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1. Introduction

Many practical systems can be modeled as a feedback interconnection of a
linear time-invariant (LTI) plant G and a perturbation A. The perturbation
contains everything in the system that cannot be modeled as an LTI plant.
For example, it can contain nonlinear elements, time-varying elements, and
uncertain elements with various assumptions on the uncertainty.

Several classical results from 1960-1975 give sufficient conditions for sta-
bility in terms of the Nyquist curve in the case when G is a single-input single-
output (SISO) plant for various nonlinear and/or time-varying perturbations,
see for example [3]. Since the early 1980s much progress has been made on
computational methods for robustness analysis in the case of MIMO plants.
For example, Doyle introduced p-analysis, which can be used for robustness
test of a large class of systems with structured LTI perturbations by solving an
optimization problem at a preselected grid of frequencies, see [4], [15]. How-
ever, in the case of nonlinear and/or time-varying perturbations there exists
coupling between frequencies and the optimization problems at different fre-
quencies can not be treated separately. One way to overcome this problem is
to parametrize the multipliers involved in the optimization problem in terms
of a basis of rational transfer functions, [11] and [2]. The corresponding opti-
mization problem can then be transformed into an equivalent Linear Matrix
Inequality (LMI) which can be solved by efficient numerical algorithms. The
effectiveness of this approach is generally dependent on the choice of basis.

The objective of this paper is to derive a dual optimization problem which
can be used to investigate the quality of a particular basis.

We will consider robustness analysis in the unified framework based on
Integral Quadratic Constraints (IQC) that was suggested by Megretski and
Rantzer, [12], [17]. The computation of a robustness criterion v is an opti-
mization problem of the following type

inf 5 subject to (1)
31T € Ha(y), such that

] maa ] . vt

where IIa(7) is a convex cone of rational transfer functions for every value
of the parameter v. IIa(7) is generally infinite-dimensional and we obtain
solutions to (1) by introducing a finite-dimensional rational basis for the mul-
tipliers in ITa(y) and then solve an equivalent optimization problem which
has LMI conditions in the constraint. The solutions that are obtained by this
method are generally suboptimal.

In order to estimate the conservativeness of a particular basis we derive
the dual optimization problem. The dual is generally an infinite-dimensional
optimization problem which may be hard to solve. However, by considering
finite-dimensional restrictions, we can obtain solutions to it for a large number
of problems that are of interest in practice. We will consider one such approach
that leads to coupled LMI tests for a preselected set of frequencies. Similar
results as in this paper was obtained in a somewhat different framework in [6].



2. Mathematical Preliminaries

This section presents the necessary mathematical preliminaries and notation
needed in the paper. The following standard definitions and results from
functional analysis and convex analysis can be found in [10].

e Let X be a normed vector space. The dual of X is the normed space
consisting of all bounded linear functionals on X and it is denoted by
X*. Fz € X and z* € X*, then (z,z*) denotes the value of the linear
functional z* at @.

o Let H : X — Y be a bounded linear operator. Then the adjoint operator
H*:Y*+— X* is defined by the equation

(He,y*) = (a:,ny*>

foralle € X and y* € Y™

o A convezx cone C is a convex subset of a vector space with the property
that if # € C, then az € C for all a > 0.

o We will use the following notation for optimization problems with con-
straints

ix}gf’y def inf+y subject to P

where P denotes a constraint definition.

The following separating hyperplane theorem will be a main tool in this
paper

PROPOSITION 1—SEPARATING HYPERPLANE THEOREM

Let C; and C, be disjoint convex sets in a vector space X. Assume further
that C; is open, then there exists z € X* such that (z1,z) < (@g,2) for all
z1 € C1 and z, € Cs.

Proof: This is essentially Theorem 3 on page 133 in [10]. In fact: C =
C; — C5 is an open set such that 0 ¢ C. By the Geometric Hahn-Banach there
exists an element z € X* such that (z,z) < 0 for all z € C, from which the
proposition follows. Ol

Next is a list of notation and function spaces used in this paper.

Denotes conjugation of a complex valued matrix.

*

M
MT Denotes the transpose of a complex valued matrix.
M

M* = (M)T denotes Hermitian conjugation of a complex valued
matrix.

|« |F The Frobenius norm of a real or complex matrix M is defined as
|M|F = \/tr(M*M).

RL™™ The space consisting of proper real rational matrix functions with
no poles on the imaginary axis. Note that FF € RLZ*™ satisfy

F(-jw) = F(jw).



RH™*™ The subspace of RLTX™ consisting of functions with no poles in the
closed right half plane. Note that G* generally means the Hilbert
adjoint of G(s), defined as GT(—s). The Hilbert adjoint reduces to

the Hermitean conjugate of G when s = iw.

SmXm  The subspace of R™*™ consisting of symmetric m X m matrices with
the topology determined by the Frobenius norm. The dual space can
be identified with S™*™ itself and the linear functionals are defined
as (X, Z)g = tr(X Z), where X,Z € Smxm,

mXm  The subspace of C™*™ consisting of Hermitean m X m matrices with
the topology determined by the Frobenius norm. The dual space can
be identified with ST*™ itself and the linear functionals are defined

as (X, Z)g = tr{X Z}, where X, Z € Sg-"™.

Smxm  The subspace of RLZX™ consisting of functions satisfying z(jw) =
z(jw)* for all w € [0,00]. We define the norm on S*™ as ||z|| =
max,¢(o,c0) |€(jw)|F. Note that this is not the usual norm on RLT*™,

Pm™X™  The positive cone defined as

pmxm = {g € S 1 2(jw) 2 0, Yw € [0, 0]}
Sxsv The normalized Banach space of functions R U {oo} — SZ*™ of
bounded variation. Every z € Sypy satisfies the following properties.

