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1. Introduction

We consider stability of systems with hysteresis nonlinearities. A simple form
of such systems is described by the equations

#(t) = Az(t) + Bu(t), z(0) = o,

where ¢p(Y[o,¢,t, uo) denotes the hysteresis function. Its value at time t is
generally dependent on the time history of y, on t, and on the initial value
u(0) = up. Stability of systems on this form has been studied in early work
by Yakubovich, [12], [13], and by Barabanov and Yakubovich in [3]. We will
extend a result in [13] to systems including hysteresis nonlinearities, paramet-
ric uncertainty and finite dimensional unmodeled dynamics. We use Integral
Quadratic Constraints (IQC, see [9]) to obtain conditions that ensure expo-
nential convergence of the signals in the system to an equilibrium point.
Hysteresis is common in mechanical components such valves and trans-
mission mechanisms but also in electro mechanical components such as relays.
Several frequently appearing hysteresis nonlinearities can be modeled as multi-
valued functions. An example is given in Figure 1, which illustrates the non-
linear characteristic for a valve with backlash, see [1]. The multi-valued nature

u

Figure 1 The graph for a valve with backlash.

of the nonlinearity can lead to energy storage, which may cause oscillations
in the system. Limit cycles caused by hysteresis nonlinearities are sometimes
desirable, as for example in auto-tuning, see [2]. However, in many cases the
oscillations are undesirable and lead to unnecessary wear of the system com-
ponents and to poor control performance. There are classical methods such as
describing function analysis that can be used to predict limit cycles in systems
with hysteresis. The result in this paper can be used to obtain conditions that
guarantee that there cannot appear any oscillations in the system.



Notation and Preliminaries

I

-]
a(M)
RLMX™

RH7 ™

L3[0, o0)

L3[0, 00)

diag(, )

An n X n identity matrix. The size of I is not always stated
explicitly.

The Euclidean norm |z| = VeTe.
The largest singular value of a real or complex matrix M.

The space consisting of proper real rational matrix functions with
no poles on the imaginary axis.

The subspace of RL*™ consisting of functions with no poles in
the closed right half plane. The norm is the usual H-infinity norm
defined as || H ||oo = 5uP,,¢[0,00] 7(H)-

The Lebesgue space of R™ valued signals with norm defined by
= [ fugo)ae.

The vector space of functions f satisfying the condition that fr
defined as
£, telo,T]
fr =
0, t>T

is in L5*[0, 00) for all T > 0.

The unit step function defined as

o(t) = {1, t>0

0, t<O.

If A; : L3Y[0,00) — L3[0,00), for i = 1,2, then the operator

e

diag(A1, Ay) : LT[0, 00) — L71T™2[0, 00) is defined by the
input/output relation

) = (]

Y2 Ay (ua2)

where y;,u; € L5*[0,00) for ¢ = 1,2.

Ify : Rt — R™ is absolutely continuous, then the time derivative § := %y ex-
ists as a measurable function that is bounded almost everywhere. Furthermore,
an absolutely continuous function is the indefinite integral of its derivative, i.e.
y(t) = fot ydr + y(0), see [10]. It is easy to see that y is absolutely continuous
on every finite interval [0, 7] if and only if y,y € L3.[0, 00).
The following obvious fact will be used frequently in the paper.

Fact: Let H be a convolution operator with transfer function realization
H(s) = C(sI — A)"'B + D ¢ RHTZ*™, and let u(t) be an absolutely con-
tinuous input signal defined for ¢ > 0. Then the following two system rep-
resentations are equivalent in the sense that they give the same absolutely
continuous output signals y(t) for ¢t > 0.



1. The operator representation
y(t) = (Hu)(t) + Cettzob(t), (1)

where (Hu)(t) = (h * u)(t). Here h * u denotes convolution of u and
the kernel h(t) = Ce4tBo(t) + D§(t), where §(t) is the usual impulse

distribution.

