
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Integrated Control and Scheduling

Årzén, Karl-Erik; Bernhardsson, Bo; Eker, Johan; Cervin, Anton; Persson, Patrik; Nilsson,
Klas; Sha, Lui

1999

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Årzén, K.-E., Bernhardsson, B., Eker, J., Cervin, A., Persson, P., Nilsson, K., & Sha, L. (1999). Integrated
Control and Scheduling. (Technical Reports TFRT-7586). Department of Automatic Control, Lund Institute of
Technology (LTH).

Total number of authors:
7

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/05b51464-f8a7-4c70-84f8-3d175ec87aea

ISSN 0280–5316
ISRN LUTFD2/TFRT--7586--SE

Integrated Control and
Scheduling

Karl-Erik Årzén
Bo Bernhardsson

Johan Eker
Anton Cervin

Patrik Persson
Klas Nilsson

Lui Sha

Department of Automatic Control
Lund Institute of Technology

August 1999

Integrated Control and
Scheduling

Karl-Erik Årzén, Bo Bernhardsson
Johan Eker, Anton Cervin

Dept of Automatic Control
Lund Institute of Technology

Box 118, 221 00 Lund

Klas Nilsson, Patrik Persson
Dept of Computer Science

Lund Institute of Technology
Box 118, 221 00 Lund

Lui Sha
Dept of Computer Science

University of Illinois at Urbana-Champaign
1304 West Springfield Avenue

Urbana, Illinois 61801

Abstract: The report gives a state-of-the-art survey of the field of in-
tegrated control and scheduling. Subtopics discussed are implementation
and scheduling of periodic control loops, scheduling under overload, control
and scheduling co-design, dynamic task adaptation, feedback scheduling,
and scheduling of imprecise calculations. The report also presents the back-
ground, motivation, and research topics in the ARTES1project “Integrated
Control and Scheduling”.

1. Introduction

Real-Time Systems is an inter-disciplinary research area that includes as-
pects of Control Engineering and Computer Science. It is an area that is
of vital importance to all control engineers. Today almost all controllers

1A Swedish research network and graduate school on real-time systems.

1

are implemented on digital form with a computer. A successful implemen-
tation of a computer-controlled system requires a good understanding of
both control theory and real-time systems.

Many real-time control systems are embedded systems where the com-
puter is a component in a larger engineering system. These systems are of-
ten implemented on small microprocessors using a real-time programming
language such as Ada or Modula-2 with a real-time kernel or run-time
system, or using a standard sequential programming language such as C
or C++ together with a real-time operating system (RTOS). Examples of
such systems are found in mechatronic systems such as industrial robots,
in aerospace applications such as airplanes and satellites, in vehicular
systems such as cars, and in consumer electronic products. Control appli-
cations in the process and manufacturing industry are often implemented
with distributed control systems (DCS) or programmable logic controllers
(PLC). These systems are often programmed using special programming
languages such as sequential function charts (SFC), function block lan-
guages, or relay or ladder diagram languages. Distributed control systems
and programmable logic controllers share many of the characteristics of
embedded systems. The implementation of the systems is often based on
real-time operating systems.

Traditionally, when implementing computer control systems, the con-
trol community has assumed that the computer platform used can provide
the deterministic, equi-distant sampling that is the basis of sampled com-
puter control theory. However, many of the computing platforms that are
commonly used to implement control systems are not able to give any
deterministic guarantees. This is especially the case when commercial off-
the-shelf (COTS) operating systems such as, e.g., Windows NT are used.
These systems are, typically, designed to achieve good average performance
rather than guaranteed worst-case performance. They often introduce sig-
nificant non-determinism in task scheduling. For computation intensive
high-end applications, the large variability in execution time caused by
modern hardware architecture becomes visible.

On the other hand, the real-time scheduling community generally as-
sumes that all control algorithms should be modeled as tasks that:

• are periodic with a set of fixed periods,

• have hard deadlines, and

• have known worst-case execution times (WCETs).
This simple model has permitted the control community to focus on its own
problem domain without worrying about how scheduling is being done, and
it has released the scheduling community from the need to understand
what impact scheduling delays have on the stability and performance of
the plant under control. From a historical perspective, the separated de-
velopment of control and scheduling theories for computer-based control
systems has produced many useful results and served its purpose.

However, upon closer inspection it is quite clear that neither of the
three above assumptions need necessarily be true. Many control algorithms
are not periodic, or they may switch between a number of different fixed
sampling periods. Control algorithm deadlines are not always hard. On the
contrary, many controllers are quite robust towards variations in sampling
period and response time. It is also in many cases possible to compensate

2

on-line for the variations by, e.g., recomputing the controller parameters.
Obtaining an accurate value for the WCET is a difficult problem in the
real-time scheduling area. It is not likely that this problem is significantly
simpler for control algorithms. It is also possible to consider control systems
that are able to do a tradeoff between the available computation time, i.e.,
how long time the controller may spend calculating the new control signal,
and the control loop performance.

The objective of the ARTES project “Integrated Control and Schedul-
ing” is to go beyond the simple “fixed sample period and known WCET”
model and to develop theory that is able to address dynamic interaction
between control and scheduling. The optimality of computer control is sub-
ject to the limitations of available computing resources, especially in ad-
vanced applications where we want to control fast plant dynamics and to
use sophisticated state estimation and control algorithms. On the other
hand, the true objective of real-time scheduling for control is to allocate
limited computing resources in such a way that the state estimation and
control algorithms can ensure the system’s stability and optimize the sys-
tem’s performance. The computing resources could include CPU time and
communication bandwidth. In this overview we have focused on CPU time.
However, most of the issues brought up also apply to distributed system
scheduling of communication bandwidth.

The approach taken in the project is based on using dynamic feed-
back from the scheduler to the controllers and from the controllers to the
scheduler. The idea of feedback has been used informally for a long time
in scheduling algorithms for applications where the dynamics of the com-
putation workload cannot be characterized accurately. For instance, the
VMS operating system uses multi-level feedback queues to improve system
throughput, and Internet protocols use feedback to help solve the conges-
tion problems. Recently, under the title of quality of service (QoS), the idea
of feedback has also been exploited in multi-media scheduling R&D.

Given this, one might expect that the use of feedback in the schedul-
ing of feedback control systems would have been naturally an active area.
On the contrary, the scheduling research of feedback control systems are
dominated by open loop analytic scheduling methods such as rate or dead-
line based algorithms. This is not an accident but rather the consequence
of some serious theoretical challenges that require the close cooperation
between control and scheduling communities.

However, there are still systems in which true hard deadlines have to
be met. For such cases, we have ideas about how to estimate the WCET
in a practical way. In the case we want to accurately estimate the WCET,
it would be ideal to obtain execution times for each piece of code incre-
mentally during coding. To achieve this, our idea is to utilize the so called
Mjölner approach, [Knudsen et al., 1994], and to use attribute grammars
for incremental semantic analysis of the program. The WCET of each piece,
statement, or block of code would then be handled by another aspect of our
object-oriented semantic language (OOSL).

Still, we want to allow language constructs that principally have un-
known WCET, like recursion and loops depending on sensor inputs. Since,
in our system, code generation is based on grammar attributes, it is straight
forward to generate additional exception handling code and enforce the
programmer to declare timing bounds and to define how to cope with un-
expected delays. The combination of control and scheduling as described

3

above then makes such exception handling feasible.

Aim of the report
The aim of this report is to give the background and motivation for the
research project, provide a survey of existing work in the area, and attempt
to outline what the important research questions that need answers are.
The area that we are entering is quite large, still relatively little work has
been performed so far especially by the control community. This leads us to
believe that there is room for a lot of work, of both practical and theoretical
nature.

Outline of the report
The vision of a flexible environment with on-line interaction between con-
trol algorithms and on-line scheduling is outlined in Section 2. An overview
of hard real-time scheduling is given in Section 3. A subproblem of inte-
grated control and scheduling is how to correctly implement and schedule
periodic controller tasks. This problem is discussed in Section 4 together
with different approaches to jitter handling. One of the key issues in the
project is the relaxation of the requirement on a known worst-case task
execution time. The simplest approach to this is to simply treat the actual
execution times that are longer than the worst case bound as overload con-
ditions. Scheduling in the presence of overload is discussed in Section 5. A
prerequisite for an on-line integration of control and scheduling theory is
that we are able to make an integrated off-line design of control algorithms
and scheduling algorithms. This area is surveyed in Section 6. Dynamic
task adaptation is the key element of this project. This subject is discussed
is Section 7. Issues discussed include period skipping, quality of service re-
source allocation schemes, task attribute adjustment schemes, statistical
scheduling, scheduling of imprecise calculations, mode-change protocols,
and on-line system upgrades. In Section 8 it is shown how the different
flexible scheduling models proposed in earlier sections match what control
theory and control engineering offer. Section 9 describes the approach to
WCET analysis taken in the project. Finally, in Section 10, some possible
research directions are outlined.

2. The Vision

Our work is based upon a vision of a dynamic, flexible, and interactive
integrated control and scheduling environment with the following features:

• The control design methodology should take the availability of com-
puting resources into account during the controller design.

• The requirement of known worst-case execution times should be re-
laxed. Instead the system should be able to guarantee stability and
a certain level of control performance based only on knowledge of
nominal execution times.

• The system should be able to adapt task parameters in overload situ-
ations in such a way that stability and an acceptable level of control
performance are maintained.

4

• The system should be able to dynamically trade-off control perfor-
mance and computing resource utilization.

• The system should support on-line information exchange between the
on-line scheduler and the control tasks. The information could for ex-
ample consist of mode change requests from the control tasks, execu-
tion time allotments from the on-line scheduler, etc.

• The system should be able to measure the actual execution time spent
by the different tasks, and take appropriate actions in case of over-
runs.

• The required execution time analysis should be made part of an in-
teractive tool for automatic code generation.

In order to make this possible, a lot of information needs to be provided.
For example, the control tasks must be able to provide information of the
following kind to the on-line scheduler.

• The desired period of the control task together with a period range for
which the controller can guarantee acceptable control performance.
Alternatively this information can be stated as a cost function. The
period information can be static or dynamic. Dynamic period con-
straints can, e.g., be useful in order to handle transients.

• The nominal execution time of the control task. This can possibly be
combined with estimates of the minimum and maximum execution
times. Alternatively, the control task can specify a desired execution
time together with information about which variations of the execu-
tion time that the control task can handle while maintaining satis-
factory control. In the same way as for the period this may also be
stated as a cost functions. The information may be static or dynamic.

• The desired deadline for the control task. Alternatively this infor-
mation can be provided indirectly by instead providing information
about the desired or acceptable computational delay for the control
task.

3. Real-Time Scheduling

It is very difficult to ensure hard deadlines by ad hoc methods. Recently,
theoretical scheduling results have been derived that make it possible to
a priori prove that a set of tasks meet their deadlines. Scheduling theory
is studied in two research communities: operations research and computer
science. Within operations research the problems studied are typically job
shop or flow shop problems. In these problems the scheduling typically
concerns jobs, orders, batches, or projects. The resources involved could
be machines, factory cells, unit processes, people, etc. Within computer
science the scheduling problem instead concerns the scheduling of tasks on
a uni- or multiprocessor environment and the scheduling of communication
bandwidth in distributed systems. Real-time scheduling has been a very
fertile area of research during the last few decades.

In hard real-time systems it is crucial that the timing requirements
always are met. Hence, it is necessary to perform an off-line analysis

5

that guarantees that there are no cases in which deadlines are missed.
In scheduling theory we assume that we have events that occur and re-
quire computations. Associated with an event is a task that executes a
piece of code in response to the event. The events could be periodic, spo-
radic, or aperiodic. A sporadic event is non-periodic but has a maximum
inter-arrival frequency. An aperiodic event has an unbounded arrival fre-
quency and could have many active associated tasks. Each event has a
required computation time, in the sequel denoted C . This is the worst-case
CPU time it takes to execute the piece of code associated with the event.
Obtaining this time can in practice be quite difficult, as will be discussed
in Section 9. Each event also has an associated deadline, denoted D. This
is an upper bound on the allowed time taken to execute the piece of code
associated with the event.

In this report we will primarily consider scheduling of CPU time for
periodic tasks. Two main alternatives exist: static cyclic executive schedul-
ing and priority-based scheduling. Static cyclic executive scheduling is an
off-line approach that uses optimization-based algorithms to generate an
execution table or calendar [Locke, 1992]. The execution table contains a
table of the order in which the different tasks should execute and for how
long they should execute. The run-time part of the scheduling is extremely
simple. The drawback that makes cyclic executive scheduling unsuitable
for our purposes is its static nature. It does not support on-line admission
of new tasks, and dynamic modifications of task parameters. Hence, in this
report we will focus on dynamic approaches to scheduling.

In 1973, Liu and Layland proposed in their seminal paper [Liu and
Layland, 1973] two optimal priority-based scheduling algorithms, rate-
monotonic (RM) scheduling and earliest deadline first scheduling (EDF).
The EDF scheduling method is based on the principle that it is the task
with the shortest remaining time to its deadline that should run. The ap-
proach is dynamic in the sense that the decision of which task to run is
made at run-time. The deadline can also be viewed as a dynamic priority,
in contrast to the RM case where the priority is fixed. The latter is the
reason why rate-monotonic scheduling also is referred to as fixed priority
scheduling.

Formal analysis methods are available for EDF scheduling. In the sim-
plest case the following assumptions are made:

• only periodic tasks exist,

• each task i has a period Ti,

• each task has a worst case execution time Ci,

• each task has a deadline Di,

• the deadline for each task is equal to the task period (Di � Ti),
• no interprocess communication, and

• an “ideal” real-time kernel (context switching and clock interrupt
handling takes zero time).

With these assumptions the following necessary and sufficient condition
holds:

6

THEOREM 3.1—EDF SCHEDULING

If the utilization U of the system is not more than 100% then all deadlines
will be met.

U �
i�n∑
i�1

Ci

Ti
≤ 1

The utilization U determines the CPU load. The main advantage with
EDF scheduling is that the processor can be fully utilized and still all
deadlines can be met. More complex analysis exists that loosens some of
the assumptions above.

Rate monotonic (RM) scheduling is a scheme for assigning priorities to
tasks that guarantees that timing requirements are met when preemptive
fixed priority scheduling is used. The scheme is based on the simple policy
that priorities are set monotonically with task rate, i.e., a task with a
shorter period is assigned a higher priority.

With essentially the same assumptions as in the EDF case, a sufficient
schedulability condition for RM scheduling was derived in [Liu and Lay-
land, 1973].

THEOREM 3.2—RM SCHEDULING

For a system with n tasks, all tasks will meet their deadlines if the total
utilization of the system is below a certain bound.

i�n∑
i�1

Ci

Ti
≤ n(21/n − 1)

As n → ∞, the utilization bound → 0.693. This has led to the simple
rule-of-thumb that says that

“If the CPU utilization is less than 69%, then all deadlines are
met”.

