LUND UNIVERSITY

Towards Fully Dynamic Surface lllumination in Real-Time Rendering using
Acceleration Data Structures

Moreau, Pierre

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Moreau, P. (2022). Towards Fully Dynamic Surface Illlumination in Real-Time Rendering using Acceleration Data
Structures. [Doctoral Thesis (compilation), Faculty of Engineering, LTH]. Department of Computer Science, Lund
University.

Total number of authors:
1

Creative Commons License:
Unspecified

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

« You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/4c60f568-9c7b-4c44-8593-6257712bd0e1

Towards Fully Dynamic Surface

[llumination in Real-Time
Rendering using Acceleration

Data Structures

by Pierre Moreau

LTH

FACULTY OF
ENGINEERING

UNIVERSITY

Thesis for the degree of Doctor of Philosophy in Engineering
Thesis advisor: Assoc. Prof. Michael Doggett
Thesis assistant advisor: Docent Jacob Munkberg
Faculty opponent: Assoc. Prof. Veronica Sundstedt

To be presented, with the permission of the Faculty of Engineering, LTH of Lund University, for public

criticism in E:1406 at the Department of Computer Science on Friday, the 14th of January 2022 at 13:00.

DOKUMENTDATABLAD enl SIS 61 41 21

Organization Document name

LUND UNIVERSITY DOCTORAL DISSERTATION
Department of Computer Science Date of disputation

Box 118 2022-01-14

SE—221 0o Lund Sponsoring organization

Sweden Swedish Research Council, and

ELLIIT Excellence Center at Linkdping—Lund in In-

Author(s) formation Technology

Pierre Moreau

Title and subtitle
Towards Fully Dynamic Surface Illumination in Real-Time Rendering using Acceleration Data Structures

Abstract

The improvements in GPU hardware, including hardware-accelerated ray tracing, and the push for fully dynamic
realistic-looking video games, has been driving more research in the use of ray tracing in real-time applications.
The work described in this thesis covers multiple aspects such as optimisations, adapting existing offline methods
to real-time constraints, and adding effects which were hard to simulate without the new hardware, all working
towards a fully dynamic surface illumination rendering in real-time.

Odur first main area of research concerns photon-based techniques, commonly used to render caustics. As many
photons can be required for a good coverage of the scene, an efficient approach for detecting which ones contribute
to a pixel is essential. We improve that process by adapting and extending an existing acceleration data structure;
if performance is paramount, we present an approximation which trades off some quality for a 2-3X improvement
in rendering time. The tracing of all the photons, and especially when long paths are needed, had become the
highest cost. As most paths do not change from frame to frame, we introduce a validation procedure allowing the
reuse of as many as possible, even in the presence of dynamic lights and objects. Previous algorithms for associating
pixels and photons do not robustly handle specular materials, so we designed an approach leveraging ray tracing
hardware to allow for caustics to be visible in mirrors or behind transparent objects.

Our second research focus switches from a light-based perspective to a camera-based one, to improve the picking
of light sources when shading: photon-based techniques are wonderful for caustics, but not as efficient for direct
lighting estimations. When a scene has thousands of lights, only a handful can be evaluated at any given pixel
due to time constraints. Current selection methods in video games are fast but at the cost of introducing bias. By
adapting an acceleration data structure from offline rendering that stochastically chooses a light source based on
its importance, we provide unbiased direct lighting evaluation at about 30 fps. To support dynamic scenes, we
organise it in a two-level system making it possible to only update the parts containing moving lights, and in a
more efficient way.

We worked on top of the new ray tracing hardware to handle lighting situations that previously proved too
challenging, and presented optimisations relevant for future algorithms in that space. These contributions will
help in reducing some artistic constraints while designing new virtual scenes for real-time applications.

Key words
Computer graphics, Real-time rendering, Ray tracing, Caustics, Global illumination

Classification system and/or index terms (if any)
UKA: Natural Sciences — Computer and Information Science — Computer Science

Supplementary bibliographical information Language
English
ISSN and key title ISBN
ISSN: 1404-1219 978-91-8039-138-2 (print)
Dissertation 67, 2022; LU-CS-DISS: 2022-01 978-91-8039-137-5 (pdf)
Recipient’s notes Number of pages Price
138

Security classification

Distribution by (name and address): Department of Computer Science, Box 118, SE—221 oo Lund, Sweden
I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature) ld\u»v— Date 2021-12-09

Towards Fully Dynamic Surface

[llumination in Real-Time
Rendering using Acceleration

Data Structures

by Pierre Moreau

LTH

FACULTY OF
ENGINEERING

UNIVERSITY

A doctoral thesis at a university in Sweden takes either the form of a single, cohesive re-
search study (monograph) or a summary of research papers (compilation thesis), which the
doctoral student has written alone or together with one or several other author(s).

In the latter case the thesis consists of two parts. An introductory text puts the research work
into context and summarizes the main points of the papers. Then, the research publications
themselves are reproduced, together with a description of the individual contributions of
the authors. The research papers may either have been already published or are manuscripts
at various stages (in press, submitted, or in draft).

Cover illustration front: Found within the shadow of this teapot made of glass, the complex light
patterns remain challenging to compute for real-time applications. This is one effect of light simula-
tion covered in this thesis, with Paper v investigating how to visualise them when they are indirectly
visible (e.g. via a mirror).

The teapot and scene were modelled using Blender [10], and rendered using Falcor [25].

Cover illustration back: Computing the contributions of tens of thousands of light sources, as
is the case in this scene, was previously very hard to achieve in real-time without biasing the results
or adding large constraints. Through Paper 111 and 1v, we made it possible to render such scenes
without bias nor specific constraints, and even for animated scenes.

The scene was rendered using Falcor [25], and credits for the different assets used are found in the
Acknowledgements section.

Funding information: The thesis work was financially supported by the Swedish Research Council

under grant 2014-519 and ELLIIT.

© Pierre Moreau 2022
Faculty of Engineering, LTH, Department of Computer Science

ISBN: 978-91-8039-138-2 (print)
ISBN: 978-91-8039-137-5 (pdf)
ISSN: 1404-1219

Dissertation 67, 2022
LU-CS-DISS: 2022-o1

Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund 2022

Dedicated to my family
Clélia — Dada — Isabelle — Jean-Jacques

Contents

List of publications L ii
Acknowledgements. L L Lo iii
Popular science summary Lo o iv
Populirvetenskaplig ssmmanfattning L 0oL v

Towards Fully Dynamic Surface Illumination in Real-Time Rendering using Ac-

celeration Data Structures I
I Overview e I
2 Virtual Scenes 3
3 GPUHardware e 10
4 LightTransport 19
5 Evaluation and Methodology 27
6 ResearchProjects. 29
7 Contributions 40
8 Conclusion and Looking Forward 41
9 Referenceso 43
Scientific publications 49
Author contributions 49
Paper 1: Photon Splatting Using a View-Sample Cluster Hierarchy ST
Paper 11: Path Verification for Dynamic Indirect lllumination 65
Paper 11: Importance Sampling of Many Lights on the GPU 75
Paper 1v: Dynamic Many-Light Sampling for Real-Time Ray Tracing 107

Paper v: Real-Time Rendering of Indirectly Visible Caustics 115

List of publications

This thesis is based on the following publications, referred to by their Roman numerals:

1 Photon Splatting Using a View-Sample Cluster Hierarchy

P. Moreau, E. Sintorn, V. Kimpe, U. Assarsson, M. Doggett
In proceedings of Eurographics/ ACM SIGGRAPH Symposium on High Perform-
ance Graphics, 2016

11 Path Verification for Dynamic Indirect Illumination

P. Moreau, E. Sintorn, M. Doggett
Technical report on arXiv:2111.06906

1 Importance Sampling of Many Lights on the GPU

P. Moreau, P. Clarberg
Book chapter in Ray Tracing Gems, pp. 255283

v Dynamic Many-Light Sampling for Real-Time Ray Tracing

P. Moreau, M. Pharr, P. Clarberg
In proceedings of High-Performance Graphics - Short Paper, 2019

v Real-Time Rendering of Indirectly Visible Caustics

P. Moreau, M. Doggett
10 be presented ar GRAPD, 2022

All papers are reproduced with permission of their respective publishers.

ii

Acknowledgements

Ph.D. studies can result in countless hours sitting in front of a computer, reading papers,
learning new skills, or desperately looking for that last™ remaining bug. However this
journey is far from a lonely one, and therefore I would like to acknowledge and thank
those persons who helped me through this experience.

I would like to start by giving my deepest gratitude to my thesis supervisor, Michael Dog-
gett, for sharing his experience, guiding me while still allowing me to explore and exper-
iment, and always having an open door to talk about research projects, courses or other
thesis-related topics. Those thanks also extend to my thesis assistant supervisor, Jacob
Munkberg, for his advice, experience, and insightful comments about on-going projects
or when reviewing our papers, and availability. I am deeply thankful to the Swedish Re-
search Council and ELLIIT for funding this thesis and making it a reality.

A huge thank you to Gustaf Waldemarson and Rikard Olajos in the graphics group for all
the discussions about graphics-related stuff, and various research-project ideas. I am grateful
to Marcus Klang for all the help given with the computer graphics labs and conversations,
and all the students I had the chance to supervise, for their interesting questions (and bugs
too!) and allowing me to improve my Swedish.

I would like to thank everyone at Unity Labs’ Grenoble office as well as at NVIDIA’s
Real-Time Rendering Research team for their welcome and integration, discussions, and
everything I learned there during my internships. Extra thanks to my coworkers from

NVIDIA’s Lund office for really helping my proficiency at talking in Swedish.

Even if work took a large amount of time, it was not everything. I cannot thank enough
all my friends, especially Angeltjee, Cuppcaake, Eggyscrambelini, and Icetronixa, for all
the time spent together, laughters, keeping me sane, and providing a safe and welcoming
environment, far away from triangles, rays and GPUs. Lastly, I want to express my eternal
gratitude to my family, for always being there and supportive, curious about what I am
working on, and believing in me so much more than I ever do.

Throughout the thesis, there are multiple renderings of 3D assets produced by different
persons, and I would like to thank them for their work and making it available. In Figure 14
and in the back cover illustration, the following assets were used. The Bistro scene [2] is
based on assets kindly donated by Amazon Lumberyard. The car model [6] was made by
Turbosquid user barteks2, and the helicopter asset [16] by Sketchfab user f3nix and licensed
under CC-BY 4.0.

iii

https://creativecommons.org/licenses/by/4.0/legalcode

Popular science summary

A lot of work has been put into making visuals in computer games and interactive visual-
isations look as close to reality as possible. This development mostly occurred thanks to the
use of dedicated hardware able to accelerate those applications.

To compute the content of each frame displayed by a computer game, multiple algorithms
are used to approximate how the light interacts with objects in a three-dimensional virtual
scene. Due to limitations from the dedicated hardware those algorithms rely on, they can
only supporta limited amount of the different lighting effects found in the real world. With
the recent introduction of a new and more flexible hardware unit, a wide range of more pre-
cise light-simulation methods can be developed. Several of these techniques were designed
and implemented as a part of this thesis, and are described in the following paragraphs.

While walking at night in a city, there will be many different light sources around contrib-
uting to what one sees, such as street lights, headlights of cars or buses, and illuminated
shop signs. Taking into account all those lights each frame would take too much time, so
in practice applications only evaluate a few of those. However, the selection performed
is often suboptimal, which led us to look at lighting techniques used in film production.
We adapted such a technique which could pick the most important light sources on-the-
fly, while still being computable quickly enough. Additional changes were also made to
support lights that can freely move about the scene.

One interesting light phenomenon occurs when light interacts with a reflective or refractive
medium, and becomes focused into small areas; it can be commonly seen as the moving
light patterns at the bottom of swimming pools. This effect has often been faked by real-
time applications due to its expensive computation cost. The situation has been changing
recently and existing methods can represent the phenomenon when it is directly visible. We
developed a way to also process that lighting effect when it is indirectly visible, for example
when seen via mirrors or behind transparent objects.

All computations needed to simulate light take time, even when the results do not change
from frame to frame in most parts of a scene. We therefore studied which amount of data
could be reused over short amounts of time with minimal image quality degradation.

Through the work presented in this thesis, we have shown that more complex lighting
effects can be approximated in real-time, and without compromising too much on the
results of the simulation. We hope that this will lead the way for new approaches, and
that it will be reflected in which light phenomena are simulated by interactive computer
graphics applications such as computer games or visualisation.

iv

Populirvetenskaplig sammanfattning

P4 senare tid har mycket arbete utforts for att 6ka realismen in datorspel och interaktiva
visualiseringar. Framf6rallt utvecklades detta genom att anvinda dedikerat hardvara som
kan accelerera dessa applikationer.

For att bestimma innehallet av varje bild som visas av ett datorspel pé skirmen, har olika
algoritmer anvints som approximerar hur ljuset interagerar med objekt i en tredimensio-
nell datormodell. Dessa algoritmer anvinder dedikerad hirdvara, men hanterar enbart en
begrinsad mingd ljusfenomen. Denna situation har nyligen forindrats, i och med intro-
duktionen av en ny, mer flexibel, hardvaruenhet och detta mojliggdér en mingd av nya
ljussimuleringsmetoder som 4r mer exakta. Flera sidana tekniker skapades och implemen-
terades som en del av denna avhandlingen, och de beskrivs i de foljande styckena.

P4 en nattpromenad i stadsmiljo kan man se minga olika ljuskillor i omgivningen som
bidrar till vad man ser, t.ex. gatubelysning, stralkastare pa bilar eller bussar och upplysta
butiksskyltar. Om ett datorspel skulle férsoka behandla alla dessa ljuskillor, hade det tagit
for lang tid med traditionell teknik for ljusberdkningar. Dirfor kan endast ett fatal av dem
utvirderas for varje bild i praktiken. Vilka som viljs dr ddremot ofta suboptimala, vilket
ledde oss till att titta pa tekniker som anvinds i filmproduktion. Som ett exempel anpassar
vi en teknik som effektivt kan extrahera ett subset av de mest relevanta ljuskillorna fér en
scen. Vi presenterar ocksé tekniker for att hantera animerade ljuskillor.

Det finns en del ljusfenomen som ofta approximerats relativt grovt av realtidapplikationer
pa grund av dess hoga prestandakostnad: de ljusa monster som flyttar sig under vattnet, t.ex.
pa botten av simbassinger. Detta exempel uppstdr nir ljus interagerar med reflekterande
eller genomskinliga medium och fokuseras till sm4, lokala omraden. Numera kan diremot
befintliga metoder producera dessa ljusfenomen, men endast dé de ir direkt synliga. Dirav
utvecklade vi ett sitt att ockséd berikna dessa ljusfenomen dven nir de syns indirekt (t.ex.
de som syns i en spegel eller bakom transparenta objekt).

Alla berikningar som genomfors for att simulera ljus tar tid, och i de flesta omridena i en
scen kommer simuleringsresultatet inte att dndra sig fran bild-till-bild. Dirfor studerade vi
i vilken utstrickning data kunde dteranvindas Gver korta tidsperioder med minimal negativ

paverkan pa bildkvalitet.

I denna avhandling har vi visat att mer komplexa ljusfenomen kan approximeras i realtid
utan att forlora kvalitet i simuleringens resultatet. Forhoppningsvis banar detta vig f6r nya
metoder och reflekteras i vilka ljusfenomen som simuleras i interaktiva grafikapplikationer,
som datorspel och visualisering.

Towards Fully Dynamic Surface
[llumination in Real-Time Rendering
using Acceleration Data Structures

1 Overview

The research presented in this doctoral thesis was undertaken in the field of Computer
Graphics (CG), which focuses on generating single or sequences of images —a process
known as rendering— with the help of computers. In order to produce those images, there
are many different aspects to take into consideration: how does light propagate throughout
the virtual scene, how it interacts with different objects, how do objects move/are deformed,
how are objects represented, etc. Those aspects are complex and form their own research
sub-areas. In this particular thesis, the discussion will be centred around the first aspect
presented earlier, namely the simulation of light propagation within a virtual scene. A
more in-depth explanation will be given as progressing through the thesis, but this initial
section will focus on describing the importance and impact of Computer Graphics as well
as outlining the organisation of this piece of work.

1.1 Computer Graphics

The field of Computer Graphics has evolved considerably since its debut, back in 1963,
with Ivan Sutherland’s Sketchpad [44] which allowed sketching with a pen on a computer.
Today, it has become prevalent in, among others, advertisements, films, software for archi-
tecture, design, or even medical software, all kinds of different simulators, and computer
games. In some areas, CG has helped reducing costs and improving turnaround by allow-
ing pre-visualisations of designs (of cars and buildings, for example) without requiring the
construction of prototypes or models. For others, it improved safety by letting people train
in safe but realistic environments, like pilots spending hundreds of hours in flight simulat-

ors before flying a real plane. It also opened new doors in entertainment, allowing users to
be visually immersed in virtual worlds like in computer games.

There are two different types of applications to be distinguished in Computer Graphics:
real-time and offline. Real-time CG aims to provide images as fast as possible, and at least
24 per second to give the impression of a continuous flow of images rather than a succession
of different images. This is the domain of computer games or simulation software, where
the user needs fast feedback on their actions and updates on their surroundings. At the other
end of the spectrum lies offline rendering, where the generation of a single image might
stretch from a few seconds all the way to several days. Here, the images are not meant for
immediate consumption, but will instead be incorporated into a bigger set, like a film for
example. Due to the large differences in time constraints between the two types, there is
a difference in terms of precision of the computations performed, with offline striving for
being as close to the physical behaviour as possible while real-time needs to approximate
those behaviours. Real-time will be the focus in this thesis, but several approaches from
offline rendering will be presented.

1.2 Outline

Let us first consider the thesis title, to help describe the main areas that will be discussed
later. One of the main aspects, sitting in the middle, is the real-time rendering part, as it
imposes some heavy constraints on the amount of computations that can be performed
for generating an image. It is further constrained by needing to be fully dynamic, which
allows for everything in a virtual scene to be animated and moving: objects, cameras, and
even light sources. Surface illumination describes the kind of computations performed:
evaluating how much light a given surface in the virtual scene receives; volumetric effects
such as fog or smoke are not considered. For estimating the light transport within a scene,
physically-based models will be used that approximate some of the light propagation. Fi-
nally, designing and using different acceleration data structures will be decisive in rendering
images under those constraints; acceleration data structures provide more efficient accesses
to the data they contain.

The field and the required knowledge for understanding the presented research will be
explained in the following sections. First, Section 2 discusses the different elements that
make up a virtual scene. Next, graphics cards are described to highlight their capabilities
and differences compared to processors in Section 3. This is followed by an introduction to
light transport, its terminology, and foundational algorithms in Section 4. Section s gives
an overview of the evaluations performed and the methodology followed while working
on the different research projects covered in Section 6 of this thesis. A summary of the
contributions made during those projects is given next in Section 7. Finally, Section 8
concludes and opens up about what to expect in the near future.

A A

Counter Clockwise (CCW) Clockwise (CW)

Figure 1: Visualising the difference between counter clockwise and clockwise windings. Starting from the vertex A and for the
same three vertices 4, B, and C, a counter clockwise winding defines the triangle ABC while a clockwise winding
results in the triangle ACB.

2 Virtual Scenes

Before rendering anything, the data to be visualised will be described. At a high level it is
a virtual scene, often three-dimensional but that is not a constraint. A scene is made from
different types of information, with the main ones being: geometric data (see Section 2.1),
materials (see Section 2.2), light sources (see Section 2.3), and cameras (see Section 2.4). All
of those are organised by a structure called the scene graph, presented in Section 2.s. Finally,
an overview of the factors affecting the complexity of a scene will be given in Section 2.6.

2.1 Geometric Data

Geometric data is, along with cameras, one of the mandatory elements needed to render a
scene. At its core it consists in points grouped into rendering primitives. For the purpose of
this dissertation, only three-dimensional triangles will be discussed as they are the dominant
primitive used, but other commonly-used primitives are, among others, quadrilaterals, and
Bézier curves.

Points A three-dimensional point Pis defined as P = xit)/-j]'\—i—z- k = (x y z),where
the unit vectorsi ./j\, and E, along with an origin, form an orthonormal basis. (x ¥ z) are
the coordinates of P in the space defined by that particular basis, and P will have different
coordinates when expressed in a different space; Section 2.4 will present commonly-used
spaces in Computer Graphics. Points can be used as a rendering primitive, for example
when visualising a point cloud generated by scanning a real object using a laser, however in
this dissertation they will always be grouped into triangles before being rendered.

Triangles Triangles are the predominant rendering primitive with dedicated support in
all existing graphic cards. A triangle has the advantages of being a surface (which most

i Wi Wi 2 i
PR N 2%

< S f 72,77 ';,/

.'“‘Qﬁlf’ 1 AR #"

Figure 2: Visualising how an incoming ray @, can be reflected by different types of reflective materials. From left to right: diffuse,
glossy, near-specular, and specular.

rendered objects are), and all of its vertices will always belong to the same plane (unlike a
quadrilateral where the fourth vertex could be sticking out of the plane defined by the three
other vertices). A triangle is specified by providing the three points (aka. vertices) in space
located at its “corners”, and the relative order in which those points are given which is also
known as winding (see Figure 1 for a description of winding).

Geometric normals With the vertices and winding of a triangle, it is possible to compute
its normal 1 (i.e. a vector of unit length perpendicular to the plane defined by the vertices
of the triangle):

n = normalise ((P; — Py) X (P, — D))

where P; represents the i-th vertex of the triangle. From there, a front and back side of the
triangle can be defined: the front side lies on the same side as the normal, and the other
side corresponds to the back. As the normal is computed based on the order of the triangle
vertices, misinterpreting the winding of a triangle will result in inverting its normal and
swapping its front and back side.

Meshes A mesh is a set of connected triangles, generally forming a single object.

2.2 Materials

While geometric data describes the shape of objects, materials model how the light interacts
with objects: for example, is the object reflective and if so how reflective is it, or is it trans-
parent. Only an overview of materials will be given here; for a more in-depth presentation
on the subject, textbooks such as Physically Based Rendering [38] are recommended.

This interaction is represented by a function called the bi-directional x distribution func-
tion (BxDF), where x reflects the type of interactions handled: for example, if only re-
flections are handled the term BRDF is used with the ‘R’ standing for refleczance. Other
common denominations are BTDF (“T” for transmittance, i.e. transmission through trans-
parent objects), BSDF (‘S’ for scattering, which handles both reflectance and transmittance),
and BSSSDF (‘SSS’ for sub-surface scattering, used to model among others skins, marble,
and liquids such as milk).

Texture

> i
Geometric normals Shading normals
(a) lllustrating texture mapping. (b) Comparing geometric normals to shading ones.

Figure 3: Showcasing what different vertex attributes are used for, here for texture coordinates on the left, and per-vertex
normals on the right.

Looking at scattering, three main behaviours are usually described: diffuse, glossy, and spec-
ular. A diffuse material reflects or transmits light equally in all directions, giving a matte
look as no region will appear brighter than others, regardless on the viewing angle. At the
other end of the spectrum are specular materials which reflects or transmits light in a single
direction, like a clean mirror for example. Most materials lie in between the two previous
types, and are referred to as glossy. Figure 2 visualises how they each, for a given incoming
direction, reflect light.

It can be interesting to vary the material properties over an area, to add some rust in some
places on a metal object for example. One way to do so is to increase the density of tri-
angles in the area, such that each triangle will only cover a sub-area with identical material
parameters. However this can dramatically increase the number of triangles in the scene
and the cost of rendering such a scene, and that means editing the mesh every time new
material details are added to the model. To alleviate those issues, a technique called zexzure
mapping [12] (visualised in Figure 3a) was developed which maps an image (called a rexzure
map, or just texture) onto the mesh and its triangles via a set of coordinates called the rexzure
coordinates. Texture coordinates are often specified per vertex, and the values for all other
locations on the triangle are obtained by interpolating between the values given by each
vertex. Texture mapping can also be used to add holes or transparency to objects by storing
an alpha value representing the opacity of an object, with 1 corresponding to fully opaque
and 0 to fully transparent. Alpha testing checks whether the alpha value is below a given
threshold, in which case the current geometry location should be ignored and whatever is
located behind it becomes visible.

If the geometric normal is used when evaluating the materials, a high density of triangles
will be required to represent curved surfaces without looking faceted due to sudden changes
in normal direction. To avoid needing too many triangles, it is common to specify a normal
per vertex which can differ from the geometric normal; it is known as the shading normal,
as it is used during shading, to differentiate it from the geometric normal. Shading is the
act of computing the perceived colour of a visible surface, for example by computing how
much light it reflects towards the camera sensor. Similar to material properties varying

spatially through the use of texture maps, normals can also be stored in normal maps to
provide additional granularity than specifying them at each vertex. Figure 3b illustrates the
difference between using geometric and shading normals.

2.3 Light Sources

For us to see anything, light has to reach our eyes (or the sensor of a virtual camera) either
directly or after interacting with different objects around us; that light is emitted by a light
source. There are several types of light sources used in Computer Graphics, and those types
belong to one of the following categories: “global”, point, and area lights. The terms “light”
and “light source” will be used interchangeably in this thesis.

“Global” Lights “Global” light sources will affect the whole scene, as opposed to the
other two categories which are a lot more localised as to their influence range. This group
contains two different types: directional lights, and environment maps. The former is a light
source that has no location but emits all of its light as parallel rays along a specified direction
(hence the directional name). It is used as an approximation for the direct lighting coming
from the Sun: all the rays coming from the Sun appear to be parallel as they hit the Earth,
due to the large distance between the two celestial bodies.

Environment maps consist of one or more images, depending on the representation used.
They can be used to cheaply represent what a user can see in the distance, like distant
mountains on the horizon, and act as light sources, with the Sun contributing vastly if
present in the image(s). The sky-part of the images can also be taken into account to
approximate all the light scattering that happens in the atmosphere and still provide some
light even right after the Sun has gone down, for example.

Point Lights Contrary to “global” light sources, point lights do have a position and will
be carefully placed by artists to provide lighting in key locations. The name comes from
those lights representing a singular point in space and having no area. They emit light
uniformly in all directions, except for a subcategory called spotlights which constrain their
emission profile to within a given cone. This type of light sources has been widely used in
real-time applications like computer games, as it is computationally cheap to evaluate their
contributions and the shadows they produce, while still giving good visual results.

AreaLights While point lights are convenient, they can not accurately represent the lights
that surround us, especially those that have a large surface area. This is due to the visibility
between a location in the scene and the area light varying depending on the selected loc-
ation on the light source. This adds a third category of lighting conditions from a given

Figure 4: Visualising the difference between the hard shadow cast by a point light, on the left, and a soft shadow from an area
light, on the right. Point lights will always create those sharp transitions between being fully lit and being fully in the
shadows. Area lights can also create sharp transitions under certain circumstances, but are overall known for their
softer transitions.

light source, to the existing fully /it (the whole light source is visible) and fully in shadow
(the whole light source is occluded): partially lit, i.e. only part of the light source is visible,
resulting in soft shadows rather than the hard shadows from point light sources. The differ-
ence between the two is visualised in Figure 4. Note that the penumbra (i.e. the partially
lit area) can be very limited to non existent if the area light subtends only a small angle of
the hemisphere of the surface being lit: for example, despite the Sun having a large surface
area, it is located so far away from us that it is barely more than a small disc in the sky

One of the area light types, analytic lights, is similar to point lights in that it has no under-
lying geometry and is purely virtual. The other type of area lights are mesh lights, which
are parts of the geometry itself (see meshes in Section 2.1), like individual triangles, that
emit light. This provides the most flexibility in terms of lighting as one can, for example,
sculpt a very complex neon sign and let it do the lighting without having to painstakingly
place analytic or point lights in various places to try to approximate it. The problem is that
the number of potential light sources grows dramatically as a result: where one light bulb
could be approximated as a single point light, its mesh might be made of twenty or even
a hundred triangles depending on the level of detail, increasing by one or two orders of
magnitude the number of light sources; this topic will be further discussed in Section 6.1.

2.4 Cameras and Representation Spaces

A virtual camera is the entry point for a user into a virtual scene: it lets them, among
others, look around at what is present, move, and zoom in or out. An actual camera, like a
digital single-lens reflex (DSLR) camera or even our own eyes, are complicated systems whose
characteristics affect the generated image. For example, those systems have an aperture that
is not infinitesimal, resulting in more light reaching the sensor but also in some objects
being out-of-focus and appearing blurrier: defocus blur, or depth of field effect. As the focus

was on surface illumination and not on camera effects, a simple camera model was used

throughout the research: the pinkole camera model.

A pinhole camera consists of an infinitesimal hole letting light shine on the sensor placed
behind it. The camera has several attributes, such as a position, a direction in which it is
looking, and a vector pointing upwards to define how the camera is oriented around the
looking direction. As light falls onto the sensor, a projection occurs from a 3-dimensional
point onto a 2-dimensional surface. Different types of projection exist for different pur-
poses, but the one most commonly used in Computer Graphics is the perspective projection,
which projects object similarly to our eyes. For example, perspective projection makes ob-
jects further away look smaller than similarly-sized instances located near the camera. The
perspective takes several additional parameters, such as a near and far plane to delimit the
distances at which objects can be observed, and a horizontal and vertical field of view to
delimit how wide the camera can see.

The projection performed by a camera is only one of many space transformations applied
to vertices in a scene during rendering. As their properties can influence algorithm and
acceleration structure designs, an overview of the most common ones will be given. The
first space encountered, object or model space, is used during the creation of the various
objects to be placed in a scene. In this space, the origin will usually sit at the centre of
gravity of the object, or any other location that facilitates the design process; it is also the
space the geometry of an object is expressed in when being imported into an application.
As object space is specific to each object, combining multiple objects into a common en-
vironment needs a new space: world space. There are no specificities regarding the choice
of its origin and axes, the important part being that all geometries, light sources, and cam-
eras will be positioned and oriented in that space. To simplify some of the computations
when rendering, the camera or view space can be used; they are simply a modification of
the world space to place the camera at its origin and orientate it in a specific way. Applying
the projection transform will move to c/ip space where it is possible to delimit the volume
visible to the camera which is known as the view frustum and looks like a truncated pyr-
amid with the near plane cutting off the top of the pyramid, and the far plane being its
base. From clip space, normalised device coordinates (NDC) can be reached via a specific
division which transforms the view frustum into a cube where all positions within the view
frustum have their coordinates in the range [—1,1]°. Finally, applying an affine transform
on NDC and dropping the depth component will result in screen space, a two-dimensional
space defined over [0, w| x [0, 5] with w and / the width and height respectively of the
rendering resolution.

2.5 Scene Graphs

As seen in the previous section, models will usually be imported in model space but need
to be placed in a common environment called world space. Where to position the objects

could be left up to the application, but in most scenarios it is best to leave it to artists to
carefully place them. This information is then retrieved by the rendering application thanks
to a structure called the scene graph. As the name implies, it is not just a list but an actual
graph (usually a directed acyclic graph (DAG)), meaning any nodes can have children which
can have children themselves, and so on. This allows for hierarchical placement and anim-
ations: a table node could have a book node as child, resulting in the book only needing
to know how it is positioned relative to the table and does not need to know where the
table itself is located, as the book world transform can be obtained by combining its own
transform (relative to the table) and multiplying it by the transform of all its ancestors. This
considerably simplifies the animation of objects that are related: for example, animating the
table will automatically result in all of its children being affected by that animation. Addi-
tionally, multiple nodes could point to the same mesh with different transforms, allowing
for a mesh to be instanced (i.e. duplicated) without having to store the same geometry
multiple times in the scene file.

2.6 Scene Complexity

As a last point on virtual scenes, an explanation and discussion about scene complexity
will be given. It is an important topic while working on a research project, as using more
complex scenes will help test how well the method scales.

The parameters emphasised when discussing the complexity of a scene will depend on the
use case, and some might not even be considered complex for certain algorithms. A list of
different parameters will be presented, along with the main areas they impact.

Triangle count It has a direct impact on rendering performance (and on memory usage),
be it for rasterisation or ray tracing.

Depth complexity For rasterisation this would be the number of triangles covering a given
pixel, and affects rendering performance in the sense of “wasted” work: a triangle
might have been shaded, only to realise afterwards that it is being hidden by another
triangle and none of that shading will actually be used in the final image. In ray
tracing the number of primitives hit by a ray will impact performance, especially
in the case of transmissive objects. There is also the case of rays glancing right past
objects, that might still hit the bounding boxes but not any of the actual geometry;
Section 4.6 will explain what the bounding boxes are, incurring most of the cost of
traversing the acceleration structure for nothing in return.

Materials The number of different materials and their complexity will have a large impact
on rendering performance, regardless of the rendering method. Some types of ma-

terial like specular reflective or refractive ones will require additional computations
to find out what is being reflected or what is located behind the object.

Light sources The amount of light sources impacts performance if trying to evaluate as
many as possible, or image quality if only a subset are considered. The type of light
sources also affects performance, as area light sources require more samples than

point lights.

Animations Complex animations might require physics simulations to properly animate
the cape of a player as they move around, for example, or other types of costly com-
putations. Animated objects will require various acceleration data structures to be
updated, like in ray tracing for example, which adds to the total frame time. It may
also affect the image quality (if an algorithm relies on temporal reuse), as reusing res-
ults from previous frames will be more complicated due to the scene layout changing
or the camera now looking somewhere else.

3 GPU Hardware

In this section, an overview will first be given of how a Graphic Processing Unir (GPU)
differs from a central processing unit (CPU) and important concepts (Section 3.1), before
diving into the pipelines specific to GPUs (Section 3.2) and how different ones can be used
to solve a fundamental problem when rendering: figuring out which surfaces are visible
from a given point of view (Section 3.3). Finally, in Section 3.4 the evolution over time of
GPUs will be briefly discussed, especially during my Ph.D. studies which saw some drastic
changes.

Note: Only NVIDIA GPUs were used throughout the work presented in this thesis, leading
to the author being a lot more knowledgeable about that hardware than the one from
competitors, and to them being cited more often regarding new features or similar. As a
result, the names from the CUDA API will be used to refer to some concepts, so keep in
mind that those might be called differently in other APIs.

3.1 Comparing CPUs and GPUs

The use of GPUs has allowed for more detailed and realistic-looking renderings than if
CPUs were used for rendering, as rendering is massively parallel and GPUs were designed
for that purpose. Due to its predominance in rendering, all algorithms presented in this
thesis being specifically tailored for GPUs, and the reader not necessarily being familiar
with how GPUs work, this part presents the differences between CPUs and GPUs. If we
take a top of the line consumer GPU, at the time of writing, e.g. an NVIDIA RTX 3090,

I0

Grid N |>
Inter-communication ,' NS | GPU “Core |
via global memory / oo bty

; Ny |

i GPU “Core” |

L __ GPudie)

Warp Block
Inter-communication! ;| Inter-communication GPU board
via instructions via shared memory |-_'|-| n |

Figure 5: An overview of the execution hierarchy of a compute dispatch on a GPU, and how primitives within a level can
communicate between themselves.

it supports 128 threads running concurrently on a single multi-processor which it has 82
of, while a top of the line consumer CPU like an AMD Rg 5950X will support 2 threads
on each of its 16 cores. Of course this does not tell the whole story, like CPU threads will
run at a way higher frequency than GPU ones, but it underlines the differences in terms
of parallel computations and how the memory management might be quite different to
provide the data to all those threads in a timely fashion.

Execution On both CPUs and GPUs, most of the code is written from the perspective of
a single thread (represented as a grey arrow) executing on the hardware; the different shapes
mentioned in the text can be seen in Figure 5, which summarises most of the explanation
below. While that is indeed the case on CPUs where most threads will work independently
from each others, on the GPUs they will run in groups (the orange boxes) i.e. all threads
within a group will execute the same instruction at the same time but with different oper-
ands; details may vary between vendors and generations, but this remains the main exposed
behaviour. Threads within a group can communicate with each other using dedicated in-
structions. These thread groups, or warps, are not on their own either, and are themselves
grouped into a block (the blue boxes); all warps of a block are guaranteed to be running
on the same GPU core (light purple area), which allows them to communicate between
each other using some local memory called shared memory. Finally, blocks are partitions
of a final entity called the grid (the black box), which corresponds to the set of all threads

requested by the developer to perform some work.

As GPUs can be quite different from CPUs, dedicated APIs have been designed to al-
low for efficient program execution on GPUs. The most common ones on desktops are
DirectX 11/12, OpenGL, and Vulkan for graphics or compute workloads, and CUDA or
OpenCL for compute ones.

II

Linear|01 02 03 04 05 06 07 08 09 10 11 12 13 14 1516 17 18 -~

-

01102103;04105106 E—

07108109]10111112 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36|

13114115;16117118 Memory

19120;21]2212324

2526,2712829,30 Tiled |01 02 0307 080913 14 1504 05 06 10 11 12 16 17 18 -~

31i32i33y34(35136] T .
Image 19 20 21 25 26 27 31 32 33 22 23 24 28 29 30 34 35 36|

Memory

Figure 6: A visual representation of two ways of storing an image. Each 3 x 3 tile is colour-coded to be more easily distinguished.

Memory System Data can be sent between the CPU and a discrete GPU over the peri-
pheral component interconnect express (PCl-e) bus, in which the graphics card is plugged in;
integrated GPUs (i.e. located on the same die as the CPU) have different characteristics in
that regard, and will not be discussed here. Given the large amount of threads, sending all
the data required to keep those threads busy over PCl-e each frame would not be energy
efficient and would take too much time. As a result, discrete GPUs have their own memory
known as video random access memory or VRAM, similar to the (system) RAM associated
to a CPU. VRAM is designed for massively parallel platforms, and as such prioritises band-
width to move as much data as possible at once, at the cost of latency (how long it takes
for one packet to arrive at the destination). To offset the high latency of VRAM, GPUs are
built with over-subscription in mind: they can keep track of more threads than they can
run concurrently, allowing them to pause threads while they are waiting on data and switch
to a different group of threads which is ready to be executed. GPUs are designed to allow
very fast thread switching unlike on a CPU, and so starting more work than your GPU can
run at once is not detrimental to performance in most scenarios. Even if VRAM has a high
bandwidth, one has to take care of how different threads within a group access memory
to try to make the most out of the resources. If each thread is reading from (or writing
to) completely random areas in memory, which can easily be the case with ray tracing, the
group will be constantly waiting on memory and not getting any progress done.

Threads access two different types of memory resources. The first one are buffers, which are
just arrays whose elements are stored contiguously, and in order, in memory. Zextures or
images make the other type and are often used for actual images. As operations on images
will often look at a small 2-d neighbourhood, textures elements (or zexels) will be stored as
tiles to optimise for those accesses; a visualisation of the two different types of storage can
be seen in Figure 6. Additionally when accessing a texel, continuous coordinates are used
making it possible to try to read in-between two elements: for example if a texture has two
elements, one stored at index 0 and one at index 1, it is allowed to try to access the element
at index 0.3 even if it does not exist. What happens in those cases can be configured by the
user, and common behaviours are returning the closest element (in this case, texture[0]),

12

or returning a linear interpolation of the two closest elements weighted by the distance
(0.3 - texture[0] + 0.7 - texture[1]). This is performed automatically by the hardware.

3.2 Pipelines

When learning about Computer Graphics and how to program a GPU to get an image
on the screen, the term “pipeline” will always show up sooner or later. It describes a set of
stages performed on the GPU hardware in a pre-defined order, to compute something at
the request of the user. Some of the stages might use fixed-function hardware while others
can run programs written by the user, but in both cases the input data can only come from
previous stages in the same pipeline, or from operations which occurred earlier.

