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Abstract This report describes the Lambda method as a way to design
PI controllers. The method is attractive to an industrial user as only one
tuning parameter is needed. In the report the Lambda method is compared
to a new design for PI controllers, which also requires just one tuning
parameter. Also a new idea is presented which gives a new interpretation
to the tuning parameter of the Lambda method.

Keywords PIcontrol. Design. Closed Loop Speed of Response. Sensitivity
Funetion.

1. Introduction

The PID controller is by far the most commonly used algorithm for process
control. In spite of all research there is still a need for good tuning methods
for a variety of purposes. Lambda tuning is one method which is suggested
as an alternative to empirical tuning rules. In the report this method is
analyzed, Based on this analysis some suggestions are also given for the
choice of design parameters.

Lambda tuning is an approximative pole placement method. The method
was first suggested by Dahlin (1968) and Higham (1968), as a method for
tuning digital controliers for systems with time delays and was widely used
in the early period of digital computer control. The method was incorpo-
rated as a standard block in several early systems for direct digital control.
The name “lambda-tuning” derives from the fact that Dahlin specified that
the closed loop system should have one closed foop pole at s = —A. Dahlin
treated A as a tuning parameter. The Dahlin-Higham method is closely
related to the Smith Predictor, see Smith (1957). In the development of
internal model control it was shown by Rivera and Morari, see Rivera




et al. (1986), that the method could be viewed as a special case of Internal
Model Control. This viewpoint is elaborated in Chien and Fruehauf (1990).
Bialkowski has strongly advocated the method as a standard technique for
tuning industrial controllers, see Sell (1995). It is also the basis of the
Swedish SSG initiative. SSG is the Swedish short name for Pulp and Pa-
per Industries’ Engineering Co which handles all the documentation and
standardization of the Swedish pulp and paper industry. In later develop-
ments the parameter A has often changed both meaning and dimension.
For example in Bialkowskis work 2 is a time constant.

The tuning method has the potential to be a simple straight forward
tuning method that can be used routinely, but first a few unclear points
have to be straightened out. The following issues need to be dealt with:

¢ Good guidelines for choice of closed loop poles.
¢ The consequences of cancellation of the process pole.

e There are different tuning methods for systems with and without
integration. It would be highly desirable to be able to merge these
methods.

e As the design method is based on a simple three-parameter process
model, therefore approximations are used to derive the method. The
consequences of the approximation and the modeling errors should
be investigated.

2. The Process Model

It is assumed that the process dynamics can be approximated by sim-
ple models. Two cases are considered. Process without integration are de-
scribed by a three-parameter model

e —sL

Gls) = Ko7 (1)

and processes with integration by a two-parameter model

—sL

G(s) = Ky " (2)
The three-parameter model is characterized by three parameters: the static
gain K, the time constant T and the dead time L. The two-parameter
model is characterized by two parameters: the velocity gain K, and the
dead time L. A three-parameter model with a very long time constant can
be approximated with a two-parameter model with K, = K,/T.

The parameters are usually determined graphically by a step response
experiment on the process, which is thoroughly discussed in Astrém and
Hagglund (1995). Note that these models are good approximations for low
frequencies which is often sufficient for PID controtler tuning.




3. The Lambda Method

In this section the expressions of the controller parameters will be given
for a PI controller designed with the Lambda method. Also, a new idea is
presented where the consequences of cancelling process poles are consid-
ered.

The theory of the Lambda method is based on two assumptions. The
first one where the process is modeled as a first order process with dead
time. The second one where the closed loop transfer function is specified
as

est

G(s) = 15Ty’
C

where T.; is the time constant of the closed loop.
A simple straight forward tuning method is obtained if we separate the
cases between processes with and without integral action.

