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CROSS LAMINATED TIMBER AT IN-PLANE SHEAR LOADING – 

STRENTH AND FRACTURE ANALYSIS OF SHEAR MODE III 
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ABSTRACT: Theoretical investigations of Cross Laminated Timber (CLT) at in-plane shear loading conditions are 

presented with focus on shear failure mode III, relating to shear stresses acting in the crossing areas between orthogonally 

bonded laminations of different layers. Failure criteria for structural design, test configurations and material parameters 

are discussed. Full 3D finite element (FE) analyses applying a cohesive zone approach were used to study the load-bearing 

capacity and the fracture behaviour at in-plane shear loading. Stress distributions found from FE-analysis are presented 

and the behaviour at mixed mode loading situations, involving uniaxial shear loading and torsional loading, is discussed. 
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1 INTRODUCTION 

For design of Cross Laminated Timber (CLT) at in-plane 

shear loading conditions as illustrated in Figure 1, three 

different failure modes are generally considered: gross 

shear failure (FM I), net shear failure (FM II) and shear 

failure in the crossing areas (FM III). Shear FM III is 

relevant for elements without edge-bonding and relates to 

the shear stresses acting in the flatwise bonded area 

between orthogonally oriented laminations placed in 

adjacent layers in the element thickness direction.  

The paper deals with theoretical investigations based on 

fracture mechanics considering CLT at in-plane shear 

loading conditions with focus on shear FM III. 

 

 

Figure 1: Cross laminated timber at in-plane shear loading 
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1.1 FAILURE CRITERIA FOR SHEAR FM III 

At in-plane shear loading of CLT, by pure shear loading 

or by shear loading from in-plane beam loading 

conditions, relative translation and rotation between two 

orthogonally bonded laminations give rise to shear 

stresses in the crossing area connecting the laminations. 

These stresses act in the xy-plane as defined in Figure 1 

and relate to shear FM III.  

For design regarding shear FM III, the following failure 

criteria based on linear interaction between stress 

components have been proposed in e.g. [1] and [2] 

  
τtor
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+
τzx

fv,R

 ≤ 1.0  and   
τtor

fv,tor

+
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 ≤ 1.0        (1a, 1b) 

where τtor is the shear stress due to the torsional moment 

Mtor and where τzx and τzy are the shear stresses due to 

shear forces Fx and Fy, respectively, as illustrated in 

Figure 2.  

The shear stress τtor is assumed to be equal to the 

maximum shear stress at the midpoints of the edges of the 

crossing area, as calculated from linear elastic theory 

using the polar moment of inertia of the bonded area  

  τtor= 
Mtor

IP,CA

bmax

2
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bxby
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where bx and by are the widths of the laminations oriented 

in the x- and y-directions, respectively (see Figure 1), and 

where bmax = max{bx, by}. The strength parameter, fv,tor, 

refers to the corresponding nominal stress calculated from 

the maximum torsional loading in a test.  
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The shear stress components τzx and τzy are in design 

commonly assumed to be uniformly distributed over the 

crossing area and the corresponding strength value, fv,R, 

refers to the rolling shear strength of the laminations. 

From the view of continuum mechanics, it is confusing 

that the stress components – τtor, τzx and τzy – are evaluated 

against two different strength values: the rolling shear 

strength fv,R for stress components τzx and τzy and a 

torsional shear strength fv,tor for the torsional shear stress 

τtor. In this sense, the torsional shear strength should be 

viewed as a structural property, rather than a material 

property.  

The considered shear stress components τzx and τzy acting 

in the crossing area represent, for the longitudinal 

lamination shown in Figure 2, longitudinal shear and 

rolling shear, respectively. For the orthogonally bonded 

lamination of the same crossing area, τzx and τzy represent 

instead rolling shear and longitudinal shear, respectively. 

An alternative approach for verification of load-bearing 

capacity is outlined in [3]. The main idea of that approach 

is to consider only the rolling shear strength and to 

consider no interaction of the shear stress components, 

due to the large difference between rolling shear and 

longitudinal shear strength values, fv,R and fv, respectively.  

Instead of using Equations (1a) and (1b), the following 

failure criterion is suggested to be investigated  

  max � τzx

fv,R

,
τzy

fv,R

�  ≤ 1.0    (3) 

where τzx and τzy are the shear stresses acting in the 

crossing area due to any combination of uniaxial shear 

forces Fx and Fy and torsional moment Mtor.  