At the time of writing, there are three different pipelines available in modern rendering
APIs: rasterisation, compute, and ray tracing. The compute pipeline only consists of a
single stage which runs a user-written program and uses GPU memory to get its inputs
and store its outputs. This pipeline is commonly used nowadays in computer games or
rendering algorithms to compute post-processing operations or other highly-parallel com-
putations. The other two pipelines are more complex and will be described in their own
sections further down as a result.

Rasterisation

The first consumer-level graphics hardware, the Voodoo, was first introduced back in Octo-
ber 1996 by 3dfx Interactive, and featured a rasterisation pipeline consisting of only fixed-
function hardware with some limited configuration. In 20012002, some of the fixed-
function stages were replaced with programmable ones which were quite limited at first,
but grew more and more powerful. Today it consists of 13 stages, 5 of which are program-
mable, but even after 25 years of evolution it is still subject to changes with important
modifications proposed by NVIDIA in 2018. The current pipeline and the proposed edits
can be seen in Figure 7. As they do not play a central role in the research presented in this
thesis, only a brief description of the different stages will be given.

Starting with the more traditional pipeline (corresponding to the left and centre column in
Figure 7), the draw command kicks off the start of the pipeline and might perform some
configuration before the first actual stage, the input assembler, is run. The input assembler
is responsible for fetching the different attributes referenced by the next stage, and making
those available, allowing it to be oblivious to how those attributes are stored in memory.
For example, the mesh might use indexing so the input assembler needs to first read out the
indices used for each primitive in order to provide the correct vertices to the vertex shader
as all of that is completely transparent to it. Following the input assembler is the first

13

Draw Draw Mesh Tasks

v ¥
Input Assembler Uses tasks? —

v & Yes No
Vertex Shader Task Assembler
¥

@ess.Control ShadeD<— Uses tessellation? Task Shader
v

Yes

Mesh Assembler [«—

‘ Tess.Primitive Generator

v No
Gess.Evaluation Shader Mesh Shader
(Geometry Shader)«— Has geometry shader?
Yes v No

Y

Vertex Post-Processing [«

¥

Rasterisation

v
Early Per-Fragment Tests

¥

Fragment Shader

Late Per-Fragment Tests

v
Blending

Figure 7: An overview of the different stages of the traditional and newly-proposed mesh shader-based rasterisation pipelines
in Vulkan. The traditional pipeline corresponds to the left and centre column, while the mesh shader-based one is
made of the right column and the bottom of the centre column (starting with Vertex Post-Processing. All stages are
represented by rectangles, with rounded corners ones being implemented in programmable shaders, and the other
ones in fixed-function hardware.

programmable stage, the vertex shader which takes care of transforming each vertex from
their current space (usually object space) into clip space for the rasteriser to work with, and
generating attributes consumed by later programmable stages. Among the transformations
commonly applied here, vertices are translated, rotated, and scaled, to reflect their status
relative to the camera in the current frame, as well as apply the projection of the camera.
After the vertex shader comes an optional block of three different stages, added in 2009, to
perform tessellation. Tessellation can dynamically increase the level of detail of a surface by

14

splitting it into smaller triangles, making it possible to keep low resolution version of the
object if it is located far away from the camera, but generate a higher resolution version if it
moves closer. The resulting primitives are then sent to another optional stage, introduced in
2006: the geometry shader, which can transform a primitive into another type of primitive.
It can be used for the rendering of particle effects, where each particle is stored as a single
position (its centre) to save on memory space, which the geometry shader then expands into
a small quad before it is rendered. The rigidity of some aspects of the pipeline described up
to now, as well as the fact that computer games will often run compute shaders, prior to
even starting to draw, to discard whole objects that are not visible. This has lead to looking
for a more compute-based approach to that part of the pipeline. One such proposal is the
mesh-shader method proposed by NVIDIA, and visualised in the third column of Figure 7.

Once the position and shape of the different primitives has been finalised, the vertex post-
processing is run to discard primitives located entirely outside of the view frustum, or c/ip
those which are only partly outside. Finally, the rasterisation stage — which gives its name to
the whole pipeline— is reached. Its primary role is to rasterise the primitives, i.e. evaluate
which pixels are covered by them, and compute the attributes for each individual pixels.
This computation is performed by interpolating between the value associated to each vertex
of the primitive, for all the different attributes. The primitive will be diced into fragments,
where each fragment covers a single pixel. As primitives are not necessarily sorted before
being drawn, it can occur that some of its fragments being currently processed happen to
lie behind some fragments of another primitive that was processed earlier. If the fragment
being processed turns out to be hidden, there is no reason to continue processing it and
spending resources on something which will not be used. This is one of the main roles of
the early per-fragments tests stage. If the fragment passed the early tests, the fragment shader
will be executed, and is commonly responsible for evaluating the lighting and material at
the current world position to compute the colour stored at this pixel. Since the fragment
shader is allowed to modify the depth of the fragment, instead of performing the tests
right before the fragment shader, they will be run right after it resulting in the /late per-
fragments tests. Once the fragment has been shaded and the tests have been successful,
the outputs of the fragment shaders (usually the colour of the pixel) will be written into
a texture during the final stage, known as blending. Instead of just overwriting whatever
value was previously stored at a given pixel, it can instead blend them together (hence the
name), to simulate a transparent object for example; it is a fixed-function stage, but the
type of blending performed is customisable.

I5

Dispatch Rays

Intersected Y
es
procedural ——>€ntersection Shadea
@ay Generation ShadeD geometry?

Any-Hit Shader

Acceleration Structure Traversal |

v
Had any confirmed hir?

@losest Hit ShadeD T
zs No

Figure 8: An overview of the different stages of the current ray tracing pipeline in Vulkan. All stages are represented by rect-
angles, with rounded corners ones being implemented in programmable shaders, and the other ones in fixed-function
hardware.

Ray Tracing

The current ray tracing pipeline used on GPUs initially debuted in 2010 with OptiX [37].
However this might change to better suit applications, as ray tracing is seeing increase
usage in computer games and other real-time applications following the introduction of
dedicated hardware in GPUs for accelerating it. Nonetheless, this section will present the
ray tracing pipeline as it is found today, in 2021, in DirectX Raytracing (DXR) and Vulkan
ray tracing (VKRT) extensions.

The ray tracing pipeline is composed of five different programmable stages; an overview of
the pipeline is presented in Figure 8. The first stage, called dispatch rays, is responsible for
starting the appropriate number of threads and configuring the hardware before the next
stage, the ray generation shader which is the “brain” of this pipeline, computes and traces
the initial batch of rays against a specified acceleration structure.

The hardware will then traverse the acceleration structure with each ray in search for in-
tersections. In case the acceleration structure contains procedural primitives, they are rep-
resented as axis-aligned bounding boxes (AABBs) inside the acceleration structure and the
hardware will call an intersection shader to resolve whether the custom primitive stored in
the AABB was actually hit or not; in the case of triangles, the hardware will resolve the
intersection test itself, usually leading to increased performance when using triangles over
procedural primitives. Once an intersection has been found, the any-hit shader will be in-
voked, if specified; it is mainly used to perform alpha testing (see Section 2.2) and tell the
pipeline to ignore the current hit if the test fails, but can serve other purposes, like accu-
mulating the contribution of a photon for each collection point in range as presented in

!Clipping will either modify the primitive, or replace it by multiple new primitives, while ensuring that the
final primitive(s) describe exactly the shape of the initial primitive for the part located inside the view frustum.

16

Paper v. Note that this shader will not be invoked for every possible intersection along a
given ray, nor in any defined order, but only for those located in the distance range specified
on the ray and which are closer than the closest intersection found until now.

At the end of the search and before handing back control to the ray generation shader, either
the miss shader will be invoked if no intersection was found nor kept, or the closest bit shader
otherwise. Data can be communicated between the different stages via a special structure
called a payload, which can be read and written to from all except for the intersection shader.
The closest hit shader is the only other stage, apart from the ray generation shader, which
can trace a new ray, allowing for recursion. It is however not recommended in current best
practices, and one should rather trace new rays from the initial ray generation shader or by
launching a new ray tracing pipeline that will continue from where the previous left off.

3.3 Solving Primary Visibility

Being able to evaluate point to point visibility between two random positions in space,
A and B, for example to know if a point lies in shadow or not, is an important type of
query for rendering. To compute the distance to the closest surface seen from A along the
vector ab, all triangles potentially involved would need to be rasterised. If many visibility
queries from different origins are required, rasterisation is not able to efficiently produce
those results.

On the other hand, the rasteriser hardware was designed for solving primary visibility, which
consists in figuring out all positions that are directly visible from the camera. Indeed, it
can make use of the high coherency between nearby pixels to efficiently perform its work;
this also applies to primary visibility from light sources, which is why shadow maps have
been used for so long. Rasterisation remains the most performant way of solving primary
visibility in most scenarios.

As part of improving the performance of rendering a scene using rasterisation, Geometric
buffers (or G-buffers) were introduced [39]. A problem with rasterisation is that a triangle
might successfully pass the z-depth and run all of its fragment shaders, only to be later
occluded by another triangle, resulting in all those computations going to waste. Fragment
shaders are by far the costliest stage to run in modern games due to the complex lighting
and materials in use. To avoid that, the idea is to first rasterise all the triangles as usual,
but instead of shading in the fragment shader, only geometry-related data will be stored
into buffers on a per-pixel basis, like the normal, material ID, texture coordinates, etc. The
shading takes place in a second pass that will read that data, and perform its computations
only once per pixel; as the shading is postponed to a later pass, this technique is called
deferred shading. Some of the data in the G-buffers will be overwritten multiple times, but
it remains cheaper than the alternative.

17

This technique of generating G-buffers is applicable to ray tracing applications, for example
to solve primary visibility using the rasteriser for increased performance (the G-buffers are
then used to initialise the ray tracing from that first hit), or to be used in a post-process step,
like filtering, which usually rely on some geometry information (like normals) alongside
colours.

3.4 Evolution

GPUs have changed since I embarked on my Ph.D. studies, and this section will provide a
brief summary of their evolution, starting with new features and improvements. One of the
first new feature which had an impact on the research, was pre-emption being supported,
which allowed a GPU to switch from executing one pipeline, to executing a completely
different one. This is different from the switching of threads described in Section 3.1, as that
only takes place between threads from the same pipeline dispatch. From a user perspective,
pre-emption meant that if a shader in an application took too long to run, it would no
longer result in the whole screen freezing until it completed. From a developer perspective,
it was now possible to debug a graphical application on the same machine one was using,
without needing to run the application on a different GPU than the one to which the
screen was connected. New hardware was introduced to efficiently run machine learning
algorithms, helping the democratisation of real-time machine learning-based denoisers for
example, but the major change for the work presented in this thesis, was the introduction
of custom hardware to accelerate ray tracing.

Comparing GPUs in 2021 to those in 2015, the number of streaming multi-processors per
GPU has increased by a factor of four, resulting in similar changes in the amount of single
precision floating point operations per second, while memory bandwidth lagged a bit be-
hind and ended up being 3x higher today. The amount of VRAM available has been
changing suddenly and by larger amounts: for example, on the very high-end side, it star-
ted at 12 GiB and stayed there for two generations, then doubled and remains there for the
second generation in a row. On the lower end, it started at 2 GiB, tripled to 6 GiB for
two generations, to now end up at 12 GiB. One of the possible reason for the increase in
VRAM for the current generation, could be the new consoles (released around the same
time) shipping with 16 GiB VRAM. All the numbers above were from looking at the first
x60? and TITAN released per generation by NVIDIA, from the GeForce GTX 960 to the
GeForce 3060, and GeForce GTX TITAN X to the GeForce RTX 3090.

2j.e. card models ending with 60, such as 960, 1060, 2060, and 3060

18

4 Light Transport

The work presented in this thesis revolves around the efficient simulation of light transporrt,
i.e. how light travels within a scene, from where it is emitted, to where it enters our eyes or a
camera sensor after having interacted with different objects in that scene. While real-time
computer graphics aims to stay close to physically-based rendering, it does not simulate
how atoms are excited to emit photons nor how complex optical sensors work, instead
relying on coarse approximations. Similarly, light is assumed to travel in straight lines in
a vacuum, only changing direction as it interacts with volumetric effects (absent from this
thesis) or when changing medium, and therefore no wave optics is present.

Many different approaches have been proposed over the years to efficiently simulate light
transport, looking at different aspects of the problem. Only the ones directly relevant to
the methods described in this thesis will be presented. First, the terminology specific to
computer graphics will be introduced in Section 4.1. To symbolise the problem at hand,
an overview of the rendering equation will be given in Section 4.2, along with some of the
tools used to estimate it. In Section 4.4 and 4.5, an explanation will be given of the two
main classes of algorithms used in evaluating the rendering equation, the first one starting
from the camera and the second from light sources. Those algorithms would run much
slower if it was not for the dedicated acceleration data structures that will be described in
Section 4.6.

4.1 Teminology

When evaluating light transport, different types of light quantities are used. Their names
come from radiometry which focuses on measuring electromagnetic radiation. A light
source emits a certain amount of energy per unit of time, known as the radiant flux, ®, and
often simply referred to as flux. Flux density or irradiance, E, provides how much flux is
received by a surface per unit area. The main quantity used is called radiance and is denoted
L. It represents the amount of flux emitted (in which case L. will be used rather than),
outgoing (L,, i.e. reflected and transmitted), or incoming (Z;, i.e. received) by a surface,
per unit of direction and per unit of projected area. Radiance remains constant as a ray
travels through a vacuum, only changing as it interacts with matter.

As light interacts with objects, different effects can appear as illustrated in Figure 9. Colour
bleeding is one of those and takes its name from the colour of an object bleeding, i.e. being
carried over, onto another object. One such example is sunlight hitting a red brick wall
before being reflected onto a white wall. The cube in Figure 9a is similarly affected: it is of
a grey—white colour (seen on the top face), but has its left face tinted red by the red wall
to the left of the image, and front face lightly tinted purple from the similarly-painted wall

19

(a) Colour bleeding (b) Caustic

Figure 9: Various common global illumination effects.
The transparent glass object used in Figure 9b was made by Simon Wendsche, and is provided as one of the scenes
for the 3rd edition of Physically Based Rendering [38].

found behind the camera. Reflective or refractive surfaces, on the other hand, can create
caustics by concentrating light and generating those brighter areas. These are commonly
seen at the bottom of swimming pools, but can also be found at home like in Figure 9b

from a block of glass.

Different rendering resolutions are used in this thesis and in the attached papers. The two
main ones are 1080p which corresponds to 1920 x 1080 pixels, and 44 which here refers to
3840 x 2160 pixels.

4.2 The Rendering Equation

Sections 2.2 and 2.3 presented some of the representations of light—material interactions
used in Computer Graphics, as well as the emission of light, but no formulation of the
light transport was given at the time. This is where the rendering equation (1) from James
Kajiya [24] comes into play, providing an equation for computing the outgoing radiance
off a particular point, P, and along a specific direction, @,:

Lo(@0, P) = Lo(@0, P) + / (@, B, PV, P) (B - @0) T, 8

wieQp

where 0 is the normal of the surface at location P, Q p the set of all unit vectors located in the
hemisphere surrounding 1 and pointing away from P, p(&,, @;, P) the BRDF describing
the interaction of light and material at P, and (-)™ the dot product between # and &
clamping negative values to 0. The formulation given here ignores refraction, for simplicity.

L;(&y, P) is estimated by evaluating Equation (1) again, but this time at the first hit / found
when tracing a ray from P along &;, so by computing L,(—;, /). This recursivity and the
fact that any surface in the scene could theoretically contribute to any other surface are what
make physically-based rendering a challenge for real-time rendering. By replacing Z; (&, P)

20

Figure 10: Visualising the impact of indirect illumination in certain scenarios. On the left, only direct lighting is present, while
both direct and indirect are computed in the image on the right.
The renderings were taken from the author’s master thesis. The Sponza scene was created by Frank Meinl and is
available under the CC-BY-3.0 license from Morgan McGuire's Computer Graphics Archive [32].

with the evaluation of L, (—@&;, H) and refactoring the resulting equation, the contributions

of direct and indirect lighting can be highlighted:
Lo(@mp) = Le(aoa P)

+ / (o 01, P) (@ -) Lo(~0, H) !
wreql

w

o N (RN T ?
wreq?

[, ool ol L@,) @0y ol !
wHeqf
The second line in that equation corresponds to all the radiance emitted by all light sources
in the scene that reaches P without interacting with anything else on the way, hence the term
direct lighting. While the third and fourth lines compute all the radiance being reflected
off all objects in the scene and towards P, so there will always be at least one indirection
between the light being emitted and reaching P, giving that component the name of indirect
lighting. Figure 10 shows how much indirect illumination can contribute to the final image
in more closed environments.

4.3 Sampling and Monte Carlo

The rendering equation presented in the previous sub-section is too complex to be solved
analytically, except in simple scenarios. The approach taken in Computer Graphics has
been to use Monte Carlo integration which relies on random sampling to evaluate different
outcomes. As the number of samples taken increases, it will converge to the correct answer
and do so at a rate which does not depend on the dimensionality of the integral being
estimated. If applying the Monte Carlo integration to the integral 7 of function fover the
domain D, the following is obtained with the Monte Carlo integrator positioned to the

21

https://creativecommons.org/licenses/by/3.0/legalcode

Table 1: Visualising the impact made by using different PDFs when estimating the integral of the function f(see Equation (4)).
For each interval, the given value represents the result of the Monte Carlo integration with the specified PDF using a
single sample taken from that interval.

Expected value

Interval Using p1 (Eq. (5)) Using p> (Eq. (6)) Using optimal PDF
x € [0.00,0.25] 4 50 42
x € 1[0.25,0.75] 80 41.7 42
x € [0.75,1.00] 4 50 42
right of the limit:

[:/ﬂx)dx: lim lzﬂxz) withxiED (3)
D

n—-+00 7 —1])(xl-)

p is the probability density function and it gives the probability of obtaining a sample (e.g.

x;) within a specified domain (e.g. D) according to a selected distribution (e.g. uniform).

To limit the variance (i.e. how distant it is from the expected value) in the estimation,
p should be as proportional as possible to f'so that the ratio Ax)/p(x;) stays as constant as
possible regardless of the sample x; chosen; that constant value would be 1/7. In the limit,
if p was perfectly proportional to f; only a single sample would need to be taken to get the
correct answer. The further away p deviates from f; the more samples will be needed to
reach the answer, which is not ideal. Changing the probability distribution to distribute
the samples in the places where they matter most, is called importance sampling and was
used in Paper 111; other methods exist for reducing variance.

The function f (Equation (4)) will be taken as an example to demonstrate importance
sampling; it integrates to 42 over the interval [0, 1]. Ifa constant probability is used (i.e. p1,
Equation (5)) the Monte Carlo integration will return widely different estimations depend-
ing on which sample was selected, as can be seen in Table 1. On the other hand, if a PDF
is chosen that closely matches the original function, like p, (Equation (6)), the returned
results are a lot closer to each other and to the expected value of 42.

o = {4 if x € [0,0.25[U [0.75, 1] W

80 ifx € [0.25,0.75]
p1(x) =1.0 ifxe[0,1] (s)

{0.08 if x € [0,0.25[U[0.75,1]

pa(x) = (6)

1.92 ifx € [0.25,0.75]

Algorithms used to estimate the rendering equation can be qualified by different terms to
highlight their behaviour. If an algorithm is consistent, it will converge to the expected

22

result as the number of samples gets closer to infinity; a Monte Carlo estimator is con-
sistent. Additionally, the algorithm can be unbiased if there is no difference between its
expected value and the expected value of the function it is estimating, or biased otherwise;
an algorithm can be biased and still be consistent.

4.4 Tracing Rays From the Camera

The rendering equation formulates how to compute the amount of radiance travelling to-
wards each pixel of the camera sensor, and Monte Carlo integration provides a way to
evaluate this complex equation without needing an analytical solution to it. Now remains
the task of performing the random experiments at the core of Monte Carlo algorithms,
and averaging their results. This is where path tracing comes into play, but first 72y tracing
will be discussed as its precursor and the term most people have been hearing recently as it
became hardware-accelerated on new GPUs.

Ray tracing was initially described by Arthur Appel in 1968 [4] to compute shading and
shadows cast by objects from solid geometry. The version of ray tracing used today comes
from the reformulation proposed by Turner Whitted in 1980 [ss5] that transformed ray
tracing into a recursive approach. Instead of stopping at the first hit encounter, three new
rays would be traced: a shadow, a reflective, and a refractive ray; the contribution of each
ray is weighted based on material properties. However, this creates a tree of possibilities
with an exponential number of rays traced per pixel, up to 1 + 3 - 2” with 7 being the
number of hits encountered.

To alleviate that exponential growth, James Kajiya introduced path tracing in 1986 [24]
alongside the rendering equation. Path tracing traces one or more paths per pixel, with a
path corresponding to multiple ray segments in direct succession. This means that at each
hit, a single ray will be generated for continuing the exploration. Rather than evaluating
both the reflection and refraction similarly to ray tracing, path tracing will stochastically
decide which one of the two to estimate. This selection could be done with equal probab-
ility, or based on material properties to provide better results (i.e. performing importance

sampling).

The most common form of path tracing does not trace any shadow rays and instead relies on
(hopefully) hitting a light source while propagating through the scene. As the probability
for the paths to hit the light sources can be quite low, especially if the lights are small, the
variance in the image will be very high. Most path tracing implementations today rely on
the next event estimator (NEE) which allows for a direct sampling of the light sources from
each hit, replacing the shadow ray from Whitted's ray tracing. This estimator is similar to
the Monte Carlo integrator described in Equation (3), where the integral that needs to be
computed is the one from line 2 of Equation (2).

23

Figure 11: Highlighting the impact of caustics on a rendering. The left image is rendered with caustics disabled, while the
rendering on the right has them enabled. Photon mapping and other “backward ray tracing” methods are better
suited for rendering caustics than forward ones.

The rendering on the right is taken from Paper v. The transparent glass object was made by Simon Wendsche, and
is provided as one of the scenes for the 3rd edition of Physically Based Rendering [38].

4.5 Tracing Rays From the Light Sources

At the same time as path tracing was being presented, James Arvo introduced the idea of
backward ray tracing [s], i.e. starting the ray tracing from the light sources rather than from
the camera. The goal was to address certain limitations of ray tracing, such as diffuse inter-
reflections (e.g. colour bleeding) as well as computing “direct” illumination from under
transparent objects®. This approach was meant as a pre-process pass to ray tracing and not
as a replacement, leading to a multi-pass algorithm. First, rays were traced from the light
sources and the radiance they carried would be stored in textures at each diffuse surface
intersected (except for the first one). Then, ray tracing would be performed and take into
account the values stored in those textures.

Photon mapping [23] was proposed by Henrik Wann Jensen in 1996 as a more efficient way of
rendering global illumination and caustics compared to existing photon-based approaches.
Similar to backward ray tracing, the first pass starts from the light sources and traces light
paths (rather than rays). At each intersection, instead of storing the radiance into a texture,
a small structure called phoron is stored into one of two maps: a caustic photon map if the
photon is part of a caustic, or a global photon map. The algorithm uses photons for differ-
ent things, such as estimating shadows and helping guide a path tracer towards important
locations, but the focus here will be on using photons for estimating incoming radiance.
To do so, a gathering step is performed to find the £ nearest photons around the point
where incoming radiance should be estimated, and the flux of each photon is combined
and divided by the area over which they were gathered to estimate the incoming irradiance.

To accelerate the gathering of nearby photons in order to render images interactively, Stiirz-
linger and Bastos [43] used the rasterisation hardware of GPUs to “splat” the photons. As

3As the shadow ray is traced towards one of the light source and hits a transparent object, the shadow ray will
be reflected or refracted, possibly multiple times. This will cause the ray to deviate from its original trajectory
and most certainly fail to hit the light source, resulting in the shaded point being considered in shadow.

24

Figure 12: A highlight of light leakage due to too large photons. On the left a rendering with small enough photons that they
do not leak through walls, which is not the case for the image on the right as the size of photons was increased.
The main difference can be seen to the right and below the wall W; at the centre of the image: despite that wall
connecting directly to the wall W5 to its right, photons which landed behind W; still end up contributing some flux
to W5 in the image on the right.
Close-ups from renderings taken from Paper 1. The Sibenik scene was created by Marko Dabrovic and is available
under the CC-BY-NC license from Morgan McGuire's Computer Graphics Archive [32].

GPUs were not programmable at the time, gathering nearby photons on the GPU using a
k-d tree was not an option. In photon splatting, a shaded point no longer gathers nearby
photons but instead receives the contribution of a photon if the shaded point lies within the
sphere of influence of the photon. The idea is then to render photons as spheres or disks on
top of the scene, to let the rasteriser compute which pixels are covered by each photon and
accumulate the contribution of such photons at each pixel. Using an analogy to describe
photon splatting, this would be similar to painting an image on a wall by throwing small
paint balls (the photons) at it. As the paint ball hits the wall, it will spread paint over a
neighbourhood of the hit location. If an area gets hit by multiple balls, it will contain some
combination of the paint from those balls.

Photon-based approaches like photon mapping are mostly associated to the rendering of
caustics (see Figure 11), where they excel. They can also be used for estimating the indirect
lighting in a way that is hard when tracing rays from the camera.

1. 'The tracing of the photons is not dependent on the position of the camera, meaning
a single photon map can be reused for many different view points. If the photon map
is reused between frames, it will work just fine even with large camera movements
from frame to frame, unlike a screen-space-based temporal reuse which is commonly
used when tracing rays from the camera.

2. From a single light path, one photon can contribute to one or more pixels while
another might contribute to a completely different set of pixels, leading to one light

25

https://creativecommons.org/licenses/by-nc/1.0/legalcode

1 2

Figure 13: A visualisation of a binary BVH built around five triangles. On the left, the AABBs of each node of the BVH is
represented around the triangles. On the right, a representation of the tree is shown. Leaf nodes have a dashed
border, while internal nodes have a solid border; each colour corresponds to a different depth in the tree.

path potentially affecting multiple pixels unlike one camera path which will only
affect the very pixel it was emitted from.

3. The tracing of the photons is also independent from the screen resolution. The cost
of generating a photon map for 1080p or 4k will be the same, and only the gathering
or splatting computational cost will change. This can be a large advantage over path
tracing when long light-to-camera paths are involved.

Photons are not exempt from issues though, like not taking into account what is currently
visible by the camera so they could end up impacting some other part of the scene currently
hidden to the viewer, and if made too large, leaking light (i.e. contributing to surfaces it
should not be able to reach, for example through walls as seen in Figure 12).

4.6 Acceleration Structures

Different types of computations performed to simulate light transport were presented in
Sections 4.4 and 4.5. If, for example, a single ray is traced per pixel in a scene with a million
triangles, at a resolution of 1080p, and each ray had to be tested against all triangles, it would
end up requiring about 2 - 10'? ray—triangle intersection tests. This would be expensive to
compute, and would not scale to larger scenes or longer paths. Several acceleration data
structures were developed over the years that significantly reduce the number of intersection
tests to run. A single acceleration data structure will be covered in this thesis as it was used
in several of the research projects, but there are many others used in Computer Graphics,
some of them have a general usage while others are dedicated to a particular issue.

The bounding volume hierarchy (BVH) is a tree-like hierarchy where each node also stores a
custom bounding volume containing the union of all its children’s own bounding volume.
Different volumes are used depending on the application, with the most common being
AABBs and spheres; an example of a BVH using AABBs is shown in Figure 13. The BVH is

26

made of two different types of node: internal nodes (with a solid border) can have children
but do not contain any geometry, while /eaf nodes (with a dashed border) are the exact op-
posite (childless, but has the geometry); both types do have a bounding volume. Individual
leaf nodes contain a variable, though capped, amount of primitives (usually triangles, but
not always). On the other hand, the number of children an internal node has, is often fixed
and hard-coded for efficiency reasons, and it will often be reflected in the name: a binary
BVH when internal nodes only have two children, or of a 16-ary (alternatively, 16-wide)
BVH if they instead have sixteen ones.

Traversing the tree can vary slightly depending on the application, but remains conceptually
the same. Finding the closest triangle intersected by a ray will be the application showcased
here, accelerated by the binary BVH visualised in Figure 13. First, the ray is tested against
the bounding volume of the root node. If it misses, then it will not intersect any of the
geometries found inside the tree either, so the traversal can stop right away and the miss
shader (or equivalent) will be called. Otherwise, the ray will be tested against the bounding
volume of each of the root node‘s children (i.e. the red nodes). For each intersected child,
its own children will then be tested, and this will continue recursively until either no chil-
dren get intersected, or a leaf node is intersected. In the latter case, for example leaf node
number 4, the ray will then be tested against the individual triangles stored in that node.

s Evaluation and Methodology

As new approaches are developed, they will be compared against existing ones to determine
their pros and cons. In Computer Graphics, and especially in the real-time sub-area, the
following aspects are usually evaluated: performance, output quality, memory utilisation,
and generalisation. An explanation will be given in the next paragraphs on how those
different evaluations are performed. Since not all research fields use the same research
methodology, the one followed throughout this thesis will be presented later in this section.

Given the time-sensitivity of real-time rendering, the runtime performance of the algorithms
used is really important, to the point of accepting some degradation of the image quality in
exchange for lower frame times. As many different aspects can influence the timings, such as
the hardware used (mostly the GPU) and its drivers, the BSDF model and its implement-
ation, the path tracing implementation, extrapolating based on the performance results
mentioned in previous work is not an easy task. This usually leads to the main competing
previous work being re-implemented in the framework used by the new algorithm, which
can be challenging as the original source code is not always available. Performance will be
measured for different scenes, potentially different view points within the same scene, and
if applicable, over a time period while the scene is being animated as some components can
be impacted differently by the motion of objects. Out of the generated data, two different

27

measures are commonly presented: the total frame time (i.e. how long it takes to render
an image from start to finish), and a breakdown of the frame time (i.e. how long each step
in rendering the frame takes).

The usual trade-off to performance is image quality, which is harder to evaluate. On the
one hand, it is possible to render a reference image R and then compare the per-pixel dif-
ference with the current image I using different measures such as mean squared error (MSE)

i]’LO(RM —I[j])? or mean absolute error (MAE) 1 Z}Lo |R[j] — I[j]|, with 7 being the
amount of pixels in R and I. Generating a single reference image can take from half a day
up to several days, even when running on high-end GPUs, depending on the complexity
of the scene and desired effects. On the other hand, not all of the differences are necessarily
perceived by a user, while some errors with a lower magnitude might be perceived as more
distracting than others with a higher magnitude. For real-time purposes, where time is of
the essence, minimising the perceived error is move valuable and achievable than trying to
match exactly a reference image. As a result, perceptual metrics were developed, such as
structural similarity (SSIM) [54], or more recently ALIP [3] which also provides error maps
to help visualise the location and intensity of the differences. However those approaches
only look at images in isolation, ignoring the possible differences found between consec-
utive images. For example if we have two renderings of the same scene under the same
conditions, maybe the error at pixel 7 in the first image is only —0.1, and only 0.1 in the
second image also at pixel 7. Those values are low, but when going from the first image to
the second one the difference is now 0.2, and if the first and second images are alternating in
a loop, pixel 7 will be perceived as blinking which can be a quite distracting artefact. These
artefacts are known as temporal instabilities and can be mitigated using temporal filters.
There are no standardised measures for the temporal stability of a sequence of images, and
it ends up only being discussed in terms of how the authors found it distracting/annoying;
a video is usually submitted alongside the paper, so that reviewers and readers can judge
for themselves. Temporal measures are a difficult but active research area.

The two remaining aspects will be presented in the same paragraph. Even if memory is
not as much of a concern as five to ten years ago, not all platforms have access to large
amounts of VRAM, and whatever amount is present might already be used to store textures,
geometry data, or acceleration structures. As such, limiting the memory footprint of a
rendering algorithm is still desirable, and can have some positive impact on the performance
as memory bandwidth is limited (see Section 3.1). To maximise their performance, some
algorithms are tailored for rendering specific effects, or may rely on scene characteristics
such as there only being diffuse surfaces for performing certain optimisations, for example.
Therefore, it is important to know how well an approach can generalise to different materials
being used, large amounts of light sources, etc., and it can be interesting to have a method
that is a bit slower and/or uses more memory but handles more scenarios.

When working on the different research projects presented in the next section, the following

28

research methodology was used. First a problem is chosen based on the current research
context and limitations of existing methods; the selection might be guided by ideas which
occurred while working on a previous project. Then, a more detailed analysis of the state
of the art regarding the selected problem is performed, to identify the main approaches
which should be compared against, as well as their pros and cons. A first draft is made,
specifying the aspects that should be improved by the new method, and which limitations
are considered acceptable, as not all issues can necessarily be solved at once. The new
algorithm is then worked on, alongside with its implementation to validate its behaviour
and quickly discover any potential setbacks, generating a feedback cycle between designing
the algorithm and implementing it. Once the new method has been finalised and validated
by the results obtained when running its implementation, it is ready to be submitted to one
of the different Computer Graphics conferences or journals.

6 Research Projects

The work discussed in this thesis focuses mainly on two different areas within the context of
real-time rendering: evaluating direct lighting in the presence of thousands or even millions
of light sources in a scene (Paper 111 and 1v), and the use of photons for rendering caustics
(Paper v) and on how to improve that usage (Paper 1 and 11).

In the following sub-sections, an overview of the different papers will be given to help
the reader understand the state of the art (at the time they were written), the approaches
proposed and the problem(s) they were aiming to solve, and their pros and cons.

6.1 Direct lighting and the challenge of using thousands of light sources

Direct lighting has been around since the start of computer graphics, as the primary source
of illumination in outdoor scenes and lit interiors, as well as being easier to compute than
indirect lighting. The latter does not imply that it is an easy task, as can be attested by the
amount of work spent on evaluating shadows, which remains an active research area to this
day.

In this part, a different challenge of computing direct lighting will be presented: which light
source to sample in scenes with a large number of lights. Depending on the scene, it can
easily reach the tens of thousand, and evaluating all of their contributions to all surfaces of
interest is not an option, even for offline rendering. Instead one or more lights are chosen,
and only those will be used when computing the lighting; a single subset could be used for
all pixels, or a different one could be created for each individual pixel. This selection process
has a direct impact on performance and image quality, and will be discussed in more details

29

below.

Paper 111 — Importance Sampling of Many Lights on the GPU

As the amount of computations that can be performed per frame is usually too short for real-
time applications, several techniques have been developed which rely on pre-computing
(aka. baking) some of the data into textures: the time taken to look up during runtime
that pre-computed data is a lot shorter that performing all the computations. One such
method, first used in the video game Quake [1], consists in baking the light emitted by static
light sources into an image called a light map. It has however some significant drawbacks: (1)
it is expensive to compute and must be redone from scratch every time a light is modified,
(2) it increases the memory footprint of the game both on the disk and at runtime, (3) it
does not work well with glossy surfaces, and (4) it is completely static so toggling the status
of a single light between on and off requires switching to a different light map. Hybrid
approaches have been used in computer games, where all the lighting that will stay constant
throughout a level will be baked, and individual light sources that can change dynamically
will be evaluated at runtime.

If the scene has a high presence of glossy materials (which can not be easily pre-computed)
or has many dynamic light sources, a different approach is needed. One common trade-off
has been to (artificially) restrict the influence of each light source to a given volume, making
it possible to disregard all lights located too far away [8, 36]. However, this can result in
darker regions due to important lights not having been considered as they were deemed to
be too distant. Additionally, the region of influence of each light needs to be set manually
and carefully; Tokuyoshi and Harada [45, 46] suggest a way to stochastically compute the
region of influence for each light. Finally, shadow maps can not necessarily be computed
for all the selected lights, so only a sub-selection of them might actually cast shadows in the
scene.

How to pick which lights to evaluate at a given surface has also been looked into for offline
rendering. There, the focus is on consistent methods and taking into account more than
just the distance to the light source or its intensity to estimate its importance. Multiple
approaches have been tried like Zightcuts by Walter et al. [s52, s1], and the work from Vorba
et al. [47], and Conty Estévez and Kulla [13]. The latter work builds a BVH around all
light sources found in the scene; Bikker [8] also built a BVH, but instead around the region
of influence of the light sources. Among the existing methods for offline rendering, the
work by Conty Estévez and Kulla [13] looked promising for a potential use in a real-time
rendering context thanks to relying mostly on a BVH, which has been a popular spatial
acceleration data structure in that space for ray tracing usage. As the work presented in
Paper 111 revolves around their algorithm, it will be described in more details in the next
paragraph. Note that lightcuts also has the potential for being used in real-time, and this

30

was later done by Lin and Yuksel [30].

Conty Estévez and Kulla constructed a BVH around all light sources in the scene, support-
ing point and analytical light sources, as well as emissive meshes within the same framework.
Note: we will refer to this type of BVH as a light BVH, to differentiate it from a BVH that is
built around geometry and used to accelerate ray—primitive intersection test, which we will
call geometry BVH. When building the tree, the surface area heuristic (SAH) [42] (applied
to BVHs by Goldsmith and Salmon [17]) is traditionally used for deciding how to group
primitives or nodes together in an optimal way for accelerating ray—triangle intersection
tests. However since here the tree is built around light sources, they introduced a variation
of SAH, called surface area orientation heuristic (SAOH), which also takes the orientation
of the light source into account and its intensity. The traversal of that BVH is analogous
to the one described in Section 4.6, but bears some differences which will be highlighted.
Instead of testing for an intersection when looking at all children in a node, the importance
of each child is computed before a single one of them is stochastically selected. The traversal
continues recursively for that selected child, until a leaf node is reached. The authors also
presented an adaptive split when traversing, which we ignored as potentially too expensive
for real-time applications. There again, one triangle will be stochastically sampled based on
its importance. That importance function takes into account (1) the distance between the
node/light and the surface being shaded, (2) the intensity of the node/light, (3) its orienta-
tion, and (4) the orientation of the surface being shaded.

The work presented in Paper 111 focuses on evaluating Conty Estévez and Kulla’s approach
in a real-time environment, to demonstrate its potential and give some recommendation
about its usage. As such, different construction setups and their impact on the ray tracing
performance was investigated, and similarly how the different terms in the importance
function affected the results. On the construction side, the following were tested: (1) SAH
versus SAOH, (2) using the volume of a node instead of its surface area, (3) the amount
of bins* used and number of axes considered [48], and (4) the number of triangles per leaf
node.

Opverall, the SAOH did not affect runtime performance but did improve the image quality
compared to SAH, and while having all terms for the importance function did increase the
render time noticeably, it increased the image quality even more. It is a clear improvement
over more naive but consistent approaches that are suitable for real-time. Compared to
the light maps mentioned earlier, it is more computationally expensive at run time, but it
supports glossy surfaces better, can be used in dynamic scenes (as long as the light sources
themselves are static), does not require long baking times, and does not increase the amount

“When building a BVH, considering all the triangles when performing the different computations would
be too computationally expensive. Instead, the space containing all the triangles is partitioned into multiple
parts called &ins [48], and each triangle is associated to a single bin. Computations are then performed on the
bins.

31

of space taken on the disk. However its high base frame cost makes it unsuitable for high
refresh rates (120 Hz and above) for now. The approach could be applied to scenes with
dynamic light sources by keeping the same topology and just updating the bounds (aka. 7e-
fitting), similar to approaches for accelerating ray—triangle intersection tests [28, so]. Build-
ing the acceleration structure on the GPU would significantly reduce its high computation
cost, further helping with dynamic scenes.