1. 2(-w) = —2z(w) for all w € [0, 00].
2. z is continuous to the right on (0, 00) and it satisfies z(0) = 0.
3. The norm of z is defined as ||z|| = T.V.(z), where

N
T.V.(z) =2sup Z |2(wk) — 2(wk-1)|F

k=1
where 0 = wp < w; < wy < ... < wy = oo is a partition
of [0,00], and the supremum is taken with respect to all such
partitions.
PRXm  The positive cone defined as

Prxm — Lz € STy : 2(w1) > 2(ws), Vw1 > wp 2 0}

PROPOSITION 2
The dual of S™X™ can be identified with mX™ and if 2 € S2*™ and z €

STX™  then the linear functional is defined by

(z,2) =2 /Ooo trfz(jw)dz(w)]

N
=2 jim 3 trfaon)lx(n) = o] (@)
where 0 = wo < wy; < wy < ... < wy = oo is a partition of [0,00], and the

limit is considered as maXge(1,... N-1} [Wk — wr—1| — 0 and as wy_; — oo.
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Figure 1. System setup for stability analysis and performance analysis respec-
tively.

Proof: We use the Mdbius transform ¢(z) = (2—1)/(z+1) to transform to
the imaginary axis to the unit circle. We denote the unit circle D. For any
z € STX™ let = z o 1. The restriction to the unit circle of the vector space
consisting of the functions Z obtained in this way is dense in the Banach space
of continuous functions Z : 8D - S§**™, satisfying

1. Z(e™9¥) = z(e/v), for all w € [0, 7].
2. The norm is defined as ||Z|| = max,,¢[o,x] |5:'(ej“’)|,

It follows from Theorem 1, on page 113 in [10] that the dual space consists of
functions z : D — ST*™ of bounded variation. The proposition follows after
transformation with the inverse Mobius map 3 ~!. Note that the symmetry

around w = 0 for the spaces ST*™ and S{py" implies that we can define the
functionals only in terms of positive frequencies. O

ProPOSITION 3
For any € ST*™ and z € Spev™, we have (2, z) > 0.

Proof: This is obvious from the definition of the linear functional in (2).
O

3. The Primal Robustness Test

A general and unified approach to the use of multipliers was introduced in
[17, 14]. The method is based on the concept integral quadratic constraint
(IQC). An operator A (possibly nonlinear) on L3*[0, 00) is said to satisfy the
IQC defined by the matrix function II, called multiplier, if

o [ 9Gw) 1" V(jw)
— I(jw) | — dw 0 for all v € Ly*[0,00
I. [(A(v)(jw)] U )[A(v)(jw)] 5 CLElhe)

Here ¥ and A/(;) denotes the Fourier transform of v and A(v). Based on this
definition, each operator A can be described by a set IIn of multipliers II,
that define IQC:s satisfied by A.

IQC:s can be used in the analysis of the systems in Figure 1. Here G is a
causal, linear time invariant operator with transfer function in RHT*™ and
A is a bounded and causal operator on Lj[0,00). It is possible to analyze
the system with respect to either robust stability or robust performance. The
first step in the analysis consists of finding a description of the perturbation
A in terms of IQC:s. The following properties are convenient when deriving
an IQC description of A.



Property 1 The set of all II that describes A in terms of IQC:s is a convex
cone. Hence, if A is described by the convex cones II;ao and IIza, then A is
also described by IIp =111a + 134 = {Hl 411y : II; € 1A, € HzA}.

Property 2 Assume A has the block-diagonal structure A = diag[A;, As],
and that A; satisfies the IQC defined by II;, ¢ = 1,2. Then A satisfies the IQC
defined by II = daug|[Il;, IT;], where the operation daug is defined as follows.
If

II;; Il .
IL; = , =12,
Hfz ;s

where the block structures are consistent with the size of A; and A,, respec-
tively, then

Im; 0 |IILs O
0 Iy | 0 Il
da‘ug(nl ) HZ) =
m;, 0 |Ms O
0 I,| 0 I

If A; is described by the convex cones IL;s, i=1,2, then A is described by the
convex cone daug(Il;a,2a) = {daug(Il;,IIs) : I[; € I1a,1Iz € Ia}.

In robust performance analysis we also need IQC descriptions of the perfor-
mance specification and the characteristics of the input signal. These should
be augmented to the IQC description of A. This is discussed in more detail
in Section 8. The robustness analysis can be formulated as an optimization
problem on the following form

The Primal optimization problem

infy subject to (3)
31T € TIa(y), such that

P Gliw)1* ]
[ (}w)] II(jw) [G(}w)] <0, Vw e [0,00]

The parameter v corresponds to the robustness criteria which is investigated.
This could for example be a stability margin. We make the following assump-
tions

Assumptions on IIA(7):
1. TIa(y) C 8¥mX2m i5 a convex cone for any given v € R.

2. If v > 71, then VII; € IIa(7y1) there exists II; € IIA(72) such that
II; > II,. This ensure that the primal constraint is satisfied for all

v > infp 7.

The constraint P in the primal optimization problem (3) corresponds to an
infinite-dimensional convex feasibility test. The following computational algo-
rithm for obtaining a, possibly suboptimal, solution to (3) can be used. The
first two steps are explained in more detail in [7].



1. Restrict the primal optimization problem to a finite dimensional sub-
space by considering a subset of IL5 (y) consisting of matrix functions on
the form

(jw) = ¥(jw) M(A,7)¥(jw) (4)

where ¥ € RLY*™ is a basis multiplier and where M : R® X R —
VXN is linear in the parameters A € R™ for fixed 7. The range of A is
constrained by LMI:s on the form ®7 M(X,7)2, < 0,k=1,... K.