 

 

Figure 2: Shear stress components τzx, τzy and τtor 

 

Figure 3: Suggested failure criterion based on only rolling 

shear strength fv,R (dashed lines) 

Failure criteria for each of the two lamination surfaces of 

a crossing area, based on quadratic interaction between 

longitudinal shear and rolling shear and assuming 

fv = 2fv,R, are illustrated by red and blue curves in 

Figure 3. The dashed lines represent the suggested 

criterion according to Equation (3).   

The approach outlined in [3] and the failure criterion 

given in Equation (3) would make it possible to abandon 

the torsional shear strength parameter fv,tor, and instead use 

only the rolling shear strength fv,R as the determining 

material property parameter.   

1.2 AIM AND OBJECTIVES 

The aim of the work presented in this paper is to 

investigate the possibilities of adopting failure criteria for 

shear FM III which are based on a rational treatment of 

the involved stress components. Making use of the failure 

criterion (3), only the rolling shear strength, which has a 

clear physical interpretation, is needed, without the need 

to introduce a parameter such as fv,tor. Non-linear finite 

element (FE) analyses were performed to investigate the 

load-bearing capacity and fracture course for shear FM III 

in CLT at different loading situations, considering mixed 

uniaxial shear force loading and torsional loading. 

A test configuration for a single CLT-node, used to 

determine the strength parameters fv,R and fv,tor, has been 

analysed using full 3D FE-models. The bonding between 

the laminations was modelled using a cohesive zone 

approach, including strain softening behaviour after 

reaching the local material strength.  

Specific objectives of the numerical studies were to 

investigate; (a) whether the assumed shear stress 

distributions shown in Figure 2 agree with stress 

distributions found from FE-analyses and (b) investigate 

the feasibility of using failure criteria based on 

Equation (3).  

2 TESTS OF SINGLE NODES 

Experimental tests of single crossing areas exposed to 

uniaxial shear and pure torsion are for example presented 

in [4, 5].  

The results presented in [5] are based on the test setup 

illustrated in Figure 4, which allows for loading in either 

pure uniaxial shear, pure torsion, or a combination of both 

modes of loading.  
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Figure 4: Test setup and specimen for testing of single CLT-

nodes with loading in uniaxial shear, torsion, or mixed mode of 

loading. Modified after [5] 

For loading in pure uniaxial shear (Fv in Figure 4) and 

evaluation of the average shear stress in the crossing area 

at maximum applied load, a mean rolling shear strength 

fv,R = 1.26 MPa was found. For the case of pure torsional 

loading (Ftor in Figure 4), a torsional shear strength 

fv,tor = 2.97 MPa was found by evaluation of the maximum 

applied torsional moment according to Equation (2). 

Combined states of loading were also tested. For these 

tests, the specimens were first loaded in uniaxial shear up 

to either about 35% or about 50% of the mean value of the 

maximum loads found from the tests in pure uniaxial 

shear. Keeping the uniaxial shear loading constant, 

torsional loading was applied until failure. Results 

obtained for the mixed mode load-bearing capacities of 

these tests agree with the linear interaction according to 

Equations (1a) and (1b).   

Test results for pure torsional loading are also reported in 

[4], using a test setup very similar to the setup shown in 

Figure 4. A total of 34 tests were carried out on specimens 

made from Norway spruce, using a melamine-based 

adhesive for 24 specimens and a one-component 

polyurethane adhesive for 10 specimens. The mean 

density of the laminations was 423 kg/m3 and the moisture 

content was 10±1%. The mean torsional shear strength, 

evaluated according to Equation (2), was found to be 

fv,tor = 2.80 MPa for the specimens bonded with the 

melamine-based adhesive and fv,tor = 3.43 MPa for the 

specimens bonded with the one-component polyurethane 

adhesive. 

3 ANALYTICAL MODELS 

Approaches for estimation of the load-bearing capacity at 

shear mode III loading of CLT can be formulated based 

on simple analytical models. The models presented here 

are based on the stress state within a shear compliant 

medium of infinitesimal thickness, which is placed 

between to two rigid surfaces. Loading of the crossing 

area can be applied by uniaxial relative translation or 

relative rotation of the two rigid surfaces. 