Paper 1v — Dynamic Many-Light Sampling for Real-Time Ray Tracing

Dynamic light sources were briefly mentioned in Paper 111, but had not been studied. In
this follow-up work, they are the main topic. Most of the context described in Section 6.1
still applies to this work as most of the mentioned methods already took dynamic lights into
account, and so will not be repeated here. However, there is some unrelated (to lighting
evaluation) work on acceleration data structures which is directly relevant.

Regardless of the lack of optimisation of the BVH builder used in Paper 11, the limiting
factor for handling dynamic lights in that work, was the computation cost of re-building
the acceleration data structure being too high. This had been a problem for geometry
BVHs before, and had been partially solved by refitting as mentioned earlier. However,
refitting comes with its own issues, the main one being that the guality of the BVH (i.e.
how good it is at efficiently finding the intersections) can degrade dramatically over time
if the geometry moves a lot. As a result, a two-level approach was proposed by Wald et
al. [49]; a similar architecture is still being used today in modern ray tracing APIs such as
DirectX Raytracing (DXR) or Vulkan Ray-tracing (VKRT). The main observations from
that work, are that

1. once a BVH has been built around static geometries, there is no need to ever update
it;

2. for certain types of animations, objects are not deformed so their topology and the
relative location of their triangles remain the same;

3. some objects are duplicated many times with different transforms (aka. instancing)
but the underlying geometry is still the same so a single BVH could do.

Following point (1), they build a BVH around all static geometry. Based on (2), each
animated object receives its own BVH and is associated with a matrix representing its cur-
rent transformation. For example if the object rotates, one can simply modify the matrix
without having to touch the BVH. If one wants to instantiate an object (point (3)), each
instance will have its own transform matrix, but they can all point to a single BVH for the
underlying model. A generic way to handle all three cases is to have a pair containing a

32

TLAS

LS

- S--

Wikiail\

Robot BLAS Car BLAS Helicopter BLAS

Figure 14: Visualising the two-level BVH (on the right) for the scene presented on the left; for simplicity, only the robot, car, and
helicopters will be represented. The robot is static and as a result is in a separate BLAS than the car and helicopters,
which are dynamic, avoiding the cost of updating the acceleration structure for such a big object. As two different
instances of the same helicopter geometry are present in the scene, it needs to be placed in a different BLAS than the
car so its BLAS can simply be referenced twice by the TLAS rather than duplicating the geometry of the helicopter
twice to have the helicopter and car share a common BLAS.

Internal nodes have thick, continuous, borders, while leaf nodes have dashed borders.
Rendering (on the left) taken from Paper 1v; the robot model was kindly donated by Epic Games, and credits for the
other models used can be found in the Acknowledgements section.

transform matrix and a reference to a BVH: for example, one pair for the static geometry,
one pair per animated object, and one pair per instance. Since that might result in hundreds
of pairs that have to be considered when tracing the rays, one final BVH is built around
those pairs to accelerate that search. The BVHs referenced in the pairs are called borrom
level acceleration structures (BLAS), while the top BVH is the rop level acceleration structure
(TLAS); this nomenclature is used in both DXR and VKRT where the acceleration struc-
ture is not mandated to be a BVH and could be something else. A visual representation of
a two-level BVH can be seen in Figure 14.

The two-level approach was chosen for being straightforward to implement, efficient, and
commonly used for geometry BVHs, meaning that many are familiar with it, and there
have been several follow-up works to improve on/extend it. Indeed, as shown in Paper 1v
and in earlier ones discussing two-level BVHs, it allows for nearly the same quality as a one-
level BVH that is rebuilt from scratch every frame, for only a small overhead compared to
just refitting the whole BVH. Refitting and two-level hierarchies were validated on light
BVHs, and some differences between geometry and light BVHs, that are worth keeping
in mind, were noticed. While it is recommended to have as few BLASes as possible for
geometry BVHS?, this does not apply to light BVHs as no rays are actually traced against
the BLASes and a single one of them will be selected and evaluated. Additionally, having a

°A ray has to be tested against all BLASes it intersects to find the closest intersection, which could be
expensive if there are many. This might be the main reason why one is advised to have all static geometries
within a single BLAS.

33

separate BLAS for different static lights could improve the quality of the generated TLAS,
especially when static light sources are found all over the scene, resulting in an AABB that
will encompass nearly the whole scene and most dynamic light sources. Another insight,
absent from the paper, is that a light BVH might need an update even if the light is not
transformed, unlike a geometry BVH. Indeed, that will be the case if the intensity of the
light is animated (like a pulsating LED indicating that a laptop is sleeping) or the spread
angle of a spotlight, as the SAOH cost function used during the build is dependent on
those parameters. That is probably not an issue if a handful of BLASes are affected. If it
is predominant, it might be worth considering using SAH when building those BLASes to
avoid the need for an update, though at the cost of some lower BVH quality.

This architecture allowed for unbiased direct lighting evaluation from over five thousand
dynamic light sources in fully dynamic scenes in real-time, with temporally stable results
thanks to the SVGF spatio-temporal filter by Schied et al. [40]. Even with the two-level
approach, the light BVH can still also be used to improve direct light estimation at sec-
ondary bounces with the same efficacy. This work spearheaded research in the area which
resulted in NVIDIA‘s RTX Direct Illumination [35]. The main limitation with the current
approach is not taking visibility into account when computing the importance of a light
source. This could result in the algorithm often (due to its high importance) selecting a
particular light source, only to realise after tracing the shadow rays that it is occluded, even
if the same situation already occurred a few frames ago.

6.2 Using photons, for global illumination and caustics

Evaluating the light transport by starting from the light source and emitting photons is
not always the most eflicient approach, but there are situations where it is, as illustrated in
Section 4.5. Those situations where photons are beneficial, have usually not received the
same attention as situations where ray or path tracing works best. For one, the focus was
on effects affecting most scenes, and to a larger degree. Additionally those effects can be
handled using a single set of related techniques, making it appealing to reduce their compu-
tational cost and make them more real-time friendly Finally, using the resources available
at the time was prioritised, and rasterisation was not well adapted for effects requiring more
than one bounce from a light source.

However that should not be a deterrent to working on those topics and trying to make
them more prevalent and accessible. In this part, two different optimisations when ren-
dering with photons will be described, followed by a method allowing for caustics that are
indirectly visible to finally be rendered in real-time.

34

Paper 1 —Photon Splatting Using a View-Sample Cluster Hierarchy

One popular technique in computer games to approximate dynamic indirect lighting has
been the use of virtual point lights (VPLs) [26]. From the perspective of a surface that needs
to be shaded, they will act as a regular point light. However, rather than emitting a radiance
pre-defined by an artist, they will instead capture the radiance flowing towards them. Using
rasterisation, it is relatively cheap to compute the amount of direct illumination reflected off
nearby surfaces and store that in a VPL, allowing for a one-bounce indirect illumination.
More recent approaches have been tracing rays from VPLs to store multiple bounces of
indirect illumination, with the idea that, for example, tracing 100 rays from a VPL which
is then used by a 1,000 pixels, will be less computationally expensive than tracing a single
ray per pixel (100 rays versus 1,000) and have a higher image quality than only tracing 1 ray
every 10 pixels and using a spatial filter to share the results between neighbouring pixels.
These methods are however not without issues. For example, their placement in the scene
is crucial for providing good visual results without wasting resources, but positioning them
manually is not ideal while doing it automatically is not easy and has been a research area
of its own. Additional methods exist for estimating indirect lighting which will not be
presented here, but are discussed in the paper.

Apart from the generation of the photon map, the major computational cost each frame is
the association of photons and pixels. Reducing that cost is the main focus of Paper 1. As
mentioned in Section 4.5, the gathering of photons is not well suited to being accelerated on
GPUs, leading to splatting algorithms. Mara et al. [31] evaluated various existing splatting
approaches as well as presenting new ones. The most efficient approach described partitions
the screen into several iles, and for each, computes the bounding volume around all visible
surfaces within that tile. When testing whether a photon contributes to a pixel, it can first
be tested against the bounding volume of the corresponding tile and discarded if it fails,
quickly reducing the amount of photons considered by each pixel. However, in the case
of large depth discontinuities, this method will fail to cull some of the photons that lie in
between various pixels without contributing to any of them, as seen in Figure 15a.

To avoid that shortcoming, a different acceleration data structure was used, which was first
presented by Olsson et al. [36] for light sources, and later built around view samples (but
for a different application) by Sintorn et al. [41]. The acceleration data structure partitions
the whole view frustum, which is 3-dimensional, rather than just the screen which is 2-
dimensional; each 3-d partition is called a c/uster. Now, in case of depth discontinuity, view
samples of a single 2-d tile can end up in different partitions, resulting in tighter bounds
(see Figure 15b for such an example). As this can lead to too many clusters to iterate upon,
a BVH-like hierarchy is built around them, which will then be traversed by all the photons.
Having a hierarchy allowed for additional optimisation opportunities, such as tracking the
orientation of the surfaces within each node and discard early on photons landing below

35

(a) Tiled-based splatting (b) Cluster-based splatting

Figure 15: Visualising two different photon splatting techniques in the presence of depth discontinuities. This is a 2-d side view,
with the eye on the left representing the position of the camera, and the long dashes showing the outlines of the
view frustum. The photon, represented as a green sphere, intersects the bounding volume (in blue) of the tile, despite
not contributing to any of the view samples (highlighted in orange).

the horizon of the surfaces, or if a photon affects a whole node consisting of diffuse surfaces,
accumulate its contribution directly at the node level without traversing further down. In
a similar spirit to the early accumulation, and to further reduce the computational cost of
each frame, each cluster can have its set of incoming directions partitioned and photons will
directly contribute to the corresponding partition. When shading using this approximate
method, each pixel will perform a weighted combination of those partitions, rather than
having to go through a list of photons.

By culling photons more effectively, only a small portion of the photons considered during
shading were rejected. While the culling is more computationally expensive than previous
approaches, this is completely offset by the total frame time being reduced thanks to the
higher efficiency, and without affecting the image quality. The introduced approximation
is able to further lower the total computational cost of a frame and provide a near-constant
frame rate, for a minimal image quality degradation. The presented algorithms, as well as
existing ones, are suitable for few and large photons, but do not translate as well to many
and small ones. This is not an issue for approximating diffuse global illumination, but
will be for higher frequency phenomena like caustics. Due to how the storage of photons
sent for shading is handled by our implementation, the splatting is being run twice, nearly
doubling its computational cost.

Paper 11 — Path Verification for Dynamic Indirect Illumination

As part of the research in Paper 1, we realised that one of the main time-consuming tasks had
become the tracing of the photons into the scene, especially when long paths (3+ bounces)
were involved. As many rays are needed in order to produce a relatively converged image,
there had been several approaches for reusing previous results. Bekaert et al. [7] proposed

36

sharing traced paths between neighbouring pixels, allowing a single pixel to increase its
sample count for a low additional computational cost and without introducing any bias.
This works well for path tracing, but not for photon tracing as it would not lead to any
additional photons being created nor additional information from the point of view of
the camera. In the context of area light sources, a similar sharing would not be as easy.
Dmitriev et al. [14] presented a different approach, suited for photon tracing. They have
two different “types” of photons: pilot photons which are uniformly sampled and traced
into the scene, and corrective photons that are generated based on the periodicity of the
Halton sequence of their corresponding pilot and as a result will explore the space around
their pilot. Photons are partitioned into multiple groups, each group consisting of photons
from both types, and having its own importance. Pilot photons are traced first, and if
they intersect a dynamic object or the phantom of one of them (i.e. a dynamic object was
located there in the previous frame but has now moved somewhere else), the importance of
the corresponding group will be increased. This importance is then used to prioritise which
photons will be traced in the next frame, and ensures that larger changes will be tackled
first in case there are too many updates to be processed during a fixed time. However not
all pieces of that algorithm can be efficiently transposed to the GPU, which is a necessity
today for rendering algorithms to run in real-time.

Our approach was to start by keeping all the light paths traced in the previous frame. First,
the initial segment of each light path is validated against the light source which emitted
it, to ensure it could still have been generated if emitted in the current frame. To detect
changes in the scene, each segment of a light path is tested, in order, against the AABBs
for all moving objects. If a segment intersects such an AABB, the rest of the light path is
invalidated and this segment will be scheduled for being re-traced. However if light sources
move, their light distribution will no longer be correct, as shown in Figure 16. To avoid
that, each light has two different buffers associated to it: one describing how many light
paths should be emitted per area and set of outgoing directions, while the others tracks what
the actual situation is. If a cell is found to emit too few light paths, the missing amount will
be scheduled to be generated during the next tracing event, while in cells with too many
light paths, each path will be stochastically ended in a way to reach the expected amount;
this is actually performed before testing against the dynamic objects. For diffuse surfaces, a
slight change in incoming direction will only have a small impact on the outgoing radiance;
that information can be used to increase the amount of segments reused. When a dynamic
object is hit, instead of invalidating the rest of the path right away, the new intersection
point is computed and the visibility between that new position and the next segment of the
path is validated. If it is, and the radiance reflected by this new position is similar to the
amount reflected in the previous frame, the rest of the path will be kept as-is (assuming it
passes the other validations).

Our method was able to reuse a large amount of rays from frame to frame, even as light

37

NEY
n' X< Sea
~ ~
1V N ~o
(SRR ~ ~
\ \ ~ ~a

I
[N ~ ~
1

—~0— -0-0—0 "0

(a) Initial (b) Uncorrected, after light movement (c) Corrected, after light movement

Figure 16: Visualising the distribution of photons as the light moves. The photons, represented as orange spheres, are traced
uniformly from the light source, and their initial position is marked by a blue arrow. If the light paths are kept as-is
as the light rotates (middle), the uniform distribution is lost and the lighting will not reflect the current orientation of
the light source. The right version shows how a uniform distribution from the new orientation would look like, for
comparison.

sources moved and changed orientation, resulting in corresponding reductions in tracing
time. When a light was shining directly onto a diffuse moving object, our error-based meas-
ure allowed for most intersecting light paths to be preserved rather than invalidated. A side
benefit from this reuse, is the improved temporal coherency which is especially important
when the photon density is not high enough to provide a decent coverage. Diffuse global
illumination with up to six bounces, in a dynamic scene, was possible at interactive frame
rate. This algorithm will work with glossy surfaces, though the smoother the surface is, the
fewer segments can be reused thanks to the error-based validation as even small changes on
the inputs will result in moderate to high changes on the outputs. The tracking done on
a per-light basis to maintain their distribution works well for a few light sources, but does
not scale to a hundred light sources, let alone the tens of thousands from the many-light
work (Section 6.1).

Paper v —Real-Time Rendering of Indirectly Visible Caustics

The rendering of caustics in a real-time context was severely constrained due to being ex-
pensive to compute. Indeed, it is a multi-bounce phenomenon, and is most efficiently
evaluated starting from the light source. As a result, there is no guarantee that only results
useful for the camera will be generated, nor that the work can be reused easily by other
parts. Some of the first interactive renderings of caustics did not use ray tracing, relying in-
stead on other approximations, and were limited to single-reflection caustics [s3] (i.e. light
is emitted, then reflected off a specular surface, and finally creates a caustic at the very next
intersection), or caustics from entering and exiting a single refractive object [56]. Ray-traced
approaches were used, lifting some of the restrictions, such as McGuire and Luebke [33] ray
tracing on the CPU, or more recently, with the recent release of consumer GPU hardware
accelerating ray tracing, the work from Kim [27] and Yang and Ouyang [58]. However, the
trade-off for achieving real-time performance has been to accumulate the photons in screen

38

space thereby foregoing caustics that are not directly visible from the camera. As mentioned
in Section 2.4, screen space corresponds to the 2-d grid of pixels, and for each pixel, the data
available corresponds to the closest surface to the camera. If the camera captures a mirror in
which the reflection of a caustic can be seen, accumulating photons in screen space means
accumulating on the mirror itself, which is problematic for two different reasons. The first
one, is that the photon needs to be reflected towards the mirror right after generating the
caustic, in order for the caustic to be visible via the mirror. Unfortunately, the surface onto
which a caustic is formed, is a diffuse surface, so the photon only has a small chance of
being reflected towards the mirror and not somewhere else. The second reason, is that even
if the photon reached the mirror, it would have to come from a specific direction (or a
limited set of directions) for it to be reflected towards the camera, as a mirror is a specular

surface (or highly glossy, if slightly rough).

In order to render caustics visible via mirrors or behind transparent objects, a different
accumulation approach is required. Progressive photon mapping (PPM) [19], which is an
evolution of photon mapping, starts by tracing rays from the camera and into the scene,
until a diffuse surface is hit, marking the location where photons will be accumulated, and
avoiding the same issues as screen-space accumulation. To allow for fast queries of those
accumulation locations, which we call collection points, Hachisuka et al. used an acceleration
that does not translate well to GPUs. Instead, we rely on a BVH built around those areas,
as proposed by Evangelou et al. [15] which has the advantage of using GPUs.

Our approach can be summarised as follows. Similar to PPM, the first diffuse surface en-
countered when tracing camera paths is queried, and marks where photons will be accumu-
lated over an area dependent on the properties of surfaces hit along the way. The collection
points are then placed inside a BVH, to accelerate their lookup. Finally, paths are traced
from the light sources to simulate the caustics, and each time a caustic-generating photon
hits a surface, it will contribute its energy to all collection point containing that hit point.
The accumulated contributions can be reused from frame to frame by averaging the values
stored in nearby collection points of the previous frame.

The proposed method supports rendering caustics, regardless of how many specular bounces
are found between the camera and the caustic, be it one for a mirror, two for simple trans-
parent objects, or more. This is achieved in real-time, thanks to the hardware acceleration,
even when taking multiple reflections into account. As the accumulated data are stored in
world space, their reuse from one frame to the next does not require re-projecting results
using motion vectors, providing several benefits:

* no reliance on motion vectors especially as those are not readily available for specular
surfaces such as the mirrors used in our work;

* a caustic can be reused even as the camera path leading to it changes.

39

While the approach renders in real-time, it remains too expensive for applications such as
computer games. One of the reasons is the computational cost of rebuilding from scratch
the BVH around collection points every frame, while another is the overhead of querying
and accumulating at the collection points while tracing the photons.

7 Contributions

In the previous section, the context in which the different projects took place as well as the
algorithms themselves were described. As a follow-up, the different contributions made in
those projects will now be summarised.

By decreasing the number of photons considered during shading, the frame cost could be
lowered in Paper 1 without degrading the image quality. This was made possible by using
a different acceleration data structure, which is more efficient at discarding photons not
contributing to the final image. We also showed how that acceleration structure could be
easily extended for higher culling efficiency, or for improved performance by introducing
some approximations. In the latter case, an algorithm which trades off some image quality
for lower frame time was presented, with the added benefit of its computational cost being
less sensitive to the amount of photons processed, and therefore providing a nearly constant
frame rate experience.

In Paper 11, a validation scheme for reusing light paths from a previous frame in the current
one was introduced. This scheme has several benefits: among others, it minimises the num-
ber of rays being traced, and supports fully dynamic scenes. Additionally, we demonstrated
how the validation scheme can exchange some image quality for increased reuse of light seg-
ments interacting with dynamic objects; the amount of error tolerated is configurable by
the user. The end result is the ability to render dynamic global illumination at interactive
frame rates, with longer light paths than would be supported by existing methods.

To improve the rendering in real time of scenes with many light sources, an acceleration data
structure and sampling scheme used in offline rendering was successfully adapted to real-
time in Paper m1. Thanks to that structure, not only does it provide unbiased evaluation of
direct illumination at primary hits, but it also does so at secondary ones which ameliorates
the quality of indirect lighting. Since many different parameters can be tuned during the
construction and traversal of the acceleration data structure, an evaluation of their impact
on performance cost and image quality was performed, to help adopters in deciding which
settings to use based on their needs.

The work presented in Paper 11 was extended to dynamic scenes in Paper rv. We first
showed that the acceleration data structure could be refitted on the GPU at a low cost to
accommodate moderate amounts of light motion in a scene. Then, by breaking up that

40

single acceleration structure into multiple ones that are local to groups of light sources,
only the relevant subsets would be updated. A two-level hierarchy is introduced, with a
top-level acceleration structure built atop the aforementioned local acceleration structures.
The top-level acceleration structure can be asynchronously updated, allowing for a large
range of movements by light sources, and so at a low computation cost and with limited
sampling quality degradation.

In Paper v, two existing algorithms were combined and adapted to enable the rendering
of indirectly visible caustics in real time. Thanks to the acceleration data structure used,
built around collection locations unlike the ones used in Paper 111 and 1v which were built
around light sources, collection points can have their size dynamically set based on their
ray differentials for higher image quality. To improve the temporal stability and the image
quality of each rendered image, a method reusing previous computations was proposed that
does not require motion vectors (which are usually unavailable in the areas of interest) and
adds almost no computational overhead to the main algorithm.

In summary, we introduced algorithms for handling direct lighting from millions of po-
tentially dynamic light sources in an unbiased way, giving artists additional freedom when
lighting a scene. Caustics can now be rendered even when indirectly visible, allowing for
caustics to be more present in scenes without risking to being displayed inconsistently.
Since enabling new effects is not enough for reaching parity in real-time rendering with
offline rendering, optimisations for current effects were also looked into, in order to lower
their computational cost and make them more accessible. We hope to see those effects be-
ing included in real-time applications in the near future, and that our different algorithms
will inspire new research in the community.

8 Conclusion and Looking Forward

In order to further improve the rendering quality and the realism in real-time applications,
the work presented in this thesis covers both algorithmic optimisations and new approaches
for improving the visual fidelity. For optimisations, we proposed a more computationally
efficient way for associating a photon to a pixel as well as for processing their contribution
to said pixel. We also looked into which light rays can be kept from one frame to the
next with minimal impact on the image quality, freeing some resources from having to
re-compute them every frame. As for the simulation of previously ignored visual effects,
a different caching mechanism allows for caustics that are indirectly visible to be rendered
in real time. Thanks to a careful selection of the lights used for evaluating direct lighting,
dynamic scenes lit by many light sources can be enjoyed at 30 FPS or more.

In light of recent advances and changes in the area, it is interesting to reflect back on the

41

different research projects described in this thesis. Looking first at the papers tackling direct
lighting, there have been some major developments since those papers were published. Lin
and Yuksel [30] achieved higher image quality thanks to a faster method that allows them
to consider more samples in a given time budget. However, they do not take the BSDF
into account, resulting in poor results for glossy surfaces. The introduction of ReSTIR [9],
and its refinement [57], further improved the quality while also reducing its computational
cost, thanks in part to not having to maintain an acceleration data structure. The price paid
is being restricted to evaluating direct lighting at only the first bounce (partly alleviated by
Boksansky et al. [11]), and having difficulties with very localised light sources. A lower cost
version of the approach presented in Paper 1v could complement the work of Wyman and
Panteleev [57] to lift those restrictions, while still taking the BSDF into account that Lin
and Yuksel [30] were missing. The algorithms presented in Paper 1 were fast at processing
the photons, but were limited to accumulating at the very first hit from the camera. With
the advent of techniques relying on the ray tracing acceleration hardware [15], it seems
unlikely our photon accumulation will be useful outside of running on older GPUs that
do not have that custom hardware. Regarding photon-tracing efficiency, most of the recent
work [27, §8] have focused on guiding the light paths towards where they will contribute to
the final image. As a result, the validation scheme proposed in Paper 11 is still interesting,
though a re-evaluation on newer hardware will be necessary to measure if the overhead
for reusing segments is still worth it when ray tracing has become cheaper. That scheme
is incompatible with many-light rendering, but so are current real-time caustics rendering
algorithms as they perform most of their tracking on a per-light source basis. To be adopted
by real-time applications, a lower computational cost will be necessary for our approach
to rendering indirectly-visible caustics (Paper v). To achieve that, the amount of overlap
between different collection points would have to be reduced, and one should be able to
update the BVH around those collection points more efliciently. It would also be interesting
to apply that approach to other effects, like direct lighting on a surface visible via a mirror.

During the time frame of my Ph.D. studies, the field of real-time rendering has seen some
major changes. As in many other fields, machine learning has been expanding rapidly and
been applied to many different aspects of rendering. One of its first applications (in render-
ing) has been denoising, where machine learning-based methods quickly became among the
best and widely used, even in computer games, as exemplified by NVIDIA’s Deep Learning
Super Sampling (DLSS) [34]. It has now been applied to many other problems, like render-
ing simplification [20], or even whole scene rendering based on just the scene graph [18].
This push resulted in GPUs from some vendors containing dedicated hardware to accel-
erate those types of workflows. Another major change, which had a direct impact on our
work, was the release by NVIDIA of consumer-grade GPUs with dedicated hardware for
accelerating ray tracing, providing up to an order of magnitude speed-up when tracing rays.
As a result, there was a renewed focus into using ray tracing for real-time applications, as
well as hybrid approaches to keep rasterisation where it performs best and use ray tracing

42

where it does not. Several computer games started using ray tracing to enhance the render-
ing realism with physically-correct reflections (Battlefield v), soft shadows (Shadow of the
1omb Raider), global illumination (Metro Exodus, Control). Since the initial release, addi-
tional GPU manufacturers have shipped or announced GPUs with hardware support for
accelerating ray tracing, such as AMD (already shipping), Intel (shipping soon), and ARM

(announced).

Even if some recently released updates or games were fully path-traced, such as Q2VKPT
or Minecraft, there are still many challenges left before seeing it applied to more complex
environments of AAA computer games. For example, large open games need to stream
models in and out depending on where the player is, which can be problematic for ray tra-
cing acceleration structures. Also, the large openness will affect image quality as the amount
of encountered objects will increase with the distance, leading to higher variance. Quality
metrics are currently missing to help decide between updating and rebuilding an accelera-
tion structure. On the rendering side, direct lighting from many light sources has improved
considerably recently, however very localised light sources are problematic to the current
state of the art [57]. Participating media (such as smoke) and other volumetric effects are
commonly used in some computer games, but ray-traced support remains too expensive for
such applications even if some progress was recently made [22, 21, 29]. Perfectly reflective
and refractive objects can be easily handled by ray tracing and quickly produce noise-free
images, but as the materials become rougher it takes longer for results to converge. Besides
those challenges, I think research in real-time rendering will slowly increase its targeted
frame rate to 60 FPS and adopt high dynamic range (HDR). It will be fascinating to see the
evolution to a more ray tracing-based workflow for real-time rendering, as new algorithms
are developed and hardware-accelerated ray tracing GPUs become more widespread.

9 References

(1] ABrasH, M. Quakes Lighting Model. Coriolis Group Books, Scottsdale, AZ, USA,
1997, ch. 68, p. 1244-1256.

[2] AMazON LUMBERYARD. Amazon Lumberyard bistro, open research content archive
(ORCA). http://developer.nvidia.com/orca/amazon-lumberyard-
bistro, Jul. 2017. Accessed: 2021-11-03.

(3] ANDERSSON, P, NiLssoN, J., AKENINE-MOLLER, T., OsKARSSON, M., AstrOM, K.,
AND FarrcHiLp, M. D. ALIP: A Difference Evaluator for Alternating Images. Pro-
ceedings of the ACM on Computer Graphics and Interactive Techniques 3, 2 (Aug. 2020),
I§5:1-15:23.

43

http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro

(4]

(5]

[6]

(7]

(14]

ArpEL, A. Some techniques for shading machine renderings of solids. In AFIPS 68
(Spring) (New York, NY, USA, 1968), Association for Computing Machinery, p. 37—
4s.

Arvo, J. Backward ray tracing. In Developments in Ray Tracing, Computer Graphics,
Proceedings of the ACM SIGGRAPH 86 Course Notes (New York, NY, USA, 1986),
vol. 12, Association for Computing Machinery, p. 259—263.

BARTEKS2. Car low poly concept 3D. https://www.turbosquid.com/3d-
models/concept-car-3d-1177980, Jul. 2017. Accessed: 2021-11-03.

BEKAERT, P, SBERT, M., AND HALTON, J. Accelerating path tracing by re-using paths.
In Proceedings of the 13th Eurographics Workshop on Rendering (Goslar, DEU, 2002),
P. Debevec and S. Gibson, Eds., EGRW ’02, The Eurographics Association, p. 125-134.

BIKKER, J. Ray Tracing in Real-time Games. PhD thesis, Delft University, 2012.

BrrTERLL, B., WymaN, C., PHARR, M., SHIRLEY, P, LEFOHN, A., AND JaROSZ, W. Spa-
tiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting.
ACM Transactions on Graphics 39, 4 (2020), 148:1-148:17.

BrenDER Founparion. Blender. https://www.blender.org/. Accessed: 2021-
12-10.

BoOKksANSKY, J., JUKARAINEN, P, aND WymaN, C. Rendering many lights with grid-
based reservoirs. In Ray Tracing Gems 11: Next Generation Real-Time Rendering with
DXR, Vulkan, and OptiX, A. Marrs, P. Shirley, and I. Wald, Eds. Apress, Berkeley, CA,
USA, 2021, p. 351-365.

CarmuLy, E. E. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD
thesis, University of Utah, Dec. 1974.

Conrty Estivez, A., aND KuLra, C. Importance sampling of many lights with ad-
aptive tree splitting. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1, 2 (2018), 25:1-25:17.

Dwrrriey, K., BraBic, S., Myszkowski, K., AND SEIDEL, H.-P. Interactive global
illumination using selective photon tracing. In Proceedings of the 13th Eurographics
Workshop on Rendering (Goslar, DEU, 2002), P. Debevec and S. Gibson, Eds., EGRW
’02, The Eurographics Association, p. 25-36.

EvaNGELOU, L., ParatoanNOU, G., VaRDIS, K., AND VasiLakis, A. A. Fast radius search
exploiting ray tracing frameworks. Journal of Computer Graphics Techniques (JCGT)
10, 1 (2021), 25—48.

44

https://www.turbosquid.com/3d-models/concept-car-3d-1177980
https://www.turbosquid.com/3d-models/concept-car-3d-1177980
https://www.blender.org/

(16]

[17]

[x8]

(23]

(24]

[25]

[26]

(27]

mNIx. Helicopter concept low-poly. https://sketchfab.com/3d-models/
helicopter-concept-low-poly-359bd29b2a074562865c4acb953385£6,
Feb. 2018. Accessed: 2021-11-03.

GOLDSMITH, J., AND SALMON,]. Automatic creation of object hierarchies for ray
tracing. [EEE Computer Graphics and Applications 7, 5 (1987), 14—20.

GRANSKOG, J., SCHNABEL, T. N., RousstLLE, E, AND NovAk, J. Neural scene graph
rendering. ACM Transactions on Graphics 10, 4 (2021), I-11.

Hacaisuka, T., Ocaki, S., aND JENSEN, H. W. Progressive photon mapping. In
ACM SIGGRAPH Asia 2008 Papers (New York, NY, USA, 2008), J. C. Hart, Ed.,
SIGGRAPH Asia ’08, Association for Computing Machinery.

HasseLGREN,]J., MUNKBERG, J., LEHTINEN,]., Arrtara, M., aNnp LaINE, S.
Appearance-driven automatic 3D model simplification. Computing Research Repos-
itory (CoRR) abs/2104.03989 (2021).

Hormann, N., anp Evans, A. Efficient unbiased volume path tracing on the GPU.
In Ray Tracing Gems 11: Next Generation Real-Time Rendering with DXR, Vulkan, and
OptiX, A. Marrs, P. Shirley, and I. Wald, Eds. Apress, Berkeley, CA, USA, 2021, p. 699—

711.

Hormann, N., HASSELGREN, J., CLARBERG, P, AND MUNKBERG, J. Interactive path
tracing and reconstruction of sparse volumes. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 4, 1 (2021), 1-19.

Jensen, H. W. Global illumination using photon maps. In Rendering Techniques 96
(Vienna, AUT, 1996), X. Pueyo and P. Schroder, Eds., Eurographics, Springer, Vienna,
p. 21-30.

Kajrva, J. T. The rendering equation. SIGGRAPH Computer Graphics 20, 4 (1986),
143-150.

KavLwwerr, S., CLARBERG, P, Kors, C., Yao, K.-H., Forey, T., Wu, L., CHEN, L.,
AKENINE-MOLLER, T., WyMmaN, C., CrassiN, C., aND Benty, N. The Falcor render-
ing framework. https://github.com/NVIDIAGameWorks/Falcor, Aug. 2021
Accessed: 2021-12-10.

KELLER, A. Instant radiosity. In Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1997), SIGGRAPH 97,
ACM Press/Addison-Wesley Publishing Co., p. 49—56.

Kim, H. Caustics using screen-space photon mapping. In Ray Tracing Gems: High-
Quality and Real-Time Rendering with DXR and Other APIs, E. Haines and T. Akenine-
Moéller, Eds. Apress, Berkeley, CA, USA, 2019, p. 543—555.

45

https://sketchfab.com/3d-models/helicopter-concept-low-poly-359bd29b2a074562865c4acb953385f6
https://sketchfab.com/3d-models/helicopter-concept-low-poly-359bd29b2a074562865c4acb953385f6
https://github.com/NVIDIAGameWorks/Falcor

28]

[29]

(30]

(31]

LauterBacH, C., YOON, S.-E., MaNocHA, D., anD Turr, D. RI-DEFORM: Interact-
ive ray tracing of dynamic scenes using BVHs. In 2006 IEEE Symposium on Interactive
Ray Tracing (Los Alamitos, CA, USA, 2006), IEEE Computer Society, p. 39—46.

Lix, D., Wyman, C., aND YUkseL, C. Fast volume rendering with spatiotemporal
reservoir resampling. ACM Transactions on Graphics 40, 6 (2021), 278:1-278:18.

LN, D., aND YukskL, C. Real-time stochastic lightcuts. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 3, 1 (2020).

Mara, M., LueBkg, D., AND McGuirg, M. Toward practical real-time photon map-
ping: Efficient GPU density estimation. In Proceedings of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games (New York, NY, USA, 2013), M. Garland
and R. Wang, Eds., I3D ’13, Association for Computing Machinery, p. 71—78.

McGuire, M. Computer graphics archive. https://casual-effects.com/
data, Jul. 2017. Accessed: 2021-11-12.

McGuire, M., anD LueBkg, D. Hardware-accelerated global illumination by image
space photon mapping. In Proceedings of the Conference on High Performance Graphics
2009 (New York, NY, USA, 2009), D. McAllister, M. Pharr, and 1. Wald, Eds., HPG
’09, Association for Computing Machinery, p. 77-89.

NVIDIA. Deep learning super sampling (DLSS). https://developer.nvidia.
com/dlss, 2018. Accessed: 2021-11-03.

NVIDIA. RTX direct illumination (RTXDI). https://developer.nvidia.
com/rtxdi, 2020. Accessed: 2021-10-31.

OLsson, O., BiLreTER, M., AND AssarssoN, U. Clustered deferred and forward
shading. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on
High-Performance Graphics (Goslar, DEU, 2012), C. Dachsbacher, J. Munkberg, and
J. Pantaleoni, Eds., EGGH-HPG’12, The Eurographics Association, p. 87—96.

PARKER, S. G., BIGLER, J., D1ETRICH, A., FRIEDRICH, H., HOBEROCK, |., LUEBKE, D.,
MCALLISTER, D., McGUIRE, M., MoRLEY, K., RoB1soN, A., AND SticH, M. OptiX:
A general purpose ray tracing engine. ACM Transactions on Graphics 29, 4 (2010),
66:1-66:13.

PHARR, M., Jakos, W., AND HumrHREYS, G. Physically Based Rendering, third ed.
Morgan Kaufmann, Boston, MA, USA, 2016.

Sarro, T., aND TakanasHI, T. Comprehensive rendering of 3-D shapes. SIGGRAPH
Computer Graphics 24, 4 (1990), 197—206.

46

https://casual-effects.com/data
https://casual-effects.com/data
https://developer.nvidia.com/dlss
https://developer.nvidia.com/dlss
https://developer.nvidia.com/rtxdi
https://developer.nvidia.com/rtxdi

[40] ScHiED, C., KAPLANYAN, A., WyMAN, C., PATNEY, A., CHAITANYA, C. R. A., BURGESS,

[s0]

J., Liu, S., DacHsBACHER, C., LEFOHN, A., AND Sarvi, M. Spatiotemporal variance-
guided filtering: Real-time reconstruction for path-traced global illumination. In
Proceedings of High-Performance Graphics (New York, NY, USA, 2017), V. Havran and
K. Vaidyanathan, Eds., HPG ’17, Association for Computing Machinery, p. 2:1—2:12.

SintorN, E., Kimpe, V., OLssoN, O., AND AssarssoN, U. Per-triangle shadow
volumes using a view-sample cluster hierarchy. In Proceedings of the 18th Meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (New York, NY,
USA, 2014), M. Olano and M. A. Otaduy, Eds., I3D ’14, Association for Computing
Machinery, p. 111-118.

StoNE, L. D. Theory of Optimal Search, vol. 118 of Mathematics in Science and Engin-
eering. Academic Press, Inc., New York, NY, USA, 197s.

STURZLINGER, W., AND Bastos, R. Interactive rendering of globally illuminated glossy
scenes. In Rendering Techniques 97 (Vienna, AUT, 1997),]J. Dorsey and P. Slusallek,
Eds., Eurographics, Springer, Vienna, p. 93-102.

SuTHERLAND, . E. Sketchpad: A man-machine graphical communication system. In
AFIPS 63 (Spring) (New York, NY, USA, 1963), E. C. Johnson, Ed., Association for
Computing Machinery, p. 329-346.

ToxuyosH], Y., AND HaraDA, T. Stochastic light culling. Journal of Computer Graphics
Techniques (JCGT) s, 1 (2016), 35—60.

ToxuyosH, Y., AND Harapa, T. Stochastic light culling for VPLs on GGX micros-
urfaces. Computer Graphics Forum 36, 4 (2017), 55—63.

VORBA, J., Karrik, O., Sik, M., RitscHEL, T., AND KRIVANEK, J. On-line learning
of parametric mixture models for light transport simulation. ACM Transactions on
Graphics 33, 4 (2014), I0L:I-IOL:IL.

WALD, I. On fast construction of SAH-based bounding volume hierarchies. In 2007
IEEE Symposium on Interactive Ray Tracing (NW Washington, DC, USA, 2007), RT
"o7, IEEE Computer Society, p. 33—40.

WaLp, I., BENTHIN, C., AND SLUSALLEK, . Distributed interactive ray tracing of
dynamic scenes. In /EEE Symposium on Parallel and Large-Data Visualization and
Graphics, 2003. PVG 2003. (NW Washington, DC, USA, 2003), PVG 03, IEEE Com-
puter Society, p. 77-8s.

WaALD, 1., BouLros, S., AND SHIRLEY, P. Ray tracing deformable scenes using dynamic
bounding volume hierarchies. ACM Transactions on Graphics 26, 1 (2007), 6—es.

47

[51]

[52]

(53]

(54]

WALTER, B., ARBREE, A., BaLa, K., AND GREENBERG, D. P Multidimensional
lightcuts. ACM Transactions on Graphics 25, 3 (2006), 1081-1088.

WALTER, B., FERNANDEZ, S., ARBREE, A., Bara, K., DoNIkIAN, M., AND GREENBERG,
D. P. Lightcuts: A scalable approach to illumination. ACM Transactions on Graphics
24, 3 (2005), 1098-1107.

WaND, M., AND STRARER, W. Real-time caustics. Computer Graphics Forum 22, 3
(2003), 611-620.

WaNG, Z., Bovik, A. C., SHEIKH, H. R., AND SiMONCELLL, E. P Image quality as-
sessment: from error visibility to structural similarity. [EEE Transactions on Image
Processing 13, 4 (Apr. 2004), 600—612.