2. It follows from the Kalman-Yakubovich-Popov lemma that the con-
straint of the restricted optimization problem is equivalent with a finite
dimensional LMI test Prprr on the form

IX € R”, Py = PT, such that
Pryer: { NTA(Po, A, 7)N <0
TM(\,7)8 <0, k=1,...,K

where A and A are obtained from a state space realization of

o]

A is linear in P, and for fixed 7 it is also linear in A. The dimension of
P, corresponds to the dimension of the state space realization of ®g.

3. We can now obtain a solution to the restricted primal by either

a. Bisection on . This follows from the second assumption on Iz (7).

b. It is often possible to transform the restricted primal to a gener-
alized eigenvalue problem. There is support in LMI-lab for solving
such problems, [5].

c. For some problems it is possible to fix one element in the finite
dimensional cone obtained in (4) such that the restricted primal
becomes an linear objective minimization problem, which has sup-
port in LMI-1ab.

The potential of the computational method described above is dependent on
the choice of a good finite-dimensional subspace for the restricted primal. It
is desirable to keep the dimension of this subspace as low as possible since
the speed of the LMI computations depends critically on it. In order to eval-
uate the quality of a particular subspace we would like to have a method
for obtaining upper bounds on the primal optimization problem in (3). The
dual optimization problem derived in the next section can be used for ex-
actly this purpose. The dual turns out to be infinite-dimensional. However, in
many applications we may obtain, possibly suboptimal, solutions by restricting
attention to finite-dimensional subspaces, which results in finite-dimensional
convex optimization problems. We can then consider the primal optimization
problem solved when we have obtained suboptimal solutions of the primal and
the dual with a small gap between their corresponding objective values. We
illustrate with an example.
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Figure 2. Notation used to describe the motion of ships.

ExXAMPLE 1—SHIP STEERING DYNAMICS

We will consider ship steering dynamics as in Example 9.6 in [1]. The dynamics
for the ship can, with notation as in Figure 2, be approximated by the Nomoto
model

() = v(t)(—az(t) + bo(t)(t))
d(t) = o(2)

where 1 denotes the heading of the ship, v denotes the rudder angle and v is
the speed of the ship. It is assumed that v(t) > 0. We will as in [1] study
stability of the ship dynamics for an unstable tanker, which is controlled by a
PD regulator

v = —Kvy
K(s) = k(14 sTa)

where & = 2.5 and Ty = 0.86. It is also assumed that ¢ = —0.3 and b = 0.8.
We will investigate the particular case when v(t) = wvo + A cos(wot), where
vo > 0 and A > 0. It is possible to represent the system as in Figure 1, with
A = acos(wpt)lp and a transfer function G, which will be in RH2X? when
vo > 0.1744. Let ¥ = a~%2. We can then describe A above with the convex
cone TIa (7) consisting of matrices of the form, [14]

3 X (j(w+ wo)) + X (§(w — wo))] 0

0 -7 X (jw) (5)

M) = |

where X € P2X2. Let qop: be the solution to the primal optimization problem
in (3) with this G and Ia(7y). We can then guarantee stability for the ship
dynamics when a < 1/ \/Yopt- We solved the restricted primal for six choices of
finite-dimensional subspace for the case when vy = 0.5 and wo = 0.5. Figure
3 shows how the optimal value of a increases for increasing subspaces. The
upper bound given by the dual assure that the two largest finite-dimensional
subspaces are close to being optimal. We refer to Section 6 for details on the
computations and the choice of multipliers.
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Figure 3. The primal optimization problem is solved for six different choices of
finite dimensional subspace (*). The size of the subspace is given in terms of the
number of decision variables in the corresponding LMI constraint. The solid line
corresponds to an upper bound obtained from the dual optimization problem.

4. The Dual Robustness Test

We will in this section investigate the following optimization problem.

The Dual Opilimization Problem
supy subject to (6)
- {EIZ € PX™, Z # 0, such that
MZZ € Tia(y)®
where the conjugate cone II5(7)® is defined as
Ta(y)® = {Z € SZ2**™ (I, Z) > 0, VI € Ta ()}

and where Mj : S@x™ — Stmw®™ is the adjoint of the operator Mg :

2mx2m mXxm
S — STX™ defined as

Gl*_[G
s [ 7] w5
I I
for any II € §2m*?™_ The following more suggestive formulation of the second
constraint in the dual will sometimes be used

HEHEE

where Mg Z is replaced by its corresponding measure and where dIIA(7)® =
{dZ : Z c TIA(7)®} = {dZ : [tr(TldZ) > 0, VII € ITa(7)}
We have the following result

THEOREM 1
The primal optimization problem in (3) and the dual optimization problem in
(6) have the same objective value, i.e

e
infy = supy

The primal and dual constraints P and D are defined in (3) and (6) respec-
tively.



Proof: Let 4* = infp~y. From the second assumption on II(7y) it follows
that v < v* in the primal optimization problem if and only if the convex sets

P ={MeIl: 11 € A (v)}
Q={X eS8 X(jw) < 0,Vw € [0, 00} }

are disjoint. By the separating hyperplane theorem and the property that
0 € TIA(7y) there exists a nonzero Z € Sgpy" such that

(X,Z)>0, VXeP (7)
(X,Z)<0, VXeQ (8)

For (8) to hold we need Z € Py™. Condition (7) gives

(McIT, Z) >0, VIIella(y) <
(ILMZZ) >0, VILEIA(Y) <
M Z € Ta(y)®

Hence infpy < supp<y. For the opposite direction we note that v > supp~y
implies that there is no hyperplane separating P and Q. Hence, there is a
II € TIA(7) such that the primal constraint P is satisfied. O

Remark  The second assumption on IIa(y) implies that the primal con-
straint P is satisfied for all ¥ > 4* = infpy = supp<y. Furthermore, it
follows from the proof of theorem that the dual constraint D is satisfied for
all ¥ < v*. In fact: If 3Z € PIX™ such that M Z € Ta(72)® or equivalently
(M1, Z) > 0, VII € IIa(72), then for all y; < 7, and for all IT; € Oa(m),
there exist II; € IIa(yz) such that (Mg, Z) > (Mgllz, Z) > 0. Hence,
MZZ € A (71)® for all y1 < 72.