3.1 Design with Cancellation for Stable Processes

We begin by considering the case of stable processes which have been mod-
eled by the first order process model described by (1). The PI controller is
given by the transfer function

1+5sT;
G.(s) = KCT. (3)

where K, is the controller gain and T} is the integral time. Consequently,
the closed loop transfer function is

GG, K Kp(1 + sTy)e L

G, = = :
dTT1GG,  (14sT)sT;+ KyK (14 sT)eL

By approximating e~5* with 1 —sL, G¢; can be written as

K K, (1 + sT;)e s~

Gt (1+ sT)sT; + Kp Ko (1 +8T;)(1 —sL) (4)

By choosing T; = T in Equation (4) we get

e—sL

Gcl (S) ~ Kch Kch + S(T — KPKCL)’ (5)

i.e. we have cancelled the process pole at 1/T with the controller zero. Now,
using pole placement we will obtain the desired controller parameters.
The characteristic equation of system (5) is,

T

—Y+1=0
S(Kch )+

Comparing this with the desired characteristic equation

sTy+1=0,




where T.; is the desired closed loop time constant, gives the controller
parameters which are given by

1T
K, = e

K, L+ Ty (6)
T =T

Note that the expressions of the controller parameters in formula (8) are
just the ones which are used in the process industry when tuning PI con-
trollers with the Lambda method, see Sell (1995).

3.2 Design without Cancellation for Stable Processes

Now a new idea is presented where the cancellation of the process pole is
taken under consideration. The controller parameters in (6) were obtained
by first positioning two poles: one at 1/T' and the other in 1/Ty. Then
the process pole, 1/7', is cancelled by the controller zero. The consequence
of cancelling the process pole may give a system with poor rejection of
load disturbances in those cases when 7' > T,;. A thorough discussion of
the effects of cancelling process poles may be found in Astrom and Hig-
glund (1995).

When T > T,;, one can omit the cancellation and calculate the charac-
teristic equation of (4), given by

;T T;

2 — 7L -
HNgx 0 )+S(KPKC

+T;—Ly+1=0,
Comparing this with the desired characteristic equation obtained by plac-
ing both poles at 1/7;
T2s2 4 2Tys +1=0,
gives the controller parameters

X __1_TL—[—2T61T—T02Z
T K, (L+Tu2
o TL +2T,T -T2

P (T + L)

(7)

3.3 Design without Cancellation for Unstable Processes

Finally we will consider unstable processes which have been modeled by the
first order process model described by (2). For this case the same approach
with no cancellation of the process pole has to be taken. Consider the
unstable process (2) for which the closed loop transfer function is given by

GG, K, K, (1 + sTy)e "

Gt = 17GG, = T, + K, Ko (1 + sT)e—L

By approximating e—*% with 1 —sL, G can be written as

K, K.(1+sT))e L

Got s2T; + Ky Ko (1 +8T3)(1 —sL)

(8)




Consequently, the characteristic equation of (8} is given by

T

2 o o —
s(—-—Kch TiL)+s(Ty—L)+1=0.

Comparing this with the desired characteristic equation
Tczls2 +2Tys+1=0,

where T is the desired time constant of the closed loop system, gives the
controller parameters,

K——:}— L+27T, __EI;_( 1 + Ty )
¢ K, (L + Tcl)2 K, \L+ Tcl (L + Td)Z , (9)
Ti = L + ZTcl.

Note that when T —> oo the expressions of the controller parameters of
(9) and (7) coincide if setting K, = K,/T. Also, the expressions of the
controller parameters in formula (7) are just the ones which are used in
the process industry when tuning PI controllers with the Lambda method,
see Sell (1995).

Summarizing, we find that a sensible way to design the controller in
the case of processes without integral action is to use formula (6) when
T; is larger than T and Equation (7) when T, is smaller than 7. This
means that tuning a PI controller with our method gives an extra benefit
by separating the cases of fast and slow process poles. For the case of
processes with integral action formula (9) should be used.

Furthermore, the Lambda method requires only one tuning parameter,
that is the desired closed loop time constant, T,;. The choice of T; is a key
decision.

Note that in all the following verifications only formula (6) and (9) has
been used to compute the controller parameters. The motivation is that
those PI controllers in the process industry which has been tuned with the
Lambda method uses only the formulas of (6) and (9).

