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1. Preface

This report was part of the first progress report in the ITM project “Design and
Tuning of Fuzzy Controllers Based on Nonlinear Control Theory”. The aim
of this report is to present a well organized tutorial on fuzzy logic for control.
The report has been written for an engineering audience, requiring only the
most basic prerequisites in logic, mathematics and control. It is the author’s
intention that a few hours of concentrated reading will leave the reader with
a thorough understanding of fuzzy systems, and with some important insight
in how fuzzy systems can be used for control. Although parts of the report
are working manuscripts, we feel that the report constitutes an accessible and
logical introduction to fuzzy logic for control, and as such, is important to
publish.

This text owes much to valuable discussions with friends, students and col-
leagues. My supervisor Karl-Erik Arzén has been a constant source of support
and encouragement during the writing of the report. Parts of this manuscript
have been read by Jérgen Malmborg and Ulf Jénsson, whose comments and
remarks have greatly improved the quality of this work. I would also like to
thank Tan Kan of Hong Kong University of Science and Technology, whose
enthusiasm over an early version of the text made the writing of this report a
lot of fun.

The text starts out with a preliminary review of classical logic. In Chapter
2, we describe how fuzzy sets and fuzzy logic extend ideas of classical logic. To
apply fuzzy logic to engineering applications such as control, interfaces have
to be added around the fuzzy logic reasoning mechanism. This leads to the
concept of fuzzy systems, described in Chapter 3. From a control engineer’s
point-of-view, fuzzy systems are nonlinear mappings parameterized so that
we can interpret them in terms of fuzzy IF-THEN rules. In Chapter 4, we
show how fuzzy systems describe nonlinear mappings, and how it is possible
to derive closed form expressions of the fuzzy system mappings. In Chapter 5,
we define a general architecture of the fuzzy controller and indicate how fuzzy
systems can be used for control.



2. Preliminaries:
Fundamentals of Logic

Aim: To review some basic concepts of mathematical logic

Logic is considered to be a subdivision of philosophy, and as such unfortunately
not included in a traditional engineering education. It may therefore be of little
help to say that fuzzy logic is a generalization of logic, and that most concepts
in fuzzy logic are (more or less) intuitive generalizations of the concepts of
logic. However, this short primer on logic is here to help the reader to get
acquainted with the terminology and mathematics of logic. Hopefully, this
will help the reader to penetrate the theory of fuzzy logic in an intuitive
manner.

2.1. What is Logic ?

Logic is the scientific study of the process of reasoning. The ability to reason,
or infer, is simply the ability to draw appropriate conclusions from given evi-
dence. We can view the inference process as a process of going from what we
know (the premises) to what we previously did not know (the conclusion).

In order for a computer to reason with logic, however, we must formu-
late the knowledge and the reasoning process into a form that is suitable for
manipulations by a computer. The result is what is known as symbolic or
mathematical logic — methods that seek to reduce reasoning to calculation.

In order to reason around a set of statements, we must first decide what
kind of statements we are concerned with. This leads us to define propositions
and predicates.

2.2. Propositions and Predicates

A proposition is simply a statement that is either true or false. The statements
2 is a prime number
4=6
5>0

are all propositions (which are true, false and true respectively). The state-
ment

z>0

is not a proposition. It becomes a proposition, however, as soon as any number
is substituted for . Formulas like this are called predicates.



2.3. Sets and Characteristic Functions

In mathematical logic, a proposition is represented by a set. Recall that a set
is a collection of elements that share a common property. We will refer to
these elements as members of the set.

Clearly, a set is completely characterized by its members. The problem
of characterizing a set is therefore a problem of specifying its members. This
specification usually takes the form of a rule; “a set A is the set of all elements
z in U that have the property P”. We write

A = {z € U| = has the property P}
Another way to characterize a set is to use a characteristic function, pa(z),
defined by
1, ze A
pa(z) = { ’

0, otherwise

where we have introduced the truth value 1 for a true statement, and 0 for a
false statement.

EXAMPLE 2.3.1 (SPECIFICATION OF A SET)
Consider the problem of characterizing the integer numbers greater than 2.
The set A of integer numbers greater than 2 can thus be described by

A={zeZ|z>2}

Alternatively, we can use the characteristic function

(2) 1, &>2
r) =
fa 0, otherwise

This function is shown in Figure 2.1. |
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Figure 2.1 Characteristic function for the statement “z > 2”.

There are three special sets;

1. the universal set (or universe of discourse ), U, which contains all ele-
ments

2. the empty set, (), that contains no elements

3. the singleton set, §, that contains only one element.

ExAMPLE 2.3.2 (UNIVERSE OF DISCOURSE)

The universe of discourse in Example 2.3.1 is the set of natural numbers, Z.
d



2.4. Compound Propositions and Logic Formulas

Compound propositions are formed by combining simple propositions using the
logic connectives “and”, “or” and “not”. In mathematical logic, these connec-
tives are usually symbolized in the following way. If p and ¢ are propositions,

p N ¢ symbolizes “p and ¢”,
p U ¢ symbolizes “p or ¢” and
P symbolizes “not p”.

It is important that the compound propositions are built in a way that makes
sense. Such propositions are called well-formed. The well-formed propositions
can be defined recursively in the following steps

(a) The truth values 1 and 0 are propositions.

(b) ¥ p is a proposition, then p is also a proposition.

(c) If p and g are propositions, then pN g and p U g are propositions.
(d) The only propositions are those defined by (a)—(c).

ExAMPLE 2.4.1 (COMPOUND PROPOSITIONS)
The following two statements are propositions

(ng)ur {“(pandq)orr’}
pq {(l(p nOt q)”}
However, only the first proposition is well-formed. O

Logic does not get really interesting until we introduce the logic formulas.
Logic formulas are propositions or propositions combined using the connectives
“implies” and “is equivalent to”. If p and g are propositions, we write

p — ¢ to symbolize “p implies ¢” and
p = q to symbolize “p is equivalent to ¢”.

ExaMpLE 2.4.2 (Locic FORMULAS)
The statements

(pNng)Ur {“(p and q) or #”}
(pNn(p—q))—q {“(pand (pimplies q)) implies ¢” }
are logic formulas. a

Well-formed logic formulas are defined analogous to well-formed propositions.
Simply note that in addition to the well-formed formulas p N q and p U ¢, we
also have p — g and p = q.

We summarize the five logic connectives in a truth table:

plg|png|pUq|P|Pp—4q|P=4¢
o[of o 0 [1] 1 1
0|1]| o 1 |1 1 0
1{o] o 1 (o] o 0
11| 1 1 |o| 1 1




The implication p — ¢ defined in the truth table is called material implica-
tion, and its definition may at first glance seem strange. Note, however, that
it is only in the case when p is true but ¢ is false that we can conclude that
p does not imply ¢q. Equivalent logic formulations of the material implication
thus include

pP—g= pNg
pP—g= pUgq
p—og= pU(pNd)

This can be verified using the truth table above.

2.5. Operations on Sets

This far we have seen that the atomic part of a statement is the proposition
conveniently represented by a set. We have also seen how we can form com-
pound propositions by connecting simple propositions using the logic connec-
tives “and”, “or” and “not”. To derive the set representation of a compound
proposition, we must define set operations corresponding to the logic connec-
tives “and”, “or” and “not”. These operations are called intersection, union
and complement respectively.

In the following, let A and B be two sets defined on the same universe of
discourse, U. We can then define our three basic set operations as follows:

The intersection of A and B, written AN B, is defined by

ANB={zecU|z€cAandz € B}

The union of A and B, written AU B, is defined by

AUB={zcU|z€Aorz€ Borboth}

The complement of A, written A, is defined as

A={zecU|z¢ A}

We can also derive rules for the computation of the characteristic function
of compound propositions, as illustrated by the next example.

ExaMPLE 2.5.1 (CHARACTERISTIC FUNCTION FOR SET OPERATIONS)
It is easy to verify that the following formulas give the characteristic functions
resulting from the set operations above.

panB(z) = min{pa(z), pp(z)}
paup(z) = max{pa(e), ps(2)}
pa(e) = 1 - pa(e)



To facilitate the discussion of interrelationships between elements, we need
one more set operation: the cartesian product. The cartesian product is used
to arrange the elements from two sets into one set of ordered pairs. More
formally, the cartesian product of A and B (not necessarily defined on the
same universe), written A X B, is defined as

Ax B={(z,y)| ¢ € Aand y € B}

Note the word ordered pair; the order of the elements in the pair is important.

2.6. Rules and Reasoning

Having defined the basic characteristics and operations on sets, we can now
turn our attention to the problem of knowledge representation and reasoning.
We will use two concepts for the representation of knowledge; rules and rela-
tions. It is often natural to represent knowledge as implications, formulated
as IF-THEN rules

IF < proposition > THEN < proposition >

antecedent consequent

The proposition in the IF-part of the rule is called antecedent (what comes
before) while the proposition in the THEN-part is called consequent (what
comes after).

To reason about knowledge stated as IF-THEN rules, we must first for-
mulate inference rules; rules that tell us how to manipulate logic formulas to
obtain new formulas. There are eight basic inference rules, all derived from
tautologies. A tautology is a logic statement that is always true.

EXAMPLE 2.6.1 (TAUTOLOGIES)
By simple manipulations of the truth-table, we can verify that the following
logic formulas are tautologies

(pN(@—q)) — 4
(@gn(p—4q))—?

(Pog)n(g—r)—>@—r)
O

From the tautologies in the example above, we can derive the following
three inference rules:

Modus Ponens

Observation : zis A
Knowledge : IF zis ATHEN yis B
Conclusion : yis B

Modus Tollens

Observation : g is not B
Knowledge : IFzis ATHEN zis A
Conclusion : yisnot B



Hypothetically Syllogism

Knowledge : IFzis ATHEN yis B
Knowledge : IF yis B THEN zis C
Conclusion : IF zis A THEN zis C

2.7. Relations

Another way of representing knowledge is to use relations. Relations describe
interrelationships between elements. The following statements

=y
z—y

<y

are all relations. Note especially that the implication p — ¢ is a relation. To
symbolize the predicate “z has the relation R to y”, we write zRy.

As in the case of propositions, we represent the relation with a set. Recall
that the Cartesian product forms a new set by arranging the elements of two
sets into one set of ordered pairs. The set representing the relation is thus a
subset of the Cartesian product of the sets representing @ and y. In terms of
the characteristic function, we have

z Ry

1
y'a:Ry(may) = { ’

0, otherwise

EXAMPLE 2.7.1 (A RELATION AND ITS RELATIONAL MATRIX)

Given two sets of numbers, A = {1,5,7} and B = {2,6,10} we can define the
relation “a is greater than b”. We then have R = {(5,2),(7,2),(7,6)} C Ax B.
The characteristic function of a relation R is often shown as a relational matriz.
In this example, we obtain the relational matrix

10

= o o|lo

- = O|N

O

For later use, we will define three operations that are useful when working
with relations. These operations are the composition, eztension and projection
operations.

The composition operation is used to compose several relations into one,
and can be defined as follows. The composition of two relations

R, C AxX B
Ry C BxC

written Ry o R3, are those elements (a,c) of A x C for which we can find an
“intermediate” element b € B related to both a and ¢, i.e., aR1b and bR;c.



The extension and projection operations are useful when we want to ma-
nipulate the universe of a set. If A is a subset of the universe U, we define the
extension, e(A), of Ainto U X V as

e(A) = {(u,v) e U XV |u€ A}
or in terms of the characteristic function
.u’e(A)(ui 'U) = F'A(u)

The extension operation has a clear geometric interpretation, as indicated in
the Figure 2.2.

|4 v

=)

0 0 0
v 1. - i v 1 1
1 1 1
Figure 2.2 Extending A € U into the domain U x V'

If W is a set defined on the product space U x V, we define the projection,
p(W), of W onto V as

p(W)={veV | (u,v)eW}
In terms of the characteristic function, we have
pp(w)(v) = max pw (u,v)

The geometric interpretation of the projection operation is illustrated in Figure
2.3

v

o o o|lo
R o o|lr <

1
0
1
1

I
o o ©

0
0 1 U
1

Figure 2.3 Projecting W € U x V onto V.

2.8. Summary

In this chapter, we have made an informal review of some basic concepts from
logic. The presentation is intentionally kept to a minimum, and the interested
reader is referred to the references [Klenk, 1989], [Brown, 1990] for a more
in-depth exposition of logic. However, the tiny proportion of ideas from logic
is precisely what we need in order to make the fuzzy logic of control accessible
and understandable.



