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ABSTRACT 

The comprehensive analysis of tumor tissue heterogeneity is crucial for determining 

specific disease states and establishing suitable treatment regimes. Here, we analyze tumor 

tissue sections from ten patients diagnosed with HER2+ breast cancer. We obtain and 

analyze multidimensional, genome-wide transcriptomics data to resolve spatial immune 

cell distribution and identity within the tissue sections. Furthermore, we determine the 

extent of immune cell infiltration in different regions of the tumor tissue, including invasive 

cancer regions. We combine cross-sectioning and computational alignment to build three-

dimensional images of the transcriptional landscape of the tumor and its 

microenvironment. The three-dimensional data clearly demonstrates the heterogeneous 

nature of tumor-immune interactions and reveal interpatient differences in immune cell 
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infiltration patterns. Our study shows the potential for an improved stratification and 

description of the tumor-immune interplay, which is likely to be essential in treatment 

decisions.   

INTRODUCTION 

The recent rise in global life expectancy is accompanied by increasing prevalence of age-

related diseases such as cancer1,2. Our current understanding of cancer as well as the 

efficacy of therapeutic interventions is largely driven by information gained from cancer 

tissue. A particularly important aspect is related to the identities and distribution of immune 

cells within tumor tissue3–5. Current standard analyses mainly rely on morphology-based 

examination of individual tissue sections by pathologists combined with additional insight 

from immunohistochemistry using antibodies towards known marker proteins6. However, 

a discrepancy between clinical IHC-based and transcriptomics-based analyses has been 

noted in the classification of HER2+ breast cancers7. A number of models for immune 

response in cancer have been proposed and it is currently under debate whether a high level 

of lymphocyte infiltration in Basal-like and HER2+ breast cancers is connected to better 

prognosis in early stage cancers8–10. Two important types of lymphocytes associated with 

breast cancer are cytotoxic T-cells (CD8+) and helper T-cells (CD4+). Both of these cell-

types are present at low amounts in non-malignant breast tissue but show large variation in 

malignant breast cancer tissue11. The infiltrating lymphocytes can be present in the stroma 

adjacent to the tumor area or directly infiltrate the tumor area and interact with the cancer 

cells, i.e. tumor infiltrating T-cells. The presence of tumor infiltrating CD8+ T-cells 

facilitates anti-tumor immunity and is thus correlated with better overall patient survival12–

14. In contrast, the presence of intra-tumor CD4+ T-cells is negatively related to patient

outcome15. The dense concentration of tumor-associated macrophages has also been found

to correlate with negative overall survival and the occurrence of metastases16–18. Several

additional types of immune cells have been detected in breast cancer tissue, but their exact

functions in cancer development remain unknown19. The composition and function of

tumor infiltrating immune cells can directly influence the efficacy of certain therapeutic

approaches. Recently, cancer immunotherapy, in which immune cells are stimulated to
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target the tumor, has begun to show promising results20,21. In such cases, comprehensive 

cancer-immune cell interaction analyses prior to specific activation might prove pivotal to 

therapeutic success.  

The standard methods for describing the immune cell composition of tumor tissue depend 

on predetermined histological and molecular immune markers and are limited regarding 

multiplexing applications. They also heavily rely on microscopic assessments by trained 

pathologists, but traditionally lack three-dimensional resolution. To overcome these 

obstacles, we designed a workflow that leverages computational analysis of Spatial 

Transcriptomics data for the functional and immune cell type analysis of HER2+ breast 

cancer tissue samples. The computational approaches used in previous reports22,23, which 

are solely based on gene expression values, are more suitable for tissue samples with 

clearly defined molecular structures. However, tumor samples are usually highly complex 

in terms of cell mixture and distribution; therefore, other approaches are needed to reliably 

describe the molecular properties of such samples. In the presented study, we use an 

approach called Latent Dirchlet Allocation (LDA)24. The method was originally developed 

to describe the distribution of topics within a text. Any given sample has a specific 

proportion of each topic, allowing each sample to contain several topics simultaneously. 

Recently, this method has been successfully applied to biological experiments, for 

example, in the analysis of RNA-seq data25,26. Since each spatial spot contains a mixture 

of several different cell-types, this method is well suited for Spatial Transcriptomics22 data 

and can be exploited to identify underlying gene expression structures. Spatial spots with 

similar proportions of the topics (herein called gene expression topics) are considered to 

contain similar cell mixtures and are pooled to gain more depth in the data. Here, we show 

that this approach can be used to classify tissue regions based on function rather than 

morphology. By combining Spatial Transcriptomics with robust computational tools, we 

can now present immune cell distribution with richer spatial information. The further 

integration of cross-sectioning with computational alignment enables us to generate 3D-

images of global expression patterns and immune score distributions throughout the 

samples. 
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RESULTS 

 

Three tissue sections were collected from each of the ten patients (A-J) diagnosed with 

