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Design of PI Controller by
Minimization of IAE

H. Andreas K. J. Astrom

Department of Automatic Control
Lund Institute of Technology, Box 118, Lund, Sweden
Fax +46-46-138118, email: helena@control.lth.se

Abstract

This paper explores the possibilities of designing PI controller simply by mini-
mizing the integrated absolute error for a load disturbance on the process input.
It is shown that this may lead to controller that are very sensitive to param-
eter variations. The method is therefore not useful unless constraints on the
robustness are introduced. The method is also very demanding computationally.
If a constraint on the robustness is introduced the method is not very differ-
ent from minimization of the integrated error which is much less demanding

computationally.

1. Introduction

The PI(D) controller is the main algorithm used in industrial control. The useful-
ness of the controller is improved substantially by features for automatic tuning
and adaptation, see [1]. This has led to an increased interest in methods for find-
ing proper controller parameters. When designing the controller it is important

to consider
e Load disturbances
o Measurement noise

e Sensitivity to process variations

!This work has been supported by the Swedish Research Council for Engineering Science under
contract 95-759



e Set point response
e Process information required
e Simplicity of the method

In most applications the primary purpose of the controller is to reduce the effects
of load disturbances. A classic method for tuning controllers is to minimize IAE,
which is the integrated absolute error cause by a unit step load disturbance at
the process input, see [2]. The main drawback with this is that the calculations
are complicated. For this reason it has been suggested to instead minimize the
integrated error with a constraint on the sensitivity. In several cases this gives
the result which are similar to those obtained by minimizing IAE, particularly if
the constraining value of the maximum sensitivity is chosen sufficiently small,
see [3].

The purpose of this report is to investigate whether minimization of the IAE
gives good PI controllers without additional constraints. It is also investigated if
computationally efficient method for the minimization procedure can be found.
A scheme for computing the gradient and the Jacobian of the loss function is
used. This method can actually be applied to any loss function. The method is

similar to the ones used in maximum likelihood system identification, see [4].

Conclusions

We found that minimization of the IAE is not sufficient for good control per-
formance. A sensitivity constraint must be used to moderate the controller. The
numerical procedure used involves extensive computations and is therefore not a
good practical option. Furthermore, the optima are usually flat and convergence

is consequently very slow.

2. The Problem

Consider a the closed loop system shown in Figure 1 with a process and a con-
troller. There are load disturbances that drive the process away from it desired
state, measurement noise that corrupts the information from the process and
command signal changes. The controller has parameters 6 which should be ad-
justed to minimize a performance criterion oJ for a particular set of disturbances.
In the figure the inputs are denoted yp,, [ and n, and the interesting signals, are

u, e and y. The loss function is a scalar function of the signals. For the TIAE it
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Figure 1 Block diagram of a simple closed loop system.

becomes simply

J(6) = /Ooo le((6,£), )|

where 6 represents the PID-parameters to be determined. In general we will

assume that yg,, [ and n are fixed and that the loss function is

s6)= | " g(x(6), t)dt 1)

where x(6,t) = [x1(6,t) x2(6,t) ... x,(8,t)]T are the states of the system. The
problem is thus to minimize the function /. We will try to do this by an approx-
imate Newton method. For this purpose we need to calculate the gradient and

the (approximate) Jacobian matrix.

3. Optimization

The method for solving the equation J’(6) = 0 consists of expanding the function
in a Taylor series and ignoring the derivatives of order higher than two. The idea

to do this was taken from [5]. Solving for 6 gives the iterative algorithm
8i+1 = Hi e }/iJ/(Qi) [J"(@i)] = (2)

where y; is used to change the iteration step length. Obviously, we have to find

the gradient and the Jacobian matrix before going any further.

The Gradient

The gradient is found by straightforward derivation of the loss function

)= [ EEY Gar ®)



Consequently, the time derivative of the gradient is

A7) _ S8y ()

The Jacobian

Yet another derivation with respect to 8 yields the Jacobian matrix

- oo 8% oo _§%J 00 8% 3.1
fO bﬂ‘:dt 0 5@ aﬂgdt s 0 (501(30"«, dt
oo §4J oo §%J 1 3%
., Jo sopmdt  Jo smdt - [y soe,dt
J"(8) = (5)
oo §% _8% 547
Lo sosedt Jo sonemdt - Jo sazdt |

By neglecting the second order derivatives of x the computations are significantly
simplified

1" 6g T 5 6x T§2g 5x T62g 6.7(;
I /(5x 567+ (550 532 (55)% /0(59) 522 (5904t (6)

To evaluate this we need to compute the sensitivity derivatives g%, n*m in

number. In general the sensitivity derivatives can be found through

= f(e.0,0)
d, d o
Z(55)= H(&) =f5s+1 (7)

If fx and fy are known this is a differential equation on the common form

= fxz + fo with z = 59 and can be solved.