The left half of Figure 4 illustrates that the primal and dual constraints are
satisfied above and below the optimal value 4*, respectively. In applications
we generally find solutions to the primal and dual optimization problem by
considering restrictions to finite-dimensional subspaces. The right half of Fig-
ure 4 illustrates that the resulting primal and dual generally gives suboptimal
solutions 7, and 74, respectively. The size of the duality gap 7, — ¥4 gives an
indication on the quality of these solutions.

Remark It follows from the proof of Theorem 1 that the existence of a
7 € PTX™ such that M3Z € IIY indicates that there is no solution to the
following feasibility problem: Find a II € II5 such that

49 0 [99] <o v

where Il is a convex cone.

Refinement of the Multiplier: We will next derive the dual in case the
multiplier specification is refined to be IIz(y) = daug(Ila1(7),...,Man(7)),
where

ai(y) = Z Maij(¥)

j=1
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Figure 4. The primal constraint P is satisfied for all v > ~v* and the dual con-
straint D is satisfied for all ¥ < v*. The size of the duality gap indicates the guality
of the suboptimal solutions that are obtained when finite-dimensional restrictions
are considered.

It is assumed that IIa;;(7) satisfies the assumptions on IIa (¥) in Section 3 .
In this case

TA(7)® =  Z| (daug(Ily, ... ,IL,), Z) > 0, VIL = Y Thij, T € Mayi(7)

Jj=1
n m;

=< Z| ZZ (Hﬁ,'P{Z) >0, VIL;; € HAij(’Y)
i=1 j=1

- {zm-z € N7 Mais(7)®, i=1,... ,n}

where P; denotes the projection on II;, i.e. P;II = IL;, if I = daug(1ly, ..., II,).
The corresponding dual becomes

supy subject to (9)
{EIZ € PZX™, Z # 0, such that
'PiMéZ € ﬂ;-'lziIHA;j('y)@, i=1,...,n

5. Computational Issues

The dual optimization problem in (6) is defined in terms of functions in Sxpv-
This class of functions is very large and the corresponding optimization prob-
lem is therefore not tractable for computations. The main purpose of this
section is to show how to restrict the dual to a subspace such that the result-
ing optimization problem involves only a finite number of matrix constraints.
This approach for obtaining suboptimal solutions to the dual optimization
problem is useful in a large number of practical applications.

We will use the following notation

10



mXm  The normed space consisting of step functions of the form

N
2(w) = Z 20w — wi) — Zb(—w — wy)
k=1

where the unit step function is defined as

) = {0, w<0

I, w>0
and where z, € ST*™, Y5, |2k|F < 00, N is any finite integer,
and wy € [0,00], k= 1,...,N. The norm on Su is defined as
N
2]l = 2 Xk |2lF < oo
PTiX™  The positive cone of functions z € ST X™ having coefficients sat-
isfying zx > 0 for all k.

The functions in STX™ can be identified with the subset of STX™ consisting
of functions where the variation only corresponds to step discontinuities. We
can formulate a dual optimization problem restricted to this subspace as

supy subject to (10)
3Z € PTX™, Z # 0, such that
Dany

MXZ € a(7)®

The restricted adjoint Mg : Sty ™ — §ZmX2m is defined as the function in
S§2mX2m with coefficients

[G(J'Iwk)] 7 [G(J'Iwk)]*

for any Z € STX™. This means that the last constraint in (10) can be formu-
lated as (we neglect the negative frequencies in order to save space).

i": [G(jwk)] Z0 [G(.'iwk)]* bu.(2) € dTIA(7)®

o I I

where 6, denotes the purely atomic measure on R U {co} with support at wy.

Hence, for any given choice of frequency grid © = {wi,... ,wN}, which
defines the frequencies for the discontinuities of the step functions, the con-
straint definition D 437 in (10) involves only a finite number of complex valued
matrices. In a large number of applications it turns out that for any given
4 € R, the constraint in D4 consists of only linear matrix equalities and
inequalities. We use the next proposition to transform these conditions into
equivalent conditions involving only real valued matrices.

PROPOSITION 4
Let z = z + 42 € C™*™ be a complex valued matrix with z,.,z; € R™X™,
We can represent z as a matrix in R2mX2m ag

Zr Z;
z=[7, 7]
-2z, Zr

We then have the following properties.

11



1. The conditions for z to be Hermitian can be stated as z = z* ¢ Z = 27,

which implies that z, = 27 and z; = —27.

2. If z is Hermitian, then z > 0 & Z > 0.

3. Multiplication and addition of complex matrices corresponds to multi-
plication and addition of the corresponding real valued matrices. Hence,
we have 21 + 23 © Z1 + Z3 and 2129 & Z12,.

Proof: This is a well known fact from algebra. O

For any choice of frequency grid @ = {w1,...,wn}, Wwe solve the restricted
dual with the bisection algorithm below. We use the following notation

1. The notation ¥ € D4pr means that there exists a solution to the finite
dimensional convex feasibility test D 4ps defined in (10).