HER2+ breast cancer included in this study (Supplementary Table 1). The collected 

sections were then subjected to Spatial Transcriptomics22,23,27,28 using circular spatial spots 

with a diameter of 100µm. Each tumor was carefully examined by a trained pathologist, 

who annotated the different morphological regions in each tissue section. These 

annotations either served as a reference for subsequent unsupervised analysis or were used 

directly to pick spatial spots from regions of interest. During unsupervised analysis, we 

established biological functions and determined immune cell composition at the 

transcriptional level by using LDA to identify underlying structures of gene expression 

patterns. The proportions of gene expression topics were further used for hierarchical 

clustering, the object of which was to organize spatial spots with similar gene expression 

patterns into distinct clusters. Expression data from spatial spots within each cluster were 

further collapsed to increase gene detection. Next, pathway analysis29 was carried out 

between clusters in order to detect spatial correlation between different regions across the 

tissue. We then applied xCell30, a method for describing immune cell composition, to gain 

spatial information about the complex tumor-immune cell landscape by determining the 

abundance of sixteen different immune cell-types. The method overview is presented in 

Fig. 1a. 

 

The morphological examination of tumor sections revealed inter- and intra-patient tissue 

heterogeneity. Tumors from all ten patients had invasive components, but only tumors from 

four patients (A, G, H and J) contained regions annotated as ductal carcinoma in situ 

(DCIS). Tumors from six of the patients (E, F, G, H, I and J) contained regions with a high 

abundance of immune cells. Other major tissue types identified included fat tissue, fibrous 

tissue and normal glands (Fig. 1b, Supplementary Fig. 1a). To study gene expression 

differences and similarities between tumors, we generated triplicate transcriptomics data 

sets (in silico bulk) for each patient. Dimensionality reduction by Principal Component 
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Analysis (PCA) revealed several separate groups of patients, indicating large interpatient 

variation (Supplementary Fig. 1b). 

 

To further analyze the Spatial Transcriptomics data, we applied LDA to each patient 

sample. A number of gene expression topics, each described by a certain set of genes, was 

used in the analysis (Supplementary Table 2). The gene expression sampling was based on 

the circular spatial spots. We visualized the data in a way that is easy for the human eye to 

interpret by generating interpolated images of the spatial spot positions, values of gene 

expression topic proportions and binary images of tissue morphology (Supplementary Fig. 

2). We projected the interpolated values across the tissue sections to display the spatial 

distribution of gene expression topics. A comparison with the pathologists’ annotations 

(Fig. 1b, Supplementary Fig. 1a) revealed that certain gene expression topics clearly 

overlapped with regions described to be stromal, cancer, immune and gland-enriched (Fig. 

1c, Supplementary Fig. 3). This finding demonstrates that applying LDA to Spatial 

Transcriptomics data can provide valuable information about the tumor microenvironment. 

 

Next, we clustered spatial spots based on the proportions of gene expression topics (Fig. 

2a, Supplementary Fig. 4). To validate the clustering, we also visualized the proportions of 

gene expression topics in t-SNE space (Fig. 2b, Supplementary Fig. 5) and overlaid them 

with the tissue morphology (Fig. 2c, Supplementary Fig. 6a). The separation of spatial 

spots in t-SNE space corresponded well to the gene expression topic clusters, while the 

spatial cluster distribution over the tumor section closely resembled the manual annotation. 

Taken together, these results demonstrate that clustering spatial spots based on gene 

expression topic proportions is a reliable approach for characterizing the tumor 

microenvironment in samples. To analyze variation across the triplicate data sets of each 

patient, we calculated the proportions of spatial spots assigned to each cluster in each 

triplicate. Most clusters showed similar distributions across the three data sets with the 

small variations between sections most likely representing molecular variation in different 

parts of the tumor (Supplementary Fig. 6b). Interestingly, the clustering revealed more 

details about the tissue than the manual annotation. As an example, a large region annotated 

as ductal carcinoma in situ (DCIS) in patient H also contained spatial spots that were 
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assigned to cluster H2, which corresponds to a region dense in invasive tumor cells, 

suggesting that this region has morphological properties of DCIS but molecular properties 

of invasive cancer (Fig. 2d). To further validate our clustering approach, we carried out 

differential gene expression analysis between each hierarchical cluster (Fig. 2a-c, 

Supplementary Fig. 4-6) and the rest of the tissue. A pathway analysis29 was then 

performed on the differentially expressed genes (Supplementary Table 3) to identify 

biological functions for various regions of the tumor sample (Supplementary Table 4). In 

most of the patients, we detected clusters in which the predominant pathways were clearly 

related to immune response. These clusters mainly overlapped with regions annotated as 

immune cells, tumor stroma/fibrous tissue and invasive cancer (Fig. 2e).  

