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The Predictive First Order Hold Circuit

Bo Bernhardsson

Department of Automatic Control
Lund Institute of Technology
Box 118, S-221 00 Lund, Sweden

Abstract.

In this paper the ’predictive first order hold’ circuit is introduced and analyzed.

The main advantage with this hold circuit is that it gives a continuous control signal.
Conditions for causality and a pole placement procedure are presented. Formulas for
sampling a LQG-problem are given. This is used to analyze an example where it is rigorously
shown that the predictive first order hold can give superior ’performance’ compared to the

best ZoH control law.

Keywords:

Introduction

Digital-to-analog conversion consists of transforming
a sequence of digital information into an equivalent
analog signal. The choice of hold circuit in computer
controlled systems has been discussed for a long time
and traditionally the zero order hold circuit, giving
a piecewise constant signal during the sampling
interval is chosen, see e.g. [3],[4],(5]. In this paper we
will discuss the ’predictive first order hold circuit’,
(PFoH). This hold circuit is usually rejected being
physically non-realizable, see e.g. [3],[4]. This is true
if the problem is to reconstruct a general time signal.
But when the problem at hand is to perform D/A-
conversion of a control signal satisfying a model like

R(q)u(k) = —S(q)u(k) + T(q)uc(k)

the total control system will be physically realizable
whenever

degR > degS+1, and degR >degT +1
This trivial observation seems surprisingly enough to
have been overlooked for a long time.

The main advantage with chosing the PFoH is
the smooth control signal. Generally there will be
some kind of trade-off between how much roll-off the
hold circuit is to introduce and how far in the future
one must predict the input signal. This trade-off has
to the author’s knowledge not been analyzed yet. We
will in this paper show by analysis and examples that
the PFoH is superior to both ZoH and the traditional
first order hold, FoH, if the smoothness of the control
signal is important.

It is interesting to note that some renewed
interest in the choice of hold circuits has been
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noticed in the literature, the idea being that the
zeros of the sampled system can, as presented in
[6], be positioned arbitrarily. This will e.g. reduce
the problems some adaptive algorithms have in the
case of non-minimum phase systems. The practical
implications has been small since these methods
generally give violent control signals. This paper has
a different motivation and follows different lines.

The predictive first order hold cir-
cuit

The traditional first order hold circuit as presented
in e.g. [1] or [3] produces a signal satisfying

u(kh + 8) = u(kh) + 7 (u(kh) — u(kh - b)) (1)

We will now introduce the predictive first order
hold. The difference will be that the derivative is
approximated with a forward difference instead of
a backward difference:

u(kh + 8) = u(kh) + %(u(kh +h)—u(kh)) (2)

Figure 1. shows a comparison of the impulse re-
sponses for the different hold circuits.

Note that (2) requires the knowledge of u(kh +
h) at time t = kh. This will give new, slightly
more restrictive, degree conditions on the control
law for causality as we will see in the next section.
Although having this drawback we will show that
there are cases where (2) gives superior performance
compared to the more often used zero order hold
or the traditional first order hold circuit (1). The
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Figure 1. Impulsc responses for a) ZoH b)
FoH c) PFoH

main reason for this is that (2) is the only one
guaranteed to give a continuous control signal. The
advantage of this is obvious: decreased actuator wear,
less excitation of the high frequency part of the
system, less problem with high frequency unmodeled
dynamics, see [9] for a discussion of this problem in
an adaptive context, etc.

If u(t) is a continuous time, twice differentiable
signal it is easy to see that

max |u(t) — uron(t)| < h” max [u"(2)|
) t

(3)

2
max lu(t) — vpron(t)| < hT max [u"(t)|
t

Predictive FoH sampling of a system

Assume that the analogue hold circuit is so con-
structed so that the analogue signal satisfies (2). The
control signal can then be represented by the sam-
pled signal {u(kh), k¥ = —1,0,1,...}. Assume that
the system to be controlled is described by

& = Az + Bu

4
y=Cz+ Du ( )
The relationship between the system variables at the
sampling instances can then be determined as in [1].
More direct is to write (2) and (4) as

z A B o T
d
= =lo o 1| |« (5)
° 0o 0 O i
from which directly follows that
Tkh+h A B O Zkn
pnin | =ezp(| 0 0 I |Ah) Ukk
'l'tkh.+h 0 0 O M:tbhl‘_'!.b.

(6)
If the first row of ezp{-} is denoted [ ® ' I, ]

we hence have

z(kh+h) = ®z(kh)+Tu(kh)+T,

u(kh + h) — u(kh)
A
(M

The same idea directly generalizes to an nth order
hold circuit.