Two possible limit stress surfaces (or yield surfaces), 

surface A and surface B, for the in-plane shear stresses τzx 

and τzy are illustrated in Figure 5. A limit shear stress fs for 

uniaxial shear loading is considered for both surfaces A 

and B. Stress interaction is considered for surface A, while 

no interaction between the two shear stress components is 

considered for surface B. 

 

Figure 5: Yield surfaces A and B 

Thus, the failure criteria can be expressed as: 

  Surface A: �τzx
2  + τzy

2  ≤ f
s
   (4) 

  Surface B:  max�τzx , τzy	 ≤ f
s
    (5) 

Load-bearing capacities for pure uniaxial shear loading in 

either direction (Fx or Fy) and pure torsional loading (Mtor) 

are given below, for the case of a square crossing area 

with side lengths bx = by = b. Indices A and B refer to yield 

surfaces A and B, respectively, and indices E and P refer 

to the elastic and plastic capacities, respectively. Plastic 

capacities are based on assuming a perfectly plastic 

behaviour after reaching the limit/yield stress fs and 

adopting an associated flow rule. 

The load-bearing capacity (elastic and plastic) for uniaxial 

shear in either direction is obviously the same for both 

loading directions and both yield surfaces, and given by 

  Fx/y,E,A = Fx/y,E,B = Fx/y,P,A = Fx/y,P,B = b2
f
s
    (6) 

Pure torsional loading and use of yield surface A results 

in an elastic load-bearing capacity according to 

  Mtor,E,A = IP,CA

b/√2
f
s
 = √2

6
b

3
f
s
 ≈ 0.2357 b

3
f
s
    (7) 

corresponding to the limit stress being reached 

simultaneously at the four corner points of the glued 

surface of the crossing area.   
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Pure torsional loading and use of yield surface B results 

in an elastic load-bearing capacity according to 

  Mtor,E,B = IP,CA

b/2
f
s
 = 1

3
b

3
f
s
 ≈ 0.3333 b

3
f
s
    (8)   

corresponding to the limit stress being reached 

simultaneously along the four edges of the glued surface 

of the crossing area. 

The ultimate plastic capacities for pure torsional loading 

are finally given by 

  Mtor,P,A = f
s

� �x2+y2
A

dA ≈ 0.3826 b
3
f
s
  (9)   

  Mtor,P,B = 4

9
b

3
f
s
 ≈ 0.4444 b

3
f
s
     (10) 

Predicted load-bearing capacities according to these 

analytical models are used for comparison to the results 

of the numerical model presented below.   

4 NUMERICAL MODEL 

Non-linear finite element (FE) analyses have been 

performed using the software Abaqus [6, 7]. The test 

configuration shown in Figure 4 was studied and the 

response at loading was analysed using a full 3D FE-

model, considering small displacement analyses. A 

cohesive zone approach including strain softening was 

used to model the fracture behaviour within the crossing 

area.  

The laminations were modelled as 3D solids, considering 

linear elastic and orthotropic material behaviour. 

Rectilinear material principal directions were used with 

the longitudinal (L) direction oriented in the length 

direction of the laminations, the tangential (T) direction 

oriented in the lamination width direction and the radial 

(R) direction oriented in the lamination thickness 

direction. Stiffness parameters used for the laminations in 

the numerical analyses are given in Table 1.  

Linear 8‐node elements with full integration (denoted 

C3D8 in Abaqus) were used. Three different FE-mesh 

densities were applied for the laminations, with elements 

of close to cubic shape. The three mesh densities had 

element side lengths of approximately 10 mm, 5 mm, or 

2 mm corresponding to FE-meshes with 2, 4, or 10 

elements in the thickness direction (20 mm) of one 

lamination. 

The face bonding between the two laminations, 

constituting the tested crossing area, was modelled using 

a cohesive zone approach including strain softening 

behaviour after reaching the local material strength. This 

behaviour was modelled using a surface-to-surface 

contact formulation. Hard contact was considered for 

compression over the crossing area. For the two in-plane 

shear directions and for tension, an initial linear elastic 

contact stiffness was applied with equal stiffness values in 

all three directions and uncoupled behaviour. This 

stiffness can be thought of as representing the small 

compliance of the bond line itself, in the elastic state. The 

stiffness parameters were in most analyses set as 

kn = ks1 = ks2 = 100 N/mm3. The influence of the stiffness 

parameters on the predicted load-bearing capacity was 

also studied, since their value influence the stress 

distribution and influence the stability of the solution; too 

stiff values may lead to ill-conditioned systems of 

equations. In previous investigations, see e.g. [8, 9], 

stiffness values of 100–1000 N/mm3 provided a good 

balance between reasonable representation of the stiffness 

of the bond line, without resulting in ill-conditioned 

systems of equations.  

