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Soil microbial diversity in agriculture

Agricultural land-use intensification and increased occurrence and intensity of 
extreme weather events like droughts are two of the main threats responsible 
for soil biodiversity declines and further changes in their ecosystem functions. 
Microbial diversity is an essential key for the understanding of ecosystem func-
tioning, however the diversity of functions performed by soil microorganisms 
and how they are linked to ecosystem functions like carbon cycling remain 
largely unexplored. This thesis provides a deeper understanding of how the 
diversity of soil microorganisms is influenced by agricultural land-use intensifi-
cation and drought. These findings highlight that modified agricultural land-use 
practices have the potential to reduce the negative effects of drought on soil 
microorganisms, soil functions and further soil ecosystem processes. 
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Abstract 
Land-use intensification of agricultural soils and increased occurrence and intensity of extreme weather events like 
drought periods are two of the main threats responsible for soil biodiversity declines. These changes in soil 
biodiversity can alter ecosystem functions performed especially by soil microbial communities that could further 
contribute to those threats. Microbial diversity is an essential key for the understanding of ecosystem functioning, 
however the diversity of functions performed by soil microorganisms and how they are linked to ecosystem functions 
like carbon cycling remain largely unexplored.  

The aim of this thesis was to understand how the taxonomic and functional diversity of soil microorganisms in 
agriculture are influenced by agricultural land-use intensification and extreme weather events, specifically short-
term drought. Thus, a combination of field experiments across Europe and glasshouse experiments along with 
different molecular methods, specifically high-throughput sequencing-based omics approaches was used.  

Different land-use types (grassland and agricultural soils) affected soil microbial communities, particularly their 
response in relation to soil organic matter degradation. It was found that crop management practices, i.e., crop 
residue incorporation promoted gene expression in these soils, particularly in agricultural soils. These findings 
support the notion that careful land-use practices have the potential to mitigate losses of soil organic carbon in 
traditionally carbon depleted soils and can thereafter promote the functioning of soil microorganisms. Further, 
interactive effects of long-term agricultural management and short-term drought on the communities of plant-
associated arbuscular mycorrhizal fungi (AMF) were studied. Organic and conventional long-term farming systems 
influenced the taxonomic composition of AMF, while the effects on their diversity were negligible. No effect of short-
term drought on the diversity and composition of AMF was found. To further explore how short-term drought 
influence the functional diversity of soil microorganisms in agricultural soils, particularly on the gene level, functional 
genetic diversity was assessed. By studying the diversity of extracellular enzymes related to soil organic matter 
degradation, it was found that functional and taxonomic gene composition significantly differed between European 
agricultural fields (Sweden, Germany, and Spain). However, the effect of short-term drought was only observed in 
Germany. These results indicate that soil microorganisms are differently adjusted to short-term drought, either due 
to (a) regional adaptations of microorganisms to already dry environments or (b) differences in soil physicochemical 
properties like soil organic carbon content, as it has the potential to buffer drought effects. Finally, the short-term 
drought also affected the response of soil microbial communities in these soils, especially in their gene expression 
towards degrading soil organic matter.  

Altogether, these findings show that soil microorganisms respond differently to agricultural land-use intensification 
and extreme weather events such as drought. Careful land-use practices like the incorporation of crop residues, 
specific farming systems and increased levels of soil organic carbon have the potential to mitigate the negative 
effects of drought on soil health and soil microorganisms. Moreover, these findings demonstrate the importance of 
studying microbial responses to drought at different diversity levels, with the necessity to link taxonomic and 
functional diversity to soil ecosystem functions. 
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Abstract 

Land-use intensification of agricultural soils and increased occurrence and intensity 
of extreme weather events like drought periods are two of the main threats 
responsible for soil biodiversity declines. These changes in soil biodiversity can 
alter ecosystem functions performed especially by soil microbial communities that 
could further contribute to those threats. Microbial diversity is an essential key for 
the understanding of ecosystem functioning, however the diversity of functions 
performed by soil microorganisms and how they are linked to ecosystem functions 
like carbon cycling remain largely unexplored.  

The aim of this thesis was to understand how the taxonomic and functional diversity 
of soil microorganisms in agriculture are influenced by agricultural land-use 
intensification and extreme weather events, specifically short-term drought. Thus, a 
combination of field experiments across Europe and glasshouse experiments along 
with different molecular methods, specifically high-throughput sequencing-based 
omics approaches was used.  

Different land-use types (grassland and agricultural soils) affected soil microbial 
communities, particularly their response in relation to soil organic matter 
degradation. It was found that crop management practices, i.e., crop residue 
incorporation promoted gene expression in these soils, particularly in agricultural 
soils. These findings support the notion that careful land-use practices have the 
potential to mitigate losses of soil organic carbon in traditionally carbon depleted 
soils and can thereafter promote the functioning of soil microorganisms. Further, 
interactive effects of long-term agricultural management and short-term drought on 
the communities of plant-associated arbuscular mycorrhizal fungi (AMF) were 
studied. Organic and conventional long-term farming systems influenced the 
taxonomic composition of AMF, while the effects on their diversity were negligible. 
No effect of short-term drought on the diversity and composition of AMF was 
found. To further explore how short-term drought influence the functional diversity 
of soil microorganisms in agricultural soils, particularly on the gene level, functional 
genetic diversity was assessed. By studying the diversity of extracellular enzymes 
related to soil organic matter degradation, it was found that functional and 
taxonomic gene composition significantly differed between European agricultural 
fields (Sweden, Germany, and Spain). However, the effect of short-term drought 
was only observed in Germany. These results indicate that soil microorganisms are 
differently adjusted to short-term drought, either due to (a) regional adaptations of 
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microorganisms to already dry environments or (b) differences in soil 
physicochemical properties like soil organic carbon content, as it has the potential 
to buffer drought effects. Finally, the short-term drought also affected the response 
of soil microbial communities in these soils, especially in their gene expression 
towards degrading soil organic matter.  