An alternative formula giving a description in
the form y(k) = H(q)u(k) for the predictive first
order hold is

g =z G0y )

Because of (8) a standard table for ZoH-sampling can
be used.

Degree conditions for causality

To get a causal control law we must be able to
calculate u(khk + h) at time ¢ = kh. If the control
law is described by

R(q)u = —S(q)y + T(q)u. (9)

this means that the degree conditions for causality
of the PFoH together with (9) is

degR > degS +1 (10)
degR > degT + 1

This immediately leads to the following modified

theorem for pole-placement design using PFoH.

THEOREM 1

Assume that y(k) = %ﬁ%u(k) is the predictive FoH
sampled version of the system obtained as in (6)
or (8). Then there exists a control law satisfying
the casuality conditions (10) giving the closed loop

system
B,T Bm

A,R+B,5 Am
if
degA,, — degB,, > degA, — degB, +1

degA, > 2degA, — degAm — degB;
(11)
where B: contain the zeros and A, the poles that
are to be cancelled.

Proof: Analogous to [1], using (10). a
Remark. If the reference signal u.(k) is known d

steps ahead the first equation in (11) can be changed
to

degA,, — degBm > degAd, —degB, +1—d  (12)

Implementation

The control law (2) can easily be implemented in
analogue hardware using operational amplifiers as in
Figure 2. Note that the hardware does not have to
be changed when the sampling interval is changed.
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Figure 2. Implementation of PFoH

Analysis of the PFoH and Examples

The main advantage of the PFoH is the less violent
control signals. We will now analyze this more
thoroughly. Let the impulse response for the PFol
be A(t), see Fig. 1c, then

(>4

upro(t)= Y h(t—kh)u(kh)  (13)
and
Urrpon(iv) = H(iw)y Y. Uliv+2xik/h) (14)

One can now reason as follows: The important part
of the control spectrum is the part up to, say, 10
times the bandwidth of the closed loop system. Since
the sampling rate w, is chosen accordingly, e.g. 10-30
times the closed loop system bandwidth, it follows
that the important part of the input spectrum is
contained in the ’base-band’ [~ /k,x/h]. Above this
we just want to filter out the high frequency part of
the input. A traditional ZoH or FoH will do this and
it will introduce a filtering with roll of 1. A PFoH
however gives roll off 2. See figure 3 for a comparison
of the low pass filtering introduced by the different
hold circuits.

g \/\M £

Freq Freq
PFrq
Figure 3. Low pass filtering introduced by

different hold circuits, a) ZoH b) FoH c) PFoH

As a matter of fact the PFoH is a standard
choice of filtering well known in the signal processing
literature under the name of ’Bartlett’ window, see

e.g. [2].
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Figure 4. Sampling of sinusoidal, a) ZoH b)
FoH c) PFoH

ExaMPLE 1—PFoH of Sinusoidal Signal
Figure 4. shows the result of sampling and recon-
structing sin(t) using ZoH, FoH and PFoH for differ-
ent sampling rates.

The maximum error using the differents schemes
can be estimated using (3) by

2
ezoH < N

4x®
eroH < F
2
T
eproH < W
where N is the number of samples per period. Some
typical values are given in Table 1

Samples per period Maximum Error

ZoH FoH PFoH
5 1.2566 1.5791 0.1974
10 0.6283 0.3948 0.0493
20 0.3142 0.0987 0.0123
50 0.1257 0.0158 0.0020
100 0.0628 0.0039 0.0005
200 0.0314 0.0010 0.00012
500 0.0126 2e-4 2e-5
Table 1. Errors when sampling and recon-

structing a sine curve using different sampling
rates

The standard conclusion, see [1], is that FoH is
significantly better than ZoH only if N is larger than
20. From Table 1 we see that PFoH is superior to
ZoH and FoH for all sampling rates.



ExAMPLE 2—The motor
Assume that the process to be controlled is the so-
called 'professor motor’

1

=D

Predictive first order hold sampling gives

H(a) = 759 = [a =]

e h B e .
_(Q-l)(qva)((l +h(5 - 1))g" +((1 - a)

(h/2-2) + h(1 +a))g +1 - a— ah(y + 1)

Note that H will have relative degree 0. This is
because u(kh + k) directly influences z(kh + h),
see (7).

Assume we want a closed loop system charac-
terized by the pulse-transfer operator

Ba(q)
a(g®> + prq + p2)

14p1+p2
Bd(l)

Hm(q) =

so that we do not cancel any zeros, e.g. Bt =1, We
know from theorem 1 that we need an observer of
degree degA, > 1. The controller will be

R(q) = ¢ + 0.2200¢ + 0.0423
S(g) =1.787¢ — 0.8921
T(q) = 0.895¢

(15)

where we have used the same numerical values as in
example 10.5 in [1], that is w = 1,{ = 0.7,h = 0.5
and deadbeat observer. Figure 5 shows the step
response using (15) and the ZoH-controller in [1].
Notice the much smoother control signal using PFoH.
Also notice the small delay of about half a sampling
interval.