3. From Logic to Fuzzy Logic

Aim: To explain the fuzzy set theory we need to develop a fuzzy controller

In the previous section, we surveyed some concepts and terminology from sym-
bolic logic. As we will see shortly, this basic knowledge of logic will become
very valuable when we in this section try to penetrate some of the more impor-
tant concepts of fuzzy logic. Hopefully, this section will also make clear that
fuzzy logic is not necessarily a “fuzzy” logic, but rather a logic for reasoning
with fuzzy or vague statements.

3.1. Why Fuzzy Logic ?

Symbolic logic is a very elegant framework for reasoning with precise state-
ments. Although elegancy is certainly a strength, the requirement that state-
ments must be either true or false poses a strong restriction on the information
binary logic can handle. Let us illustrate the discussion by a simple example.

ExaMPLE 3.1.1 (RESTRICTIONS OF BINARY Logic)
Consider the following two rules for driving a car at constant speed

IF speed is too low THEN apply more force to accelerator
IF speed is ok THEN apply the same force to accelerator
IF speed is too high THEN apply less force to accelerator

For this to be a valid set of logic rules, we must specify sharp boundaries for
when the speed of the car goes from being “too low” via “ok” to “too high”.
This is certainly possible, and could result in the modified rules

IF v < vy — 5 THEN F,cc = Faee + corr
IF Viim — b<v< Viim 5 THEN Facc = Lgce
IF v > v + 5 THEN F,.. = Faee — corr

where vy, denotes the current speed limit and corr a correctional action.
Admittedly, the result of these modified rules is pretty far from the driving
strategy most of us would adopt based on the original rules. a

Many everyday rules are stated in imprecise terms, just as in the example
above. This kind of rules rely on a piece of common sense for their correct
interpretation. Although no logic system has common sense in itself, it is clear
that binary logic does not provide the methods for adequately describing the
meaning of vague terms. In other words, we need a way of saying what we
mean or rather, formalize the meaning of what we say.

This observation is the basic motivation for various extensions of logic and
alternative approaches to reasoning. In this chapter, we will focus on how fuzzy
logic approaches the problem of describing and reasoning with imprecise, or
“fuzzy”, information.

10



3.2. Fuzzy Sets and Membership Functions

The main problem with binary logic is the requirement that statements must
be either true or false. When it comes to describing vague terms, it gets hard
to say when a certain predicate goes from being false to true or vice versa.
Fuzzy logic solves this problem by allowing the characteristic function to take
any value in the interval [0, 1], thus allowing predicates to move gradually from
being false to being true.

In terms of sets, this means that the boundary separating elements of a
set from elements not belonging to the set becomes gradual. We have the
following definition:

DEFINITION 3.2.1 (Fuzzy SET) A fuzzy set, A, is a set whose characteristic
function pa(z) takes values in the interval [0,1]. O

In fuzzy logic literature, the characteristic function of a fuzzy set is always
called the membership function of the fuzzy set. We interpret the membership
value of an element to a specific set as the degree to which the corresponding
proposition applies.

Let us illustrate this discussion by returning to the problem of driving a
car at constant speed, as presented in Example 3.1.1

ExAMPLE 3.2.1 (CONSTANT SPEED REVISITED)
Using the concept of a fuzzy set, we can try to specify what we mean when
we say that the speed of the car is “too low”, “ok”, or “too high”.

Similarly to the logical rules, we can say that keeping the speed limit is
certainly “ok”, and so, the speed v = vy, should have membership value 1 in
the fuzzy set “ok”. Large deviations from the speed limit are either “too low”
or “too high”. Consequently, speeds v >> Uim and v << Uiy, should have
membership values 1 in the fuzzy sets “too high” and “too low” respectively.
Typical membership functions are shown in Figure 3.1.

DAL
1
oo too
L= high
0 » kmph
-10 Vim +10
Figure 3.1 Membership functions for the predicates “too low”, “ok” and

“too high”.

O

Although there are no theoretical restrictions on the shape of fuzzy sets, it
is practical to use membership functions that are parameterized in a flexible
way, using few parameters. We conclude this section by giving examples of
the most common classes of membership functions

11



ExaMPLE 3.2.2 (TRAPEZOIDAL)
The trapezoidal membership function is described by

(0 ye <z

z—z; _

S — 2 <z <2y

T, —

9(z) = 1 1 e, <z <zl (3.1)
+

T, —x 0 _

—_— <<z

m;"—:c,"[ T = :
+

L0 T 2> T

A few different trapezoidal membership functions are illustrated in Figure
3.2.2. O

0.8 ! 0.8
3 i ." 3
g L g i
Eﬂﬁ ; fon 208 vz
5 A ] Voo % I v
L
L ] ' II "l
0.4 ! i v S04 |
E 1l [} E )
1 . 1
" 1 1] !
.2 / ¥ 0.2 L X
? [} 3
¥ . |
3 L \
i Vo
h A L o 3
-1 -0.5 0 05 1 =1 0 05 1
universe unlversa

Figure 3.2 Trapezoidal membership functions with varying widths and centers
(left), and varying slopes (right).

ExaMmPLE 3.2.3 (TRIANGULAR)
The triangular membership function is described by

.

0 ye <z
z—z
_— = ' &y <m<wu
Ty — Ty
o) =4 " (32)
m —_—
~_:— Yy S <y
T — 2Ty
{0 ,:cZa:;"

Note that the triangular membership function is a special case of the trape-
zoidal function, obtained by setting z; = ¢} = z, in (3.1). Some triangular
membership functions are illustrated in Figure 3.2.3. O

EXAMPLE 3.2.4 (GAUSSIAN)
A gaussian membership function is described by

g9(z) = exp (— (m ; i>2) (3.3)

12
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Figure 3.3 Some triangular membership function with varying centers (left) and
slopes (right).

08

0.6}

04

Figure 3.4 Gaussian membership functions for different o:s (left) and different
z:s (right).

Some examples of the gaussian membership function are illustrated in Figure
3.4.

Note that # determines the center of the membership function, whereas o
controls the width of the function. O

ExAMPLE 3.2.5 (S1GMOID)
A sigmoid membership function is described by

1
1+ exp(—a(z — &))

9(z) = (3.4)

Some sigmoid functions are illustrated in Figure 3.5. Note that Z determines

1

1 08

08

0.4

0.2

-1 -0.5 0 05 1 -1

Figure 3.5 Gaussian membership functions for different cu:s (left) and different
Z:s (right).

the cross-over point of the membership function (the element whose member-

13



ship value equals 0.5), and « controls the slope of the function at this point.
O

EXAMPLE 3.2.6 (SINGLETON)
The singleton membership function is described by

1 , & =&
o(z) = { (3.5)

0 ,otherwise
This function is illustrated in Figure 3.6. O

1 [ i

80,3' § E

Eo.e- ; :

%D.‘i E :

£ ! !

02 :

f1 =05 f:’ 015 1

universe

Figure 3.6 Membership functions for singleton fuzzy sets.

3.3. Fuzzy Predicates and Fuzzy Propositions

Similar to binary logic, we can talk about fuzzy predicates and fuzzy propo-
sitions. By fuzzy propositions, we mean vague statements to which we can
assign a truth-value (now in the interval [0,1].) Vague statements for which
we can not assign a particular truth-value are called fuzzy predicates. The
statements

Mary is tall
X is close to zero
The car drives at high speed

are are all fuzzy predicates. However, if we measure Mary’s height and evaluate
the membership function describing our notion of “tall”, we can assign a truth-
value to the statement “Mary is tall”. This statement can now be regarded as
a fuzzy proposition.

Compound fuzzy propositions are formed by combining simple fuzzy propo-
sitions using the connectives “and”, “or” and “not”. Similar to binary logic,
the fuzzy set representing a compound fuzzy proposition is formed using the
fuzzy set operations intersection, union and complement respectively. How
these fuzzy set operations are defined is the topic of the next section.

3.4. Fuzzy Set Operations
As we move from the classical sets to fuzzy sets, we must decide how to extend
the set operations intersection, union and complement to fuzzy sets. The most

stringent way to do this is to state a set of axioms that the set operation must
satisfy in order to

14



(i) extend the classical set operations, and
(ii) produce an intuitively correct result on fuzzy sets.

This leads to the definition of the T-norm and S-norm.

It is important to notice that a compound set is formed by applying the
set operations point-wise over all elements on the universe of discourse. To
emphasize this, we will discuss the set-operations in terms of a = pa(z),
b= pp(z) and ¢ = pe(z). That is, for an arbitrary element z, a, b and ¢ are
its membership values in the fuzzy sets A, B and C respectively.

We are now ready for the following definitions:

DErINITION 3.4.1 (T-NoRM) A T-norm, denoted , is an intersection oper-
ation on fuzzy sets that satisfies the following four azioms

T.1 ax0=0,axl=a (Boundary Condition)
T.2 axb=bxa (Commutativity)

T.3 a<b = a*xc<bxc (Nondecreasing)

T4 (axb)xc=ax(bxc) (Associativity)

DEFINITION 3.4.2 (S-NORM) An S-norm, denoted -, is a union operation on
fuzzy sets that satisfies the following four azioms

51 atl=1,a{0=a (Boundary Condition)
5.2 atb=bia (Commutativity)

5.8 a<b = atc<biec (Nondecreasing)

S.4 (a—i—b) te=a+ (b-i-c) (Associativity)

DEFINITION 3.4.3 (COMPLEMENT) The complement operation on a fuzzy set,
denoted ~, satisfies the following azioms

C1 0=1,1=0 (Boundary Condition)

= O
C2 a<b = b<id (Nondecreasing)

Since the fuzzy set operations are not unique, we can create the union,
intersection and complement of fuzzy sets in many ways. Some of the most
common operations are defined in the following examples.

ExAMPLE 3.4.1 (INTERSECTION OPERATORS)
The intersection of two fuzzy sets is often formed using one of the following
T-norm operations:

Algebraic Product: axb=ab

Minimum: ax b = min(a,b)
a ifb=1
Drastic Product axb= b ifa=1
0 otherwise
. . ab
Einstein Product: axb= 3 (atb—ab)
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ExaMPLE 3.4.2 (UNION OPERATIONS)
The union of two fuzzy sets is often formed using one of the following S-norm
operations
Algebraic Sum: a+b=a+b- ab
Maximum: a+b = max(a, b)
a ifb=20
Drastic Sum: a+b={ b ifa=0

1 otherwise

. b
Einstein Sum: atb= 1a—l-—l-ab
Bounded Sum: a-+b = min(1,a+ b)
O
ExAMPLE 3.4.3 (THE COMPLEMENT OPERATION)
The complement of a fuzzy set is formed using the following operation
Fuzzy Complement a=1-b
d

We conclude this section by an example of fuzzy set operations.

ExaMPLE 3.4.4 (Fuzzy SET OPERATIONS)
Returning to the car example, we can now define membership functions for

the statements “ok OR too high”, “ok AND too high” and “NOT ok”. We have
H ok OR too high(v) . ,uok(v)‘i'#too h'igh('v)
W ok AND too high(V) =  Hok(V) * fhtoo high(?)
BNOT ok(v) = 1 — piok(v)

These membership functions are shown in Figure 3.7, using min as T-norm
and max as S-norm. O

]
= = NOT ok /
a a

ok AND oo high

ok OR 100 high J\ /
01 simph O L pkmph O et

-10 Vim +10 410 Yim +10 -10 Vi +10

Figure 3.7 The fuzzy set operations intersection, union and complement demon-
strated on the car example.

3.5. Linguistic Variables and Fuzzy IF-THEN Rules

Similar to the implications used in binary logic, we can represent vague knowl-
edge as fuzzy IF-THEN rules. A fuzzy IF-THEN rule takes the form

IF < fuzzy proposition > THEN < fuzzy proposition >

The variables occurring in the fuzzy propositions are called linguistic variables.
Introducing linguistic variables is a way to stress the conceptual difference
between a numerical variable and a variable that takes words as its values.
Formally, a linguistic variable is defined as follows:
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DEFINITION 3.5.1 (LINGUISTIC VARIABLE) If a variable takes words as its

values, we call it a linguistic variable. A linguistic variable is characterized by
(N,V,U,S) where

N 1is the name of the variable
V is the set of linguistic values the variable can take
U is the universe of discourse for the actual physical variable

S 1is a semantic rule assigning a fuzzy set in U to each linguistic value in

v
O

Let us apply this definition on the rules for driving a car at constant speed.