4. Design Choices

Formally we can choose any value of the closed loop time constant T¢;.
An arbitrary choice may, in practice, lead to poor performance or even
instability. Because the simple process models are only valid in certain
frequency regions. An indication that the model is valid for a particular
choice is the fact that the closed loop time constant agrees with its specified
value, Therefore, the closed loop time constant should be related to the
process dynamics, The model (1) has a time constant T' and a time delay
L. The model (2) has only a time delay L. Therefore it is natural to relate
T.; to T or L for the model (1) and to L for model (2). To obtain a fast
response with good rejection of disturbances it is desirable to have a small
value of T,;. However, a large value of T,; gives a system that is more
insensitive to parameter variations.




4.1 How to Select T

The most common way to determine T is by multiplying the time constant
of the process, T, with a factor 2, i.e. T,; = AT This is not a good choice
when L > 7. In these cases the tuning parameter T; is better determined
as Ty = AL,

If we have limited knowledge of the process dynamics it would be ap-
propriate to use a relatively high value of Ty, i.e. a large value of 1. Con-
versely, if we were very confident in the process dynamics, and there was
a small amount of dead time, a relatively small T,; would be appropriate,
i.e. a small value of A. In the process industry the A factor is set normally
to values between 0.5 — 8.0, the interpretation of T}; is the time it takes
for the process to reach the new set point.

Note that in the case of integrating processes, the value of T,; may be
determined in only one way by multiplying the dead time of the process
L with a factor A, i.e, T;; = AL. Also, in the process industry the tuning
parameter T,; is interpreted as the arrest time, i.e. the time between the
occurrence of the load and the peak of the disturbance.

4.2 The Possibility of Obtaining the Specified T,; for
Non-Integrating Processes

In the Lambda method for non-integrating processes only one design pa-
rameter needs fo be chosen, T,;, which is the desired speed of response of
the closed loop. Now the reader may wonder if, in practice, it is possible to
obtain this specified value and which of the two proposed ways to set it, i.e.
T, = AT or T,; = AL, gives the best result depending on the characteristic
of the process?

The answer to these questions are given by verifying the following pro-
cess: G(s) = e /(s + 1) where L € [0.1,6.0]. To make the comparison
between the two suggested ways of determining T; the relative errors are
computed, ie.,

Trel = IT/lcl - Tcl'/ch
Lot == |Tﬁ,cl - Tcl'/Tcl,

where T,;, T.; are the closed loop time constants in practice and T, =
AT and Ty, = AL. The results are shown in Figure 1. The following
conclusions may be drawn on the possibility to obtain, in practice, the
specified value of T,; from Figure 1,

e The first thing to note: in practice it is not possible fo obtain the
specified value of T} as the relative error is different from zero.

s The second thing to note: it is generally possible fo defermine T
systematically from process knowledge. If L/T < 1 then the least
relative error is given by setting T,; = AT and if L/T > 1 then the
least relative error is given by setting T,y = AL. Note that Figure 1
confirms the statement of a general rule as it will not be valid for all
cases.

o The third thing to note: as the factor A decreases the relative error
of T, increases.




B wer %
5 X P
N =, [
- i P
P s H
|
w Y N
[ wor o
* 1 H ]
% - ;
Ea A £ Pt
\ |
E?s— i L E ' \
i ! Y 50 o
£ \ s
g2 ' \ % m ¥ ! H
| Y & " ! }
| .o ‘ 1
wtox ; Voee — Y ! "R ! ' Lo
aY ! Mowp T ' : .
w N h o b of A7t ! 1 ’
¥ W Lo o ~ ek :f N % 1 G
] Lo < afe [P
si,-.: R _fa? *0-‘ M sate 4 .
5 2% . R o S
(] 1 B 3 ) 5 5 o 1 B E « s [
T
Case when A = 3.0 (left) and 4 = 2.0 (right).
a0 wr x
n
T
@ sl i
1
H
B 7ar rx
H
7 poA
0 HE H
- F o '
[ £ ] Y H
el
s : L e '
50 H H oty R !
; o ot P NN e
. 1
2= LT i ' * i T oy
] . b ) Vg N i
Lo H vy ™ H
o o .
mi o ¥ a oy *\ !
N et o o
L ER Jareg 1
[ A oy 1o P T he']
o
R . \ .
5 [ (] 1 B E] F] s s
ot

'
A G At o
bl

N ~me .

(] 1 z 3 r > .

uT

Case when 4 = 0.5.