A stress-based criterion for damage initiation was adopted 

according to the following maximum stress criterion    

  max �〈σn〉
fn

,
τs1

fs1

,
τs2

fs2

�  = 1.0       (11) 

where σn is the normal (tensile) stress and where τs1 and 

τs2 are the two in-plane shear stresses. The strength values 

fn, fs1 and fs2 represent the local material strengths, i.e. the 

maximum stress before damage and stiffness degradation 

is initiated. For the current application and orientation of 

material principal directions, fn corresponds to the 

perpendicular to grain tensile strength (in the R-direction). 

The two shear strengths fs1 and fs2 correspond to either 

longitudinal or rolling shear in the two bonded 

laminations. Adopting the maximum stress criterion given 

in Equation (11) and using equal in-plane shear strength 

values gives a damage initiation criterion corresponding 

to the criterion given in Equation (3) and illustrated in 

Figure 3. The material strength parameters (maximum 

stresses) adopted for the analyses presented here are: 

fn = 5 MPa and fs1 = fs2 = 3 MPa. The shear strengths in 

the two in-plane directions were for all analyses set equal 

and the notation fs = fs1 = fs2 is used below.  

Strain softening was modelled using a damage evolution 

expressed in terms of the fracture energy Gf and resulting 

in a linear response between the contact stresses and the 

relative displacements (contact surface shear slips and 

normal separation). The value of the fracture energy was 

for most analyses assumed as Gf = 1200 Nm/m2, except 

for the parameter study presented below where the 

influence of the fracture energy on the predicted load-

bearing capacity was investigated.  

Only the specimen itself, i.e. the timber laminations, was 

modelled and the test arrangement, i.e. the steel parts used 

for fixation of the specimen and for load introduction, was 

not modelled. Boundary conditions were imposed by 

introducing prescribed displacements according to 

Figure 6.  

 

Table 1: Material stiffness parameters for laminations 

Modulus of Elasticity EL 12 000 MPa 

 ET 400 MPa 

 ER 600 MPa 

Shear modulus GLT 750 MPa 

 GLR 600 MPa 

 GTR 75 MPa 

Poisson’s ratio νLT 0.50 - 

 νLR 0.50 - 

 νTR 0.33 - 

 



 

Figure 6: Boundary conditions for finite element model 

The surfaces marked in blue – denoted top, bottom, left 

and right surface – were constrained by kinematic 

couplings to the respective midpoint nodes, which were 

used as reference points. All nodes on the respective 

surfaces were coupled to the corresponding reference 

point, such that the surface behaved as a rigid cross 

section with displacement/rotation according to the 

reference point. The displacement boundary conditions 

were in the FE-model applied to the reference points (the 

midpoints) of the considered surfaces.  

5 RESULTS 

5.1 INFLUENCE OF FE-MODEL PARAMETERS 

The influence on the global response of some FE-model 

parameters was studied for both pure uniaxial shear force 

loading and for pure torsional loading. For these analyses, 

the fracture energy was set to Gf = 1200 Nm/m2, while the 

contact stiffnesses and the FE-mesh densities were varied.   

For contact stiffnesses kn = ks1 = ks2 = 100 N/mm3, the 

differences in maximum loads – compared to the case of 

2 mm element side length – were below 1% for an element 

side length of 10 mm and below 0.1% for an element side 

length of 5 mm. For the FE-mesh density with an element 

side length of 5 mm, three values of the elastic contact 

stiffnesses were used: 100 N/mm3, 300 N/mm3 and 

600 N/mm3. The differences in maximum load were for 

these stiffnesses below 0.1% for pure shear force loading 

and below 0.3% for pure torsional loading. The results in 

terms of load-bearing capacity were hence found to be 

influenced only to a very small extent by varying the 

contact stiffnesses and the FE-mesh densities within the 

considered intervals.  