ExaMPLE 3.5.1 (CONSTANT SPEED, 3RD TRY)
To describe the speed of the car, we have used the linguistic variable “speed”,
which we can characterize as follows

N The name of the variable is “speed”
V The speed can take the linguistic values {“too low”, “ok”, “too high'}
U The speed of the car is limited to [0,180] kmph.

S The semantic meaning of "too low”, "ok" and "too high" are given by

the fuzzy sets Lioo tow(V), ok (v) and feoo nigh(v) respectively.
|

Similar to classical logic rules, fuzzy IF-THEN statements are interpreted
as implications. When defining the implication operation for fuzzy sets, two
different solutions have been suggested in the literature. The most obvious
one is simply to extend the material implication used in binary logic, i.e.

p—q=qUp (3.6)
or equivalently
p—=g=(pNq)UpP (8.7)

This is how the implication operation is usually defined in multi-valued logic,
and depending on what S-norm and T-norm operations we choose we can
define a broad range of fuzzy implication operations. We illustrate this by an
example

EXAMPLE 3.5.2 (IMPLICATIONS)
Using max for fuzzy union in (3.6), we get the Dienes-Rescher implication

Hp—q(@,y) = max[pg(y), (1 — po(z))]

Using max for union and min for intersection in (3.7), we get the Zadeh-
implication

pp—q(%,y) = max[min (pp(), ke(y)), 1 — pp()]
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In fuzzy control literature, however, the fuzzy IF-THEN rules are often inter-
preted as

IF < fuzzy proposition > THEN < fuzzy proposition > ELSE < void >

where the consequent ELSE < wvoid > means that if the fuzzy proposition
of the antecedent evaluates to zero, this rule should be ignored. In symbolic
logic, we can write

p—og=pNgq (3.8)

In fuzzy logic, the AND operation N is performed by a T-norm operation.
This leads to the Mamdani implications, as illustrated by the next example.

ExAMPLE 3.5.3 (MAMDANI IMPLICATIONS)
By using algebraic product as T-norm in (3.8), we get the implication

Hp—q(2,Y) = pp(2) - po(y)

Choosing min for fuzzy intersection, we get the implication

Hp—q(2,y) = min {pp(2), pq(y)}
|

Although the approaches clearly lead to different implication operations, it can
be verified that they produce the same result for binary logic when applied to
the modus ponens inference rule.

In the next section, we will see how we can perform reasoning with fuzzy
IF-THEN rules using a generalized version of modus ponens.

3.6. Approximate Reasoning

We now face the problem of extending the inference mechanisms of binary
logic to fuzzy logic. As we have seen earlier, classical logic provides a large
number of inference rules. What inference rule to use depends on how the
rules are stated and what information is available.

In direct controllers, we use controller rules and measurements to infer a
control action. For this purpose, modus ponens is clearly the most appropriate
inference rule:

Observation : tnputis A
Knowledge : IF inputis A THEN output is B
Conclusion : output is B

We will therefore focus on extending modus ponens to a generalized modus po-
nens. Intuitively, a generalized version of modus ponens would infer according
to

Observation : inputis A’
Knowledge : IF input is A THEN output is B
Conclusion : output is B’
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where “the closer the A’ to the A, the closer the B’ to the B”. Note that in
this case, it is very natural to view the fuzzy IF-THEN rule as a fuzzy relation,
relating the value of the output to the value of the input.

The generalized inference rules are all derived from the compositional rule
of inference. The compositional rule of inference is a generalization of the
following familiar procedure:

Suppose that we have a curve y = f(z) describing the relation between
and y. When given z = a, we can infer that y = f(a) = b. This is illustrated
in Figure 3.8.

[
I
I
|
I
I
I
I
I
1
a

X

Figure 3.8 Graphical procedure for determining that y = f(a) = b.

This procedure can be generalized to the case where f(z) is an interval-
valued function. Given an interval a in X, we can infer the interval b to which
y belongs using the following method, as illustrated in Figure 3.9.

(1) Construct the cyclic extension of a into X X Y.
(2) Find the intersection, I, with the interval valued curve.
(3) Project I onto the y-axis to obtain y = b.

X

Figure 3.9 Graphical procedure for determine the interval to which y belongs
when x and f(x) are interval valued.

Now assume that R is a fuzzy relation on X XY and that A’ is a fuzzy set
in X. Obtaining a fuzzy set B’ in Y is then straightforward:

(1) Construct the cyclic extension ¢(A’) of A’ into X x YV

te(ary(2, ) = par()
(2) Find the intersection, I, with the relation R

pr(2,9) = pearynr(z,y) = par(z) * pr(z, )
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(3) Project I onto Y to obtain a fuzzy set B'in Y

pe/(y) = sup [pr(z,y)] = sup [pa(z) * pr(=, )]
zeX zeX

nixy)
KXy

Figure 3.10 Graphical procedure for determining pp/(z) from the observation
tar(z) of z and the fuzzy relation pr(z,y): Form the extension of A, determine the
intersection of A and R and project this intersection to obtain B.

We summarize this discussion in the following definition:

DEFINITION 3.6.1 (CoMPOSITIONAL RULE OF INFERENCE) Given a fuzzy set
A’ in X and a relation R in X XY, the compositional rule of inference infers
a fuzzy set B' inY as

pp(y) = sup [par(z) % pr(z, )]
zcX

O

The generalized modus ponens is a special case of this procedure, where
the fuzzy relation R is an implication A — B.

ExAMPLE 3.6.1 (GENERALIZED MoDUS PONENS)
Given a fuzzy set A’ in X and the fuzzy IF-THEN rule

IF IS ATHEN yIS B
the generalized modus ponens infers the fuzzy set B’ given by
#(y) = sup [na(2) * pa-B(,y)]

a

Often, the fuzzy set A’ is a fuzzy singleton. In this case, the generalized
modus ponens simplifies considerably, as illustrated by the next example

ExAMPLE 3.6.2 (SIMPLIFIED GENERALIZED MoDUS PONENS)
If the fuzzy set A’ is a fuzzy singleton, we can simplify the generalized modus
ponens. Since py/(z) =0if ¢ # Z and 1 xa = a, we have
pp(y) = sup [par(z) * pa—B(2,y)] = pa-8(Z,y)
zC

If we use Mamdani implications, we get

uB/(y) = pa(Z) * pp(y)
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3.7. Summary

This far we have seen how fuzzy set theory tries to capture the meaning of
vague statements using the concept of a fuzzy set. Essentially, we give vague
statements a precise meaning by stating their membership function. With
fuzzy sets as starting point, fuzzy logic is simply an extension of logic to en-
able reasoning with information stated by fuzzy sets. Similar to logic, we
can connect several fuzzy propositions into one compound proposition. Like-
wise, the membership function representing the compound fuzzy proposition
is obtained through fuzzy set operations.

Reasoning with information stated as fuzzy sets is known as approximate rea-
soning. The compositional rule of inference, which we have motivated using a
graphical technique, is a general rule from which we can derive fuzzy counter-
parts of the logic inference rules.

This far, we have only considered reasoning with one rule. We will now
turn our attention to fuzzy systems, in which the rule base typically consists
of several rules. For more material on fuzzy sets and fuzzy logic, the reader
is referred to [Zadeh, 1965], [Lee, 1990], [Driankov and M.Reinfrank, 1993],
[Dubois and Prade, 1980] and [Pedrycz, 1989).
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4. From Fuzzy Logic to Fuzzy
Systems

Aim: To describe the fuzzy systems found in most fuzzy controllers.

At this stage, we have developed a basic understanding of fuzzy logic and
approximate reasoning. The essential difference between fuzzy logic and binary
logic is that propositions no longer have to be completely true or false but can
be fulfilled to any degree. This feature is captured by the introduction of fuzzy
sets, whose main characteristic is a membership function which now can take
values in the interval [0,1]. Fuzzy logic and approximate reasoning is then
concerned with extending classical sets and reasoning to apply for fuzzy sets
in an intuitive manner.

In most applications, however, the inputs and outputs of a fuzzy logic
system are not fuzzy sets, but rather numeric values. The inputs of a fuzzy
controller, for instance, are numeric sensor measurements. Similarly, the out-
put of a fuzzy controller is often an actuator command, and must therefore
also be a numeric value. In order to apply fuzzy logic and approximate reason-
ing to these problems, we have to add interfaces between the fuzzy inference
engine and the environment, as illustrated in Figure 4.1. The conversion from
a numeric value to a fuzzy set is called fuzzification. The conversion from a
fuzzy set to a numeric value is called defuzzification.

0.5 A A 0.2

—P| Fuzlficaton [———P Inference [——— | Defuzlfication F——>

@ ) )

Numerlc Fuzzy Fuzzy Nurnerlc

Figure 4.1 The fuzzification and defuzzification interfaces enable approximate
reasoning to be applied to numeric data processing.

Without restriction, we will only consider fuzzy systems with one output.

In this chapter, we discuss the four components of a fuzzy system; the
knowledge base, the fuzzifier, the inference engine and the defuzzifier. We put
the pieces together to form a fuzzy system. This type of fuzzy system is called
a Mamdani-type fuzzy system. We finally introduce a somewhat different type
of fuzzy system called Takagi-Sugeno fuzzy system.

4.1. Describing Process Knowledge — The
Knowledge Base

A fuzzy system knowledge base consists of fuzzy IF-THEN rules and member-

ship functions characterizing the fuzzy sets. At this stage, we do not restrict
the membership function shapes. However, we choose to limit our attention
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to rules using only the AND connective. We thus define the fuzzy system rule
base as follows.

DeriNITION 4.1.1 (Fuzzy RULE BASE) A fuzzy system rule base, R, is a set
of rules on the form

RO : TF 2, 1S A’ AND ... AND 2, 1S A THEN y IS B®  (4.1)

where Agl) and BY) gre labels for the fuzzy sets characterized by the membership
functions p ) (2;) and pga(y) respectively. O

In binary logic, logic formulas are sometimes illustrated using a Karnaugh
map. Similarly, it is sometimes fruitful to view the fuzzy system rule base as
a table, as illustrated in the next example.

ExampLE 4.1.1 (Fuzzy PD CONTROLLER RULES)
Consider the following nine rules describing a fuzzy PD controller:

IFeIS NLANDéISNL THENwuIS NL
IFelS ZEAND€éIS NL THENwuzISNS
IFelIS PLAND ¢IS NL THENuIS ZE
IFeIS NLAND éIS ZE THENuIS NS
IFelS ZE AND ¢IS ZE THENulIS ZE
IFelIS PLAND ¢IS ZE THENulS PS
IFeIS NL AND éIS PL THENuIS ZFE
IFelIS ZE AND¢IS PL THENuIS PS
IFelS PL AND¢éIS PL THENuIS PL

where we have introduced the labels NL, NS, ZE, PS and PL to mean
Negative Large, Negative Small, Zero, Positive Small and Positive Large
respectively.

Although there are only nine rules in this rule base, it is already hard
to figure out the operation of this controller. In this case, we can enhance
readability by presenting the rules in the table

é
NL ZE PL
PL |ZE PS PL
e ZE|NS ZE PS
NL|(NL NS ZE

In some literature, this kind of rule table is called a fuzzy associative memory
(FAM). O

In the same way as we require the individual rules to be “well posed”, it is
often natural to put requirements on the knowledge base. For instance, we
may require that at least one rule applies for each possible system input. It
is also reasonable to require that there are no conflicting rules, in the sense
that they have the same IF-part but different THEN-parts. This leads to the
following definitions.
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DEFINITION 4.1.2 (PROPERTIES OF THE KNOWLEDGE BASE) A knowledge base
1s called complete if for each input, at least one rule applies, i.e.

Ve 31 pymy(z) #0

A knowledge base is called an information system if the membership values of
the rule antecedents always sum to one, i.e.

M
> maw(e)=1, Vz
=1
A rule base is called consistent if no two rules have the same IF-parts but

different THEN-parts. O

We can illustrate these properties on the fuzzy PD-example.

ExaMPLE 4.1.2 (PROPERTIES OF THE Fuzzy PD RULE BASE)
If we define NL, ZE and PL for ¢ and é using the membership functions in
Figure 4.2, we can discuss the properties of the fuzzy PD rule base.

i \/\/
IR
AN

Error, Error rate

Figure 4.2 Membership functions for the fuzzy PD controller inputs.