Altogether, these findings show that soil microorganisms respond differently to 
agricultural land-use intensification and extreme weather events such as drought. 
Careful land-use practices like the incorporation of crop residues, specific farming 
systems and increased levels of soil organic carbon have the potential to mitigate 
the negative effects of drought on soil health and soil microorganisms. Moreover, 
these findings demonstrate the importance of studying microbial responses to 
drought at different diversity levels, with the necessity to link taxonomic and 
functional diversity to soil ecosystem functions. 
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Popular science summary 

Soils are material on which we build roads, construct buildings, walk and grow 
plants. However, soils are much more than this. Soils harbour an extraordinary 
portion of the biodiversity on our planet, including tiny living things called 
microorganisms. They are too small to be seen by the naked eye and are visible only 
through a microscope. Despite their size, they are extremely important for our 
health, industries and environment. A single handful of soil is home to more 
microorganisms than there are stars in the universe. These microorganisms form 
communities, different microorganisms together, and are involved in different 
ecosystem functions such as nutrient cycling through degradation of soil organic 
matter that comes from plant residues, animal manure and compost. During the 
degradation process, soil microorganisms degrade these organic materials and 
provide nutrients like nitrogen, phosphorus, and sulphur to plants. On the other 
hand, these microorganisms obtain organic carbon that gets stored in soils. High 
levels of stored organic carbon can improve soil structure, reduce erosion, promote 
soil biodiversity, and have the potential to mitigate the effects of climate change.  

Due to the growing human population and the need to produce enough food, 
agricultural practices worldwide are being intensified. Farmers need to increase crop 
production, either by application of chemical fertilizers, pesticides, or modification 
of existing farming practices. In combination with global climate change, 
specifically increased occurrence and frequency of extreme weather events such as 
drought, this can cause several environmental problems and can reduce soil 
biodiversity. Losses of soil biodiversity can further lead to a reduction of soil 
functioning and soil services carried out by soil microorganisms, such as climate 
regulation, nutrient cycling, and food production. High microbial diversity is 
important for supporting ecosystem functions and services, therefore, the need to 
protect soil biodiversity and functions performed by soil microorganisms is 
essential. To find a way towards more sustainable agriculture in the long run, it is 
thus critical to understand how anthropogenic factors influence the diversity of soil 
microorganisms and how this is linked to ecosystem processes.  

The diversity of soil microorganisms determining the functioning of the soil 
ecosystem is enormous, and thereafter challenging to study. The majority of soil 
microorganisms cannot be cultivated in the laboratory, however researchers have 
developed new methods that allow studying the full extent of soil microbial diversity 
directly from soils. Collection and analysis of genetic material (DNA or RNA) from 
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soils and targeting of soil microorganisms and their specific functions like those 
related to the degradation of soil organic material allow us to establish relationships 
between soil microbial diversity, their functions and soil ecosystem processes.  

In this thesis, I studied how the intensification of agriculture and extreme weather 
events, especially droughts, affected the diversity of soil microorganisms and their 
functions.  

First, the effects of different land-use types (grassland and agricultural soils) on the 
active microorganisms were studied. The results of this study showed that the 
overall gene expression related to organic matter degradation differed between the 
two land-uses. Moreover, the addition of organic materials, i.e., crop residues 
promoted the expression of genes in traditionally carbon depleted soils like 
agricultural soils. With time, the gene expression of these microorganisms seemed 
similar to that of the carbon rich soils, i.e., grasslands. This suggests that the addition 
of organic compounds can increase the activity of soil microorganisms in soils with 
lower amounts of organic carbon content and indicate the potential way towards 
healthier soils and increased productivity.  

Second, I wanted to understand how different farming systems and drought 
simultaneously affect arbuscular mycorrhizal fungi. These fungi are of crucial 
importance in agriculture, as they colonize the roots of plants, such as cereals, 
including wheat and barley. They transfer water and nutrients from the soil to the 
plants and in return they receive carbon. Additionally, this association could 
enhance plant tolerance to environmental stress like drought. I showed that the 
drought did not influence the diversity and community composition of these fungal 
communities. While different farming systems altered their community composition 
but not the diversity. These findings suggest that these soil microorganisms are 
capable of coping with drought, however more attention should be paid to how 
current agricultural practices could affect them. As agricultural practices can 
potentially enhance the resistance of these fungal communities to drought and 
possibly maintain high crop production levels under drought periods.  

Finally, I wanted to understand how drought affects the diversity of soil 
microorganisms in agricultural soils across Europe, specifically on their functional 
gene level. By studying the genetic information of different soil microorganisms 
that carry out specific biological processes, we can obtain information of their 
genetic potential and their response to changes in environmental factors of only 
active microorganisms. It was found that functional genetic diversity differed 
between European agricultural fields, furthermore drought effects had varying 
effects on soil microorganisms. Some microorganisms better tolerated drought, 
which was probably due to regional adaptations of these microorganisms to already 
dry environments or because of increased soil organic carbon content that can 
reduce the effects of drought. Additionally, I also showed that drought affected 
active soil microbial communities in these soils.  
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In summary, this thesis provides a deeper understanding of how the diversity of soil 
microorganisms is influenced by agricultural land-use intensification and drought. 
Agricultural land-use intensification and physicochemical properties are important 
factors determining the diversity of soil microorganisms in agriculture. These 
findings highlight that modified agricultural land-use practices have the potential to 
reduce the negative effects of drought on soil microorganisms, soil functions and 
further soil ecosystem processes. 
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Introduction 