2. The state space representation

2. Hysteresis Nonlinearities

The hysteresis functions used in this paper are defined as in [12], [13], and
[3]. The input-output relation of the hysteresis function is denoted wu(t) =
®(Yjz0,4) £ %o), Where we use the notation gy, 1) for the truncated signal

y(t), te[to,T].
Yot = ) t>T.

The initial values of the input and output are denoted yo = y(to) and ug =
u(to). The output of the hysteresis nonlinearity is thus dependent on the time
history of y, on t, and on the initial output. The hysteresis nonlinearity is static
if there is no time dependence, i.e. if the second argument of ¢y, can be omitted.
The hysteresis functions are assumed to satisfy the following conditions:

1. The initial output value ug € R belongs to a closed and bounded set
E(yo), which depends on the initial input value yo. This means that F
is a set-valued function.

2. For every absolutely continuous input y and initial condition ug € E(yo),
the output » is an absolutely continuous function with u(t) € E(y(t))
for all t > tg.

3. The semi-group condition
Soh(y[to,t] y b, uO) = Soh(y[tl,t] » t, Soh(y[to,tl]a tq, uO))'

4. The slope condition

dy ., d‘Ph(’Q’[au t],t:'ﬂfﬂ) dy dy s

—7\2 « J 2 < p(=
L a) = dt a < Pa) (3)
holds for almost all t > tg, where it is assumed that 0 < «a < 0 < 8 < o0,

5. The continuity condition: If y(¢) — Yoo, and @a(Y[zy ¢, t: Uo) — Uoo @S
t — 00, then e € E(Yoo) and @p(Yoo,t, Uoo) = U for all t > 2.



Figure 2 The nonlinear characteristic of a generalized play.

We note that all the conditions above hold for a static nonlinearity ¢ : R — R,
which satisfies the slope condition

o < P = elvs) B, 1 # v,
1~ Y2

where —00 < a < 0 < f < co. Our result is therefore applicable to systems
with such nonlinearities.

Multi-valued nonlinearities can ofted be used to define hysteresis functions.
An example is the generalized play with the graph in Figure 2, see [7]. The
generalized play is characterized by two continuous nondecreasing functions
I'z(y) and T'r(y), defined on the intervals (—o0,a;) and (a,, 00) respectively,
where I'r,(y) > T'r(y) for all y € (a,, a;). The signal (y(t), u(t)) moves along a
horizontal line until it reaches any of these two curves. If it hits for example '
then it proceeds along I'p until y(t) is decreasing. Then the motion continues
along a horizontal line again. The generalized play is static and it satisfies
property 1-5 under weak conditions on the functions I'z, and T'g, see [7].

DEFINITION 1
We say that a hysteresis nonlinearity is bounded if there exists x > 0 such
that |goh(y[t0't],t,u0)| < kly(t)| for all ¢ > to, uo € R and y. O

The generalized play in Figure 2 is unbounded since the hysteresis loop includes
a neighborhood of the origin. It is for this reason not a bounded operator on
Lz[o, OO)

The valve with the graph in Figure 1 defines an unbounded hysteresis
nonlinearity that satisfies property 1-5.

3. Problem Formulation

We consider stability of the system

z(t) = Az(t) + Bu(t), (0) = o, (4)
y(t) = Ca(t) + Du(t),
U(t) = A(:U[O,t]: t ’LL()) o g(t)a



where it is assumed that 4 ¢ R™*™, B € R™™,and C € R™"™ and D €
R™*™_ The matrix A is assumed to be Hurwitz and the operator A has the
diagonal structure

A = diag(pn, A1, Ag), (5)
where

1. on = diag(@h1,...,prr) consists of hysteresis nonlinearities. At least
one is unbounded and they are assumed to satisfy the slope condition in
(3) with —o0o < 0y <0 < B < 0.

2. A; is a real parametric uncertainty block with the diagonal structure
Ay = diag(61Lm,,- - 6 Im,,), where & € [-1,1], ¢ = 1,..., M are
constant.