Since 1973 the analysis has evolved and many of the restrictive assump-
tions have been relaxed [Audsley et al., 1995; Sha et al., 1994]. In 1986 a
sufficient and necessary condition was derived [Joseph and Pandya, 1986].
The condition is based on the notion of worst-case response time, Ri, for a
task i, i.e., the maximum time it can take to execute the task. The response
time of a task is computed by the recursive equation

Ri � Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

where hp(i) is the set of tasks with higher priority than task i. The task
set is schedulable if Ri ≤ Di for all tasks i. The model also allows deadlines
that are shorter than the period (Di < Ti).

The rate-monotonic priority scheme is not very good when Di ≪ Ti.
An infrequent but urgent task will be given a very low priority. In this
case the deadline-monotonic priority scheme is better suited. Here it is the

7

task deadline that decides the priority rather than the period. A task with
a short deadline gets high priority. This policy has been proved optimal
when D ≤ T in the sense that if the system is unschedulable with the
deadline-monotonic priority ordering, then it is unschedulable also with
all other orderings [Leung and Whitehead, 1982]. Equation 1 holds also
for the deadline-monotonic case.

During the last decade the rate and deadline monotonic analysis have
been extended in various directions [Klein et al., 1993]. It has been ex-
tended to cover situations where we have processes that communicate us-
ing, e.g., a monitor or using shared data protected by a mutual exclusion
semaphore. To do this it is necessary to have an upper bound on how long
a high-priority process may be blocked by a low-priority process due to
interprocess communication. The priority ceiling protocol for mutual ex-
clusion synchronization gives such a worst case bound [Sha et al., 1990].
The analysis has also been extended to cover release jitter, i.e., the dif-
ference between the earliest and latest release of a task relative to the
invocation of the task (the arrival of the event associated with the task),
nonzero context switching times, and clock interrupts.

3.1 Alternative scheduling models
Several suggestions have also been made for alternative scheduling mod-
els. The multi-frame model [Mok and Chen, 1997] is a generalization of
the periodic task model in which the execution times for periodic tasks are
allowed to vary from job to job according to a regular pattern. Hence, the
execution time is given by a finite list of numbers from which the execu-
tion times of successive jobs are obtained by repeating this list. Sufficient
and necessary schedulability conditions for the multi-frame model are pre-
sented in [Baruah et al., 1999]. In the generalized multi-frame model the
task deadlines are also allowed to change according to a known sequential
pattern [Baruah et al., 1999] The recurrent task model [Baruah, 1998a],
is a further extension that permits the modeling of certain forms of con-
ditional code (“if-then-else” and “case”) which can be represented by task
graphs that are directed acyclic graphs.

In the recurrent model each task is divided into subtasks. This approach
has also been adopted in other contexts. In [Gonzalez Härbour et al., 1994]
each periodic task is divided into serially executed subtasks, each char-
acterized by an execution time, a priority, and a deadline. The method
proposed can be used to analyze the schedulability of any task set on a
uni-processor whose priority structure can be modeled as serially executed
subtasks.

The periodic task model is based on the assumption that all tasks may
arrive simultaneously. If the task set is schedulable for this worst case it
will be schedulable also for all other cases. In many cases this assump-
tion is unnecessarily restrictive. Tasks may have precedence constraints
that make it impossible for them to arrive at the same time. Alternatively,
for independent tasks it is sometimes possible to shift them in time, i.e.,
introduce task offsets, to avoid the simultaneous arrival. If simultaneous
arrivals can be avoided, the schedulability of the task set increases [Aud-
sley et al., 1993b]. Schedulability analysis, both for the case of static and
dynamic task offsets, is presented in [Gutierrez and Harbour, 1998].

8

3.2 Aperiodic scheduling
Scheduling of soft aperiodic tasks in combination with hard periodic tasks
is a large area where a lot of research is performed. The simplest approach
is to use periodic tasks to poll aperiodic events. This may, however, in-
crease processor utilization unnecessarily. Another approach is to use a
special server for aperiodic events [Lehoczky et al., 1987]. The main idea
of the server approach is to have a special task, the server (usually at
high priority), for scheduling the pending aperiodic work. The server has
time tickets that can be used to schedule and execute the aperiodic tasks.
If there is aperiodic work pending and the server has unused tickets, the
aperiodic tasks execute until they finish or the available tickets are ex-
hausted. Several servers have been proposed. The priority-exchange server
and the deferrable server were proposed in [Lehoczky et al., 1987]. The spo-
radic server was introduced in [Sprunt et al., 1989]. The main difference
between the servers concerns the way the capacity of the server is replen-
ished and the maximum capacity of the server. In [Bernat and Burns, 1999]
exact schedulability tests are presented for the sporadic and the deferred
servers. It is also claimed that the deferred server is superior, since it has
the same performance as the sporadic server and is easier to implement.
The idea behind the slack stealer proposed in [Lehoczky and Ramos-Thuel,
1992] is to steal all the possible processing time from the periodic tasks,
without causing their deadlines to be missed. The approach has a high
overhead, but provides an optimal lower bound on the response times of
aperiodic tasks. The method has also been extended to cover hard aperiodic
tasks.

The idea of stealing time from hard periodic tasks is also used in dual
priority scheduling [Davis and Wellings, 1995]. The priority range is di-
vided into three bands: upper, middle, and lower. Hard tasks are assigned
two priorities, one in the upper range and one in the lower range. At run-
time, other tasks, e.g., soft aperiodic tasks, are assigned priorities in the
middle band. The hard tasks are assigned their lower priorities upon re-
lease. A fixed time interval after their release they are promoted to their
upper priority. During the initial phase of a task, the soft tasks will have
higher priority, and thus execute. The net effect of the approach is that the
execution of the hard tasks is shifted in such a way that the end of the
task execution is always close to the response time of the task.

The above servers have been developed for the fixed-priority case. Simi-
lar techniques also exist for the dynamic-priority case (EDF). In [Spuri and
Buttazzo, 1996] a comparative study of five different methods of handling
soft aperiodic tasks in a dynamic priority setting is made. The methods
compared include a dynamic version of the priority-exchange server, a dy-
namic version of the sporadic server, and the total-bandwidth server.

4. Implementation and scheduling of periodic
control loops

A control loop consists of three main parts: data collection, algorithm com-
putation, and output transmission, as shown in Fig. 1. In the simplest case
the data collection and output transmission consist of calls to an external
I/O interface, e.g. AD and DA converters or a field-bus interface. In a more

9

complex setting the input data may be received from other computational
elements, e.g., noise filters, and the output signal may be sent to other
computational elements, e.g., other control loops in the case of set-point
control.

 Algorithm
Computation

 Output
Transmission

 Data
Collection

Figure 1 The three main parts of a control loop.

In most cases the control is executed periodically with a constant pe-
riod, or sampling interval, T (often denoted h), that is determined by the
dynamics of the process that is controlled and the requirements on the
closed loop performance. This assumption will also be made in this sec-
tion. Further on in the report we will relax the requirement on constant
sampling intervals.

There are two main ways to implement control loops using tasks in
a real-time operating system. In the first alternative, the single-task ap-
proach, the control loop is implemented as a single periodic task. The dif-
ferent computation steps are implemented as sequential code within the
task. In the second alternative, the multiple-task approach, each subpart
of the control loop is implemented as a separate task, e.g., the control
loop in Fig. 1 would be implemented as three separate periodic tasks. The
multiple-task approach originates from the Real-Time Structured Analysis
and Design Method (RTSAD), [Ward and Mellor, 1985], a software engi-
neering methodology where each data transformation is mapped onto a
separate task. A drawback with the approach is that it leads to a large
number of concurrent tasks with a potentially large overhead for synchro-
nization, communication and context switches. An advantage with the ap-
proach is that it can handle multi-processor and distributed systems in a
straightforward way.

The single-task approach is instead based on design methodologies that
emphasize task structuring criteria. Data transformations are grouped
with other data transformations into tasks, based on the temporal sequence
in which the transformations are executed. Examples of these methodolo-
gies are DARTS [Gomaa, 1984] and the entity-life model [Sanden, 1994].
The advantages with the approach are: fewer tasks, less demand on syn-
chronization and inter-process communication, and smaller context switch
overhead. The approach is also the one that is most natural for control en-
gineers, especially when implementing small embedded control systems on
uni-processor platforms. The approach is also similar to the computation
model used in the programmable logic controllers (PLCs) that are com-
monly used for implementing industrial control systems. For these reasons
we will mainly focus on this approach in our work. However, it is impor-
tant to have in mind that the single-task approach as described here only
concerns the implementation of the controller. For schedulability analy-
sis purposes it may be advantageous to treat the task as if it consists of
multiple subtasks. This will be discussed further later on in this section.

In certain situations it can be difficult to chose which method to use.
This is particularly the case when the subparts of the control loop execute
at different frequencies. A common example of this is when anti-aliasing fil-

10

tering is implemented with analog low-pass filters in combination with dis-
crete low-pass filters. As soon as analog signals are sampled, anti-aliasing
filtering is preferable to avoid aliasing of frequencies above the Nyquist
frequency. The filter has to be analog and designed in accordance with the
sampling frequency. This causes problems if we want to be able to increase
the sampling rate programmatically. An alternative approach is to use a
short, fixed sampling period and a fixed analog filter designed for the fast
sampling period together with a flexible discrete low-pass filter that ex-
ecutes at the same frequency as the sampler. The situation is shown in
Fig. 2 for the case of PID control and where the data collection and output
transmission consist of A/D and D/A conversions. The system can either

 A/D
 Conversion

Discrete
LP−filter

 PID D/A
 Conversion

 Analog
LP−filter

Computer

Short Period Long Period

Figure 2 Combination of analog and discrete anti-aliasing filtering.

be implemented as two tasks: one with short sampling period and one with
long sampling period, or as a single task that runs at the short sampling
period, but only executes the PID and D/A parts at a multiple of this
sampling period. The second case can be modeled by the multi-frame task
model.

4.1 Loop timing constraints
The basic control loop has two timing constraints. The first is the period
which should be constant, i.e., without jitter. The second constraint in-
volves the computational delay from the input data collection to the output
transmission. This is also known as the control delay or the input-output
latency. From a control point of view this delay has similar effects as a pure
time delay on the input of the controlled process. An overview of control
loop timing constraints is given in [Törngren, 1998].

Four approaches are possible for the control delay. The simplest ap-
proach is to implement the system in such a way that the delay is min-
imized and then ignore it in the control design. The second approach is
to try to ensure that the delay is constant, i.e., jitter free, and take this
delay into account in the controller design. One way of doing this is to wait
with the output transmission until the beginning of the next sample. In
this way the computational delay becomes close to the sampling period. If
the controller is designed with discrete (sampled) control theory it is espe-
cially easy to compensate for this delay. However it is also relatively easy
to compensate for delays that are shorter than the sampling period. The
third approach is to explicitly design the controller to be robust against
jitter in the computational delay, i.e., the delay is treated as a parametric
uncertainty. This approach is, however, substantially more complex than
the first two. The fourth approach, finally, is based on the idea that the con-
trol algorithm in certain situations can actively, every sample, compensate

11

for the computational delay or parts of it. This approach has been used to
compensate for the computational delays obtained when a control loop is
closed over a communication network [Nilsson, 1998].

4.2 Single-task implementations
In the single-task approach a control loop is represented as a task with the
following loop structure:

LOOP

Await clock interrupt;

Data collection;

Algorithm calculation;

Output transmission;

END;

A task with the above structure can be implemented in different ways
depending on which timing primitives that are available in the real-time
kernel. Some implementations are better than others in the sense that the
period jitter and control delay jitter become smaller. A good implementation
is the following:

CurrentTime(t);

LOOP

Data collection;

Algorithm calculation;

Output transmission;

t := t + h;

WaitUntil(t);

END;

Here t is a timer variable, CurrentTime returns the current time, h is
the period, and WaitUntil (DelayUntil) suspends the calling task until
a certain future time. An alternative approach is to require that the real-
time kernel provides special support for periodic processes. The application
programmer’s interface (API) for this could, e.g., consist of a procedure
whereby the user registers a periodic task in the kernel with the task period
and the task body procedure as arguments. However, this is normally not
supported by commercial real-time operating systems.

4.3 Jitter
Using the single-task approach it is relatively straightforward to map the
control loop timing constraints into task parameters. The sampling time of
the control loop corresponds to the period of the corresponding task. How-
ever, the requirements on computational delay and jitter are more difficult
to handle. The simplest approach is to transmit the control output at the
end of the task. This will imply that the computational delay is always
smaller then the task deadline. The problem with this is that the jitter
may become considerable. The execution of two successive jobs (instances)
of the task will not be separated exactly by the period Ti. For example, the
upper bound, Ji, on the relative jitter in the start time of two successive
jobs when Ti � Di is given as

Ji � 2(1− Ci

Ti
)

12

The upper bound can reach a value of 200% when Ci ≪ Ti. Similar expres-
sions can be obtained for the end time jitter and the computational delay
jitter. The maximum jitter is also priority dependent. The smallest jitter
is obtained for the task with highest priority. The situation is shown in
Fig. 3.

kTi (k+ 1)Ti (k+ 2)Ti
CactCact

RiRi DiDi

Figure 3 Jitter in successive jobs of a periodic control task.

The actual execution time, Cact, of the task varies from invocation to invo-
cation (job to job). It is, however, always smaller than Ci. The execution of
the task is always finished by the response time Ri of the task. In order for
the task system to be schedulable, Ri should always be less than or equal
to the deadline Di. Jitter is obtained both in the time between subsequent
start times of the task, i.e., in the input data collection, and in the time
between subsequent end times of the task, i.e., in the output generation.

A common way to handle the computational delay is to write the code
in such a way that the delay is minimized. The standard way to do this is
to separate the algorithm calculations in two parts: calculate output and
update state. “Calculate output” contains only the parts of the algorithm
that make use of the current sample information. “Update state” contains
the update of the controller states and the pre-calculations that are needed
to minimize the execution time of “calculate output”. The code below illus-
trates the concept:

CurrentTime(t);

LOOP

Data Collection;

Calculate output;

Output transmission;

Update state;

t := t + h;

WaitUntil(t);

END;

Going even further, we could identify timing requirements for the dif-
ferent parts of the control task:

Data collection should be performed at the same instant every period, in
order to eliminate the sampling jitter.

Calculate output should commence and complete as soon as possible after
the sample is available, so that the computational delay is minimized.

Output transmission should be performed immediately after “calculate out-
put”, or at a fixed instant after the data collection, depending on how
the controller was designed.

13

Update state has to finish before the beginning of the next period, or at
least before the release of “calculate output” in the next period.

In the scheduling analysis, the parts of the code could be scheduled as
one, two, three, or four separate tasks. However, in many cases it is not
relevant to treat the A-D and D-A conversions as separate tasks. They could
be implemented as low-cost, high-priority tasks [Locke, 1992], and then be
neglected in the analysis. I/O cards with support for periodic sampling is
another alternative.