WarITTED, T. An improved illumination model for shaded display. Communications
of the ACM 23, 6 (Jun. 1980), 343—349.

Wyman, C., aAND Davrs, S. Interactive image-space techniques for approximating
caustics. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2006), C. Sequin and M. Olano, Eds., I3D 06, Association
for Computing Machinery, p. 153-160.

Wyman, C., AND PANTELEEV, A. Rearchitecting spatiotemporal resampling for pro-
duction. In High-Performance Graphics - Symposium Papers (Goslar, DEU, 2021),
N. Binder and T. Ritschel, Eds., The Eurographics Association.

YaNG, X., AND OUYANG, Y. Real-time ray traced caustics. In Ray Tracing Gems 11: Next
Generation Real-Time Rendering with DXR, Vulkan, and OptiX, A. Marrs, P. Shirley,
and I. Wald, Eds. Apress, Berkeley, CA, USA, 2021, p. 469—497.

48

Scientific publications

Author contributions

A visual representation of the author’s contributions can be found in the table below. For
all papers, there always was an ongoing discussion between all authors at every stage but
especially while defining the concept(s).

Paper Concept Implementation Evaluation ~ Writing
Paper 1 (2015-2016) @ > o ¢
Paper 11 (2017-2018) 4 - o D
Paper 111 (2018—2019) G [o D
Paper 1v (2019) 4 [o D
Paper v (2021) 9 [o D

@ Lcad and did almost all the work
@ Lead and did a majority of the work
@ Contributed to a majority of the work

® Contributed to a minority of the work

Concept Coming up with the ideas of the paper
Implementation Implementing the software described in the paper
Evaluation Conducting the evaluation described in the paper

Writing Drafting and editing the paper

49

High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

Photon Splatting Using a View-Sample Cluster Hierarchy

P. Moreau', E. Sintorn?, V. Kﬁmpez, U. Assarsson” and M. Doggett]

'Lund University, Sweden
2Chalmers University of Technology, Sweden

—~

Figure 1: Views from Sponza, Sibenik, and San Miguel, rendered using our method with 200k photons and radius set up to produce a smooth
image. The time taken to splat the photons is (left to right): 14 ms, 16 ms and 17 ms; full frame time is: 35 ms, 33 ms and 48 ms. The scenes
were rendered at 1080p on an NVIDIA Titan X.

Abstract

Splatting photons onto primary view samples, rather than gathering from a photon acceleration structure, can be a more
efficient approach to evaluating the photon-density estimate in interactive applications, where the number of photons is often low
compared to the number of view samples. Most photon splatting approaches struggle with large photon radii or high resolutions
due to overdraw and insufficient culling. In this paper, we show how dynamic real-time diffuse interreflection can be achieved
by using a full 3D acceleration structure built over the view samples and then splatting photons onto the view samples by
traversing this data structure. Full dynamic lighting and scenes are possible by tracing and splatting photons, and rebuilding
the acceleration structure every frame. We show that the number of view-sample/photon tests can be significantly reduced and
suggest further culling techniques based on the normal cone of each node in the hierarchy. Finally, we present an approximate
variant of our algorithm where photon traversal is stopped at a fixed level of our hierarchy, and the incoming radiance is
accumulated per node and direction, rather than per view sample. This improves performance significantly with little visible
degradation of quality.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction [PH10,DBBS06]). These algorithms typically favour correctness
over computation speed and can take minutes to hours to compute
Global illumination algorithms attempt to simulate, in a physically an image.
based manner, how light is transported through a virtual scene. The
goal is to estimate the radiance that is incident to each pixel of the im-
age, which will be an aggregate of all possible light-transport paths
that end up intersecting that pixel. Light-transport paths originate
from virtual light sources and will undergo any number of reflec-
tions (where energy may be splatted or absorbed). There are several
textbooks that discuss the common theory of global-illumination
algorithms and the many different algorithms that numerically solve
the underlying equations to produce photo-realistic images (see, e.g., Photon splatting is a variant of the photon-mapping [Jen01] class

On the other end of the spectra are real-time, or interactive, global
illumination algorithms. Depending on the use case, these algo-
rithms have between one and a few hundred milliseconds to produce
a plausible image. There exist a very large number of such algo-
rithms, each with its own limitations and benefits. In this paper,
we will explore one class of algorithms, commonly referred to as
photon splatting, and suggest several novel improvements.

© 2016 The Author(s)
Surographics P ings © 2016 The E: ics Assoc
The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20161194.

53

P. Moreau, E. Sintorn, V. Kiampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

of algorithms. In the photon-splatting variant of algorithms, photons
are traced from the emitters and directly visualized, by accumulating
the contribution to an outgoing radiance of each photon against the
view samples (i.e. primary ray hit points) that it affects. Thus, a
photon is given some artificial region of influence, usually a sphere
or an ellipsoid, and the main difference between splatting algorithms
is how this geometric shape is intersected with all view samples.

We propose a novel approach to real-time photon splatting for
global illumination. For each frame, a 3D acceleration structure
is built over the current view samples. We use the view-sample
cluster hierarchy [SKOA14], which builds a hierarchy of clusters
of view samples based on screen tiles. We show that this technique
can be used to efficiently cull large clusters of view samples that
lie outside of a photon’s region of influence before considering
individual view samples. Additionally, we show that having the
view samples arranged in groups of clusters (that all lie close to
each other), improves performance by stopping traversal as soon as
a photon contains an entire node.

Another benefit is that under the assumption that nearby view
samples are likely to have similar normals, we can utilize optimiza-
tions that cull photons intersecting a node, but originating from a
direction such that they will not affect any of the contained view
samples. If we accept the limitation that a photon affects all view
samples equally (i.e. the surfaces have a constant BRDF and no
distance-based smoothing kernel is used), we can also stop traversal
as soon as all view samples contained in a node have normals such
that they will be affected by the photon.

In all, these improvements result in an algorithm that can render
a large number of photons with sufficiently large radii to produce
smooth results at high frame rates. To further push performance
in the direction where it could be used as a global-illumination
solution for, e.g., video games, we propose a more approximate
solution. Instead of testing each photon against each individual view
sample, we accumulate directional flux for the hierarchy nodes.
In the fastest version of this algorithm, where a leaf node at most
contains 32 x 32 view samples, we obtain very high frame rates
without significant loss in quality.

2. Related Work

There is a vast body of work concerned with interactive global
illumination, and we refer the reader to an excellent recent survey
[RDGK12] for a more complete introduction. In this section, we
will briefly discuss only the previous work that is most relevant to
our proposed method.

Traditional photon mapping, where a kd-tree is built over the
photons to accelerate the gathering of nearby photons, has been
accelerated on the GPU [ZHWGO8, LSP*12], but has not been
shown to be practical for real-time scenarios where the light source
moves. Instead, it is common to splat photons onto the view samples.
McGuire and Luebke [MLO09] find the first bounce from the light
by rasterization and trace the remainder of the path on the CPU.
Photons are splatted by rendering spheres that enclose the photons’
influence regions. Mara et al. [MML13] explore a number of faster
approaches to splatting, which will be detailed in Section 3.2.

54

A large portion of recent work on interactive global illumina-
tion stems from the concept of Instant Radiosity [Kel97], which
is similar to photon splatting in that particles are traced from the
light source and stored at each bounce. Unlike photon splatting,
these particles are then treated as Virtual Point Lights and store
the outgoing radiosity (rather than incoming flux). The scene is
then lit from all such VPLs. Reflective Shadow Maps [DS05] is
a GPU based variant of this, in which the first bounce from the
light source is calculated using rasterization. For each view sample,
a stochastic subset of the generated VPLs is gathered for shad-
ing. Nichols and Wyman [NW09] suggest an alternative approach
where the VPLs are instead scattered onto a multi-resolution buffer.
These techniques do not consider visibility between VPL and view
sample. This is addressed in a method called Imperfect Shadow
Maps [RGK*08, REH*11], where highly approximative shadow
maps are calculated in real time for each VPL.

We are only aware of a few real-time global-illumination methods
that are production proven. One notable example is Voxel Cone Trac-
ing [CNS*11] in which the scene is voxelized to a sparse voxel oc-
tree and a cone-marching algorithm gathers approximate incoming
radiance. Another is Cascaded Light Propagation Volumes [KD10],
where the light field is stored using spherical harmonics in a coarse
discretization of the view frustum. Mara et al. [MMNL14] present a
fast approximation to Global Illumination using deep G-Buffers, but
since the illumination is view frustrum based, it does not produce a
photon tracing of the scene every frame, leading to issues with off
screen illumination.

The view-sample cluster hierarchies that we use in this paper
were first suggested by Sintorn et al. [SKOA14], who use it to splat
per-triangle shadow volumes. That paper, in turn, was inspired by
the work of Olsson et al. [OBA12], who first suggested arranging
view samples in clusters to speed up shading with many bounded
light sources. In their work, the acceleration structure was built over
the light sources, instead of the clusters.

3. Background

In this section, we will give an overview of the previous work that
this paper directly builds upon.

3.1. Photon Mapping

Photon mapping, introduced by Jensen [Jen96], is a well established
technique for global illumination. Photons are traced from the light
source into the scene and are gathered from an acceleration structure
to perform a radiance estimate when raytracing from the camera in
a second pass. Usually, the photon map is not queried for the first
vertex of a camera path, but secondary reflection rays are traced and
where they hit, the photon map is used. This is called the final-gather
step. Photon mapping has been extended in a large number of ways,
and we refer the reader to [HIB*12] for a thorough overview.

3.2. Photon Splatting

For real-time global illumination, a final-gather pass is usually too
costly, but tracing a number of photons through the scene to capture
some indirect-illumination effects can be achieved at real-time frame

© 2016 The Author(s)

E ics P ©2016 The
The definitive version is available at https:/diglib.eg.org/handle/10.2312/hpg20161194.

P. Moreau, E. Sintorn, V. Kdampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

rates. Direct lighting can be efficiently computed with the standard
rendering pipeline (with light visibility handled by, e.g., shadow
maps). By not storing photons at the first bounce from the light
source, the remaining photons can be used to directly estimate
indirect illumination.

Even so, the traditional photon-map density estimate is often too
costly. An alternative approach is to give each photon an a priori
region of influence (or radius) and to splat the photons onto the
view samples. This is often referred to as photon splatting [SB97]
and can be implemented on a GPU by rendering the photons as
geometric objects onto the current depth buffer, calculating the
photons’ influence on each affected view sample and accumulating
the results [LP03, ML09].

-

Figure 2: Photon Splatting. Left: when splatting photons using the
rasterizer, view samples that lie behind the photon (red region) will
not be culled. Right: A tiled renderer alleviates this, but tiles with
depth discontinuities will still cause sub-optimal culling.

Mara et al. [MMLI13] evaluate a number of photon-splatting
algorithms and find two algorithms to perform better than the rest.
We will briefly explain these next. The first is 2.5D Photon Volumes
that render 2D screen-aligned polygons [MM13] that represent the
photons onto all the view samples that the polygon covers. The
main problem with this method is that this can give rise to many
unnecessary photon/view sample tests (see Figure 2).

The second method is Tiled Photon Splatting. This method as-
sociates a photon with a tile based on the tile’s closest and furthest
depth, reducing incorrect photon associations but still resulting in
photons being incorrectly associated with tiles that have large depth
ranges (see Figure 2). Also, the tile division is typically rather coarse,
so that each tile will contain a long list of photons of which only a
few affect each individual view sample.

4. Algorithm

In this section, we will describe our new photon-splatting algorithm
in detail, beginning with the basic algorithm and then introducing
some optimizations that are made possible by arranging the view
samples in cluster hierarchies. Finally, we will discuss an approxi-
mate algorithm that is much faster, at the cost of a slight decrease in
quality.

The basic algorithm consists of six passes:

—

. Render G-Buffer. Using the standard pipeline, render the view
sample positions, normals, and material properties to a G-Buffer
texture.

. Generate Cluster Hierarchies. Using the view-sample posi-
tions from the previous step, generate the cluster hierarchy (see
Section 4.1).

[S8)

© 2016 The Author(s)
Surographics P ings © 2016 The E: i ciati
The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20161194.

55

3. Photon Tracing. A number of paths are traced from the light
source, and at each bounce (except the first), a photon is stored
to a list (see Section 4.2).

4. Photon Splatting to Clusters. Each photon is traversed through
the cluster hierarchy, and when a node is enclosed, or a leaf node
is found to be intersected, the photon ID is stored in a list unique
to that node. (see Section 4.3)

5. Radiance Estimate. For each view sample, the lists of photons
of the containing nodes are traversed and the contribution of each
photon is accumulated. (see Section 4.4)

6. Final Shading. Direct lighting is computed in a full-screen pass,
and the indirect lighting from the previous pass is added to obtain
the final pixel color.

4.1. Generate Cluster Hierarchies

Figure 3: Left: Each cluster (cell in the 3D grid) is marked as oc-
cupied if it contains view samples. Then, parent nodes are marked
as occupied recursively. Right: The bounding box of each cluster is
calculated and propagated upwards in the tree.

‘We build a hierarchical view space 3D acceleration structure
around the view samples using the technique presented by Sintorn
et al. [SKOA14] and extending it for Photon Splatting. This ad-
dresses the issues of tiled photon splatting by creating much tighter
bounds around view samples and allowing smaller groupings of
view samples.

The cluster hierarchy divides the view frustum into a 3D grid
with roughly cubical boxes. Each box is called a cluster and view
samples are attached to one cluster. The next level of the hierarchy
contains 32 clusters, a 32-bit word that indicates the occupancy of
the child clusters, and a 32-bit node key (see Figure 3). Bounding
boxes for each node are calculated and propagated up the tree.

4.2. Photon Tracing

This paper focuses on efficiently performing the radiance estimate,
and our photon tracing is a straightforward GPU implementation
using NVIDIA’s Optix [PBD*10] framework. Our light sources are
diffuse emitters with an angular cut-off. At each bounce, a new
direction is chosen by importance sampling the BRDF (or the cosine
term, for diffuse surfaces), and the new flux is calculated as:

_ flo.o)
" p(o,w)
where f is the BRDF, p is the Probability Density Function (PDF),
and & is the current flux of the photon. In order to maintain a roughly
similar flux among stored photons, we then terminate the path with
probability R = min(1,®’/®) and set ® = (1/R)®" if the photon

@' (n

cos(n,@")®,

P. Moreau, E. Sintorn, V. Kiampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

was not terminated. We keep tracing paths until we have reached
some predefined number of photons.

In previous work [ML09, MML13], it has been suggested that
the photon radius could be varied according to the path probability.
This is important to avoid overblurring caustics, but we are mostly
interested in scenarios where very few photons are stored to ob-
tain real-time global lighting effects (avoiding caustics) and can
generally keep the radius fixed.

4.3. Photon Splatting to Clusters

This step of the algorithm is actually broken into several passes to
improve overall performance. Ultimately, each photon is intersected
with the view-sample cluster hierarchy and inserted into a list at
every node that is completely inside the photon, or leaf node that is
intersected.

Since some photons will intersect many more nodes than others,
there can be load-balancing issues. As suggested in [SKOA14], we
therefore implement a pass that traverses down 3 levels and pushes
the current photon ID and node key to a global list. To ensure the
global list has good memory coherence, it is rearranged into local
groups that are used in the following insertion passes to find the leaf
intersections. When running the leaf intersection passes, a sufficient
number of threads are started to fully utilize the GPU and each
thread fetches jobs from the global list until it is empty.

At each cluster where photons intersect, an array is allocated to
store the intersection photons. We calculate the required array size
for each node in a first pass (traversing the hierarchy exactly as we
do when inserting photons), and store the result in an array. We then
use the prefix sum (calculated using cudpp [SHGO11]) of that array
as a per-node index where the node’s first photon shall be stored. An
alternative approach to using arrays would be per-node linked lists.
We have found, however, that while building these linked lists is not
very expensive, iterating through them in the radiance estimation
pass (Section 4.4) is very inefficient.

One thread per photon is launched on the GPU, and that thread
will recursively test the photon against the nodes’ bounding boxes.
The traversal is implemented in an iterative fashion with a small
stack in shared memory, which is initialized with the child mask
from the root node. The main traversal loop then starts by looking at
the top mask on the stack, and checking the first existing child node
for intersection. That child node is cleared from the child mask on
the stack, so as not to be tested again. When a photon is found to
completely enclose a node, or the traversal reaches an intersected
leaf node (cluster), the photon is appended to a list for that node and
its child-nodes are not traversed.

When traversing the cluster hierarchy to find the sphere intersec-
tion we maintain a stack of child masks, and the current node index
or node key. As each node is visited, the first bit of the 32-bit child
mask becomes the active node, and the bit is removed from the mask
and the remaining mask is pushed to the stack to track the remaining
child nodes that still have to be processed. At a new node, the node
key is used to fetch the child mask and bounding box of the current
node from the corresponding global lists. Instead of storing the node
key on the stack it can be stored in a single integer. When traversing

56

to the i:th child of a node, the node key is simply shifted five bits to
the left, and 7 is appended in the lower bits. When a node has been
fully processed and the stack is popped, the node key is shifted back
five bits to the right. For all but the final level, the node key is used
as the immediate index in the list of bounding boxes. At the final
level, to reduce the memory footprint, the node key is instead used
to find an index to where the corresponding bounding box is in a
compact list.

The algorithm differs from the method described by Sintorn et
al. [SKOA14]. First, in their algorithm, a warp (32 threads) is started
per primitive, and the intersection tests are done in parallel. We
found that, because only a few of the subnodes are likely to be
occupied, letting a single thread do all intersections for the occupied
nodes is more efficient, at least in our case where the intersection
tests are simple sphere/bounding box tests. Secondly, in their al-
gorithm the bounding boxes were defined in Normalized Device
Coordinates (NDC), and the hierarchy could be tested against each
per-triangle shadow volume by, starting from the root, seeing which
subnodes were occupied and testing the bounding boxes of each
against the shadow-volume planes (also in NDC). In our case, the
primitives to be tested are spheres, which are not simple geometric
shapes in NDC, so we instead store the bounding boxes in view-
space coordinates, which will be overly conservative at higher levels
of the hierarchy.

Note that we consider photons to have a spherical influence re-
gion, rather than a squashed sphere as has been proposed in previous
work [ML09]. Clipping the sphere by one or two planes is a sim-
ple modification to the algorithm but causes unwanted artifacts as
we want to avoid a smoothing kernel in our radiance estimate (as
explained below).

4.4. Radiance Estimation

‘When all photons have been traversed through the hierarchy, we have
a list of photons per node that must be considered for all contained
view samples. We start one thread per view sample and loop over
the photons in each containing node’s list. For each photon, we
check if the view sample is actually within and, if so, we accumulate
the reflected radiant intensity: I = I+ f(0,®,)®, (where f is the
BRDF, o is the view direction, ®p is the incoming direction of
the photon and @), is the flux carried by the photon). When all
photons have been processed, we calculate the outgoing radiance as
L= I/nrz, where r is the photon radius (or, if we have photons of
varying radii, the distance to the furthest photon).

‘When an insufficient number of photons are available in an area,
the distinct photon splats will become visible on the surface. It
is common practice to attempt to hide this by multiplying each
photon’s contribution with a distance-dependent smoothing kernel.
In the scenarios we are focusing on, with smoothly varying diffuse
inter-reflections, we found that it was more likely to reduce the
image quality.

4.5. Normal Cones

If the view samples in a node all have normals such that the photons
direction is not incident to any of their tangent planes, the node can
be rejected immediately.

© 2016 The Author(s)

E ics P ©2016 The
The definitive version is available at https:/diglib.eg.org/handle/10.2312/hpg20161194.

P. Moreau, E. Sintorn, V. Kdampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

The view samples that fall into one cluster are guaranteed to lie
close to each other. Therefore, we make the assumption that they
are also likely to have similar normals, and upon that assumption
we attempt an optimization. When building the cluster hierarchy,
starting with the leaf level, we compute the average normal and
the maximum angle that a view sample’s normal deviates from this
average. We call this the normal cone of the cluster. We later refer
to this optimisation as cluster-cone. This normal cone is similar to
that used by Sederberg and Meyers [SM88] to bound Bézier normal
vectors. At the next level in the hierarchy, we generate the average
of all the subnode normal-cone directions and the maximum of the
subnodes’ deviation from that average plus the subnodes’ normal-
cone angle. In this way, we propagate the normal cone upwards in
the hierarchy (see Figure 4).

S

i

A
]

7

D

KL

n/2+a

Figure 4: The normals of all view samples in a cluster are aggregated
into a normal cone. The normal cones of all clusters are aggregated
into normal cones for their parents.

With the normal cones in place, we can add a new simple rejection
test to the photon traversal. Whenever a photon is found to intersect
a node, we also check if the angle between the photon direction
and the normal-cone direction is greater than /2 + o, where o is
the normal-cone angle. If so, the photon will not affect any of the
contained view samples and does not need to be traversed further.

4.6. Trivially Accepting Photons

For diffuse surfaces, where the BRDF is constant, the contribution
of a photon to a view sample within a node is either zero (if the
photon is incoming from below the surface), or constant (for all
other directions). Thus, when a photon encloses a node, and we
know that all view samples within that node have normals on the
same hemisphere as the incoming direction, the contribution for all
view samples will be the same and we can accumulate this in the
node instead.

Thus, if the angle between the photon’s direction and the normal-
cone direction is less than 7t/2 — o (i.e. the photon is incident on all
contained view samples’ tangent planes), we simply add the photons
flux to a per-node value. In the next pass, when estimating radiance,
we add this flux multiplied by the BRDF to the view sample’s
accumulated intensity. This can greatly increase the performance of
the radiance estimate pass, while the traversal performance remains
nearly the same. This optimisation is referenced as cluster-trivial.

4.7. Directional Approximation

A further performance optimization, later referenced as directional,
can be achieved by avoiding each view sample having to loop

© 2016 The Author(s)
3 ics P ings © 2016 The Ex i 3

The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20161194.

57

through all intersecting photons and instead accummulating a di-
rectional flux per intersected node. For each node, we store the
incoming flux into a small number of buckets corresponding to
discrete directions. When a photon is found to enclose a node, or
intersect a leaf node, it adds its contribution to the bucket with the
closest associated direction. When estimating radiance, we no longer
have to process a list but simply evaluate the incoming flux from
each direction, for all nodes that contain the view sample.

Figure 5: Left: a 2D representation of flux being stored per octant
based on its incoming direction (yellow, green and blue arrows); the
stored flux is later weighted to account for certain directions being
below (greyed area) the view-sample’s tangent-plane (the red plane,
with its normal). Right: For each tile, there can be several clusters
at different depths (uniquely colored in the image), and our method
evaluates illumination per such cluster.

In our implementation, we store the flux incoming from each oc-
tant of the sphere (the number of directions used has a direct impact
on memory consumption, as shown in Section 5). When shading,
we only have the sum of the incoming flux from each octant. Parts
of, or all of, the octant might lie below the view sample’s tangent
plane, and photons from those directions should not contribute. To
remedy this overestimation of incoming flux, we could, for each
direction, clip the corresponding octant of the unit sphere against the
view sample’s tangent plane. The ratio of the area that is below the
tangent plane to the area that is above would give us a reasonable
weight for this direction (see Figure 5). This calculation would be
too expensive to perform for every view sample and direction, but
the weights depend only on the view-space normal, so we could
pre-compute it and store it in a small cubemap. In practice, however,
we have found that a much simpler heuristic gives acceptable re-
sults. The contribution from each direction is simply weighted with
2cos(n,d), where n is the view-space normal, and d is the direction
in view space. We multiply by 2 to account for that the integral of
the cosine is smaller (7) than the integral of the hemisphere (27).

The proposed method only gives us an estimation of the incoming
flux per cluster. If we use that result to shade each view sample, the
result can be visibly blocky when the light-field changes quickly.
To alleviate this, for diffuse materials, we store only the irradiance
in a texture, and apply a depth- and normal-aware blur filter to that
texture. The blurred irradiance is then multiplied by the diffuse
BRDF in the final shading stage.

It is important to note that the proposed approximate method gives
much better results than simply rendering the indirect illumination
at a coarser resolution. E.g. a 32 x 32 tile can contain view samples
from several distinct surfaces at different depths which will fall into
different clusters. Our method will sample the irradiance for each of
these, whereas a simple upsampling would pick only the one in the
middle of the tile (see Figure 5).

P. Moreau, E. Sintorn, V. Kiampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

5. Results

All measurements have been made at a 1920x1080 resolution
on a NVIDIA Titan X GPU with 12 GB VRAM using Op-
tiX [PBD*10] 3.9.0 for tracing the photons in real-time and
CUDA [NBGS08] 7.0 for every step of the algorithm, apart from
generating the G-buffers, and the shadowmaps, as well as the blur
pass, which are done using OpenGL. We limit the photon tracing
to four bounces and do not store photons on the first bounce but
instead use standard deferred shading to compute the direct lighting.

Three different scenes are used throughout this paper: Sponza,
Sibenik and San Miguel (see Figure 1). For each of them, we have
created a fly-through animation (see the accompanying videos).
These fly-throughs do not include moving lights or geometry, but
we have supplied additional videos showing dynamic scenes. The
total frame time, including the time taken to trace photons is given
in Figure 1. Updating the acceleration structures when an object
moves adds less than a millisecond to these times.

5.1. Performance

‘We compare the splatting and shading performance of our method,
with and without optimizations, to our own implementation of the
tiled photon splatting presented by Mara et al. [MML13]. We have
not implemented the stochastic selection of photons proposed by
Mara et al., and therefore, we do not preload the shared memory with
photons but interleave the loading of photons with the arithmetic
operations of computing their contribution. This also simplifies
the case when list sizes do not fit in shared memory. For the tiled
algorithm we use a tile size of 32 x 32.

Figure 6 presents a comparison of each method’s execution time
(photon tracing and G-buffer generation is not included, as the time
is similar for all methods) for a fly-through of each scene. The
cluster-trivial method is on average about two times faster than the
tiled method, and up to three at some peaks. The tiled method has
a lower overhead compared to our methods, and will therefore be
faster when few photons are being splatted (see Figure 6a, around
frame 150). With the directional algorithm, we achieve another 2-3x
speedup and the difference in image quality is minimal (see Fig-
ure 10, and Table 2). The directional algorithm also shows little
variance in execution times, due to better load balancing. The di-
rectional algorithm stores radiance data starting at one level above
the leaf nodes in the cluster hierarchy. The performance difference
between the different optimizations added to our cluster version are
presented in Figure 9.

‘When breaking down the execution times of the different methods
into passes (see Figure 8), the tiled method is dominated by the final
shading pass. The total frame time is dominated by the photon trac-
ing, but it should be noted that the photon tracing code, which relies
on OptiX, has not been optimized, nor has the deferred rendering
pass; better performance results could therefore be expected for
these steps.

5.2. Memory Consumption

Our cluster method statically allocates memory for a dense hier-
archy, even though we only build and use a sparse hierarchy per

58

Cluster | Directional | Tiled

Tiles z-Bounds - - 0.016
Cluster Hierarchy 97 97 -
Final Bounds 256 256 -
Normal Cone 24 - -
Accum. Flux 73 582 -
Sub-Total 450 935 0.016
Jobs 24 2.4 -
Photons Array 60 - 28
Photon Map 0.16 0.16 0.16
Sub-Total 63 7.2 28
Total 513 942 28

Table 1: Memory-consumption (in MiB) breakdown for our cluster-
trivial version, a directional version using eight regions and a tiled
version using 32 x 32 tiles, all of them at a resolution of 1920 x 1080
and using 10k photons of radius 4 in Sponza.

frame. We use a similar hierarchy to the 1080p hierarchy of Sintorn
et al. [SKOA14] with six half-floats for each AABB and 32-bit
childmask per node. In addition, we store one 32-bit word per node
for the normal cone (theta and the normal cone angle are compacted
to 8-bit values, whereas phi requires 16 bits), and 3 floats per node
for the per-node flux, effectively doubling the memory consumption.

As explained in Section 4.3, we split the splatting pass into two
sub-passes. The first sub-pass splats the photons down to a certain
pre-defined level, from which the second sub-pass starts and con-
tinues splatting further down. This means that we need to store
additional data, the jobs mentioned in Table 1, which is an array of
pairs (a 32-bit value for the photon id, and another 32-bit value for
the cluster key); as we group the jobs per cluster to improve data
locality, two lists are needed in practice. The largest size required
for this list during our experiments was 30M elements (requiring
458 MiB for both lists) for SOM photons of radius 0.2 in Sponza,
and we simply pre-allocate a list of sufficient size. In order to reduce
its memory footprint, the different sub-passes can be run several
times on a smaller sized list.

The different methods presented here generate arrays of pho-
tons per cluster/tile. Those photons are stored in a compact format,
amounting to 16 bytes per photon. Position and flux are both stored
as three half-floats, the orientation as two 8-bit values (theta and
phi), and the radius as a 16-bit value. We pre-allocate a sufficiently
large array to hold these photons, and in our experiments it has
never exceeded 102M elements (requiring 1.5 GiB when storing the
full photon, rather than just its id) for 5OM photons of radius 0.2 in
Sponza.

In the directional method, we do not need to store individual
photons per cluster, but we instead need to allocate memory for
storing the accumulated flux for each direction of each node, starting
at the level where the first splat sub-pass stops, down to the leaves.
This amounts, for eight regions per node, to 24 floats per node,
which translates to a total of 582 MiB for a 1080p resolution and
starting the accumulation from level 4.

© 2016 The Author(s)

E ics P ©2016 The
The definitive version is available at https:/diglib.eg.org/handle/10.2312/hpg20161194.

P. Moreau, E. Sintorn, V. Kdampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

20 g 54 f 27 il
18 U/J‘ A I\ Mo 5l " “ A
A A | \rw\ 1 o 8 ‘u 2 [2N
el | " | [
[T [[\ 2 [21 { “ \
14 \‘ | ‘ | ! |\ MA \m “
= ‘ 736 - 718 | u\ \
El] £ | £l /\ w“w '\
g1 le %ﬂlﬁu g [i W w/u \ /A\Vf
F g = =
T wm o Jvww,mm‘mm.« s =N ol “‘“wf
6 i T N PISE NY L W Mww«w,ww“ oo
4 12 v et 6
[
2 3
% 50 100 150 200 250 300 350 400 ° 50 100 150 200 250 300 350 % 50 100 150 200 250 300 350 400
Frames Frames Frames
b i n .
% N [g 54 f 7 i
2 [V A @ f o i
A y | il .
28 “ hfj‘ J | | \‘ ‘ { 42 I 56 ‘\/“V‘ \‘ o,
- | [| — \ — |\
g4l 1 || - ‘ \ 7 36 748 / I o)
| 1 \
S 50| ‘\ “ ‘\ 230 / “A\ // Sal [J ‘ i ‘ \
R A M 2 \ 7 Ll
£ £ / £ \
E 16P/“w{ If \‘ f “‘M\ F 28 iy AT WY V‘\H \ ,‘ g‘
12 \\\ P / m 18 o e _“r »« \ 2a] N u /\
8 R A M,”waw ety 12 . e e I uJ \
P S A SO DRSS e
N) > ; SNRE A ;,,_J
% 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400
Frames Frames Frames
(a) Sponza (b) Sibenik (c) San Miguel

Top: 10k radius 4, Bottom: 200k radius 1.2

Top: 10k radius 5, Bottom: 200k radius 1.5

Top: 10k radius 5, Bottom: 200k radius 2

Figure 6: Comparison of cluster, directional and tiled methods splatting time for the San Miguel, Sibenik and Sponza scenes using different
radii and photons numbers. The red, blue and green curves correspond respectively to tiled, cluster-trivial and directional.

Millions of Photons

0 50 100 150 200 250 300 350 400
Frames
— tiled cluster-trivial
— cluster Actually Contributing

cluster-cone

Figure 7: Sum of photons read in total during the shading pass
for tiled shading and our method compared against the number of
actually contributing photons. (case: 10k photons of radius 4 in
Sponza)

5.3. Photon Splatting Efficiency

In Figure 7, we see that the tiled splatting reads many more photons
during the shading pass than are actually contributing to the shading.
Our method results in much fewer reads due to the much better
spatial bounds. With our method, on average, less than 3% of the
photons read from the lists are rejected by testing the view sample
position against the photon influence sphere.

©2016 The Author(s)
! jcs P ings © 2016 The E:

The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20161194.

59

With the cluster-cone optimization (see Section 4.5) we discard
even more photons and obtain more relevant lists (see Figure 7) and
with the cluster-trivial optimization (see Section 4.5), we replace
some of the insertions with accumulation of flux, which decreases
the number of list reads to be even fewer than the number of photons
that are actually contributing to the radiance.

5.4. Quality Evaluation

In order to assess the quality of our algorithms resulting images, we
compute their SSIM [WBSS04] and PSNR mean score agains a path
traced reference image generated using Embree [WWB*14]. The
results are summarised in Table 2. The cluster and tiled methods
have almost identical SSIM mean score, which is expected as they
end up shading view samples with the same list of photons: only the
way those lists are computed changes. Even though the directional
method is an approximation, its SSIM mean score remains only
slightly below the cluster score. For a visual comparison, Figure 10
presents the final image for the different methods in Sponza with
200k photons of radius 2.

By using more photons and of smaller radius, our experiments
show that the final image quality improves, as regular photon map-
ping would. This is supported by the SSIM and PSNR scores listed
in 2, at least for the cluster and tiled methods. Combined with
the scaling of our algorithm, performance-wise (see Figure 8), for
"higher quality" setups, we expect the cluster-trivial method to per-
form favorably on newer hardware, without any additional modifi-
cations. Figure 11 compares the final image for our cluster-trivial
optimisation in Sponza between a low-quality setting (10k photons
of radius 4) and a high-quality one (50M photons of radius 0.2).

P. Moreau, E. Sintorn, V. Kiampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

130 130 130
17 17 17
104 104 104
91 91 91
E g gs g
v o o
g ¢ 65 g e ¢
@ F s F 52 =
39 39
26 26
13 13
50k/2.0 200k/1.2 M/0.7 5M/0.5 50k/2.0 200k/1.2 Mm/0.7 5M/0.5 200k/1.2 M/0.7
21 2
189 189
168 168
147 147
4 w126 7 126
=
3 2 105 2 105
@ F 84 E 84
63 63
42 42
21 21
50k/2.0 200k/1.5 1M/1.0 5M/0.6 50k/2.0 200k/1.5 IM/1.0 5M/0.6 sok/2.0 200k/1.5
80
80 80
72
72 72
64
64 64
56
— 56 — 56
S 248 —
= M £ m
@ E® ‘v 40 £
= v 40 £ © 40
£ F 32 £
s E3 E 32
3 24
24 24
16 /
16 16
8 8
50/3.0 200k/2.0 M/1.0 5M/0.5
50K/3.0 200k/2.0 1M/1.0 5M/0.5 Photons Nb/Radius 50k/3.0 200k/2.0 1M/1.0 5M/0.5
Photons Nb/Radius " - Photons Nb/Radius
n - n E Cluster Generation [Miscellaneous - - "
I Cluster Generation W Shading splatting Blur [0 Splatting [Miscellaneous
=3 splattin [J Miscellaneous . B shadin,
i B Shading 9

(a) cluster-trivial

(b) directional

(c) tiled

Figure 8: Breakdown of total frame time into its various components, for our cluster-trivial and directional methods, as well as Mara et al. tiled,
inside the Sponza scene using the same viewpoint as in Figure 1. Miscellaneous groups buffer clearing, texture mapping and unmapping.

5.5. Reflections

Our method can be used to render non-diffuse BRDFs, but we cannot
use the cluster-trivial optimization (as the incoming direction of each
photon is important for view-dependent BRDFs). Figure 12 shows
an example of glossy reflections. Note that, while curved objects
look convincing, we do not shoot enough photons (nor small enough
photons) to capture glossy reflections from e.g. a flat floor.

6. Discussion and Limitations

We have shown that view-sample cluster hierarchies can be used to
perform fast radiance estimates in interactive settings where photons
are few enough to be traced per frame, and large enough to provide a
smooth result. Additionally, we have shown that an approximate ver-
sion of our method can produce convincing diffuse inter-reflection
images at around 10 ms per frame, bringing global illumination
closer to use in real-time applications like video games.

60

Like most realtime GI algorithms (including production proven
algorithms like Voxel Cone Tracing and Light Propagation Volumes),
the most obvious drawback of Photon Splatting is the existence of
light leakage. While clearly visible in all of our renderings, we have
not found these artifacts too disturbing, however, and are convinced
that photon splatting (at the low cost we obtain) is a usable solution
for global lighting phenomena. As we focus on a small number of
large photons, high frequency phenomenas, like caustics, are poorly
represented, but still supported by our method. More convincing
results might be attained by a higher number of smaller photons.
Similarly, glossy surfaces are supported by our method, but results
remain poor, even with a higher number of small photons, as it does
for traditional photon mapping.

We have illustrated efficient splatting in the context of photon
splatting, but the same method could be applied to VPL based
algorithms, and we are eager to explore if there may be other uses
(e.g. ambient occlusion).

©2016 The Author(s)

ics P lings © 2016 The
The definitive version is available at https:/diglib.eg.org/handle/10.2312/hpg20161194.

P. Moreau, E. Sintorn, V. Kdampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

. Cluster Directional Tiled

Scene Photons Nb | Radius | —eor=5oNRT"SSIM [PSNR | SSIM | PSNR
TOK 70 90 25 o1 27 90 24

50k 2.0 91 2% | 90 25 %2 27

Sponza 200k 12 93 0| 92 27 93 30
M 0.7 94 3 92 27 94 32

sM 05 94 £ 92 27 94 32

50M 0.2 05 3 89 25 95 3

10k 50 75 2 81 25 76 %)

50k 3.0 82 2 83 26 81 25

San Miguel 200k 2.0 84 2 83 26 83 26
™M 1.0 85 27 82 26 84 27

sM 05 85 28 82 26 85 27

50M 0.2 86 28 83 27 85 28

10K 50 o1 28 87 27) 27

50k 2.0 88 31 85 28 89 31

Sibenik 200k 15 94 32 89 28 93 32
M 1.0 05 4| 90 28 94 34

sM 0.6 96 36| 94 30| 95 36

50M 0.2 96 38 23 30| 9% 38

Table 2: SSIM (in %) and PSNR (in dB) results for various setups across the three test scenes using the cluster-trivial and the directional
methods against a path traced reference image generated using Embree.

2o e
NS

Time [ms]
o

N DO ®

2

50 100 150 200 250 300 350 400

Frames

cluster cluster-trivial

cluster-cone

Figure 9: Total execution time for our method with and without
optimizations. Included timings are splatting, shading and other es-
sential steps, e.g., building the cluster hierarchy. Tracing of photons
and deferred shading are not included. (case: 200k photons of radius
1.2 in Sponza)

Acknowledgements We would like to thank Jacob Munkberg
and Jon Hasselgren for their critical and helpful comments about
the paper. We use Mehdi Rabah’s SSIM implementation [Rab].
The Sponza scene is created by Frank Meinl, Sibenik is by Marko
Dabrovic, and San Miguel is by Guillermo M. Leal Llaguno. All
scenes are freely available at Morgan McGuire’s Computer Graphics
Archive [McG]. Pierre and Michael thank the Swedish Research
Council under grant 2014-5191 and ELLIIT for funding. Erik, Viktor

© 2016 The Author(s)
Surographics P ings © 2016 The E: ics Assoc
The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20161194.

61

and Ulf are supported in part by the Swedish Research Council under
grant 2014-4559.