 

To further explore the data, we calculated spatial immune scores and determined the 

immune cell composition within each sample. The previously derived clusters served as 

the input for immune cell analysis with xCell30, which requires decent read depth regarding 

gene detection and counts to work properly. To obtain additional coverage and to overcome 

the exclusion of genes with low expression, we collapsed spatial spots within each cluster. 

This approach enabled us to detect almost six times more unique genes per sample 

(Supplementary Fig. 6c). The immune cell analysis revealed a high total immune score (the 

sum of several cell-types) for the annotated immune cell areas in a majority of the samples 

(Fig. 3a, Supplementary Fig. 7). Additionally, in several samples the total immune score 

overlapped well with the pathway analysis results (Fig. 2e). This approach also provided 

the immune cell composition for each of the clusters (Fig. 3b, Supplementary Fig. 8). For 

most samples, the highest values were detected in the regions annotated as immune cell 

dense. However, the scores for certain immune cell-types were relatively high even in other 

regions. For example, in patient H, Th2 (T helper cell 2), class-switched memory B-cells 

and memory B-cells were detected in the DCIS, tumor stroma, and all stroma regions, 

respectively (Fig. 3c). The predominant immune cell type identified in DCIS clusters from 

four patients (patient A: A13, patient G: G11, patient H: H8, patient J: J1 and J8) was Th2, 

a finding that suggests a homogeneous immune cell pattern within DCIS tissue (Fig. 3b, 

Supplementary Fig. 8).  
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Subsequent analysis focused on the immune cell composition of tumor regions annotated 

as invasive cancer across all ten patients. We selected spatial spots from the invasive 

regions of all tumor sections. A dimensionality reduction by PCA revealed four major 

groups, with patients A and F clearly separated from each other as well as the other patients. 

Patients E and H formed their own group (Fig. 4a), a finding that was also noted in the 

“bulk” analysis (Supplementary Fig. 1b). Furthermore, we used invasive spatial spots as 

the input for the immune cell analysis. The patient samples could be categorized into four 

groups (i-iv) based on immune cell composition (Fig. 4b). As was observed in the PCA, 

patients E and H also clustered together in this analysis, which indicates that the tumors of 

these two patients share a tumor infiltrating immune cell composition. The invasive cancer 

regions in samples from these two patients showed substantial immune cell diversity, 

containing mostly Natural killer cells (NKT), CD8+ Tem (effector memory T-cells), Th1 

cells (T helper cell 1) and CD4+ naïve T-cells with some presence of Memory B-cells and 

CD4+ Tcm (central memory T-cells). Th1 cells are derived from activated CD4+ naïve T-

cells, and can further activate CD8+ T-cells31. The presence of these types of tumor 

infiltrating CD8+ T-cells is correlated with better overall survival12–14. Moreover, NKTs 

have been shown to be highly cytotoxic to cancer cells and likely contributed to previously 

observed reductions in tumor cells32,33. The tumor sample from Patient J almost exclusively 

contained Th2 cells. As these cells are mainly responsible for recruiting and activating 

other immune cells, it is surprising that only this type of immune cell was detected. This 

finding might reflect failure to activate or attract other immune cell-types, which could 

negatively influence the overall survival in patients with similar immune cell composition. 

Tumor samples from three patients, B, F and I, showed mainly CD8+ Tcm (central memory 

T-cells) with some presence of Th1 cells. The immune cell pattern in these patients is 

similar to what was noted for patients E and H, but with less immune cell-type diversity. 

Tumor regions annotated as invasive cancer from the remaining four patients, C, G, A and 

D, showed a general absence of lymphoid cell signatures, indicating lack of immune cell 

infiltration. Patients with this type of pattern usually have poor overall survival8,9 and we 

observe that patients C and D are the only two deceased among the investigated patients 

(Supplementary Table 1).  
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Our analyses revealed high two-dimensional spatial variation in both gene expression and 

immune cell composition, which prompted a three-dimensional investigation of the patient 

samples. We selected samples from four of the patients and used cross-sectioning to collect 

six sections from each sample. The tissue image alignment provided a transformation 

matrix that we applied to the spatial spots and generated interpolated expression images 

into three-dimensional space (Supplementary Fig. 9). The output is a projection of the 

tissue in which any gene expression value, gene expression topic proportion or immune 

cell composition can be visualized. We applied the immune scores to the 3D reconstructed 

data and visualized the output in stacked images of each section (Fig. 5a) or by volume-

based images (Fig. 5b). Patient A showed virtually no immune score whilst Patient B had 

the highest immune score among the four patients, but the high immune score was 

restricted to a few specific continuous nodes in space. Three of the patients showed 

variation across the additional dimension provided by this analysis, which demonstrates 

the importance of expanding the analysis from 2D to 3D. To further explore the 3D-data, 

we developed a R-shiny app (https://spatialtranscriptomics3d.shinyapps.io/ST3D-

Viewer/) where all immune-cells and detected genes can be interactively visualized. 