The IAE case
The special case of the IAE, that is the loss function of (2) gives

od o0 de e oy
= = —dt = — A 8
> /0 san(e) St /0 san(e) 5 (8)
because e = y5, — y and, as yp, is constant, 2 56 = —%. Proceeding in the same
fashion as before gives
62J o0 §2y Oy.p 0y
— = — AV Gt 9



The second order derivatives are again neglected

2 o]
A [ 2GR Gha=2 Y (273 (10)

e(t)=0

Alas, closer scrutiny of these equations reveals that the gradient is a discontin-
uous function when e approaches zero, and the Jacobian is therefore singular
near the desired (zero) value of e.

We tried approximating the function |e| with —¢_ when calculating deriva-

e+|e|
tives in the hope of getting a non-singular Jacobian matrix, but this did not
improve matters much. (Besides, calculation of all the elements of the Jacobian
increases the computational time substantially.) Finally, we settled for the sim-

pler iteration algorithm
Biy1=0;—yid'(6;) (11)

where 7; is a diagonal matrix used to change the iteration step length. This
algorithm converges rather more slowly than we had hoped for, due to (among

other things) the small step length that turned out to be necessary.

4. Application to a PI-controlled process

In General
Consider a linear system without time delay
dxp

dt
y = Cpxp+n

= Apxp + Bp(u +1) (12)

controlled by a PI-controller described by

L.
U = h[(bYep — V)] + (Yep V) (13)
We prefer this description to the one with % as the integration factor k; can
be determined more independently of k. To obtain a state-space form for the

controller introduction of state variables for the integration (x,41) is necessary.

dxny1
dt

=ki(ysp— ) (14)



The controller signal thus becomes

u=k[-Cpxp + bysp —n] + xn41 (15)

Inserting this in (12) yields the system on state-space form

dx Ap Bp Xp Bl Bz B3
il + Ysp + I+ n  (16)
—kiC, 0 | |[%nt1 i —k;
y = [C, Olx+n

with x = [x, xn+1]7 the state vector and

A, = A,—kB,C,

B, = kbB,
B, = B,
By = —kB,

The controller parameters to be determined are 8 = [k &;]. b is set to be constant
(b=1).

Off-Line Optimization
Applying the concept of (7) gives f, = A and fy = [% %]. After some compu-

tations
—~B,Cpx, + bByysp, — Bpn 0
fo = (17)
O . pxp + ysp —n
Armed with these equations we can find the sensitivity derivatives
5xp dxp
ox Sk Sk
3@ - Sxpq1 [E) (18)
ok ok
We can always find a state space realization of the process with C, = [10...0],

which means that y = x1. Consequently, g% = %%1 which is the first row of the
sensitivity derivative matrix (18). Calculation of (8) is now straightforward and
8,pt can be found. As stated above, quite a few iterations are necessary. Up to 150
iterations is not uncommon for complete convergence, although the loss function

normally decreases very little after 30 iterations or so.
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Figure 2 Block diagram for the system with the controller separated into parts.

On-Line Optimization
For on-line tuning, we cannot assume all states to be measurable and must
therefore try to compute the sensitivity derivatives through the states we can
measure, as in [5]. The system (see Figure 2) is

G, L+ GG

Y =

Yo = GLL + Gy Yy (19)

where G,(s) is the process transfer function and G.(s) =k + % is the controller
transfer function. After a step change in set point Gy, — 1 as ¢ — oo . This
means that all experiments performed when the set point has been stable for a

long time confront the system ¥ = G L + Y. The sensitivity derivatives are

SE _ 8Y _ 6Y 6G. _ G>

5B - 5G.
56 66 686G, 660 (1+G,G,) B

06

1
5L [G2 L ;G%L] (20)

It seems the sensitivity derivative %% can be got from sending the load distur-
bance throughout the system of Gy, twice. We examine if this is possible to do

while the system is running. The following two experiments are performed
1. Set Y, constant, L) = a step load disturbance. Measure the output Y,
2. Set Y, constant, L& = Y1) —Y,,. Measure Y®) and Q®.