3. A, is used to represent finite dimensional unmodeled dynamics with the

structure

Az = diag(Azl,... ,AzN), (6)
where we assume that Ay, € {A € RHE*™ : ||A|leo < 1} for i =
1,...,N. We can assume that A, has a state space realization Ay(s) =

Ca(sI — AA)"'Ba + Da, where the structure of Aa,Ba,Ca,Da is
consistent with the diagonal structure in (6). Note that Aa is Hur-
witz and of unknown size. It is no restriction to assume that A, is
initially at rest since the response of an initial condition can be con-
tained in the input signal g. If the initial state is zaq, then we let

g(t) = (0 (Caetatepag)T )T 6(t).

For consistency of the dimensions in the definition of A we need

M N
L-I-Zmi—{—Zni:m.
1=1 i=1

We finally assume that the direct term of the nominal system in (4) has the
structure

D = (0mxr. Do), where Dg€ Rmx(m-L) (7)

This ensures that there are no algebraic loop around the nonlinearities in A.

We will next give an equivalent representation for the system in (4). As-
sume that g(t) = (0 (C’AeAAthO)T )T 6(t). Then it follows that the system
representation in (4) is equivalent with the representation

e(t)] [4 O z(t) B 0 u(t) z(0) ] [ =o

[ﬂ'm(t)] B [0 AA:| LIA(t)] * [0 BA] [.1/3(1«‘)]7 [M(O)} B [on]’

y(t) = Calt) + Du(t),

en(Y1[0,4> > U10)
u(t) = A1ya(t) ) (8)
Caza(t) + Days(t)

where the partition y = (yf,yg,yg) is consistent with the block structure
in (5) and where ujg = u;(0) is the component of u that corresponds to the
hysteresis nonlinearity.

We assume that the system in (8) satisfies the following well-posedness
condition



DEFINITION 2—WELL-POSEDNESS
The system in (8) is well-posed if for every initial condition (zg, a0, Uo), there
exists a unique absolutely continuous solution ¢, za,u on every finite interval

[0,T7]. a

The hysteresis nonlinearities in ¢} are assumed to be unbounded as explained
above. This means that we cannot expect to prove stability in the sense that
finite energy input signals gives finite energy output signals or in terms of
convergence of the signals to the origin. In fact: There is in general no unique
stationary point for the system in (8) but rather a stationary set. This set may
contain an infinite number of points, as for example in a system containing
the generalized play in Figure 2. The stationary set S for the system in (8) is
defined as

S = {(zo, %0, u0) : such that (10) holds}, (9)

where (10) is the equation system

Yo = [CA™' B + Dluo, (10)
" on(Y10,1, U10)

Up = Aly?ﬂ 3 vt > O)
L A2(0)yao

1=l &) [ sl

zao)] L0 Aa 0 Ballysol

The partition yp = [yﬂ),y%,y%] is consistent with the block structure in
(5) and where u1p = u1(0) is the component of uy that corresponds to the
hysteresis nonlinearity. We note that S cannot be defined in advance since A4
and A, are not known.

The best we can hope for is to derive conditions for exponential convergence
of the state vector to the stationary set S.

DEFINITION 3—EXPONENTIAL STABILITY
The system in (8) is exponentially stable to S if for every initial condition
(zo, a0, Uo) there are constants ai,ay,f1,82 > 0 and (2w, Lo, ,Ue) € S
such that

5(8) — Fool < cre=4[50),

[4(2) = too| < ctae™*|ug],

for all t > 0, where = (27,21 )E. O

This definition of stability implies in particular that the signals are bounded
and that there cannot be any limit cycles.

4. Main Result

We derive conditions for stability of the system (8) in this section. Our means
for doing this is to give conditions for exponential decay to zero of the time



derivative of the state vector. This idea was first suggested by Yakubovich in
[13] where he applied it to a system with one hysteresis nonlinearity.