2. Let 7, be an upper bound for 7. We assume that 7, € Dam
3. Let 4; be a lower bound for v. We assume that 4; € Dap.

For a given precision ¢ > 0 solve for yop: by the following bisection algorithm
Bisection Algorithm for the Dual

while v, — 1 < €

7= (7u+7l)/2
if 7 € Dap then vy = else vy =7
end

Yopt = 7Y

There are cases when the computational approach described above is not suc-
cessful. For example, there does not always exist a function with a finite
number of step discontinuities such that the constraint in the dual is satisfied.
Note also that for our computational approach to be successful it is necessary
that every conjugate cone IIa;;(7)® in (9) is suited for the approach. If this
is not the case then another basis for the restriction of Sxgy than S,y should
be considered. In, [8] and [9] it is shown that the computational approach dis-
cussed above is successful with a small number for frequencies in the frequency
grid Q for a large class of problems that are of practical interest.

It often happens that there are algebraic constraints in the dual, which are
hard to treat numerically. The following simple example is illustrative

EXAMPLE 2
Consider robust stability for a system in Figure 1. Let A be described in terms
of IIa1(7y) and ILaz(7y), where

Mai(y) = {[)0( ——(;X] 1 X € szm}

and

st ={[ . | ¥ emEm™, Y00y = ¥ (), v e 0,01}

12



The conjugate cones are easily shown to be Ila; Me={Z¢ §2mxim . 7.1 —

¥Z3s € Pisy™} and Iaz(y) = {Z € Skmx2m . 7.9 — 77, = 0}. It follows from
(9) that the corresponding dual is

supy subject to
3Z € PRY™, Z # 0, such that

D:{GZG* —vZ € PI™
GZ - 2G* =0

where the last constraint is algebraic. For this dual we can use the computa-
tional method described above with only one frequency in the grid { without
any conservativity, [8]. We get

supy subject to (11)
Jw e 0,00], ZE€ST'™, 220, Z#£0, st.

D:{ G(jw)ZG(jw) —vZ >0
G(jw)Z — ZG(jw) =0

It can be shown that the last constraint in (11) corresponds to finding a
frequency where G(jw) has a real valued eigenvalue. Finding such frequen-
cies is generally a hopeless computational problem. It can actually be shown
that (11) is equivalent to finding the frequency where G(jw) has a real-
valued eigenvalue of maximal modulus. More precisely we need to solve for
p = max {|A(G(jw))| : M(Gjw) € R, w € [0,00]}. Then the corresponding ob-
jective of the dual is 1/p2. O

We can often avoid duals with algebraic constraints of the type in this ex-
ample by considering a different primal with harder constraints on the multi-
plier. This will give a corresponding dual with softer constraints. For example,
let the primal be

Hard Primal

infy such that (12)
3II € A (y), such that

Py [G(;w)]*ﬂ(jw) [G(jw)] < —¢I, Vw € [0,00]

—cI < M(jw) < eI, Yw € [0, 0o]

where £ > 0 is small and where ¢ > 0 is large. This restriction of the original
primal is reasonble in a computations perspective since only bounded entities
can be treated in the computer and the constraints will always be obtained
with some marginal ¢, if they are obtained at all.

The second assumption on IIa(7) is no longer enough to ensure that the
primal constraint Py is satisfied for all v > infp, 7. The following two alter-
native assumptions will ensure this, where the second is the weakest
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Second assumption on Ila(y):

2’, If 49 > 71 then for all —cI < II; € A (1) there exists II; € Ia(72)
such that —cI < II, < II;.

27, 43 > 71 then for all I} € Ia(y:) with —el < I < cI there exists
II; € Ma(y2) with —el < IIp < el such that

[G(J'w)

2] i) - i) [ <0

i

Under any of these two assumptions on IIa(y) we derive the following dual of

(12)
Soft Dual

supvy such that (13)
3Zg € PMX™ 7y, Zy € PEO™, Zo # 0, s.t.

Dg: MXZo+ Zy — 23 € Ia(y)®
€
(I,Z1+ Z3) < E(I,Zo)

and we have

PROPOSITION 5

infy = supvy

Py Dg
Proof: The proof is similar to the proof of Theorem 1 and it is given in the
appendix. O

It is also shown in the appendix that with our computational approach the
soft dual can be formulated as

Soft Dual for S,
supy such that (14)
3Z € PRY™,Z # 0, such that
bs {MEZ € Ma(7)® + B(e, ¢, 2)
where

B(e,c, Z) = {X € Smxam Ztrlel < %Zter}

Here | X| denotes the absolute value of a matrix defined as |X| = (X?)Y/2,

If we consider Example 2 again we see that for the second constraint to
be satisfied in (11) it is enough that the algebraic constraints corresponding
to Ia(7)® are satisfied with a precision which is dependent of ¢. This can
be formulated as an LMI condition. The suggested soft dual has very much
in common with the idea of adding a small complex perturbation to each real
parameter in the computations for the mixed real /complex singular value, see
[16]. There are examples when the gap between the objective values for the
soft dual in (13) and the dual in (6) is large even when ¢ is small and c is large.
This is often an indicatation that the system model with G and A needs more
attention.
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6. The Ship Steering Example, cont’d

We will here describe the computations for the ship steering example in Section
3. We first discuss the primal optimization problem.

The Primal Optimization Problemm We use the finite dimensional convex
cone consisting of the functions

~ «| U 0] 0 ~
RO R|O
0| R 0| R
0 0|-U
subject to the constraint that U = UT > 0. Here R is obtained by spectral

factorization of [R*(s + jwo)UR(s + jwo) + R*(s — jwo)UR(s — jwo))]/2. Its
state space realization is given as

-1
fo (C 0) (3I—A —wol > (B) . (D) ¢ RE2Vxm
0 C wel sI-A 0 0
when R has the realization R(s) = C(sI — A)"'B + D € RHY*2. Table 1
shows numerical results obtained by LMI-lab, [5] when we use R on the form

. - = T
thz(p,n): [Iz, :Tglz,... ,i—_i-_'EIz]

The results are given in terms of the obtained bound on a.