Firstly, the rule base is consistent, since there is only one entry in each slot
of the rule table. The knowledge base is also complete, since the membership
functions cover all input values and there are entries in every slot of the rule
table. If we use product T-norm, it can be verified that the knowledge base is
also an information system. O

We are now ready to describe the three stages of the fuzzy system computa-
tions.

From Numeric to Fuzzy Set — Fuzzification

The first stage in the fuzzy system computations is to transform the numeric
inputs into fuzzy sets. This operation is called fuzzification. Unfortunately,
the theory of fuzzy sets and approximate reasoning does not aid us in the
design of a fuzzifier. However, the following definition seems reasonable.

DEerINITION 4.2.1 (FuzziFIER) A Fuzzifier, F, converts a numeric value, z*
into a fuzzy set pq1(z). We require that the fuzzy set pa(z) fulfills the following
azioms

F1. pa(z*) =1

24



F2. p4(-) is a decreasing function of ||z — =*||.

The following fuzzifiers have been suggested in the literature.

ExAMPLE 4.2.1 (SINGLETON)

A Singleton Fuzzifier maps a numeric value £* into the fuzzy singleton (3.5)
with £ = z*. O
EXAMPLE 4.2.2 (GAUSSIAN)

A Gaussian Fuzzifier maps a numeric value ¢* into a the gaussian membership
function (3.3) with £ = z*. O

EXAMPLE 4.2.3 (TRIANGULAR)

A Triangular Fuzzifier maps a numeric value z* into the triangular membership
function (3.2) with z; = z} = 2*. O

The fuzzifiers are illustrated in Figure 4.3.

Figure 4.3 The suggested fuzzifiers for z* = 0

The singleton fuzzifier is predominant in fuzzy control literature. The main
reason for this is that this choice of fuzzifier simplifies the computations in the
fuzzy system considerably. It is hard to motivate the use of the other fuzzifiers.

4.3. Computing a Fuzzy Output — Inference

When the numeric inputs of the fuzzy system have been transformed into
appropriate fuzzy sets, the inference engine can be applied to infer the output
of the system. From the point-of-view of fuzzy set theory, the inference engine
is the heart of the fuzzy system. It is the inference engine that performs all
fuzzy logic manipulations in a fuzzy system.

In the previous chapter, we explained how approximate reasoning could
be used to infer using a single rule. Since a rule base generally consists of
several rules, we must decide how to reason with multiple rules. There are two
different approaches: composition based inference and individual rule based
inference.

In Composition Based Inference, the complete rule base is treated as one

fuzzy relation. This fuzzy relation is obtained as the combination of the rela-
tions describing the individual rules, i.e.

pr(2,y) = proy (2, 9)+ . .. Frgon (e, y)

25



The relation describing the rule base is then treated as one single rule, exactly
as in Chapter 2.

In Individual Rule Based Inference, as its name suggests, we treat each rule
individually. From each rule, we infer an output fuzzy set, and the output
fuzzy set resulting from all rules is a obtained by combining all the individual
fuzzy sets.

pB () = pgay(¥)+ .- Frgioan(y)

Incidentally, the two approaches coincide for some choices of inference engine
parameters. We shall only be concerned with fuzzy systems that use individual

rule based inference and Mamdani implication. This class of inference engines
can be defined as follows.

DEerFINITION 4.3.1 (Fuzzy SYSTEM INFERENCE ENGINE) A fuzzy system in-

ference engine, I, performs the following fuzzy system computations on the
rule base R of Definition {.1.1.

1. For the I*" rule, the fuzzy set describing the rule premise is formed using
a T-norm operator

paw (2) = By (@) ook p g (2n)

2. Using a (possibly different) T-norm as implication operation, the fuzzy
relation defined by the rule is created

B g0 (2,9) = paw (2) * ppo (y)

3. The generalized modus ponens is applied to infer the output suggested by
this rule

pgw(y) = sup {pa(z) * py0_po (2, y)}

4. The total output is obtained through aggregation of the individual rule
outpuls using an S-norm operation

pp(y) = pgroy(¥)+ - . Frgion(y) -

Although there are a number of possible inference engines of this class, only
two combinations are widely used in fuzzy control. These are the Product-Sum
and Min-Max inference engines, as described in the examples below.

ExaMPLE 4.3.1 (PRODUCT-SUM INFERENCE ENGINE)

In the Product-Sum inference engine, we use individual rule based inference,
algebraic product as T-norm, bounded sum as S-norm and algebraic product
as implication. O

EXAMPLE 4.3.2 (MIN-MAX INFERENCE ENGINE)
In a Min-Max inference engine, we use individual rule based inference, product
as T-norm, max as S-norm and min as implication. O
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4.4. From Fuzzy Set to Numeric Value —
Defuzzification

As we have seen from the previous section, the result of the inference process is
an output represented by a fuzzy set (denoted pp/(y)). As discussed initially in
this chapter, the output of the fuzzy system should be a numeric value. The
transformation of a fuzzy set into a numeric value is called defuzzification,
which we choose to define in the following axiomatic way

DEFINITION 4.4.1 (DEFUZZIFIER) A Defuzzifier, D, maps a fuzzy set pp:(y)
into a numeric value y*. We require the defuzzification operation to fulfill the
following aziom

D1. y* lies in the interval of support of pp(y).
Il

Several defuzzification operations have been suggested in the literature.
We choose to give examples of the most common ones.

ExaMPLE 4.4.1 (CENTER OF GRAVITY)
The Center of Gravity (COG) defuzzifier specifies the numeric value to be the
center of gravity of the fuzzy set, i.e.

o _ Jvy-pm(y)dy

f'[,r ppi(y) dy

Bt

Figure 4.4 Center of Gravity defuzzifification of the fuzzy set B’'.

|

ExAMPLE 4.4.2 (CENTER AVERAGE)
The Center Average (CA) defuzzifier specifies the numeric value to be the

weighted average of the centers, g of the individual consequent fuzzy sets,
ie.
* EIE], g{l) . w(l}
- Eﬂlﬂ w(!)
The weights, w() are equal to the height of the respective fuzzy sets.
O

ExAMPLE 4.4.3 (MAXIMUM)
Maximum defuzzifiers determines y* as a point in the interval Ips where the
fuzzy set has its maximum value

Ing = {y € V| pp:/(y) = sup up(y)}
yeV
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Figure 4.5 Center Average defuzzifification of the fuzzy set B’.

Since the defuzzifier should infer a unique output, there are three different
Maximum defuzzifiers

1. Smallest of Maxima (SOM), for which y* is the smallest value in Ips.
2. Mean of Maxima (MOM), for which y* is the middle point of Iys.
3. Largest of Maxima (LOM), for which y* is the largest value in Ij.

uty)

Figure 4.6 Maximum defuzzifification of the fuzzy set B’.

O

There are several factors which can influence the choice of defuzzifier. We
may for instance require that the defuzzifier produces a plausible result in a
computationally simple way. In the next chapter, we shall see that both the
Center Average and the Center of Gravity defuzzifiers allow efficient compu-
tations.

4.5. Putting the Pieces Together — The Fuzzy
System

Having defined all components of a fuzzy system, we can now put the pieces
together to form the fuzzy system. The fuzzy system is illustrated in Figure
4.5.

For later reference, we make a more formal definition of the fuzzy systems
under consideration.

DErFINITION 4.5.1 (Fuzzy SYSTEM) A fuzzy system of class S = S(R, F,I,D),
consists of
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Figure 4.7 The fuzzy system.

R - a rule base as defined in Definition 4.1.1
F - a fuzzifier as defined in Definition §.2.1
T - an inference engine as defined in Definition 4.3.1
D - a defuzzifier as defined in Definition {.4.1
O

In Section 3.1, we briefly mentioned that the singleton fuzzifier is predom-
inant in fuzzy control literature. The main reason for this can be found in
Example 3.6.2. In this example, we showed that the generalized modus po-
nens simplifies considerably if the singleton fuzzifier is used. It is the simplified
inference computations that are implemented in most fuzzy controllers. These
computations also have a very intuitive interpretation, as illustrated in the
next example.

ExaMPLE 4.5.1 (INFERENCE COMPUTATIONS)

Consider a fuzzy system of class S with a singleton fuzzifier. In Example 3.6.2,
we showed that in the case of singleton fuzzifier and Mamdani implication, the
generalized modus ponens infers according to

pp(y) = pa(z") * pp(y)
where z* denotes the input to the system.
Let us illustrate the inference computations on the fuzzy PD controller rule

base of Example 3.1 with fuzzy sets defined in Example 3.2. In this case, we
have z* = (e, ¢), and consequently

1B (y) = pa, (€) * pa, (€) x pB(y)

The inference computations can be recast into the following steps

1. The fuzzy sets of all inputs are evaluated.
By (€)s 1y (€)

2. The degree of fulfilment of each rule is determined by applying the de-
sired T-norm.

paw (€ €) = p o (e) x p 0 (€)
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Rule 1 IFeis Zero and ae is Zero THEN u is ZERO
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Figure 4.8 Graphical illustration of the simplified inference computations.

3. The contribution of each rule to the control signal is determined by the
Mamdani implication

Epm(¥) = pan (e, €) x ppny(y)

4. The output fuzzy set is formed by aggregating the individual rule con-
tributions.

up (y) = pgroy(¥)+ .. Frgian (y)

For the case of Product-Sum inference, parts of the computations are illus-

trated in Figure 4.8.
d

In the next chapter, we shall see how the computations can be simplified
even further in the case where the fuzzy sets of the consequents are singletons.
Before moving on to the next chapter, however, we choose to make a small
detour to describe a slightly different class of fuzzy systems.

4.6. Sugeno Type Fuzzy Systems — A Different
Approach

A different class of fuzzy-like systems has been suggested by Sugeno and Takagi
[Takagi and Sugeno, 1985]. This type of fuzzy system uses rules on the form

R® :1F 2, 1S AY AND ... AND z, IS A®) THEN y = h0)(z)  (4.2)

The output function is an arbitrary function of the input #. In many cases the
output function is a constant or a linear combination of the input variables,
ie.

rO(z) = lo + 02y + - + 1Oz,
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Figure 4.9 Graphical illustration of inference in Sugeno-type fuzzy systems.

The total system output is a weighted average of the individual rule outputs

< (2)
y=Y _ PaO\T) ()

M
=1 2 k=1 B at®) (z)

where the weights p 4u)(z) are computed according to

pao () = ] 1,0 (i)
=1 !

The simple inference mechanism of a Sugeno-type fuzzy system is illustrated
in Figure 4.9.

Although only a minimum of fuzzy logic is used in Sugeno-type fuzzy sys-
tems, it will become evident in the next section that these systems capture
most of the attractive features of fuzzy systems.

4.7. Summary

In this chapter, we have developed the extensions of the basic theory of Chap-
ter 2, necessary for fuzzy logic to be applicable to engineering problems.
Firstly, we have moved from reasoning with one single rule to reasoning with
fuzzy system rule bases that consist of several rules. Secondly, since engineer-
ing applications usually involve numeric manipulations, we have shown how
interfaces must be added around the fuzzy logic inference engine.

It is natural to structure a fuzzy system into four subsystems; fuzzifier, rule
base, inference engine and defuzzifier. In theory, any combination of fuzzifier,
rule base, inference mechanism and defuzzifier can be used. In practice, how-
ever, only a limited number of combinations are widely acknowledged. The
singleton fuzzifier, for instance, is predominant in fuzzy control, and we have
shown how the rule evaluation in this case has a nice graphical interpretation.
In the next chapter, we will see that if we limit the fuzzy system parameters
further, we can derive closed form expressions of the nonlinear mappings per-
formed by fuzzy systems. For more material on fuzzy systems, see [Wang,
1994] [Driankov and M.Reinfrank, 1993] and [Pedrycz, 1989].
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5. From Fuzzy Systems to
Nonlinear Mappings

Aim: To show how fuzzy systems perform nonlinear mappings

From the conceptual point of view, fuzzy systems are motivated by the theory
of fuzzy sets and the attempt of approximate reasoning to mimic how human
beings reason with vague terms. From the mathematical point of view, how-
ever, fuzzy systems are nothing but nonlinear mappings from the inputs to the
outputs. When we want to express heuristic knowledge of an input-output re-
lationship, it is often convenient to manipulate fuzzy IF-THEN rules. When
we want to develop systematic analysis and synthesis methods for fuzzy control
systems, however, it is instrumental that we view fuzzy systems as nonlinear
mappings. This view of fuzzy systems is illustrated in Figure 5.1. The aim of

[ wIs M1 AND wiS NI THEN v 18
Fuzzy System

v

EEE W 3 7
~Z

Figure 5.1 Shifting focus: From internal mechanisms to an input-output view.

this chapter is to give insight in how fuzzy systems synthesize nonlinearities
and to derive compact analytic descriptions of fuzzy system nonlinearities.
We will also provide measures on how well fuzzy systems can approximate
continuous functions. Finally, we will relate fuzzy systems to other function
approximation schemes, such as neural networks, splines and radial basis func-
tions. This presentation of fuzzy system nonlinearities condenses and develops
the ideas described in [Johansson, 1993}, [Johansson, 1994a] and [Johansson,
1994b).