Agricultural intensification and extreme weather events caused by the changing 
climate are strongly affecting soil ecosystem and soil biodiversity (Cavicchioli et 
al., 2019; de Graaff et al., 2019; Geisen et al., 2019). Soils harbour a large portion 
of biological diversity on Earth, including microorganisms (e.g., bacteria), micro- 
(e.g., nematodes, tardigrades), meso- (e.g., collembolans, mites) and macrofauna 
(e.g., ants, earthworms) (Orgiazzi et al., 2016). These soil organisms are crucial for 
multiple ecosystem functions and services, including nutrient cycling, carbon 
sequestration, climate regulation, and food provision (Wall et al., 2012; Bardgett 
and van der Putten, 2014). Despite the importance of soil biodiversity for ecosystem 
functioning, we still face major challenges in understanding the ecology of soil 
microorganisms, their diversity and relationship with soil ecosystem. Particularly, 
the question remains on how the agricultural intensification and extreme weather 
events influence links between specific soil microbial taxa and soil processes.  

Soil ecosystem 

Soils as a microbial habitat 
Soils represent a complex and highly dynamic ecosystem on our planet, serving as 
the main reservoir for distinct microorganisms, including bacteria, fungi, archaea, 
protozoa, and viruses (Fierer, 2017; Jansson and Hofmockel, 2020). Although these 
tiny organisms are largely invisible to the naked eye, they drive crucial ecosystem 
functions such as nutrient cycling, and the degradation of soil organic matter (SOM). 
They also form symbiotic relationships with plant roots and thereby play an 
important role in the maintenance of soil fertility and plant productivity (van der 
Heijden et al., 2008; Crowther et al., 2019). Given the importance of soil 
microorganisms for soils, less is known on how the disturbances (natural and 
anthropogenic) affect their diversity and consequently the ecosystem processes they 
mediate. 
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Carbon cycling and soil organic matter degradation  
SOM represents one of the largest reservoirs of organic carbon and nitrogen on our 
planet and its turnover plays a crucial role in global element cycling (Batjes, 1996; 
Schmidt et al., 2011). Soil organic carbon (SOC) is the main source of carbon 
nutrients required for microbial life and plant productivity. SOC can regulate 
physicochemical soil properties, can improve soil stability, water holding capacity, 
provide more plant nutrients and increase soil biodiversity (Lal, 2016; Minasny et 
al., 2017). However, as the pool of SOC is sensitive to global climate and land-use 
changes this can lead to limited carbon sequestration capacity (Zomer et al., 2017). 
Amounts of SOM and carbon influence soil fertility, health, and functioning, 
therefore a better understanding of biological mechanisms and players involved in 
carbon cycling is crucial. Abiotic factors, like moisture and temperature are 
considered as primary determinants of SOM degradation and carbon cycling, but 
soil microorganisms are greatly responsible for it (Nielsen et al., 2011). Soil 
microorganisms, particularly fungi and bacteria, produce enzymes that then catalyse 
specific reactions that are part of SOM degradation and are responsible to gain 
nutrients and energy for soil microorganisms that they use for enzyme production 
(Sinsabaugh and Follstad Shah, 2012; Burns et al., 2013). Thus, the production and 
activity of enzymes are directly linked to ecosystem functioning. Among all these 
enzymes, there has been particular interest in the role of extracellular enzymes, 
broadly produced by soil microorganisms. They have been proposed as proximate 
agents of processes related to SOM as their activity is crucial for ecosystem 
functioning, particularly degradation and mineralization of SOM (Sinsabaugh et al., 
2008). Most soil microorganisms have extracellular enzymes to degrade labile 
carbon sources such as simple carbohydrates, but others have enzymes to degrade 
complex carbon substrates such as hemicellulose and lignin (Eichorst and Kuske, 
2012). The phenotypic and genotypic microbial diversity help microorganisms to 
degrade different substrates (Ettema and Wardle, 2002; Crawford et al., 2012). The 
production and efficiency of extracellular enzymes in soils mainly depend on the 
substrate and energy availability for the microorganisms and soil physicochemical 
properties (Wallenstein and Burns, 2011). However, how biological, chemical and 
physical properties of soils and consequences of climate change and agricultural 
disturbances affect soil microorganisms and their extracellular enzyme production, 
is still poorly understood.  

Threats to soil biodiversity  
Agricultural intensification and extreme weather events as the consequence of the 
ongoing global climate change present major threats to soil ecosystems, leading to 
losses of SOC, soil biodiversity and consequently to reduced agricultural production 
(de Graaff et al., 2019; Geisen et al., 2019). With a need to produce enough food to 
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feed the world, a greater level of understanding of how interactive effects of 
agricultural intensification and extreme weather events affect soil microbial 
diversity, and the ecosystem functions they mediate, is required. This knowledge 
will contribute to the understanding of how agriculture could be adapted to mitigate 
the adverse effects of climate extremes, preserve soil biodiversity in the long-term 
and ensure sustainable agricultural production.  

Agricultural land-use intensification 
Soils are sensitive to changes in land-use and agricultural management practices. 
Indeed, these practices then modify soil properties and lead to soil biodiversity 
losses (Foley et al., 2005; Tsiafouli et al., 2015). Grasslands and agricultural soils 
are two common land-use types in agriculture, that among others act as important 
reservoirs of carbon and soil biodiversity. Land-use has been identified as one of 
the main factors affecting soil microorganisms, their diversity, and functions (Oehl 
et al., 2010; Manoharan et al., 2017a; Madegwa and Uchida, 2021). Land-use either 
has a direct effect on soil microorganisms or indirectly influences soil 
physicochemical properties and plant diversity (Lauber et al., 2008; Thomson et al., 
2015; Delgado‐Baquerizo et al., 2016; Manoharan et al., 2017a; Kardol and De 
Long, 2018). Compared to grasslands, agricultural soils are traditionally depleted in 
their SOC content and are also more prone to further losses of SOC, due to 
agricultural practices they are commonly associated with (Lal, 2013).  