Between each experiment the system should be allowed to settle down with zero

load disturbance. An example is given in Figure 3. Ingeniously, we see that

0E

5 = GrL(Y® —v,) =G, L® =Y® _v,, (21)
OE 1
— = = @) = _p®@
5%, SGLL Q (22)
as @ (see Figure 2) measured in step 2 is
Q(2) = —(Ysp — Y(Z)) = %Ysp - %(GLL(z) +Yyp) = _%GLL@) (23)

1
)

Calculation of (8) is performed as before and the same 8,,; as before is found.
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Figure 3 Experiment for system G;. First the system is allowed to settle from a possible
set point step. Second, a step load disturbance is introduced and the output measured.

The load disturbance is again set to zero as the system settles down. Finally, the output

y() is applied as input [ and y® and ¢® measured.

5. Examples

So we have laboriously found controller parameters that minimize the IAE. But
can we be sure that the other aspects of control performance are satisfactory?
In this section we examine the achieved response to a set point step, the control
signal behavior, the sensitivity to modeling errors and the influence of process
noise, especially in comparison to the results when minimizing the integrated
error with a constraint on the sensitivity.

The most prominent feature of the method is that the controller parameters
that minimize the IAE give high controller amplification. This means that the
responses, although fast, tend to oscillate. (See [6] that states that the IAE is
minimal when the natural frequency of the system has a maximum.) Further-
more the sensitivity to modeling errors is greater than our reasonable constraints
in the IE method allow.

As examples, we have chosen four often encountered systems that are rela-

tively easy to control.

1 1
Gi= (1+s)3 Go = (s+1)(1+0.25)(1+0.045)(1+0.008s)
(24)
_ 1 _ 1
Gs T (s+1)t Gy = s(1+s)2



Process | Mg k k; IAE

Gi(s) | 85 337 090 0.37
2.0 122 069 057
18 106 058 0.60
16 086 046 0.68
14 063 032 094
Ga(s) | 44 125 150 0.022
2.1 413 794 0.047
1.8 347 560 0.056
16 274 4.09 0.074
14 193 260 0.12
Gs(s) | 26 165 040 0.84
2.0 077 0.38 1.09
1.8 068 033 111
1.6 057 026 120
14 043 019 158
G4(s) | 5.0 0.98 0.100 3.38
2.0 0.33 0.042 7.58
1.8 029 0032 9.38
16 023 0021 14.1

14 0.17 0.012 25.2

Table 1 Properties of controllers obtained by minimizing IAE (bold) and IE.

Closed Loop System Response

Table 1 shows the controller parameters obtained by minimizing the IE with the
constraints of Mg = 1.4, 1.6, 1.8 and 2.0 and the IAE. System G; is stable
without any particularly fast dynamics whereas system Go has one extremely
fast pole. System G3 is similar to G; but of a higher order and system G4 contains
an integrator. Figure 4 shows that the closed loop response with the controller
parameters from the IAE give a faster and more oscillating response to set point

and load disturbance changes. (This naturally leads to a large and oscillating

2Myg is the maximum value of the sensitivity function S(iw) = 1 where L is the transfer

function of the open loop system.
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Figure 6 Nyquist plots for the different systems and different controllers. Decreasing
sensitivity from left to right. The constraint Mg = 2 has been drawn as a circle.

control signal.) Although the reaction is faster for the IAE it takes longer for the
error to become zero. This is confirmed by the pole zero plots in Figure 5. The
increased oscillatory behavior is especially noticeable as the poles with increasing
Mg move closer to the imaginary axis. Notice the big difference between the
fastest TE poles and the IAE poles.

Sensitivity to Modeling Errors

The sensitivity to modeling errors is decidedly greater for the IAE than for the
IE; obviously the sensitivity for the IE is never greater than the constraints
allow. Figure 6 makes it clear that in all IAE cases the sensitivity (Mg is the
inverse of the radius of the circle centered in -1 that tangents the Nyquist curve)
is considerably larger than 2, the weakest constraint the IE has been determined
for. The exact Mg values are given in Table 1. Exploring this yet further, Bode
plots of the sensitivity functions in Figure 7 show larger sensitivity peaks for
the IAE than for the IE. This is expected, as Mg is the height of the sensitivity
peak.