5.1. Crafting Nonlinearities with Fuzzy Systems

Fuzzy systems have a very large number of adjustable parameters. The pa-
rameters can be divided into two groups: one group of parameters specifies
the knowledge base, and the other parameters determine how the rules should
be interpreted.

Rule base Fuzzifier Inference Engine Defuzzifier
Number of fuzzy sets Fuzzification Inference mehod Defuzzification
Fuzzy set distributions Implication

Fuzzy set shapes T-norm

Fuzzy IF-THEN rules S-norm
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The approach taken in this work is to fix the reasoning parameters, and
investigate how the knowledge base parameters influence the nonlinearity. We
will develop an intuition of how fuzzy systems synthesize nonlinearities based
on the similarity between a fuzzy system and a look-up table. In fact, de-
scribing a nonlinearity by fuzzy IF-THEN rules is very similar to describing
a nonlinearity by a look-up table with interpolation. Let us illustrate this
analogy by an example.

ExaMPLE 5.1.1 (LooK-UP TABLE)
Consider describing the nonlinear valve-characteristic

y=vz

with a look-up table. A look-up table consists of a set of nodal points, ny,
and the corresponding function values £(ng). A coarse look-up table for this
nonlinearity is given by

Nodes (2 = ng) 0 05 1
Outputs (y=L(ng)) |0 0.7 1

We can describe the operation of this look-up by the following rules

IF 0.00<z<025 THEN y=0
IF 025<z <075 THEN y=0.7
IF 0.75<z<100 THEN y=1

The characteristic functions used in these rules are shown in Figure 5.2, along
with the resulting nonlinearity.

o
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C}O

Figure 5.2 Left: Characteristic functions. Right: Binary logic approximation
(full line) compared to actual nonlinearity (dashed).

If we choose to synthesize the same nonlinearity with a fuzzy system, we
could use the rules

IF =z IS Small THEN y=0
IF 2 IS Medium THEN y=0.7
IF =z IS Large THEN y=1

The membership functions for Small, Medium and Large would in this case
be continuous versions of the characteristic functions used in the logic rules.
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Figure 5.3 Left: Membership functions. Right: Fuzzy system nonlinearity (full
line) compared to actual valve nonlinearity (dashed).

Typical membership functions and the fuzzy system nonlinearity are shown in
Figure 5.3.

Note that this fuzzy system exactly reconstructs the table at the nodal
points while for intermediate values, the reasoning mechanism results in an
interpolation. This results in a continuous approximation of the valve nonlin-
earity. We could of course obtain a similar result by combining the original
look-up table with some other interpolation method. a

We may say that in fuzzy systems, the fuzzy set distribution and rules
play the role of a look-up table. This analogy is particularly transparent when
we use triangular membership functions and an information system rule base
(such as the fuzzy rule base of the previous example). In this case, the rule base
parameters can be shown to have the following influence on the nonlinearity:

o The fuzzy set distributions used in the rule premises partition the input
space into a set of intervals.

e The rules, in turn, assign one function value to each interval endpoint
(or nodal point). The function values are determined by the location of
the fuzzy sets of the consequent variable.

o For intermediate input values, the fuzzy system calculations result in an
interpolation.

The analogy is a powerful tool for developing a qualitative understanding of
how the parameters of the rule base influence the fuzzy system nonlinearity.
In the next section, we will see how particular choices of

This analogy is a powerful tool for developing a qualitative understanding
of how the parameters of the rule base influence the fuzzy system nonlinearity.
It can also be useful when we want to find out the nonlinearity of a specific
fuzzy system, as illustrated by the next example.

ExaMPLE 5.1.2 (INTERPOLATION IN 2-INPUT SYSTEMS)
Consider the Fuzzy PD controller of Example 4.1.1, with membership functions
defined in Figure 5.4.

We can get an idea of what the controller nonlinearity looks like using the
procedure outlined above:

o The vertices of the input fuzzy sets partition the input space into a
Cartesian grid.
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Figure 5.4 Fuzzy Sets for the PD controller.
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o The fuzzy system calculations interpolate

O

Although we have only considered triangular membership functions, the
analogy holds with good approximation also for other classes of membership
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Figure 5.5 Fuzzy sets for the P-controller.

Output
(=]

-1 -0.5 ) 0.5 1
X

Figure 5.6 The resulting nonlinearity of the fuzzy P-controller.

functions. In a majority of cases, triangular membership functions are chosen
to have full overlap. This is generally a good idea, as illustrated by the next
example.

ExaMPLE 5.1.3 (WHY OVERLAPPING Fuzzy SETS?)
Consider a simple P-controller described by the rules

IFeISNL THENulIS NL
IFeISZE THENulIS ZE
IFelIS PL THENuIS PL

where the fuzzy sets for e are defined in Figure 5.5, and the fuzzy sets for u
are singletons centred at (—1, 0, 1) respectively. The resulting nonlinearity
is shown in Figure 5.6. Note that this nonlinearity exhibits both plateus and
discontinuities, which are often undesireable features.

For the inference parameters that we will use later in this chapter (see
Lemmab.2.1-5.2.3 and Corollary5.2.1), the following rule-of-thumb can be
shown to hold:

1. No active rule results in a zero output.
2. One active rule results in a constant output.
3. Several active rules result in an interpolation.
Compare with the P-controller nonlinearity. O

In the next section, we will see how particular choices of fuzzifier, infer-
ence engine parameters and defuzzifier, make it possible to derive closed form
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expressions for the fuzzy system mappings. These expressions will be instru-
mental for mathematical analysis of fuzzy control systems.

5.2. The Nonlinear Mappings of Fuzzy Systems

We have seen that the fuzzification, inference and defuzzification can be per-
formed in a number of ways; the only requirements we can pose are that a set
of basic axioms are fulfilled for each operation. Further, we can conclude that
there is no “best” way to perform a specific fuzzy set operation, it is a matter
of preference what operations we choose in the implementation of our fuzzy
system. In this section, we prefer fuzzy systems that

1. Can be described by compact mathematical formulas, and
2. Are computationally efficient

The first requirement makes mathematical analysis feasible, while the second
requirement guides us to design control systems that we can implement with-
out having to rely on expensive special-purpose hardware. We derive separate
formulas. for the mappings of Mamdani-type fuzzy systems.and Sugeno-type
systems.

Mamdani-type Fuzzy Systems

A very useful formula for fuzzy system mappings is the following:

LemMMA 5.2.1 (Fuzzy SYsTEM MAPPINGS I) The fuzzy system with rule base
on the form R, singleton fuzzifier, Product-Sum or Min-Maz inference and CA
defuzzification, performs the nonlinear mapping

Mo [ (=)

- 0
= - g (5.1)
; )Draltl | Y Py 0 (2:)

where §) are the centres of the consequent fuzzy sets. O

This formula is the same, whatever membership functions are used in the
rule-premises. It is therefore important to stress that the choice of function
class of the membership functions p4i(2;) has a great impact on the fuzzy
system nonlinearity. Triangular meml;ership functions, for instance, are not
continuously differentiable and have very local support. Gaussian membership
functions, on the contrary, are infinitely smooth and are supported for all input
values.

Since Gaussian membership functions have global support, they allow us
to obtain a more transparent formula.

COROLLARY 5.2.1 (GAUSSIAN MEMBERSHIP FUNCTIONS IN THE PREMISES)
If the fuzzy system of Lemma 5.2.1 uses gaussian membership functions in the
rule premises, the fuzzy system performs the nonlinear mapping

n [e-a\?
M SXP |~ 2in (7;'— )
: 70

=D,

w'—i(‘*) 2
=1 EkM=1 exp (“ Y (W) )

(5.2)
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O

Fuzzy systems with triangular membership functions in the rule premises
have some nice properties, as we can see from the following results.

LEMMA 5.2.2 (Fuzzy System MapPiNGs II) The fuzzy system with a con-
sistent information system rule base, R , triangular membership functions
pat(®) in the premises, singleton fuzzifier, product-sum inference and COG

defuzzifier, perform the nonlinear mapping
M [Ty By (=)

= Q)
y= = m (5.3)
E Sper a8 [Tiy o0 (20)

where al) and m) are the area and the moment respectively of the fuzzy set
B®, O

Note that this fuzzy system allows separate manipulation of the numerator
and denominator of the interpolation functions. If we do not need this extra
degree of freedom, the simplification indicated by the next lemma can be an
alternative.

LEMMA 5.2.3 (Fuzzy SYsTEM MaPPINGS III) If the consequent fuzzy sets
are all singletons, the fuzzy system mapping (II) simplifies to

M n
y=) ( uAgn(m)) 70 (5.4)

=1 \i=1
Il

In this fuzzy system, we have fixed a majority of the fuzzy system param-
eters. We are only free to adjust the most important parameters of the rule
base, namely the number of rules, M, the distribution of the fuzzy sets and
the rules. Thanks to its simplicity, we can derive some more specific results
for this class of fuzzy systems.

COROLLARY 5.2.2 (PIECEWISE MULTILINEAR MAPPINGS) The fuzzy system
(II1) performs a piecewise multilinear mapping

y = (a121 4+ f1) - (azz + B2): - (anzrn + Bn) (5.5)
O

Corollary 5.2.2 indicates that a lot of precomputations can be made when
implementing this class of fuzzy systems. Since linear systems is a special case
of multilinear systems, we have the following constructive result.

CoRrOLLARY 5.2.3 (LINEAR Fuzzy MAPPINGS) By choosing the consequent
paramelers

g = LT w‘f’z (5.6)
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the fuzzy system of Lemma 5.2.3 performs the linear mapping
y=LTz (5.7)

O

Note that Corollary 4.3 gives us one way to design a fuzzy controller. We
can simply start out by a linear controller design

u= LTz

and translate it into a fuzzy system as in Lemma 1.3. With this as a start-
ing point, we can tune the fuzzy system parameters in order to introduce
nonlinearities that improve performance.

Although the last results are stated for the COG defuzzifier, the results
from Lemma 5.2.3 and on are valid also for the CA defuzzifier. Similarly,
the formulas (5.2.1) and (5.2.1) are valid if we use COG defuzzifier, singleton
consequents and summation as aggregation operation. More formally, we have
the following result:

ProprosiTION 5.2.1 Using CA defuzzification is functionally equivalent to us-
ing COG defuzzification with the consequent parameters constrained to be sin-
gletons, and allowing the aggregation operation be summation. O

Roughly speaking, the derivation of the general formulas (5.2.1) and (5.2.1)
requires that the rule aggregation step is somewhat violated. Either we dis-
regard the rule aggregations step completely (by using the CA defuzzifer), or
we violate the S-norm (by using summation rather that bounded sum). The
trick of the system in Lemma 5.2.2 is that its rule base guarantees that the
aggregation operation never “hits the bound”, i.e., the bounded summations
is in fact a standard summation.

Sugeno-type Fuzzy Systems

For Sugeno-type fuzzy systems, we limit our presentation to the following
lemma:

LeMMA 5.2.4 (Fuzzy SysTEM MAPPINGS IV) The Sugeno-type fuzzy system
(4.2) performs the nonlinear mapping

Mo Tz pym(2i)

Y= = h(l)(m)
lz=; Eﬂ’il Hf:l pdgk)(m"‘)

O

Here, we allow h!(z) to be an arbitrary function of the system input . In
most cases, however, the consequent function is a linear function

h(l)(m) = 11.111 + 127’2 +- 4 l'n.mn

Note that the Sugeno-type of fuzzy systems simplify to Mamdani-type fuzzy
systems when the consequent functions are constant functions (“singletons”).

O (z) = g
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5.3. Approximation Properties of Fuzzy Systems

Since we use fuzzy systems to synthesize nonlinearities, it is interesting to
examine what functions we can approximate using fuzzy systems. As formu-
lated by the next theorem, it turns out that a wide class of fuzzy systems are
“universal approximators” [Castro, 1995].