Figure 1 Plots of the relative error of 7,; as a function of L/T, for the process
G(s) = e+ /(s + 1), L€ [0.1,6.0]. Comparison has been dene for determining 7,
as Ty = AT (x) and Ty = AL (o), where 4 = 3.0, 2.0, 1.5, 1.0, 0.5,

4.3 The Possibility of Obtaining the Specified T,; in Practice for
Integrating Processes
The Lambda method for integrating processes requires only one design
parameter to be chosen, namely T which is the time it takes to arrest a
load disturbance. The reader may wonder if this interpretation really holds
in practice.
The answer to this question is given by verifying the following process
G(s) = e~*¥/s where L € [0.1,6.0]. To be able to draw any conclusions out

of this the relative error of T}; is computed, i.e.,
Trel = IT}.cl - Tcll/Tcl:

where T is the time to arrest a load disturbance in practice and T,y = A L.




The results are shown in Figure 2, The following conclusion may be drawn
from Figure 2,

¢ The first thing to note: it is not correct that the arrest time is equal to
the specified value of T,;, as the relative error is different from zero.

¢ The second thing to note: for each value of the A factor the relative
error takes on a constant value independently of the dead time L.
This implies that there exists a linear relation between T; and L,
that is T,y = ¢ L where the constant rate of change ¢ depends on the
value of the A factor.

¢ The third thing to note: as the factor 4 decreases the relative error
of T,; increases. The ratio of change of the relative error for one unit
increase of the A factor is approximately a decrease of 20%.
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Figure 2 Lambda method on G(s) = e /s where L € [0.1,6.0] for
A =8.0(x) ,2.0(0), 1L5(-+), 1.0(x). The relative error for the time of the maximum
load disturbance is computed.

5. A Systematic Approach to Determine 7,

In Section 4.1 it was shown how the tuning parameter 7,; should be chosen
so that the knowledge of the process was included. Also, we examined the
possibility of the Lambda method to obtain, in practice, the specified value
of Tcl-

In this section we will present an idea which gives us a systematic
way to determine the tuning parameter T¢; from user specifications on the
robustness of the system. That is, the user specifies a desired robustness
of the closed loop system, i.e. the the maximum of the sensitivity function,
denoted M;. Recall that the sensitivity function is given by

1

Sle)=17 G(s)Go(s)

(10)

Thus, M, = max |S{iw)|. Given the value M;, our idea makes it possible to
compute the corresponding value of T¢;, which in turn makes it possible for




the Lambda method to fulfill the robustness requirement. Note that this
idea has only been applied for systems without integral action.

We begin by computing the loop transfer function obtained by designing
a PI controller for the process model {1) with the lambda method. It is given
by

T et 1 et
L+Ty sT = 14+Ty/L sL’

GG, (s) = (11)

It follows from (11) that the shape of the Nyquist curve is uniquely de-
termined by the quantity T,;/L. Thus the sensitivity function is a unique
function of T,; /L. Remark that the sensitivity constraint indicates that 7;
should be proportional to L. From Equation (10) we find that

_L . 1+f_(cos&3  sin @)
Ste) ' ib LRIn®),
where
k=1/(1+ Tu/L), (12)
@ = wl.
Hence
’ 1 | = 1—~2£sin50+ (f)z
S{i®) o @’

This expression has a minimum when
K —@sind + ®@* cos® = 0. (13)

Equation (13) can easily be solved by Newton-Raphson which gives the

following iteration

L K= Dpsind, + O cos @,
(1 + &2)sind, — @, cos @y

ébn+1 = fbn (14)

The solution of Equation (14) will show what value the maximum of the
sensitivity function, M;, obtains for a given value of «, i.e. Ty;/L. Some
interesting values of M; and the corresponding values of x and T;/L are
shown in Table 1.

Depending on how we determine the closed loop speed of response T
we will obtain different expressions on A when solving Equation (12). We
get

1-—
K

~

TCE = ZT B 11 = ' %:
: (15)

A

Tcl=ﬂ,L: A=

K

It follows from Equation (15), that in the first equation, the 4 factor is
a function of x, T, L, and in the second equation, the A factor is only a
function of x. Thus to obtain a specified M, value with the first equation in




My, x Tu/L

1.0 0.01 99
1.2 021 3.6
14 038 163
16 051 0.98
20 071 041

Table 1 Using the Lambda method te obtain a specified maximum sensitivity

value, M.
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Figure 3 Maximum of the sensitivity function, M;, as a function of T/ L.

