Flow cytometric analysis reveals culture-condition dependent variations in phenotypic heterogeneity of *Limosilactobacillus reuteri*

S. Rao, N.

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Flow cytometric analysis reveals culture-condition dependent variations in phenotypic heterogeneity of *Limosilactobacillus reuteri*

N. S. Rao¹, L. Lundberg²,³, S. Palmkron⁴, S. Håkansson¹,⁵, B. Bergenstähl⁶, M. Carliquist¹

¹Division of Applied Microbiology, Lund University, Lund, Sweden, ²The Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden, ³BioGaia, Stockholm, Sweden, ⁴Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden, ⁵BioGaia, Eslov, Sweden

E-mail: nikhil.seshagiri_rao@tmb.lth.se

INTRODUCTION

Optimization of cultivation conditions in the industrial production of probiotics is crucial to reach a high-quality product with retained probiotic functionality¹,². In the current study, the effects of temperature, pH and oxygen levels on cell growth, size distributions and freeze-drying (FD) tolerance of *L. reuteri* DSM 17938 were measured using flow cytometry (FCM). A pleomorphic behaviour was evident from the measurement of light scatter and pulse width distributions³,⁴. The fact that *L. reuteri* morphology varies depending on cultivation conditions suggests that it can be used as marker for estimating physiological fitness and responses to its environment.

RESULTS

DESIGN OF EXPERIMENT

<table>
<thead>
<tr>
<th>Condition</th>
<th>Temperature (°C)</th>
<th>pH</th>
<th>h₀ (h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>5</td>
<td>47.5</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>7</td>
<td>47.5</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>5</td>
<td>47.5</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>4</td>
<td>47.5</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>6</td>
<td>74.4</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>6</td>
<td>74.4</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>5</td>
<td>74.4</td>
</tr>
<tr>
<td>11</td>
<td>37</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>7</td>
<td>47.5</td>
</tr>
<tr>
<td>13</td>
<td>37</td>
<td>6</td>
<td>47.5</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>6</td>
<td>47.5</td>
</tr>
<tr>
<td>15</td>
<td>37</td>
<td>6</td>
<td>47.5</td>
</tr>
</tbody>
</table>

GROWTH

- **Temperature (°C)**: The results suggest that high temperatures and high pH values can be used to grow *L. reuteri* DSM 17938. However, at 37°C and pH 7, the growth was significantly lower compared to other conditions.
- **Size Distribution**: The size of the bacteria increased with temperature and pH, indicating a change in bacterial morphology.

MORPHOLOGY

- **Pulse Width (µm)**: The results suggest that FCM-based descriptors (e.g., FSC-H and SSC-H) were able to capture subtle differences amongst the cultures. Large cell size did not correlate with high cell counts under any condition evaluated, which suggests that a high frequency of their occurrence is a sign of poor growth.

FREEZE-THAW (FT) AND FD TOLERANCE

A large variation in FT survivability was observed. There was no clear correlation to cell growth. The results suggested that viable but non-growing cells are not reliant on freeze-thaw stress; instead, the specific combination of environmental factors play the dominant role.

CONCLUSION

- A FCM pipeline for analysing and correlating between environmental factors and cell morphology of *L. reuteri* DSM 17938 during cultivation and subsequent FD processing has been established. The pulse width distribution parameter can be used as a Process Analytical Tool (PAT) in process control of morphology during fermentation.

REFERENCES

3. Vollmer, B. et al. (2011) FEMS One 1, 1–6

ACKNOWLEDGEMENTS

13th International Symposium on Lactic Acid Bacteria, August 23-25, 2021