4.4 Scheduling of control tasks
This section summarizes several task models and schedulability analysis
methods that could be used when scheduling control tasks.

Fixed-priority scheduling: In the simplest possible setting, each digi-
tal controller is described as a periodic task τ i having a fixed period Ti, a
deadline Di, a worst-case execution time Ci, and a fixed priority Pi. If it is
assumed that Di � Ti, then the rate-monotonic priority assignment is opti-
mal [Liu and Layland, 1973]. The rate-monotonic approach is appropriate
in the case where the control signal is not sent out until the beginning of
the next period. The schedulability analysis is very simple, and it is also
very simple to compensate for the one-sample delay in the controller.

For some controllers, we could allow Di ≤ Ti, in which case the deadline-
monotonic priority assignment is optimal. The deadlines could be used
to improve the response times of some important, but long-period control
tasks. Of course, decreasing the deadlines of all controllers will decrease
the system schedulability and may even cause the task set to become un-
schedulable.

Sub-task scheduling: The possibility of decomposing a control task
into subtasks was identified in [Gerber and Hong, 1993]. There, the Up-
date State part is named an unobservable part, because its result is not
directly visible in the output in that period. The reason for the decomposi-
tion is to transform an unschedulable task set into a schedulable one. Each
task is divided into three subtasks (!), one for Calculate Output (retain-
ing the original period) and two for Update State (doubling the original
period and thus allowing for deadlines greater than the period). A modi-
fied, dynamic rate-monotonic scheduler is used, in which the deadlines of
the Update State tasks may be postponed. A priority exchange (cf. dual
priority) scheme is used to preserve the order among the subtasks.

In [Burns et al., 1994], it was pointed out that Gerber and Hong’s
method was unnecessary complicated and not optimal. Using response-
time analysis, more exact analysis is possible. Also, it is possible to include
the case when D > T in the response-time test [Tindell et al., 1994]. When
D > T, the deadline-monotonic priority assignment is no longer optimal,
but priorities can be assigned using an O(n2) algorithm [Audsley et al.,
1993b] where n is the number of tasks.

In a later article [Gerber and Hong, 1997], the authors have abandoned
the dynamic priority in their early paper in favor of Burns’ response time
analysis. Furthermore, they argue that “slicing” a task incurs extra over-
head, and they give an algorithm for selecting which tasks should be sliced.
The reason for this is not obvious. If the subtasks have the same priority,

14

why do they have to be implemented as separate tasks? Also, if the sub-
tasks are implemented as separate tasks, why could they not be given
different priorities?

A task model with subtasks having different priorities is analyzed in
[Gonzalez Härbour et al., 1994]. Here, a task τ i is described by a worst-case
execution time Ci, a period Ti, and a deadline Di. Each task consists of a
number of subtasks τ ij , having a worst-case execution time Cij , a deadline
Dij , and a fixed priority Pij . It is assumed that a subtask is not placed
in the ready-queue until its predecessor has completed. Thus, we can for
instance analyze a set of control tasks with the following structure:

LOOP

SetPriority(P1);

Wait(ClockInterrupt);

A_D_Conversion;

SetPriority(P2);

CalculateOutput;

SetPriority(P3);

D_A_Conversion;

SetPriority(P4);

UpdateState;

END

In the same article, the special case of subtasks with non-ascending
priorities and deadlines less than the period is treated. It is proved that
a deadline-monotonic priority assignment among all subtasks is optimal
for such a task set. Optimal priority assignment in the general case is not
discussed.

Another way of treating subtasks is to use offset scheduling [Audsley
et al., 1993b]. Each subtask is assigned an offset Oi relative to the release
of the first subtask. The correct execution order of the subtasks can be
enforced by assigning suitable priorities or offsets. An algorithm for optimal
priority assignment with complexity O(n2) is also given.

Deadline assignment: All of the above schedulability analysis assumes
that complete timing attributes of the subtasks are given, i.e. Ti, Di, Ci, and
for offset scheduling Oi. For digital controllers, the period and the worst-
case execution time can be assumed to be known. The deadlines and the
offsets on the other hand must be assigned suitable values. In the two-task
model, the deadlines of the Update State parts can be assigned to the period
time, while we would like to minimize the deadlines of the Calculate Output
parts. The problem of optimal deadline assignment is known to be NP-
hard. For large task sets or on-line reconfiguration, heuristic assignment
methods must be used.

Deadline assignment has been studied especially in the context of end-
to-end scheduling in distributed systems. In [Sun et al., 1994], some priority
(deadline) assignment schemes are mentioned. The approach of interest to
us is the effective-deadline-monotonic assignment. Subtasks are assigned
deadlines according to

Dij � Di −
ni∑

k�j+1

Ci,k (2)

15

That is, later subtasks are given just enough time to execute after the
deadlines of earlier subtasks.

In [Kao and Garcia-Molina, 1993], several schemes for subtask dead-
line assignment are evaluated, e.g., effective deadline (the same as effective
deadline-monotonic), equal slack, and equal flexibility. In equal slack, the
total slack time in the period is divided evenly among the subtasks. This
produces earlier deadlines than the effective deadline assignment. In equal
flexibility, the total slack time is divided among the subtasks in proportion
to their execution times. In terms of the number of missed deadlines, the
two last approaches are superior to effective deadline, with equal flexibility
being the best. These deadlines assignment schemes are however intended
for soft real-time systems—applied on the parts of digital controllers, dead-
lines may very well be missed.

In [Cervin, 1999], the following heuristic is presented for minimizing the
deadlines of the Calculate Output parts, while maintaining schedulability:

1. Assign effective deadlines to the subtasks, i.e. set DCO i :� Ti−CUS i.

2. Assign deadline-monotonic priorities.

3. Calculate the response times of the subtasks.

4. Decrease the deadlines of the Calculate Output parts by assigning
DCO i :� RCO i.

5. Repeat from 2 until no further improvement is given.

The heuristic works because of the optimality of the deadline-monotonic
priority assignment. The task set is schedulable after each improvement,
and the algorithm terminates after a finite number of steps.

Delay jitter minimization: The second way of solving the computa-
tional delay problem is to try to make the delay as deterministic as pos-
sible. Our desire is to be able to make the time between the start of the
calculate output subtask and the end of the calculate output subtask as
deterministic as possible, i.e., to obtain an upper and lower bound on this
time. From a control point of view it may be an advantage with tight upper
and lower bounds, rather than having the smallest lower bound (which is
equal to the best case execution time for the calculate output subtask).
How to best obtain such tight bounds in a pre-emptive scheduling setting
is still an open question.

Quite a lot of work has been performed on jitter control in real-time
scheduling. In the case of static cyclic executive scheduling, the problem
is essentially solved. For example, in [Xu and Parnas, 1990] an algorithm
is presented that finds an optimal schedule for a given task set under
the presence of a variety of different constraint types. However, also in
priority-based scheduling a lot of work has been performed. The work in
[Audsley et al., 1993a; Baruah et al., 1997] addresses the problem of accom-
modating input jitter, i.e., scheduling systems of periodic tasks in which
the ready-times of jobs cannot be predicted exactly a priori, but are subject
to timing uncertainties at run-time. In [Lin and Herkert, 1996] a distance-
constrained task model is studied in which the difference between any two
consecutive end-times of the same task is required to be bounded by a
specified value. This approach attempts to minimize the output jitter. In
[Baruah and Gorinsky, 1999] an attempt is made to identify some of the

16

properties that any jitter-minimization scheme should satisfy. The scheme
is not allowed to buffer a job that is ready to execute. The scheme may
not insert idle time in the execution of a job. The scheme is not allowed to
buffer a job that is completed. The scheme should not require too many pre-
emptions and the on-line scheduling overhead should be small. Within the
context of these conditions two jitter-minimizing scheduling algorithms are
proposed. In [Cottet and David, 1999] a scheme is proposed that reduces
jitter in the case of deadline monotonic and EDF scheduling. The scheme is
based on shifting the periodic tasks by introducing task offsets and to en-
sure that the tasks have highest priority when they are requested. If this
scheme is combined with postponing output transmission until its dead-
line; if it finishes before its deadline is reached, the jitter in computational
will be very small.

Multiple-task approach: In the multiple-task approach the problem of
mapping the control loop timing constraints into task attributes becomes
more complicated. The period calibration method (PCM), [Gerber et al.,
1995], derives task attributes from a given task graph design of a system
and the specified end-to-end constraints (e.g., constraints on input-output
latency). The tasks are implemented as periodic tasks that are invoked
and executed periodically at a fixed rate. The method involves the solution
of an NP-hard nonlinear optimization problem. Two heuristics based on
harmonicity constraints between the task periods are presented in [Ryu
and Hong, 1999]. Based on these, a polynomial-time algorithm is proposed
that in most cases finds solutions that are very close to the optimal ones.
The problem of task attribute assignment is also studied in [Bate and
Burns, 1999].

5. Scheduling under overload conditions

One of the key issues in this project is the relaxation of the requirement
on a known worst-case task execution time. Our main approach to this
will be to use on-line measurements of actual execution time. However,
there are also other possibilities. The simplest approach is to simply treat
the actual execution times that are longer than the worst-case bound as
overload conditions and then try to use some of the techniques that have
been developed for this, for example robust scheduling. In this section we
will give an overview of the work that has been performed in this area.
For now we will focus on static approaches—dynamic approaches will be
discussed in Section 7.

The model used in overload scheduling often associates a value with
the completion of a task within its deadline. For a hard task, the failure to
meet the deadline is considered intolerable. For soft tasks, a positive value
is associated with each task. If a soft task succeeds then the system gains
its value. If a soft task fails, then the value gained by the system decreases.
Sometime also the notion of a firm task is used. For a firm task there is no
value for a task that has missed its deadline, but there is no catastrophe
either. An overview of value-based scheduling is given in [Burns, 1998].
When a real-time system is overloaded, not all tasks can be completed by
their deadlines. Unfortunately, in overload situations there is no optimal
on-line algorithm that can maximize the cumulative value of a task set.

17

Hence, scheduling must be made using best-effort algorithms. The objective
is to complete the most important of the tasks by their deadline, and to
avoid unwanted phenomena such as the so called domino effect. This hap-
pens when the first task that misses its deadline may cause all subsequent
tasks to miss their deadlines. For example, dynamic-priority schemes such
as EDF are especially prone to domino effects. In fixed-priority scheduling
the user has more control over which tasks that will meet their deadlines
also in the case of overloads.

It is normally assumed that when a task is released its value and dead-
line are given. The computation time may be known either precisely or
within some range. The value density of a task is its value divided by the
computation time. The importance ratio of a set of tasks is the ratio of the
largest value density to the smallest value density. When the importance
rate is 1, the task set has uniform value density, i.e. the value of a task
equals its computation time. An on-line scheduler has a competitive factor,
r, 0 < r ≤ 1, if and only if it is guaranteed to achieve a cumulative value of
at least r times the cumulative value achievable for an off-line scheduler on
any task set. The competitive multiplier is defined as 1/r. In [Shasha and
Koren, 1995], Dover, an optimal on-line scheduling algorithm is presented.
It schedules to completion all tasks in non-overload periods and achieves
at least 1/(1 +

√
k)2 of the value of an off-line scheduler, where k is the

importance ratio. The method also relaxes the firm deadline assumption
by giving a positive value to firm tasks even if they complete after their
deadlines.

In [Buttazzo et al., 1995], a comparative study is performed of four
priority-assignment schemes, EDF, HVF (highest value first), HDF (high-
est value density first), and a mixed scheme where the priority is com-
puted as a weighted sum of the value and the deadline. The four basic
algorithms were all extended into two additional classes: a class of guar-
anteed algorithms, characterized by a task acceptance test, and a class of
robust algorithms, characterized by a task rejection mechanism. Simula-
tion experiments showed that the robust versions of the algorithms were
the most flexible ones.

The transform-task method [Tia et al., 1995] uses a threshold value to
separate jobs guaranteed by rate-monotonic scheduling from those which
would require additional work. The latter jobs are split into two parts. The
first part is considered as a periodic job with a resource requirement equal
to the threshold. The second part is considered to be a sporadic job and is
scheduled via a sporadic server when the periodic part has completed.

It is difficult to improve overload performance with purely algorithmic
techniques, what is needed is essentially more processing power. Several
approaches have considered the use of more processing power in order to
reduce the execution requirements of the tasks, e.g., [Baruah and Haritsa,
1997]. Another approach is to replicate the processor with several identical
copies. In [Baruah, 1998b] a characterization is given of the relationship
between overload performance and the number of processors needed.

18

6. Control and Scheduling Co-Design

A prerequisite for an on-line integration of control and scheduling theory is
that we are able to make an integrated off-line design of control algorithms
and scheduling algorithms. Such a design process should ideally allow an
incorporation of the availability of computing resources into the control
design by utilizing the results of scheduling theory. This is an area where,
so far, relatively little work has been performed.

One of the first references that addressed this problem was [Seto et al.,
1996]. An algorithm was proposed that translates a control performance
index into task sampling periods considering schedulability among tasks
running with pre-emptive priority scheduling. The sampling periods were
considered as variables and the algorithm determined their values so that
the overall performance was optimized subject to the schedulability con-
straints. Both RM and EDF scheduling were considered. The performance
index was approximated by an exponential function only and the approach
did not take input-output latency into account. The approach was further
extended in [Seto et al., 1998b].

An approach to optimization of sampling period and input-output la-
tency subject to performance specifications and schedulability constraints
is presented in [Ryu et al., 1997; Ryu and Hong, 1998]. The control perfor-
mance is specified in terms of steady state error, overshoot, rise time, and
settling time. These performance parameters are expressed as functions
of the sampling period and the input-output latency. A heuristic iterative
algorithm is proposed for the optimization of these parameters subject to
schedulability constraints. The algorithm is based on using the period cal-
ibration method (PCM) for determining the task attributes. A case study
involving the control design for a CNC controller is presented. The tasks
are scheduled using EDF and a cyclic executive is used for run-time dis-
patching. The same application is further explored in [Kim et al., 1999]
where it was revealed that the intertask communication scheme of PCM
may incur large latencies, and that the absence of overload handling is a
critical limitation.

7. Dynamic Task Adaptation

A key issue in any system that allows dynamic feedback between the con-
trol algorithms and the on-line scheduler is the ability to dynamically ad-
just task parameters. Reasons for the adjustments could for example be
to improve the performance in overload situations and to dynamically op-
timize control performance. Examples of task parameters that could be
modified are periods and deadlines. One could also allow the maximum al-
lowed worst-case execution time for a task to be varied. In order for this to
be realistic, the controllers must support dynamically changing execution
times. Changes in the task period and in the execution time both have the
effect of changing the utilization that the task requires.