DISCUSSION 

Here we investigate tumor heterogeneity in samples from ten patients diagnosed with 

HER2+ breast cancer in two and three dimensions using spatially resolved transcriptomics. 

We used novel methods to cluster the transcriptome wide data according to underlying 

structures in the form of LDA-based gene expression topics rather than pure gene 

expression values or morphological characteristics. By collapsing spatial spots within the 

clustering approach, we detected almost six times more genes than when using single 

spatial spots as the input for cell type analysis, improving the overall sensitivity of the 

downstream analysis. In most samples, our analysis revealed a clear overlap between the 

identified LDA clusters and manually annotated regions. 

A key property of Spatial Transcriptomics technology is the possibility to identify and 

characterize the distribution of immune cells within tumor tissue sections in an unbiased 
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way. Here, we applied spatial cell scoring to reveal areas with a presence of immune cells 

with the aim to study the immune composition within areas of invasive cancer of particular 

interest for survival outcome and immune therapy. We observe an array of distinct 

infiltrating immune cell patterns across the different patients. Although more extensive 

studies will be required to fully grasp the immune landscape, we observe groups of patients 

sharing similar immune repertoires in situ as well as patients lacking measurable immune 

cell infiltration. In the extension of this work it is likely that HER2+ tumors can be 

described not only by the gene expression profile per se but also by scoring the infiltrating 

immune cell profiles.  

More extensive patient sampling is likely to establish a relationship between the extent of 

immune cell infiltration and node positivity. An interesting observation is that the two 

deceased patients belonged to the immune score group that showed a lack of immune cell 

infiltration in the invasive cancer region. Furthermore, tumors from two of the patients also 

showed the presence of CD4+ naïve T-cells, which are usually not present in tumor tissue34 

but have earlier been reported in breast cancer samples35. Importantly, here we demonstrate 

that the described methodological approach can be used to dissect many different aspects 

of the immune-tumor interplay and substantiate whether the lack of immune cell infiltration 

or type of immune cells in tumor tissue is related to worse prognosis and/or lower overall 

survival.  

This is the first attempt, to our knowledge, to present genome-wide RNA-seq data from 

human tissue in three dimensions.  This is achieved by combining cross-sectioning with 

computational image alignment and data transformation. Our model demonstrated that it is 

possible to detect and follow immune score changes across all three dimensions, and that 

the analysis of a single, two-dimensional section would leave out important information 

regarding immune cell distribution within heterogeneous samples.   

The resulting comprehensive view of gene expression in a tissue volume can thus facilitate 

new understanding of tumors and the surrounding microenvironment and has the potential 

to challenge current diagnostic practices. By nature, cancers are heterogeneous, and the 

.CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/358937doi: bioRxiv preprint first posted online Jun. 29, 2018; 

http://dx.doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/


presented results increase the notion of complexity to a higher degree. Yet, the analysis 

demonstrates that using a three-dimensional description of the tumor tissue landscape can 

advance diagnostic procedures and help design personalized treatments from the time of 

diagnosis. 
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METHODS 

Array production. The array production was described previously22,36. Briefly, the 

microarrays were generated as a 33x35 matrix with a 200 µm center-to-center distance 

between 100 µm spatial spots. A total of 1007, unique and spatially barcoded DNA 

oligonucleotides, were used. 

Tissue handling, staining and imaging. These steps were described previously22. Shortly, 

fresh frozen material was sectioned at 16 µm. After placing the tissue on top of the barcoded 

microarray, the glass slide was warmed at 37 °C for 1 min for tissue attachment and fixated 

in ~ 4% NBF (neutral buffered formalin) for 10 min at room temperature (RT). The slide 

was then washed briefly with 1x PBS (phosphate buffered saline). The tissue was dried 

with isopropanol before staining. The tissue was stained with Mayer’s hematoxylin for 4 

min, washed in Milli-Q water, incubated in bluing buffer for 2 min, washed in Milli-Q 

water, and further incubated for 1 min in 1:20 eosin solution in Tris-buffer (pH 6). The 

tissue sections were dried for 5 min at 37 °C and then mounted with 85% glycerol and a 

coverslip. Imaging was performed using the Metafer VSlide system at 20x resolution. The 

images were processed with the VSlide software (v1.0.0). After the imaging was complete, 

the cover slip and remaining glycerol were removed by dipping the whole slide in Milli-Q 

water followed by a brief wash in 80% ethanol and warming for 1 min at 37 °C. 

Permeabilization and cDNA synthesis. Permeabilization and cDNA synthesis were 

carried out as previously described22 but with substituting the Exonuclease I buffer pre-

permeabilization treatment with a 20 min incubation at 37 °C in 14 U of collagenase type 

I (Life Technologies, Paisley, UK) diluted in 1x HBSS buffer (Thermo Fisher Scientific, 

Life Technologies, Paisley, UK) supplemented with 14 µg BSA followed by an incubation 

in 0.1% pepsin-HCl (pH 1) for 10 min at 37 °C. A cDNA-mix containing Superscript III, 
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RNaseOUT, DTT, dNTPs, BSA and Actinomycin D was added and the slide incubated at 

42 °C overnight (~18 h). The tissue was washed with 0.1x SSC between each incubation 

step. 