5.2 LOAD-DISPLACEMENT RESPONSE AND 

STRESS DISTRIBUTIONS 

Results presented in this section are based on an FE-mesh 

with element side length of approximately 2 mm, fracture 

energy Gf = 1200 Nm/m2 and initial contact stiffness 

parameters kn = ks1 = ks2 = 100 N/mm3. The FE-mesh with 

element side lengths of 2 mm was used for these analyses, 

to yield a fine spatial resolution of the stress distribution 

over the crossing area.  

Results in terms of the mean shear stress in the y-direction 

over the crossing areas, τzy, versus the prescribed 

displacement are shown in Figure 7 for the case of pure 

shear force loading. This loading situation was achieved 

by applying an increasing prescribed displacement 

uy = D at the top surface of the specimen, see Figure 6. 

The mean shear stress was determined from the total shear 

force Fy and the size of the contact area, A = b2. In 

Figure 8, the distributions of the shear stress τzy are shown 

for a line in the x-direction (from x = −82.5 mm to 

x = 82.5 mm) at the centre of the crossing area (y = 0 mm) 

for load stages a)–d), as indicated in Figure 7. The solid 

line and the marks in Figure 8 represent the stress values 

found from the FE-analysis, while the dashed lines 

represent the mean shear stress at the corresponding load.   

Point a) in Figure 7 and the curve in Figure 8a correspond 

to the initiation of damage and softening by creation of a 

fracture process zone, which takes place at the two top 

corners of the crossing area (y = 82.5 mm, x = ±82.5 mm). 

As the loading is increased, the fracture process zones 

extend and the stress-based damage initiation criterion is 

met at the midpoints of the vertical edges of the crossing 

area at loading corresponding to point b) in Figure 7 and 

the curve in Figure 8b. As the loading is increased further, 

the fracture process zones extend towards the centre of the 

crossing area and the load-bearing capacity is finally 

reached at a mean shear stress of 1.69 MPa, point d) in 

Figure 7 and Figure 8d.  

The shear stress distribution found from the FE-analysis 

is highly non-uniform over the crossing area, during all 

stages of the loading. It is also noticeable that the highly 

non-linear local response is not detectable in the global 

load versus displacement response shown in Figure 7.  

Results in terms of the apparent torsional shear stress τtor 

versus the prescribed displacement are shown in Figure 9, 

for the case of pure torsional loading. Pure torsion was 

applied by prescribing increased displacements at the 

reference points of the right and left surfaces of the 

specimen, uy = ±C, according to Figure 6. The apparent 

torsional shear stress τtor was determined according to 

Equation (2) using the torsional moment Mtor as found 

from the FE-analysis. Similar to the case of pure uniaxial 

shear loading, the distributions of the shear stress τzy are 

shown in Figure 10, for a line along the x-direction at the 

centre of the crossing area and for load stages a)–d), as 

indicated in Figure 9. The solid lines and marks represent 

the shear stress as found from the FE-analysis, while the 

dashed lines represent the stress magnitude and 

distribution according to Equation (2).  

Damage initiation and softening starts at the four corner 

points of the crossing area at loading corresponding to 

point a) in Figure 9. The fracture process zones then 

extend, along the perimeter of the crossing area and 

inwards, towards the centre of the crossing area, as the 

loading is increased. The load-bearing capacity is finally 

reached at an apparent torsional shear stress of 2.51 MPa, 

point d) in Figure 9. 
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Figure 7: Mean shear stress τzy versus prescribed displacement 

for pure uniaxial shear force loading 

 

Figure 8: Distribution of shear stress τzy across the width of the 

crossing area (x-direction) for points a)–d) along the load path 

for pure uniaxial shear force loading according to Figure 7 

5.3 INFLUENCE OF FRACTURE ENERGY ON 

LOAD-BEARING CAPACITY 

The influence of the fracture energy on the load-bearing 

capacity at pure uniaxial shear force loading and at pure 

torsional loading was studied, considering a wide range of 

values of the fracture energy; Gf = 200–160000 Nm/m2. 

Results presented in this section are based on an FE-mesh 

with element side lengths of approximately 5 mm and 

contact stiffness parameters kn = ks1 = ks2 = 100 N/mm3. 