7.1 Quality-of-service resource allocation
Much of the work on dynamic task adaptation during recent years is mo-
tivated by the requirements of multimedia applications. Activities such

19

as voice sampling, image acquisition, sound generation, data compression,
and video playing are performed periodically, but with less rigid timing
requirements than those that can sometimes be found in closed-loop con-
trol systems. Missing a deadline may decrease the quality of service (QoS)
but does not cause critical system faults. Depending on the requested QoS,
tasks may adjust its attributes to accommodate the requirements of other
concurrent activities.

On-line admission control has been used to guarantee predictability of
services where request patterns are not known in advance. This concept
has also been applied to resource reservation for dynamically arriving real-
time tasks, e.g. in the Spring kernel [Stankovic and Ramamritham, 1991].
A main concern of this approach is predictability. Run time guarantees
given to admitted tasks are never revoked, even if they result in rejecting
subsequently arriving, more important requests competing for the same
resources. In soft real-time systems, services are more concerned with max-
imizing overall utility, by serving the most important requests first, than
guaranteeing reserved resources for individual requests. Priority-driven
services can be categorized this way, and are supported in real-time ker-
nels such as Mach [Tokuda et al., 1990]. Under overload conditions, lower-
priority tasks are denied service in favor of more important tasks. In the
Rialto operating system [Jones and Leach, 1995], a resource planner at-
tempts to dynamically maximize user-perceived utility of the entire sys-
tem.

Q-RAM, a resource allocation scheme for satisfying multiple QoS dimen-
sions in resource constrained environments was presented in [Rajkumar
et al., 1997]. Using the model, available system resources can be appor-
tioned across multiple applications such that the net utility accrued to the
end users of those applications could be maximized. In [Lee et al., 1998],
the mirror problem of apportioning multiple resources to satisfy a single
QoS dimension is studied. In [Abdelzaher et al., 1997] a QoS renegotia-
tion scheme is proposed as a way to allow graceful degradation in cases of
overload, failures or violation of pre-run-time violations. The mechanism
permits clients to express, in their service requests, a spectrum of QoS
levels they can accept from the provider and perceived utility of receiv-
ing service at each of these levels. Using this, the application designer,
e.g., control engineer, is able to express acceptable tradeoffs in QoS and
their relative cost/benefit. The approach is demonstrated on an automated
flight-control system.

7.2 Period skipping
A simple task attribute adjustment is to skip an instantiation of a periodic
task. This is equivalent to require that the task period should be doubled
for this particular instantiation, or that the maximum allowed execution
time should be zero. Scheduling of systems that allow skips is treated in
[Koren and Shasha, 1995] and [Ramanathan, 1997]. The latter paper con-
siders scheduling that guarantees that at least k out of n instantiations will
execute. A slightly different motivation for skipping samples is presented
in [Caccamo and Buttazzo, 1997]. Here the main objective is to use the
obtained execution time to enhance the responsiveness of aperiodic tasks.

20

7.3 Task attribute adjustments
In [Buttazzo et al., 1998] an elastic task model for periodic tasks is pre-
sented. Each task is characterized by five parameters: computation time
Ci, a nominal period Ti0, a minimum period Timin , a maximum period Timax ,
and an elasticity coefficient ei ≥ 0. A task may change its period within
its bounds. When this happens the periods of the other tasks are adjusted
so that the overall system is kept schedulable. An analogy with a linear
spring is used, where the utilization of a task is viewed as the length of
a spring that has a given rigidity coefficient (1/ei) and length constraints.
The elasticity coefficient is used to denote how easy or difficult it is to ad-
just the period of a given task (compress the string). A task with ei � 0
can arbitrarily vary its period within its range, but it cannot be varied by
the scheduler during load reconfiguration. The approach can be used under
fixed or dynamic priority scheduling. In principal it is possible to modify
the approach so that it also adjusts execution times.

Adjustment of task periods has also been suggested by others. For ex-
ample, [Kuo and Mok, 1991] propose a load-scaling technique to gracefully
degrade the workload of a system by adjusting the task periods. Tasks
are assumed to be equally important and the objective is to minimize the
number of fundamental frequencies to improve schedulability under static
priority assignments. In [Nakajima and Tezuka, 1994] a system is pre-
sented that increases the period of a task whenever the deadline of the
task is missed. In [Lee et al., 1996] a number of policies to dynamically ad-
just task rates in overload conditions are presented. In [Nakajima, 1998]
it is shown how a multimedia activity can adapt its requirements during
transient overloads by scaling down its rate or its computational demands.

The MART scheduling algorithm [Kosugi et al., 1994; Kosugi et al.,
1996; Kosugi and Moriai, 1997] also supports task-period adjustments. In
[Kosugi et al., 1999] MART is extended to also handle task execution time
adjustments. The system handles changes in both the number of periodic
tasks and in the task timing attributes. Before accepting a change request
the system analyzes the schedulability of all tasks. If needed it adjusts the
period and/or execution time of the tasks to keep them schedulable with
the rate monotonic algorithm. For the task execution time it is assumed
that a minimum value exists in order for the task to guarantee a minimum
level of service. For the task-period, neither minimum nor maximum are
assumed to exist. The MART system is implemented on top of Real-Time
Mach.

In [Shin and Meissner, 1999] the approach in [Seto et al., 1996] is ex-
tended, making on-line use of the proposed off-line method for processor
utilization allocation. The approach allows task-period changes in multi-
processor systems. A performance index for the control tasks is used to
determine the value to the system of running a given task at a given pe-
riod. The index is weighted for the task’s importance to the overall system.
The paper also discusses the issue of task reallocation from one processor
to another, the need for consideration of the transient effects of task reallo-
cations, and the question of determining a value for running a redundant
shadow task as opposed to fast recovery. Two algorithms are given for task
reallocation and period adjustments. An inverted pendulum control system
is used as an example.

21

7.4 Mode changes
Mode changes for priority-based preemptive scheduling is an issue that has
received some interest. In the basic model, the system consists of a number
of tasks with task attributes. Depending on which modes the system and
the tasks are in, the task attributes have different values. During a mode
change, the system should switch the task attributes for a task and/or
introduce or remove tasks in such a way that the overall system remains
schedulable during and after the mode change.

A simple mode change protocol was suggested in [Sha et al., 1989]. The
protocol assumes that an on-line record of the total utilization is kept. A
task may be deleted at any time, and its utilization may be reclaimed by
a new task at the end of the old task’s period. The new task is accepted if
the resulting new task set is schedulable according to the rate-monotonic
analysis. The locking of semaphores during the mode change (according to
the priority ceiling protocol) is also dealt with.

In [Tindell et al., 1992], it was pointed out that the analysis of Sha et
al. was faulty. Tasks may miss their deadlines during a mode change, even
if the task set is schedulable both before and after the switch. The tran-
sient effects of a mode change can be analyzed by extending the deadline-
monotonic framework. Formulas for the worst-case response times of old
and new tasks across the mode change are given. New tasks may be given
release offsets (relative to the mode change request) to prevent tasks from
missing their deadlines. No hints are given as to how these offsets should
be chosen.

The deadline-monotonic mode change analysis was both extended and
modified in [Pedro and Burns, 1998]. The analysis can account for old
tasks that are aborted instantly at the mode change request. Furthermore,
all tasks present in the system after the mode change (i.e. unchanged,
changed, and wholly now tasks) must be assigned release offsets relative
to the mode change request. Since the offsets are constant (and assigned
off-line), even unchanged tasks will experience unpredictable and unnec-
essary delay (jitter) during the mode change. Again, few clues are given
as to how the offsets could be assigned.

It is interesting to note, that under EDF scheduling, the reasoning about
the utilization from [Sha et al., 1989] actually seems to hold. In [Buttazzo
et al., 1998], EDF scheduling of a set of tasks with deadlines equal to their
periods is considered. It is shown that a task can decrease its periods at
its next release, as long as the total utilization remains less than one.
It is not known whether the computation time may be changed at the
same time. A drawback of using EDF is that the case of deadlines less
than periods is more difficult to analyze. Also, the computation of worst-
case response times (if needed) is more complex than under fixed-priority
scheduling. Another challenge is how to manage overloads, e.g., ensuring
that the deadlines of critical tasks will not be missed.

7.5 Feedback scheduling
Viewing a computing system as a dynamical system or as a controller is
an approach that has proved to be fruitful in many cases. For example, the
step-length adjustment mechanism in numerical integration algorithms
can be viewed as a PI-controller [Gustafsson, 1991], and the traveling
salesman optimization problem can be solved by a nonlinear dynamical

22

system formulated as a recurrent neural network. This approach can also
be adopted for real-time scheduling, i.e., it is possible to view the on-line
scheduler as a controller. Important issues that then must be decided are
what the right control signal, measurement signals, and set-points are,
what the correct control structure should be, and which process model that
may be used. The idea of using feedback in scheduling has to some extent
been used previously in general purpose operating systems in the form of
multi-level feedback queue scheduling [Kleinrock, 1970; Blevins and Ra-
mamoorthy, 1976; Potier et al., 1976]. However, this has mostly been done
in an ad-hoc way.

So far very little has been done in the area of real-time feedback schedul-
ing. A notable exception is [Stankovic et al., 1999] where it is proposed to
use a PID controller as an on-line scheduler under the notion of Feedback
Control-EDF (FC-EDF). The measurement signal (the controlled variable)
is the deadline miss ratio for the tasks and the control signal is the re-
quested CPU utilization. Changes in the requested CPU utilization are ef-
fectuated by two mechanisms (actuators). An admission controller is used
to control the flow of workload into the system and a service level con-
troller is used to adjust the workload inside the system. The latter is done
by changing between different versions of the tasks with different execu-
tion time demands. A simple liquid tank model is used as an approximation
of the scheduling system.

Using a controller approach of the above kind it is important to be
able to measure the appropriate signals on-line, for example to be able to
measure the deadline miss ratio, the CPU utilization, or the task execution
times. On-line measurements of these entities are not so often discussed.
One exception is [Mok and Liu, 1997].

The controller approach proposed in [Stankovic et al., 1999] is central-
ized in the sense that a central controller/scheduler controls the global
schedulability of the system. An interesting approach would be to try to
instead use decentralized control. Using this approach the periodic tasks
themselves could be viewed as local controllers that adjust their timing
attributes in such a way that the local and the global performance is opti-
mized.

7.6 Statistical scheduling
A slightly different approach to flexibility and uncertainty handling in
scheduling is obtained by using statistical scheduling. Using this approach
things like, e.g., task execution times are modeled by stochastic variables
with a given distribution rather than constant variables. Instead of gen-
erating hard guarantees that the tasks will meet their deadlines or that
dynamically generated tasks will be admitted, the guarantees are proba-
bilistic.

Statistical approaches to scheduling are relatively easy to find. In [Tia
et al., 1995] an analysis was given for the probability that a sporadic job
would meet its deadline when using the transform-task method. The Sta-
tistical Rate Monotonic Scheduling (SRMS) [Atlas and Bestavros, 1998] is
a generalization of the classical RM scheduling and the semi-periodic task
model of [Tia et al., 1995]. A task is modeled by three attributes: the period,
the probability density function for the task’s periodic resource utilization
requirement, and the task’s requested QoS. The SRMS algorithm consists
of two parts: a job admission controller and a scheduler. The scheduler is a

23

simple pre-emptive fixed priority scheduler. The job admission controller is
responsible for maintaining the QoS requirements of the tasks through ad-
mit/reject and priority assignment decisions. Using SRMS the probability
that an arbitrary job is admitted can be calculated.

In the model proposed in [Abeni and Buttazzo, 1999] each task is de-
scribed by a pair of probability density functions: Ui(c), which decides the
probability that the execution time is c and Vi(t) which decides the prob-
ability that the minimum inter-arrival time of the task is t. The method
guarantees that probabilistic deadlines, δ , are respected with a given prob-
ability. A dynamic priority scheduler based on EDF is used. Each soft task
is handled by a dedicated constant bandwidth server. The server assigns
each job an initial deadline. The assigned deadline is postponed each time
the task requests more than the reserved bandwidth.

7.7 Imprecise calculations
The possibility to adjust the allowed maximum execution time for a task ne-
cessitates an approach for handling tasks with imprecise execution times,
particularly the case when the tasks can be described as “any-time algo-
rithms”, i.e., algorithms that always generate a result (provide some QoS)
but where the quality of the result (the QoS level) increases with the exe-
cution time of the algorithm.

The group of Liu has worked on scheduling of imprecise calculations
for long time [Liu et al., 1987; Chung et al., 1990; Liu et al., 1994]. In [Liu
et al., 1991] imprecise calculation methods are categorized into milestone
methods, sieve function methods, and multiple version methods. Milestone
methods use monotone algorithms that gradually refine the result and each
intermediate result can be returned as an imprecise result. Sieve function
methods can skip certain computation steps to tradeoff computation quality
for time. Multiple version methods have different implementations with
different cost and precision for a task.

Scheduling of monotone imprecise tasks is treated in [Chung et al.,
1990]. Two models are proposed. A task that may be terminated any time
after it has produced an acceptable result is logically decomposed into two
parts, a mandatory part that must be completed before deadline, and an
optional part that further refines the result generated by the mandatory
part. The refinement becomes better and better the longer the optional
part is allowed to execute. The two models differ with respect to if the
optional part needs to complete or not. Scheduling of tasks where it is the
average error between the results from consecutive jobs that is important
uses a conservative and predictable strategy for the mandatory parts and
a less conservative strategy for the optional parts. A number of RM-based
scheduling algorithms for these types tasks are described. The schedula-
bility of tasks where it instead is the cumulative effect of the errors that
is important is also discussed.

7.8 Dynamic system upgrades
An alternative view of the need for flexibility is obtained if we look upon
the problem of performing safe on-line upgrades of real-time systems, in
particular safety-critical real-time control systems. The Simplex group at
SEI/CMU has developed a framework, Simplex, that allows these types of
on-line upgrades [Seto et al., 1998a; Sha, 1998]. The basic building block

24

of Simplex is the replacement unit. A replacement unit consists of a task
together with a communication template. The replacement units are or-
ganized into application units that also contain communication, and task
management functions. A special safety unit is responsible for basic reli-
able operation and operation monitoring. A typical example of a replace-
ment unit is a controller. A common setup is that the system contains two
units: a safety controller and a baseline controller. The baseline controller
provides the nominal control performance and it is assumed that this con-
troller is executing when a new upgraded version of this controller should
be installed.

Simplex considers a three-dimensional fault model consisting of timing
faults, system faults, and semantical faults that effect the logical control
behavior of the system. RM analysis is used to ensure schedulability under
fault-free conditions. If a new controller does not return an answer before
the deadline, Simplex switches in the safety controller, and then eventu-
ally, when the controlled process is back in a safe state, switches back to
the baseline controller. System faults generated by the new controller are
trapped by the operating system. In the same way as before Simplex will
switch to the safety controller and then back to the baseline controller.
Semantic faults are caught by the analytical redundancy obtained by hav-
ing the safety controller monitoring the operation. The safety controller is
responsible for monitoring that the controlled system is in a safe state and
that the performance is better then that obtained by the baseline controller.
If any of these two conditions should not be fulfilled, the safety controller
is switched in the same way as before.