THEOREM 5.3.1 (Fuzzy SYSTEMS ARE UNIVERSAL APPROXIMATORS) Let
f:UCR'—- R

be a continuous function defined on a compact set U. Let §' = §(Fy,I,D)
be a fuzzy system defined in Definition 4.5.1, where Fs denotes the singleton
fuzzifier. Then for each €, there exists an S'c € S’ such that

sup |f(z) — S'e() < €
zeU

O

This theorem tells us that for every continuous function f(z), we can find a
fuzzy system S’ that approximates this function with a maximum absolute
error of €. Based on the analogy of a look-up table, the above result is not
surprising. A fuzzy system of class S', can represent the function f(x) exactly
at the nodal points. Since f(z) is a continuous function , we can approximate
f(z) arbitrary well by simply increasing the number of rules (cf number of
entries in a look-up tanle).

For practical use, we would like to know what worst-case approximation
error is for a certain number of rules. This approximation bound is provided
by the following theorem [Xiao-Jun Zeng, 1995]

THEOREM 5.3.2 (APPROXIMATION BoUNDs FOor Fuzzy SYSTEMS) Let
f:UCR*- IR

be a twice continously differentiable function defined on a compact set U. Let
Sa be the fuzzy system of Lemma 1.3. Then

1/, 0% 0% f
-8 < 2 =%l oo 62 — || oo 82
1 = Salle < (11551002 + 15518
where we have introduced
61 = max;—1..m;-1 |w:;'1-1 - mf,1|
b2 = mMaXi—1_m,—1|eih! — i,
O

The result of this theorem also matches the analogy of the look-up table
very well. Recall that this fuzzy system can exactly represent the unknown
function at the nodal points. Since we require f(z) to be continuous, we can
bound its behaviour inbetween the nodal points.
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5.4. Fuzzy Systems and Function Approximation

In this chapter, we have seen how fuzzy systems perform nonlinear mappings.
One of the key results has been that certain choices of inference parameters
allow us to derive closed form expressions of the mappings performed by these
fuzzy systems. In other words, we can get a one-to-one correspondance be-
tween the fuzzy system knowledge base (which may be given by a heuristic
design) and a simple nonlinear function (which we hope to use for mathemat-
ical analysis).

The formulas for fuzzy system mappings that we have derived can all be
written as a weighted sum of basis functions, i.e.

IF-part

M
f(z;0) = Z gi(z) \w;/ (5.8)
i=1 THEN-part

To obtain correspondance to the notation used in Lemma 5.2.1 and Lemma 5.2.3,
note that the weights are determined by

w; = §(¥ (5.9)
and the “fuzzy basis functions”[Wang, 1994] are given by

[Ty 0 (i)
M
Ei:l H::l ,I’A(k') (mk)

gi(z) = (5.10)

The parametrization (5.8) of a function approximation scheme is by no
means unique to fuzzy systems. Many conventional function approximation
methods such as Splines and Radial Basis Functions (RBF) can be written in
the same form. Quite surprisingly, it turns out that the fuzzy system mapping
of Lemma, 5.2.3 is functionally equivalent to a Linear B-Spline [deBoor, 1978,
[Brown and Harris, 1995] and that it would be fair to refer to the fuzzy system
mapping of Corollary 5.2.1 as a normalized RBF Altogether, this indicates
that a basic understanding of function approximation can be very useful for
understanding the problems and prospects of using fuzzy systems for control.
The remainings of this chapter will be devoted to a brief description of how
fuzzy systems relate to other function approximation methods.

The function approximation problem can be stated as follows: “Given a
training set (z(¢),y(¢)) consisting of N pairs of inputs and the corresponding
outputs, construct a map that for a new input & provides a reasonable pre-
diction of the associated unobserved output y.” [Wahba, 1995]. In machine
learning, this ability to predict an unobserved output associated with a new
input is often referred to as generalization.

Clearly, just storing away the training data is not likely to be sufficient.
Rather, we would like to construct some function that matches the training
data reasonably well. How the function approximation should be carried out
in detail depends on what information is available: Is the training data noisy
or exact? Is the function to be approximated known to be smooth, and in
that case to what degree? In order to understand how fuzzy systems fit into
the framework of function approximation, consider the following examples:
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ExaMPLE 5.4.1 (RULE BASED SYSTEMS AND INTERPOLATION)

Fuzzy systems are often used for crafting controller nonlinearities based on the
knowledge of an experienced process operator. In this case, it is reasonable to
interpret the fuzzy rule

IF ¢ IS A® THEN y IS BO (5.11)

as a description of the controller nonlinearity close to some operating condition
z(). In the same spirit, the complete rule base can be seen as a set of sparse
data points (z(%), F(2(2))), describing the unknown nonlinearity. Based on
these data, we are now interested in recovering F(z) by a fuzzy system f(z).

If we believe that the operator has given us exact descripritions of his con-
troller actions, it is natural to require that the fuzzy system mapping exactly
matches the training data, i.e. that the interpolation conditions

f(z(i)) = F(z(s)) Yi=1...M (5.12)

are fulfilled. The fuzzy system used in Lemma 5.2.3 , for example, interpolates
the points. (mg), 37(’)) as illustrated in Figure 5.7 O
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Figure 5.7 Fuzzy system nonlinearities — rules and interpolation.

EXAMPLE 5.4.2 (NONLINEAR SYSTEM IDENTIFICATION AND SMOOTHING)
The situation is quite different when we want to identify some static nonlinear-
ity based on measurement of input-output data. Since the data may contain
a considerable amount of noise, interpolation is now a dubious goal. Even
if the noise level is low, we often choose to collect a large set of data, and
constructing an interpolant to this data would require very many parameters
(which in fuzzy systems translates to rules and membership functions).

In this case, it is more natural to try to construct a function that matches
the training data closely under some constraints on the shape of the approxi-
mant. This is known as the smoothing problem, illustrated in Figure 5.8. O

The tradeoff between closeness to the training data and smoothness of the
approximant is captured by the regularization problem: Find the approximant
f that minimizes the functional

N
H[f] = Z(f(mi) — ;)% + A3[f] (5.13)

=1

42



L]

-1 0 1

Figure 5.8 Smoothing — Construct a smoooth function that matches the data.

Here, the first term enforces closeness to the data, and ®[f] is a functional
that enforces smoothness of f. A typical smoothness functional is

#f] = [ (f9w) e (5.14)

which penalizes large second derivatives of the approximant. The positive
parameter A is known as the regularization parameter, and it is used to control
the tradeoff between the two terms. The exterme case A — 0 corresponds
to the interpolation problem. The other extreme, A — oo, along with the
smoothness functional (5.14) results in a solution that tends to the straight
line that gives the best least squares fit of the data.

Several function approximation schemes, such as Splines and RBF':s, can be
derived from regularization theory by posing the appropriate class of smooth-
ness functional [Federico Girosi, 1993]. We may thus argue that there is
some form of regularization inherent in our choice of function approximation
method. Thus, in fuzzy systems the choice of membership function shape acts
as some sort of “implicit regularization”. Gaussian membership functions,
for instance, can give fuzzy systems that are infinitely smooth, while trian-
gular membership functions can at best result in a continuous approximant.
For more specific results on function approximation in the context of system
identification, see [Juditsky et al., 1995] and [Sjoberg et al., 1995].

Regularization ideas can also be used to understand some of the problems
that are often encountered when we use optimization methods to adjust fuzzy
system parameters to input-output data:

EXAMPLE 5.4.3 (Fuzzy SYSTEMS AND THE BIAS-VARIANCE TRADEOFF)
When fuzzy systems are used to approximate functions, the parameters of
the fuzzy system mappings are often optimized using some iterative descent
algorithm that tries to minimize some cost functional, typically

N
Jss = Z(f(mi) - u)? (5.15)

Clearly, if the number of system parameters (rules) is large enough, and the
descent algorithm is allowed to run long enough, this optimization would give
a fuzzy system parameters that interpolate the data. From Example 5.4.2, we
know that for noisy data, this is often not a very good idea. A “poor man’s
regularization” in this case, may be done by stopping the descent algorithm
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early (in other words, not driving Jgg as far as it can go) or adjusting the
number of parameters of the fuzzy system. Bear in mind though, that the
fuzzy system should have enough parameters to give a fair reconstruction of
the unknown function. This dilemma is known in statistical literature as the
‘bias-variance tradeoff’. O

5.5. Fuzzy Systems and Neural Networks

A graphical illustration of the computations involved in the function approxi-
mation schemes on the form

M
@0 =Y g2y (5.16)
=1

takes the form of a feedforward network, as illustrated in Figure 5.5. Similarly,

)

Input Layer Hidden Layer Output Layer

Figure 5.9 The evaluation of many function approximation schemes can be illus-
trated as a feedforward network.

most function approximation algorithms can be recast into the form of (feed-
forward) neural networks. Indeed, neural networks based on RBF':s, Splines
and Fuzzy Systems have been suggested in the literature. Consequently, many
results from function approximation theory and neural network control applies
directly to fuzzy systems, and (naturally) the other way around.

It is the author’s strong belief that automatic control research would benefit
from a unification of these subtly different approaches to approximation based
control instead of a allowing a continuous recasting of well-known results from
one field into the other. We advocate viewing fuzzy systems as nonlinear map-
pings that can be interpreted as a set of linguistic rules. Under certain choices
of fuzzy system parameters, we have seen how fuzzy systems are functionally
equivalent to well-established function approximation schemes. A graphical
illustration of the evaluation of these function approximation schemes takes
the form of a network, and so, they qualify as neural networks.

5.6. Summary

This chapter has been concerned with describing how fuzzy systems perform
nonlinear mappings. A qualitative understanding of fuzzy system mappings
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has been developed based on the analogy of a look-up table. Loosely speak-
ing, the rules determine the output for certain combinations of input values
while the inference mechanism interpolates the output for other inputs. This
intuitive idea of how fuzzy systems perform nonlinear mappings (using rules
and interpolation) is instrumental for identifying the role of different fuzzy
system parameters, and for heuristic tuning of fuzzy systems. In this context,
fuzzy systems have the nice property of being nonlinear mappings that can be
interpreted in terms of a set of IF-THEN rules.

We have also seen how quantitative descriptions of fuzzy system mappings
can be derived for certain classes of fuzzy systems. Deriving these closed form
expressions of fuzzy system nonlinearities is a way of bringing fuzzy systems
"back home”. These classes of fuzzy systems can now be analyzed in the
(smooth) ODE framework using nonlinear control theory. Similarly, there are
great possibilities for developing systematic design procedures for these classes
of fuzzy controllers. Fuzzy systems for control applications will be treated in
more depth in the next chapter.
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6. Fuzzy Systems for Control

Aim: To show how fuzzy systems can be used for control

In the previous section we showed how fuzzy systems synthesize nonlinear
mappings using rules and interpolation. We also derived compact closed form
expressions of the nonlinear mappings performed by the most common fuzzy
systems. Further, we have investigated to what accuracy fuzzy systems can
approximate real-valued continuous functions.

In this section, we will discuss how fuzzy systems can be used in control.
Since fuzzy systems have some nice properties in terms of function approxima-
tion, it is easy to be bold and exclaim that “every system can be fuzzified”. In
theory, this is indeed the case, but it is important to note the drawbacks of a
representing a function by a fuzzy system; a fuzzy system requires a large num-
ber of parameters, and a significant amount of computations. Also, just noting
that we can approximate every function by fuzzy systems does not mean that
fuzzifying every control structure is always a good.idea...Moving from linear
to nonlinear control, we have to face issues such as filtering, estimation and
controller design for nonlinear systems. Moreover, since fuzzy systems can
only approximate the real system mapping, we have to take into consideration
the effects of approximation errors. This section will give a flavor of possible
applications of fuzzy control systems.

6.1. What is a Fuzzy Controller?

The early work in fuzzy control was motivated by a desire to express the
control actions of an experienced human operator directly in an automatic
controller, and to obtain a smooth interpolation between discrete controller
outputs. Since that time, the application range of fuzzy control has widened
substantially. As we will indicate in this chapter, fuzzy systems can be used
in a variety of control problems. In most cases, a fuzzy controller is used for
direct feedback control. However, a fuzzy controller can also be used on the
supervisory level as e.g. a self-tuning device for a conventional PID controller.