To facilitate generalisation of the results, a characteristic 

material length lch is introduced, see e.g. [10–12]. The 

characteristic length is determined by material property 

parameters and defined according to 

  lch=
Gf GTR

fs
 2      (12) 

where Gf is the fracture energy, GTR the rolling shear 

modulus and fs the local material shear strength. A 

brittleness ratio is defined as b/lch, where b is the side 

length of the crossing area. With these definitions, the 

brittleness ratio is a dimensionless number. 

 

Figure 9: Torsional shear stress τtor versus prescribed 

displacement uy for pure torsional loading 

 

Figure 10: Distribution of shear stress τzy across the width of 

the crossing area (x-direction) for points a)–d) along the load 

path for pure torsional loading according to Figure 9  

Results for pure uniaxial shear force loading are presented 

in Figure 11, in terms of mean shear stress versus 

prescribed displacement for different values of the 

fracture energy Gf. The loading is expressed as the mean 

shear stress over the crossing area and the displacement uy 

refers to the applied prescribed displacement of the top 

surface of the specimen.  

Results in terms of the normalised mean shear stress at 

maximum load are presented in Figure 12, for different 

values of brittleness ratio b/lch. The stress values are here 

normalised with respect to the local material strength 

fs = 3.0 MPa. The dashed line (value 1.0) corresponds to 

the elastic/plastic load-bearing capacities according to 

yield surfaces A and B according to Equations (4), (5) and 

(6). For low values of the brittleness ratio b/lch, i.e. high 

values of the fracture energy Gf, the normalised mean 

shear stress at maximum load approaches 1.0 which 

corresponds to a uniform shear stress distribution and a 

stress magnitude τzy = fs = 3.0 MPa. 
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Figure 11: Mean shear stress versus displacement for different 

values of the fracture energy Gf (Nm/m2) for pure uniaxial shear 

force loading 

 

Figure 12: Normalised mean shear stress at maximum load 

versus brittleness ration b/lch, where b = 165 mm 

For the case of pure torsional loading, results in terms of 

load versus displacement are presented in Figure 13, for 

different values of the fracture energy Gf. The loading is 

represented by the torsional shear stress as determined 

from Equation (2) and using the torsional moment Mtor as 

found from the FE-analysis. Results in terms of the 

normalised torsional shear stress at maximum load are 

presented in Figure 14, for different values of the 

brittleness ratio b/lch. The dotted lines represent the elastic 

capacities according to limit/yield surfaces A and B while 

the dashed lines represent the corresponding plastic 

capacities, see Equations (4–10). 

The trends pointed out above for the case of pure uniaxial 

shear force loading are present also for the case of pure 

torsional loading. As the brittleness ratio b/lch decreases, 

the load-bearing capacity found from the FE-analyses 

approaches the value given by the plastic load-bearing 

capacity of limit/yield surface B. In relation to the results 

presented in Figures 11 to 14, it should be noted that 

results for fracture energy below 400 Nm/m2 are not 

included for the pure torsional loading case. This is due to 

numerical difficulties encountered at load levels around 

the expected maximum loads and the brittle global 

response at low values of the fracture energy.  

 

Figure 13: Torsional shear stress versus displacement for 

different values of the fracture energy Gf (Nm/m2) for pure 

torsional loading 

 

Figure 14: Normalised torsional stress at maximum load versus 

brittleness ration b/lch, where b = 165 mm 

For high values of the brittleness ratio b/lch, and assuming 

all other model parameters being constant, the influence 

of the fracture energy on the predicted load-bearing 

capacity appears to correspond to that of Linear Elastic 

Fracture Mechanics (LEFM). According to LEFM, the 

nominal strength is proportional to the square root of the 

fracture energy as indicated by dashed lines in Figures 12 

and 14. 

5.4 LOAD-BEARING CAPACITY AT MIXED 

MODE LOADING 

Numerical analyses of mixed mode loading situations 

have also been performed. These analyses were 

performed using three different types of loading paths for 

applying the mixed mode load situation using prescribed 

displacements as illustrated in Figure 6.  

Results presented in this section are based on an FE-mesh 

with element side lengths of approximately 5 mm and 

contact stiffness parameters kn = ks1 = ks2 = 100 N/mm3. 

Mixed mode loading – Type #1 

A mixed mode of loading according to type #1 was 

achieved by first applying a pure uniaxial shear loading 

by increasing prescribed displacement at the top surface. 
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This loading was applied up to a displacement uy = Dmax. 