Dynamic change management and version handling is a large area
where a lot of work has been performed, e.g., [Kramer and Magee, 1990;
Stewart et al., 1993; Gupta and Jalote, 1996]. However, most of this is
outside the area of this report.

8. Flexibility and aperiodicity in control

The aim of this section is to give an overview of the possibilities that con-
trol theory provides in the context of integrated control and scheduling.
Special emphasis will be given to how changes in sampling periods could
be handled, and to which extent different control algorithms can viewed as
imprecise algorithms of the type discussed in Section 7.

8.1 Controller implementation
A computer-based control system can be designed in two different ways:

1. Discrete-time design

2. Discretization of a continuous-time design

In both cases the interface to the process consists of AD and DA converters.
The AD converter acts as a sampler that returns a snapshot value of a con-
tinuous time signal, and the DA converter acts as a hold circuit that takes a
discrete-time signal and converts it into a continuous-time signal. Normally
zero-order hold is used, in which case the resulting continuous-time signal
is piecewise constant between the DA conversions. In certain situations it
is advantageous to instead use first-order hold, where the continuous-time

25

signal becomes piecewise linear. In the first-order hold case, the DA con-
version is implemented as a high-frequency periodic process, unless special
DA hardware is used.

Discrete-time design: The basic idea behind discrete or sampled control
theory is to only consider the system through the values of the system
inputs and outputs at the sampling instants, i.e., from the point of view of
the computer according to Fig. 4.

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer
uk

yk

tt

t

y t()

t

D-A A-D

Figure 4 Sampled control loop

In order to do this, a sampled version of the continuous system model
is derived. This is done by letting the process inputs be piecewise constant
signals and then solving the system equation by calculating step responses
as in the following. Given the continuous time system description

dx
dt
� Ax(t) + Bu(t)

y(t) � C x(t) + Du(t),
the solution to the system equation is given by

x(t) � eA(t−tk)x(tk) +
∫ t

tk

eA(t−s′)Bu(s′) ds′

� eA(t−tk)x(tk) +
∫ t

tk

eA(t−s′) ds′ Bu(tk) (u piecewise constant)

� eA(t−tk)x(tk) +
∫ t−tk

0
eAs ds Bu(tk) (variable change)

� Φ(t, tk)x(tk) + Γ(t, tk)u(tk)
From this the values at t � tk+1 are given by

x(tk+1) � Φ(tk+1, tk)x(tk) + Γ(tk+1, tk)u(tk)
y(tk) � C x(tk) + Du(tk)

where

Φ(tk+1, tk) � eA(tk+1−tk)

Γ(tk+1, tk) �
∫ tk+1−tk

0
eAsds B

26

The expression above is valid both for periodic and aperiodic sampling.
However, normally periodic sampling, i.e., tk � k ⋅h, is assumed. This leads
to the well-known discrete-time system description.

x(kh+ h) � Φx(kh) + Γu(kh)
y(kh) � C x(kh) + Du(kh)

where

Φ � eAh

Γ �
∫ h

0
eAs ds B

The resulting system description is time-invariant and only describes the
system at the sampling instants. Using similar techniques it is possible to
also sample systems with time delays, both in the simple case when the
time delay is a multiple of the sampling interval and in the case when the
time delay is a fraction of the sampling interval.

From the state-space description above it is also possible to derive input-
output models. These are often based on the forward shift operator

q f (k) � f (k+ 1)

or the backward shift (delay) operator

q−1 f (k) � f (k− 1)

Alternatively, input-output models can be based on z-transforms.
The sampling intervals for discrete-time control designs are normally

based on the desired speed of the closed loop system. A common rule-of-
thumb is that one should sample 4 − −10 times per rise time Tr of the
closed loop system.

Nr � Tr

h
� 4−−10

This gives relatively long sampling intervals, compared to what is used
when discretization-based design is used. The long sampling interval also
means that it may take long time before, e.g., load disturbances are de-
tected by the controller. The reason for this is that the disturbances are
not synchronized with the sampling.

Discretization of continuous-time design: The idea behind this de-
sign philosophy is to perform the design in the continuous time domain,
and then approximate this design by a computer-based controller through
fast sampling. Using this approach it is not necessary to employ any special
sampled control design theory. The price that one pays for this is higher
requirements on fast sampling.

Assume that a controller has been designed in continuous time and that
this controller is expressed on input-output form, i.e., on Laplace transform
form G(s). The goal now is to approximate this design in such a way that
A/D + Algorithm + D/A � G(s) according to Fig. 5

27

Algorithm

Clock

 u kh(){ } y kh(){ }

 H(z) ≈ G (s)

 y(t)u(t)
A-D D-A

Figure 5 Approximation of continuous-time design

This can be done in several ways. The most straightforward way is to
use a simple Euler forward or backward approximation. In forward ap-
proximation a derivative is replaced by its forward approximation, i.e,

dx(t)
dt

� x(t + h) − x(t)
h

This is equivalent to replacing the Laplace operator s with (z − 1)/h in
G(s). In the backward approximation the derivative is instead replaced by

dx(t)
dt

� x(t) − x(t− h)
h

.

This is equivalent to replacing s with (z−1)/zh. The forward approximation
maps the continuous-time stability region (the left half plane) to the half
plane to the left of the line with real part equal to one in the complex plane.
Since the discrete time stability region is the unit circle the approximation
of a stable continuous-time system may lead to an unstable discrete-time
system. The backward approximation instead maps the left half plane into
a smaller circle within the unit circle. A one-to-one mapping between the
left half plane and the unit circle is given by the Tustin approximation
where s is instead replaced by 2(z− 1)/h(z+ 1).

Several rules-of-thumbs exist for choosing the sampling interval for
discretization based designs. A simple rule is the faster the better up to
a certain limit when the limited word-length of the computer becomes a
problem. One example of a rule-of-thumb is

hω c � 0.15− 0.5

where ω c is the cross-over frequency of the continuous-time system (the
frequency where the gain is 1). This gives substantially smaller sampling
intervals then for discrete-time design. However it also means that the
resulting controller is less sensitive to relative variations in the sampling
interval. A variation of 100% in the sampling interval for a discretization
based design may be fairly benign whereas a similar relative variation in
the sampling interval for a discrete-time design would in many cases lead
to an unstable system.

8.2 Compensation for varying sampling intervals
As a rule of thumb, relative variations of sampling intervals that are
smaller than ten percent of the nominal sampling interval need not be

28

compensated for. The sensitivity to sampling period variations is larger
with systems that use slow sampling and for systems with small phase
margins; for such systems small variations in sampling period can lead to
instability.

There are several possible compensation methods, ranging from simple
ad-hoc techniques to quite advanced techniques requiring extensive (off-
line or on-line) calculations. The choice of compensation method depends
on the range of sampling period variations, how often the changes occur
and how sensitive the system is to variations. The cost of implementa-
tion is also an important factor. A related issue is intentional changes in
sampling period. Most compensation schemes assume that the sampling
period variations are unintentional and unknown in advance. This is the
case when the variations are due to clock inaccuracy, overload or computer
failure.

If the changes of sampling period are rare, or if the sampling period
varies slowly, then the problem can be solved using gain-scheduling. This
means that several sets of controller parameters are pre-calculated and
stored in a table with the sampling rate as input parameter. When the
sampling rate changes a new set of controller parameters are used. Small
transients can occur when the controller parameters changes and special
care must be taken to minimize these mode bumps. However, the changes
in sampling period often occur continuously and should not be treated this
way. The simplest compensation methods are ad-hoc, but seem to work
quite well. One possibility is to modify the approximation methods men-
tioned in Section 8.1. For example, the (backward) approximation method
becomes

dx(t)
dt

� x(tk+1) − x(tk)
hk

where hk � tk+1− tk is time-varying. This works fine for the I- and D- parts
in a PID controller2

h = time-oldtime

e = r-y

P = Kp*e

I = I + Ki*e*h

D = Kd*(e-olde)/h

u = P + I + D

oldtime = time

olde = e

The idea must be modified for higher order controllers, see [Wittenmark
and Åström, 1980], [Albertos and Salt, 1990].

If the nominal controller instead is a linear feedback with Kalman filter
then a solution may be to use a time-varying Kalman filter that gives state
estimates at the actual time instances (here illustrated with the Kalman
filter without direct term):

u(tk) � −Lx̂(tk)
x̂(tk+1) � Φ(hk)x̂(tk) + Γ(hk)u(tk) + Ke(tk)

2The code for PID and Kalman filtering shown in this section are only skeletons showing
the main details, and are not recommended for implementation.

29

where Φ(hk) and Γ(hk) can be pre-calculated in one-dimensional tables.
More involved schemes can also be used, where also L and K depend on
hk � tk+1 − tk.

Another approach is to make the nominal design robust to system vari-
ations in general. Many robust design methods can be used, such as H∞,
Quantitative Feedback Theory (QFT) and µ -design. Note that the result
of variations in sampling delay can be captured by an increased process
noise level in the system by writing the system as

xk+1 � Φ(hnom)xk + Γ(hnom)uk + dk

yk � C xk + Duk + nk

where the new process noise

dk � dk + (Φ(hk) −Φ(hnom)xk + (Γ(hk) − Γ(hnom))uk

has an increased covariance. This is interesting, because it relates to a spe-
cific design method, namely LQG/LTR, a variation of the linear quadratic
design method where increased robustness is achieved by introduction of
artificial process noise. The method usually results in a faster observer
design.

There are also compensation schemes based on optimal control methods
and stochastic control theory. A more involved design method, which uses
probabilistic information about typical sampling variations, is presented in
[Nilsson et al., 1998b; Nilsson et al., 1998a].

8.3 Compensation for computational delay
In the analysis in the beginning of Section 8 and in the previous discussion
about varying sampling period it was assumed that the A-D node and the
D-A node where synchronized so that the input signal changes instanta-
neously at the A-D sampling instances tk. There are several reasons why
this might not hold in reality. First of all, the A-D node, the computer node,
and the the D-A nodes might use different clocks if they are implemented
in different hardware nodes. They may also be implemented as separate
tasks, so that one or several context switches need to be performed. Sec-
ondly, the A-D and D-A action might be separated in time, both by the
computation time of the control action and by transmission time of signals
over a communication network. The time between the the related sampling
and actuation actions is called the control delay.

To sample a system composed of a control delay and a continuous-time
state-space system, see Figure 6, one can follow the calculation in the
beginning of Section 8 replacing the system equations with

dx
dt
� Ax(t) + Bu(t− τ)

y(t) � C x(t) + Du(t)

The sampled system will now be on the form (assuming that the control
delay τ is less than the sampling interval h)

x(kh + h) � Φx(kh) + Γ0u(kh) + Γ1u(kh− h),

30

u t()

t
τ

kh − h kh kh + h kh + 2h t

Delayed
signal

Figure 6 Relationship among u(t) and the delayed signal u(t − τ) , and the
sampling instances.

where

Φ � eAh

Γ0 �
∫ h−τ

0
eAs ds B

Γ1 �
∫ h

h−τ
eAs ds B

If the control delay is fixed, and known in advance, it is possible to
compensate for it in the controller design. The control delay has the same
malign influence on the system as any process delay. The resulting achiev-
able control performance will be decreased the longer the control delay is,
but the detrimental effects can be minimized by careful controller design.

When the control delay is varying from sample to sample the problem
becomes more complicated. If the control delay is bounded, i.e. 0 ≤ τ ≤ τ max
then one possibility is to introduce buffers and always wait for the longest
possible delay τ max. This can however be quite pessimistic and lead to
decreased obtainable performance. Another possibility is to design for a
good estimate of the control delay, such as the average value, or the last
value of the delay.

A third option is possible if probabilistic knowledge of the delay is
present. Then stochastic control theory can be used to optimize perfor-
mance. The setup in Fig. 7 is studied in [Nilsson, 1998]. The conclusion in
this work is that very good performance can be obtained even under quite
large variations of control delay. The case of joint variations in control delay
τ and sampling period h is treated in [Nilsson et al., 1998a].

8.4 Imprecise control algorithms
Scheduling of imprecise calculations is an area where the scheduling com-
munity has been active. As discussed in Section 7 imprecise calculation
methods can be categorized into milestone methods, sieve function meth-
ods, and multiple version methods. Examples of all three types can be found
in control. Control algorithms that are based on on-line numerical solution
to an optimization problem every sample can be viewed as milestone or
“any-time” methods. The result generated from the control algorithm is
gradually refined for each iteration in the optimization up to a certain

31

Actuator
node Process Sensor

node

Controller
node

Network

h

τ sc
kτ ca

k

τ c
k

u(t) y(t)

Figure 7 Distributed digital control system with communication delays, τ sc
k

and τ ca
k . The computational delay, τ c

k, is also indicated. The control delay equals
τ sc

k + τ c
k + τ ca

k .

bound. Examples of this type of control algorithms are found in model-
predictive control. Similar situations exists for all control algorithms that
can be written on iterative form, e.g., on series form. One possibility could,
e.g., be controllers on polynomial forms where the terms are arranged in
decreasing order of magnitude.

It is also straightforward to find examples of controllers that be cast on
sieve function form. For example, in an indirect adaptive controller the up-
dating of the adapted parameters can be skipped when time constraints are
hard, or, in a LQG controller the updating of the observer can be skipped
when time constraints are hard. Similarly, in a PID controller the updat-
ing of the integral part may be skipped if needed. The extreme case is of
course to skip the entire execution of the controller for a certain sample.
This is equivalent to temporarily doubling the sampling interval. However,
in all cases it is important to guarantee that the skips are only performed
temporarily, and not too frequent. Also, the system may be more or less
sensitive to skips depending on the external conditions. For example, dur-
ing system transients due to, e.g., a set-point change or a load disturbance
it the skip of a part of the control algorithm and the resulting degraded
performance may be less welcome than during steady-state operation. A
similar situation holds for variations in sampling interval and variations
in computational delay.

Finally it is also possible to find examples of multiple version methods in
control, e.g., situations with one nominal control algorithm and one backup
algorithm. However, in most cases the motivation for having the backup
algorithm is control performance rather then timing issues, compare the
discussions about the Simplex algorithm in Section 7.

Model predictive control: Model predictive control (MPC) is method-
ology for solving control problems in the time domain. It is based on three
main concepts:

1. Explicit use of a model to predict the process output at future discrete
time instants, over a prediction horizon.

2. Computation of a sequence of future control actions over a control
horizon by minimizing a given objective function, such that the pre-

32

dicted process output is as close as possible to a desired reference
signal.

3. Receding horizon strategy, so that only the first control action in the
sequence is applied, the horizons are moved towards the future and
optimization is repeated.