11
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Figure 7 Bode plots for the different systems and different controllers. The resonance

peaks decrease with the sensitivity constraint.

Noise Influence

Process noise naturally increases J quite a bit for all the controllers, but the
difference in output between the IAE method controller and the controller ob-
tained by the IE method with the hardest constraint on sensitivity (Mg = 1.4)
is surprisingly small. The control signal, on the other hand, is strongly affected.
In a practical application, a control signal such as the one for IAE in Figure 8 is

unacceptable.

Improvement possibilities

As seen in Figure 9 our method of minimization can often pinpoint the &; that
minimizes the IAE quite well, but a relatively wide range of k-values give a loss
function very close to the minimal one. This implies that thorough knowledge of
the system can improve controller performance, if we can settle for an almost-
but-not-quite minimal loss function J given by a smaller k. Unfortunately this

only marginally improves controller performance in most cases.

12
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Figure 8 Comparison of process noise in the output and the control signal for systems

G and G4, for the different controllers

6. Conclusions

Unfortunately, minimization of IAE has some serious drawbacks. We conclude

that

1. It is not sufficient to minimize IAE. A sensitivity constraint must be used

to get acceptable control performance.

2. A good numerical method is hard to find.

e The computations necessary for the method are complicated and ex-

tensive.

e The optima are usually quite flat which leads to slow convergence.

13
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A. Matlab Programs

allofit.m

SetInputs; %Sets the inputs and defines the process and cont. pars
Jres=0;

Jprimres={0 0];

thetares=[0 0];

NbrOfIterations=XX;

3=0;

while j< NbrOfIterations

3=3+15

[4,B,C,D,SYS,t_end, T,u]l=MakeSys (Ap,Bp,Cp,Dp,theta,b,deltaT);
[x_p,x_n1,y]=SimSys(T,u,x0,5YS,m);

ts_end=length(T); % Last INDEX for u (last TIME is 2*t_end)
ts_0=ceil(0.5%length(T)); % Starting INDEX for calc. of the sens. ders,
% ie when the step load disturbance occurs
t_O=ts_O*deltaT; % Starting TIME for calc. of the sens. ders
tspan=T(ts_O:ts_end); % From start to stop time after load dist.

[21,Z2] = FindSD(&p,Bp,Cp,m,theta(l),theta(2),b,x_p(ts_0:ts_end,:),x ni(ts_0:ts_end),

u(ts_0:ts_end,1),u(ts_0:ts_end,3),tspan);

J=quad(’dJ’,t_0,2%t_end-deltaT, [J,[],u,y,tspan,ts_0,ts_end);
Jres(j)=]
Jpriml=quad(’dJprim’,t_0,2*t_end-deltaT, [1,[},u,y,Z1,tspan,ts_0,ts_end);
Jprim2=quad(’dJprim’,t_0,2*t_end-deltaT, [1,[],u,y,Z2,tspan,ts_0,ts_end);
Jprim=[Jpriml Jprim2]
Jprimres(j,:)=Jprim;
gamma_i=[0.1 0;0 0.1];
theta=theta-Jprim*gamma_i

% theta is now the newest set of controller parameters
thetares(j,:)=theta;
end

U=k* (- (Cp*x_p’) *+b*u(:,1)-u(:,3))+x_ni;

SetInputs.m

% This file is used for setting the system inputs y_sp, 1 and n.

% T is the time vector for which the inputs are set. If initial values for the
% states are wanted to be non-zero, they can be stated in x0 (a column vector)
% It is also used for defining the process itself and the (initial) controller

% parameters.