Tissue removal and cDNA release from surface. Tissue removal, as well as the release 

of cDNAs from surface was described previously22. In brief, beta-Mercaptoethanol was 

diluted in RNeasy lysis buffer and samples were incubated for 1 h at 56 °C. The wells were 

washed with 0.1x SSC followed by incubation with proteinase K, diluted in proteinase K 

digestion buffer, for 1 h at 56 °C. The slides were then washed in 2x SSC + 0.1% SDS, 

0.2x SSC followed by 0.1x SSC and dried. The release mix consisted of second strand 

buffer, dNTPs, BSA and USER enzyme and was carried out for 2 h at 37 °C. After probe 

release, the 1007 spatial spots containing non-released DNA oligonucleotide fragments 

were detected by hybridization and imaging, in order to obtain Cy3-images for alignment. 

Library preparation and sequencing. The protocol followed the same preparation 

procedures as described earlier22, but were carried out using an automated pipetting system 

(MBS Magnatrix Workstation), also previously reported27. In general, second strand 

synthesis and blunting were carried out by adding DNA polymerase I, RNase H and T4 

DNA polymerase. The libraries were purified and amplified RNA (aRNA) was generated 

by a 14 h in vitro transcription (IVT) reaction using T7 RNA polymerase, supplemented 

with NTPs and SUPERaseIN. The material was purified and an adapter ligated to the 3’-

end using a truncated RNA ligase 2. Generation of cDNA was carried out at 50 °C for 1 h 

by Superscript III, supplemented with a primer, RNaseOUT, DTT and dNTPs. Double 

stranded cDNA was purified, and full Illumina sequencing adapters and indexes were 

added by PCR using 2xKAPA HotStart ready-mix. The number of amplification cycles 

needed for each section was determined by qPCR with the addition of EVA Green. Final 

libraries were purified and validated using an Agilent Bioanalyzer and Qubit before 

sequencing on the NextSeq500 (v2) at a depth of ~100 million paired-end reads per tissue 

section. The forward read contained 31 nucleotides and the reverse read 46 nucleotides. 
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Mapping, gene counting and demultiplexing. These steps were carried out in a similar 

fashion to what has previously been described22. The forward read contained the spatial 

barcode and a semi-randomized UMI sequence (WSNNWSNNV) while the reverse read 

contained the transcript information and was used for mapping to the reference GRCh38 

human genome. Before mapping the reads with STAR37, the reverse reads were first quality 

trimmed based on the Burrows-Wheeler aligner and long homopolymer stretches removed. 

HTSeq-count38 with the setting -intersection-nonempty, was used to count only protein-

coding and long non-coding transcripts for each gene, using an Ensembl reference file 

(v.79). The remaining reads were taken into TagGD demultiplexing39 using the 18 

nucleotides spatial barcode. The demultiplexed reads were then filtered for amplification 

duplicates using the UMI with a minimal hamming distance of 2. The UMI-filtered counts 

were used in the analysis. The analysis pipeline (v0.8.5) is available at 

https://github.com/SpatialTranscriptomicsResearch/st_pipeline. 

Analysis of bulk data. The data from all spatial spots, for each tumor or section, were 

added up separately. The data were either used of PCA or AIMS40 to determine subtypes.  

LDA and clustering. Replicate datasets from each tissue were merged and a Latent 

Dirichlet Allocation (LDA) model for each merged dataset using the R package cellTree25. 

The numbers of topics for each dataset were chosen based the Bayes factor over the Null 

model41 using the “maptpx” method with a maximum number of allowed topics set to 15. 

The resulting topic matrices were used as a basis for hierarchical clustering of spatial spots. 

Clusters were chosen using the adaptive method Dynamic Tree Cut42. Clustered spatial 

spots were color coded and visualized on a heatmap of topic/spatial spot pairs and overlaid 

on the tissue images. t-SNE based on topic proportions was computed for each sample with 

each point colored by its respective cluster identity. 

Cell-type enrichment analysis. Each cluster was collapsed into vectors by adding the gene 

expression values for each spatial spot within that cluster. Cell-type enrichment was 

performed for each cluster using the gene signature based method xCell30 or each tissue 
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sample. xCell scores for cluster/cell-type pairs were visualized as heatmaps. Cluster/cell-

type pair scores were then extrapolated to the spatial spots within each respective cluster 

to generate matrices with xCell scores for spatial spot/cell-type pairs.  