The future process outputs are predicted over the prediction horizon Hp
using a model of the process. The predicted output values, denoted ŷ(k+ i)
for i � 1, . . . , Hp, depend on the state of the process at the current time
k (for input–output models, for instance, represented by a collection of
past inputs and outputs) and on the future control signals u(k + i) for
i � 0, . . . , Hc − 1, where Hc is the control horizon. If Hc is chosen such
that Hc < Hp, the control signal is manipulated only within the control
horizon and remains constant afterwards, i.e., u(k+ i) � u(k+ Hc −1) for
i � Hc , . . . , Hp − 1, see Figure 8.

k

referencer

Hc

Hp

predicted outputŷ

control inputu

past outputy

k-1 k+1 ... k+Hc
... k+Hp

Figure 8 The basic principle of model predictive control.

The sequence of future control signals u(k + i) for i � 0, . . . , Hc − 1 is
computed by optimizing a given objective (cost) function, in order to bring
and keep the process output as close as possible to the given reference
trajectory r, which can be the set-point itself or, more often, some filtered
version of it. The most often used objective functions are modifications of
the following quadratic function [Clarke et al., 1987]:

J �
Hp∑
i�1

α i (r(k+ i) − ŷ(k+ i))2 +
Hc∑
i�1

β i∆u(k+ i− 1)2 (3)

The first term accounts for minimizing the variance of the process out-
put from the reference, while the second term represents a penalty on the
control effort (related for instance to energy). The latter term can also be
expressed by using u itself or other filtered forms of u, depending on the
problem. The vectors α and β define the weighting of the output error and
the control effort with respect to each other and with respect to the predic-
tion step. Constraints, e.g., level and rate constraints of the control input
or other process variables can be specified as a part of the optimization

33

problem. Generally, any other suitable cost function can be used, but for a
quadratic cost function, a linear, time-invariant model, and in the absence
of constraints, an explicit analytic solution of the above optimization prob-
lem can be obtained. Otherwise, numerical (usually iterative) optimization
methods must be used. In the more industrially relevant case of a quadratic
cost function, a linear, time-invariant model and inequality constraints on
u, δ u, and y, the resulting optimization problem is quadratic and must be
solved every sample.

Only the control signal u(k) is applied to the process. At the next sam-
pling instant, the process output y(k+1) is available and the optimization
and prediction can be repeated with the updated values. This is called the
receding horizon principle. The control action u(k + 1) computed at time
step k+ 1 will be generally different from the one calculated at time step
k, since more up-to-date information about the process is available.

MPC fits nicely into the general scheme described in this report. The op-
timization technique employed is based on sequential unconstrained mini-
mization techniques. The calculations performed in every sample are orga-
nized as a sequence of iterations (outer iterations). In every outer iteration
a number of inner, Newton iterations are performed. An interesting possi-
bility is to calculate bounds on how much the objective function decreases
for each new iteration.

MPC can also be used in other ways. In every sample the control signals
for the full control horizon are calculated. Normally only the first one is
used, i.e., applied to the process, and the rest are discarded. However,
another possibility is to instead store the future values of the control signals
and to use them if the execution time is limited and/or the measured values
of y correspond well with the ones that were used in optimization step. In
this case it is essentially possible to use the MPC in open loop if there is
not enough time to even start a new optimization.

8.5 Event-based sampling
The traditional way to design digital control systems is to sample the sig-
nals equidistantly in time. Although fixed sampling periods is adequate for
many simple control loops, there are a lot of control problems where it is
more natural to use varying sampling intervals. One such example is fuel
injection engines that are sampled against engine speed, another exam-
ple is in manufacturing systems, such as paper machines, where sampling
is related to production rate. Another reason for using non equidistant
sampling is if there is a large cost related to sampling, or if the rate of
sampling is governed by unpredictable events. Such examples occur for
example in biology and in economics. One motivation for using clever sam-
pling is that the communication resources are limited and no unnecessary
signals should be sent in the network.

There are several alternatives to periodic sampling. A basic prereq-
uisite for the implementation of event-triggered sampling is that ‘signifi-
cant events’ are detected. The traditional techniques to do this are to use
fast polling (sampling) or event-triggered sensors that generates an event
whenever the signal passes a certain limit. A typical situation is that the
sensor sends a signal whenever the scalar signal y(t) passes any of a cer-
tain pre-specified levels in the sampling set Y � {y1, . . . , yN}. The times

34

tk when this happens will be called sampling times and are defined by

y(tk) � yik

where ik ∈ {1, . . . , N} determine the sampling level at sampling time tk.
Such a scheme has many conceptual advantages. Control is not executed
unless it is required, control by exception, see [Kopetz, 1993]. This type of
sampling is natural when using many digital sensors such as encoders. A
disadvantage is that analysis and design are complicated.

Event-based sampling occurs naturally in many contexts. A common
case is in motion control where angles and positions are sensed by encoders
that give a pulse whenever a position or an angle has changed by a specific
amount. Event based sampling is also a natural approach when actuators
with on-off characteristic are used. Satellite control by thrusters is a typical
example, [Dodds, 1981]. Systems with pulse frequency modulation, [Polak,
1968], [Pavlidis and Jury, 1965], [Pavlidis, 1966],
[Skoog, 1968], [Noges and Frank, 1975], [Skoog and Blankenship, 1970],
[Frank, 1979], [Sira-Ramirez, 1989] and [Sira-Ramirez and Lischinsky-
Arenas, 1990] are other examples. In this case the control signal is re-
stricted to be a positive or negative pulse of given size. The control actions
decide when the pulses should be applied and what sign they should have.
Other examples are analog or real neurons whose outputs are pulse trains,
see [Mead, 1989] and [DeWeerth et al., 1990]. Analysis of systems with
event based sampling are related to general work on discontinuous sys-
tems, [Utkin, 1981], [Utkin, 1987], [Tsypkin, 1984] and to work on impulse
control, see [Bensoussan and Lions, 1984]. It is also relevant in situations
where control complexity has to be weighted against execution time. It
also raises other issues such as complexity of control. Control of production
processes with buffers is another application area. It is highly desirable to
run the processes at constant rates and make as few changes as possible
to make sure that buffers are not empty and do not overflow, see [Petters-
son, 1969]. Another example is where limited communication resources put
hard restrictions on the number of measurement and control actions that
can be transmitted.

Much work on systems of this type was done in the period 1960–1980.
Analysis of event-based sampled systems is harder than for time-based
sampled systems. This is due to the fact that sampling is no longer a
linear operation. There are several papers that treat special system setups,
such as observers for linear system with quantized outputs, [Sur, 1996],
[Delchamps, 1989]many of which use classical ideas from Kalman observer
design. To illustrate the techniques consider an output z(t) observed with
additive noise. This is usually modeled by

y(t) � z(t) + e(t)
where the noise e(t) is white with covariance matrix R(t). The covariance
matrix R(t) describes the accuracy of the measurements at time t. There
are well understood techniques for doing optimal filtering and control in
this situation.

The case where a signal is sent exactly when the output y(t) passes a
level yk, can be modeled by setting

R−1(t) � δ (t− tk),

35

where δ (t − tk) is a Dirac function at time tk. This means that there is
zero information about the signal y until it hits the level yk. With this
model the analysis fits the standard mathematical framework and classical
observers can be tried. The approach is however suboptimal since there
is information also before the signal reaches the new level yk. Actually,
one has the additional information that the signal has NOT reached a new
level. Optimal observers that use this information are probably much more
complicated.

In [Åström and Bernhardsson, 1999] it is shown that event-based sam-
pling is more efficient than equidistant sampling. For example, an integra-
tor system driven by white noise must be sampled 3–5 times faster using
equidistant sampling than using event-based sampling to achieve the same
output variance.

Systems with mixed continuous and discrete variables, such as event-
triggered sampled systems, are also studied in hybrid control systems. This
is a rapidly increasing field in control theory. A hybrid control system mixes
continuous variables with discrete variable (on/off etc) It is hard to make
an overview since there are almost as many approaches as authors in
the field. There are several conferences devoted to hybrid control, see for
example [Morse, 1995]. There are also many sessions devoted to hybrid
control on the large international conferences such as IEEE Conference
on Decision and Control (CDC), Automatic Control Conference (ACC) and
International Federation of Automatic Controls conferences (IFAC).

Just as event-triggered sampling can be used for deciding suitable mea-
surement times, one can use event-triggering instead of time-triggering for
choice of actuator signal. The motivation can be that it costs energy etc, to
change the control signal, so such changes should be avoided. The standard
linear-quadratic control theory where quadratic weight are put on states
and control signals has been extended also with discontinuous costs on
changes in control signal. Such a cost can be either fixed or dependent on
the size of the control change.

9. WCET analysis

Essentially all real-time scheduling algorithms are based on estimations
of the worst-case execution time (WCET) of scheduled tasks. A WCET
prediction should provide a prediction that is a tight upper bound of the
actual WCET. That is, WCET estimations should be close to, but no lower
than, the actual WCET.

The problem of bounding the WCET is twofold:

Hardware-level analysis: determining the WCET (in cycles or nanosec-
onds) of a piece of object code on a particular hardware platform.

Structure-level analysis: determining the execution time of the longest
possible path in a program (or part of it) based on the execution times
of individual pieces of the program.

Note that this division resembles the division of compilers into backends
and frontends.

36

Structure-level analysis
The timing schema approach [Shaw, 1989] was the basis for an experimen-
tal timing tool targeted at a subset of the C language [Park and Shaw,
1991]. However, in that work the timing schema concept was used as a
“reasoning methodology for deterministic timing” rather than as an actual
implementation.

In the timing schema approach, a WCET prediction is associated with
each “atomic block”, where an atomic block is essentially any piece of se-
quential source code. (The original timing schema approach is concerned
with source code rather than object code.) Once timing predictions have
been produced for the atomic blocks in a program, predictions can be cal-
culated for composite constructions using their constituents. For example,
the execution time of the assignment statement

a = b * c;

may be described as T(b)+T(c)+T(∗)+T(a)+T(�), where T(X) denotes
the worst-case execution (or evaluation) time of the node X in the abstract
syntax tree.

An important subproblem in structure level analysis is to determine
bounds for loop iterations and recursion depths. Either the programmer
supplies explicit annotations on loops and recursive calls, or the analysis
somehow computes the bounds automatically.

One way to automatically determine some loop bounds (and recursion
depths) is to use symbolic execution [Ermedahl and Gustafsson, 1997;
Lundqvist and Stenström, 1998; Altenbernd, 1996], that is, to execute the
program as usual but allow variables to assume the special value unknown.
Program input assumes the value unknown. Any computation involving an
unknown value yields the value unknown. Whenever execution reaches a
branch in control flow that depends on an unknown value, both paths are
executed. The most important drawback of symbolic execution is that it
may never terminate, even if the analyzed program has a bounded WCET.

Another approach is to formulate the WCET of a program as an integer
linear programming (ILP) problem [Li et al., 1995]. As indicated below,
the approach can be extended to model cache behavior as well. However,
the ILP approach is comparatively computing-intensive and unsuitable for
interactive analyses.

Hardware level analysis
Modern processors employ a variety of techniques to enhance performance,
such as caching, pipelining, and speculative execution. Although these tech-
niques enhance average-case performance, they also make it considerably
more difficult to predict the worst-case performance. Assuming the worst
case to occur for each instruction can give WCET overestimations by a fac-
tor of 10-100 or more. A scheduling based on such pessimistic assumptions
effectively wastes the performance offered by modern processors.

Existing hardware level analysis techniques typically operate on object
code representations of programs. One approach is the iterative low-level
data-flow analysis employed by [White et al., 1997], addressing the effects
of data caches, instruction caches, and pipelining. Symbolic execution, as
used for structure level analysis, can in some cases be used to predict
low-level hardware performance [Lundqvist and Stenström, 1998]. Other

37

approaches include abstract interpretation [Alt et al., 1996] and extending
the ILP approach (mentioned above) [Li et al., 1995].

The original timing schema approach (presented above) does not deal
with hardware aspects of WCET analysis. However, the extended timing
schema [Lim et al., 1996] is designed to accommodate such hardware as-
pects. In the extended timing schema approach, the WCET estimations of
atomic blocks are not represented by simple integers (i.e. constant times),
but rather by a “worst-case timing abstraction” (WCTA). The WCTA data
structure for an atomic block b is a representation of how the execution of
b would affect the processor state (pipeline and caches).

10. Research problems

Integrated control and scheduling contains a number of interesting re-
search problems. Some of them are outlined here.

10.1 Execution time measurements
A prerequisite for integrated control and scheduling is on-line measure-
ments of the actual task execution times. Several open issues exist. One
possibility is to let the task dispatcher be responsible for execution time
measurements. Another alternative is to let the tasks themselves perform
the time measurements by calling appropriate kernel primitives at vital
points in the code. One possibility is that the time measurement code is
automatically added to the application task by the programming environ-
ment. Another open issue is how to handle interrupts and the execution
time needed by the interrupt handler. Should this be included in the exe-
cution time of the application tasks or should it be measured separately?

10.2 Mode changes
Mode changes are frequent in adaptive real-time control systems. For in-
stance, every adjustment of task timing attributes in a feedback-scheduling
system results in a mode change. A key question is whether the transient
effects of mode changes in real-time control systems can be ignored or not.
Ignoring the effects gives a simpler mode-change protocol and probably bet-
ter average-case performance (no unnecessary delays and less overhead).
Still, it is probably necessary to have a fall-back strategy and some guar-
antees about the worst-case behavior. This could perhaps include a calcula-
tion of the worst-case delay and an estimate of the resulting loss in control
performance.

10.3 Cost functions
Control performance optimization in the context of task attribute adjust-
ments needs cost functions that relate the sampling period with the con-
trol performance for each control loop, cost functions that relate the in-
put/output latency with the control performance and, perhaps also, cost
functions that relate the execution time for the controller (e.g., the num-
ber of iterations in a MPC) with the control performance.

An interesting question is the general nature of these cost functions. For
example, it is not always so that faster sampling gives better performance.

38

For example consider the cost function for a pendulum, described by the
following equations:

dx �
[

0 1

α ⋅ ω 2
0 −d

]
xdt +

[
0

α ⋅ b

]
udt+ dvc

y � [1 0] x, R1c �
[

0 0

0 ω 4
0

]
The natural frequency is ω0, the damping d � 2ζ ω0, and b � ω0/9.81.
If α � 1 the equations describe the pendulum in the upright position
(the inverted pendulum), and with α � −1 they describe the pendulum
in the downward position. The incremental covariance of vc is R1c , which
corresponds to a disturbance on the control signal. The cost for the system
is described by a linear quadratic function:

J(h) � 1
h

∫ h

0
[xT(t) uT (t)]Q

[
x(t)
u(t)

]
dt

The cost function, J, for the inverted pendulum as a function of the sam-
pling interval h is shown in Figure 9 (left). The corresponding function for
the stable pendulum is shown in Figure 9 (left). Figure 9 (right) clearly

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5000

10000

15000
Cost

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

1600

1800
Cost

Figure 9 The cost Ji(h) as a function of the sampling interval for the inverted
pendulum (left) and for the normal pendulum (right). The plots shows the graphs
for ω 0 � 3.1416(full), 3.7699(dot-dashed), and 4.0841(dashed). Note that the cost
does not depend monotonously on the sampling period.

demonstrates that faster sampling not necessarily gives better control per-
formance.