References

[CNS*11] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISEMANN
E.: Interactive indirect illumination using voxel cone tracing: A preview.
In Symposium on Interactive 3D Graphics and Games (New York, NY,
USA, 2011), I3D " 11, ACM, pp. 207-207. 2

[DBBS06] DUTRE P., BALA K., BEKAERT P., SHIRLEY P.: Advanced
Global Illumination. AK Peters Ltd, 2006. 1

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective shadow maps.
In Proceedings of the 2005 Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2005), I3D *05, ACM, pp. 203-231. 2

[HIB*12] HACHISUKA T., JAROSZ W., BOUCHARD G., CHRISTENSEN
P., FRISVAD J. R., JAKOB W., JENSEN H. W., KASCHALK M., KNAUS
C., SELLE A., SPENCER B.: State of the art in photon density estima-
tion. In ACM SIGGRAPH 2012 Courses (New York, NY, USA, 2012),
SIGGRAPH 12, ACM, pp. 6:1-6:469. 2

[Jen96] JENSEN H. W.: Global illumination using photon maps. In
Proceedings of the Eurographics Workshop on Rendering Techniques "96
(London, UK, UK, 1996), Springer-Verlag, pp. 21-30. 2

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon Mapping.
A. K. Peters, Ltd., Natick, MA, USA, 2001. 1

[KD10] KAPLANYAN A., DACHSBACHER C.: Cascaded light propagation
volumes for real-time indirect illumination. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2010), I3D "10, ACM, pp. 99-107. 2

[Kel97] KELLER A.: Instant radiosity. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1997), SIGGRAPH "97, ACM Press/Addison-Wesley
Publishing Co., pp. 49-56. 2

[LPO3] LAVIGNOTTE F., PAULIN M.: Scalable photon splatting for global
illumination. In Proceedings of the Ist International Conference on
Computer Graphics and Interactive Techniques in Australasia and South

P. Moreau, E. Sintorn, V. Kiampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

(a) cluster-trivial

(b) directional

(c) tiled

Figure 10: View from Sponza rendered using our cluster-trivial
method, our directional method, and Mara et al. tiled method with
200k photons of radius 1.2.

East Asia (New York, NY, USA, 2003), GRAPHITE 03, ACM, pp. 203—
ff.

[LSP*12] L1 S., SIMONS L., PAKARAVOOR J. B., ABBASINEJAD F.,
OWENS J. D., AMENTA N.: kann on the gpu with shifted sorting. In
Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference
on High-Performance Graphics (Aire-la-Ville, Switzerland, Switzerland,
2012), EGGH-HPG’ 12, Eurographics Association, pp. 39-47. 2

[McG] MCGUIRE M.: Computer graphics archive. http://
graphics.cs.williams.edu/data Accessed on 2016/03/29. 9

[ML09] MCGUIRE M., LUEBKE D.: Hardware-accelerated global illumi-
nation by image space photon mapping. In Proceedings of the 2009 ACM
SIGGRAPH/EuroGraphics conference on High Performance Graphics
(New York, NY, USA, August 2009), ACM. 2, 3, 4

[MM13] MARA M., MCGUIRE M.: 2d polyhedral bounds of a clipped,
perspective-projected 3d sphere. Journal of Computer Graphics Tech-
niques (JCGT) 2, 2 (August 2013), 70-83. 3

[MMLI13] MARA M., MCGUIRE M., LUEBKE D.: Toward Practical Real-

Time Photon Mapping: Efficient GPU Density Estimation. In Interactive
3D Graphics and Games 2013 (March 2013). 2,3, 4,6

62

(a) 10k photons of radius 4 in 10 ms

(b) 50M photons of radius 0.2 in 290 ms

Figure 11: Comparison between a "low-quality" setting and a "high-
quality" setting in Sponza; the time are those from cluster-trivial.

Figure 12: Glossy materials of varying roughness rendered with our
method. 50k photons with radius 1. Total time per frame: 34 ms.

[MMNL14] MARA M., MCGUIRE M., NOWROUZEZAHRAI D., LUE-
BKE D.: Fast Global Illumination Approximations on Deep G-Buffers.
Tech. Rep. NVR-2014-001, NVIDIA Corporation, June 2014. 2

[NBGS08] NickoLLS J., Buck I., GARLAND M., SKADRON K.: Scal-
able parallel programming with cuda. Queue 6, 2 (Mar. 2008), 40-53.
6

[NWO09] NiIcHOLS G., WYMAN C.: Multiresolution splatting for indirect
illumination. In Proceedings of the 2009 S, ium on Interactive 3D
Graphics and Games (New York, NY, USA, 2009), I3D *09, ACM, pp. 83—
90. 2

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clustered de-
ferred and forward shading. In HPG ’12: Proceedings of the Conference
on High Performance Graphics 2012 (2012). 2

[PBD*10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MORLEY
K., ROBISON A., STICH M.: Optix: A general purpose ray tracing engine.
ACM Transactions on Graphics (August 2010). 3, 6

[PH10] PHARR M., HUMPHREYS G.: Physically Based Rendering, Sec-
ond Edition: From Theory To Implementation, 2nd ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2010. 1

© 2016 The Author(s)

ics P ©2016 The
The definitive version is available at https://diglib.eg.org/handle/10.2312/hpg20161194.

P. Moreau, E. Sintorn, V. Kdampe et al. / Photon Splatting Using a View-Sample Cluster Hierarchy

[Rab] RABAH M.: C++ implementation of SSIM. http://mehdi.
rabah. free.fr/SSIM/ Accessed on 2016/03/29. 9

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T., KAUTZ J.:
The state of the art in interactive global illumination. Comput. Graph.
Forum 31, 1 (Feb. 2012), 160-188. 2

[REH*11] RITSCHEL T., EISEMANN E., HA 1., KiM J. D., SEIDEL
H.-P.: Making imperfect shadow maps view-adaptive: High-quality
global illumination in large dynamic scenes. Computer Graphics Forum
(presented at EGSR 2011) (2011). 2

[RGK*08] RITSCHEL T., GROSCH T., KiMm M. H., SEIDEL H.-P.,
DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for efficient
computation of indirect illumination. ACM Trans. Graph. 27, 5 (Dec.
2008), 129:1-129:8. 2

[SB97] STURZLINGER W., BASTOS R.: Interactive rendering of globally
illuminated glossy scenes. In Proceedings of the Eurographics Workshop
on Rendering Techniques 97 (London, UK, UK, 1997), Springer-Verlag,
pp. 93-102. 3

[SHGO11] SENGUPTA S., HARRIS M., GARLAND M., OWENS J. D.:
Efficient parallel scan algorithms for many-core gpus. In Scientific Com-
puting with Multicore and Accelerators, Kurzak J., Bader D. A., Dongarra
J., (Eds.), Chapman & Hall/CRC Computational Science. Taylor & Fran-
cis, Jan. 2011, ch. 19, pp. 413-442. 4

[SKOA14] SINTORN E., KAMPE V., OLSSON O., ASSARSSON U.: Per-
triangle shadow volumes using a view-sample cluster hierarchy. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (2014), 13D *14, ACM. 2, 3,4, 6

[SM88] SEDERBERG T. W., MEYERS R. J.: Loop detection in surface
patch intersections. Computer Aided Geometric Design 5, 2 (1988), 161 —
171. 5

[WBSS04] WANG Z., BoviK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (April 2004), 600-612. 7

[WWB*14] WALD L., WoOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A kernel framework for efficient cpu ray tracing. ACM
Trans. Graph. 33,4 (July 2014), 143:1-143:8. 7

[ZHWGO08] ZHou K., Hou Q., WANG R., GuoO B.: Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph. 27, 5 (Dec. 2008),
126:1-126:11. 2

©2016 The Author(s)
! jcs P ings © 2016 The E: i ciati

The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20161194.

63

Paper 11 .

Path Verification for Dynamic Indirect lllumination

PIERRE MOREAU, Lund University, Sweden
MICHAEL DOGGETT, Lund University, Sweden

ERIK SINTORN, Chalmers University of Technology, Sweden

Fig. 1. Rendering in the Villa scene for the baseline on the left, and our error-based method on the right at roughly equal frame time (341 ms, and resp. 333 ms);
in both cases, the number of bounces is limited to 7. The baseline traces 3 million paths in about 178 ms, and the splatting of the photons takes 148 ms. On the
other hand, our method traces and reuses 5 million paths in about 80 ms, and the splatting of the photon takes 236 ms.

In this paper we present a technique that improves rendering performance
for real-time scenes with ray traced lighting in the presence of dynamic
lights and objects. In particular we verify photon paths from the previous
frame against dynamic objects in the current frame, and show how most
photon paths are still valid. When using area lights, we use a data structure
to store light distribution that tracks light paths allowing photons to be
reused when the light source is moving in the scene. We also show that by
reusing paths when the error in the reflected energy is below a threshold
value, even more paths can be reused. We apply this technique to Indirect
Tllumination using a screen space photon splatting rendering engine. By
reusing photon paths and applying our error threshold, our method can
reduce the number of rays traced by up to 5%, and improve performance by
up to 2X.

CCS Concepts: - Computing methodologies — Ray tracing; Rendering.

Additional Key Words and Phrases: Photon Mapping, Global Illumination

1 INTRODUCTION

Indirect illumination is an important cue for the perceived realism
of computer generated imagery, but its accurate computation can be
computationally expensive. A recent survey by Ritschel et al. [2012]
covers many algorithms that approximate indirect illumination for
real-time applications. Since the general problem is complex, and
cannot be easily solved even in offline rendering, where hundreds of
cores can spend hours on a single frame, most real-time algorithms
are specifically designed to generate a good estimation under very
specific assumptions about lighting and materials.

Computing indirect illumination and soft shadows, while con-
sidering animated objects, leads to a more accurate representation

Authors’ addresses: Pierre Moreau, Lund University, Sweden; Michael Doggett, Lund
University, Sweden; Erik Sintorn, Chalmers University of Technology, Sweden.

9® 2021 Copyright held by the authors, published under Creative Commons
CC-BY-SA-4.0 License.

67

of the lighting in a scene, than can usually be achieved with pre-
computed techniques. In this paper we build upon the photon splat-
ting technique by Moreau et al. [2016] to enable indirect lighting
with multiple dynamic light sources. Unlike Moreau et al. [2016],
where the photon map is recomputed every frame, we propose to
opportunistically reuse as many photon paths as possible, including
those from moving light sources. We achieve this by reusing light-
ing from previous frames, and within area lights. In this paper we
present a technique that uses a photon map with several bounces,
many more than previous techniques, enabling subtle lighting ef-
fects in neighboring areas which have no direct path to the light
source.

Photon mapping traces light paths from the light, and deposits
photon energy onto diffuse surfaces. To create the final image, cam-
era rays are traced to gather the light deposited on surfaces in the
scene. Path tracing instead traces rays from the camera through the
scene until they find a light source. This means that for traditional
path tracing, all segments of a path must be verified if lights or
objects move in the scene. While for photon mapping, only the light
paths from the light to the surface need to be verified, as camera
rays will be traced regardless.

In scenes with moving objects and dynamic light sources, we
present techniques for path verification. If a path from a previous
frame is classified as still valid, we reuse the photon path in the
current frame. By reusing photon paths we are able to achieve
interactive frame rates in scenes with indirect illumination. Unlike
previous methods with geometric approximations or sparse samples
sets, we use a dense photon map, and instead of recomputing all
light per frame, including lighting that is still valid, we carefully
reuse the light transport from the previous frame.

Using photon maps allows indirect illumination to be computed
in world space without the limitations of screen space methods, and

2« Pierre Moreau, Michael Doggett, and Erik Sintorn

enables the possibility to temporally reuse light transport computa-
tions from previous frames.

2 RELATED WORK

Early attempts to achieve precomputed light transport stored it in
textures [McTaggart 2004], or used spherical harmonics to store
precomputed light transport [Sloan et al. 2002], or, more recently,
in precomputed light field probes [McGuire et al. 2017]. These algo-
rithms can be very efficient to query, but require significant compu-
tational resources for offline precomputations, and large memory
buffers for high quality results. More importantly, they do not al-
low for dynamic lights. On the other end of the spectra are screen
space reflection algorithms [Sousa et al. 2011] that can very quickly
estimate the radiance reflected from a glossy material, but only
when the reflected surfaces are directly visible to the user. Other
screen space algorithms [Ritschel et al. 2009] are only effective for
local reflections when the material is lambertian and do not take
into account more complex materials or light sources outside of the
viewing volume.

Dmitriev et al. [2002] used two different types of photons to
detect areas where lighting changed between frames, and focused
updates to the lighting in those regions using corrective photons. This
allows them to support dynamic scenes and prioritise the updates to
perform, however each corrective photons needs to be traced twice,
with one of the tracings taking place against an earlier version of
the scene.

To reduce the number of paths needed per pixel, Bekaert et
al. [2002] proposed creating path segments in neighboring pixels
and sharing those paths to increase the number of paths traced
in each individual pixel. While our work also attempts to reduce
computation per frame by reusing paths, we reuse the photon paths
from the previous frame, not neighboring pixels.

Voxel Cone Tracing [Crassin et al. 2011] alleviates both of these
problems by voxelizing a rough representation of the scene around
the user’s position, and can be used for diffuse indirect illumination,
but is much too expensive in terms of memory to allow for large
scenes. Also this algorithm does not allow for many bounces of
light.

Also dynamic scenes have been mixed with Stochastic Progressive
Photon Mapping [Weiss and Grosch 2012], but this is a much more
complex technique and requires much longer frame times than our
technique.

More recently, several denoising algorithms have been suggested,
that allow for fast denoising of extremely noisy path-traced im-
ages [Chaitanya et al. 2017; Mara et al. 2017; Schied et al. 2017].
By filtering samples both spatially and temporally, the reflected
radiance of each pixel can be estimated almost as well as if hun-
dreds of indirect illumination rays had been shot per pixel and can
handle both glossy and diffuse surfaces. While these approaches
can generate path traced images at real-time rates, they use short
path lengths to ensure performance.

Another recent method is that of Silvennoinen et al. [2017] where
avery sparse set of light probes are updated every frame by shooting
a single ray per direction and looking up the intersected surface’s
direct-lighting response in a texture. Our technique robustly checks

68

» »

Fig. 2. A simple scene showing an area light source at the top, show as
a grid, from which several photon paths are traced. A small cube moves
in the bottom of the scene, shown in it’s starting position on the left, and
it’s new position on the right. In the right image the cube intersects the
existing segments of all paths. The grid at the top represents what we call a
distribution map covering the two dimensional area light. For the green and
blue paths, as only their last segment is being intersected, we only need to
compute the new intersection point. On the other hand, the red path’s first
segment is intersected also triggering a computation of the new intersection
point, but also a resampling of the BRDF there, due to the second photon
having become invisible from the first one. However, since the new second
photon can see the old third one, and the energy between the two is similar
to before, the third photon is kept as-is.

all dynamic objects, unlike Silvennoinen et al. [2017], which only
has support for approximated dynamic objects and so will fail to
correctly capture the illumination when all light has undergone
several bounces before reaching the camera.

Corso et al. [2017] recently looked into reusing shading informa-
tion at primary view samples from previous frames. This is done by
reprojecting the view sample locations into the current frame and
validating their visibility. They also maintain a uniform distribution
of outgoing rays to avoid having too many or too few paths at a
given pixel. Our approach extends the validation to consider the
whole path rather than just the first segment, and we modified how
the uniform distribution is maintained to apply to light sources and
support area lights.

3 ALGORITHM

Given a scene made only of static objects and lights, the tracing of
the light paths only needs to be done once and can be reused for
all frames. In this paper we focus on the reuse of light paths from
previous frames in the presence of dynamic objects and lights, and
are not concerned with static scenes. To verify that a light path is
still valid in the current frame, it must be checked against moving
objects and light sources. Figure 2 illustrates how the algorithm
handles a single moving object intersecting three photon paths.
In this section we outline how this verification of light paths is
performed first for dynamic lights, and then for dynamic objects.
Our algorithm is made of 5 main steps, that process all light
paths from previous frames and tell a slightly modified photon
mapper/splatter which paths should be retraced; details about the
modifications done to the photon mapper/splatter can be found in
Section 4. In the following we give a brief introduction to the five

Path Verification for Dynamic Indirect lllumination « 3

Update Dynamic Compute Prune Fill Generate Trace Splat/
path origins occlusions DM¢ paths DM¢ rays rays Gather
v

Fig. 3. A diagram showing where our algorithm sits in a regular photon renderer, visualised as a grey box, as well as its different main steps. The green box
groups steps involving distribution maps together, whereas the blue box groups all steps needed for reusing photons from frame to frame. The “generate rays”
and “trace rays” steps bare a few differences in our algorithm, compared to the classic version. However, as those are not significant, they are represented as
the same steps in this diagram; the differences will be presented in Section 4. DMc represents the distribution map of the current frame, computed from the

existing light paths.

Fig. 4. On the left, a spotlight is lighting a certain area on the ground, with
the primary photons represented as black spheres and its near plane as a
blue line. If one was to keep the same photons as the light moves (while still
illuminating the same area), it would result in a distribution of light across
the near plane that is different from the initial one, as seen on the right.

main stages of our algorithm, and then explain them in more detail
later in this section.

Update path origins to match the current position and orien-
tation of light sources.

Dynamic occlusions will detect and schedule for re-tracing
paths intersected by dynamic objects.

Compute DMc to know how many light paths are emitted
from each cell.

Prune paths to decrease the number of emitted paths for cells
with too many light paths.

Fill DM¢ to increase the number of light paths in cells below
the required amount.

Apart from “dynamic occlusions”, which will be presented in Sec-
tion 3.2 as it is unnecessary for dynamic lights, the remaining four
main steps will be presented in Section 3.1. Figure 3 shows the struc-
ture of the five steps and where they sit in relation to a regular
photon splatting architecture.

3.1 Supporting dynamic lights

As lights move in a scene, some surfaces that were previously unlit
become now visible to a light source and receive light, while others
fade in the shadows. To validate light paths against such behaviours,
a first approach would be to test whether the primary segment of
each path is still within the light’s field of view, and if not, replace
the whole path by a new one. However this can lead to changes in
the light’s distribution, as showcased in Figure 4.

DM:[1]1]2]

Fig. 5. A simple example of a distribution map for a spotlight in 2D. Here
the distribution map is composed of only three cells, and is represented in
the top-left corner as an array. Each cell keeps track of how many paths
originated from a specific region on the light; the cells form a partition
of all possible origin configurations. The mapping between a cell and its
corresponding region on the light is colour-coded and can be visualised
directly on the figure.

Even a light that moves parallel to the plane it is illuminating, will
have issues if photons that are now no longer visible from the light
are randomly re-traced over the whole volume visible from the light.
This would result in very few photons in the newly visible areas, as
many of the new photons would end up in the already visible areas.
To avoid those issues, we propose to maintain the distribution of
photons from the light source between frames.

To achieve equal distribution across the light we partition its
surface, and its set of outgoing directions into cells, and ensure that
each cell maintains a given amount of primary paths emitted from
that cell. Those cells form an n-D array which we call a Distribution
Map (DM). The parametrisation of this array is not constrained
and can be different for different light types. For example, a point
light could have a 2-D parametrisation (6, #) whereas a rectangular
area light could use a 4-D parametrisation (x,y, 0, ¢); an example
of parametrisation for a 2-D spotlight can be seen in Figure 5.

The distribution map is initialised with a user-defined distribution
for the light source. This initial set of values is denoted as DM,
or the targeted distribution of the light. This target distribution
could be updated every frame to allow for textured light sources.
A second distribution map, noted DM, is computed each frame

4« Pierre Moreau, Michael Doggett, and Erik Sintorn

using all existing paths at the end of the previous frame. Each frame,
we apply a set of operations to make DM converge towards DMr;
those operations might update the values stored in DMc to ensure
that it counts only valid paths.

Update path origins. As the lights move, we need to update the
position on the light from which the paths are emitted. For a point
light, this simply means setting the light sample to the new position
of the light and recomputing the outgoing direction based on this
new position and the existing primary photon. We also check that
the primary photon is still visible from the light, by making use
of the attached shadow map. This will however not work for area
lights, so in those cases, to avoid tracing visibility rays towards
each primary photon, we keep the existing outgoing direction and
compute its intersection with the plane of the light to get the new
origin of the path. Some of the light paths can already be invalidated
during this step.

Compute DMc. As the light path origins have been updated to
reflect the current position and orientation of the lights, we can now
compute how many light paths are emitted from each cell; this is
done for all paths that were successfully updated in the previous
step. If the parametrisation function of the distribution map returns
a correct value given the position on the light and outgoing direction
of a light path, the cell found to have emitted this path is atomically
increased. Otherwise, the path is marked as invalid and will be
re-traced in the “fill DM¢” step.

Prune paths. Thanks to the previous step, we now know how
many paths lie in each cell. Some of them might contain more paths
than they should, if the light moved. In order to converge back to
DMr, for each cell where DMc > DMr, every path emitted from
that cell will be pruned with the following probability:

DM¢ — DMy

i @

note that this does not ensure that DM¢ will be equal to DMy, but
ensures that DM will converge towards the target over a number of
frames. Also, all paths pruned by this pass are valid paths: we could
keep them and reduce their energies, however that could result over
time in paths with low energy, so we prune them instead.

Fill DM¢. For the same reasons that some cells will contain more
paths, others will be lacking some paths. For each cell to reach its
expected amount of paths, we sample the light to obtain a new
position on the light and outgoing direction. The sampling of the
light is restricted to the domain contained within the cell. Those
inputs will later be used to trace new light paths in the “trace rays”
step.

3.2 Supporting dynamic objects

To handle dynamic objects, the “dynamic occlusions” step of the
algorithm adds visibility rays to compute whether the visibility
between two vertices of the path changed. These rays test the cur-
rent segment against the bounding box of every dynamic object
in the scene, and kill the segment if any of the tests fail. This is a
conservative approach and might return false positives.

70

In order to avoid unnecessary tests, we test the segments of a
path in order, starting from the segment leaving the light. If the ith
segment of the path is intersected by a dynamic object, all segments
after it will be different. After a segment is found to be intersected
by a dynamic object, we schedule that segment and all the following
ones to be re-traced.

3.3 Error-based threshold for path reuse

While the solution presented in Section 3.2 is straightforward, some
paths propagate very similar energy from frame to frame and could
be reused. Instead of killing the intersected segment i, we trace
a visibility ray from the segment’s origin to it’s destination, and
compute the new end of that segment, which is also the origin of
the next segment j. As we updated the origin of j, we may break
the visibility between both ends of that segment. We can trace
a new visibility ray along j to compute its new end point, and
continue similarly until we reach the end of the path. The error-
based threshold algorithm is shown in Algorithm 1.

We can however avoid the visibility ray under certain circum-
stances: if the segment is not intersected by any dynamic objects,
neither its origin nor end are located on dynamic objects, and its
newly computed origin is located at the same position as its old
origin. This situation can occur when segment i is intersected by the
bounding box of a dynamic object, but in practice is not intersected
by any of the object’s triangles.

When reusing path vertices, sometimes the energy reflected Ep;,
at the new intersection point is very similar to how much energy Eo,
was being reflected at the old intersection point. We detect these
cases by using a user specified energy threshold T, and if Equa-
tion 2 is satisfied, we don’t update or propagate the new energy
value saving valuable computation time. Otherwise, all the segments
— starting from the current vertex — are re-traced. By always com-
paring Ep to the original reflected energy Eop, we ensure that we
do not accumulate errors for the energy over multiple frames.

(-TXEop <EN—-Eo)AN(EN—Eo <TXEp) (2)

This technique will never trace more rays than if the whole path
had been invalidated, and can improve the temporal coherency by
reusing some of the segments.

4 IMPLEMENTATION DETAILS

Each path is made up of several photons, and in order to keep track
of the paths’ structure, including the photon order, we store the
photons in a 2-D array where the i-th row contains the i-th photon
of a path, and each column is a different path. This memory layout,
rather than its transpose, allows for better memory access patterns,
as all threads loading their i-th photon will result in consecutive
memory accesses. Photons use a total of 32 bytes:

e Incoming direction (as XYZ): 3 floats;

o ID of object hit: 32-bit integer;

e Energy (as RGB): 3 floats;

o Radius: float.

To help with the current status of a path, we store separately a

small data structure (a single 32-bit word) containing the following:

e The ID of the DM¢’s cell in which this path lies. (22 bits);

Algorithm 1: Error-based threshold approach to dynamic
occlusions handling

// For each path, iterate over its segments,

starting from the first one.

1 foreach Segment € Path do

2 if notintersectedByOb jects(Segment) then

3 L continue

// Compute intersection along segment

1 Hit « TraceRay(Segment.origin, Segment.dir)

5 HitPos < ComputeHitPos(Segment, Hit)

6 NextSeg < Next(Segment, Path)

// Compute new outgoing direction

7 NextSeg.origin < HitPos

8 NextSeg.dir < NextSeg.dest — NextSeg.origin

9 Energy « BRDF(Segment, NextSeg)

10 if notAreEnergiesClose(NextSeg.energy, Energy) then

1 Segment.dest « HitPos
// Sample BRDF to generate new ray
12 return

13 else if AreClose(HitPos, Segment.dest) A

notintersectedByObjects(NextSeg) A

notHitMovingObject(NextSeg.origin) A

notHitMovingOb ject(NextSeg.dest) then
// Skip visibility check between

NextSeg.origin and NextSeg.dest

1 Segment < NextSeg

15 continue

16 Segment.dest «— HitPos

// Visibility check for NextSeg will occur on

the next iteration

The number of segments in the path. (4 bits);

Starting segment to retrace path from. (4 bits);

Replace path. The path is retraced if the bit is set. (1 bit);
Reuse light keeping light position and direction. (1 bit).

The representation of the different steps as seen in Figure 3 does
not match 1:1 to our implementation. For example, we actually
update the path origins and compute the DMc in the same kernel,
while the dynamic occlusions are tested right after that. The merging
of the two kernels was done for performance reasons, in order to
avoid reading from memory data that was recently written, and
the two kernels were relatively small. Since the dynamic occlusions
testing can not be done before the path origins are updated, it had
to be moved after the computation of the DMc.

For simplicity reasons, we generate new rays as soon as it has
been decided we need to replace an existing ray. This means that ray
generation is effectively done in multiple places: during the dynamic
occlusions testing, when filling the DM and when processing the
results from the tracing pass, if the maximum depth has not been
reached yet.

Finally, when pruning extra paths, we end up modifying the
number of paths found in the distribution map, while needing to

71

Path Verification for Dynamic Indirect lllumination « 5

use the initial amount in the pruning probability (see Equation (1)).
This can be achieved by modifying a copy of the distribution, thus
using more memory, or by doing the update in two passes by first
marking the pruned paths, and then editing the distribution map
values. We are using the second approach in our implementation.

5 RESULTS

All presented results were rendered at a resolution of 1920 x 1080
on an NVIDIA Titan X (Pascal architecture, 12 GB of VRAM). The
tracing of the photons was done using OptiX Prime 5.0.0 [Parker
etal. 2010], whereas the path-reuse computations were implemented
using CUDA 9.1 [Nickolls et al. 2008]. We compare our “naive” ap-
proach, presented in Section 3.2, to our error-based method, pre-
sented in Section 3.3 and to a baseline, which consists in not reusing
any information from previous frames and re-tracing every single
path each frame.
We tested our methods on different scenes:

Merry-go-round Conference, with a disc area light placed
above the centre of the conference table, 3 scaling and ro-
tating teapots placed on that table, around which 8 bunnies
move as shown in Figure 6a);

Armadillo Conference scene with an armadillo moving from
one door to the presenter stand, waiting there for a few sec-
onds, then proceeding to the other door as shown in Figure 6b.

Villa a small torchlight, made of a disc-shaped area light, is
moving within the kitchen of a house, indirectly lighting the
living room as shown in Figure 6c.

We recorded the first 30 seconds of the rendering of each scene,
for the baseline and our two methods; those videos can be found
in the supplemental materials. The configurations used (number of
paths, resolution of the DM, etc.) are the same as the ones mentioned
in Figure 7. Note that the time displayed in the top-right corner in
the videos corresponds to the total frame time, while Figure 7 and 8
both focus on only a few steps of the process, ignoring for example
the time taken for splatting the photons (> 130 ms) as orthogonal
to the reuse.

5.1 Performance

The breakdowns presented in Figure 8 uses the different categories
presented in Figure 3, but with the modifications described in Sec-
tion 4. So, for example, the “update path origins” time is included
within the “compute DM¢" time, as they are implemented within
the same kernel.

Our two methods only differ in how they handle moving objects,
but their handling of moving lights is the same. This explains why
there is no differences between our two methods, neither in number
of rays reused nor in tracing time, in Figure 7c.

Even our naive method for dynamic objects already significantly
reduces the number of rays traced each frame, for example for the
armadillo scene, it is reduced by 5X, as can be seen in Figure 7b.
This does not translate into a 5x decrease in the time taken by
OptiX prime for tracing those rays, but into a 3x decrease instead.
This could come from more primary rays, proportionally, not being
retraced, compared to secondary rays, which are more expensive,
as well as not taking special care to maximise ray locality and

6« Pierre Moreau, Michael Doggett, and Erik Sintorn

>

(a) Merry-go-round

(b) Armadillo

(c) Villa

Fig. 6. Images of the scenes used in this paper.

Table 1. Memory-consumption (in MiB) breakdown when not reusing pho-
tons, reusing photons with moving lights and reusing photons with moving
objects. In all scenarios, 5 millions paths containing each at most 7 photons
were considered; those paths were traced from a single disc-shaped area
light, which was associated to a 32* distribution map.

No reuse Reuse lights Reuse obj.
Path information - 19.07 19.07
Path origin pos. - 57.22 57.22
Distribution maps - 8.000 -
Pruned paths array - 19.07 -
Sub-total - 103.36 76.29
Photon map 1068
Total 1068 1171 1144

coherency. Overall, our error-based method only slightly improves
the number of rays reused, except when the armadillo gets close to
the light source (around frame 250), where it retraces only half the
number of rays compared to our naive method.

The merry-go-round scene reduces the effectiveness of ray reuse,
as many primary rays will be hitting a moving object, instantly
invalidating the whole path. Despite that, our naive method queries
almost half as many rays as the baseline. Furthermore, our error-
based approach reuses close to 1.5X as many rays as our naive
approach, as seen in Figure 7a.

Our different methods do add a small overhead compared to just
re-tracing the paths every frame. This overhead includes updating
the path’s origin, computing the DM¢ and optimising it. On average
the overhead is about 2.5 ms, compared to the average baseline time
of 60 ms, as shown in Figure 8, and even including this overhead
our method still leads to an average 4X increase in performance.

5.2 Memory Consumption

In this section we present the amount of memory being used for
reusing photons from previous frames. As reusing photons can be
decoupled from the method used for rendering using the photon
map, we do not discuss the memory used for the rendering method.

Path information is stored in a single 32-bit word, per path, as
described in Section 4. This compactness does introduce some lim-
itations, like being limited to at most 16 bounces, or to having at

72

most 4 million cells in a distribution map, but those are not sce-
narios presented in this paper and were done in order to improve
performance and reduce memory consumption. Those restrictions
could be lifted by using more memory instead, without needing to
change the algorithm.

For each path, we also store the position on the light from which
it was emitted; this is only needed for area lights, as for point lights,
it will always be the same position as the light itself. One could avoid
having to store that information separately, by instead storing for
each photon its incoming direction, scaled by the distance between
it and its predecessor, and its position, allowing to recompute the
origin point. However, this will make all photons larger, resulting
in an increased memory consumption.

A single 321 DM is 4 MiB, but as each light gets two of them (the
current one and the expected one), the number reported is 8 MiB.
Note that DMy could be compressed if memory consumption is an
issue, as, depending on the representation used, multiple symmetries
can be exploited. For example for a diffuse rectangular area light, all
points on its surface will have the same outgoing directions profile,
so only one set could be stored, bringing down the distribution map
size from 4-D to 2-D. Also, if using an angular representation for
the directions, the values obtained for the partitioning along 6 are
the same for all ¢ partitions, bringing the dimensionality further
down to 1. DMr can also be computed as needed, to avoid having
to store it.

When we need to process all pruned paths, i.e. paths that were
marked during the “prune paths” step (see Section 3.1), we could go
over the path information attached to each path, and only process
the ones marked. However this could result in blocks with only a
couple of active threads using the GPU resources and preventing
other blocks from running, whereas if combining all active threads
into as few blocks as possible, they could all run simultaneously. So
in order to achieve the latter, we maintain an array containing all
pruned paths, and process from the start only those paths, at the
cost of using more memory (a single 32-bit word per path).

In cases where paths do not bounce up to the limit, our photon
map design (described in Section 4) will be wasting some memory
space. It is however quite simple and allows straightforward accesses
to any photon of any path, and is quite efficient when processing
all paths, at the same ith bounce, simultaneously.

Number of rays traced per frame

2

£11.7M

% gom

E 6l1M N\/_\’\/“W-\/
L I e S I

7046 OptiX Tracing time per frame
59.46 WMW PO P NI} !\M
£ 3946 mw ,MWWW

e [ms]

19.46
100 200 300 400 500
Frames
—— Baseline ~—— Naive —— Error-based
(a) Merry-go-round
Number of rays traced per frame
ES
£ 10.8M
s
g 7.0M
3.1M
£ —
Z 07M = — —
OptiX Tracing time per frame
— 56.76
2
E 3676
g
= 16.76 —
I —
3.24 —
500 1000 1500 2000
Frames
—— Baseline ~—— Naive —— Error-based
(b) Armadillo
Number of rays traced per frame
S
Z57M
s
5 41M
=] ~—1 —
E25M7 o H e
=
Z 0.9M
OptiX Tracing time per frame
44.65
L e Ak
7 - p o e]
E 24.65
£ o ——_ o
4.65
200 400 600 800 1000 1200
Frames
—— Baseline ~——— Naive Error-based
(c) Villa

Fig. 7. Tracing time and number of rays compared to the baseline, for the
different scenes. The merry-go-round and armadillo scenes both used 2
million paths, whereas the villa has 1 million paths, but for all of them the
paths contained at most 7 photons and the distribution map had a resolution
of 8 X 8 X 64 x 64. For our error-based method, the energy threshold was
set to 0.1%.

Path Verification for Dynamic Indirect lllumination « 7

30

Time [ms]

500 1000 1500 2000
Frames
I Dynamic occlusions ~ F950 Compute DM
I Generate rays [Trace rays

I Prune paths

(a) Our error-based method

80

Time [ms]
5 3

[N]
=]

500 1000 1500
Frames

B Generate rays I Trace rays

(b) Baseline

Fig. 8. Breakdowns of our method for reusing photons (top) and of the
baseline (bottom), for the armadillo scene. In both cases, 2m paths were
traced with a maximum of 7 bounces, and for our method, the distribution
map had a resolution of 8 x 8 x 64 x 64 while a 0.1% error on the outgoing
radiance was allowed on reused segments.

6 LIMITATIONS

Glossy surfaces If an intersection on a glossy surface is located
on a static object and neither the incoming nor outgoing
directions have changed, our method will be able to reuse
those segments. However, if the above condition does not
hold, then we might have to re-trace the outgoing ray, as
even a small change in direction can lead to a large change
in reflected energy.

Motion Blur For this to be correct we would need to detect
occlusions in between frames.

8 « Pierre Moreau, Michael Doggett, and Erik Sintorn

7 CONCLUSION

Path tracing for indirect illumination requires a substantial amount
of computation and in this paper we have shown how light transport
paths can be reused temporally by verifying the path segments. In
particular for moving lights we demonstrate that even though the
light source moves, we can still reuse photon paths coming from area
light sources. Furthermore when moving objects are present in the
scene we demonstrate how paths can be brute force tested against
dynamic objects in a relatively short amount of time compared to
overall frame time. By using an error threshold for path verification
we further demonstrate that path reuse can be improved and the
number of retraced rays per frame can be significantly reduced. Path
verification is particularly important for scenes with long paths
where reuse has an even greater impact on frame time.

Since our technique is focused on verifying the validity of paths,
it would also be applicable to camera paths for path tracing methods.
For path tracing the distribution map would be located on the near
plane of the camera and the 2D distribution map should behave
similarly to that of a spotlight.

ACKNOWLEDGMENTS

In the villa scene, the “flash light” [naves 2017] model is courtesy of
naves and the “maison a ossature bois” [Envisioneer 2015] model
is courtesy of ADoc Envisioneer, both under CC Attribution 4.0.
Conference, the bunny, the teapot and Armadillo are taken from
Morgan McGuire’s Computer Graphics Archive [2017]. Pierre and
Michael are sponsored by the Swedish Research Council under grant
Ne 2014-5191.

REFERENCES

Philippe Bekaert, Mateu Sbert, and John Halton. 2002. Accelerating Path Tracing
by Re-using Paths. In P; dings of the 13th iphics Workshop on Rendering
(EGRW). 125-134.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-
struction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoen-
coder. ACM Transactions on Graphics 36, 4, Article 98 (July 2017), 12 pages.
https://doi.org/10.1145/3072959.3073601

Alessandro Dal Corso, Marco Salvi, Craig Kolb, Jeppe Revall Firsvad, Aaron Lefohn,
and David Luebke. 2017. Interactive Stable Ray Tracing. In Proceedings of High
Performance Graphics (HPG °17), Vlastimil Havran and Karthik Vaidyanathan (Eds.).
Association for Computing Machinery, New York, NY, USA, 1-20. _https://doi.org/
10.1145/3105762.3105769

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. 2011.
Interactive Indirect Illumination Using Voxel Cone Tracing. Computer Graphics
Forum (Proceedings of Pacific Graphics 2011) 30, 7 (Sept. 2011), 207-207.

Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and Hans-Peter Seidel. 2002. Interac-
tive Global Illumination Using Selective Photon Tracing. In Proceedings of the 13th
Eurographics Workshop on Rendering (EGRW ’02), Paul Debevec and Simon Gibson
(Eds.). The Eurographics Association, Goslar, DEU, 25-36.

ADoc Envisioneer. 2015. Maison a Ossature Bois. https://sketchfab.com/models/
67e4fbf7f01942e0a162ebe0173bb72b

Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An
Efficient Denoising Algorithm for Global Illumination. In Proceedings of High Per-
formance Graphics (Los Angeles, California, USA). ACM, New York, NY, USA.
https://doi.org/10.1145/3105762.3105774

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data
https://casual-effects.com/data.

Morgan McGuire, Mike Mara, Derek Nowrouzezahrai, and David Luebke.
2017. Real-time Global Illumination Using Precomputed Light Field
Probes. In Proceedings of the 21st ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games (I3D ’17). ACM, New York, NY, USA,
Article 2, 11 pages. https://doi.org/10.1145/3023368.3023378

74

Gary McTaggart. 2004. Half-Life® 2/Valve Source™ Shading. In Direct3D
Tutorial (GDC).

Pierre Moreau, Erik Sintorn, Viktor Kampe, Ulf Assarsson, and Michael
Doggett. 2016. Photon Splatting Using a View-Sample Cluster Hierarchy.
In Eurographics/ ACM SIGGRAPH Symposium on High Performance Graph-
ics, Ulf Assarsson and Warren Hunt (Eds.). The Eurographics Association.
https://doi.org/10.2312/hpg.20161194

naves. 2017. Flash Light.
123a79642c2646d8b315576828fea84a

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
Parallel Programming with CUDA. Queue 6, 2 (March 2008), 40-53.
https://doi.org/10.1145/1365490.1365500

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Mor-
ley, Austin Robison, and Martin Stich. 2010. OptiX: A General Purpose
Ray Tracing Engine. ACM Transactions on Graphics 29, 4, Article 66 (July
2010), 13 pages.

Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan Kautz. 2012.
The State of the Art in Interactive Global Illumination. Comput. Graph.
Forum 31, 1, Article 1 (Feb. 2012), 29 pages. https://doi.org/10.1111/j.1467-
8659.2012.02093.x

Tobias Ritschel, Thorsten Grosch, and Seidel Hans-Peter. 2009. Approximat-
ing dynamic global illumination in image space. In Proc. ACM i3D.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney,
Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachs-
bacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-
guided Filtering: Real-time Reconstruction for Path-traced Global Illu-
mination. In Proceedings of High Performance Graphics (Los Angeles,
California) (HPG ’17). ACM, New York, NY, USA, Article 2, 12 pages.
https://doi.org/10.1145/3105762.3105770

Ari Silvennoinen and Jaakko Lehtinen. 2017. Real-time Global lllumination
by Precomputed Local Reconstruction from Sparse Radiance Probes. ACM
Transactions on Graphics (Proceedings of SSGGRAPH Asia) 36, 6 (Nov. 2017),
230:1-230:13. https://doi.org/10.1145/3130800.3130852

Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed Radiance
Transfer for Real-time Rendering in Dynamic, Low-frequency Lighting
Environments. ACM Transactions on Graphics (Proceedings of SIGGRAPH)
21, 3 (July 2002), 527-536. https://doi.org/10.1145/566654.566612

Tiago Sousa, Nickolay Kasyan, and Nicolas Schulz. 2011. Secrets of
CryENGINE 3 Graphics Technology. In Advances in Real-Time Rendering
in 3D Graphics and Games, SIGGRAPH Tutorial. http://www.crytek.com/
cryengine/presentations/secrets-of-cryengine-3-graphics-technology

Maayan Weiss and Thorsten Grosch. 2012. Stochastic Progressive Photon
Mapping for Dynamic Scenes. Computer Graphics Forum 31, 2pt4, Article
1 (May 2012), 8 pages.

https://sketchfab.com/models/

Paper 11 .

CHAPTER 18

Importance Sampling of Many Lights
on the GPU

Pierre Moreau'? and Petrik Clarberg’

'NVIDIA

2L und University

18.1

ABSTRACT

The introduction of standardized APIs for ray tracing, together with hardware
acceleration, opens up possibilities for physically based lighting in real-time
rendering. Light importance sampling is one of the fundamental operations in
light transport simulations, applicable to both direct and indirect illumination.
This chapter describes a bounding volume hierarchy data structure and
associated sampling methods to accelerate importance sampling of local light
sources. The work is based on recently published methods for light sampling
in production rendering, but it is evaluated in a real-time implementation using
Microsoft DirectX Raytracing.

INTRODUCTION

A realistic scene may contain hundreds of thousands of light sources. The accurate
simulation of the light and shadows that they cast is one of the most important
factors for realism in computer graphics. Traditional real-time applications with
rasterized shadow maps have been practically limited to use a handful of carefully
selected dynamic lights. Ray tracing allows more flexibility, as we can trace
shadow rays to different sampled lights at each pixel.

Mathematically speaking, the best way to select those samples is to pick lights with
a probability in proportion to each light’s contribution. However, the contribution
varies spatially and depends on the local surface properties and visibility. Hence, it
is challenging to find a single global probability density function (PDF) that works
well everywhere.

The solution that we explore in this chapter is to use a hierarchical acceleration
structure built over the light sources to guide the sampling [11, 22]. Each node
in the data structure represents a cluster of lights. The idea is to traverse

the tree from top to bottom, at each level estimating how much each cluster

© NVIDIA 2019 255
E. Haines, T. Akenine-Méller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_18

77

RAY TRACING GEMS

256

contributes, and to choose which path through the tree to take based on random
decisions at each level. Figure 18-1 illustrates these concepts. This means that
lights are chosen approximately proportional to their contributions, but without
having to explicitly compute and store the PDF at each shading point. The
performance of the technique ultimately depends on how accurately we manage
to estimate the contributions. In practice, the pertinence of a light or a cluster
of lights, depends on its:

£ =0.692183

08,/ \02 /N / \ / \
/N /N s/ \es [\ /NN /N /N
/\ /\ 05/ \0s /\

p =024

Figure 18-1. All the light sources in the scene are organized in a hierarchy. Given a shading point X,
we start at the root and proceed down the hierarchy. At each level, the importance of each immediate
child with respect to X is estimated by a probability. Then, a uniform random number & decides the path
through the tree, and at the leaf we find which light to sample. In the end, more important lights have a
higher probability of being sampled.

> Flux: The more powerful a light is, the more it will contribute.

> Distance to the shading point: The further away a light lies, the
smaller the solid angle it subtends, resulting in less energy
reaching the shading point.

> Orientation: A light source may not emit in all directions, nor do
so uniformly.

> Visibility: Fully occluded light sources do not contribute.

> BRDF at the shading point: Lights located in the direction of the
BRDF’s main peaks will have a larger fraction of their energy
reflected.

A key advantage of light importance sampling is that it is independent of the
number and type of lights, and hence scenes can have many more lights than we
can afford to trace shadow rays to and large textured area lights can be seamlessly
supported. Since the probability distributions are computed at runtime, scenes

can be fully dynamic and have complex lighting setups. With recent advances

in denoising, this holds promise to reduce rendering time, while allowing more
artistic freedom and more realistic results.

78

18.2

18.2.1

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

In the following, we discuss light importance sampling in more detail and present
a real-time implementation that uses a bounding volume hierarchy (BVH) over the
lights. The method is implemented using the Microsoft DirectX Raytracing (DXR)
API, and source code is available.

REVIEW OF PREVIOUS ALGORITHMS

With the transition to path tracing in production rendering [21, 31], the visibility
sampling is solved by tracing shadow rays toward sampled points on the light
sources. When a shadow ray does not hit anything on its way from a shading point
to the light, the point is deemed to be lit. By averaging over many such samples
over the surfaces of the lights, a good approximation of the lighting is achieved. The
approximation converges to ground truth as more samples are taken. However,
with more than a handful of light sources, exhaustive sampling is not a viable
strategy, not even in production rendering.

To handle the complexity of dynamic lighting with many lights, most techniques
generally rely on building some form of spatial acceleration structure over the
lights, which is then used to accelerate rendering by either culling, approximating,
or importance-sampling the lights.

REAL-TIME LIGHT CULLING

Game engines have transitioned to use mostly physically based materials and light
sources specified in physical units [19, 23]. However, for performance reasons

and due to the limitations of the rasterization pipeline, only a few point-like light
sources can be rendered in real time with shadow maps. The cost per light is high
and the performance scales linearly with the number of lights. For area lights, the
unshadowed contribution can be computed using linearly transformed cosines [17],
but the problem of evaluating visibility remains.

To reduce the number of lights that need to be considered, it is common to
artificially limit the influence region of individual lights, for example, by using

an approximate quadratic falloff that goes to zero at some distance. By careful
placement and tweaking of the light parameters, the number of lights that affect
any given point can be limited.

Tiled shading [2, 28] works by binning such lights into screen-space tiles, where

the depth bounds of the tiles effectively reduce the number of lights that need to
be processed when shading each tile. Modern variants improve culling rates by

splitting frusta in depth (2.5D culling) [15], by clustering shading points or

lights [29, 30], or by using per-tile light trees [27].

257

79

RAY TRACING GEMS

18.2.2

18.2.3

258

A drawback of these culling methods is that the acceleration structure is in screen
space. Another drawback is that the required clamped light ranges can introduce
noticeable darkening. This is particularly noticeable in cases where many dim
lights add up to a significant contribution, such as Christmas tree lights or indoor
office illumination. To address this, Tokuyoshi and Harada [40] propose using
stochastic light ranges to randomly reject unimportant lights rather than assigning
fixed ranges. They also show a proof-of-concept of the technique applied to path
tracing using a bounding sphere hierarchy over the light sources.

MANY-LIGHT ALGORITHMS

Virtual point lights (VPLs) [20] have long been used to approximate global
illumination. The idea is to trace photons from the light sources and deposit VPLs
at path vertices, which are then used to approximate the indirect illumination.

VPL methods are conceptually similar to importance sampling methods for many
lights. The lights are clustered into nodes in a tree, and during traversal estimated
contributions are computed. The main difference is that, for importance sampling,
the estimations are used to compute light selection probabilities rather than
directly to approximate the lighting.

For example, lightcuts [44, 45] accelerate the rendering with millions of VPLs by
traversing the tree per shading point and computing error bounds on the estimated
contributions. The algorithm chooses to use a cluster of VPLs directly as a light
source, avoiding subdivision to finer clusters or individual VPLs, when the error

is sufficiently small. We refer to the survey by Dachsbacher et al. [12] for a good
overview of these and other many-light techniques. See also the overview of global
illumination algorithms by Christensen and Jarosz [8].

LIGHT IMPORTANCE SAMPLING

In early work on accelerating ray tracing with many lights, the lights are sorted
according to contribution and only the ones above a threshold are shadow
tested [46]. The contribution of the remaining lights is then added based on a
statistical estimate of their visibility.

Shirley et al. [37] describe importance sampling for various types of light sources.
They classify lights as bright or dim by comparing their estimated contributions to
a user-defined threshold. To sample from multiple lights, they use an octree that
is hierarchically subdivided until the number of bright lights is sufficiently small.
The contribution of an octree cell is estimated by evaluating the contribution at a
large number of points on the cell’s boundary. Zimmerman and Shirley [47] use a
uniform spatial subdivision instead and include an estimated visibility in the cells.

80

18.3

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

For real-time ray tracing with many lights, Schmittler et al. [36] restrict the
influence region of lights and use a k-d tree to quickly locate the lights that affect
each point. Bikker takes a similar approach in the Arauna ray tracer [5, 6], but it
uses a BVH with spherical nodes to more tightly bound the light volumes. Shading
is done Whitted-style by evaluating all contributing lights. These methods suffer
from bias as the light contributions are cut off, but that may potentially be alleviated
with stochastic light ranges as mentioned earlier [40].

In the Brigade real-time path tracer, Bikker [6] uses resampled importance
sampling [39]. A first set of lights is selected based on a location-invariant
probability density function, and then this set is resampled by more accurately
estimating the contributions using the BRDF and distances to pick one
important light. In this approach, there is no hierarchical data structure.

The Iray rendering system [22] uses a hierarchical light importance sampling
scheme. Iray works with triangles exclusively and assigns a single flux (power)
value per triangle. A BVH is built over the triangular lights and traversed
probabilistically, at each node computing the estimated contribution of each
subtree. The system encodes directional information at each node by dividing
the unit sphere into a small number of regions and storing one representative
flux value per region. Estimated flux from BVH nodes is computed based on the
distance to the center of the node.

Conty Estevez and Kulla [11] take a similar approach for cinematic rendering.
They use a 4-wide BVH that also includes analytic light shapes, and the lights
are clustered in world space including orientation by using bounding cones. In
the traversal, they probabilistically select which branch to traverse based on

a single uniform random number. The number is rescaled to the unit range at
each step, which preserves stratification properties (the same technique is used
in hierarchical sample warping [9]). To reduce the problem of poor estimations
for large nodes, they use a metric for adaptively splitting such nodes during
traversal. Our real-time implementation is based on their technique, with some
simplifications.

FOUNDATIONS

In this section, we will first review the foundations of physically based lighting
and importance sampling, before diving into the technical details of our real-time
implementation.

259

81

RAY TRACING GEMS

18.3.1

260

LIGHTING INTEGRALS

The radiance L, leaving a point X on a surface in viewing direction v is the sum
of emitted radiance L, and reflected radiance L,, under the geometric optics
approximation described by [18]:

L(Xv)=L,(Xv)+L (Xv), (1)

where L, (X,v)= [#(Xv.0) £, (X,1)(n1)do 2]
and where fis the BRDF and L; is the incident radiance arriving from a direction L. In
the following, we will drop the X from the notation when we speak about a specific
point. Also, let the notation L(X < Y) denote the radiance emitted from a point Yin
the direction toward a point X.

In this chapter, we are primarily interested in the case where L; comes from a
potentially large set of local light sources placed within the scene. The algorithm
can, however, be combined with other sampling strategies for handling distant light
sources, such as the sun and sky.

The integral over the hemisphere can be rewritten as an integral over all the
surfaces of the light sources. The relationship between solid angle and surface
area is illustrated in Figure 18-2. In fact, a small patch dA at a point Y on a light
source covers a solid angle

_In, L

do = dA,
@ " Y y"z (3)

dA

Figure 18-2. The differential solid angle dw of a surface patch dA at a point Y on a light source is a
function of its distance ||X — Y|| and the angle cosO = | n, - —l/ at which it is viewed.

82

18.3.2

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

i.e., there is an inverse square falloff by distance and a dot product between the
light's normal ny and the emitted light direction —L. Note that in our implementation,
light sources may be single-sided or double-sided emitters. For single-sided lights,
we set the emitted radiance L(X < Y) =0if (ny- —1) <0.

We also need to know the visibility between our shading point X and the point Y on
the light source, formally expressed as

1 ifX Yy tually visibl
V(X<—>V)={ if Xand Y are mutually visible, (4]

0 otherwise.

In practice, we evaluate v by tracing shadow rays from X'in direction L, with the
ray’s maximum distance t,., = ||X - Y||. Note that to avoid self-intersections due to
numerical issues, the ray origin needs to be offset and the ray shortened slightly
using epsilons. See Chapter 6 for details.

Now, assuming that there are m light sources in the scene, the reflected radiance

in Equation 2 can be written as

L ,(X,v), where (5)

ol

Ms

L(xv)-

In,-—LI
pr-+f

L, (Xv) :/Qf(x,v,l) L(X<Y)v(X e Y)max(n-1,0) dA. (6]

/i

That s, L, is the sum of the reflected light from each individual light i={1, ... ,m}.
Note that we clamp n - L because light from points backfacing to the shading point
cannot contribute. The complexity is linear in the number of lights m, which may
become expensive when mis large. This leads us to the next topic.

IMPORTANCE SAMPLING

As discussed in Section 18.2, there are two fundamentally different ways to reduce
the cost of Equation 5. One method is to limit the influence regions of lights, and
thereby reduce m. The other method is to sample a small subset of lights n < m.
This can be done in such a way that the result is consistent, i.e., it converges to the
ground truth as n grows.

261

83

RAY TRACING GEMS

18.3.2.1 MONTE CARLO METHOD

Let Z be a discrete random variable with values z € {1, ..., m}. The probability that
Zis equal to some value z is described by the discrete PDF p(z) = P(Z = z], where

Yplz) = 1. For example, if all values are equally probable, then p(z) :%. If we

have a function g(Z) of a random variable, its expected value is

B[9(2)]= 3 9(2)r(2). (7

zel
i.e., each possible outcome is weighted by how probable it is. Now, if we take n
random samples {z, ...,z,} from Z, we get the n-sample Monte Carlo estimate g, (Z)
of E[g(Z)} as follows:
3 9(z). &)
n4

In other words, the expectation can be estimated by taking the mean of random
samples of the function. We can also speak of the corresponding Monte Carlo

estimator g, (Z),which is the mean of the function of the n independent and

identically distributed random variables {Z,, ..., Z.}. It is easy to show that

E[éﬂ (Z)J = E[g(Z)J , i.e., the estimator gives us the correct value.

Since we are taking random samples, the estimator g, (Z) will have some
variance. As discussed in Chapter 15, the variance decreases linearly with n:

Var[[]n(Z)]:%Var[g(Z)]. (9)

These properties show that the Monte Carlo estimator is consistent. In the limit,
when we have infinitely many samples, the variance is zero and it has converged to
the correct expected value.

To make this useful, note that almost any problem can be recast as an expectation.
We thus have a consistent way of estimating the solution based on random samples
of the function.

262

84

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

18.3.2.2 LIGHT SELECTION IMPORTANCE SAMPLING

In our case, we are interested in evaluating the sum of light reflected from all
the light sources (Equation 5). This sum can be expressed as an expectation
(cf., Equation 7) as follows:

Lr()(,v)ziL .(X,v):iMP(Zzi):E{M}. (10)

=1 . =1 P(Z:/)

Following Equation 8, the Monte Carlo estimate Zr of the reflected light from all
light sources is therefore

d 1 i Lr,z X,V
Lr(X'V):_ #' 1)
= p(Zj)
that is, we sum the contribution from a randomly selected set of lights {z, ..., z,},

divided by the probability of selecting each light. This estimator is always
consistent, independent of how few samples n we take. However, the more samples
we take, the smaller the variance of the estimator will be.

Note that nothing discussed so far makes any assumptions on the distribution of
the random variable Z. The only requirement is that p(z) > 0 for all lights where
L,,> 0, otherwise we would risk ignoring the contribution from some lights. It

can be shown that the variance is minimized when p(z) « L, ,(X,v) [32, 38]. We will
not go into the details here, but when the probability density function is exactly
proportional to the function that we are sampling, the summation in the Monte
Carlo estimator reduces to a sum of constant terms. In that case the estimator has
zero variance.

In practice, this is not achievable because L, , is unknown for a given shading point,
but we should aim for selecting lights with a probability as close as possible to their
relative contribution to the shading point. In Section 18.4, we will look at how p(z] is
computed.

18.3.2.3 LIGHT SOURCE SAMPLING

To estimate the reflected radiance using Equation 11, we also need to evaluate
theintegral £, (X,v) for the randomly selected set of lights. The expression in

Equation 6 is an integral over the surface of the light that involves both BRDF and
visibility terms. In graphics, this is not practical to evaluate analytically. Therefore,
we again resort to Monte Carlo integration.

263

8s

RAY TRACING GEMS

18.3.3

264

The surface of the light source is sampled uniformly with s samples {Y;, ..., Y.}.
For triangle mesh lights, each light is a triangle, which means that we pick points
uniformly on the triangle using standard techniques [32] (see Chapter 16). The

1
probability density function for the samples on a triangle i is P(y) ZZ,where A

/i

is the area of the triangle. The integral over the light is then evaluated using the
Monte Carlo estimate

ny—_lkJ (12)
k=l

In the current implementation, s = 1 as we trace a single shadow ray for each of

L, (Xv)= %; (XL L(X <Y,)v(X e Y,)max(n-L,,0)

the n sampled light sources, and n, =n, since we use the geometric normal of the
light source when evaluating its emitted radiance. Smooth normals and normal
mapping are disabled by default for performance reasons, because they often have
negligible impact on the light distribution.

RAY TRACING OF LIGHTS

In real-time applications, a common rendering optimization is to separate the
geometric representation from the actual light-emitting shape. For example, a light
bulb can be represented by a point light or small analytic sphere light, while the
visible light bulb is drawn as a more complex triangle mesh.

In this case, it is important that the emissive property of the light geometry
matches the intensity of the actual emitter. Otherwise, there will be a perceptual
difference between how bright a light appears in direct view and how much light

it casts into the scene. Note that a light source is often specified in photometric
units in terms of its luminous flux (lumen), while the emissive intensity of an area
light is given in luminance (cd/m?). Accurate conversion from flux to luminance
therefore needs to take the surface area of the light's geometry into account.
Before rendering, these photometric units are finally converted to the radiometric
quantities that we use (flux and radiance).

Another consideration is that when tracing shadow rays toward an emitter, we do
not want to inadvertently hit the mesh representing the light source and count the
emitter as occluded. The geometric representation must therefore be invisible

to shadow rays, but visible for other rays. The Microsoft DirectX Raytracing API
allows control of this behavior via the InstanceMask attribute on the acceleration
structure and by the InstanceInclusionMask parameter to Traceray.

86

18.4

18.4.1

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

For multiple importance sampling (MIS) [41], which is an important variance
reduction technique, we must be able to evaluate light sampling probabilities
given samples generated by other sampling strategies. For example, if we draw

a sample over the hemisphere using BRDF importance sampling that hits a light
source after traversal, we compute its probability had the sample been generated
with light importance sampling. Based on this probability together with the BRDF
sampling probability, a new weight for the sample can be computed using, for
example, the power heuristic [41] to reduce the overall variance.

A practical consideration for MIS is that if the emitters are represented by analytic
shapes, we cannot use hardware-accelerated triangle tests to search for the light
source in a given direction. An alternative is to use custom intersection shaders to
compute the intersections between rays and emitter shapes. This has not yet been
implemented in our sample code. Instead, we always use the mesh itself as the
light emitter, i.e., each emissive triangle is treated as a light source.

ALGORITHM

In the following, we describe the main steps of our implementation of light
importance sampling. The description is organized by the frequency at which
operations occur. We start with the preprocessing step that can happen at asset-
creation time, which is followed by the construction and updating of the light data
structure that runs once per frame. Then, the sampling is described, which is
executed once per light sample.

LIGHT PREPROCESSING

For mesh lights, we precompute a single flux value ®; per triangle j as a
preprocess, similar to Iray [22]. The flux is the total radiant power emitted by the
triangle. For diffuse emitters, the flux is

o, = [L,(X)(n,-0)dwda, (13)

where LX) is the emitted radiance at position X on the light's surface. For non-
textured emitters, the flux is thus simply ®; = zA,L;, where L; is the constant
radiance of the material and A; is the triangle’s area. The factor z comes from the
integral of the cosine term over the hemisphere. To handle textured emitters,
which in our experience are far more common than untextured ones, we evaluate
Equation 13 as a preprocess at load time.

To integrate the radiance, we rasterize all emissive triangles in texture space. The
triangles are scaled and rotated so that each pixel represents exactly one texel at

265

87

RAY TRACING GEMS

18.4.2

266

the largest mip level. The integral is then computed by loading the radiance for the
corresponding texel in the pixel shader and by accumulating its value atomically.
We also count the number of texels and divide by that number at the end.

The only side effect of the pixel shader is atomic additions to a buffer of per-triangle
values. Due to the current lack of floating-point atomics in DirectX 12, we use an
NVIDIA extension via NVAPI [26] to do floating-point atomic addition.

Since the pixel shader has no render target bound [i.e., it is a void pixel shader],
we can make the viewport arbitrarily large within the API limits, without worrying
about memory consumption. The vertex shader loads the UV texture coordinates
from memory and places the triangle at an appropriate coordinate in texture space
so that it is always within the viewport. For example, if texture wrapping is enabled,
the triangle is rasterized at pixel coordinates

(X,}/):(U—LUJ,V—'_VJ)-(W,/?), (14)

where w, h are the dimensions of the largest mip level of the emissive texture. With
this transform, the triangle is always in view, independent of the magnitude of its
(pre-wrapped) UV coordinates.

We currently rasterize the triangle using one sample per pixel, and hence only
accumulate texels whose centers are covered. Tiny triangles that do not cover any
texels are assigned a default nonzero flux to ensure convergence. Multisampling,
or conservative rasterization with analytic coverage computations in the pixel
shader, can be used to improve accuracy of the computed flux values.

All triangles with @; = 0 are excluded from further processing. Culling of zero flux
triangles is an important practical optimization. In several example scenes, the
majority of the emissive triangles lie in black regions of the emissive textures. This is
not surprising, as often the emissiveness is painted into larger textures, rather than
splitting the mesh into emissive and non-emissive meshes with separate materials.

ACCELERATION STRUCTURE

We are using a similar acceleration structure as Conty Estevez and Kulla [11], that
is, a bounding volume hierarchy [10, 33] built from top to bottom using binning [43].
Our implementation uses a binary BVH, meaning that each node has two children.
In some cases, a wider branching factor may be beneficial.

We will briefly introduce how binning works, before presenting different existing
heuristics used during the building process, as well as minor variants thereof.

88

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

18.4.2.1 BUILDING THE BVH

When building a binary BVH from top to bottom, the quality and speed at which
the tree is built depends on how the triangles are split between the left and right
children at each node. Analyzing all the potential split locations will yield the best
results, but this will also be slow and is not suitable for real-time applications.

The approach taken by Wald [43] consists of uniformly partitioning the space at
each node into bins and then running the split analysis on those bins only. This
implies that the more bins one has, the higher the quality of the generated tree will
be, but the tree will also be more costly to build.

18.4.2.2 LIGHT ORIENTATION CONE

To help take into account the orientation of the different light sources, Conty
Estevez and Kulla [11] store a light orientation cone in each node. This cone is made
of an axis and two angles, 9, and @.: the former bounds the normals of all emitters
found within the node, whereas the latter bounds the set of directions in which light
gets emitted (around each normal).

For example, a single-sided emissive triangle would have 6, = 0 (there is only

one normal) and 0, :% (it emits light over the whole hemisphere). Alternatively,
an emissive sphere would have 6, = r (it has normals pointing in all directions)

and 0, :g, as around each normal, light is still only emitted over the whole
hemisphere; 0, will often be % except for lights with a directional emission profile

or for spotlights, where it will be equal to the spotlight’s cone angle.

When computing the cone for a parent node, its 6, will be computed such that it
encompasses all the normals found in its children, whereas 6, is simply computed
as the maximum of each child’s 6..

18.4.2.3 DEFINING THE SPLIT PLANE

As mentioned earlier, an axis-aligned split plane has to be computed to split the set of
lights into two subsets, one for each child. This is usually achieved by computing a cost
metric for each possible split and picking the one with the lowest cost. In the context
of a binned BVH, we tested the surface area heuristic (SAH) (introduced by Goldsmith
and Salmon [14] and formalized by MacDonald and Booth [24]) and the surface area
orientation heuristic (SAOH) [11], as well as different variants of those two methods.

267

89

RAY TRACING GEMS

18.4.3

268

For all the variants presented below, the binning performed while building the
BVH can be done either on the largest axis only (of a node’s axis-aligned bounding
box (AABB])) or on all three axes and the split with the lowest cost is selected.
Only considering the largest axis will result in lower build time but also lower tree
quality, especially for the variants taking the light orientations into account. More
details on those trade-offs can be found in Section 18.5.

SAH The SAH focuses on the surface area of the AABB of the resulting children
as well as on the number of lights that they contain. If we define the left child as

L= sbin, and the right child as =, bin ., where k is the number of bins and

i€ [0,k — 1], the cost for the split creating L and R as children is

n\L)a(L)+n(R)a(R
cost(L,R)= (n()LSJ/Z’)a((LK)JR())

' (15)

where n(C) and a(C) return the number of lights and the surface area of a potential
child node C, respectively.

SAOH The SAOH is based on the SAH and includes two additional weights: one
based on the bounding cone around the directions in which the lights emit light,
and another based on the flux emitted by the resulting clusters. The cost metric is

' (16)

P

where s is the axis on which the split is occurring, k(s] = length,,,./length, is used
to prevent thin boxes, and My, is an orientation measure [11].

VH The volume heuristic (VH) is based on the SAH and replaces the surface area
measure a(C) in Equation 15 by the volume v(C) of a node C's AABB.

VOH The volume orientation heuristic (VOH) similarly replaces the surface area
measure in the SAOH (Equation 16) by the volume measure.

LIGHT IMPORTANCE SAMPLING

We now look at how the lights are actually sampled based on the acceleration
structure described in the previous section. First, the light BVH is probabilistically
traversed in order to select a single light source, and then a light sample is
generated on the surface of that light (if it is an area light). See Figure 18-1.

90

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

18.4.3.1 PROBABILISTIC BVH TRAVERSAL

When traversing the acceleration data structure, we want to select the node that
will lead us to the lights that contribute the most to the current shading point, with
a probability for each light that is proportional to its contribution. As mentioned in
Section 18.4.2, the contribution depends on many parameters. We will use either
approximations or the exact value for each parameter, and we will try different
combinations to optimize quality versus performance.

Distance This parameter is computed as the distance between the shading point and
the center of the AABB of the node being considered. This favors nodes that are close
to the shading point (and by extension lights that are close), if the node has a small
AABB. However, in the first levels of the BVH, the nodes have large AABBs that contain
most of the scene, giving a poor approximation of the actual distance between the
shading point and some of the lights contained within that node.

Light Flux The flux of a node is computed as the sum of the flux emitted by

all light sources contained within that node. This is actually precomputed when
building the BVH for performance reasons; if some light sources have changing
flux values over time, the precomputation will not be an issue because the BVH will
have to be rebuilt anyway since the flux is also used for guiding the building step.

Light Orientation The selection so far does not take into consideration the
orientation of the light source, which could give as much weight to a light source
that is shining directly upon the shading point as to another light source that is
backfacing. To that end, Conty Estevez and Kulla [11] introduced an additional term
to a node’s importance function that conservatively estimates the angle between
the light normal and direction from the node’s AABB center to the shading point.

Light Visibility To avoid considering lights that are located below the horizon of
a shading point, we use the clamped n - Lterm in the importance function of each
node. Note that Conty Estevez and Kulla [11] use this clamped term, multiplied by
the surface’s albedo, as an approximation to the diffuse BRDF, which will achieve
the same effect of discarding lights that are beneath the horizon of the shading
point.

Node Importance Using the different parameters just defined, the importance

function given a shading point X and a child node C is defined as

importance()(, C) =

cD(C)cosé’,.’X{cosa' ifo' <@, (17)

")(_c"2 0 otherwise,

269

91

RAY TRACING GEMS
where ||X — C|| is the distance between shading point X and the center of the

AABB of C, 6’,.’=max(0, 9,—9U), and ¢ = max (0,0 — 0, — ,). The angles 6, and
0, come from the light orientation cone of node C. The angle @ is measured

between the light orientation cone’s axis and the vector from the center
of C to X. Finally, 6, is the incident angle and 6, the uncertainty angle; these

can all be found in Figure 18-3.
Light

SN Orientation
Cone

- 4
B
/

Node W/
Bounding /
Cone /
_____________________ AABB

Figure 18-3. Description of the geometry used for computing the importance of a child node
C as seen from a shading point X. In Figure 18-1, the importance is computed twice at each

step in the traversal, once for each child. The angle 6, and the axis from X to the center of the
AABB represent the smallest bounding cone containing the whole node and are used to compute

conservative lower bounds on 6, and 6.

18.4.3.2 RANDOM NUMBER USAGE
A single uniform random number is used to decide whether to take the left or
the right branch. The number is then rescaled and used for the next level. This
technique preserves stratification (cf., hierarchical sample warping [9]) while
also avoiding the cost of generating new random numbers at every level of the
hierarchy. The rescaling of a random number ¢ to find a new random number &’is

.| A0
é—p(L) otherwise,
R

done as follows:
° if &< p(L).
(18)

p(R)

270

92

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

where p(C) is the probability of selecting node C, computed as the importance of
that node divided by the total importance:

p(L)

importance(L)

h importance(L)+importance(/?)' (19)

Care must be taken to ensure enough random bits are available due to the limits
of floating-point precision. For scenarios with huge numbers of lights, two or more
random numbers may be alternated or higher precision used.

18.4.3.3 SAMPLING THE LEAF NODE

At the end of the traversal, a leaf node containing a certain number of light sources
has been selected. To decide which triangle to sample, we can either uniformly pick
one of the triangles stored in the leaf node or use an importance method similar to the
one used for computing the node’s importance during the traversal. For importance
sampling, we consider the closest distance to the triangle and the largest n - L bound of
the triangle; including the triangle’s flux and its orientation to the shading point could
further improve the results. Currently, up to 10 triangles are stored per leaf node.

18.4.3.4 SAMPLING THE LIGHT SOURCE

18.5

After a light source has been selected through the tree traversal, a light sample
needs to be generated on that light source. We use the sampling techniques
presented by Shirley et al. [37] for generating the light samples uniformly over the
surfaces of different types of lights.

RESULTS

We demonstrate the algorithm for multiple scenes with various numbers of lights,
where we measure the rate at which the error decreases, the time taken for
building the BVH, and the rendering time.

The rendering is accomplished by first rasterizing the scene in a G-buffer using
DirectX 12, followed by light sampling in a full-screen ray tracing pass using a
single shadow ray per pixel, and finally temporally accumulating the frames if

no movements occurred. All numbers are measured on an NVIDIA GeForce RTX
2080 Tiand an Intel Xeon E5-1650 at 3.60 GHz, with the scenes being rendered at

a resolution of 1920 x 1080 pixels. For all the results shown in this chapter, the
indirect lighting is never evaluated and we instead use the algorithm to improve the
computation of direct lighting.

271

93

RAY TRACING GEMS

We use the following scenes, as depicted in Figure 18-4, in our testing:

>

272

Sun Temple: This scene features 606,376 triangles, out of which 67,374 are
textured emissive; however, after the texture pre-integration described in
Section 18.4.1, only 1,095 emissive triangles are left. The whole scene is lit by
textured fire pits; the part of the scene shown in Figure 18-4 is only lit by two
fire pits located far on the right, as well as two other small ones located behind
the camera. The scene is entirely diffuse.

T

Paragon Battlegrounds: Dawn (PBG-D) Paragon Battlegrounds: Ruins (PBG-R)

Figure 18-4. Views of all the different scenes that were used for testing.

94

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

> Bistro: The Bistro scene has been modified to make the meshes
of many of the different light sources actually emissive. In total,
there are 20,638 textured emissive triangles, out of 2,829,226
total triangles. Overall, the light sources mainly consist of small
light bulbs, with the addition of a few dozen small spotlights and
a few emissive shop signs. The scene is mostly diffuse, with the
exception of the bistro’s windows and the Vespa.

> Paragon Battlegrounds: This scene is made of three different
parts, of which we only use two: Dawn (PBG-D) and Ruins
(PBG-R]. Both consist of a mix of large emissive area lights
located in the ground, as well as small ones such as runes
engraved in rocks or small lights on the turrets; most of the
materials are specular, with the exception of the trees. PBG-D
features 90,535 textured emissive triangles, of which 53,210
are left after the texture integration; the whole scene is made
of 2,467,759 triangles (emissive ones included). In comparison,
PBG-R features 389,708 textured emissive triangles, of which
199,830 are left after the texture integration; the whole scene is
made of 5,672,788 triangles (emissive ones included).

Note that although all these scenes are currently static, dynamic scenes are
supported in our method by rebuilding the light acceleration structure per frame.
Similar to how DXR allows refitting of the acceleration structure, without changing
its topology, we could choose to update only the nodes in a pre-built tree if lights
have not moved significantly between frames.

We use different abbreviations for some of the methods used in this section.
Methods starting with “BVH_" will traverse the BVH hierarchy in order to select a
triangle. The suffix after “BVH_" refers to which information is being used during
the traversal: “D” for the distance between the viewpoint and a node’s center,

“F” for the flux contained in a node, "B” for the n - L bound, and finally “0” for the
node orientation cone. The method Uniform uses MIS [41] to combine samples
obtained by sampling the BRDF with samples obtained by randomly selecting

an emissive triangle among all emissive triangles present in the scene with a
uniform probability.

When MIS [41] is employed, we use the power heuristic with an exponent of 2. The
sample budget is shared equally between sampling the BRDF and sampling the
light source.

273

95

RAY TRACING GEMS

18.5.1
18.5.1.1

PERFORMANCE
ACCELERATION STRUCTURE CONSTRUCTION

Building the BVH using the SAH, with 16 bins on only the largest axis, takes about
2.3 ms on Sun Temple, 26 ms on Bistro, and 280 ms on Paragon Battlegrounds.
Note that the current implementation of the BVH builder is CPU-based, is single-
threaded, and does not make use of vector operations.

Binning along all three axes at each step is roughly 2x slower due to having three
times more split candidates, but the resulting tree may not perform better at
runtime. The timings presented here use the default setting of 16 bins per axis.
Decreasing that number makes the build faster, e.g., 4 bins is roughly 2x faster, but
again quality suffers. For the remaining measurements, we have used the highest-
quality settings, as we expect that the tree build will not be an issue once the code
is ported to the GPU and used for game-like scenes with tens of thousands of
lights.

The build time with SAOH is about 3x longer than with SAH. The difference is
mainly due to the extra lighting cone computations. We iterate once over all lights
to compute the cone direction and a second time to compute the angular bounds.
Using an approximate method or computing bounds bottom-up could speed this up.

Using the volume instead of the surface area did not result in any performance
change for building.

18.5.1.2 RENDER TIME PER FRAME

274

We measured the rendering times with trees built using different heuristics and
with all the sampling options turned on. See Table 18-1. Similarly to the build
performance, using the volume-based metrics instead of surface area did not
significantly impact the rendering time (usually within 0.2 ms of the surface area-
based metric). Binning along all three axes or only the largest axis also has no
significant impact on the rendering time (within 0.5 ms of each other]).

96

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

Table 18-1. Rendering times in milliseconds per frame with four shadow rays per pixel, measured
over 1,000 frames and using the SAH and SAOH heuristics with different build parameters. The
BVH_DFBO method was used with MIS, 16 bins were used for the binning, and at most one triangle was

stored per leaf node.

SAH SAOH
Largest Axis All Axes Largest Axis All Axes
Sun Temple 16.9 £0.27 17.5+£0.10 17.3 £ 0.47 16.2+£0.30
Bistro (view 1) 30.3+0.18 30.3+0.61 31.8+0.26 30.4+0.20
Bistro (view 2) 38.8+0.43 36.9+0.30 39.6£0.31 38.3+£1.12
Bistro (view 3) 31.2+0.60 32.3+0.19 33.0+0.17 32.7+0.20
PBG-D 23.6+0.22 23.6+0.19 23.7 £0.59 23.3+0.20
PBG-R 405+0.14 39.8+0.15 41.9 +0.57 41.0+0.16

When testing different maximum amounts of triangles per leaf node (1, 2, 4, 8,

and 10), the rendering times were found to be within 5 % of each other with 1 and

10 being the fastest. Results for two of the scenes can be found in Figure 18-5, with
similar behavior observed in the other scenes. The computation of the importance
of each triangle adds a noticeable overhead. Conversely, storing more triangles per
leaf node will result in shallower trees and therefore quicker traversal. It should be
noted that the physical size of the leaf nodes was not changed (i.e., it was always set
to accept up to 10 triangle IDs), only the amount that the BVH builder was allowed to
put in a leaf node. Also for these tests, leaf nodes were created as soon as possible
rather than relying on a leaf node creation cost.

mmm Uniform niform

40 40

30 30

20 20

Average Time (ms)
Average Time (ms)

1 2 4 8 10 1 2 4 8 10
Maximum triangle count per leaf node Maximum triangle count per leaf node

Figure 18-5. Rendering times in milliseconds per frame for various maximum numbers of triangles
per leaf node for Bistro (view 1] (left] and PBG-R [right], with and without importance sampling for
triangle selection within the leaves. In all cases the BVH was built with 16 bins along all three axes
using SAOH, and BVH_DFBO was used for the traversal.

275

97

RAY TRACING GEMS

18.5.2
18.5.2.1

276

The use of SAOH over SAH results in similar rendering times overall, but the use

of a BVH over the lights as well as which terms are considered for each node’s
importance do have an important impact, with BVH_DFBO being between 2x and 3x
slower than Uniform. This is shown in Figure 18-6. This boils down to the additional
bandwidth required for fetching the nodes from the BVH as well as the additional
instructions for computing the n - L bound and the weight based on the orientation
cone. This extra cost could be reduced by compressing the BVH nodes (using 16-bit
floats instead of 32-bit floats, for example); the current nodes are 64 bytes for the
internal nodes and 96 bytes for the external ones.

30 | e s
s SAOH

=
=)

N

(=)
w
=)

=)

Average Time (ms)
> 3

Average Time (ms)

0
BRDF UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO BRDF UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO
samp. samp.

Figure 18-6. Comparisons in Bistro [view 1] (left) and PBG-R [right) of rendering times in milliseconds
per frame using the different traversal methods, compared to sampling the BRDF to get the light
sample direction. All methods use 4 samples per pixel, and BVH-based methods use 16 bins along all
three axes.