In a subsequent load step, the displacement at the top 

surface was kept constant at uy = Dmax while torsional 

loading was applied by increasing displacements 

uy = ±C at the left and right surfaces until reaching the 

load-bearing capacity. Different states of mixed mode 

loading were achieved by varying the prescribed 

maximum displacement of the top surface, uy = Dmax, 

before applying the torsional loading. 

The loading path according to type #1 is similar to the 

mixed mode loading procedure described in [5] and 

reviewed in Section 2: Loading by a pure uniaxial shear 

force load Fy was first applied up to a certain level and 

then an increasing torsional loading Mtor was applied, 

while keeping the shear force loading constant.  

Mixed mode loading – Type #2 

A mixed mode of loading according to type #2 was 

achieved by applying pure torsional loading in the first 

load step. The loading was applied by increasing 

prescribed displacements at the left and right surfaces up 

to a value of uy = ±Cmax. In a subsequent load step, 

uniaxial shear loading was applied by prescribed 

displacement of the top surface, uy = D, until reaching the 

load-bearing capacity and while keeping the 

displacements of the left and right surfaces at the constant 

value of uy = ±Cmax. 

Mixed mode loading – Type #3 

Mixed mode loading according to type #3 was achieved 

by prescribing displacements simultaneously at the top 

surface (giving uniaxial shear loading) and at the left and 

right surfaces (giving torsional loading). Different mixed 

mode loading situations were achieved by varying the 

ratio between the prescribed displacements at the top 

surface and at the left and right surfaces, respectively, i.e. 

the ratio D/C.  

 

 

Figure 15: Normalised torsional shear stress versus normalised 

mean shear stress at maximum load for mixed mode of loading 

according to load types #1, #2 and #3 

 

 

Results of the load-bearing capacities found from the FE-

analyses at mixed mode of loading are presented in 

Figure 15. The presented stress values refer to the stress 

at the corresponding maximum load/moment. The 

normalised mean shear stress is determined from the 

mean shear stress given by the maximum total shear force 

Fy during loading and the size of the crossing area A, 

normalised with respect to the value of the corresponding 

maximum stress at pure uniaxial shear loading, 1.69 MPa. 

The normalised torsional shear stress is determined from 

the torsional stress according to Equation (2) using the 

maximum torsional moment Mtor during loading. This 

stress is normalised with respect to the corresponding 

stress at pure torsional loading, 2.51 MPa. 

The FE-analyses gave results which indicate that the 

mixed mode load-bearing capacity is influenced by the 

loading path. Applying mixed mode loading according to 

load types #1 and #3 described above, gave results of the 

load-bearing capacity similar to the linear interaction 

between torsion and uniaxial shear as assumed by the 

design criteria given in Equations (1a) and (1b). A similar 

response, i.e. a linear interaction, was also found from the 

tests at mixed mode loading presented in [5], considering 

mean values of the experimentally found load-bearing 

capacities using a load application similar to type #1 as 

described above.  

The FE-analyses suggested higher load-bearing capacities 

for mixed mode loading according to type #2, compared 

to types #1 and #3. For mixed loading type #2, torsional 

shear loading is first applied followed by uniaxial shear 

loading. The differences in predicted load-bearing 

capacities are related to the development of damage and 

softening over the crossing area. During the course of the 

loading, the shear stress distributions over the crossing 

area change considerably. Some contact points experience 

loading with increasing contact shear slip in both shear 

directions while other contact points experience 

increasing contact shear slip followed by local unloading 

with decreasing contact shear slip.  

In relation to the results presented in Figure 15, it should 

be noted that these are based on the maximum torsional 

moment and the maximum shear force during the 

complete analysis for a given loading situation. These two 

maximum values do in general not occur simultaneously. 