As we have seen in the previous chapter, the most commonly used fuzzy
systems are functionally equivalent to function approximation schemes such as
B-splines or normalized Radial Basis Functions. If the parameters of a fuzzy
system are adjusted on-line, the adaptive fuzzy system can be interpreted
as a neural network. Consequently, the differences between “fuzzy control”
and “approximation-based control” and between “adaptive fuzzy control” and
“neural adaptive control” are in many cases philosophical rather than func-
tional.

The variety of applications and functional similarity to other approaches
makes it difficult to define what a fuzzy controller is. We will adopt the
following general definition:

A PFuzzy Controlleris a controller that contains a possibly non-
linear mapping that has been defined using fuzzy logic-based rules.

The key-issue here is the presence of a nonlinear mapping that can be inter-
preted in terms of fuzzy logic-based rules.
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6.2. The General Structure of a Fuzzy Controller

A fuzzy system mapping is just one part of a fuzzy controller. Often, signal
processing is required both before and after the fuzzy system evaluation. A
general structure that captures most applications of fuzzy systems to control
is illustrated in Figure 6.1.

Fuzzy Controller

Pre- ul Post-
Filter Fuzzy Systemn Fliter

v

Figure 6.1 A general fuzzy controller structure, consisting of a prefiltering device,
fuzzy system mappings and a postfiltering device.

This structure, which is a slight modification of the learning controller
structure in [Sontag, 1993], consists of three parts:

1. A Prefiltering Device — for computing the fuzzy system inputs
2. One (or several) Fuzzy System Mapping(s)
3. A Postfiltering Device — for computing the actual control signal

Since the pre- and post-filtering devices are new components, we now dis-
cuss them in further detail.

Prefiltering Device

The prefiltering device represents the signal processing performed on the con-
troller inputs in order to obtain the inputs of the fuzzy system. The prefiltering
device may, for instance, perform some of the following operations on the input
signals

Sampling. This includes time-sampling, quantization, and general A/D con-
version.

Signal Conditioning. It is sometimes convenient to work with signals on a
normalized domain. For instance, we may want to work with fuzzy sets
on a normalized domain, typically [—1,1]. This can be accomplished
by the introduction of normalization gains. The normalization gain is
a linear gain that scales the input into the normalized domain [-1,1].
Values that fall outside the normalized domain are mapped onto the
appropriate endpoint.

Dynamic Filtering. This includes both linear and nonlinear filters. In a
fuzzy PID controller, for instance, linear filters are used to obtain the
control error, the error derivative and the error integral. Nonlinear filters
are found in nonlinear observers, and in adaptive fuzzy control where
they are used to obtain the fuzzy system parameter estimates.

Feature Extraction. By feature extraction, we mean numeric transforma-
tions of the controller inputs. These transformations may be Fourier-
or Wavelet-based transformations, coordinate transformations or other
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basic operations performed on the fuzzy controller inputs. One inter-
esting example is the linear transformation W = Vy, with x being the
input vector and V a possibly rectangular matrix. Function approxi-
mation on linear transforms of input variables are found in so called
“Ridge Approximation” schemes [Sjoberg et al., 1995]. Another inter-
esting example is to compute the pairwise products z;; = x;x;, which
allows correlations to be used as inputs to the subsequent parts of the
controller.

Postfiltering Device

The postfiltering device represents the signal processing performed on the
fuzzy system output to obtain the actual control signal. Operations that the
postfiltering device may perform include

Precomputed Part of Control. In some fuzzy controllers, the purpose of
the fuzzy system is to model the process dynamics. The “precomputed
part of control” is then typically a model-based control scheme that uses
the fuzzy model to compute the appropriate control action. Another
example is when the fuzzy system is a supervisory tuning-device for a
conventional PID controller. The “precomputed part of control” is then
the PID algorithm, and the purpose of the fuzzy system is to select the
appropriate PID parameters.

Signal Conditioning. This can be a denormalization gain that scales the
output of the fuzzy system to the physical domain of the actuator signal.

Dynamic Filtering. In some cases, the output of the fuzzy system is the
control increments. The actual control signal is then obtained by in-
tegrating the control increments. Of course, other forms of smoothing
devices and even nonlinear filters may be considered.

Sampling. This is typically hold devices and more general D/A conversion.

6.3. Fuzzy Systems for Feedback Control

In most cases, fuzzy controllers are used for direct: feedback control. In the
literature, a considerable effort has been put into investigations of fuzzy con-
trollers that are structurally equivalent to various conventional controllers.
However, these investigations have often been limited to simulation studies
— theoretical analysis and development of systematic design procedures have
been largely ignored. Consequently, some nice indicative results exist, while
many theoretical problems remain open. In the following, we will indicate how
fuzzy systems can be used for control.

Nonlinear PID

Linear PID control is the most widely used control structure in process indus-
try. In textbooks on automatic control, the PID controller is usually presented
as

=0

u(t) = K (e(t) + ngt-e(t) + Erl" /T s d1-> (6.1)
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An alternative parameterization of the PID controller is the velocity form

% =K (%e(t) + %_e(t) + Td%e(t)) (6.2)

The PID structure has also been favored by people working on fuzzy control.
By replacing the mapping (6.2) by fuzzy rules, we obtain a fuzzy PID controller

‘;_": =f <e(t), %e(t% %dﬂ) (6:3)

where f(-) is a possibly nonlinear fuzzy system mapping. For practical use, the
textbook PID controller (6.1) is often refined by limiting the high-frequency
gain in the derivative term and introducing setpoint-weighting along with a
scheme for avoiding windup in the integral part. These issues should also be
considered in a fuzzy PID controller

The fuzzy PID controller fits into the general fuzzy controller structure, as
illustrated in Figure 6.2.

Fuzzy PID Controller
ref |
v | Jme |{] oo (71 e
Nomalization Denormallzation
Galns Galn

Figure 6.2 The Fuzzy PID Controller.

In this case, the prefilter contains of a linear filter that computes the control
error, error derivative and error integral followed by three separate normaliza-
tion gains. The fuzzy system uses the filtered control errors to compute the
control increments. A subsequent integration is required to obtain the actual
control. Thus, the postfiltering device consists of a linear filter integrating the
control increments, and a denormalization gain scaling the filter output into
the physical domain of the actuator.

There are potential advantages in making a PID controller nonlinear. If
the plant is linear, we may for instance improve transient performance by
crafting a controller nonlinearity that works as a time optimal controller when
the control error is large and as a linear controller when the error is small.
If the plant is nonlinear, the controller nonlinearity can be designed so as to
compensate for plant nonlinearities.

However, it can be argued that the error-feedback framework is incorrect
for nonlinear systems. Even if some nonlinear systems can be stabilized using
error feedback, the dynamics in the error coordinates will change with the
value of the reference signal. One way to circumvent this problem is to design
a set of PID parameters for different operating conditions, and let the reference
value influence what controller parameters are used. This is the idea behind
gain scheduled controllers, described next.

Gain Scheduling using Fuzzy Systems

The dynamics of a nonlinear system varies with the operating condition. To
design a fixed linear controller that works well for a broad range of operating
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conditions is often a nontrivial task. In many cases, however, it is possible
to find measurable variables that correlate well with the changes in process
dynamics. The idea of a gain scheduled controller is to utilize this kind of
variables to change, or schedule, the parameters of a linear controller so as to
compensate for the changes in process dynamics.

Galn
Schedule [™
Controller Operating
Parameters Conditions
y
Referance
—>
Controller p| Process
» » Output

Figure 6.3 Gain scheduled control.

According to the discussion above, we can write a gain scheduled controller
on the form

u = C(z; p)

where z is a vector of system state variables, and p is a vector of scheduling
variables. Often, the scheduling is determined by logic rules. If the gain
schedule uses an interpolation mechanism to guarantee smooth changes in
controller parameters, a gain scheduled controller becomes very similar to a
fuzzy controller.

One may indeed argue that all fuzzy controllers are gain scheduled con-
trollers, but the relation is most clear in the case of Sugeno fuzzy systems.
From Section 3.6, we know that Sugeno fuzzy systems uses rules on the form

R® :IF p; IS A; AND ... AND p, IS A, THEN y) = [T

A slight modification of Lemma 5.2.4 gives that this system performs the
nonlinear mapping

Mo I sy (Pi) M
=35 ) gn, S y0ms 170
=1 k=1 ]._.[1':1 P"AE") (pt) =1

and the relation to gain scheduled controllers should be apparent.

The use of Sugeno fuzzy systems to design gain scheduled controllers is
becoming increasingly popular. Somewhat confusing, this controller structure
can (correctly) be called a Sugeno controller [Takagi and Sugeno, 1985], a
gain scheduled controller [Astrém and Wittenmark, 1995] or a regime based
controller.

In gain scheduled controllers based on Mamdani-type fuzzy systems, the
scheduling variables and process states both enter the rules antecedents:

RO :1F p, IS A, AND ... AND 2, IS A, ... THEN y) = B®)

Since the rules now have to describe both the scheduling space and the state
space, the total number of rules may increase drastically compared to the
Sugeno-type approach.
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Identification of Fuzzy System Models

Many fuzzy control schemes are based on a fuzzy model of parts of the system
to be controlled. It is therefore of interest to demonstrate briefly how the
parameters of a fuzzy system model can be identified from input-output data.

From the discussion in the preceding chapter, we know that we can write
fuzzy system models as a weighted sum of (fuzzy) basis functions

M IF-part
f2)=>" gi(=) _e

: S~~~

=1 THEN-part

If we fix the shape parameters of the basis functions, the model is linear in
the free parameters ¢;. Identification of the weight parameters of a fuzzy
system model is thus a linear regression problem, which can be addressed
using standard least squares techniques.

Recall that the basis functions are determined by the rules premises, while
the ¢;:s correspond to the consequent parameters in the fuzzy system rules. In
this setting, we thus fix the rule premises and adjust the consequent param-
eters to fit- the fuzzy system mapping to a set of observational data. Off-line
identification of a fuzzy system model is described in the example below.

EXAMPLE 6.3.1 (OFF-LINE IDENTIFICATION OF FUzzYy SYSTEM MODELS)
Consider the static mapping

y = f(2) (6.4)

for which it is hard to obtain a sufficiently good physical model.

Assume that we have some prior knowledge of f(z), which we find conve-
nient to decode into a fuzzy system rule base. Assume further that we can
record N noisy input-output pairs {m(k),y(k)} of f,ie.

y(l) = f(m(l)) 1 (1)
y(z) - f(m(z)) 1+ e(2

y ™ = f(a) 1 M)

The first step of an identification procedure for fuzzy systems is to trans-
form the initial rule base into a fuzzy system mapping

M
f(=) =Y gi(2)ei = ¢"(2)C (6.5)
i=1
where we have introduced the regressor vector

T
@)= [ 6(2) 0a(z) - gu(2) |

and the parameter vector

C’=[c1 €3 ... cM]T
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In matrix notation, we now have

Y1 ¢7 (z1) e
Y2 ¢T(w2) €2

Y = . = C + . = @C + e
YN ¢T (zn) en

Assuming the noise to be white, the parameters of the fuzzy system model
that minimizes the least squares criterion are obtained as

C=3"Y

where &t = (87®)"18T denotes the Moore-Penrose inverse of the regressor
matrix . The extension to Mamdani-type models is straight-forward and
omitted here for brevity. O

Adjusting the shape parameters of the basis functions can be posed as a
nonlinear least squares problem, which can be approached using a number of
“off the shelf” optimizationtoutines such as Gauss-Newton or Conjugate Gra-
dient [Fletcher, 1987]. Recursive identification of the linear parameters is also
standard, see for instance [Johansson, 1993] for a comprehensive treatment
of the recursive linear least squares method. For a nice treatment of identi-
fication of Mamdani-type models, the reader is referred to [Katayama et al.,
1994|, while process identificaton using Mamdani-type models is treated in
[Johansen, 1995].

Nonlinear State Feedback

Intuitively, a plant with significant nonlinear dynamics should be controlled
using a nonlinear controller. However, control design for nonlinear systems
is a hard problem, and at present date there are no general design methods
available. Some promising progress have been made using techniques like
feedback linearization and backstepping designs. Both methods can be applied
to certain classes of systems. We choose to illustrate a special case of these
design methods which is the nonlinear equivalent to pole placement.