The Dual Optimization Problem In order to solve the corresponding
dual optimization problem we need the conjugate cone IIo(y)®. In other
words we need the set of Z € Sgx¢ such that for any IT € TIa(7)

: 1
0% (11, 2) = (X(j0), 32w +0n) + Zu(w — )] ~ vm(w))  (15)
Since (15) shall hold for any X (jw) > 0, Vw, we get
1
Ia(7)® = {Z € Suav ¢ 5[Z11(w + wo) + Z1a(w — wo)] — 7Z2a(w) € Pﬁ?f}

If we let S, denote the shift operator defined by Su,Z(w) = Z(w + wq), then
the dual can be formulated as

supy subject to (16)
3Z € P2}, Z # 0, such that

D:
Su,GdZG" + S_,,GdZG* — 1 Z € PE3

The computational ideas in Section 5 and the form of the second constraint
in (16) suggests that we choose a frequency grid Q@ = {wy, ... ,wy} satisfying

W = WLl — Wo
W(k—1)L+ T W0 = WkL+l = W(k+1)L+l — Wo
WK-1)L+l T Wo = WKLl
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| B | e |

] 0.090
Ritz(1,1) | 0.092 [£]i] o ]| a |
Ritz(1,2) | 0.12
Ritz(1,3) | 0.162
Ritz(1,4) | 0.184
Ritz(1,5) | 0.188

Table 1. Table with results for the primal and dual optimization problem respec-
tively.

fork=1,...,K—-1landl=1,...,L. Let

Zrr  Zirg ]

Zi = [
—Zrr  ZkR

for k = 1,...,N, where N = (K + 1)L. Here Zyr = ZT, € R¥? and
e = —Z,Z} € R2%2, Further let

Re G(jwy) Im G(jwk)] c RAx4

G = [—Im G(jwr) Re G(jwr)

We can formulate the restricted dual optimization problem as

sup 7y

Danr

rHZkMH >0,k=0,...,K,l=1,...,Ls.t.

1 T

EGL+1Z(L+I)GL+I -1Z120

1 T
5[G(k+1)L+zZ(k+1)L+zG(k+1)L+l
+G(k—1)M+lZ(k—1)L+lG:(I;r,_l)L+l] —YZkp+1 2 0

1
3Gk -)LnZ(k-1)L+G(k-1)1+1 ~ TZKL+ 2 0

(fork=1,...,K-1,1=1,...,L

Remark  Note that the constraint set is an LMI condition.

Numerical results obtained with LMI-lab are given in Table 1.
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7. Slope Restricted Nonlinearities

We will in this section consider a class of IQC:s which gives a particularly
complicated dual optimization problem. Let ¢ : R — R be a slope restricted
nonlinearity. We assume that ¢ satisfies the following properties

(i) ¢(0)=0
(ii) ¢ is odd.
(iii) 0 < 22)=¥2) <} 5 £ g,

where 0 < k < 00. If k = 0o then we assume that ¢ satisfies the boundedness
condition ¢(z) < clz|, V& € R for some ¢ > 0. This class of nonlinearities
satisfies the IQC:s from the following convex cone, [20]

HA:{[ 0 ho + H(jw)

ho + H(]w)* —%Re [ho + H(]w)]] : ”h”l S ho} (17)

where ||h||; denotes the L; norm of the impulse response of H, i.e.
h(t) = / H(jw)e™tdw

Il = [ Ia)la

— 00

LeMMa 1
Let & = oo, then the dual cone H? N 82X% is defined as

I8 N 8232 = { [Za z ] € 822 : such that (18) holds}

z Zp

where the condition (18) is defined as

N N
Re sz > sup |Re sze"j“”‘ (18)
k=1 teR k=1
Proof: For any II € IIao we need
N
(I, Z) =4 Re zk[ho + H(jws)] > 0. (19)
k=1
We have that
H(jwy) = / h(t)e 7rtdt.
Hence, the inequality
N o N ' N .
Z 2 H (jwr) = / Re {Z zre 7k }h(t)dt > —sup |Re Z zpe Ik by,
k=1 —o0 k=1 teR k=1
(20)
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holds since ||h|l; < hg. A sufficient condition that Z € II? is thus

N N
ZRe 2, > sup |Re sze—“”“t|
k=1 teR oy

In order to see that this condition is also necessary we notice that f(t) =
Re YN, zpe 9t € Loo(—00,00). Since Li(—00,00)* = Lgo(—00,00), we
have, by the definition of the norm for the dual space, that

L, (B ) = =l ek (21)
where (h, f) denotes the integral in (20). In our application we only consider
H € RLLX!. The exponentials {t*e~*0(t)}32, and {tke'0(—1)}2, are dense
in L4[0, oo) and L;(—o0, 0] respectively, see [19]. This means that we can
approximate an arbitrary h € Ly(—o0,00) with any accuracy with a suitable
finite linear combination of such exponential functions. The corresponding
transfer function will be in RL1X! and it follows that (21) also holds when we
consider the optimization over impulse responses corresponding to this class
of rational functions. This proves the necessity. O

It is clear from (18) that the frequencies for the step discontinuities must
be chosen with care. Actually, for choices (w1,...,wn) in a dense subset of
[0, 00]" the right hand side of (18) will be Eivzl EAR

However if we for example chose only rational frequencies then the right
hand side of (18) will be periodic and it possible that the condition is satisfied.

