {1, -1, 0.25};
X.Set(2, X_data);
R.Display("R = ");
S.Display("s = ");

cout << "Integral R(1) = " << R(1) << emndl;
cout << "Robust S(-1) = " << S(-1) << endl;
Ac.Display();

((A%R + B*S)/X) .Display("(A*R + B*S)/X = ");
}

When running the program above the following output is produced:

R =1.000 q°3 + 4.873 q~2 -2.841 q -3.032

S = -4.773 q°3 -7.296 q~2 + 5.140 q + 7.663
Integral R(1) = -8.88178e-16

Robust S(-1) = -1.77636e-15

Ac = 1.000 q°3
A%R + BxS)/X =

3.400 q~2 + 0.800 q + 2.000
.000 q~3 + 3.400 q°2 + 0.800 q + 2.000

= 4+ 0

In the example above the constant epsilon was set to 107°. The two
following functions use the same method to calculate a robust controller
and an integral controller.

void IntegralDesign(Polynomial A, Polynomial B, Polynomial C,
Polynomial% R, Polynomial& S, real x0);

This function first solves the diophantine equation and then forces the
R polynomial to contain an integrator. This is done by designing the R
polynomial so that R(1) = 0. The input parameter x0 specifies the addi-
tional closed loop pole. The characteristic polynomial now becomes A, X,
where X = q — .

void RobustDesign(Polynomial A, Polynomial B, Polynomial C,
Polynomial% R, Polynomial& S, real x0);
RobustDesign works similar to IntegralDesign but the constraint on
the controller design is instead S(—1) = 0. This condition gives a con-
troller with zero gain at the Nyquist frequency. The input parameter x0
specifies the additional closed loop pole. The characteristic polynomial
now becomes A, X, where X = q — 2.

void LQGDesign(Polynomial A, Polynomial B, Polynomial C,

Polynomial& R, Polynomialk S, real rho);
Calculates a LQG-controller for the system A, B, and C with the loss
function coefficient p. The computational procedure is described in detail
in section 12.5 in [Astrém and Wittenmark, 1990]. This implementation
only handles the case where A(0) # 0. Below is an example of how a
LQG-problem can be solved using this function. It is taken from [Astrém
and Wittenmark, 1990], Example 12.7, with A(z) = z + 0.5, B(z) = 0.5,
and C = z+ 0.8.

ExAaMPLE 3

#include <stream.h>
#include "polynomial.h"

main()
4
Polynomial A, B, C, R, S;

cout << "Example 12.7 in CCS5" << endl;
cout << "LQG Design with rho = 0.5." << endl;

A.SetDegree(1);

AT0] = 1;

A[1] = 0.5; // a = 0.5
B.SetDegree(0) ;

B[0] = 0.5; // b=20.5

C.SetDegree(1);
cfol = 1;
cl[1] =0.8; // ¢ =0.8

LQGDesign(4, B, C, R, S, 0.5);

R.Display("R
S.Display("S

"),
");

The following output is generated:

R = 1.000 q + 0.614
S = -0.112

void MDPPNZCDesign(Polynomial A, Polynomial B, Polynomial Am,
Polynomial Ao, Polynomial& R, Polynomial& S,
Polynomial% T);

10

The abbreviation stands for Minimal Degree Pole Placement with No Zero
Cancelation. The function chooses Bt = 1 and B~ = B. Furthermore B,,
is chosen so that the stationary gain will be unity.

An(1)B(q)

Bm(Q) = B(l)

The closed-loop characteristic equation to be solved now becomes
AR+ BS = A, A,

The T polynomial is given by

Am(1)A(q)
T(q) =
How the MDPPNZCDesign-function is used is demonstrated in the example
below.
ExaMPLE 4

#include <stream.h>
#include "polynomial.h"

main()
{
Polynomial A, B, Am, Ao, R, S, T;

B.SetDegree(1);

B[0] = 1;

B[1] = 0.7;
A.SetDegree(2);
A[0] = 1;

A[1] = -1.8;
A[2] = 0.81;
Am.SetDegree(2) ;
Am[0] = 1;

Am[1] = -1.5;
Am[2] = 0.7;
Ao.SetDegree(1);
Lo[0] = 1;

Ao[1] = 0;

MDPPNZCDesign(A, B, Am, Ao, R, S, T);

R.Display("R = ");
S.Display("S = ");
T.Display("T = ");
}
From this program the following output is generated:
R = 1.000 q + 0.088
S = 0.213 q + -0.101
T = 0.118 q + 0.000

11

void Roots(Polynomial A, Polynomial& rootRe,
Polynomial& rootIm);

The roots of polynomial A are calculated and are returned in the two
polynomials rootRe and rootIm. The real parts of the roots are stored in
rootRe and the imaginary parts are stored in rootIm.

void LDFilter(double *1, Polynomial& d, Polynomial& phi,
Polynomial® theta, double& lambda);