Direct effects of land-use on soil microbial communities are the result of chemical 
disturbances like crop protection strategies, e.g., application of pesticides, and 
fertilizers, and mechanical disturbances like tillage (Yang et al., 2021). A large body 
of research suggests that for example application of mineral (NPK) fertilizers have 
negative effects on soil microbial communities, including the diversity of arbuscular 
mycorrhizal fungi (AMF, phylum Glomeromycota) (Smith and Read, 2010; Lin et 
al., 2012; de Graaff et al., 2019). However, on the other hand, mineral fertilization 
increases crop yields (Yousaf et al., 2017). Mechanical soil disturbances such as 
tillage typically alter the structure and functioning of AMF communities, resulting 
in the breakdown of hyphal networks, reduced abundance of spores, lower 
taxonomic diversity, and reduced biomass (Helgason et al., 1998; Jansa et al., 2002; 
Schnoor et al., 2011).  

To prevent arable soils from becoming poorly productive in the long run, and to 
mitigate the drought effects, different aspects of land-use and agricultural practices 
should be considered. Consequently, different agricultural implications with a goal 
to improve nutrient cycling, promote SOC storage, and ensure the right amounts of 
nutrients to soils, have been suggested (Bolinder et al., 2020; Lessmann et al., 2021).  
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Crop residue incorporation 
Practices such as crop residue incorporation have been commonly used to promote 
carbon sequestration, particularly in agricultural soils (Powlson et al., 2008; 
Bolinder et al., 2020). Crop residue such as straw from cereal crops represent an 
important carbon and nitrogen source in agriculture, thus its application results in 
multiple benefits for arable soils (Liu et al., 2014). It aims to increase SOM, with 
resulting positive impacts on soil structure, reduced evaporation, increased soil 
fertility, higher crop yields, and improved other physical and biological properties 
(Rengel, 2007; Lal et al., 2011). This should potentially create favourable conditions 
for microbial growth, as well as sufficient carbon, nitrogen supplies and energy 
which could improve microbial diversity and activity (Jin et al., 2020).  

Farming systems 
To reduce the negative effects of agricultural land-use intensification on the soil 
microbial communities, alternative farming systems such as organic farming have 
been proposed (McLaughlin and Mineau, 1995). Organic farming aims at obtaining 
high-quality crop yields while maintaining soil biodiversity in the long-term 
(Birkhofer et al., 2016; Rundlöf et al., 2016). However, the beneficial effects of 
organic farming on biodiversity often come at the cost of lower crop yields (Seufert 
et al., 2012). Numerous studies have shown positive effects of organic farming on 
soil fertility (Mäder et al., 2002), SOC content (Gattinger et al., 2012; García‐
Palacios et al., 2018) as well as microbial biomass and diversity (Esperschutz et al., 
2007; Hartmann et al., 2015; Lori et al., 2017). Potential advantages of organic 
farming compared to conventional have also been associated with enhanced AMF 
diversity (Verbruggen et al., 2010; Manoharan et al., 2017b). However, the question 
remains if organic farming, aiming at buffering extreme drought events through 
promoting SOC levels, also can enhance the drought tolerance of AMF 
communities.  

Extreme weather events  
Climate change factors that include increased occurrence of extreme weather events 
such as droughts, floods, higher levels of CO₂ and temperature extremes are 
unavoidable phenomena that are and will affect soil ecosystems and soil biodiversity 
globally (Cavicchioli et al., 2019; Jansson and Hofmockel, 2020). In many 
European regions, the frequency and severity of extreme drought events are 
expected, particularly during the growing season (Spinoni et al., 2018; Vogel et al., 
2019; Masson-Delmotte, 2021). Drought-induced changes can lead to shifts in soil 
microbial communities, their taxonomic and functional diversity and consequently 
lead to alterations of ecosystem functions driven by soil microorganisms (Hueso et 
al., 2012; Deveautour et al., 2018; Ochoa-Hueso et al., 2018; Schimel, 2018). The 
drought effects on soil microbial communities largely depend on the duration, 
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frequency and intensity of drought events or the historical precipitation regimes 
(Hoover and Rogers, 2016; Meisner et al., 2018; Preece et al., 2019).  

To survive harsh conditions in dry soils, microbial communities have developed 
different strategies. Generally, soil microbial communities in arid and semiarid 
environments are better adapted and known to be more drought tolerant (Acosta-
Martínez et al., 2014; Maestre et al., 2015). Some of these important survival 
strategies include the ability to adapt to changes in water potential and low resource 
conditions, thicker cell walls and high resistance to desiccation (Sharma and Gobi, 
2016; Barberán et al., 2017; Schimel, 2018). Among all soil microorganisms, fungal 
communities and fungal based food-webs are generally thought to be more drought 
tolerant (de Vries et al., 2012; de Vries et al., 2018). Fungi such as AMF that have 
symbiotic relationships with plant roots in agricultural systems, including cereals 
(Schüβler et al., 2001) form filamentous structures called mycorrhizal hyphae. 
These extended hyphal networks can exceed several meters in diameter and can also 
enter water-filled soil pores inaccessible to root hairs and enhance the drought 
tolerance of their symbiotic partner, plant roots (Marulanda et al., 2003; Ruiz-
Lozano, 2003). These characteristics allow them to survive better in dry 
environments (Allen, 2007; Manzoni et al., 2012).  