We need to find a description of the relationship between the derivative of
the input signal and the derivative of the output signal of the operator A in
(5). We use descriptions in terms of IQCs.

The notation Gpa is used to denote the set of all possible pairs of differ-
entiated input and output signals for the operator A. We define

Gpa = {(V, o):v =1, 0 =g, where u(t) = A(y[o,t],t,uo), Yy, € L;’;[O,oo)}.

We note that given the initial condition (yo,uo), then y and % are related
through a linear and time-varying operator DA.
The following definition of IQC for Gpa is similar to the definition in [9].

DEFINITION 4
We say that Gpa satisfies the IQC defined by the multiplier II = II* €

RL2mX2m if
[ L] mo ] 2o

for all (v,0) € Gpa N LT[0, 00) x LT[0, 00). Here 7 and ¥ denotes the Fourier
transforms of o and v, respectively. O

Next follows multiplier descriptions for the block components of A.
Hysteresis Nonlinearity: Let o5 be a hysteresis nonlinearity with

dy., _ don(¥[o,g,ts uo) dy dy.,
2IN2 o TERAIOER Y TR T o g2
a(dt) - dt t‘ﬂ(dt)’
almost everywhere for some —o00 < a < 0 < # < oo. Then Gp,, can be
described by the multiplier
. —20a B+«
I(jw) = [ ] - (11)
B+a -2
Parametric uncertainty: If v = §y, where § is an uncertain real-valued
parameter with § € [—1,1], then & = §y. This means that Gpsr satisfies the
IQC defined by the multiplier

X (jw) Y(J'w)]
Y(jw)r —-X(jw)l’

(o) = |
where X (jw) = X (jw)* > 0 and Y (jw) = —Y (jw)* for all w € R..
Unmodeled LTI Dynamics: If u = Ay, where A € {A € RHZ*™ :

|Alloc < 1}, then w = Ay. Hence, Gpa satisfies the IQC defined by the
multiplier



where z(jw) = z(jw) > 0 for all w € R.

Combination of Multipliers: We can now obtain a multiplier description
of Gpa by combining the above multiplier descriptions. We use the following
rule: Assume A has the block-diagonal structure A = diag(A1, Az), and that
Gpa; satisfies the IQC defined by II;, 4 = 1,2. Then Gpa satisfies the IQC
defined by II = daug(y1Il1,vy21ls), where 1,72 > 0, and where the operation
daug is defined as follows: If

I, I
Hi:|: & 2:|’ i=1,2,
Iy, ILs

where the block structures are consistent with the size of Ay and A,, respec-
tively, then

H11 0 ng 0
0 H21 0 H22
daug(H1 ) HZ) =
o, 0 [Tz O
0 I,| 0 Ty

This rule holds for any finite number of diagonal blocks in A,
We can now formulate our main result

THEOREM 1
Assume that

1. The system in (8) is well posed.
2. Gpa satisfies the IQC defined by II.

3. The inequality

I I

holds for all w € [0, 0], where G(s) = C(sI — A)™* + D.
Then the system in (8) is exponentially stable as defined in Definition 3.

(6] ) [969)] <o

Proof:  The proof is given in the Appendix. O

REMARK 1

Note that there is no guaranteed rate of exponential convergence. It is in gen-
eral dependent on the particular unmodeled dynamics part Ay of the system in
(4). Further constraints in terms of for example pole locations of A, is needed
to obtain a worst case convergence rate.

REMARK 2

The search for a suitable multiplier such that the third condition of Theorem
1 holds can be performed by use of convex optimization in terms linear matrix
inequalities. To do this we parametrize a finite dimensional convex set of mul-
tipliers. The corresponding frequency domain condition can be transformed to
an equivalent Linear Matrix Inequality. Numerical search for a suitable multi-
plier can then be done by use of efficient algorithms for solution of linear matrix
inequalities, see e.g. [5] and [4]. A suitable format for the parametrization of
the multipliers was proposed in for example, [6].