(15) it will be possible with different values of the 4 factor as it depends on
the process considered. But, in the second equation only one value of the 1
factor will give the specified M; value as it is independent of what process
is considered. Note that for both equations in (15) the tuning parameter
T.; takes on the same expression, i.e. Ty = (1 —x)/x - L.

In Figure 3 we show the maximum of the sensitivity function, M;, as a
function of T,; /L. Note that for the interesting cases M; = 1.4, 2.0, then
T.u/L < 1, ie. the time delay dominates the behavior of the closed loop
system. This result indicates that it seems better to base the choice of the
closed loop time constant on L rather than T,

5.1 The Possibility of Obtaining the Specified M, Value

Will it in practice be possible to obtain the desired value of the maximum
sensitivity function, M;, by specifying A according to the theory in the
previous Subsection? Too answer this question we tried our idea on the
process G(s) = e*F/(s + 1) for L € [0.1,6.0]. We calculated the relative
error of the M, value for the cases M, == 1.2, 1.4 and 2.0, As was mentioned
in the previous Subsection, the choice of how to set the tuning parameter
T.; is indifferent. We end up with the same expression, i.e. Ty = {1—x)/x-L
in either case.

The results are presented in Figure 4. The following conclusions may

10




be drawn from Figure 4 on the possibility of obtaining a specified M, value
with the Lambda method:

o The first thing to note: it is possible to obtain the specified M, value
with the Lambda method with a relative error less then 10%.

¢ The second thing fo note: the relative error of the M, value decreases
for increasing values of T, /L.

¢ The third thing to note: the relative error of the M; value decreases
for decreasing values of M.

It is possible to explain these observations. Let us start with the sec-
ond observation. According to Figure 3 a desired robustness of the system,
i.e. to specify a desired M,-value, corresponds to a specific value of T, /L.
Consequently, the value of the tuning parameter needed for the Lambda
method can be calculated. As we have a one to one relation between T,; /L
and M, in Figure 3, this implies that if the the value of T}; obtained in
practice with the LLambda method differs from the specified one we will get
a different M, value from the desired one. As it was shown in Section 4.2,
the assertiveness to obtain T,; in practice with the Lambda method de-
creases for decreasing values of the specified T,;. Thus, the possibility to
obtain the specified M, value decreases for decreasing values of T/ L.

The third ochservation can also be explained from Figure 3. According to
Figure 3 the value 7};/L increases as M, decreases. This means that the
possibility to obtain the specified M; value increases for decreasing values
of M, according to the second observation.
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Figure 4 Plot of the relative error of the A, value as a function of
T /L, for the process G(s) = e /(s + 1) where L € [0.1,6.0]. The cases
M, =20 (%), 14 (¢), 1.2 (+) have been examined.

6. The Connection Between Integral Action and T;

It is always useful to have a simple way to judge if the integral action of the
controller is too weak. For a good closed loop performance it is necessary
to have sufficient integral action, see Astrém and Higgiund (1995). In
this Section we will present an idea where the tuning parameter T,; of the

11




Lambda method gives a rough estimate of the amount of integral action the
controller will generate. The analysis is only performed for stable processes.

Let us consider stable processes which are modeled by the first order
process model in (1}. Compute the loop transfer function which is given by

ac 1 e—sL
°T1+7T,/LsL" (16)
Make the approximation e% to 1 —sL for (186), then
GGy rv — ! (17

T4 T/ TSI+ Ta/D)

This implies that the imaginary part of the of the Nyquist curve starts off
at —oo and tends towards 0 for increasing values of the frequency @, with
a constant negative real part for small values of w.