We will next consider a stability test for a system with a linear time in-
variant plant G in the forward loop and a slope restricted nonlinearity in the
feedback loop.

THEOREM 2
There is no solution to the feasibility test: Find H € RLX! with correspond-
ing impulse response h such that

a. ||hlj1 €1
b. Re [G(jw) — k][l + H(jw)*] < —¢, Yw € [0, o0]
if there exists wy,...,wy € [0, oo] and 2zq,...,2y > 0 such that

N
Re zk[G(Jwr) — ~] > sup| Re 2;[G(jwr) — ]ej“k| . z (22)
2 k=1

Proof: The feasibility test can be formulated as: Find II € IIs such that
MgII < —2¢I, where Mg : S2™*?™ — STX™ is defined as

I -1
- [
1 I

and where IIo corresponds to the convex set in (17) when k& = co and ho = 1.
Unfeasibility means that the convex sets

P = {MgIl + 21 : T € Ta(y)}
Q={X eS8 : X(jw) < 0,Vw}

are disjoint, which is the case if there exists a nonzero Z € P1X1 such that
(I, Mg Z) > —2¢(I, Z). Hence, the proof follows from lemma 1. a
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Figure 5. The upper plot shows the Nyquist diagram of G(jw)—1/k, k = 0.0061.
There is no solution to the feasibility test in Theorem 2 when & = 0 for this value
of k. The lower plot shows the Nyquist diagram of G(jw) — 1/k, k = 0.0048. The
multiplier H = 6.25/(6 + 2.5) can be used to prove stability for this value of k.

It will in most applications will be very hard to find a suitable frequency
grid for application of Theorem 2. However the next example show that it is
possible to use it. A different way of treating unfeasibility of the stability test
in the theorem has been reported in [13].

EXAMPLE 3
We will consider the system in Figure 1 when A is a slope restricted nonlin-
earity with slope in [0, k] and when G has transfer function

52

Gl8) = T a) (¥ B) + 10-4(145° + 21)

where o = 0.9997 and B8 = 9.0039. This is a system with two very distinct
resonances at w ~ 1 and w ~ 3. The purpose of the example is to find a bound
on k such that stability of the system is guaranteed. For ¢ = 0 in Theorem
2 the simple multiplier H(s) = —(‘%‘;557 can be used to prove stability for
k = 0.0048. If we use the dual with w; = 1 and wy = 3, then the condition
in (22) is satisfied if ¥ = 0.0061. Hence, the duality gap is reasonable small
despite the low order of the multiplier H. Figure 5 shows the Nyquist curves
for G(jw) — % for k = 0.0061 and k = 0.0048 respectively.

O

8. Robust Performance Analysis

We will here investigate the dual that appears in robust performance analysis
of the second system in Figure 1. We assume that the transfer function has
structure

Gu G
G:[ 11 G

] € RH(O?+<1) x(m+q)
G21 G22
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and that the input signal is in the class of u € LJ[0, 00) satisfying the IQC
defined by the closed convex cone ¥;,, C SL .

/ U(jw) ¥(jw)u(jw)dw > 0, VI € ¥;yy

—00

It follows from [18] that robust performance analysis gives optimization prob-
lems on the form

infy subject to
dIl; € I, Il € Hpe.,.f(‘)’), VeV, such that

TN e (s [o S [ <0 vt

where I, f(7) defines the performance criterion. We assume that ILpe,¢(7)
is a convex cone for any given v € R, and if 42 > 71, then VII; € Ipers(71)
there exists Iy € Ilper£(72) such that II; > II;.

It follows from (9) that the corresponding dual is

supy subject to

(Z € Pr(,;n‘;l'q)x(m'l_q), Z # 0, such that
G11 G12 G11 G12 .
dZ di®
D [ I o0 ] [ I o ] <
G211 Ga Ga1 Ga2]”
[ 5 ]dz[ 021 ; ] € e 5(7)® N dT®

where U® is defined as

Z11 Za2 2gx2
o = ¢ SA%% . 7 oo
{[Zn Zzz] N 22 € Sinp

and where
92, = {2 €538 :(9,2) >0, V¥ € ¥y, }

We can also formulate this dual as

supy subject to
(7 ¢ pimtax(mta) 7 # 0, such that

G G G2
[ 11 Glz}dZ[ 11 12] € di®

I 0 I 0

48 Gn G G2 Gal”
21 Gaz 21 Gaz
dz dll e, @
[ Gl [T 7| e et
( Z22 € T2

We will apply this to a simple example
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Figure 6. Control system for Example 4

EXAMPLE 4
Figure 4 shows a feedback system consisting of a plant G, and a controller G,.
There is also a multiplicative uncertainty represented as W(s)A(s), where W
denotes a weighting filter and where A is a linear time invariant uncertainty
satisfying ||A(jw)|loc < 1 (||]|oo is the usual Hyo-norm). The load disturbance
d is assumed to be a low-frequency signal satisfying supp E(]w) C [-0.1,0.1],
where supp d denotes the support of the Fourier transform of d. The purpose
of the example is to compute the worst case induced Ly-norm of the system.
The system can be transformed into the normal form for robust performance
problems in Figure 1, with
Gls) = 1 [ GG, W Gp]
14 G,G- w Gp

Assume that the plant has transfer function

10
Go(s) = GF12(s £ 10)

and that we use a P controller designed with the Ziegler-Nichols frequency
method, which gives G,(s) = 12.2. Further assume that the weighting filter is
the constant W(s) = 0.1. For this example we use the IQC descriptions