 

Visualization of cell distribution and interpolation. Tissue images in jpeg format were 

converted to grey scale and point scatters of x, y coordinates were generated by defining 

points at pixel coordinates with intensity below a threshold of 0.5. The 2D point scatters 

were transformed from pixel coordinates to array coordinates, thus defined in the same 

coordinate system as the array spatial spots. Next, a raster was generated across each tissue 

image and points in the 2D scatter were associated with a grid cell by calculating the 

minimum Euclidean distance. Spatial spot topic proportions and xCell scores were 

interpolated43 across the raster and assigned to each point of the 2D scatter. The 2D scatters 

were overlaid onto the tissue images and colored by either topic proportions or xCell 

scores. A subset of xCell scores was selected to include only immune cells and was scaled 

across all immune cell-types and replicates to range between 0 and 1. The immune cell-

type group included; CD4+ memory T-cells, CD4+ naïve T-cells, CD4+ Tcm, CD4+ Tem, 

CD8+ naive T-cells, CD8+ Tcm, CD8+ Tem, Tregs, Th1 cells, Th2 cells, Tgd cells, NK 

cells, NKT, naïve B-cells, Memory B-cells, Class-switched memory B-cells, pro B-cells 

and Plasma cells. For generation of 3D data, all respective sections for each sample were 

processed with Fiji using the “Transform Virtual Stack Slices” plugin44. This created a 

transformation matrix for each registered image and enabled image alignment. The 

transformation matrix was used to transform45 the registered binary dots and spatial spot 

coordinates. The transformed dots and spatial spots were scaled, centered, manually 

inspected and re-adjusted if necessary. Each tissue section was multiplied three times and 

stacked by separating each section with an even distance along the z-axis. xCell scores 

were generated for clusters spanning the whole 3D volume and the values were interpolated 

onto the 2D scatters separately. All the stacks from each section and sample were combined 

and visualized as interactive 3D scatter heatmaps (HTMLwidgets) using the R package 

plotly46. xCell scores were scaled to range between 0 and 1 on the color scale.  
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DE and pathway analysis of clusters. Filtered gene expression data was normalized as 

counts per ten thousand by dividing each spatial spot column by its sum of counts and 

multiplying by 10,000. Spatial spots grouped by LDA based clusters were normalized 

using scran47. First, each cluster was filtered from spatial spots with 0 value size factors 

and clusters with less than 40 spatial spots were discarded. The remaining clusters were 

normalized with the computed size factors. DE analysis was performed using an edgeR 

workflow48. For each cluster, a design matrix was constructed grouping clustered spatial 

spots and all remaining spatial spots separately. Estimates of common and trended 

dispersions were computed using the “estimateDisp” function and negative binomial 

generalized log-linear models were fitted to each design matrix using the “glmFit” 

function. Likelihood ratio tests were calculated using the “glmLRT” function to obtain 

differentially expressed genes with a log2-fold change greater than 1 at a significance 

threshold of p = 0.01.  

Analysis of annotated regions. Spatial spots within regions annotated as “mainly invasive 

cancer”, “carcinoma in situ” and “inflammatory cells” were selected using the Spatial 

Transcriptomics Research Viewer and exported as expression matrices in tsv-format. 

Annotated groups were pooled and subjected to cell-type enrichment with xCell and the 

results were visualized as heatmaps of xCell scores for cluster/cell-type pairs. The Spatial 