0s

0 2 4 6 8 10
Figure 5. Step responses for motor example

a) ZoH b) PFoH

ExaMPLE 3—LQG, high frequency punishment of u
This example will show that there are design prob-
lems where the best PFoH control law satisfying the
more restrictive degree conditions (10) are better

than the best ZoH control law satisfying the usual
degree conditions,

degR > degS and degR > degT (16)

The problem we will analyze is an integrator with an
initial value disturbance
z=u
z(0) = zo
Let the criteria be a weighted LQG-criteria

)dw

/ (¥ (iw)* + | (iw)U (i) (17)

where H(s) = 5/(1 + sT') is a high pass filter giving
a larger penalty on high frequencies in the control
signal. We will show that

min J > min J
uw€Uz,n vwEUppon

where
Ugzorr = {u | u is piecewise constant & satisf. (16)}

Upporr = {u | u is piecewise linear & satisf. (10)}

To do this we will generalize the formulas for sam-
pling of a continuous time quadratic loss function to
PFoH.

Sampling of a quadratic loss function when u
is PFoH

THEOREM 2
Assuming PFoH as in (2), the loss function

o) (i)«

=) (e

=:Qc
+ zT(Nh)Qoz(Nh)
can be rewritten as
vor (2(kR) YT z(kh)
Q1a Qud]
J= kh kh
203( CCON I ey I CO
Auy ——— | Au
=:Qq
+z(NR)T Qoz(Nh)

(18)
Where Aup = (u(kh + k) — u(kh))/k and

Q.,=/ T (5)Q.¥(s)dr

&(r) T(r) Tu(r) ]
0 I I

¥(r) = [

Proof: An elegant proofis obtained by noticing that
the system equations can be written as (5). This
directly gives
z(t) z(kh)
[ ] u(kh)
i(t)

A'u,k
(19)

A B o
=exp(| 0 0 I|(t-Fkh))
0 0 O



from which the theorems follows by denoting the first
two rows with ¥. O

Remark. The integrals in (18) can easily be nu-
merically calculated using a standard ’doubling’-
technique, see e.g. [8].

Continuing the LQG-problem, we will consider
the problem (17) in the time domain

(0 o 1
i [0 —1/T] =t [—1/T]“

% (20)
J= / 23 (1) + (u(t) + z2(t))* dt

The ZoH-problem can be solved transforming
the continuous time loss function to discrete time,
see e.g. [1]. For the PFoH problem we instead use
Theorem 2 which gives

() (30 () (5)
Ukhih “lo 1 Ukh h -

w  (z(kR)YT z(kh)
min Z( [ u(kh) Qa | u(kh)
N Ay Aug

(21)

This can be solved as a standard LQG-problem,

considering Aux as a new input on a system with
T

states ( z(kh) u(kh) ] . The resulting control law

can be written

Auy = f(z(kh),u(kh),...) =
u(kh + b) = f(z(kh),u(kh),...)

This shows that the control law has the required
delay needed for causality.

Direct solution of the steady state Riccati equa-
tion in the two cases gives

Jzor = Szon(T)zs

Jpror = Sprou(T)zy

where Szou(T) and Spror(T) are shown in Figure 6.
From this we see that for large penalties on high
frequent control signals, 1/T > 6, the PFoH is better
than the best ZoH.

o s 10 15 20 25 30 35 40 45 50
T

Figure 8. Loss function for ZoH (solid) and

PFoH (dashed)

Conclusions

The predictive first order hold circuit has been
introduced and investigated. The causality problem
is taken care of by demanding there to be at least
one delay in the control law. This leads to some
slight change in the pole-placement procedure. It is
believed that the idea of using a hold-circuit giving
a continuous control signal can often lead to better
performance. A more low frequent control signal is
generally to be preferred before a high frequent if
they are able to do the same job. This has been
shown rigorously to be true in an example. Another
explanation was that the choice of PFoH is equivalent
to using a Bartlett window as postsampling filter,
giving roll of two in the continuous time input
spectrum at high frequencies.

Normally limitations in the actuators of the
physical process will determine the shaping of the
high-frequency part of the input spectrum. It is
better engineering practice to let this shaping be
introduced in a controlled way by choosing a better
hold circuit.

The implication for choice of sampling interval
is not yet clear but is beeing studied.
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