— "]

Figure 3 System with nominal plant G, unmodeled dynamics WA, and a hys-
teresis nonlinearity .

5. Example

We will in this section apply Theorem 1 to a simple example and discuss a
possible improvement of the theorem.

ExampLE 1
Consider the system in Figure 3 where the nominal plant and the weighting
function are

s+ 1 S

Gols) = Zo2s 1 1" Wis) = 1o

and where A € {A € RH,, : ||A||eo < 1}. The hysteresis nonlinearity s
represents a valve with the characteristic in Figure 1, see [1].

We can collect @5 and A in the block diagonal operator diag(ep, A). The-
orem 1 can then be applied with

G(s) = [—Go(S) Wéﬁ)] ’

~Go(s)
and
0 0 1
. 0 z(jw) O 0
II e ,
(Jw) 1 0 -2 0
0 0 0 -—z(jw)

where z(jw) > 0 for all w € R. It is easy to see that the third condition of the
theorem reduces to the existence of ¢ € RLy, with z(jw) > 0, Vw € R such
that

| W)

2(jw) ) > -1, VYw € [0,00].

Re Go(j) - 5 (1Galie)s(ie)
This can be shown to be equivalent with the condition that
Re Go(jw) (1 + W(jw)A(jw)) > -1, Vw € [0, o0] (12)
holds for all A € {A € RH, : [|A]joo < 1}, which of course is expected.

Figure 4 shows the Nyquist curve of Go with uncertainty circles that corre-
sponds to the unmodeled dynamics. We see that the stability criterion in (12)



Figure 4 The left plot shows the Nyquist curve for the nominal system Gy together
with uncertainty circles with radius |Go(jw)W(jw)|. The right diagram shows a
simulation of the system when A = —1. The solid line corresponds to y and the
dashed line is u.
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Figure 5 The left plot shows the Nyquist curve for Go(1 + WA) when A = —3.2
in solid line. The describing function for ¢y, represented with the dashed curve. The
right diagram shows a simulation of the system when A = —3.2. The solid line
corresponds to y and the dashed line is u.

is satisfied. The simulation in the same figure shows that the signals y and u
defined in Figure 3 converges. We used A = —1, ¢ =5, D = 0.2, and minimal
state space representations of Gq and W for the simulation.

The stability criterion in (12) is conservative. We can allow a larger uncer-
tainty block before the system becomes unstable. Simulations show that the
uncertainty used for generation of Figure 4 can be increased to A = —3.2 be-
fore the system becomes unstable. Figure 5 shows that there appears a stable
limit cycle with this A. The describing function for ¢ is also given in the
Figure.

The describing function method is an approximate method that is used to
predict limit cycles in nonlinear systems, see for example [11]. Intersection (or
as in our case close to intersection) of the describing function and the Nyquist
curve indicate that there may appear a limit cycle in the system. O

The example showed that our stability criterion in general is conservative.
This is to be expected since we use a minimum of information in the de-
scription of the hysteresis nonlinearity. An improvement would be to include
the information that the hysteresis nonlinearity circulates the origin counter

10



clockwise. This can be described by the unbounded multiplier

0 L
. Jw
O(jw) = [_ 1 ] ;
Jw
This multiplier would not contribute to the analysis in our example, since it
only gives negative phase delay. However, the multiplier is useful in general.
It has been used for analysis of systems with a single hysteresis nonlinearity

in [3].

6. Concluding Remarks

There are several possible ways to improve the result in this paper. The IQC
description of the hysteresis nonlinearity is generally crude since we only use
the sector condition for the slopes of the hysteresis nonlinearity. One extension
would be to use the information on the circulation of the hysteresis loop as
was discussed in Section 5, see also [3]. Another possible extension would be
to allow more general dynamic uncertainty blocks. It may also be possible to
consider hysteresis nonlinearities that are discontinuous in the sense that the
slope may be infinitely steep. This was treated in [13] and [3].

Appendix: Proof of Theorem 1
The next lemma will be used in the proof. A similar lemma was used in [8].