Transcriptomics Research Viewer is available at 

https://github.com/SpatialTranscriptomicsResearch/st_viewer. 
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Figure 1 Overview of the presented approach. (a) i) The Spatial Transcriptomics method was applied to sections 
from ten patients (three sections from each biopsy); ii) spatial spots covering various regions of the tissue were 
selected and clustered; iii) spatial spots within each cluster were collapsed prior to pathway analysis and immune 
cell-type determination (Tem, effector memory T-cells; Tcm, central memory T-cells); iv) the data were 
visualized by superimposing tissue types on their spatial positions in the tissue. (b) Morphological regions were 
characterized by a pathologist and annotated into seven distinct categories: DCIS (orange); invasive cancer (red); 
immune cells (yellow); normal glands (green); fat tissue (cyan); fibrous tissue (blue); and necrosis (black). The 
black bar in the bottom left corner represents 500µm. (c) Interpolated tissue images that illustrate how four of the 
gene expression topics have clear morphological patterns. The color scale shows the proportion of each gene 
expression topic in specific tissue regions. Gene expression topic tH1 was prevalent in the stroma (both fibrous 
tissue and tumor stroma), tH2 was prevalent in cancer tissue (both DCIS and invasive), tH5 was associated with 
immune cells while tH6 was associated with normal glands. The black bar in the bottom left corner of each tissue 
section represents 500µm. 
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Figure 2 Clustering and pathway analysis. (a) The clustering was performed based on proportions of gene 
expression topics in patient H using Euclidean distance and Ward’s method. Colored bars under the dendrogram 
indicate cluster identity as determined by the unsupervised clustering method. Interesting clusters that clearly 
overlap with the manual annotations are marked. (b) Visualization of the clusters in t-SNE space. Data points 
represent spatial spots from patient H. Colors represents the cluster membership of each spatial spot. (c) 
Interpolated view across the tissue image for patient H. The different clusters show specific spatial patterns that 
closely follow the morphology. Black and gray lines bound areas determined to be DCIS and invasive cancer 
regions by the pathologist. The black bar in the bottom left corner represents 500µm. Colors represents the cluster 
membership of each spatial spot. (d) Magnified view of a DCIS area. The interpolated visualization is overlaid 
onto the actual spatial spots. The annotated DCIS region clearly contains spatial spots that are grouped into 
different clusters; for example, cluster H2, which dominates the invasive region. The black bar in the bottom left 
corner represents 100µm. (e) Pathway analysis of ten clusters across tumors from six of the patients. The 
pathway analysis is based on genes in the specific clusters that are upregulated relative to the rest of the tissue 
and show a high proportion of immune-related pathways (GO terms). Most immune-related GO terms were 
detected in immune cell, tumor stroma/fibrous tissue and invasive cancer regions.  
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Figure 3 Spatial immune cell analysis. (a) A spatial view of the total immune score as calculated by xCell. The 
highest score was detected in a region annotated as immune cell dense (black lines). However, other regions 
also indicate high presence of immune cells, especially the tumor stroma (proximal to the tumor areas). The 
maximum score in the image is based on the patient max (0.39) after the score across all ten patients was 
scaled (0-1). The black bar in the bottom left corner represents 500µm. (b) Heat map of xCell scores for 
different immune cell-types across the ten clusters detected in patient H. Interesting clusters that clearly 
overlap with the manual annotation are marked. Immune cell cluster (H4) shows the highest score and immune 
cell diversity. However, several immune cell-types are present in other parts of the tissue. (c) A spatial view of 
the detected immune cell-types. Th2 cells are mostly present in the tumor regions but were also detected in the 
immune cell dense and stromal regions. Both Class-switched memory B-cells and memory B-cells are 
prevalent in the immune cell dense regions, but also appear in different parts of the stroma. The immune cell 
dense regions are marked with black lines in the images. The black bar in the bottom left corner of each tissue 
section represents 500µm. 

Figure 3
.CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a

The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/358937doi: bioRxiv preprint first posted online Jun. 29, 2018; 

http://dx.doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/


Scaled immune cell type score  

0.00 0.50 1.00

Th2 cells

Class−switched memory B−cells

NK cells

Tregs

naive B−cells

Tgd cells

CD8+ naive T−cells

CD8+ Tem

Plasma cells

CD4+ Tcm

NKT

CD4+ naive T−cells

Memory B−cells

Th1 cells

CD4+ Tem

CD8+ Tcm

J B F DC AGHE I

Patient

−10

−5

0

5

10

−10 0 10 20
PC 1: 10% variance

PC
 2

: 9
%

 v
ar

ia
nc

e

A
B
C
D
E
F
G
H
I
J

Patient

a

b

i ii iii iv

Figure 4 .CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/358937doi: bioRxiv preprint first posted online Jun. 29, 2018; 

http://dx.doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4 Lymphoid cell-types detected in the invasive regions across ten patients. (a) A PCA of spatial spots that were 
manually selected from the annotated invasive regions shows the formation of four major groups, with patients A and 
F separated from each other as well as from the other patients. Patients E and H formed their own group. The variance 
of each component is shown on the axes. (b) The xCell score was used to cluster the samples, and four clear clusters 
were detected (i-iv). Samples from patients E and H contained mostly NKT, CD8+ Tem, Th1 cells and CD4+ naïve T-
cells, with some presence of Memory B-cells and CD4+ Tcm. Samples from patient J contained almost exclusively 
Th2 cells. Samples from patients B, F and I contained mostly CD8+ Tcm with the presence of some Th1 cells. 
Samples from patients C, G, A and D contained very few lymphoid cells, indicating lack of immune cell infiltration.  
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Figure 5 Three-dimensional Spatial Transcriptomics. Total immune score visualized in two different ways across six tissue 
sections from three patients. (a) Stacked view in which the sections are clearly separated for easy interpretation of expression 
patterns. (b) volume visualization, which is a more accurate view of the tissue volume. Clear differences in the spatial locations 
of regions with high immune scores can be noticed across all three dimensions. Patient B shows the highest immune score.  