To have a good closed loop performance in view of enough integral ac-
tion, it is required that the real part of the loop transfer function should
be less than -0.5 for small s, that is,

1

T1,7L O

which gives the following requirement

T < L (18)

Ralabva errar (%)

Ralative arror (%)
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Figure 5 Plot of the relative ervor of the real part of the loop {ransfer fanction
versus Tj; /L and L when using the Lambda method on G(s) = e % /(s + 1) where
L €[0.1,6.0] for & = 3.0 (+), 20(x), 1.5(0), 1.0(+), 0.5(). In the left figure Ty = AT
and in the right figure Ty = AL,

6.1 The Relation Between Integral Action and T,

Will in practice the Nyquist curve take on a constant real part for small ©?
The answer to this question has been obtained by computing the relative
error of the real part of the loop transfer function for the process G(s) =
e 3L /(s + 1), where L € [0.1,6.0]. To compute the relative error we use the

12




approximation (17) and the true value of the real part of the loop transfer
function for low frequencies. Both ways has been examined to set the funing
parameter T; of the Lambda method, i.e. Tyy = AT and T,; = A L.

The results are shown in Figure 5. Note that in the right figure the
relative error is plotted versus L just to give a more descriptive resulf.
The following conclusions may be drawn from Figure 5,

s The first thing to note: with an average value of 10% of the relative
error it is possible to obtain the approximate value of the real part of
the loop transfer function in (17) with the Lambda method.

o The second thing to note: for the setting T,; = AT the average value
of the relative error is about 7%, for 1;/L < 1 and for T,;/L > 1itis
in general larger than 7%. Also, for increasing values of the 4 factor
the relative error decreases.

¢ The third thing to note: for the setting 7}; = AL the average value
of the relative error is about 7%, for L > 1 and for for L < 1 it is
in general larger than 7%. Also, for increasing values of the A factor
the relative error decreases.

To sum up: we find that the approximation in (17) makes sense for the
cases Ty = AT when Ty/L <1 and T; = AL when L > 1. Consequently,
in these cases the requirement (18} will be fulfilled so that enough integral
action will be provided to the closed loop system.

Also in the two lower figures of Figure 8, we really see that when ap-
plying the Lambda method to stable processes the loop transfer function
will have a constant real part for low frequencies. '

7. Typical Process Control Problems

In this section the Lambda method is compared to another design method,
see Astrom et al. (1997}, which we denote as the Mg-method. We will give a
number of examples illustrating the properties of the controllers obtained
from the two design methods.

It is interesting to compare the two design methods, because only one
tuning parameter needs to be chosen. For the Lambda method the tuning
parameter, Ty, is directly related to the speed of response of the closed loop
gystem, and for the M,-method the tuning parameter is directly related to
the maximum of the sensitivity function.

The following transfer function describes the structure of the PI con-
troller to be designed

u(5) = K(b30(0) = 50) + 7 [ () = (),

where u is the controller output, y is the process output and y,, is the set
point. The controller parameters are: K, the controller gain, T; the integral
time and b the set point weighting, In the M;-method the & parameter is
included in the design which it is not in the case of the Lambda method. So
in this case the b parameter is set to 1 to make a fair comparison between
the two methods.

13




When using the Lambda method the tuning parameter T,; is set to
either T,; = AT when L/T < 1or T,y = AL when L/T > 1. The comparison
of the Lambda method with the M,-method is done for the values 1 =
1.0, 3.0 and M, = 2.0, 1.4. These choices are based on the fact that with
A = 1.0 and M, = 2.0 a more tuff control is obtained on the contrary to the
choices A = 3.0 and M; = 1.4 which gives more careful control. Also, these
choices of the A factor and the M; value are usually recommended to the
process industry when choosing suitable design parameters.

We will consider the following transfer functions which are representa-
tive systems normally encountered in process control,

1 i
Gils) = (s + 1){1 + 0.25)(1 + 0.04s)(1 + 0.008s)’ Ga(s) T
8—53 1
Gs(s) = 1, Guls) =357
1-2s 9
Gs(s) = GED Ge(s) T+ 1)(s2+ 25+ 9)

Systems (1 and Gg represent processes that are relatively easy to con-
trol. System Gj has a long dead time, and (4 models an integrating process.
System G5 has a zero in the right half plane, and system (7 has complex
poles with relative damping 0.33. Systems of type (G5 and G are not com-
mon in process control, but they have been included to demonstrate the
wide applicability of the two design procedures.