Cost functions may be used as criteria for choosing sampling interval.
In a setup where several control loops compete for the CPU resources,
cost functions can be used as an instrument for portioning resources. To
optimize the resource sharing using cost functions, we need to investigate
how they depend on the resource, e.g. we need ways of calculating dJ

dh .

10.4 Task attribute adjustments
Most work on task attribute adjustments assume that the cost functions
at hand have certain properties, e.g., are continuous and monotone. in
the control context this is most likely not true. For example, concerning
adjustments of the task period it may from a control point of view only be
possible to adjust the period in discrete steps. An interesting question is

39

whether it is possible to state the problem as a global optimization problem,
and in that case, what the nature of this optimization is, e.g., convex or
non-convex. If it is possible to state the problem as an optimization problem
it is also important to find ways of solving this or an approximation of it
on-line.

In a given situation it may be possible to reduce the CPU utilization
of tasks in different ways, e.g., by increasing the period, reducing the al-
lowed execution time, skipping a sample. An interesting question is to
decide which way to use. Also, the possibility of a control task to handle
task attribute adjustments is most likely dependent on external conditions,
e.g., transient set-point changes, load disturbances, etc. During a set-point
change the possibility to reduce the sampling time may be rather limited.
However, in many cases the system has the possibility to postpone the
set-point change for a short while, and thereby schedule it in a way that
affects the other tasks as little as possible.

10.5 Simulation
Much of the work performed by both control engineers and real-time sys-
tems engineer are verified by simulation. There are tools available both
for simulating different scheduling protocols and other tools for simulat-
ing different controller designs. However, the problem of how the imple-
mented controller will actually interact with the plant has been studied
very sparsely. A tool that allows the user to verify both the scheduling of
the control loops and the control performance is needed. How will, for ex-
ample, jitter caused by the fact that several control loops share CPU affect
the performance of the controllers?

Consider a task set with three controllers. An activation graph of the
three controllers when scheduled using the rate-monotonic priority assign-
ment is shown in Fig. 10 Consider the control delay, i.e. the delay from
reading an input signal until outputting a new control signal. For the high-
priority task it is constant, while for the low-priority task it varies from
one to three times the execution time. The interaction of the low-priority
task with the plant is shown in Fig. 11.

To investigate the influence of the varying control delay a simulation
tool is needed. A MATLAB tool-box that tries to fill this gap is presented
in [Eker and Cervin, 1999]. It simulates a real-time kernel executing the
control tasks while the plant dynamics may be described by a general
Simulink model.

10.6 Interactive WCET analysis
For a WCET analysis tool to become useful in the development of real-time
software, it must not only provide WCET predictions — it must also support
a reasonable software development model. In particular, it is necessary to
allow the developer to manage the system’s timing requirements in an
interactive manner throughout development.

An interesting possibility would be a WCET analysis tool the system’s
timing constraints are explicitly expressed by the programmer. This could
be based on the use of code annotations on loops and recursive calls pro-
vided by the programmer. Such annotations should express the program-
mer’s interpretation of the timing requirements and assumptions about
the system. Additional analyses (such as symbolic execution) may be used

40

Schedule

Time offset: 0

Activation Graph

high

medium

low

Figure 10 The resulting activation graph for three tasks, with fixed priorities
(high, medium, low) running in a pre-emptive kernel. The execution times are the
same for all three processes.

One Task

Time offset: 0

: Read (sample) : Write (control)

Activation
graph

u

y

Figure 11 This is how the low priority task from Figure 10 interacts with its
plant. (u is the control signal, y is the plant output.)

to verify these annotations, however. Furthermore, the timing predictions
should be immediately available throughout development, preferably in an
interactive environment.

The timing schema has been presented previously in a form that re-
sembles an attribute grammar (AG) implementation. However, a number
of issues complicate an AG implementation of a timing schema. By using
an extended AG formalism, reference attributed grammars (RAGs) [Hedin,
1999], timing schemata can be implemented in a concise and modular man-
ner for modern (e.g. object-oriented) languages [Persson and Hedin, 1999].

Although this does not directly address hardware level aspects of WCET
analysis, it is important to enable a future integration with such analyses.

41

A particularly interesting problem in this area is to determine the inter-
face between the two levels of analysis, similar to the interface between
compiler backends and frontends. The division typically involves a tradeoff
between analysis performance and precision.

A problem related to WCET analysis is that of predicting the execu-
tion time overhead of real-time garbage collection. Existing hard real-time
garbage collection techniques [Henriksson, 1998; Nilsen, 1994] are based
on estimations of the maximum amount of memory in use by the program
(live memory). The execution time overhead (and general predictability)
of garbage collection depends on the amount of live memory.

11. Summary

Control design and task scheduling are in most cases today treated as
two separate issues. The control community generally assumes that the
real-time platform used to implement the control system can provide de-
terministic, fixed sampling periods as needed. The real-time scheduling
community, similarly, assumes that all control algorithms can be modeled
as periodic tasks with constant periods, hard deadlines, and known worst
case execution times. This simple model has made it possible for the con-
trol community to focus on its own problem domain without worrying how
scheduling is being done and it has released the scheduling community
from the need to understand how scheduling delays impact the stability
and performance of the plant under control. From a historical perspective,
the separated development of control and scheduling theories for computer
based control systems has produced many useful results and served its
useful purpose.

Upon closer inspection it is, however, quite clear that neither of the
above assumptions need necessarily be true. Many of the computing plat-
forms that are commonly used to implement control system, are not able
to give any deterministic guarantees. Many control algorithms are not pe-
riodic, or they may switch between a number of different fixed sampling
periods. Control algorithm deadlines are not always hard. On the contrary,
many controllers are quite robust towards variations in sampling period
and response time. It is also in many cases possible to compensate on-line
for the variations by, e.g., recomputing the controller parameters. Obtain-
ing an accurate value for the WCET is a general problem in the real-time
scheduling area. It is not likely that this problem is significantly simpler
for control algorithms. It is also possible to consider control systems that
are able to do a tradeoff between the available computation time, i.e., how
long time the controller may spend calculating the new control signal, and
the control loop performance.

For more demanding applications requiring higher degrees of flexibility
and for situations where computing resources are limited it is therefore
motivated to study more integrated approaches to scheduling of control al-
gorithms. The aim of this report has been to present the state-of-the-art in
integrated control and scheduling. Issues that have been discussed include
scheduling of control tasks, dynamic task attribute adjustments, feedback
scheduling, probabilistic scheduling, and compensation for sampling period
variations.

42

12. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation in real-
time systems, and its application to flight control.” In Proceedings of
the IEEE Real-Time Systems Symposium.

Abeni, L. and G. Buttazzo (1999): “QoS guarantee using probabilistic
deadlines.” In Proceedings of the 11th Euromicro Conference on Real-
Time Systems.

Albertos, P. and J. Salt (1990): “Digital regulators redesign with irregular
sampling.” In IFAC 11th World Congress, vol. IV of IFAC, pp. 465–469.
Tallinn, Estonia.

Alt, M., C. Ferdinand, F. Martin, and R. Wilhelm (1996): “Cache behavior
prediction by abstract interpretation.” In Proceedings of SAS ’96:
International Static Analysis Symposium, LNCS 1145, Springer, 1996.

Altenbernd, P. (1996): “On the false path problem in hard real-time
programs.” In Proceedings of the 8th Euromicro Workshop on Real-Time
Systems.

Åström, K. J. and B. Bernhardsson (1999): “Comparison of periodic and
event based sampling for first-order stochastic systems.” IFAC World
Congress in Beijing.

Atlas, A. and A. Bestavros (1998): “Statistical rate monotonic scheduling.”
In Proceedings of the IEEE Real-Time Systems Symposium.

Audsley, N., A. Burns, R. Davis, K. Tindell, and A. Wellings (1995): “Fixed
priority pre-emptive scheduling: An historical perspective.” Journal of
Real-Time Systems, 8, pp. 173–198.

Audsley, N., A. Burns, M. Richardson, K. Tindell, and A. Wellings (1993a):
“Applying new scheduling theory to static preemptive scheduling.”
Software Engineering Journal, 8:5, pp. 285–292.

Audsley, N., K. Tindell, and A. Burns (1993b): “The end of the line for
static cyclic scheduling.” In Proceedings of 5th Euromicro Workshop on
Real-Time Systems.

Baruah, S. (1998a): “A general model for recurring real-time tasks.” In
Proceedings of the IEEE Real-Time Systems Symposium.

Baruah, S. (1998b): “Overload tolerance for single-processor workloads.”
In Proceedings of the IEEE Real-Time Technology and Applications
Symposium. IEEE Computer Society Press.

Baruah, S., D. Chen, S. Gorinsky, and A. Mok (1999): “General-
ized multi-frame tasks.” Submitted for publication. Available from
www.emba.uvm.edu/~sanjoy.

Baruah, S., D. Chen, and A. Mok (1997): “Jitter concerns in periodic task
systems.” In Proceedings of the 18th Real-Time Systems Symposium.

Baruah, S., D. Chen, and A. Mok (1999): “Static-priority scheduling of
multi-frame tasks.” In Proceedings of the 11th Euromicro Conference
on Real-Time Systems.

43

Baruah, S. and S. Gorinsky (1999): “Scheduling periodic task systems
to minimize output jitter.” Submitted for publication. Available from
www.emba.uvm.edu/~sanjoy.

Baruah, S. and J. Haritsa (1997): “Scheduling for overload in real-time
systems.” IEEE Trans Computers, 46:9, pp. 1034–1039.

Bate, I. and A. Burns (1999): “An approach to task attribute assignment
for uniprocessor systems.” In Proceedings of the 11th Euromicro Con-
ference on Real-Time Systems.

Bensoussan, A. and J.-L. Lions (1984): Impulse control and quasi-
variational inequalities. Gauthier-Villars, Paris.

Bernat, G. and A. Burns (1999): “Exact schedulability analysis of aperiodic
servers.” In Proceedings of the 11th Euromicro Conference on Real-Time
Systems.

Blevins, P. and C. Ramamoorthy (1976): “Aspects of a dynamically adaptive
operating system.” IEEE Trans Computers, 25:7.

Burns, A. (1998): “The meaning and role of value in scheduling flexible
real-time systems.” vol. Proceedings of the IEEE Real-Time Computing
Systems Application Conference (RTCSA), Hiroshima, Japan.

Burns, A., K. Tindell, and A. J. Wellings (1994): “Fixed priority scheduling
with deadlines prior to completion.” In Proceedings of the 6th Euromicro
Workshop on Real-Time Systems, pp. 138–142.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model for
adaptive rate control.” In Proceedings of the IEEE Real-Time Systems
Symposium.

Buttazzo, G., M. Spuri, and F. Sensini (1995): “Value vs deadline scheduling
in overload conditions.” vol. Proceedings of the 16th IEEE Real-Time
Systems Symposium.

Caccamo, M. and G. Buttazzo (1997): “Exploiting skips in periodic tasks for
enhancing aperiodic responsiveness.” In Proceedings of the 18th IEEE
Real-Time System Symposium.

Cervin, A. (1999): “Improved scheduling of control tasks.” In Proceedings
of the 11th Euromicro Conference on Real-Time Systems, pp. 4–10.

Chung, J.-Y., J. Liu, and K.-J. Lin (1990): “Scheduling periodic jobs that
allow imprecise results.” IEEE Trans on Computers, 39:9.

Clarke, D., C. Mohtadi, and P. Tuffs (1987): “Generalised predictive control.
Part 1: The basic algorithm. Part 2: Extensions and interpretations.”
Automatica, 23:2, pp. 137–160.

Cottet, F. and L. David (1999): “Time jitter handling in deadline based
scheduling of real-time systems.” Work in progress.

Davis, R. and A. Wellings (1995): “Dual priority scheduling.” In Proceedings
of the IEEE Real-Time Systems Symposium.

Delchamps, D. (1989): “Extracting state information from a quantized
output record.” Systems and Control Letter, 13, pp. 365–372.

44

DeWeerth, S., L. Nielsen, C. Mead, and K. J. Åström (1990): “A neuron-
based pulse servo for motion control.” In IEEE Int. Conference on
Robotics and Automation. Cincinnati, Ohio.

Dodds, S. J. (1981): “Adaptive, high precision, satellite attitude control for
microprocessor implementation.” Automatica, 17:4, pp. 563–573.

Eker, J. and A. Cervin (1999): “A MATLAB toolbox for real-time and
control systems co-design.” Submitted to the 6th International IEEE
Conference on Real-Time Computing Systems and Applications, Hong-
Kong, China.

Ermedahl, A. and J. Gustafsson (1997): “Deriving annotations for tight
calculations of execution time.” In Proceedings of EuroPar‘97, LNCS
1300, Springer.

Frank, P. M. (1979): “A continuous-time model for a pfm-controller.” IEEE
Trans. of Automat. Control, AC-25:5, pp. 782–784.

Gerber, R. and S. Hong (1993): “Semantics-based compiler transformations
for enhanced schedulability.” In Proceedings of the 14th IEEE Real-
Time Systems Symposium, pp. 232–242.

Gerber, R. and S. Hong (1997): “Slicing real-time programs for enhanced
schedulabilty.” ACM Transactions on Programming Languages and
Systems, 19:3, pp. 525–555.

Gerber, R., S. Hong, and M. Saksena (1995): “Guaranteeing real-time
requirements with resource-based calibration of periodic processes.”
IEEE Trans on Software Engineering, 21:7.

Gomaa, H. (1984): “A software design method for real-time systems.” In
CACM, pp. 938–949. Published as CACM, volume 27, number 9.

Gonzalez Härbour, M., M. H. Klein, and J. P. Lehoczky (1994): “Timing
analysis for fixed-priority scheduling of hard real-time systems.” IEEE
Transactions on Software Engineering, 20:1, pp. 13–28.

Gupta, D. and P. Jalote (1996): “A formal framework for on-line software
version change.” IEEE Trans Software Engineering, 22:2.

Gustafsson, K. (1991): “Control theoretic techniques for stepsize selection
in explicit Runge-Kutta methods.” ACM Transactions on Mathematical
Software, 17:4, pp. 533–554.

Gutierrez, J. and M. Harbour (1998): “Schedulability analysis for tasks
with static and dynamic offsets.” In Proceedings of 19th IEEE Real-
Time Systems Symposium, Madrid.

Hedin, G. (1999): “Reference attributed grammars.” In Proceedings of
WAGA’99: Second Workshop on Attribute Grammars and their Appli-
cations.

Henriksson, R. (1998): Scheduling Garbage Collection in Embedded Sys-
tems. PhD thesis, Department of Computer Science, Lund University.