The adverse impacts of drought on the microbial life in soils can also be mitigated 
through improved land-use, particularly through increased SOC levels. SOC has the 
ability to increase the capacity to hold water and nutrients, enhance soil biological 
and physical properties such as aggregate stability, improve soil structure, minimize 
degradation risk and soil erosion (Lal, 2013; Iizumi and Wagai, 2019). Higher SOC 
levels promote soil microbial diversity and activity and can buffer the negative 
effects of drought events on crop yields (Birkhofer et al., 2012; Droste et al., 2020). 
Even though promoting SOC levels can increase the resistance of soil 
microorganisms to drought and lead to higher crop yields, arable soils are under 
considerable risk due to agricultural intensification that reduces SOC content and 
limits carbon sequestration (Lal et al., 2011). 

Taxonomic and functional diversity 
An essential attribute of soil microorganisms is their diversity, as it enhances soil 
ecosystem functions and their tolerance to disturbances such as land-use or fertilizer 
application (Griffiths and Philippot, 2013; Bender et al., 2016). Every gram of soil 
contains thousands of microbial taxa and kilometres of fungal hyphae, however, 
they are not equally abundant (Fierer, 2017). A high degree of taxonomic diversity 
and high relative abundance of microbial taxa make soils one of the most complex 
and unexplored ecosystems, hence far less is known about the functional capabilities 
of microorganisms found in soils (Torsvik and Øvreås, 2002; Maron et al., 2011). 
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Microbial ecologists have only recently started recognizing the importance of soil 
microbial functional diversity, i.e., diversity of all functions carried out by 
microorganisms (Escalas et al., 2019). Precise functional characterization of soil 
microbial communities could fill an essential but still largely missing link between 
soil microbial diversity and microbially-mediated processes important for soil 
functioning (Fig. 1). At present, the functional diversity of soil microorganisms is 
mostly derived from taxonomy-based studies, however, this information can be 
misleading. As such, taxonomically distinct groups like bacteria and fungi 
competing for the same nutrient sources could share very similar functions or 
closely related microbial taxa could possess different functions (Philippot et al., 
2010; Martiny et al., 2013; Bahram et al., 2018). To understand microbial functional 
capabilities at the highest level of resolution, and how they are linked to ecosystem 
functions such as carbon cycling, studying genes within the soil environment was 
suggested (Manoharan et al., 2017a). These genes, the so-called functional genes, 
are coding for key enzymes in biogeochemical processes, such as the degradation 
of organic matter in soils (Prosser, 2002).  

Approaches to study soil microbial diversity 
One of the main challenges in soil microbial ecology is to understand the taxonomic, 
functional, and ecological characteristics of soil microbial communities more 
precisely. Until a few years ago, it has been difficult to obtain precise functional 
information from microbial communities and to consequently predict microbial 
functional responses to disturbances such as agricultural intensification or extreme 
weather events. However, the continued development of high-throughput molecular 
tools (high-throughput sequencing-based omics approaches) allows us to study 
functional diversity at a high resolution and link it with ecosystem functions.  

Microbial taxonomic diversity 
One of the most widely and affordable methods for the characterization of soil 
microbial communities is based on the amplification and sequencing of specific 
highly conserved taxonomic marker genes (Fig. 1). The most commonly used 
marker genes are 16S for bacteria and archaea (Langille et al., 2013), ITS for fungi 
(Schoch et al., 2012) and 18S for microbial eukaryotes (Popovic and Parkinson, 
2018). The ITS region is often used to describe fungal communities, however it is 
too variable for AMF. As previously suggested, ideal markers for fungal 
communities, including AMF should have high interspecific but low intraspecific 
variation (Lindahl et al., 2013). Thus for AMF, a more conserved region, that is of 
1.5-kb long fragment comprising parts of both the large (LSU) and small subunit 
(SSU) rRNA genes and the complete ITS region has been proposed (Stockinger et 
al., 2010). This aims to provide a better resolution even at lower taxonomic ranks, 
i.e., species level. Moreover, the development of high-throughput sequencing
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technologies such as long-read sequencing using PacBio or Nanopore platforms, 
can greatly increase taxonomic identification of microbial communities like AMF 
(Tedersoo et al., 2018; Nilsson et al., 2019). These platforms operate at the level of 
single DNA molecule, i.e., SMRT methodology (single-molecule real-time 
sequencing) and offer longer read length, require lower number of sequencing read 
to cover AMF diversity compared to short-read sequencing technologies and allow 
differentiation of closely related AMF taxa (Schlaeppi et al., 2016).  

Although these marker genes are frequently used to characterize the taxonomic 
composition and phylogenetic diversity of specific microbial groups, these studies 
display several shortcomings. They focus on only one or a few universal genes and 
therefore it is not possible to extract accurate information of functional capabilities 
based on the taxonomy of all microorganisms in a complex environment like soils.  

Microbial functional diversity 
Ongoing advances in sequencing technologies such as high-throughput sequencing-
based omics approaches allow us to obtain multiple information about the soil 
microorganisms. This information includes their taxonomic profile (marker-gene 
based sequencing), their functional potential (metagenomics) and also the active 
microorganisms in the soil (metatranscriptomics) (Fig. 1) (Urich et al., 2008; 
Prosser, 2015). Briefly, metagenomics involves the extraction of DNA from soil 
samples and provides information about which microorganisms are present and 
what their functional potential is. On the other hand, metatranscriptomics is based 
on the extraction of RNA, followed by the synthesis of cDNA, amplification and 
sequencing or direct sequencing of mRNA. Metatranscriptomics provide 
information on the expression status of the genes, which gives insights into what 
microorganisms actually do at the time of sampling (Fig. 1).  