IMAGE QUALITY
BUILD OPTIONS

Overall, the volume variants perform worse than their surface-area equivalents,
and methods using 16 bins perform better than their counterparts only using

4 bins. As for how many axes should be considered for defining the best split,
considering all three axes leads to lower mean squared error results in most cases
compared to only using the largest axis, but not always. Finally, SAOH variants are
usually better than or at least on par with their SAH equivalents. This can be highly
dependent on how they formed their nodes at the top of the BVH: as those nodes
contain most of the lights in the scene, they represent a poor spatial and directional
approximation of the emissive surfaces that they contain.

This can be seen in Figure 18-7 in the area around the pharmacy shop sign (pointed
at by the red arrow]), for example at point A (pointed at by the white arrow). When
using SAH, point A is closer to the green node than the magenta one, resulting in

a higher chance of choosing the green node and therefore missing the green light
emitted by the cross sign even though that green light is important, as can be seen
in Figure 18-4 for Bistro (view 3). Conversely, with SAOH the point A has a high

98

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

chance of selecting the node containing the green light, improving the convergence
in that region. However, it is possible to find regions where SAH will give better
results than SAOH for similar reasons.

Figure 18-7. Visualization of the second level of the BVH when built using SAH (left) and SAOH [right);
the AABB of the left child is colored in green whereas the one of the right child is in magenta. In both
cases, 16 bins were used and all three axes were considered.

18.5.2.2 TRIANGLE AMOUNT PER LEAF NODE

As more triangles are stored in leaf nodes, the quality will degrade when using

a uniform selection of the triangles because it will do a poorer job than the tree
traversal. Using importance selection reduces the quality degradation compared to
uniform selection, but it still performs worse than using only the tree. The results
for Bistro (view 3] can be seen on the right in Figure 18-8.

20 mm SAH 25 = Uniform
Importance
5 SAOH 20 P
o &
= = 15
10 &
g 5 1.0
> >
= <
5 I 0/5
0 I | | | S 0.0
BRDF UNIFORM BVH_D BVH_DF BVH_DFB BVH_DFBO 1 2 4 8 10

samp.

Maximum triangle count

Figure 18-8. Comparisons in Bistro [view 3] of mean squared error [MSE] results for the different
traversal methods, compared to sampling the BRDF to get the light sample direction (left] and various
maximum amounts of triangles for BVH_DFBO [right]. All methods use 4 samples per pixel, and BVH-
based methods use 16 bins along all three axes.

18.5.2.3 SAMPLING METHODS

In Figure 18-9 we can see the resulting images when using and combining different
sampling strategies for the Bistro (view 2] scene.

277

99

RAY TRACING GEMS

278

BRDF Sampling
UNIFORM

BVH.D

BVH_DF

BVH_DFB

BVH_DFBO

4 SPP 16 SPP

Figure 18-9. Visual results at 4 samples per pixel (SPP] (left) and 16 SPP [right], using the different
sampling strategies defined in Section 18.4.3. All BVH-based methods use a BVH built with SAOH
evaluated for 16 bins along all axes. The BVH techniques use MIS: half their samples sample the BRDF
and half traverse the light acceleration structure.

I00

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

As expected, using light sampling greatly outperforms the BRDF sampling
approach, by being able to find some valid light paths at each pixel. Using the BVH
with the distance as an importance value allows picking up of the contributions
from nearby light sources, as can be seen for the two white light sources placed
on each side of the door of the bistro, the different lights placed on its facade, or its
windows.

When also considering the flux of the light sources during the traversal, we can
observe a shift from a mostly blueish color (from the hanging small blue light
sources closest to the ground] to a more yellowish tone coming from the different
street lights, which might be located farther away but are more powerful.

Using the n - L bounds does not make much of a difference in this scene, except for
the reflections on the Vespa [mostly visible on the 16 SPP images), but the effects
can be way more pronounced in other scenes. Figure 18-10 shows an example from
Sun Temple. There, using the bounds on n - L results in the back of the column on
the right receiving more light and being distinguishable from the shadow it casts on
the nearby wall, as well as the architectural details of the ceiling of the enclave in
which the statue is located becoming visible.

No n -1 bounds With n -1 bounds

Figure 18-10. Visual results when not using the n - [bounds (left] compared to using it (right). Both
images use 8 SPP (4 BRDF samples and 4 light samples) and a BVH binned along all three axes with
16 bins using SAH, and both take into account the distance and flux of the light.

Even without SAOH, the orientation cone still has a small impact on the final
image; for example, the facades in Figure 18-9 (at the end of the street and in
the right-hand corner of the image) are less noisy compared to not using the
orientation cones.

The use of an acceleration structure significantly improves the quality of the
rendering, as seen in Figure 18-8, with between 4x and 6x improved average MSE
score over the Uniform method even when only considering the distance to a node
for that node’s importance function. Incorporating the flux, the n - L bound and the
orientation cone give a further 2x improvement.

279

I0I

RAY TRACING GEMS

18.6

280

CONCLUSION

We have presented a hierarchical data structure and sampling methods to
accelerate light importance sampling in real-time ray tracing, similar to what

is used in offline rendering [11, 22]. We have explored sampling performance

on the GPU, taking advantage of hardware-accelerated ray tracing. We have

also presented results using different build heuristics. We hope this work will
inspire future work in game engines and research to incorporate better sampling
strategies.

While the focus of this chapter has been on the sampling problem, it should be
noted that any sample-based method usually needs to be paired with some form
of denoising filter to remove the residual noise, and we refer the reader to recent
real-time methods based on advanced bilateral kernels [25, 34, 35] as a suitable
place to start. Deep learning-based methods [3, 7, 42] also show great promise.
For an overview of traditional techniques, refer to the survey by Zwicker et al. [48].

For the sampling, there are a number of worthwhile avenues for improvement. In
the current implementation, we bound n - L to cull lights under the horizon. It would
be helpful to also incorporate BRDF and visibility information to refine the sampling
probabilities during tree traversal. On the practical side, we want to move the BVH
building code to the GPU for performance reasons. That will also be important for
supporting lights on dynamic or skinned geometry.

ACKNOWLEDGEMENTS

Thanks to Nicholas Hull and Kate Anderson for creating the test scenes. The

Sun Temple [13] and Paragon Battlegrounds scenes are based on assets kindly
donated by Epic Games. The Bistro scene is based on assets kindly donated by
Amazon Lumberyard [1]. Thanks to Benty et al. [4] for creating the Falcor rendering
research framework, and to He et al. [16] and Jonathan Small for the Slang shader
compiler that Falcor uses. We would also like to thank Pierre Moreau’s advisor
Michael Doggett at Lund University. Lastly, thanks to Aaron Lefohn and NVIDIA
Research for supporting this work.

REFERENCES

[11 Amazon Lumberyard. Amazon Lumberyard Bistro, Open Research Content Archive (ORCAJ.
http://developer.nvidia.com/orca/amazon-Tumberyard-bistro, July 2017.

[2] Andersson, J. Parallel Graphics in Frostbite—Current & Future. Beyond Programmable Shading,
SIGGRAPH Courses, 2009.

102

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[111

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novék, J., Harvill, A,, Sen, P., DeRose, T., and
Rousselle, F. Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings.
ACM Transactions on Graphics 36, 4 (2017), 97:1-97:14.

Benty, N., Yao, K.-H., Foley, T., Kaplanyan, A. S., Lavelle, C., Wyman, C., and Vijay, A. The Falcor
Rendering Framework. https://github.com/NVIDIAGameworks/Falcor, July 2017.

Bikker, J. Real-Time Ray Tracing Through the Eyes of a Game Developer. In |[EEE Symposium on
Interactive Ray Tracing (2007), pp. 1-10.

Bikker, J. Ray Tracing in Real-Time Games. PhD thesis, Delft University, 2012.

Chaitanya, C. R. A, Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., and
Aila, T. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising
Autoencoder. ACM Transactions on Graphics 36, 4 (2017), 98:1-98:12.

Christensen, P. H., and Jarosz, W. The Path to Path-Traced Movies. Foundations and Trends in
Computer Graphics and Vision 10, 2 (2016), 103-175.

Clarberg, P., Jarosz, W., Akenine-Maller, T., and Jensen, H. W. Wavelet Importance Sampling:
Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005),
1166-1175.

Clark, J. H. Hierarchical Geometric Models for Visibility Surface Algorithms. Communications of
the ACM 19,10 (1976), 547-554.

Conty Estevez, A, and Kulla, C. Importance Sampling of Many Lights with Adaptive Tree Splitting.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1-25:17.

Dachsbacher, C., Krivanek, J., Hasan, M., Arbree, A., Walter, B., and Novak, J. Scalable Realistic
Rendering with Many-Light Methods. Computer Graphics Forum 33, 1 (2014), 88-104.

Epic Games. Unreal Engine Sun Temple, Open Research Content Archive (ORCA). http://
developer.nvidia.com/orca/epic-games-sun-temple, October 2017.

Goldsmith, J., and Salmon, J. Automatic Creation of Object Hierarchies for Ray Tracing. /EEE
Computer Graphics and Applications 7, 5 (1987), 14-20.

Harada, T. A 2.5D Culling for Forward+. In SIGGRAPH Asia 2012 Technical Briefs (2012),
pp. 18:1-18:4.

He, Y., Fatahalian, K., and Foley, T. Slang: Language Mechanisms for Extensible Real-Time
Shading Systems. ACM Transactions on Graphics 37, 4 (2018), 141:1-141:13.

Heitz, E., Dupuy, J., Hill, S., and Neubelt, D. Real-Time Polygonal-Light Shading with Linearly
Transformed Cosines. ACM Transactions on Graphics 35, 4 (2016), 41:1-41:8.

Kajiya, J. T. The Rendering Equation. Computer Graphics (SIGGRAPH] (1986), 143-150.

Karis, B. Real Shading in Unreal Engine 4. Physically Based Shading in Theory and Practice,
SIGGRAPH Courses, August 2013.

Keller, A. Instant Radiosity. In Proceedings of SIGGRAPH (1997), pp. 49-56.

Keller, A., Fascione, L., Fajardo, M., Georgiev, |., Christensen, P., Hanika, J., Eisenacher, C., and
Nichols, G. The Path Tracing Revolution in the Movie Industry. In ACM SIGGRAPH Courses (2015),
pp. 24:1-24:7.

281

103

RAY TRACING GEMS

282

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Keller, A., Wachter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndorfer, J., and Kettner,
L. The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

Lagarde, S., and de Rousiers, C. Moving Frostbite to Physically Based Rendering 3.0. Physically
Based Shading in Theory and Practice, SIGGRAPH Courses, 2014.

MacDonald, J. D., and Booth, K. S. Heuristics for Ray Tracing Using Space Subdivision. The Visual
Computer 6, 3 (1990), 153-166.

Mara, M., McGuire, M., Bitterli, B., and Jarosz, W. An Efficient Denoising Algorithm for Global
Illumination. In Proceedings of High-Performance Graphics (2017), pp. 3:1-3:7.

NVIDIA. NVAPI, 2018. https://developer.nvidia.com/nvapi.

O'Donnell, Y., and Chajdas, M. G. Tiled Light Trees. In Symposium on Interactive 3D Graphics and
Games (2017), pp. 1:1-1:7.

Olsson, 0., and Assarsson, U. Tiled Shading. Journal of Graphics, GPU, and Game Tools 15, 4
(2011), 235-251.

Olsson, 0., Billeter, M., and Assarsson, U. Clustered Deferred and Forward Shading. In
Proceedings of High-Performance Graphics (2012), pp. 87-96.

Persson, E., and Olsson, O. Practical Clustered Deferred and Forward Shading. Advances in
Real-Time Rendering in Games, SIGGRAPH Courses, 2013.

Pharr, M. Guest Editor’s Introduction: Special Issue on Production Rendering. ACM Transactions
on Graphics 37, 3 (2018), 28:1-28:4.

Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation, third ed. Morgan Kaufmann, 2016.

Rubin, S. M., and Whitted, T. A 3-Dimensional Representation for Fast Rendering of Complex
Scenes. Computer Graphics [SIGGRAPH) 14, 3 (1980}, 110-116.

Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S.,
Dachsbacher, C., Lefohn, A, and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics
(2017), pp. 2:1-2:12.

Schied, C., Peters, C., and Dachsbacher, C. Gradient Estimation for Real-Time Adaptive Temporal
Filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018),
24:1-24:16.

Schmittler, J., Pohl, D., Dahmen, T., Vogelgesang, C., and Slusallek, P. Realtime Ray Tracing for
Current and Future Games. In ACM SIGGRAPH Courses (2005), pp. 23:1-23:5.

Shirley, P., Wang, C., and Zimmerman, K. Monte Carlo Techniques for Direct Lighting
Calculations. ACM Transactions on Graphics 15, 1 (1996), 1-36.

Sobol, I. M. A Primer for the Monte Carlo Method. CRC Press, 1994.

Talbot, J. F., Cline, D., and Egbert, P. Importance Resampling for Global Illumination. In
Rendering Techniques (2005), pp. 139-146.

104

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

Tokuyoshi, Y., and Harada, T. Stochastic Light Culling. Journal of Computer Graphics Techniques 5,
1(2016), 35-60.

Veach, E., and Guibas, L. J. Optimally Combining Sampling Techniques for Monte Carlo
Rendering. In Proceedings of SIGGRAPH (1995), pp. 419-428.

Vogels, T., Rousselle, F., McWilliams, B., Réthlin, G., Harvill, A., Adler, D., Meyer, M., and Novak,
J. Denoising with Kernel Prediction and Asymmetric Loss Functions. ACM Transactions on
Graphics 37, 4 (2018), 124:1-124:15.

Wald, I. On Fast Construction of SAH-Based Bounding Volume Hierarchies. In /EEE Symposium on
Interactive Ray Tracing (2007), pp. 33-40.

Walter, B., Arbree, A, Bala, K., and Greenberg, D. P. Multidimensional Lightcuts. ACM
Transactions on Graphics 25, 3 (2006}, 1081-1088.

Walter, B., Fernandez, S., Arbree, A, Bala, K., Donikian, M., and Greenberg, D. P. Lightcuts: A
Scalable Approach to Illumination. ACM Transactions on Graphics 24, 3 (2005), 1098-1107.

Ward, G. J. Adaptive Shadow Testing for Ray Tracing. In Eurographics Workshop on Rendering
(1991), pp. 11-20.

Zimmerman, K., and Shirley, P. A Two-Pass Solution to the Rendering Equation with a Source
Visibility Preprocess. In Rendering Techniques (1995), pp. 284-295.

Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler,
C., and Yoon, S.-E. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo
Rendering. Computer Graphics Forum 34, 2 (2015), 667-681.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s] and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,

unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder.

283

105

Paper 1v .

High-Performance Graphics (2019)

T. Foley and M. Steinberger (Editors)

Dynamic Many-Light Sampling for Real-Time Ray Tracing

P. Moreau'? , M. Pharr! and P. Clarbergl

INVIDIA
2Lund University, Sweden

Abstract

Monte Carlo ray tracing offers the capability of rendering scenes with large numbers of area light sources—lights can be sam-
pled stochastically and shadowing can be accounted for by tracing rays, rather than using shadow maps or other rasterization-
based techniques that do not scale to many lights or work well with area lights. Current GPUs only afford the capability of
tracing a few rays per pixel at real-time frame rates, making it necessary to focus sampling on important light sources. While
state-of-the-art algorithms for offline rendering build hierarchical data structures over the light sources that enable sampling
them according to their importance, they lack efficient support for dynamic scenes. We present a new algorithm for maintaining
hierarchical light sampling data structures targeting real-time rendering. Our approach is based on a two-level BVH hierarchy
that reduces the cost of partial hierarchy updates. Performance is further improved by updating lower-level BVHs via refitting,
maintaining their original topology. We show that this approach can give error within 6% of recreating the entire hierarchy
from scratch at each frame, while being two orders of magnitude faster, requiring less than 1 ms per frame for hierarchy updates
for a scene with thousands of moving light sources on a modern GPU. Further, we show that with spatiotemporal filtering, our

Short Paper

approach allows complex scenes with thousands of lights to be rendered with ray-traced shadows in 16.1 ms per frame.

CCS Concepts
» Computing methodologies — Ray tracing;

1. Introduction

Complex illumination is a critical ingredient for the visual rich-
ness of rendered images. Images that include the soft shadows and
diffused lighting that is characteristic of large area light sources
have a markedly more realistic appearance than images rendered
with small numbers of point or directional light sources, which give
stark and harsh lighting effects. However, with more than few light
sources it is infeasible to shade them all individually, especially un-
der the constraints of real-time rendering. Culling and/or stochastic
selection of a subset of lights is necessary. In this work, we focus
on stochastic sampling in order to be able to support many con-
tributing light sources and still compute unbiased results.

With this approach, it is necessary to define a discrete proba-
bility density function (PDF) p;(x,i) that gives the probability of
sampling the ith light as seen from a point x in the scene. The more
closely proportional p;(x,i) is to the reflected light at x due to the
light i’s emission, the less error will be present in the image. Unfor-
tunately, an accurate p; cannot be easily precomputed as there are
millions of shading points X, a scene may have tens of thousands
of lights 7, and generally, the optimal sampling distribution varies
drastically between different parts of the scene.

An elegant solution exists for offline rendering: a single bound-
ing volume hierarchy (BVH) is built over all lights and at each point

© 2019 The Author(s)
3 jcs P ings © 2019 The E:
The definitive version is available at htps://diglib.cg.org/handle/10.2312/hpg20191191.

109

x, the tree is stochastically traversed [KWR*17, CEK18]. At each
level of the traversal, the relative contributions of the children nodes
are estimated such that the full distribution p; is never represented
explicitly and only log(n) computations per shading point (where
n is the number of lights) are required. This idea is illustrated in
Figure 1. For offline rendering, the cost of constructing the light
BVH is negligible compared to the rendering time. This is not the
case for real-time rendering, where many fewer rays are generally
traced per frame and no more than a few milliseconds per frame are
available. The goal of this paper is to adapt light BVH methods to
be suitable for real-time ray tracing of dynamic scenes. We make
the following contributions:

‘We organize light sources in multiple bounding volume hierar-
chies, arranged in a two-level hierarchy.

‘We show that refitting light BVHs without modifying their topol-
ogy can be implemented efficiently on the GPU, and that this ap-
proach works well for moderate amounts of light source motion.
We demonstrate that top-level BVHs can be rebuilt asyn-
chronously to maintain close-to-optimal overall tree topology.
Thus, our approach can support a wide range of motion without
an increase in sampling error due to sub-optimal BVHs.

‘We present results based on a real-time path tracer implemented
in Direct3D 12 using the DirectX Raytracing API.

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

Figure 1: Light sources are stored in a bounding volume hierarchy
(illustrated in 2D on the left, and as a tree on the right). To sample
a light at a shading point X, the tree is stochastically traversed by
estimating the contributions from the two children (light clusters)
at each node. Important clusters are given a higher priority and a
random decision is made about which branch to follow.

We show that with our approach, the cost of maintaining the
light acceleration structure is less than 1 ms per frame for dynamic
scenes with tens of thousands of emitters, with mean-squared error
(MSE) within 6% compared to a single optimized light BVH.

2. Previous Work

Kajiya suggested taking a single light sample at each path vertex
regardless of the total number of lights [Kaj86]. Since his work, a
number of researchers have investigated ways of computing accu-
rate estimates of the contributions of the light sources to be able to
choose among them more effectively.

‘Ward introduced the idea of generating a discrete PDF over lights
at each shaded point [War91] and tracked how often each light
source was visible. Shirley et al. estimated lights’ contributions to
compute per-light probabilities [SWZ96], using an octree to clas-
sify light sources into “bright” and “dim” sets. Zimmerman and
Shirley used a uniform spatial subdivision rather than an octree and
also maintained estimates of each light’s visibility [ZS95]. Wald
et al. generated a light sampling PDF using a sparse path tracing
pass [WBSO03]. Their approach works well in densely occluded en-
vironments but does not effectively distinguish between local lights
that are important at some points but less so at others.

A number of light transport algorithms have been developed
based on hierarchical representations of illumination encoded as
point lights, including Lightcuts [WFA*05] and its predeces-
sor [PPD98]. Closely related are global illumination algorithms
based on virtual point lights (VPLs) [DKH*14]. These approaches
all use point lights for illumination and not just for sampling, which
introduces the possibility of error from the discretization and the
weak singularity from the 1/ 72 term close to the point lights.

Tiled shading [And09, OA1l, Harl2, OC17] bins lights into
screen-space tiles, where the depth bounds of the tiles reduce the
number of lights that need to be processed in each one. These
screen space acceleration structures are not applicable to indi-
rect intersection points with ray tracing. Further, clamped light
ranges can cause undesired darkening. To address the darken-
ing, Tokuyoshi and Harada used a bounding sphere hierarchy and
stochastic light ranges to reject unimportant lights [TH16].

A number of researchers have investigated other approaches

I10

based on building hierarchies over the light sources and travers-
ing them to sample lights. Iray uses a hierarchical light importance
sampling scheme based on a BVH [KWR*17]. Conty Estévez and
Kulla [CEK18] take a similar approach for cinematic rendering
with a 4-wide BVH that clusters lights in world space based on both
orientation and surface normal bounding cones. Moreau and Clar-
berg describe a GPU implementation of their algorithm [MC19].
Vévoda et al. [VKKI18] recently described an approach based on
online learning of the importance of light sources based on clus-
tering with a hierarchy and a Bayesian approach. Their method
has relatively high memory use, does not support dynamic light
sources, and does not readily map to GPUs.

The idea of “refitting” bounding volume hierarchies for ray in-
tersection acceleration with animated geometry was introduced by
van den Bergen [vdB97] for collision detection, and later applied
to ray—object intersection [LYMTO06, WBSO07]. These approaches
take advantage of the fact that for relatively small amounts of ob-
ject motion, the original BVH’s topology can be maintained with
node bounds updated to account for moving objects’ new positions.
Doing so saves the computational expense of rebuilding the BVH.
To our knowledge, these techniques have not been applied to light
sampling BVHs. We note that with collision detection and ray—
object intersection, sub-optimal BVHs cause an increase in compu-
tation but do not introduce error. With light sampling, low quality
BVHs instead lead to inaccurate light contribution estimates, which
in turn may lead to variance in rendered images—i.e., error rather
than inefficiency. We apply refitting and study these effects.

3. Algorithm

The light sampling distribution should ideally be proportional to
each light i’s contribution to reflected radiance L at the point x being
shaded: p;(x,i) o< L(X,0o), where @ is the view direction. The
more closely the distribution matches L, the lower the error will be.
This principle is known as importance sampling in Monte Carlo
integration [PJH16]. However, it is not feasible to determine a p;
that is exactly proportional to L:

L(xAu)o):/ f(O)—>u)o)Le(x,,—u))V(x<—>x1)|cosecosel|dXh
A lIx x>

()]
where the integration domain A; is the surface of the ith light, f
is the bidirectional scattering distribution function (BSDF), o is
the normalized vector from X to a point x; on the light, Le is the
radiance emitted by the light, and V is a visibility term that is one if
the two points are unoccluded and zero otherwise. The two cosine
terms are with respect to the surface normals at x and at x;.

We use the approach by Conty Estévez and Kulla [CEK18] as
implemented by Moreau and Clarberg [MC19], which takes the to-
tal emitted flux, the l/r2 falloff, and the relative orientations of
the shading normal and light source into account using bounding
cones. Instead of computing these terms for all the light sources,
lights with nearby locations and directions are grouped together
into a light BVH [KWR*17,CEK18]. The BVH allows hierarchical
approximation of these quantities, reducing the per-sample com-
plexity from O(n) to O(logn) and making it feasible to perform
these computations at every shading point. This algorithm can be
applied to point or area lights, as well as emissive triangles.

© 2019 The Author(s)

E ics P ings © 2019 The
The definitive version is available at https:/diglib.eg.org/handle/10.2312/hpg20191191.

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

[l
&

4 4

Figure 2: Care has to be taken when deciding which light sources
to put in each bottom-level hierarchy. Left: it is difficult to accu-
rately estimate the contribution from the large overlapping BLASes,
leading to higher variance. Right: it is preferable to place lights
that are spatially nearby in the same hierarchies.

]
=

3.1. Two-Level Light Acceleration Structures

Previous approaches used a single BVH for all light sources. The
BVH must be rebuilt from scratch if even a single light moves
or changes intensity. That approach isn’t suitable for real-time
rendering with dynamic lights due to the cost of rebuilding the
BVH [MC19].

The problem is closely related to managing data structures for
ray-intersection testing in dynamic scenes. APIs like DirectX Ray-
tracing or Vulkan ray tracing and libraries like OptiX [PBD*10]
and Embree [WWB™14], use two-level BVHs that store collections
of geometry in separate bottom-level acceleration structure (BLAS)
and maintain a separate top-level acceleration structure (TLAS)
that stores the BLASes. A moving object only causes its BLAS
and the TLAS to be rebuilt. The cost of hierarchy updates is kept
low if static geometry is stored separately from dynamic objects.

With light BVHs, that partitioning is not ideal for static lights
as it would lead to large BVH nodes and therefore poor estimates
of node contributions due to having many emissive primitives and
high uncertainty regarding their positions and orientations within
the node. Other strategies such as sorting based on material can
similarly be counterproductive; see Figure 2. We have found that
storing each emissive mesh in its own BLAS generally gives a good
balance. Figure 3 shows an example from one of our test scenes. In
future work, it would be interesting to investigate automatic ways
to partition emissive geometry into BLASes.

‘We sample our two-level light BVH by first traversing the TLAS
down to a leaf node by evaluating an importance function [CEK18]
for each of the current node’s children and stochastically select-
ing one of them. Each leaf node points to a BLAS, and the same
technique is used to select a light in it. The overall probability of
sampling a light is the product of the probability of sampling the
BLAS it is in and the probability of sampling it in its BLAS.

3.2. Updating the Two-Level Acceleration Structure

By design, if a light source has been modified then only the TLAS
and BLAS to which it belongs need to be updated. Those updates
can either take the form of fully rebuilding the hierarchy or refit-
ting it. The latter keeps the topology of the hierarchy intact—i.e.,
the parent/children relationships between the nodes stay the same,
as well as which primitives are stored in each leaf node—but the
aggregate attributes like bounding boxes are updated to account
for the object motion [LYMTO06, WBSO07]. For our light BVHs, the

©2019 The Author(s)
3 i ©2019 The E
The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20191191.

II1

Figure 3: Each yellow box is the root node of a bottom-level accel-
eration structure (BLAS), here shown for the Bistro scene. Notice
that both static light sources, e.g., the street lights and hanging light
bulbs, and dynamic emissive objects are each represented by one or
more BLASes, here in total 142 for the full scene.

BLAS 1 B 2 BLAS 3

Le]l []
0@ O memgmE)
aeE 0 @0 Wa 6

Figure 4: Our light BVH refit operation is performed bottom-up on
all modified bottom-level hierarchies in parallel, with one compute
shader dispatch per tree level (as shown in green). For this purpose,
each tree stores a list of node indices sorted by tree level.

aggregate attributes also include the total emitted flux and normal
bounding cones. Thus, even static light sources can trigger a rebuild
or refit if their flux changes (for example, flashing lights).

After object animation, we dispatch compute shader passes on
the GPU for all modified BLASes, with a separate dispatch for
each tree level bottom-up, updating the current row’s nodes based
on their children’s aggregate attributes; see Figure 4. We then also
refit the TLAS on the GPU, to let rendering immediately proceed.
However, we have found it worthwhile to rebuild the TLAS to keep
it as accurate as possible. Therefore, we perform an asynchronous
full rebuild of the TLAS on the CPU; this lets us exploit idle CPU
cycles while the GPU is busy rendering without introducing extra
latency. Figure 5 shows an execution timeline.

4. Results

We evaluated our approach using two complex scenes with dy-
namic light sources; see below for general statistics and Figure 3
and 6 for representative images. The scenes contain both skinned
animation and multiple rigid objects that follow animation paths.
Note that we perform BVH refit for all moving objects, indepen-
dent of their amount of motion and type of animation. The algo-

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

frame n frame n+1
BLAS || TLAS Rendering BLAS || TLAS
GPU GBuffer || refit || refit + post-process GBuffer || refit || refit
- -
08
P TLAS gx TLAS
CPU rebuild 38 rebuild

time

Figure 5: The bottom-level (BLAS) and top-level (TLAS) light BVHs are refitted on the GPU based on the current vertex positions and flux
values for the emissive geometry. To maintain a good topology, the TLAS is rebuilt asynchronously on the CPU based on last frame’s data.

rithms were implemented in the Falcor real-time rendering frame-
work [BYF*18] using Microsoft Direct3D 12 and DirectX Ray-
tracing (DXR). All results were measured on an NVIDIA GeForce
RTX 2080Ti GPU with 12GB RAM using driver 419.67, on a com-
puter with an Intel Xeon E5-1650 v4 CPU at 3.60GHz and 32GB
RAM. The output resolution was 1920 x 1080 pixels.

Scene Bistro | Emerald Square
Total triangles 3,038,170 9,687,074
Emissive triangles (static) 19,948 19,440
Emissive triangles (dynamic) 6,495 66,172

Using a two-level BVH rather than a single unified one may
reduce importance sampling accuracy (recall Figure 2.) In order
to evaluate the importance of this issue, we first measured ren-
dering time and the mean squared error (MSE) for static scene
using one light sample per pixel (spp) with three sampling ap-
proaches: uniform probabilities over all of the light sources, a sin-
gle light sampling BVH on the GPU [MC19], and our two-level
BVH. Error was measured with respect to reference images ren-
dered with 10,000 spp. Times were averaged over a few hundred
frames and only include the ray-tracing pass to compute lighting—
the time to generate the G-buffer (roughly 2 ms) and for tone map-
ping (less than 1 ms) is not included. All techniques were com-
bined with BRDF sampling using multiple importance sampling
(MIS) [VGY5], taking one BRDF sample for each light sample. For
clarity of presentation, only direct illumination was evaluated; the
total number of rays per pixel was therefore 2xspp (one shadow
ray and one BRDF scatter ray).

The results are presented in Table 1. As has been demonstrated
previously [CEK18, MC19] and is evident here, a uniform light
sampling PDF is ineffective in scenes with many light sources. For
these scenes, the increase in MSE from replacing a single BVH
with a two-level BVH is insignificant. Note also that there is a neg-
ligible difference in runtime performance between these variants.

We next performed a set of experiments to compare four ap-
proaches for rendering scenes with moving light sources: uniform
light sampling; a single-level BVH that is built from scratch when
any light changes; a single-level BVH that is refit when a light
changes; and a two-level BVH where bottom-level BVHs are re-
fit and the top-level is rebuilt. Lacking an efficient GPU algorithm
to build the entire BVH, the second approach is not suitable for
real-time applications—a full rebuild for these scenes takes over
90 ms—but it provides a baseline that gives the best sampling prob-
abilities and thus the lowest MSE.

Because all of these sampling methods are unbiased, Monte

Figure 6: The Emerald Square scene with crops rendered using
1 spp, 4 spp, and 16 spp, respectively. This scenes has 143 dynamic
emissive meshes for a total of 66,172 moving emissive triangles.

Carlo efficiency is a useful metric. It is defined as the inverse prod-
uct of rendering time ¢ and variance v [PJH16], which MSE is an
estimate of: € = % Monte Carlo efficiency cleanly accounts for
the interplay between computation time and error in the integra-
tion: because variance (and MSE) decreases at the rate O(1/N) for
a number of samples N, it correctly indicates that, for example, a
method that takes twice as much time as another to deliver half
as much variance is no improvement: we could equivalently take
twice as many samples with the first and expect the same variance.

The results are reported in Table 2. As before, timings are the
average over a few hundred frames and MSE is computed with re-
spect to a reference rendering with 4,000 spp. We can see that the
slight reduction in update time from refitting a single BVH is not
worth it: the increase in MSE is such that its Monte Carlo efficiency
is on par with or lower than our approach. In a similar fashion, we
can see that although a single-level BVH that is built from scratch
when lights move gives the best MSE, the cost to build the BVH
also is not worth it in terms of overall efficiency.

Next, we measured the effect of the accumulation of error from
refitting BVHs over long animations—extensive motion of light
sources may cause the original BVH topology to become inappro-
priate. See the accompanying video in order to see the animation.
The results are presented in Figure 7 and 8. We can see that rebuild-
ing the TLAS is worth the small computational cost.

Finally, as presented thus far, our method produces consistent,
unbiased results. For practical use at low sample counts, it is es-
sential to pair it with a reconstruction filter to remove the resid-
ual Monte Carlo noise. As a proof of concept, we have integrated
spatiotemporal variance-guided filtering (SVGF) [SKW™17] in the
renderer. Figure 9 shows an example rendered at 1 spp using uni-
form sampling and our method, before and after denoising. Note
that the denoised result with our method is much closer to ground
truth, thanks to the denoiser having better input to work with. Our

© 2019 The Author(s)

E ics P ings © 2019 The
The definitive version is available at https:/diglib.eg.org/handle/10.2312/hpg20191191.

112

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

Scene Bistro Emerald Square

Uniform One-level BVH Two-level BVH | Uniform One-level BVH Two-level BVH
Time (ms) 6.2 10.4 10.7 7.7 11.3 11.6
MSE 16.8 2.12 2.14 19 0.49 0.50

Table 1: Rendering time and error using 1 spp for the first frame of the animations of the two scenes with time paused, i.e., no dynamic
updates were performed. The two-level BVH only introduces a negligible increase in error of 1-2% compared to a single-level BVH.

Scene Bistro Emerald Square

Uniform One-level One-level Two-level Uniform One-level One-level Two-level

(rebuild) (refit) (rebuild/refit) (rebuild) (refit) (rebuild/refit)

BVH update time (ms) 0 ~90 0.17 0.85/0.18 0 ~300 0.22 0.89/0.35
Sampling time (ms) 0.34 2.3 24 2.6 0.32 2.0 2.0 22
Total time (ms) 6.2 101 10.8 12.0 7.7 311 11.3 12.6
MSE 16.5 1.56 1.95 1.65 20 0.58 0.67 0.61
MC efficiency € 0.0097 0.0064 0.048 0.050 0.0065 0.0055 0.13 0.13
€ w.r.t. uniform 1x 0.66x 4.9x 5.2x% 1x 0.85x 20.3x 20.1x

Table 2: Performance and error for with two different scenes rendered at 1 spp. Error was measured after 269 frames in order to capture
large amounts of light movement. By comparing the Monte Carlo efficiency of the various approaches, we can see that our approach (two-
level) has a much higher efficiency than one-level rebuild, without suffering from the robustness issues of refitting only, as pictured in Figure 8.
Notice that we have summed the CPU and GPU execution times in this table, even though in reality they overlap.

Mean squared error (Bistro, 4spp)

1.0
0.6 4 MWW
; n
g WAL M
=04 "'v‘:‘ Y
— l-level refit
0.2 2-level rebuild /refit
>
t T T 1
0 100 Frs 200 300
rames

Figure 7: Error over time for an animation of the Bistro scene ren-
dered at 4 spp. The benefit of rebuilding the top-level BVH results
in an up to 1.4x reduction in MSE compared to using a one-level
BVH that is refitted every frame. Notice that locally the differences
can be much larger; see Figure 8.

SVGF implementation has not been optimized, and currently runs
in roughly 4 ms per frame, for a total frame time of 16.1 ms for
this scene. The supplemental video shows SVGF filtering with ani-
mation. The video was rendered with 4 spp, giving a frame time of
31.7 ms. Note that the filtered output is generally of high quality,
with only minor temporal artifacts and ghosting. Gradient estima-
tion [SPD18] would presumably reduce the ghosting.

5. Conclusion and Future Work

The arrival of ray tracing as a first-class visibility primitive in mod-
ern graphics APIs presents an opportunity for substantial improve-
ments in the realism and richness of real-time graphics. We have
introduced an approach for unbiased many-light sampling on GPUs
that is suitable for ray tracing dynamic scenes. Our method is based

©2019 The Author(s)
©2019 The E
The definitive version is available at hitps://diglib.cg.org/handle/10.2312/hpg20191191.

113

Figure 8: Crops of the Bistro scene for frame 269 of the animation
at 4 spp, using a one-level BVH that is refitted each frame on the
left, our two-level BVH in the center, and a reference on the right.

on a two-level hierarchy of acceleration structures over the lights
and includes efficient update and sampling algorithms.

In the future, we would like to develop algorithms for building
light BVHs from scratch on the GPU. Not only would it be de-
sirable to eliminate CPU-GPU copies, but a sufficiently efficient
algorithm would also allow the option of building a single BVH
from scratch for moderate numbers of dynamic light sources. We
would also like to investigate heuristics for determining when a re-
fit light BVH has come to be ineffective and should be rebuilt. We
hope that our work will inspire forward looking game engines and
further research in rendering with complex lighting.

Acknowledgments Thanks to Nicholas Hull and Kate Anderson
for creating the scenes. The Bistro scene is based on assets kindly
donated by Amazon Lumberyard. The car model was made by Tur-
bosquid user barteks2, and the helicopter asset by Sketchfab user
f3nix. We would also like to thank Lund University, Aaron Lefohn
and NVIDIA Research for supporting this work, and the Swedish
Research Council for funding Pierre under grant 2014-5191.

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

0.0128x

1x

0.0517x

0.0061 x

Figure 9: Crops of the Bistro scene and MSE with respect to uniform light sampling. From left to right: uniform light sampling at 1 spp;
filtered with SVGF [SKW* 17] (5 frames accumulated); two-level BVH sampling at 1 spp, filtered output (5 frames acc.); reference image.