Figure 6 shows the Nyquist curves of the loop transfer functions ob-
tained using the M ,-method and the Lambda method. The responses to
step changes in set point and load are shown in Figure 7 and 8, and the
details of the design calculations and simulations are summarized in Ta-
ble 2.

In Table 2 the following information is given: the first column marks
the verified process. The second indicate the design method and the third
column the given design parameters. The fourth till the twelfth column
show characteristic parameters of the closed loop system. They are the fol-
lowing: K, is the controller gain, T} is the integration time of the controller,
b is the set point weighting parameter, /E and IAE are respectively the
integrated error and the integrated absolute error after a load disturbance,
ITE/TAE is the quotient between the integrated error and the integrated
absolute error, wg is the frequency at which the sensitivity function takes
on its maximum value, £, is the settling time after a load disturbance, M,
is the maximum value of the sensitivity function and M, is the maximum
value of the closed loop system,

Although the systems G — (g represent processes with large varia-
tions in process dynamics, Figure 7 and 8 show that the resulting closed
loop responses of the M-method are quite similar, This is important be-
cause it means that this design procedure gives closed loop systems with
desired and predictable properties. The fact that it even treats integrating
processes in the same way as stable processes is interesting. Whereas for
the Lambda method the resulting closed loop responses are not obviously
similar compared to the previous method. Also, it requires, like so many
other design approaches, that stable and integrating processes have to be
treated separately, see Astrém and Hagglund (1995).
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Process K, T; b IE IE/IAE wy ts M, M,

Gi{s) | M, 141|193 074 089 039 1.00 3.37 249 140 1.10
2.0 | 413 059 052 014 0.92 447 130 2.00 1.66

A 30031 105 100 3.35 1.00 226 14,0 1.06 1.00

1.0 | 0.83 1.05 1.00 126 1.00 293 650 114 1.00

Go{s) | M, 14063 195 1.00 3.07 1.00 074 10.8 140 1.00
2.0 1.22 178 050 1.46 0.77 0.86 12.8 200 145

A 30028 182 100 6.90 1.00 061 258 117 1.00

1.0 | 0.63 1.92 1.00 3.06 1.00 073 10,8 140 1.00

Ga(s) | M, 14 (019 299 100 156 1.00 022 382 140 1.00
201|031 268 000 860 0.73 028 179 200 1.19

A 390009 223 100 259 1.00 017 722 123 100

1.0 | 017 223 1.00 13.1 0.97 020 284 153 1.00

Gy(s) | M, 14017 140 070 840 0.97 029 353 140 1.40
20033 800 050 240 0.96 041 157 200 1.77

A 3801024 119 100 491 1.00 037 279 1.58 142

1.0 | 038 537 100 140 0.62 042 2659 2797 257

Gsls) | M, 14018 178 1.00 9.92 0.90 0.38 286 140 1.00
20029 180 000 544 0.70 042 135 2.00 1.20

A 30009 131 100 155 1.00 0.28 457 1.25 1.00

1.6 | 0.17 131 1.00 7.65 0.87 034 188 1.60 1.00

Gels) | M, 14031 037 0838 119 0.87 1.98 413 140 1.04
20 (048 031 000 065 0.63 211 256 200 137

A 30029 083 100 292 1.00 2,63 995 1.20 100

1.0 | 066 0.83 1.00 125 1.00 269 480 162 1.00

Table 2 Properties of the controllers obtained when designing with the
M,-method and the Lambda method for the systems Gy(s), j =1...6.

There is also a large similarity between the responses obtained with
the M.-method for different values of the tuning parameter M;. This shows
that the M,-value is a suitable tuning parameter, Responses obtained with
M,==1.4 show little or no overshoot. This is normally desirable in process
control. Responses obtained with M;=2.0 give faster responses. The settling
time atl load disturbances, £, is significantly shorter with this larger value
of M;. On the other hand, these responses are oscillatory with a larger
overshoot. This can be seen from the quotient 1 //AE in Table 2.