LEMmmMa 1
Consider the system

¢ =(A+T7BA(t)C)z, z(0)= xo. (13)
where A € R™*" is Hurwitz and where A : Rt — R™*™ is measurable with

A(t) € Q, Vt > 0 for some bounded set € R™*™.
Assume that there exists a positive constant ¢ such that

[ lemitar < clao? (14)
t
for every 7 € [0,1] such that the solution to (13) is in L}[0, 0o) for arbitrary

initial condition (¢,z(t)) € Rt x R™. Then the system in (13) is exponentially
stable to the origin for all 7 € [0, 1].

Proof: Assume that we have exponential stability for some 15 € [0, 1]. Then
clearly ¢ € L}[0, 00) and we can define the Lyapunov function candidate

V(t,z) = T Po(t)o = /tw o () Pdr. (15)

It is clear that Py(t) is symmetric and differentiable. The next two properties
of Py show that (15) defines a Lyapunov function:

11



1. Py satisfies the Lyapunov equation
(A+ 'T()BA(t)C)TPO(t) + Po(t)(A+ 10 BA(t)C) + Po(t) < -1,

for all t > 0. This follows from differentiation of (15).

2. Py is bounded from below and above. In other words there exist constants
0 < ¢1 < e9 < o0 such that

Cll S Po(t) S CZI, Vit Z 0.

From (14) it follows that we can take ¢z = c¢. For the lower bound we
notice that the boundedness of ) implies that there is a constant ¢; > 0
such that clgz|m(t)|2 > —|z(t)|?. Hence

[ okar 2 ala)f - fim () = cle(o),

since ¢ decays exponentially to zero.

We can in a standard way use the Lyapunov function in (15) to show that
|z(t)| < aePt|zo| for all t > 0, where a® = c3/c1 and 8 = 1/(2¢,).
The boundedness of @ and Py implies that there exists § > 0 such that

SPo(1)BA)C| < 5, Ve 0.

If we consider the system in (13) for a 7 € [0, 1] such that |7 — 7o| < §, then
we obtain

%V(t, ) =227 Py(t)(A + TBA(t)C)z + 2T Py(t)z

=227 Py(t)(A + 1oBA(t)C)z + =T Po(t)z +

1
2(r — 7o)zt Po(t) BA(t)Cz < —§|m|2.

Hence the system is exponentially stable for all 7 € [0, 1] such that |7 — 79| < §.

The system is exponentially stable when 7 = 0. Iterative application of the
above argument in steps A7 < § shows that the system is exponentially stable
for all T € [0, 1]. O

Now consider the system in (8). The sub-multiplicativity of ¢, implies that
we can regard any to > 0 as the initial time. We will next differentiate the
signals in (8). Let x = &, xao = #a, 0 = § and ( = %. Then we obtain

B P 1 U K PP | A o S oA £
o':C_’XJrDC,
(= A?rrz , (16)
| Caxa + Daos

where the decomposition o = (o7, of, 0T is consistent with the block struc-

ture in (5), and where (v1,01) € Gpy,,-

12



The idea is to use Lemma 1 to show exponential decay of the state vector
(xT X£ )T in (16) to zero. To do this we will reformulate the system equations
in (16). We first note that a pair (v1, 01) € Gp,,, can be represented as vy (t) =
pa(t)oi(t), where py = diag(pai,...,p1r) is measurable on R1 such that
p11(t) € [ar, Bi] for all t > 0.

If we use this representation and also scale the right hand side of the last
equation in (16) with a parameter 7 € [0, 1], then we obtain

el = ([0 Lo mlrof) [

where the initial condition is as in (16), and where C and A(t) are defined as

A(t) = [Tg()f_&;r?j ﬂ , C= [i DC(’;AOO] :

and where

T(t) = diag(u(t), A1, Da),
050:(0 O Ci)T:
E=(0 0 I).