Jones, M. and P. Leach (1995): “Modular real-time resource management
in the Rialto operating system.” In Proceedings of the of the Fifth
Workshop on Hot Topics in Operating Systems.

45

Joseph, M. and P. Pandya (1986): “Finding response times in a real-time
system.” The Computer Journal, 29:5, pp. 390–395.

Kao, B. and H. Garcia-Molina (1993): “Deadline assignment in a dis-
tributed soft real-time system.” In Proceedings of the 13th International
Conference on Distributed Computing Systems.

Kim, N., M. Ryu, S. Hong, and H. Shin (1999): “Experimental assessment
of the period calibration method: A case study.” Journal of Real-Time
Systems. Accepted for publication.

Klein, M. H., T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Härbour
(1993): A Practitioner’s Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic
Publisher.

Kleinrock, L. (1970): “A continuum of time-sharing scheduling algorithms.”
In Proc. of AFIPS, SJCC.

Knudsen, J., M. Lofgren, O. Madsen, and B. Magnusson (1994): Object-
oriented environments: The Mjolner approach. Prentice Hall.

Kopetz, H. (1993): “Should responsive systems be event triggered or
time triggered?” IEICE Trans. on Information and Systems, E76-D:10,
pp. 1525–1532.

Koren, G. and D. Shasha (1995): “Skip-over: Algorithms and complexity
for overloaded systems that allow skips.” In Proceedings of the IEEE
Real-Time Systems Symposium.

Kosugi, N., A. Mitsuzawa, and M. Tokoro (1996): “Importance-based
scheduling for predictable real-time systems using MART.” In Proceed-
ings of the 4th Int. Workshop on Parallel and Distributed Systems,
pp. 95–100. IEEE Computer Society.

Kosugi, N. and S. Moriai (1997): “Dynamic scheduling for real-time
threads by period adjustment.” In Proceedings of the World Congress
on Systems Simulation, pp. 402–406.

Kosugi, N., S. Moriai, and H. Tokuda (1999): “Dynamic real-time schedul-
ing incorporating task timing attribute adjustment.” Work in progress.

Kosugi, N., K. Takashio, and M. Tokoro (1994): “Modification and adjust-
ment of real-time tasks with rate monotonic scheduling algorithm.” In
Proceedings of the 2nd Workshop on Parallel and Distributed Systems,
pp. 98–103.

Kramer, J. and J. Magee (1990): “The evolving philosophers problem:
Dynamic change management.” IEEE Trans Software Engineering,
16:11.

Kuo, T.-W. and A. Mok (1991): “Load adjustment in adaptive real-
time systems.” In Proceedings of the 12th IEEE Real-Time Systems
Symposium.

Lee, C., R. Rajkumar, J. Lehoczky, and D. Siewiorek (1998): “Practical
solutions for QoS-based resource allocation.” In Proceedings of the IEEE
Real-Time Systems Symposium.

46

Lee, C., R. Rajkumar, and C. Mercer (1996): “Experiences with processor
reservation and dynamic QoS in real-time Mach.” In Proceedings of
Multimedia Japan 96.

Lehoczky, J. and S. Ramos-Thuel (1992): “An optimal algorithm for
scheduling soft aperiodic tasks in fixed-priority preemptive systems.”
In Proceedings of the IEEE Real-Time Systems Symposium.

Lehoczky, J., L. Sha, and J. Strosnider (1987): “Enhanced apriodic respon-
siveness in hard real-time environment.” In Proceedings of the 8th IEEE
Real-Time Systems Symposium.

Leung, J. Y. T. and J. Whitehead (1982): “On the complexity of fixed-priority
scheduling of periodic, real-time tasks.” Performance Evaluation, 2:4,
pp. 237–250.

Li, Y.-T. S., S. Malik, and A. Wolfe (1995): “Efficient microarchitecture
modeling and path analysis for real-time system.” In Proceedings of
the IEEE Real-Time Systems Symposium.

Lim, S.-S., Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, and C. S. Kim (1996): “An accurate worst case timing analysis
technique for RISC processors.” In Proceedings of the IEEE Real-Time
Systems Symposium.

Lin, K. and A. Herkert (1996): “Jitter control in time-triggered systems.”
In Proceedings of the 29th Hawaii International Conference on System
Sciences.

Liu, C. L. and J. W. Layland (1973): “Scheduling algorithms for multipro-
gramming in a hard real-time environment.” Journal of the ACM, 20:1,
pp. 40–61.

Liu, J., K.-J. Lin, and S. Natarajan (1987): “Scheduling real-time, periodic
jobs using imprecise results.” In Proceedings of the IEEE Real-Time
System Symposium, pp. 252–260.

Liu, J., K.-J. Lin, W.-K. Shih, A. Yu, J.-Y. Chung, and W. Zhao (1991):
“Algorithms for scheduling imprecise computations.” IEEE Trans on
Computers.

Liu, J., W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung (1994): “Imprecise
computations.” Proceedings of the IEEE, Jan, pp. 83–93.

Locke, C. D. (1992): “Software architecture for hard real-time applications:
Cyclic vs. fixed priority executives.” Real-Time Systems, 4, pp. 37–53.

Lundqvist, T. and P. Stenström (1998): “Integrating path and timing
analysis using instruction-level simulation techniques.” In Proceedings
of ACM SIGPLAN Workshop on Languaged, Compilers, and Tools for
Embedded Systems.

Mead, C. A. (1989): Analog VLSI and Neural Systems. Addison-Wesley,
Reading, Massachusetts.

Mok, A. and D. Chen (1997): “A multi-frame model for real-time tasks.”
IEEE Transactions on Software Engineering, 23:10.

Mok, A. and G. Liu (1997): “Early detection of timing constraint violation at
runtime.” In Proceedings of the IEEE Real-Time Systems Symposium.

47

Morse, A. S., Ed. (1995): Control Using Logic-Based Switching, Block
Island Workshop.

Nakajima, T. (1998): “Resource reservation for adaptive QoS mapping in
real-time Mach.” In Proceedings of the Sixth International Workshop
on Parallel and Distributed Real-Time Systems.

Nakajima, T. and H. Tezuka (1994): “A continuous media application
supporting dynamic QoS control on real-time Mach.” In Proceedings
of ACM Multimedia’94.

Nilsen, K. (1994): “Reliable real-time garbage collection of C++.” Comput-
ing Systems.

Nilsson, J. (1998): Real-Time Control Systems with Delays. PhD thesis
ISRN LUTFD2/TFRT--1049--SE, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

Nilsson, J., B. Bernhardsson, and B. Wittenmark (1998a): “Some topics in
real-time control.” In American Control Conference. Philadelphia.

Nilsson, J., B. Bernhardsson, and B. Wittenmark (1998b): “Stochastic
analysis and control of real-time systems with random time delays.”
Automatica, pp. 57–64.

Noges, E. and P. M. Frank (1975): Pulsfrequenzmodulierte Regelungssys-
teme. R. Oldenbourg, München.

Park, C. Y. and A. C. Shaw (1991): “Experiments with a program timing
tool based on source-level timing schema.” IEEE Computer, 24:5.

Pavlidis, T. (1966): “Optimal control of pulse frequency modulated sys-
tems.” IEEE Trans. of Automat. Control, AC-11:4, pp. 35–43.

Pavlidis, T. and E. J. Jury (1965): “Analysis of a new class of pulse fre-
quency modulated control systems.” IEEE Trans. of Automat. Control,
AC-10, pp. 35–43.

Pedro, P. and A. Burns (1998): “Schedulability analysis for mode changes
in flexible real-time systems.” In Proceedings of the 10th Euromicro
Workshop on Real-Time Systems.

Persson, P. and G. Hedin (1999): “Interactive execution time predictions
using reference attributed grammars.” In Proceedings of WAGA’99:
Second Workshop on Attribute Grammars and their Applications.

Pettersson, B. (1969): “Production control of a complex integrated pulp and
paper mill.” Tappi, 52:11, pp. 2155–2159.

Polak, E. (1968): “Stability and graphical analysis of first order of
pulse-width-modulated sampled-data regulator systems.” IRE Trans.
Automatic Control, AC-6:3, pp. 276–282.

Potier, D., E. Gelenbe, and J. Lenfant (1976): “Adaptive allocation of central
processing unit quanta.” Journal of ACM, 23:1.

Rajkumar, R., C. Lee, J. Lehoczky, and D. Siewiorek (1997): “A resources
allocation model for QoS management.” In Proceedings of the IEEE
Real-Time Technology and Applications Symposium.

48

Ramanathan, P. (1997): “Graceful degradation in real-time control applica-
tion using (m,k)-firm guarantee.” In Proceedings of the IEEE Real-Time
Systems Symposium.

Ryu, M. and S. Hong (1998): “Toward automatic synthesis of schedulable
real-time controllers.” Integrated Computer-Aided Engineering, 5:3,
pp. 261–277.

Ryu, M. and S. Hong (1999): “A period assignment algorithm for real-
time system design.” In Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’99). Amsterdam, the
Netherlands.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time con-
troller design: From performance specifications to end-to-end timing
constraints.” In Proceedings of the IEEE Real-Time Technology and Ap-
plications Symposium.

Sanden, B. (1994): Software Systems Construction with Example in Ada.
Prentice Hall International.

Seto, D., B. Krogh, L. Sha, and A. Chutinan (1998a): “Dynamic control sys-
tem upgrade using the Simplex architecture.” IEEE Control Systems,
August.

Seto, D., J. Lehoczky, and L. Sha (1998b): “Task period selection and
schedulability in real-time systems.” In Proceedings of the IEEE Real-
Time Systems Symposium.

Seto, D., J. Lehoczky, L. Sha, and K. Shin (1996): “On task schedulability
in real-time control systems.” In Proceedings of the IEEE Real-Time
Systems Symposium.

Sha, L. (1998): “Dependable system upgrade.” In Proceedings of IEEE Real
Time Systems Symposium.

Sha, L., R. Rajkumar, and J. Lehoczky (1989): “Mode change protocols
for priority-driven pre-emptive scheduling.” Real-Time Systems, 1:3,
pp. 244–264.

Sha, L., R. Rajkumar, and J. Lehoczy (1990): “Priority inheritance proto-
cols: An approach to real-time synchronization.” IEEE Trans on Com-
puters, 39:9.

Sha, L., R. Rajkumar, and S. Sathaye (1994): “Generalized rate-monotonic
scheduling theory: A framework for developing real-time systems.”
Proceedings of the IEEE, 82:1.

Shasha, D. and G. Koren (1995): “D-over: An optimal on-line scheduling
algorithm for overloaded uniprocessor real-time systems.” Siam Journal
of Computing, 24:2, pp. 318–339.

Shaw, A. C. (1989): “Reasoning about time in higher-level language
software.” IEEE Transactions on Software Engineering, 15:7.

Shin, K. G. and C. L. Meissner (1999): “Adaptation of control system per-
formance by task reallocation and period modification.” In Proceedings
of the 11th Euromicro Conference on Real-Time Systems, pp. 29–36.

49

Sira-Ramirez, H. (1989): “A geometric approach to pulse-width modulated
control in nonlinear dynamical systems.” IEEE Trans. of Automat.
Control, AC-34:2, pp. 184–187.

Sira-Ramirez, H. and P. Lischinsky-Arenas (1990): “Dynamic discontinuous
feedback control of nonlinear systems.” IEEE Trans. of Automat.
Control, AC-35:12, pp. 1373–1378.

Skoog, R. A. (1968): “On the stability of pulse-width-modulated feedback
systems.” IEEE Trans. of Automat. Control, AC-13:5, pp. 532–538.

Skoog, R. A. and G. L. Blankenship (1970): “Generalized pulse-modulated
feedback systems: Norms, gains, lipschitz constants and stability.” IEEE
Trans. of Automat. Control, AC-15:3, pp. 300–315.

Sprunt, B., L. Sha, and J. Lehoczky (1989): “Aperiodic task scheduling for
hard real-time systems.” The Journal of Real-Time Systems.

Spuri, M. and G. Buttazzo (1996): “Scheduling aperiodic tasks in dynamic
priority systems.” 10:2, pp. 179–210.

Stankovic, J., C. Lu, and S. Son (1999): “The case for feedback control real-
time scheduling.” In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, pp. 11–20.

Stankovic, J. and K. Ramamritham (1991): “The Spring kernel: A new
paradigm for real-time systems.” IEEE Software, 8.

Stewart, D., R. Volpe, and P. Khosla (1993): “Design of dynamically
reconfigurable real-time software using port-based objects.” Technical
Report CMU-R1-TR-93-11. CMU.

Sun, J., R. Bettati, and J. W.-S. Liu (1994): “An end-to-end approach
to schedule tasks with shared resources in multiprocessor systems.”
In Proceedings of the 11th IEEE Workshop on Real-Time Operating
Systems and Software.

Sur, J. (1996): State Observers for Linear Systems with Quantized
Outputs. PhD thesis, University of Santa Barbara.

Tia, T.-S., Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-
S. Liu (1995): “Probabilistic performance guarantee for real-time tasks
with varying computation times.” vol. Proceedings of the IEEE Real-
Time Technology and Applications Symposium. Chicago, IL.

Tindell, K., A. Burns, and A. J. Wellings (1992): “Mode changes in priority
preemptively scheduled systems.” In Proceedings of the 13th IEEE
Real-Time Systems Symposium, pp. 100–109.

Tindell, K., A. Burns, and A. J. Wellings (1994): “An extendible approach
for analyzing fixed priority hard real-time tasks.” Real-Time Systems,
6:2, pp. 133–151.

Tokuda, H., T. Nakajima, and P. Rao (1990): “Real-time Mach: Towards
a predictable real-time kernel.” vol. Proceedings of USENIX Mach
Workshop.

Törngren, M. (1998): “Fundamentals of implementing real-time control
applications in distributed computer systems.” Real-time systems, 14:3.

50

Tsypkin, Ya. Z. (1984): Relay Control Systems. Cambridge University
Press, Cambridge, UK.

Utkin, V. (1981): Sliding modes and their applications in variable structure
systems. MIR, Moscow.

Utkin, V. I. (1987): “Discontinuous control systems: State of the art in
theory and applications.” In Preprints 10th IFAC World Congress.
Munich, Germany.

Ward, O. T. and S. J. Mellor (1985): Structured Development for Real-Time
Systems, vol. Four volumes. Yourdon Press.

White, R. T., F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon
(1997): “Timing analysis for data caches and set-associative caches.”
In Proceedings of the IEEE Real-Time Technology and Applications
Symposium.

Wittenmark, B. and K. J. Åström (1980): “Simple self-tuning controllers.”
In Unbehauen, Ed., Methods and Applications in Adaptive Control,
number 24 in Lecture Notes in Control and Information Sciences,
pp. 21–29. Springer-Verlag, Berlin, FRG.

Xu, J. and D. Parnas (1990): “Scheduling processes with release times,
deadlines, precedence, and exclusion relations.” IEEE Trans Software
Engineering, 16:3, pp. 360–369.

51