X 0
I = :XePle}
= {[y ] xer

=] 0
Mpers(7) = S itz 20
and

X1, PN 20, wel-a,0]
‘I’inp:{TES‘L .‘I’(Jw)_{so’ w¢[—a>a]}

It is easy to see that

N8 ={Z € 832 : 711 — 22 € Py
Mpers(7)® = {Z € 8332 : (I, Z11 — 7Z32) > 0}
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and that

>0,Va>ws >ws >0 }

Te — Z Sl)(l :Z . Z =
i { € Oxpv (wl) (wg) <0, Yoo >wi>we>a

It follows from the duality constraint that only one frequency need to
be considered in the dual optimization problem. The dual can therefore be
formulated as the following complex valued LMI optimization problem

v* =supy subject to
Jwe0,:0], ZEC*?, Z2=2">0,Z#0, s.t.
[G11(jw) G2(jw)]Z[Gu(jw) Grz(jw)]" = Z11 >0
[Ga1(jw) Gaa(jw)]Z [Gai(jw) Gaz(jw)]" —7Z22 >0
Zyg =0ifw ¢ [0, a]

A numerical solution is obtained as follows

(i) If there exists w € (a, 00] such that |G11(jw)| > 1, then v* = co. In this
case the closed loop system is unstable.

(ii) Otherwise introduce

. 7
Z:[ ],Z,-ZZ,TERZXZ,Z,-:—Z,TER"’”

-Z; Z,
and
c (w) _ [ Re G11(jw) Re Glz(jw) Im G11(jw) ImGlz(]w)]
WS | i Gu(jw) ~Im Gip(jw) Re Gu(jw) Re Gr(jw)
I (]w) _ [ Re Gzl(jw) Re Gzz(jw) Im Ggl(jw) I_mng(jw)]
2 _—Im Gzl(jw) —Im Gzz(jw) Re Gz1(j(-d) Re Gzz(jw)
[1
B = 0 0 0]
10 0 1 0
(0 1
B, = 0 0]
10 0 0 1

Then solve the LMI optimization problem
7" =sup~y subject to
Jw € [0,a], Z >0, Z # 0, such that
Dy :{ G1(jw)2Gy(jw)T — E1ZET >0
G2 (jw)ZGy(jw)T — YE2ZET >0
With a = 0.1 we obtained the solution y* = 0.07635.

The primal optimization problem can be solved in the following way. We
obtain a finite dimensional description of IIa () as

e {[3 3T 4112 Sveora
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Figure 7. Filter specification for low-pass signals

2 [ & | »]
oy 1 0.105
s+ | Ritz(3,1) | 0.0919
o7 | Ritz(3,2) | 0.0919
) 1 0.0879
1o | Ritz(3,1) | 0.0778
%5 | Ritz(3,2) | 0.0778

Table 2. Numerical Results

for some basis multiplier R € RHY*!. The Ly-performance specification is
finite dimensional and as a finite dimensional description of ¥;,,, we use

Tinp = {M[H(w)]* — Az : M|H(ja)]> — Az > 0,21, 3 > 0}

Here H denotes any rational low pass filter with monotonically decreasing
amplitude function. This is illustrated in Figure 7.

The results in Table 2 were obtained by using LMI-lab. ~* denotes the
optimal value of the primal optimization problem and the corresponding Ls,-
performance is 4/9*. The multiplier Ritz(p,n) is defined as

Rits(p,m) = [1 52 .. (o]

The duality gap 0.014 is mainly due to the low order of the filter H. However,
it seems that a filter of very high order is needed in order to obtain a smaller
duality gap.

9. Conclusions

We have derived the format for the dual to optimization problems that appear
in robustness analysis based on IQC:s. The purpose of the dual is to give upper
bounds to infinite-dimensional robustness tests, which correspond to finding
an optimal multiplier in an infinite-dimensional convex set. We have shown
how solutions to the dual in many cases can be obtained by solving a finite
dimensional optimization problem at a preselected frequency grid. It is shown
in [8] that this approach is successful with a small number of frequencies in
the grid when constant multipliers are combined with frequency dependent
multipliers, which take independent values at different frequencies.
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10. Appendix: Proof of Proposition 5

From the second assumption on IIa (%) it follows that v < infp,, v if and only
if the convex sets

P={(Mgll+¢el,ll —cI,-II—cI): 1L € Oa(7)}

Q={XecS8™™: X(jw) < 0,Yw} x {X € SZ*™ : X(jw) < 0, ‘v’u.:}2
are disjoint. Since the second set is open it follows from the separating
hyperplane theorem that there exists a nonzero triple Z = (Zy, Z1,2Z3) €

XM X (SEE*™)2 such that
(X,Z)>0, VXeP (23)
(X,Z)<0, VX€Q (24)

For (24) to hold we need Z € PJ¥™ x (P2mX*™)%. Condition (23) can be
reformulated as

€
<H,MéZ0‘|‘Zl_Z2>+C<IaZZ0—Z1—Z2>20, VII € TIa(y)  (25)

Since IIa(7) is a cone containing 0 it required that both terms need to be
positive. Hence, the following constraints need to be satisfied

MXZo+ Zy — Zy € Ma(y)®
£
(I,Z1+ Z,) < - (I, Zp) (26)

from which it also follows that Zp # 0, since otherwise Z = (Zg, Z1, Z3) = 0.
Hence infp, 7 < supp, 7. For the opposite direction we note that y > supp v
implies that there is no hyperplane separating P and Q. Hence, there is a
II € IIa(7) such that the primal constraint P is satisfied.

For the reformulation with step functions we notice that if we let Z =
Zl — Z for some Zl,z € PXmX2m  then we may choose Z; = PZ and
Zy = (I — P)Z, where P is the projection SZmx2m _, p2mx2m ,nd we have

It is now clear that the soft dual can be formulated as in (14) when it is
considered over the step functions.
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