EXAMPLE 6.3.2 (NONLINEAR POLE PLACEMENT)
Consider a nonlinear system on the form

) =y
Ty =23
Tp_1 =Tn
b =1(2) + 9(0)u (6.6)

where f(z) and g(z) are nonlinear function of the process state vector. If we
know f(z) and g(x) # 0 perfectly, the feedback

u= ﬁ (-f(z) + LTz + 1) (6.7)
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cancels the nonlinearity and gives the closed loop system the desired linear
dynamics [Isidori, 1989]

0 In_1xn— 0n-
n‘::l: _LITX" ! ]z+[ "11)(1]7':: Apz + byr (6.8)

If the functions f(z) and g(z) are not known, one approach is to obtain
approximate models f(:c) and §(z) from an identification experiment. The
approximations f(.'c) and §(z), can for instance be in terms of fuzzy systems
whose parameters are optimized to fit the identification data. Using a certainty

equivalence approach, we may then try the control

1 s T
== (- L bm .
u 7 ( f(2)+ L z+ 'r) (6.9)
In this case the cancellation of the nonlinearity is only approximate. O

Present approaches to model based fuzzy control in the above spirit simply
assumes that the approximation of f(z) and g(z) is “sufficiently good”. A
more satisfactory approach would be to develop design algorithms that are
robust with respect to bounded approximation errors.

Sliding Mode Control

A simple and highly robust control structure for uncertain nonlinear systems
is the so called sliding mode controller [Utkin, 1977] [Slotine and Li, 1991],
[Hung et al., 1993]. The main idea behind sliding mode control is to transform
the problem of stabilizing an nth order system (which is hard) into the problem
of stabilizing a 1st order system (which is easier).

Sliding mode control can be demonstrated on the problem of globally stabi-
lizing the system (6.6). Let 2(t) be the n-dimensional system state vector and
consider the scalar function s(z,t) = ¢T«(t). This function defines a surface
S of dimension n-1 in the system state space

S:s(z,t)=crz1 +caza+ -+ epz, =0 (6.10)
Substituting the n-1 first state equations of (6.6) into (6.10), we have
s(z,t) =c121 tca21 + - + cnz™ D =0 (6.11)

Consequently, S also defines an ordinary differential equation in z;. If we
define the surface S so that the equation (6.11) is exponentially stable, the
system state is guaranteed to converge to the origin if it remains on the surface
for all future times.

Thus, the n-dimensional problem of driving the state vector to origin has
been transformed into the 1-dimensional problem to forcing the system state
onto the surface S and keeping the state on the surface. Forcing the system
state to the sliding surface is equivalent of forcing the scalar s(z;t) to zero
in finite time. This can be accomplished by finding a control u such that the
Lyapunov-like “sliding condition”

22 (@) < —nls(a;1)] (6.12)
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Reaching

Figure 6.4 State trajectories for a system under sliding mode control

with 9 > 0 is fulfilled. Such a control forces the system state to the sliding
surface S, and once on the surface the system state remains there, obeying
the dynamics of (6.11). This is illustrated in Figure 6.4.

Next, we give an example of how sliding mode control can be used to
guarantee stability for a nonlinear system in the presence of approximation
errors.

EXAMPLE 6.3.3.(SLIDING. CONTROL USING A Fuzzy MODEL)
Consider the problem of stabilizing the following nonlinear system

231 =Ty

iz :f(:l}) + u

Assume that a mathematical model of f(z) is unknown, but that we have
some heuristic knowledge that we can formulate into a fuzzy model f(z). We
can not expect this approximate model to be perfect, but assume that we can
bound the approximation error by a function F(z)

|£(z) = f(=)| < F(z)

A sliding mode controller can be designed for this system in the following
steps. Define the sliding surface to be

S:s(x,t):[,\ l]w:)\zl—}—m'l:O

with A > 0. If the system state is on the sliding surface, it remains on the
surface provided that § = 0, i.e.

§ = (A:IIZ]_ + 2!2) = (A!!z + f(m) +’LL) =0

Since we do not know f(z), we use the control

u(z) = —f(z) — Azy — ksgn(s) (6.13)
_f_—/ h:—/

The first part, @, of the control is a certainty equivalence control (compare
with (6.9)). To ensure that the state vector is forced onto the surface, we have
added a second term, u*, discontinuous over the sliding surface. If we set

k=F(z)+n
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we can verify that this control satisfies the sliding condition (6.12):

58% = s = (f(2) - f(2)) s — ksgn(s)s < —nls|

O

From (6.13), we can see that the system state is directed towards the sliding
surface “from both sides”, by switching the control whenever the state trajec-
tory crosses the sliding surface. In presence of noise or unmodelled dynamics,
this results in a “chattering” control, inhibiting the direct implementation of
sliding mode control. In practice, chattering can be eliminated by approximat-
ing the switching sgn(s) by some smooth function, resulting in a “boundary
layer” around the sliding surface.

It has been suggested to design fuzzy controllers by approximating the
function (6.13) by a fuzzy system. It is not clear, however, why one would like
to approximate the compact formula (6.13) by a fuzzy system, increasing the
number of system parameters and the computational requirements.

Compensation of Static Nonlinearities and Static Scheduling

In some cases, the main nonlinearities of a process are static nonlinearities on
the input and output of the system, whereas the system dynamics is linear. In
these situations, we can use the approximation capabilities of fuzzy systems
to compensate for these nonlinearities.

ExAMPLE 6.3.4 (INPUT NONLINEARITIES)
Consider a SISO plant with linear dynamics and an input nonlinearity

¢ =Az+b-g(u)

One approach to control this systems is to momentarily disregard the input
nonlinearity and design a linear controller

v = L(z)

for the linear plant. We can then approximate the inverse (which may, or may
not exist) of the input nonlinearity using a fuzzy system

f(v) ~ g7 (v)
and apply the control
u = f(L(z))
0

In some cases, it can be motivated to introduce static nonlinearities at the
input of a linear system, as described by the next example.

EXAMPLE 6.3.5 (STATIC SCHEDULING)
In climate control systems, the temperature dynamics of a room can be mod-
eled as a linear system

& = Az + bq
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where ¢ is the heat delivered by the air conditioner (AC). It is straight forward
to design a linear controller for this system. Typically, this controller measures
the room temperature and computes the heat that the AC must provide.
However, we can not control the heat of the delivered air stream directly. The
heat contained in the air delivered by the AC is proportional to the product
of the air mass flow, w, and the temperature, T, of the air stream, i.e.

gxw:T
We may then use fuzzy logic rules to design a schedule

w=fi(g;p)
T= fgp)
that for a desired heat g and auxiliary operating conditions p suggests the most

comfortable combination of air mass flow and air temperature. This control
structure is illustrated in Figure 6.5.

Trot X W,

h 4

r

Controller Scheduls Process

T

Figure 6.5 Static scheduling using fuzzy systems.

Adaptive Fuzzy Control

The main idea of an adaptive controller is to let some of the controller pa-
rameters be adjustable, and incorporate an adjustment mechanism into the
control algorithm.

AdJustment
Mechanlsm

F

Controller
Parameters

Reference
Controller #|{ Process p Outout

Figure 6.6 Adaptive control.

Adaptive control is useful when the process dynamics change with time. It is
a tempting challenge to try to derive adaptive fuzzy control algorithms. How-
ever, moving from fixed control systems and time-invariant plants to adap-
tive control systems and time-varying plants is a major step. Further, if we
use approximate system descriptions like fuzzy systems, we have to face the
fact that we can never expect the fuzzy system to approximate the actual
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system perfectly. Similar to linear adaptive control, we can expect the adap-
tion mechanism to compensate for the approximation errors to some extent.
Still, adaptive fuzzy control algorithms should be based on design methods
that guarantee stability under bounded approximation errors in the fixed con-
troller case. Up to this date, there are no completely satisfying solutions to the
adaptive fuzzy control problem. The shortcomings of current adaptive fuzzy
control approaches is demonstrated in the following example.

ExAMPLE 6.3.6 (ADAPTIVE Fuzzy CONTROL)
Consider the problem of designing a Model Reference Adaptive System (MRAS)
for the nonlinear system (6.6) based on the idea of nonlinear pole placement.
For simplicity, assume the function g(z) to be known, while f(z) can only be
described approximately by means of the fuzzy system f(:n)

Recall that in the MRAS, the desired system dynamics is specified by a
reference model

Gm = Am@m + b (6.14)

and that the controller parameters are adjusted based on the errors between
the outputs of this model and the closed loop system.

Let the prescribed model A,, and b,, have the structure defined in (6.8),
and assume that we have access to the full state vector of (6.6). Then the
control

1

~ g(=)

ideally cancels the nonlinearity and assigns the desired linear dynamics to the
closed loop.

Inspired by linear adaptive control [Astrom and Wittenmark, 1989], an
adaptive fuzzy controller can be derived in the following steps [Wang, 1994].
Using the same notation as in the identification section, we re-write the fuzzy
system approximation f(z) of f(z) in vector form

(—f(w) +ylm + LTe)

f(z) = ¢*(2)C

As a Lyapunov function candidate, we use
1 T 1 w\T *
V(e,C) =g¢ Pe + o™ (c-cry (c-cv (6.15)

In this expression, C* denotes the “optimal” fuzzy system parameters in some
sense, P is the positive definite solution to the Lyapunov equation

ATP 1+ PA, =-Q
and 1 is a scalar constant. The time derivative of (6.15) along (6.6) is

(0,0 = ~L17Qe + b (1(2) - 7C7)

1 dC
+ % (c-cn)T (E + 7mTPbm¢T(z)> (6.16)
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If we choose the parameter update law

L~ 1T b ()
the last term of (6.16) is cancelled. However, stability and convergence of the
adaptive system can not be guaranteed without further investigations of the
effects of the non-vanishing approximation error f(z) — ¢% (z)C*.
See [Wang, 1994], for the case when both f(z) and g(z) are approximated
by fuzzy systems.
|

6.4. Supervisory Fuzzy Control

This far, we have only been concerned with fuzzy systems for direct feedback
control. However, when the complexity of a control system increases, the need
for supervision and planning becomes increasingly important. A controller
incorporating supervisory and planning stages can be structured hierarchically
as illustrated in Figure 6.7.

Planning

F Y

Supervision

Reference h 4

Controller Process

v

» Output

Figure 6.7 Supervisory control structure.

Loop level controllers are often designed based on a physical model of the
process under control. When the process model is not fully known, we have
seen how it is sometimes possible to use fuzzy systems to approximate parts
of the model, and then use these approximate models in the control design.
When we move up in the hierarchy, heuristics and human decision making
becomes increasingly important. It is thus natural to describe the supervisory
functions of a controller using logic rules.

Analysis of the combination of supervisory logic and direct controller is a
complicated task, since the two hierarchical levels are hard to formulate in the
same framework. One approach is to model the hierarchical system using a
combination of differential equations and discrete events. Another approach,
as suggested in [Wang, 1995, is to formulate the supervisory control actions
using fuzzy IF-THEN rules.

ROIF 5, 15 A{) AND ... AND s, IS A®) THEN o) 1S B®)
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Since a fuzzy system can be recast into a nonlinear mapping

u, = f(s1,...,5n)

the combination of the supervisory controller and loop level controller can
be analyzed using standard mathematical tools for the differential equation
framework.

6.5. Summary

In this chapter, we have indicated how fuzzy systems can be used for control.
Although fuzzy logic has been used for a wide variety of control problems, we
have presented a general fuzzy controller structure that encompasses most of
the fuzzy controllers known to the authors of this report. It is important to
stress that a fuzzy controller contains a fuzzy system mapping, but in many
cases also dynamic components. To obtain good control performance, the
filters and the fuzzy system mapping are equally important.

Understanding alternative control approaches is often a matter of “bringing
it all back home”. Fuzzy control can be related to other methods by noting
that a fuzzy system mapping can in some cases be re-cast into a compact
mathematical formula. In large, this property forms the basis for what we
have presented in this chapter; fuzzy system models, model based fuzzy control
schemes, adaptive fuzzy controllers and supervisory fuzzy controllers.

The one-to-one relation between a fuzzy system and the nonlinear formula
is also the key to appreciating fuzzy control. Prior knowledge of control strate-
gies can be expressed in terms of linguistic IF-THEN rules. These rules can
be transformed into a nonlinear mapping for which some analysis and tuning
methods from exisiting nonlinear control theory applies. After the parameters
of the nonlinear formula have been tuned, the formula can be re-cast into a
fuzzy system rule base. These altered linguistic rules can then be inspected
by an expert.

For further material on fuzzy systems and neural networks for control, see
[Zbikowski et al., 1994], [Jang and Sun, 1995] and [Wang, 1994].
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