

Flow cytometric analysis reveals culture-condition dependent variations in phenotypic heterogeneity of Limosilactobacillus reuteri

S. Rao, N.

2021

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

S. Rao, N. (2021). Flow cytometric analysis reveals culture-condition dependent variations in phenotypic heterogeneity of Limosilactobacillus reuteri. Poster session presented at The 13th Symposium on Lactic Acid Bacteria, 2021, Netherlands. https://pdfhost.io/v/btx9uTHdA_LAB13_conference_poster_NSR

Total number of authors:

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 08. Dec. 2025

Flow cytometric analysis reveals culture-condition dependent variations in phenotypic heterogeneity of Limosilactobacillus reuteri

N. S. Rao¹, L. Lundberg^{2,3}, S. Palmkron⁴, S. Håkansson^{1,5}, B. Bergenståhl⁴, M. Carlquist¹

¹Division of Applied Microbiology, Lund University, Lund, Sweden, ²The Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden, ³BioGaia, Stockholm, Sweden, ⁴Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden, ⁵BioGaia, Eslöv, Sweden

E-mail: nikhil.seshagiri_rao@tmb.lth.se

INTRODUCTION

Optimization of cultivation conditions in the industrial production of probiotics is crucial to reach a high-quality product with retained probiotic functionality 1,2 . In the current study, the effects of temperature, pH and oxygen levels on cell growth, size distributions and freeze-drying (FD) tolerance of L. reuteri DSM 17938 were measured using flow cytometry (FCM). A pleomorphic behaviour was evident from the measurement of light scatter and pulse width distributions^{3,4}. The fact that *L. reuteri* morphology varies depending on cultivation conditions suggests that it can be used as marker for estimating physiological fitness and responses to its environment.

RESULTS

Design of experiment			
Condition	Temperature (T) (°C)	рН	k _L a (h ⁻¹)
1	30	5	47.5
2	30	7	47.5
3	44	5	47.5
4	44	7	47.5
5	30	6	0
6	30	6	74.4
7	44	6	0
8	44	6	74.4
9	37	5	0
10	37	5	74.4
11	37	7	0
12	37	7	74.4
13	37	6	47.5
14	37	6	47.5
15	37	6	47.5

Growth Total cells (AFU/ml) TOP: High variation in growth behaviour and viability. A considerable number of cultures yielded low cell concentrations, although this was not correlated to poor viability. BOTTOM: No oxygen and T between 30°C

based on peaks of pulse width parameter. The frequency of total cells in gate 2 correlated well with the bacterial growth suggesting that high growth is conducive when there is less heterogeneous population. FSC-H= Forward scatter height and and 44 °C aided in growth. SSC-H= Side scatter height.

Freeze-thaw (FT) and FD tolerance

Bacteria were cultured under three different conditions found to cause variation in size distributions and at the same time enable growth (T=30, 37 and 44 °C pH 6, kLa [O2] 0 h-1). freeze-drying survivability was higher for cells grown at 37 °C and 30 °C than for cells grown at 44 °C. ns = not significant, * indicates p-value < 0.05, ** indicates p-value < 0.01.

with clear septa. Cultures grown at 37 °C and 44 °C had smaller cell size when examined carefully by visual inspection.

The SEM analysis revealed that the larger bacteria obtained from the 30 °C

cultivation indeed consisted of chains with two or more cells attached together,

For bacteria grown at 30 °C there was a relatively even distribution of viable cells in pulse width gates 2-4. This was different from bacteria grown at 37 °C and 44 °C where most of the cells were found in gate 2. Freeze-drying treatment did not change the pulse width distributions to a significant degree.

■Gate 1 ■Gate 2 ■Gate 3 ■Gate 4 ■Gate 5

CONCLUSION

A FCM pipeline for analysing and correlating between environmental factors and cell morphology of *L. reuteri* DSM 17938 during cultivation and subsequent FD processing has been established. The pulse width distribution parameter can be used a Process Analytical Tool (PAT) in process control of morphology during fermentation.

ACKNOWLEDGEMENTS

REFERENCES

- 1. Papadimitriou, K. et al. (2015) Front. Microbiol. 6, 1–28
- 2. Fonseca, F. et al. (2001) Cryobiology 43, 189–198 3. Volkmer, B. et al. (2011) PLoS One 6, 1–6
- 4. Hoffman, R. A. Curr. Protoc. Cytom. 1–17 (2009)