Figure 5
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Supplementary Fig. 1 Overview of patient samples. (a) Morphological regions were characterized by a pathologist 
and annotated into six distinct categories: DCIS (orange); invasive cancer (red); immune cells (yellow); normal 
glands (green); fat tissue (cyan); and fibrous tissue (blue). The black bar in the bottom left corner of each tissue 
section represents 500µm. (b) PCA of bulk data from the ten patients shows that the patients can be categorized into 
separate groups, indicating large interpatient differences. However, patients B, D, G and I and patient E and H group 
together, indicating transcriptional similarities. The variance of each component is shown on the axes.  
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Supplementary Fig. 2
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Supplementary Fig. 2 Schematic representation of the interpolation method. Spatial spot values, e.g. gene expression 
or proportions of gene expression topics, were overlaid with the HE-stained tissue image. HE-stained tissue images 
were first converted into gray-scale and then into binary format based on a light intensity threshold. Tissue images were 
then rasterized to generate a grid of cells into which the binary dots were binned according to the minimum Euclidean 
distance from each binary dot to the grid cell centers. Spatial spots values were interpolated across the grid and assigned 
to each grid-cell. The binary dot patterns were colored based on the interpolated values and overlaid on top of the gray-
scale tissue images. 

.CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/358937doi: bioRxiv preprint first posted online Jun. 29, 2018; 

http://dx.doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/


Patient A

Patient B

Patient C

Patient D

Patient E

Patient F

Patient G

Patient I

Patient J

      Proportion of gene expression topics

0.00 0.50 1.00

Gene expression topic tA4 Gene expression topic tA9Gene expression topic tA2Gene expression topic tA1

Gene expression topic tB1 Gene expression topic tB2 Gene expression topic tB3 Gene expression topic tB4

Gene expression topic tC1 Gene expression topic tC4 Gene expression topic tC5

Gene expression topic tD1 Gene expression topic tD2 Gene expression topic tD5 Gene expression topic tD6

Gene expression topic tE1 Gene expression topic tE4 Gene expression topic tE5 Gene expression topic tE6

Gene expression topic tF1 Gene expression topic tF2 Gene expression topic tF3 Gene expression topic tF5

Gene expression topic tG1 Gene expression topic tG2 Gene expression topic tG4 Gene expression topic tG8

Gene expression topic tI1 Gene expression topic tI2 Gene expression topic tI3 Gene expression topic tI4

Gene expression topic tJ1 Gene expression topic tJ3 Gene expression topic tJ5 Gene expression topic tJ6

500µm

Gene expression topic tC3

Supplementary Fig. 3

.CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/358937doi: bioRxiv preprint first posted online Jun. 29, 2018; 

http://dx.doi.org/10.1101/358937
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Fig. 3 A spatial visualization of the proportions of gene expression topics. Interpolated tissue images 
show four gene expression topics with clear morphological patterns. Gene expression topic proportions are sample 
specific, meaning that the same proportion in another sample does not necessarily represent a similar region. The 
black bar in the bottom left corner of each tissue section represents 500µm. 
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Supplementary Fig. 4 Hierarchical clustering of spatial spots. The clustering was based on proportions of gene 
expression topics in patient tissue samples and performed using Euclidean distance and Ward’s method. Reference 
bars under the dendrograms indicate cluster identity determined by the unsupervised clustering method. Interesting 
clusters that clearly overlap with the manual annotations are named. Clusters are sample specific, meaning that the 
same color does not represent a specific region across different samples.  
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Supplementary Fig. 5 Non-linear dimensionality reduction using t-SNE. Data points represents spatial spots and are 
colored based on cluster identity. The plot was used to verify the clustering. Clusters are sample specific, meaning that 
the same color does not represent a specific region across different samples. 
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Supplementary Fig. 6 Spatial visualization of clusters. (a) Clusters were classified by color and interpolated 
across tissue images. Clusters are sample specific, meaning that the same color does not represent a specific 
region across different samples. The black bar in the bottom left corner of each tissue section represents 500µm. 
(b) Stacked bar chart of cluster proportions across all three sections (replicates) of each of the ten patient samples. 
Similar bar patterns indicate similar cluster proportions across replicates. (c) Violin plot of the number of unique 
genes that are detected per spatial spot in relation to how many are detected per cluster when spatial spots are 
collapsed. 
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Supplementary Fig. 7 Spatial visualization of total xCell immune scores. Interpolated tissue images demonstrate 
how the immune score is distributed across the tumor tissue. The color scale (top left) shows the extent of immune 
cell density while the black lines display manually annotated immune cell dense regions. Maximum scores in the 
images are based on the patient max after the score across all ten patients were scaled (0-1). The black bar in the 
bottom left corner of each tissue section represents 500µm. 
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Supplementary Fig. 8 Heatmap representation of immune cell-type scores among clusters. The xCell scores were 
calculated for each cluster (columns) and patient sample (heatmaps) separately. Each grid-cell represents the xCell 
score for a certain lymphoid cell-type in a specific cluster. The values have been scaled across all samples to a 
range between 0 and 1. Interesting clusters that clearly overlap with the manual annotations are marked.
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Supplementary Fig. 9 Three-dimensional Spatial Transcriptomics. Schematic representation of the approach. Six 
sections were collected from each of the four samples and processed using the Spatial Transcriptomics methods. Tissue 
images were computationally aligned and stacked. The transformation matrix from the alignment were applied to the 
spatial data so that the images and data existed in the same space. The data were then interpolated as previously described. 
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