Although the amount of information yielded from these methodologies is large, 
these molecular tools have some limitations. Particularly, ultra-deep sequencing is 
needed to achieve comprehensible information on microbial diversity in a complex 
environment like soils. Moreover, the functional genes are diverse and form a small 
portion of the nucleic acid pool, which is usually the case in soils. To overcome 
these issues, a probe-capture enrichment technique has been developed and applied 
in metagenomics studies ('captured metagenomics') (Manoharan et al., 2015; 
Manoharan et al., 2017a). It is based on the enrichment and sequencing of several 
thousand functional genes of interest, like sequences coding for enzymes involved 
in different ecosystem functions. Studying soil microbial genes coding for specific 
enzymes related to an ecosystem process can enhance our understanding in 
describing the microbial functional potential in soils and can help us to establish a 
link between community structure and ecosystem functions, such as carbon cycling 
(Manoharan et al., 2017a). However, to date, most studies focus on the functional 
microbial potential, though they do not provide information about active 
microorganisms (mRNA). In order to understand microbial responses, RNA-based 
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studies are needed, however, there are many challenges when working with RNA, 
particularly from soils. The main obstacles are difficulties in RNA extraction due to 
the presence of RNases and ineffective cell lysis (Carvalhais et al., 2012). Further, 
the total RNA pool consists mainly of ribosomal RNA (rRNA), while mRNA is 
found in low amounts (1-5%) (He et al., 2007; Mettel et al., 2010). Therefore, soil 
samples should be quickly inactivated to prevent mRNA turnover and prior 
sequencing, enrichment of mRNA is required. The enrichment of mRNA could be 
done using enrichment of polyA-tailed mRNA or by removal of rRNA (Poretsky et 
al., 2005; Bailly et al., 2007). However, challenges remain as poly-A based 
enrichment only works for mRNA from Eukaryotes and also the rRNA removal is 
seldom efficient in environmental samples like soils. Hence, the above-mentioned 
probe-capture enrichment technique has the capability of enriching cDNA libraries 
obtained from reverse transcribing RNA molecules for expressed regions of interest. 
Based on these efficient molecular methodologies, it should be possible to better 
understand the functional groups of the soil microbial communities involved in 
different ecosystem functions (Fig. 1). 
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Figure 1. Schematic representation of the main strategies to study soil microbial diversity affected by the anthropogenic 
climate change factors.  
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Aims of the thesis 

In this thesis, I explore how agricultural intensification and extreme weather events, 
specifically short-term drought can influence the taxonomic and functional diversity 
of soil microorganisms in agriculture. Specifically, the following aims were 
addressed:  

 

• How do agricultural land-use and crop residue incorporation influence the 
activity of soil microorganisms involved in SOM degradation? (Paper I) 

• How does long-term organic and conventional farming practices influence 
the taxonomic diversity and community composition of AMF? (Paper II) 

• How does soil organic carbon in agricultural soils influence the functional 
diversity and composition of genes involved in SOM degradation? (Paper 
III, IV) 

• How does short-term experimental drought influence microbial diversity 
and their functioning? (Paper II, III, IV) 
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Methods 

The following section outlines the experimental set-ups and methodological 
approaches used in this thesis. A combination of field (Paper II, III) and glasshouse 
(Paper I, IV) experiments along with different molecular methods, specifically 
high-throughput sequencing-based omics approaches was used.  

 

In Paper I, I studied how the expression of microbial functional genes related to 
SOM degradation differs between different agricultural land-uses and also how the 
addition of organic substrates influences their gene expression. To achieve this, the 
'captured metatranscriptomics' technique, based on the sequence probe-capture 
enrichment technique that was previously applied in metagenomics studies 
('captured metagenomics') (Manoharan et al., 2015; Manoharan et al., 2017a) was 
used. This technique is used to sequence a large number of genes, with the ability 
to enrich the genes that are either lowly abundant or expressed in the total gene pool. 
The enrichment of genes is done by using the custom-designed, hybridization-based 
oligonucleotide probes generated through a MetCap probe-designing pipeline 
(Kushwaha et al., 2015). This pipeline allows users to design probes for targeting 
functional genes involved in different microbial processes, like carbon, nitrogen and 
phosphorus cycling. Generated probes are hybridized with extracted nucleic acids 
(DNA or cDNA) and only the probe-bound nucleic acid fragments are sequenced.  

Soils from two land-uses, managed as grasslands (G) and conventional farming for 
winter wheat (W), from Southern Sweden were collected and a glasshouse 
experiment was established. Experimental units (pots) were filled with fresh soils, 
resulting in eight soils in total (four from each land-use). Of them, in each of four 
pairs consisting of two land-uses, one experimental unit was used as a control, i.e., 
without straw addition and the second as the one to which pre-dried wheat straw 
was added. Throughout the one-month experimental period, bacterial and fungal 
growth rates using leucine and acetate incorporation methods were measured at 
different time points. The amount of leucine incorporated into extracted bacteria 
(pmol Leu incorporated g⁻¹ SOM hr⁻¹) using the homogenisation/centrifugation 
technique (Bååth, 1992, 1994; Bååth, 2001) with few modifications (Meisner et al., 
2013) was used as a proxy for bacterial growth. As a proxy for fungal growth, the 
amount of acetate incorporated into extracted ergosterol (pmol acetate incorporated 
g⁻¹ SOM hr⁻¹) was used (Rousk and Bååth, 2011). Based on bacterial and fungal 
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responses to the straw addition, three sampling times T1, T3 and T6, corresponding 
to 4, 13 and 26 days after the straw addition were selected and soils were collected 
for the total RNA extraction. The extracted total RNA from all samples was 
processed for cDNA synthesis and further for the probe-capture enrichment 
technique. Capturing on these samples was performed using the unique 
oligonucleotide probes based on the gene sequences coding for enzymes responsible 
for the SOM degradation such as carbohydrate-active enzymes (CAZy (Cantarel et 
al., 2009)) and secretory proteases (MEROPS (Rawlings et al., 2012)). A local 
sequence database of the selected nucleotide sequences of these genes used for 
designing the capture-probes, here called targeted database (TDB) was set-up. 
Captured cDNA libraries were prepared as described by Manoharan et al. (2017a) 
and sequenced on a single lane of the Illumina HiSeq 2000 system (paired-end 
mode, 125bp read length). Finally, the gene expression in different land-uses and 
after the addition of organic substrates was determined based on the annotations 
matching the TDB.  