References

[And09] ANDERSSON J.: Parallel Graphics in Frostbite—Current & Fu-
ture. Beyond Programmable Shading, SSIGGRAPH Courses, 2009. 2

[BYF*18] BENTY N., YAO K.-H., FOLEY T., OAKES M., LAVELLE C.,
WYMAN C.: The Falcor rendering framework, 05 2018. URL: https:
//github.com/NVIDIAGameWorks/Falcor. 4

[CEK18] CONTY ESTEVEZ A., KULLA C.: Importance Sampling of
Many Lights with Adaptive Tree Splitting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 1,2 (2018), 25:1-25:17.
1,2,3,4

[DKH*14] DACHSBACHER C., KRIVANEK J., HASAN M., ARBREE A.,
WALTER B., NOVAK J.: Scalable Realistic Rendering with Many-Light
Methods. Computer Graphics Forum 33, 1 (2014), 88-104. 2

[Har12] HARADA T.: A 2.5D Culling for Forward+. In SSIGGRAPH Asia
2012 Technical Briefs (2012), pp. 18:1-18:4. 2

[Kaj86] KAIYA J. T.: The Rendering Equation. Computer Graphics
(SIGGRAPH) (1986), 143-150. URL: http://doi.acm.org/10.
1145/15922.15902,do1:10.1145/15922.15902. 2

[KWR*17] KELLER A., WACHTER C., RAAB M., SEIBERT D., VAN
ANTWERPEN D., KORNDORFER J., KETTNER L.: The Iray Light
Transport Simulation and Rendering System. arXiv, https://
arxiv.org/abs/1705.01263,2017. 1,2

[LYMTO06] LAUTERBACH C., YOON S. E., MANOCHA D., TUFT D.:
RT-DEFORM: Interactive ray tracing of dynamic scenes using BVHs. In
Proceedings of the IEEE Symposium on Interactive Ray Tracing (2006),
pp. 3946. 2,3

[MC19] MOREAU P., CLARBERG P.: Importance sampling of many
lights on the GPU. In Ray Tracing Gems, Haines E., Akenine-Méller
T., (Eds.). Apress, 2019, pp. 255-283. http://raytracinggems.
com. 2,3,4

[OA11] OLSSON O., ASSARSSON U.: Tiled Shading. Journal of Graph-
ics, GPU, and Game Tools 15,4 (2011), 235-251. 2

[OC17] O’DONNELL Y., CHAIDAS M. G.: Tiled Light Trees. In Sym-
posium on Interactive 3D Graphics and Games (2017), pp. 1:1-1:7. 2

[PBD*10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: OptiX: A General Purpose Ray
Tracing Engine. ACM Transactions on Graphics 29, 4 (July 2010),
66:1-66:13. URL: http://doi.acm.org/10.1145/1778765.
1778803. 3

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation, third ed. Morgan Kauf-
mann, 2016. 2, 4

[PPD98] PAQUETTE E., POULIN P., DRETTAKIS G.: A Light Hierarchy

for Fast Rendering of Scenes with Many Lights. Computer Graphics
Forum 17 (1998), 63-74. 2

114

[SKW*17] ScHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., LiUu S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal Variance-Guided Filtering:
Real-Time Reconstruction for Path-Traced Global Illumination. In Pro-
ceedings of High-Performance Graphics (2017), pp. 2:1-2:12. 4,6

[SPD18] ScHIED C., PETERS C., DACHSBACHER C.: Gradient Esti-
mation for Real-Time Adaptive Temporal Filtering. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1, 2 (2018),
24:1-24:16. 5

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte Carlo Tech-
niques for Direct Lighting Calculations. ACM Transactions on Graphics
15,1 (1996), 1-36. 2

[TH16] TOKUYOSHI Y., HARADA T.: Stochastic Light Culling. Journal
of Computer Graphics Techniques 5, 1 (2016), 35-60. 2

[vdB97] VAN DEN BERGEN G.: Efficient Collision Detection of Complex
Deformable Models using AABB Trees. Journal of Graphics Tools 2,
4(1997), 1-13. URL: https://doi.org/10.1080/10867651.
1997.10487480. 2

[VG95] VEACH E., GuiBAs L. J.: Optimally Combining Sampling
Techniques for Monte Carlo Rendering. In Proceedings of SSIGGRAPH
(1995), pp. 419-428. 4

[VKK18] VEVODA P., KONDAPANENI 1., KRIVANEK J.: Bayesian on-
line regression for adaptive direct illumination sampling. In ACM Trans-
actions on Graphics (2018), pp. 125:1-125:12. 2

[War91] WARD G. J.: Adaptive Shadow Testing for Ray Tracing. In
Eurographics Workshop on Rendering (1991), pp. 11-20. 2

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Interactive Global II-
lumination in Complex and Highly Occluded Environments. In Proceed-
ings of the 14th Eurographics Workshop on Rendering (2003), pp. 74—
81. URL: http://dl.acm.org/citation.cfm?id=882404.
882415.2

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing Deformable
Scenes Using Dynamic Bounding Volume Hierarchies. ACM Transac-
tions on Graphics 26, 1 (Jan. 2007). URL: http://doi.acm.org/
10.1145/1189762.1206075. 2,3

[WFA*05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: A Scalable Approach to
Ilumination. ACM Transactions on Graphics 24, 3 (2005), 1098-1107.
2

[WWB*14] WALD L., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics 33,4 (July 2014), 143:1-143:8. URL: http:
//doi.acm.org/10.1145/2601097.2601199. 3

[ZS95] ZIMMERMAN K., SHIRLEY P.: A Two-Pass Solution to the Ren-
dering Equation with a Source Visibility Preprocess. In Rendering Tech-
niques (1995), pp. 284-295. 2

© 2019 The Author(s)

ics P ings © 2019 The
The definitive version is available at https://diglib.eg.org/handle/10.2312/hpg20191191.

Real-Time Rendering of Indirectly Visible Caustics

Pierre Moreau®?, Michael Doggett®®
Faculty of Engineering, Lund University, Lund, Sweden
{pierre.moreau, michael.doggett}@cs.lth.se

Keywords: Real-time, Ray tracing, Caustics rendering

Abstract:

Caustics are a challenging light transport phenomenon to render in real-time, and most previous approaches

have used screen-space accumulation based on the fast rasterization hardware of GPUs. This limits the posi-
tion of photon collection points to first hit screen space locations, and leads to missing caustics that should be
visible in a mirror’s reflection. In this paper we propose an algorithm that can render caustics visible via spec-
ular bounces in real-time. The algorithm takes advantage of hardware-accelerated ray tracing support found in
modern GPUs. By constructing an acceleration structure around multiple bounce view ray hit points in world
space, and tracing multiple bounce light rays through the scene, we ensure caustics can be created anywhere
in the scene, not just in screen space. We analyze the performance and image quality of our approach, and
show that we can produce indirectly visible caustics at real-time rates.

To be presented at GRAPP 2022
https://grapp.scitevents.org/Home.aspx/?y=2022

1 INTRODUCTION

Caustics are a natural phenomenon created by the
concentration of light as it is reflected and trans-
mitted through objects. While many techniques ex-
ist to generate these lighting effects in images of
three dimensional scenes, generating them in real-
time for interactive applications is challenging. A
popular approach to achieving real-time performance
is the use of screen-space algorithms, but these algo-
rithms come with limitations, in particular not work-
ing well for scenes with reflective surfaces and semi-
transparent objects. For consistent viewing of ren-
dered images, lighting effects like caustics need to
remain constant. Screen-space accumulation tech-
niques can lead to inconsistent renderings with light-
ing effects switching on and off, or even missing in
mirrors, as can be seen in Figure 1 for the technique
by Kim (2019).

Caustics have always been an important feature

https://orcid.org/0000-0003-3916-1250
b https://orcid.org/0000-0002-4848-3481

1y

of rendering research and go back to early backward
ray tracing techniques (Arvo, 1986). More recent ap-
proaches have used the rasterization pipeline and off-
screen buffers for a range of techniques such as caus-
tic mapping (Hu and Qin, 2007; Shah et al., 2007;
Szirmay-Kalos et al., 2005; Wyman and Davis, 2006).
While these techniques create good approximations,
many issues remain, including sampling rates, large
numbers of photons, and potential coherency prob-
lems during animation. With the recent introduc-
tion of hardware-accelerated ray tracing, new ap-
proaches (Kim, 2019; Ouyang and Yang, 2020a; Yang
and Ouyang, 2021) take advantage of this to create
high-quality caustics, but still do not handle caustics
not directly visible.

Screen-space accumulation techniques that only
collect lighting contributions at locations that are di-
rectly visible by the current camera are always lim-
ited in terms of correctly rendering a scene. For the
case of a scene where a caustic is visible via its re-
flection in a mirror, the lighting contributions would
be collected on the mirror itself. This means the pho-
tons responsible for the caustic would need to be re-
flected off the diffuse surface and into one of the col-
lection locations on the mirror. This is unlikely as
the BSDF sampling will have a low chance at return-
ing a direction towards the mirror in most cases and
that direction needs to be within the tight lobe of a
rough mirror, and outright impossible in the case of
a perfectly-specular mirror. Furthermore most real-

B,

(a) Reference

(b) Kim (2019), 24.7 ms

(c) Our approach, 25.6 ms

Figure 1: This figure shows a challenging setup for real-time caustics which are only visible via a chain of specular events,
such as mirror reflections. As Kim (2019) accumulates photon contributions in screen space, contributions for anything seen
via this perfectly specular mirror will be collected on the mirror itself requiring them to come from one very specific direction
in order to have any impact; the caustics visible via the different mirrors are completely missing as a result. Our new approach
can handle the caustics since its accumulation is based around a world-space acceleration structure. This scene was rendered
at 1920 x 1080 with a path length of 6 segments using different algorithms; (a) uses 125k samples per pixel (spp), (b) 1 spp
and 14M light paths, and (c), our temporal approach, 1 spp and 1M light paths.

time caustic-rendering techniques stop the light path
at the first diffuse hit, preventing the caustic photons
from ever reaching that mirror and being accounted
for; this cut is performed for performance reasons as
caustic paths with two or more diffuse hits will have
a more subtle contribution than caustic paths with a
single diffuse hit.

This paper proposes to collect photons, on dif-
fuse surfaces, at viewing ray hit points, found using
hardware-accelerated ray tracing. At each hit point
for a light path, a Bounding Volume Hierarchy (BVH)
node is created and constructed into a BVH tree using
DirectX Raytracing. By creating a full scene BVH,
the algorithm is not limited to screen-space- or view-
frustum-based images. We then query the BVH us-
ing the algorithm by Evangelou et al. (2021). We also
use ray differentials for appropriate sizing of the BVH
nodes, and use the BVH structure as a temporal cache
for filtering. Our key contribution is enabling real-
time indirect caustics, by combining view and light
rays with a custom BVH, all using ray tracing hard-
ware acceleration.

2 RELATED WORK

Tracing light rays or photons from a light source to
an opaque surface and accumulating light intensity on
a surface has been a common approach to generat-
ing caustics (Arvo, 1986; Jensen, 2001). Generating
caustics in real-time can be done by reproducing pho-
ton mapping on a GPU (McGuire and Luebke, 2009),
but these approaches are expensive and not capable of
generating highly accurate caustics.

Another method for generating caustics in real-
time is caustic maps. Caustic maps are generated by
first making a photon buffer by emitting photons from
the light’s perspective into a two-dimensional buffer

118

similar to shadow maps. The photons from the pho-
ton buffer are then drawn into the caustic map, which
is projected onto the final image. Szirmay-Kalos
et al. (2005) and Wyman and Davis (2006) improved
quality by increasing photon count and Wyman and
Nichols (2009) created a hierarchical caustic map,
that adaptively processed only the necessary parts of
the photon buffer. But caustic maps still limit the lo-
cations that photons can be captured at, and the pro-
jection of high photon counts into the caustic map
quickly becomes expensive when trying to improve
image quality.

With the advent of hardware accelerated ray trac-
ing, several new approaches to real-time rendering of
caustics have made use of this feature. Kim (2019)
uses projection volumes to direct photons towards
semi-transparent objects to create photon maps lim-
iting visible caustics to these projection volumes.
Gruen (2019) focuses on creating volumetric wa-
ter caustics in single-scattering participating media
where a water surface casts a caustic on an underlying
surface, but it does not handle refracted and then re-
flected light rays. Ouyang and Yang (2020a,b); Yang
and Ouyang (2021) introduce caustic meshes for gen-
eral caustics, but their method requires two passes for
reflected and refracted caustics, and only caustics in
the current viewport can be seen in this case. They
further combine their technique with cascaded caustic
maps for water caustics, but are focused on the caustic
on the surface underlying the water. Wang and Zhang
(2021) only trace rays after intersecting with a semi-
transparent object, at which point it fires photons into
a caustic map to layer onto the final image. By using a
caustic map, their algorithm has similar limitations to
screen-space techniques. While all these recent meth-
ods address caustics, some are screen space limited,
and none of them address the issues of indirect caus-
tics where photons must be accumulated outside the

view frustum to correctly handle reflected caustics,
and caustics behind semi-transparent objects.

Evangelou et al. (2021) present a fast radius search
by mapping the problem to GPU ray traversal and
can therefore take advantage of ray tracing hardware.
In our algorithm, we utilise their approach to query
the BVH used when accumulating photons as well as
when reusing the accumulation results in later frames.
They evaluate their algorithm by using it for pro-
gressive photon mapping (Hachisuka et al., 2008) by
building an acceleration structure around the photons
traced from the light, whereas in our algorithm we
build the acceleration structure around the camera ray
hit points, where photons are collected.

3 ALGORITHM

Unlike screen-space techniques, our approach accu-
mulates photons in a world-space caching structure
based on arbitrary points and their surroundings. The
size of that area is uniquely computed at each caching
point, enabling support for fine-detail caustics.

The stages of our algorithm are shown in Figure 2.
The first stage is a path tracer which identifies the first
diffuse hit found along each camera path where light
contributions will later be collected, similar to pro-
gressive photon mapping (Hachisuka et al., 2008). In
our algorithm we refer to these hit points as collec-
tion points. An acceleration structure is then created
around the collection points, and light paths are traced
to accumulate light intensity at each collection point.
Finally the output is resolved before being processed
using a spatiotemporal filter.

We will be using the following notation:
¢; refers to a collection point in frame i, C;
refers to all collection points present in frame
i. A collection point has the following attributes:

p world position

T camera sub-path throughput

r search radius

n world normal

1 accumulated radiant intensity

m material ID

L, exitant radiance

L, interpolated exitant radiance

L, weighted contributions from previous collec-
tion points

Figure 3 shows an overview of our setup with
camera and light paths. When path tracing, the col-
lection points are selected based on the BSDF com-
ponent that was evaluated for generating the reflected
ray at a hit: if a diffuse component was used, then we
create a collection point at the hit point. In Figure 3,

119

this is the case for p; and m; but not m; as it sampled
the specular component of the mirror.

Selecting a search radius. As collecting from a sin-
gle point in space is infeasible in practice, we instead
gather from a surrounding area. We use the radius of
the disk enclosing the pixel footprint in world space
for the collection points at primary hits, as a reason-
able middle ground between over-blurring and light
leakage, and too restrictive radii that would ignore
most light paths.

To compute the pixel footprint for collection
points at secondary hits, we use half the width of ray
cones as described by Akenine-Moller et al. (2021) as
our search radius, and take the BSDF roughness into
account as described in their Section 4. The ray cones
computation is cheaper than ray differentials (Igehy,
1999), and is necessary for texture level of detail cal-
culation.

Creating the acceleration structure. We use a
similar approach to Evangelou et al. (2021) for ac-
celerating radius searches. In their work they recom-
mended building the acceleration structure around the
photons rather than around the collection points, as
atomics can then be avoided for updating the accumu-
lated contributions at each collection point, as having
overlapping collection points (for example when the
same area is visible both directly and via a mirror) can
noticeably decrease performance. The overhead from
using atomics is about 5%; please see Section 3.2 for
more details.

In contrast, we build the acceleration structure
around the collection points for the following reasons:

» more predictable quality reduction when decreas-
ing the number of collection points to improve
performance, than reducing the number of pho-
tons stored;

the light contributions accumulated at collection
points can be easily reused over multiple frames,
as presented in Section 3.1.

building around photons forces the use of the
largest radius for each of them, which can be
costly as radii depend on location and intersected
shapes and materials;

As numerical precision errors might result in the
hit position being slightly above or below the sur-
face, we gather from a cylinder rather than from a
disk, similarly to most photon mapping methods. The
cylinder is aligned along c;.n, uses the same radius
¢;.r, and has its height set to a tenth of ¢;.r. We then
compute the smallest AABB containing that cylinder

[Identify collection points

Build collection point AS I—»[Trace light sub-paths

Resolve

Adapt past accumulations to current collection points

Temporal feedback loop

Figure 2: An overview of the different steps of our approach, with all boxes with a green colour constituting the basic algo-
rithm, and the grey ones were either added or modified to support temporal reuse. All steps are performed in programmable
shaders, except for the rectangle with non-rounded corners, which is instead taken care of by the API.

mirror mirror
m; m;
9o 90
my my q1
@ K P2
q2
q2
\J >
P i, 95 diffuse Gy 95| diffuse
frame i frame i+1

Figure 3: An overview of our indirect-caustic algorithm. Camera paths, p, m, are traced to the first diffuse surface intersection,
where collection points (shown as red boxes) are created and placed in a BVH. Then light paths, ¢, are traced via specular
intersections and collected. The path m will generate an indirect caustic in the final image. On the right half of the image
is frame i+ 1, which shows how new collection points are created when the camera rays change, but collection points from

previous frames can still be reused.

and use it as the primitive around which the accelera-
tion structure is built.

Tracing light sub-paths. The algorithm does not
depend on how the set of light sources and individ-
ual light sources are being sampled, so different tech-
niques can be used here such as the recent works by
Kim (2019) or by Ouyang and Yang (2020a); Yang
and Ouyang (2021).

Regardless of the chosen method(s) for sampling
and tracing the light sub-paths, every time the sub-
path hits a surface we will query and selectively up-
date all collection points that contain this hit. As
we leverage a hardware accelerated BVH and ray
tracing API, this is implemented by tracing a very
short ray (Wald et al., 2019), starting from the hit,
against the acceleration structure storing our collec-
tion points. For each intersected collection point,
we first check that the hit is actually located within
the collection cylinder and that its material identifier
matches the one stored in the collection point, before
accumulating in ¢;./ the flux carried by the photon
into radiant intensity reflected towards the vertex prior
to the collection point in the camera sub-path (e.g. to-
wards m if accumulating at m).

120

Resolving. Before presenting the results to the user,
the accumulated radiant intensity needs to be trans-
formed into radiance, and take account of the through-
put of the camera sub-path connecting a collection
point to a pixel. This is summarised in the following
equation:

C,‘.I
TCC,'.)’Z

ci.lLo=ci.T

6]

3.1 Temporal Reuse

A benefit of our approach is that we can reuse the ex-
act same accumulated radiant intensity and just mul-
tiply it by the new camera sub-path throughput when
a directly-visible caustic moves behind a transparent
object for example, as only the light sub-path contri-
bution gets accumulated. Whereas this accumulated
data would usually be discarded by filters on occlu-
sions or disocclusions, having the data stored in world
space allows us to reuse it if appropriate.

The reuse happens in two separate steps: first we
gather contributions from all past collection points lo-
cated near current ones, and second, past and present
contributions are combined together during the re-
solve step using an exponential moving average with

Cl"LU

=aciLy+ (1 —a)c.L,)
Reusing past accumulations. This takes place be-
tween the identification of collection points in the cur-
rent frame and resolve. If keeping two acceleration
structures in memory is an issue, this step should be
performed before updating the collection point accel-
eration structure for the current frame.

We query all collection points ¢;—; € C;_; con-
taining ¢;.p, by tracing a very short ray originating
from ¢;.p against the acceleration structure built dur-
ing the previous frame. For each intersected collec-
tion point ¢;_; satisfying the system of equations (4)
(similar to a bilateral filter), its interpolated radiance
¢;_1.L, weighted by a Gaussian kernel w(ci—1) of

) 3

width 6 = %c;.r is accumulated into ¢;.L,:
4)

2
—llci.p—ci1-p
W(Ci—l):eXp(e 26; I

llci-1.p—ci-pll < cir
ci—1.n-cin>0.9

ci—1.m=c;.m

3.2 Implementation Details

General constraints. If path tracing is used by an
application, care needs to be taken to avoid the path
tracer evaluating the same paths as the photon-based
approach, or to weigh them appropriately. As we sim-
ply add the results from both approaches, we pre-
vent the path tracer from evaluating paths contain-
ing at least one diffuse and one specular bounce as
those will be handled by the photon-based approach.
Using Heckbert’s light transport notation (Heck-
bert, 1990), this corresponds to paths of the form
ES*D(SID)*S(SID)*L.

In all presented results, the search radius was
capped to 5 mm as a middle ground between perfor-
mance of the light tracing stage and quality.

Performance improvements. For the first stage of
the pipeline, we found that storing all the data asso-
ciated to our caching approach as soon as a suitable
collection point was identified, rather than at the end
to minimise control flow divergence, improved the
performance of that stage from 20 ms down to about
4 ms. This is due to not having to keep all that data
live accross the tracing of path segments.

As current APIs do not expose atomic additions
for floats, we first implemented the contribution ac-
cumulation using atomic compare-and-swap within a

I21

loop, resulting in a 15% overhead compared to no
atomics. By instead using fixed-point values and in-
teger atomic add, the overhead was reduced to 5%.
As the accumulated values are well below 1, we only
used 4 digits for the decimal part and the remaining
28 for the fractional part.

4 RESULTS

We implemented our approach on top of
Kim’s (2019), inside the Falcor (Benty et al.,
2020) 4.3 framework using the DirectX 12 and
DirectX Raytracing API. All results were obtained
on an NVIDIA Geforce RTX 3080 with NVIDIA’s
471.96 drivers, and rendered at 1920 x 1080 with a
maximum path length of 6 segments and using 10242
light paths, unless mentioned otherwise. Spatiotem-
poral Variance-Guided Filtering (SVGF) (Schied
et al., 2017) was used to filter the computed images
before presenting them to the user.

In the following section we will be using the fol-
lowing abbreviations for methods: OurBasic which
refers to our basic algorithm described in Section 3
(i.e. without the temporal component) and integrated
with a path tracer as described in Section 3.2, and
OurTemporal which is our full algorithm (i.e. Our-
Basic plus the temporal component described in Sec-
tion 3.1).

All scenes, besides the ones shown in Figure 7,
use a similar template of a closed box whose left and
back wall and ceiling are specular, with the other parts
being diffuse. This box contains a simple emissive
mesh as the only light source, a transparent object,
and a mirror. Of these scenes, four have animations
of different types: animated camera (AC), animated
light (AL), animated geometry (AG; it is the trans-
parent sphere), and all animated (AA; it combines all
previous animations). They are all 10 seconds long
and animated at 30 fps. Unless mentioned otherwise,
the specular walls and ceiling in the animated scenes
have a roughness R of 0.08.

The Bistro Exterior and Bistro Interior scenes
used in Figure 7 were modified to limit the number
of emissive triangles by setting the emissivity to O for
most light sources. Additionally in Bistro Interior,
light paths were only traced from the lamps placed on
tables. To more easily showcase caustics, transparent
objects were added on the tables in Bistro Exterior
while some of the glasses were removed from Bistro
Interior to make more room on the tables. In both
scenes, the windows of the bistro were changed from
a very rough glossy surface into a specular mirror.

The source code and the videos can be found on

Animated Camera Animated Light Animated Geometry All Animated
24 {0 | et | - w
S &‘~~W,____, _____ -t”‘! AT Tty RN A A ™
E 161]]]
g
E 87]] 1
0L : : : : : : : : : : : : : : : : : : :
0 74 148 222 296 0 74 148 222 296 0 74 148 222 296 0 74 148 222 296

Frame
—— OurBasic - R=0.08

Frame
—== OurBasic - R=0

—~== OurTemporal - R=0

Frame
——— OurTemporal - R=0.08

Frame

Figure 4: Measuring the total frame time taken by our basic and temporal algorithms for different types of animations. For
comparison a path tracer at equal quality would require about 175 spp and take between 2.5 and 3 seconds; this was measured

for equal ALIP-mean on AC@ 150 and AC@298.

OurBasic
_ 24
I
()
_E 8 M i s —— S
0
0 74 148 222 296
Frame

B Path tracing W AS re-build

Light tracing

OurTemporal

——

0 74 148 222 296
Frame
I SVGF W Accumulation reuse

Figure 5: Highlighting the performance of the main stages of the algorithm during the animation in the scene AC. The
identification of collection points is performed during the path tracing step, and the G-buffer generation time (a constant
0.6 ms) was also included under the Path tracing step, while the resolve stage (a constant 0.4 ms) was included under the
SVGF step. 90% of the re-build time is spent on the bottom level acceleration structure. Not part of these plots, there is an
additional 0.27 ms per frame from tonemapping and other miscellaneous operations to reach the timings presented in Figure 4.
Note that accumulation reuse could be run concurrently to re-building the acceleration structure and tracing the light paths.

the project page'.
4.1 Performance

To evaluate the performance of our approach, we ran
it on different types of animations to see their impact.

Looking first at the total frame times presented
in Figure 4, we can see that the cost of our ap-
proaches remains relatively constant throughout the
light and geometry animations. Larger changes can
be observed during the camera animation and seem
to mostly correspond to changes in the number of
bounces before hitting a diffuse surface from the cam-
era. Most of that time variation comes from the pass
reusing the accumulated contributions from previous
frames with the current collection points.

Our approach can extend current path tracing-
based frameworks and as such reuse some of the com-
putations already performed there. For example the

Thttps:/fileadmin.cs.lth.se/graphics/research/papers/
2022/indirectly_visible_caustics/

122

identification of collection points can be added to an
existing path tracer to store additional data without
having to re-trace the same rays in a separate pass.
We noted an increase in the cost of that pass from
about 3 ms to about 4 ms when doing so, for a path
tracer ignoring caustic paths. This combined cost is
presented in Figure 5, along with the cost of the other
steps.

The largest part of the cost of accumulation reuse
and light tracing comes from tracing against the col-
lection point acceleration structure and the invocation
of the intersection and any-hit shader, due to over-
lapping collection points and memory accesses to get
the needed information during the evaluation of the
shaders. For comparison, the same light tracing but
with the accumulation performed in screen space as
presented by (Kim, 2019) takes 1-1.5 ms, as opposed
to the 8.5-9 ms of our approach.

The second most expensive step is rebuilding
the acceleration structure. Rebuilding remains an
expensive operation for any real-time ray tracing-
based workflow, and as such refitting is favoured for

Table 1: Average image quality measurements over 10 iterations using SVGF. OurBasic performing slightly better than
OurTemporal after filtering in AL@ 150 can be explained by both the temporal lag and the contribution of longer paths having
a larger impact on the final image than in the other scenes. Equal Time PT (3 spp) is about the same time as, or slightly more
expensive than, OurTemporal. The standard deviation was at or below 3.7% of the mean in all configurations, except for the
filtered output in AG@ 10 for OurTemporal which reached 12.7% of the mean.

Equal Time PT (3 spp) OurBasic OurTemporal
Scene, FramelD Measure | (5 gitered | Filtered | Unfiltered | Filtered | Unfiltered | Filtered
Animated Camera, | MAE 0.074 0.041 0084 | 0022 | 0065 | 0.021
Frame 150 ALIP 0335 0.292 0280 | 0.190 | 0241 | 0.168
Animated Camera, | MAE 0.162 0.063 0150 | 003 | o111 | 0.028
Frame 298 ALIP 0.468 0.363 0410 | 0229 | 0309 | 0179
Animated Light, MAE 0117 0.084 0116 | 0037 | 0088 | 0043
Frame 150 ALIP 0.562 0.520 0384 | 0273 | 0335 | 0276
Animated Light, MAE 0.077 0.034 0097 | 0029 | 0073 | 0.025
Frame 298 ALIP 0323 0292 0338 | 0261 | 0291 | 0218
Animated Geometry, | MAE 0.127 0.090 0.135 | 003 | 0095 | 0.034
Frame 10 ALIP 0.465 0.406 0364 | 0204 | 0266 | 0.173
ATl Animated, MAE 0.077 0.033 009 | 0020 | 0077 | 0019
Frame 298 ALIP 0.228 0.163 0233 | 0110 | 0189 | 0.093

most frames while rebuilding can be performed asyn-
chronously every now and then to keep the tracing
performance optimal. However the location or distri-
bution of collection points seemed to vary too much
between frames, resulting in refitting degrading the
tracing performance by an order of magnitude as soon
as enabled. As the number of collection points de-
pends on the resolution of the rendering and not on the
scene, the cost of this step remained the same in the
Bistro Interior and Bistro Exterior scenes from Fig-
ure 7.

4.2 Quality

As our approach targets real-time applications with
different types of motions, we evaluated the qual-
ity at different points during animations rather than
on still images. We looked at the quality both prior
and after filtering, as well as both numerical (using
mean-absolute error (MAE)) and perceptual (using
HLIP (Andersson et al., 2020)) methods; all measure-
ments were performed on non-tonemapped outputs.
From Table 1 we can see that both OurBasic and
OurTemporal improve for both metrics in all but one
scene compared to the baseline. OurTemporal fur-
ther improves compared to our basic algorithm in
most scenes, for example in AC@198 the JLIP re-
sults are improved by nearly 15%) but also presents
some regressions as can be seen in AG@10 for exam-
ple (though they are within run to run variance).
There are multiple reasons for those regressions
that can be illustrated with results from Table 2. First,
when we reuse accumulated radiance from previous
frames we do not know the length of the light sub-

123

paths having contributed, so we can end up creating
longer paths than what was specified, as can be seen
for AG@10 in Table 2 at the top of the image where
the mirror contains a reflection of the caustic on the
ground, but that caustic is missing from the refer-
ence. This can be seen as an advantage, as longer
paths can be created at no additional cost. A second
one, which can be seen in the caustic in AA @298 for
OurTemporal, is ghosting artefacts due to the tempo-
ral reuse simply relying on an exponential moving av-
erage; Equal time PT and OurBasic also suffer from
some ghosting introduced by SVGEF, but it is not as
noticeable. Finally, there is a conflict between the
two temporal reuse methods, our reuse at the collec-
tion points and the SVGF’s one: as new regions be-
come visible, our temporal reuse will end up creating
two different noise levels for a given surface (the more
converged one, which was visible for several frames,
and the newly uncovered one with very few samples)
which will be interpreted by SVGF as two different
regions making them more visually distinct.

Another important note is that SVGF relies on
motion vectors which are rarely readily available for
light patterns such as caustics or shadows, or reflec-
tions or refractions, all of which are found all over
these scenes. A recent approach by Zeng et al. (2021)
shows promise regarding glossy reflections.

Temporal stability is sometimes improved in real-
time applications by performing the filtering after
tonemapping rather than before, though at the cost
of image quality. This can however result in differ-
ent samples being merged together due to no longer
appearing distinct enough to the filter, such as the
few caustic samples in the second picture of Figure 6

Table 2: Highlighting different scenarios: AC@298 where OurTemporal improved significantly compared to OurBasic,
AG@10 presents a regression for OurTemporal, and AA@298 with an easier to sample caustic for the path tracer. For
each scene, the first row consists of a single frame filtered with SVGF, whereas the second row has error maps generated by

HLIP (Andersson et al., 2020).

Reference

Animated Geometry @10 Animated Camera@298

All Animated @298

which were mostly blurred out. Thanks to our ap-
proach providing more samples, it can be used along
that filtering trick.

Apart from the previously-mentioned ghosting in
OurTemporal, the temporal quality depends strongly
on the light sampling algorithm used and better results
could be obtained with Ouyang and Yang (2020a);
Yang and Ouyang (2021).

For temporal results, we refer the reader to our
supplemental video which contains all 4 animations
(using filtering post-tonemapping and R = 0) pre-
sented in this paper, as well as additional combina-
tions for one of the scenes. Additional videos cover-
ing all combinations can be found on the project web-
site (see Section 4).

Equal time PT (3 spp)

124

OurBasic

OurTemporal
Lol

As mentioned in the introduction, screen-space
accumulation techniques could technically still be
used to collect lighting contributions on glossy sur-
faces. We tried to use the technique by (Kim, 2019)
on such surfaces, but failed to get it to match a ref-
erence unless increasing the roughness past 0.25, at
which point caustics and objects could no longer be
distinguished or seen in the reflections and the mir-
rors.

5 CONCLUSION

Conclusion. In this paper we presented a new al-
gorithm for real-time rendering of detailed caustics

i~

Figure 6: Unlike path tracing, our approach samples the caustics sufficiently that they do not dlsappear when ﬁltermg after
tonemapping, to improve temporal stability. From left to right: ALIP error map for Equal Time PT (2 spp), Equal Time PT
(2 spp), OurTemporal, ALIP error map for OurTemporal. These can be compared to the reference image and results obtained
when filtering prior to tonemapping that are found in Table 2.

Figure 7: Our approach can be applied to more complex scenes (left image: 39 ms, path length of 7 segments; centre image:
46 ms, path length of 6 segments) and scales to more intricate caustics (right image, 1 s, path length of 6 segments; 175k spp
for an equal quality path tracer). For the first two images, the main costs are path tracing (17-19 ms), light tracing (811 ms),
and AS re-build (6 ms). All three images were rendered using our temporal version, and while the first two were filtered with

SVGEF, the last was accumulated over multiple frames.

appearing in long specular view paths. Our method
makes use of recent hardware-accelerated ray tracing
for both view and light rays, and for BVH construc-
tion. We create a temporal cache of previous frame
light intensity to improve temporal filtering. Tempo-
ral filtering costs more in frame time, if not performed
asynchronously, but improves image quality in most
cases. Our results show that performance of 20-28 ms
for the box scenes, is possible with temporal filtering
for scenes with reflective surfaces showing caustics
that are not rendered by existing screen-space accu-
mulation techniques. Additionally, our approach can
be applied to complex scenes.

Future work. The variation in collection point lo-
cations from frame to frame depending on the mate-
rial sampling goes against the assumptions made by
current BVH refitting approaches, resulting in low
tracing performance. Temporal filtering of caustics
remains an open issue with one of its challenges be-
ing the obtention of motion vectors for the caustics,
which would help in reducing ghosting artefacts. The
data cached by our approach could be extended to in-
clude, for example, a reservoir to use ReSTIR (Bitterli
et al., 2020) even on surfaces visible via mirror(s).

ACKNOWLEDGMENTS

We thank Jacob Munkberg for valuable insights and
discussions. Pierre Moreau was supported by Veten-

125

skapsradet, and Michael Doggett is supported by
ELLIT and WASP. The transparent glass used in
the teaser and Figure 7 was made by Simon Wend-
sche?. The Bistro Interior and Bistro Exterior scenes
used in Figure 7 are courtesy of Amazon Lumber-
yard (2017).

REFERENCES

Akenine-Moller, T., Crassin, C., Boksansky, J., Belcour,
L., Panteleev, A., and Wright, O. (2021). Improved
shader and texture level of detail using ray cones.
Journal of Computer Graphics Techniques (JCGT),
10(1):1-24.

Amazon Lumberyard (2017). Amazon Lumber-
yard bistro, open research content archive
(ORCA). http://developer.nvidia.com/orca/amazon-
lumberyard-bistro.

Andersson, P., Nilsson, J., Akenine-Moller, T., Oskarsson,
M., Astrom, K., and Fairchild, M. D. (2020). ALIP:
A Difference Evaluator for Alternating Images. Pro-
ceedings of the ACM on Computer Graphics and In-
teractive Techniques, 3(2):15:1-15:23.

Arvo, J. (1986). Backward ray tracing. In Developments
in Ray Tracing (SIGGRAPH 86 Course Notes), vol-
ume 12.

Benty, N., Yao, K.-H., Clarberg, P., Chen, L., Kallweit,
S., Foley, T., Oakes, M., Lavelle, C., and Wyman,
C. (2020). The Falcor rendering framework. https:
//github.com/NVIDIAGameWorks/Falcor.

Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A.,

Zhttps://byob.carbonmade.com/

and Jarosz, W. (2020). Spatiotemporal reservoir re-
sampling for real-time ray tracing with dynamic direct
lighting. ACM Trans. Graph., 39(4).

Evangelou, 1., Papaioannou, G., Vardis, K., and Vasilakis,
A. A. (2021). Fast radius search exploiting ray trac-
ing frameworks. Journal of Computer Graphics Tech-
niques (JCGT), 10(1):25-48.

Gruen, H. (2019). Ray-guided volumetric water caustics
in single scattering media with dxr. In Ray Tracing
Gems: High-Quality and Real-Time Rendering with
DXR and Other APIs, chapter 14, pages 183-201.
Apress, Berkeley, CA.

Hachisuka, T., Ogaki, S., and Jensen, H. W. (2008). Pro-
gressive photon mapping. In ACM SIGGRAPH Asia
2008 Papers, SIGGRAPH Asia "08, New York, NY,
USA. Association for Computing Machinery.

Heckbert, P. S. (1990). Adaptive radiosity textures for bidi-
rectional ray tracing. SIGGRAPH Comput. Graph.,
24(4):145-154.

Hu, W. and Qin, K. (2007). Interactive approximate ren-
dering of reflections, refractions, and caustics. IEEE
Transactions on Visualization and Computer Graph-
ics, 13(1):46-57.

Igehy, H. (1999). Tracing ray differentials. In Proceedings
of the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH 99, page
179-186, USA. ACM Press/Addison-Wesley Publish-
ing Co.

Jensen, H. W. (2001). Realistic Image Synthesis Using Pho-
ton Mapping. A. K. Peters.

Kim, H. (2019). Caustics using screen-space photon map-
ping. In Haines, E. and Akenine-Moller, T., editors,
Ray Tracing Gems: High-Quality and Real-Time Ren-
dering with DXR and Other APIs, chapter 30, pages
543-555. Apress, Berkeley, CA.

McGuire, M. and Luebke, D. (2009). Hardware-accelerated
global illumination by image space photon mapping.
In Proceedings of the Conference on High Perfor-
mance Graphics 2009, HPG 09, page 77-89, New
York, NY, USA. Association for Computing Machin-
ery.

Ouyang, Y. and Yang, X. (2020a). Generating ray-
traced caustic effects in unreal engine 4, part
1. https://developer.nvidia.com/blog/generating-ray-
traced-caustic-effects-in-unreal-engine-4-part-1/.

Ouyang, Y. and Yang, X. (2020b). Generating ray-
traced caustic effects in unreal engine 4, part
2. https://developer.nvidia.com/blog/generating-ray-
traced-caustic-effects-in-unreal-engine-4-part-2/.

Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chai-
tanya, C. R. A., Burgess, J., Liu, S., Dachsbacher,
C., Lefohn, A., and Salvi, M. (2017). Spatiotempo-
ral variance-guided filtering: Real-time reconstruction
for path-traced global illumination. In Proceedings
of High-Performance Graphics, HPG *17, New York,
NY, USA. Association for Computing Machinery.

Shah, M. A., Konttinen, J., and Pattanaik, S. (2007). Caus-
tics mapping: An image-space technique for real-time
caustics. [EEE Transactions on Visualization and
Computer Graphics, 13(2):272-280.

126

Szirmay-Kalos, L., Aszddi, B., Lazanyi, 1., and Premecz,
M. (2005). Approximate ray-tracing on the gpu
with distance impostors. Computer Graphics Forum,
24(3):695-704.

Wald, 1., Usher, W., Morrical, N., Lediaev, L., and Pas-
cucci, V. (2019). RTX Beyond Ray Tracing: Explor-
ing the Use of Hardware Ray Tracing Cores for Tet-
Mesh Point Location. In High-Performance Graphics
- Short Papers.

Wang, X. and Zhang, R. (2021). Rendering transparent ob-
jects with caustics using real-time ray tracing. Com-
puters & Graphics, 96:36-47.

Wyman, C. and Davis, S. (2006). Interactive image-space
techniques for approximating caustics. In Proceedings
of the 2006 Symposium on Interactive 3D Graphics
and Games, 13D *06, page 153-160, New York, NY,
USA. Association for Computing Machinery.

Wyman, C. and Nichols, G. (2009). Adaptive caustic maps
using deferred shading. Computer Graphics Forum,
28(2):309-318.

Yang, X. and Ouyang, Y. (2021). Real-time ray traced caus-
tics. In Ray Tracing Gems II, chapter 30, pages 469—
497. Apress, Berkeley, CA.

Zeng, Z.,Liu, S., Yang, J., Wang, L., and Yan, L.-Q. (2021).
Temporally reliable motion vectors for real-time ray
tracing. Computer Graphics Forum, 40(2).

	List of publications
	Acknowledgements
	Popular science summary
	Populärvetenskaplig sammanfattning
	Towards Fully Dynamic Surface Illumination in Real-Time Rendering using Acceleration Data Structures
	Overview
	Virtual Scenes
	GPU Hardware
	Light Transport
	Evaluation and Methodology
	Research Projects
	Contributions
	Conclusion and Looking Forward
	References

	Scientific publications
	Author contributions
	Paper i: Photon Splatting Using a View-Sample Cluster Hierarchy
	Paper ii: Path Verification for Dynamic Indirect Illumination
	Paper iii: Importance Sampling of Many Lights on the GPU
	Paper iv: Dynamic Many-Light Sampling for Real-Time Ray Tracing
	Paper V: Real-Time Rendering of Indirectly Visible Caustics