On the other hand there are also similarities between the responses
obtained of the Lambda method for different values of the tuning param-
eter T,;. Responses obtained when setting the factor 2=3.0, i.e. large T,
show no overshoot and gives a slower response compared to setting the
factor A=1.0, i.e. small 7T%;. This shows the fact that 4 is directly related to
the speed of response of the closed loop system. The settling time at load
disturbances, £, is in general almost half as short with the smaller value
of 2. On the other hand, most will show a little overshoot. This can be seen
from the comparison between IE/IAE in Table 2.

According to Table 2 the controller gain K, varies significantly with the
design parameter M, and 2, i.e. T,;. However, integral time 7} is fairly con-
stant for the M,-method and completely constant for the Lambda method
in the case of stable processes, i.e., all processes except (4. This means
that, for PI control, the different design specifications are mainly obtained
by adjusting only the gain. This observation is made earlier, see Astrom
and Higglund (1995).
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Figure 6 In the two upper figures the Nyquist plots of the open loop frequency
response for the systems G4(s), j = 1...6 when using the M,-method with M, =14
(left) and M, = 2.0 (right.}. In the lower figures the corresponding Nyquist plots
of the open loop frequency respense when vsing the Lambda method with 4 = 3.0
(left) and A = 1.0 (right).

Except for the integrating process G4, the M, values obtained for M,=1.4
are all close to one. Consequently, parameter b is also close to one. For
M,=2.0, the M, values are, however, larger. This means that the over-
shoots would have been significant if the set point weighting were chosen
to b = 1. However, acceptable set point responses are obtained by using
small values of b.

In the case of the Lambda method the M, values obtained are all equal
{o one except for the integrating process Gy.
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Control of the system Gy with M; = 2.0 and 1 = 1.0 (left) and with M; = 1.4 and A = 3.0 (right).

Figure 7 Comparison between the PI controllers obtained for the M,-method
and the Lambda method, where the design has been done for M, = 14, 2.0 and
A = 1.0, 8.0. The graphs shows a step response followed by a load disturbance
where the responses obtained with the M,-design are drawn with solid lines and

with the Lambda method are drawn with dashed lines.
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Control of the system Gg with M, = 2.0 and A = 1.0 (left) and with M, = 1.4 and A = 3.0 (right).

Figure 8

Comparison between the PI controllers obtained for the M.-method

and the Lambda method, where the design has been done for M, = 1.4, 2.0 and
A = 1.0, 8.0. The graphs shows a step response followed by a load disturbance
where the responses obtained with the M;-design are drawn with solid lines and

with the Lambda method are drawn with dashed lines.
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8. Conclusion

In this report the Lambda method for tuning PI confrollers has been re-
viewed, new ideas based on the method have been derived and the validity
of already known features of the method has been verified.

The report begins by designing a PI controller with the Lambda method.
In earlier presentations, a process pole is cancelled with a controller zero
when the process is stable, whereas no cancellation is performed for inte-
grating processes. Here, it is suggested to avoid cancellation also for stable
processes when the process pole is small compared to the closed loop pole.

Next the design parameter of the Lambda method was examined. The
strength of the method is the fact that only one tuning parameter, 7, has
to be chosen. Also a great advantage is its intuitive interpretation as the
time constant of the closed loop system, This report shows that in practice
the cbtained time constant of the closed loop system will not be equal to
T,;. On the other hand the report shows that the discrepancy between the
specified value of T; and the true one can he reduced depending on how
T,; is determined, i.e. T,y = AT or T,; = AL.

Later the report presents of two new ideas: The first one gives a system-
atic way to determine the tuning parameter T,; from user specifications on
the robustness of the system. The second idea gives an easy way to judge
if the integral action of the controller is too weak or not. This judgment is
based on knowledge of the design parameter and the process.

In the end the report compares the Lambda method to a new design
method, see Astrom et al, (1997), which also requires just one tuning pa-
rameter. A test bateh of typical processes found in the process industry has
been used for the comparisons.

To sum up: this report contributes with new insights of the Lambda
method as a design method for PI controllers, especially, the fact that it
is not always possible to obtain the specified closed loop time constant in
practice. The report gives also a systematic way to determine the design
parameter T,; and an easy way to judge the performance of the closed loop
based on knowledge of the tuning parameter T,; and the process.
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