In Paper II, I tested the effects of a short-term experimental drought on the diversity 
and community composition of AMF in organic and conventional farming systems. 
The experiment was conducted within the DOK (biodynamic, bioorganic and 
conventional [konventionell]) long-term agricultural experiment (Therwil, 
Switzerland) (Fig. 2) that compares organic and conventional farming systems. 
These systems differ in fertilization and plant protection practices but follow the 
same seven-year crop rotation (Mäder et al., 2002; Krause et al., 2020).  
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Figure 2. Overview of the agricultural areas across Europe in Paper II and III. The triangle (yellow colour) marks the 
DOK (biodynamic, bioorganic and conventional [konventionell]) long-term agricultural experiment in Switzerland. Three 
circles (brown colour) mark the three agricultural areas ranging from Northern to Central and Mediterranean Europe 
(Sweden, Germany and Spain). In Paper IV soils from the agricultural areas of Sweden and Spain were used. 

In two farming systems, biodynamic (BIODYN) and conventional (CONMIN), a 
drought manipulation experiment with rainout-shelters to impose a drought by 
reducing the ambient precipitation (Kundel et al., 2018) was established in mid-March 
and ended in June 2017. To determine the drought effects by the fixed location 
rainout-shelters the three drought treatments consisted of: I) a rainout-shelter reducing 
65% of the precipitation (Roof treatment, R, Fig. 3), II) a control treatment with 
modified rainout-shelter to quantify potential rainout-shelters artefacts (Roof-Control 
treatment, RC), and III) an unmanipulated control without a rainout shelter (Control 
treatment, C). Throughout the spring and summer winter wheat (Triticum aestivum 
L., cv. Wiwa) growing season, soil samples for the DNA extractions were collected 
at two occasions: 4 and 13 weeks after the rainout-shelter establishment. To describe 
AMF communities, 1.5-kb long fragment of the nuclear rRNA gene, comprising the 
entire ITS, parts of SSU and LSU subunit (Kruger et al., 2009) was amplified using 
the two-step PCR protocol. These AMF amplicons were sequenced using the SMRT 
methodology (PacBio). From the raw sequencing reads, circular consensus sequences 
(CCS) were generated and clustered into amplicon sequence variants (ASVs).  
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Figure 3: Drought manipulation experiment in Paper II and III. Fixed location, partial rainout-shelters to impose a 
drought by reducing the 65% of the precipitation (Roof treatment, R) across the spring and summer winter wheat growing 
season. Photo: María Ingimarsdóttir. 

In Paper III, I studied how short-term experimental drought and contrasting SOC 
levels influence the diversity and composition of functional genes in agricultural 
soils over a range of different climatic conditions and soil properties.  

An agricultural experiment was set-up across Europe (Fig. 2), ranging from 
Northern to Central and Mediterranean Europe. In three agricultural areas; in 
Southern Sweden (region Scania: SE), Northwestern Germany (region Lower 
Saxony: DE) and Southeastern Spain (region Almería: ES) agricultural fields with 
contrasting levels of SOC (i.e., “low” (~1%) and “high” (~3%) categories) were 
selected and the three drought treatments (as in Paper II, Fig. 3) installed. At the 
mature stage of winter wheat, soil samples for DNA extractions were collected and 
the 'captured metagenomics' technique (Manoharan et al., 2015) was applied to the 
extracted DNA. A probe-capture enrichment technique used in this study was 
similar to Paper I but capturing the functional genes coding only for extracellular 
enzymes responsible for the degradation of SOM. Unique oligonucleotide probes 
designed based on the genes coding for carbohydrate-active enzymes (CAZy) with 
excretory signal peptides were used for the enrichment. Based on these selected 
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nucleotide sequences a database; exTDB - extracellular targeted database was set-
up. Soil DNA libraries were hybridized with custom-designed oligonucleotide 
probes, and finally captured DNA libraries were sequenced (paired-end mode, 150 
bp read length) on Illumina HiSeq 4000 system. Functional genetic diversity, the 
functional and taxonomic gene composition were evaluated based on the 
annotations matching the exTDB.  

 

To identify microbial responses to short-term experimental drought in agricultural 
soils, a glasshouse experiment was established in Paper IV.  