Ap=[-2 1 0;-1 0 1;0 0 0]; % The process (invented)
Bp=[0;0;1];

Cp=[1 0 0];

Dp=[0 0 1]; % Addition of the noise term n
p=size(Bp); m=p(1); % Size of the process matrices
x0=[0;0;0;0]; % Initial values for the states

k=0.17; ki=0.012; theta=[k ki]; % Initial controller parameters
b=1;

deltaT=0.2; % The space between moments of measurement

15



MakeSys.m

function [A,B,C,D,SYS,t_end,T,ul=MakeSys(Ap,Bp,Cp,Dp,theta,b,deltaT);

% Creates the system matrices from the process matrices and the controller
% parameters in theta=[k Ti Td]. For simulation purposes, the system is

% descibed as SYS.

k=theta(1); % OBS! Lokala variabler !!!!!

ki=theta(2);

Aphatt=Ap-k*Bp*Cp;

Blhatt=k*b*Bp;

B2hatt=Bp;

B3hatt=-k*Bp;

A=[Aphatt Bp ; -ki*Cp 0 1;
B=[Bilhatt B2hatt B3hatt; ki 0 -kil;
c=[Cp 01;

D=Dp;

SYS=ss(4,B,C,D);

lambda=-max(real(eig(A))); % The slowest processpole determines
t_end=round (10/lambda) ; % the integration time ("= Inf) for good
% enough stabilization
T=0:deltaT:2*t_end; % Setting the inputs
y_sp=ones(1,length(T)); % Constant set point

1=[zeros (1,floor(0.5%length(T))) 0.3*ones(1,ceil(0.5%length(T)))];

% Step load disturbance after a time T
n=zeros(1,length(T)); % Constant zero noise
%n=0.03*randn(length(T),1)’; % White noise with the amplitude 0.03
u=[y_sp’ 1’ n’];

SimSys.m

function [x_p,x_nl,y]=SimSys(T,u,x0,8YS,m);

% Simulates the system described by SYS with the inputs y_sp, 1 and n and
% gives y(t) and x(t). m is the size of the system matrix.
[Y,T,X]=1sim(8YS,u,T,x0);

x_p=X(:,1:m);

x_n1=X(:,m+1);

y=Y;

FindSD.m

function [Z1,Z2]= FindSD(Ap,Bp,Cp,m,k,ki,b,x_p,x_nl,y_sp,n,tspan);

% Returns the sensitivity derivatives with respect to theta for the

% system described by the matrices Ap,Bp,Cp and controlled with a

% PIDcontroller with the parameters theta=[k Ti Td]. N and b are considered

% predetermined controller parameters.
[T1,Z1]=ode45(’firstcol’,tspan,[zeros(l,m)’;O],[],Ap,Bp,Cp,m,k,ki,b,x_p,x_nl,n,y_sp,tspan);
[T2,Z2]=ode45(’middlecol’,tspan, [zeros(1,m)’;01,[]1,Ap,Bp,Cp,m,k,ki,b,x_p,x_ni,n,y_sp,tspan);

16



firstcol.m

function dz = firstcol(t,z,flag,Ap,Bp,Cp,m,k,ki,b,x_p,x_nl,n,y_sp,tspan);
% Subfunction that describes the sensitivity derivatives with respect to k
Aphatt=Ap-k+*Bp+*Cp;
dz=[Aphatt#*z(1:m)+Bp*z(m+1)-Bp*Cp*interpl(tspan,x_p,t) '+

b*Bp*interpl (tspan,y_sp,t)-Bp*interpi(tspan,n,t);
-ki*Cp*z(1:m)];

middlecol.m

function dz = middlecol(t,z,flag,Ap,Bp,Cp,m,k,ki,b,x_p,x_ni,n,y_sp,tspan);

% Subfunction that describes the sensitivity derivatives with respect to ki

Aphatt=Ap-k*Bp*Cp;

dz=[Aphatt*z (1:m)+Bp*z(n+1);

-ki*Cp#*z (1:m)-Cp*interpl (tspan,x_p,t)’+interpl(tspan,y_sp,t)
-interpl(tspan,n,t)];

dJ.m

function f=dJ(t,u,y,tspan,ts_0,ts_end)
% The integrand of the loss function |el=ly_sp-yl
f=abs(interpl(tspan,u(ts_0:ts_end,1),t)-interpl (tspan,y(ts_0:ts_end),t));

dJprim.m

function f=dJprimi(t,u,y,Z,tspan,ts_0,ts_end);

% Description of the J’-function to be integrated (a row vector)

% -sgn(e)*delta x/delta theta_i
=-sign(interpl(tspan,u(ts_0:ts_end,1),t)-interpl (tspan,y(ts_0:ts_end),t)) .*

interpl(tspan,Z(:,1),t) ;
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