Using loading according to type #1 or type #2, the mixed 

mode loading condition is imposed by first applying 

loading by pure shear/rotation and then applying 

rotation/shear while keeping the previously applied 

loading constant. With this type of stepwise load 

application and using loading by prescribed 

displacements, both the shear force and the torsional 

moment change during the second load step. Also for 

loading according to type #3, with simultaneous shear and 

torsion applied in a single load step, do the two maximum 

values in general not appear simultaneously. 
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6 DISCUSSION 

For the results presented in Sections 5.2, 5.3 and 5.4, 

stiffness parameters kn = ks1 = ks2 = 100 N/mm3 were used 

and FE-meshes with element side lengths of either 5 mm 

or 2 mm were used. These parameters were chosen based 

on considering the balance between computational time, 

accuracy in results and numeric stability. For the 

combination of high values of the brittleness ratio b/lch 

and high values of the initial elastic contact stiffness, 

numerical difficulties were encountered in some analyses 

and it was then not always possible to reach a clear 

maximum load. These problems were less pronounced for 

denser FE-meshes (small elements). To obtain reliable 

results from the FE-analyses, the size of the fracture 

process zone typically needs to be sufficiently large in 

relation to the size of the finite elements. 

Typical values for the fracture energy in pure tension 

perpendicular to the grain for clear wood specimens of 

softwoods spruce and pine are around 300 Nm/m2, see 

e.g. [13] for a compilation of test results. For shear 

loading of clear wood specimens, giving shear stress and 

crack propagation along the grain, values of the fracture 

energy between 680 Nm/m2 and 1240 Nm/m2 are for 

example reported in the literature for spruce and pine, see 

e.g. [13, 14]. Test data for the fracture energy at shear 

loading giving rolling shear stress in the direction of crack 

growth are however scarce. This lack of experimental test 

data is one motivation for the parameter study of the 

influence of the fracture energy presented in Section 5.3.  

The value Gf = 1200 Nm/m2 used for the FE-analyses 

presented in Sections 5.2 and 5.4, is a rough estimation 

for the relevant fracture energy for the present application 

and is based on the corresponding value for longitudinal 

shear loading. The applied local material shear strength 

values (fs1 = fs2 = 3 MPa) are also related to uncertainties. 

The lack of experimental test data motivates further 

testing to obtain information of relevant material 

properties.    

It should be noted that the highly non-linear response on 

a local scale, cf. Figures 8a-d, is only to a very limited 

extent detectable at the global scale of load versus 

displacement, cf. Figures 7 and 9. As a consequence, it is 

not possible to draw conclusions on the influence of the 

non-linear (softening) behaviour of the bond line of the 

crossing area, based solely on such global response. 

Consequently, also erroneous conclusions might be drawn 

about interaction of stress components, failure modes and 

(lack of) influence of non-linear behaviour such as 

fracture softening, if evaluations are based only on global 

force/moment versus displacement/rotation response.  

The results regarding mixed mode loading and 

consideration of the maximum shear force and the 

maximum torsional moment found from the FE-analyses 

during the complete loading phase (Figure 15), are partly 

difficult to interpret. The loading was applied by 

prescribed displacements and the two maximum values do 

then in general not occur simultaneously. The results 

would probably be partly different for other types of 

loading scenarios, for example by use of a force-

controlled load application.  

7 CONCLUDING REMARKS 

Numerical studies based on full 3D FE-modelling of 

CLT-nodes with a single crossing area loaded in pure 

uniaxial shear, pure torsion and mixed modes of loading 

have been presented. The long-term and overall aim of the 

present work is to gain knowledge of the mechanical 

behaviour and the load-bearing capacity of CLT at in-

plane shear loading. This involves exploring the 

possibilities to use failure criteria based on a rational 

treatment of the involved stress components and strength 

properties with a clear physical interpretation.  

One important finding from the present study was that the 

shear stress distributions over the crossing areas found 

from the FE-analyses differed considerably, compared to 

the shear stress distributions illustrated in Figure 2 and 

assumed in practical design situations and used for 

evaluation of test results. In the linear elastic state, before 

initiation of damage and softening within the crossing 

area, highly non-uniform shear stress distributions were 

for example found from the FE-analyses for the case of 

pure uniaxial shear force loading (Figure 8a).  

The numerical analyses presented here are based on 

several simplifying assumptions, for example regarding 

applied boundary conditions, and furthermore related to 

several uncertainties regarding for example material 

property parameters. Numerical analyses may however be 

a useful tool for evaluation of appropriate test setups and 

loading arrangements, used to determine relevant strength 

properties needed for structural design of CLT.  

Further investigations, including both experimental and 

theoretical work, is needed in the area. These should 

include studies of test setups of single crossing areas, as 

presented here, but also testing of clear wood specimens 

and bond lines to obtain data for material parameters used 

as input for numerical analyses.    
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