The partitions of Cag and E are consistent with the block structure of A in
(6). We note that (I — DY)~! is a constant and bounded matrix. This follows
from the structure of D defined in (7) and the well-posedness assumption. For
7 = 1 this system is equivalent with (16) and for 7 = 0 it is exponentially
stable since A and Ap are Hurwitz. If we show that condition (14) in Lemma
1 holds, then we can infer that (16) is exponentially stable. In order to do this
we rewrite (16) in an equivalent operator form. We scale with 7 also in this
case.

o = G¢ + Cetltt)y(10)0(t — to), (17)
0

=7A
C T 0’+ CAeAA(t—to)XA(tO)e(t_tO) )

where A is the linear time-varying operator

—~

A= diag(ul, Al, Az),
which satisfies the IQC defined by II since Gpa do so.

The next step is to use a similar argument as in [9] to obtain the de-
sired bound in (14). We use the notation f(t) = Ce4(t=%)x(t,)0(t — to)
and g(t) = (0 (Caedalt=to)ya(0)0(t — to))T )T. Furthermore, the quadratic
form Q(o,v) is defined as

o= [ [ga] 0 sy

Let v = Ac. Then for every T € [0,1] such that the solution ({, o) to (17) is
in L3*[tg, 00) x LT*(to, 00) we obtain

0 < Q(o,mv) = Q(Grv,7v) + Q(o,7v) — Q(GTv,TV)
< —ellrell* + 2(call £l + ezllgll) - [Irv]] + esll £II* + eallg]?,
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where we used that o = G(7v + g) + f. The first inequality follows since TA
satisfies the IQC defined by II for every 7 € [0,1]. This is a consequence of
the sector condition on p;. The first term on the right hand side of the last
inequality is due to the third condition of the theorem statement. The other
terms give a bound on |Q (o, 7v) — Q(GTv,Tv)|. If ||IL;;|| = sup, &(IL;;(jw))
denote the norms of the blocks in the partitioning

II II
I [ 11 12]
I3, I

of IT into m X m blocks, then the constants can be taken as

c1 = | Hu|| - |G| + [Tzl cg = 2|15
¢z = ||| - |G]* + M2 - |G, ¢y = 2||II1o|| - |G|

We obtain the bound

1 1
|lrv|| < '6—(01 +1/2¢ + ecs)|| fIl + g(cz +4/2¢5 + eca)llgll,

which implies that there exists 7o > 0 such that

IKIE = llmv + gll < xo(lI£ll + llglD),
llell = 1GC+ FIF< voCll 1l + [lgll)-

Next we notice that ||f|| < 71|x(0)| and ||g]| < 72|xa(to)|, where

If we let

X = 1A: 7B: )
Xa 0 AA 0 BA

then the above bounds on ||o|| and ||¢]| can be used to derive the bound

IR = (s — ) B [‘2] 4 A1)

< 2||(sI — A)7* Bllyo max(y1, 72)(Ix(to)| + |xa(to)]) + 713X (t0)]
< (2V2||(sT — A)7' Bllyo max(y1,72) + 73)[X(to)| = ¢*/*|X(to)],

where we used

Hence

[ 17t < Rt

to
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for every pair (o, X(t0)), where t, > 0.
This is the desired inequality and we infer from Lemma 1 that there are
constants @,8 > 0 such that |x(t)] < ae Px(0)| for all t > 0. Let =

(27 2% )T. The exponential decay of ¥ implies that the following limit exists

Too = lim 2(t) = 2o + / x(T)dr.
0

t— oo

From (16) we infer that there exists k > 0 such that || < k|x|. Hence, the
existence of the limit uy, = limy o, u(t) follows as above. The continuity
property for @y, (property 5 in Section 2) implies that (£oo, £Aco, Uso ) is in the
stationary set §. Furthermore,

3(t) — Fuo| = |/ r)dr| < —e Btz 1)|50|.

The corresponding bound for the exponential decay of u is obtained similarly.
This concludes the proof.
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