This function is an implementation of an estimator and would together
with any of the design functions above form a complete adaptive con-
troller. The algorithms behind LDFilter is taken from [Astrém and Wit-
tenmark, 1995]. Let the system to be estimated be on the form

y(t) = ¢ (t)0

where 0 is a parameter vector and ¢ is a vector of signals. The following
recursive least-square estimation algorithm is used

(t)
(t)
(t)

The covariance matrix P has a decomposition P = LDLT, where L is a
lower triangular matrix and D is a diagonal matrix. Initially set L = I,
which gives that P(0) = D. The function takes the following arguments:

e double *1

An array of doubles with the size deg(6) x deg(6).
e double *d

An array of doubles with the size deg(6).
e Polynomial& Phi

This a polynomial that contains old process values and old control signals.
The polynomial is arranged on the following format:

b(t - 1) + K(£)(y(t) - " (10t ~ 1))
P(t)p(t)
(- K(&)p"(1))P(t ~ 1)

6
K
P

I

Phi=[y(t),—-y(t—1),...,—y(t —n),u(t—4d),...,u(t —d - m)]

where n = deg(A),m = deg(B), and d = n — m.

e Polynomial¥% theta
This is a polynomial with the degree set to (deg(A) + deg(B) + 1) and
with the coefficients to be estimated on the following format:

theta = [ao, Ayy...,ap, bo, . .,bm]

e double& 1
This parameter is the forgetting factor A.

6. Testing

The class is tested both in several real-time control applications and in sev-
eral test programs. The test batch mentioned above is called polyTest and

12

is included with the other files in the package. It simply uses a number of
polynomials, defined in the beginning of the program, and runs them through
a number of equations and expression. Finally it checks if the results are the
expected. The calculations made by the program are designed so that all the
used polynomials should end up with their initial value. The result from an

execution that detected an error is shown below.
*%% RESULT %%

Polynomial A: ...OK!
Polynomial B: ...0K!
Polynomial C: ...0K!
Polynomial D: ...0K!
Polynomial H: ...0K!

Polynomial I: --- ERROR IN POLYNOMIAL PACKAGE! ---

The source code for the test program is available together with the other files
of the package.

7. A Small Example Program

This is small example program demonstrating how the Polynomial class can
be used.

ExAMPLE b
#include <stream.h>

#include "polynomial.h"

void main()

{

Polynomial A, B, C;
real Indatal4];

int Degree;
signType sign;

A.SetDegree(3);

A[0] = 1;

A[1] = 2.3;
A[2] = 3.5;
A[3] = 4.1;

A.SetName("A");

Degree = 2;
Indatal[0] = 1;
Indatal1] = 1.45;
Indata[2] = 7.4;

B.Set(Degree, Indata,

C = A x B;
C.SetName("C");

=

.Display();
.Display();
.Display();

Q

IIBII) ;

13

A += A
A.Display();

B.MakeMonic() .Display();

sign = negative;
((A%C + B*A) % B.Reciprocal()).
Display(’z’, sign, "(AxC + B*A) %) B.Reciprocal() = ");

A.Display();
if (A.IsStable())

cout << "A is stable"<< endl;
else

cout << "A isn’t stable" << endl;

if (A.Reciprocal().IsStable())
cout << "A.Reciprocal() is stable"<< endl;
else
cout << "A.Reciprocal() isn’t stable" << endl;
}

This program gives the following output:

A =1.00 q"3 + 2.30 q"2 + 3.50 q + 4.10

B=1.00q"2 + 1.45 q + 7.40

C=1.00 q°5 + 3.75 q"4 + 14.235 q"3 + 26.195 q"2 +
31.845 q + 30.34

A =2.00 g°3 + 4.60 q°2 + 7.00 q + 8.20

B =1.00q°2+ 1.45 q + 7.40

(A*C + B*A) % B.Reciprocal() = 376.913345 z + 241.807917
A isn’t stable

A.Reciprocal() is stable

A = 2.000000 g3 + 4.600000 q~2 + 7.000000 q + 8.200000

8. Files

The polynomial package consists of the following files:

e polynomial.h polynomial.c
Those files contain the definitions and declarations of the polynomial class
and the controller design functions.
e polyTest.c
This is a test program for testing the polynomial class.
e Makefile
The Makefile for making polyTest.

9. References
AstroM, K. J. and B. WITTENMARK (1990): Computer Controlled
Systems—Theory and Design. Prentice-Hall, Englewood Cliffs, New Jersey,

second edition.

14

Astrom, K. J. and B. WiTTENMARK (1995): Adaptive Control. Addison-
Wesley, Reading, Massachusetts, second edition.

KoEeniag, A. R. (1989):. “Effective use of C++.”. Course material used in a
course given by the author 1989 at the Department of Automatic Control,
Lund, Sweden.

KuGERrA, V. (1979): Discrete Linear Control—The Polynomial Equation
Approach. Wiley, New York.

LipmaN, S. B. (1991): C++ Primer. Addison-Wesley Publishing Company,
2nd edition.

SHOPIRO, J. E. (1991):. “Advanced C++.”. Course material used in a course
given by the author 1991 at the Department of Automatic Control, Lund,
Sweden.

15