Soils from two agricultural areas (Fig. 2), i.e., Southern Sweden (region Scania: SE), 
and Southeastern Spain (region Almería: ES) with the most contrasting soil 
properties (e.g., SOC content, soil pH, soil texture) exposed to different climatic 
conditions from Paper III were chosen. Experimental units (pots) were filled with 
fresh soils and by manipulating soil water content, i.e., 60% of water holding 
capacity (WHC) (control) or 30% WHC (drought) a short-term experimental 
drought was established and maintained throughout the barley (Hordeum vulgare 
cv Bonus) growing period (Fig. 4). During the drought experimental period (eight 
weeks in total), soils were sampled every second week (five sampling occasions in 
total) and used for different measurements. For example, microbial respiration, a 
measure of the metabolic activity of the soil microorganisms was measured. In 
addition, soil samples for the analysis of phospholipid fatty acids (PLFAs) and 
neutral lipid fatty acids (NLFAs) used for biomass estimates of bacteria and fungi 
(PLFAs) and AMF (NLFAs) were also collected. To identify how gene expression 
is affected by short-term experimental drought, soil samples were collected at two 
sampling occasions, before the drought period started (T0; zero weeks) and at the 
end of the drought period (T4; eight weeks). In total, at each of these two sampling 
occasions, 20 soil samples were collected, resulting in a total of 40 soil samples for 
the total RNA extraction. From the total RNA extracts, libraries were prepared and 
subjected to sequencing on NovaSeq 6000 System (paired-end mode, 150 bp read 
length). The obtained sequence reads were screened for rRNA, and only non-rRNA 
sequences were then mapped (in-silico) to the exTDB that was established in 
Paper III. 
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Figure 4: Glasshouse drought manipulation experiment in Paper IV, at the beginning of the drought experimental period 
(left picture) and at the end of the drought experimental period (right picture). Photo: Katja Kozjek.  
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Results and discussion 

Effects of agricultural land-use intensification 

Land-use effects 
Land-use practices have been identified to alter soil microbial community 
composition (Jangid et al., 2008; Kaiser et al., 2016; Madegwa and Uchida, 2021), 
their functional genetic diversity (Manoharan et al., 2017a), and also their gene 
expression (Nacke et al., 2014). As expected, in Paper I the overall expression of 
genes related to organic matter degradation was mainly affected by their land-use 
practices (grassland and agricultural soils). Grassland soils were similar, while 
agricultural soils displayed higher variability in their gene expression (Fig. 5). These 
differences could be explained by soil disturbances (physical and chemical) caused 
by land-use practices. Agricultural soils are commonly exposed to tillage and crop 
protection strategies, i.e., the application of fertilizers (Madegwa and Uchida, 2021; 
Yang et al., 2021), while grasslands remain undisturbed. Further, in Paper I, it was 
found that the diversity of differentially expressed genes in agricultural soils was 
higher compared to grasslands. This difference was further enhanced by the straw 
addition. The majority of differentially expressed genes in agricultural soils 
belonged to the families of the GH class, known for the degradation of multiple 
substrates like cellulose and hemicellulose (Henrissat and Davies, 1997). Many 
differentially expressed genes in grasslands also belonged to the families of the GH 
class. However, the majority of differentially expressed genes belonged to the GT 
class, especially enzyme family GT2, even after the straw addition. This suggests 
that many of these genes in grasslands were involved in the biosynthesis of 
carbohydrate molecules rather than their degradation as observed in agricultural 
soils.  

In contrast to grasslands, amounts of SOC in agricultural soils are generally lower, 
moreover agricultural soils are under considerable risk due to practices like tillage 
and intensive fertilization. They negatively influence soil quality, including losses 
of SOC (Lal, 2013). In Paper I, enzymes CDA1 and XynA were highly 
differentially expressed in grasslands while comparing control samples of both land-
uses. However, these two enzymes were then highly promoted in agricultural soils 
when straw was added. Downregulation of these enzymes and upregulation of the 
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above-mentioned GTs due to straw addition in grasslands suggest that straw 
addition led to carbon storage or sequestration. However, the straw in SOC poor 
agricultural soils was used as a source of carbon and energy. Altogether, the addition 
of straw triggered microbial responses similar to grasslands which indicates that 
with careful land-use practices agricultural soils have the potential to become more 
productive.  

Figure 5. Principal component analysis of the TMM normalized counts. Samples are categorized by land-use and 
treatment condition (as colour) and sampling time (as shape). Text labels represent the location of each field (W – winter 
wheat, G – grasslands). Abbreviations: GC – grasslands without straw addition; GS – grasslands with straw addition; 
WC – winter wheat without straw addition; WS – winter wheat with straw addition (Paper I).

Crop residue incorporation 
Paper I reported a promoted microbial activity and gene expression across both 
land-uses when fresh organic material, i.e., wheat straw was added to grassland and 
agricultural soils. Due to low SOC content in agricultural soils and consequent 
starvation of microorganisms, the addition of straw that contains a high amount of 
organic carbon (Liu et al., 2014), particularly enhanced gene expression in 
agricultural soils compared to grasslands. Furthermore, with time, even though the 
gene expression patterns among agricultural soils differed, the straw addition made 
them similar to that of grassland soils. These findings together with previous 
literature show that improved crop residue management has the potential to promote 
SOC levels in agricultural soils (Lessmann et al., 2021) and promote the functioning 
of soil microorganisms, especially their carbon cycling genes.  



43 

Straw addition mainly upregulated different enzyme families in agricultural soils 
compared to grasslands, where there were also many enzyme families that were 
downregulated. Enzyme families GH13 and GH23 were the major ones that were 
upregulated by the straw addition in both land-uses (Fig. 6). Typically GH13 acts 
on multiple carbohydrate substrates (Stam et al., 2006) while GH23 degrades 
peptidoglycan and chitin (Scheurwater et al., 2008; Liao et al., 2019). As mentioned 
earlier, many genes that belonged to these two enzyme families were downregulated 
by the straw addition especially in grasslands (Fig. 6b). Genes of enzyme family 
GH43 that degrade hemicellulose (Mewis et al., 2016) were upregulated by straw 
addition in both land-uses but were especially highly upregulated in grasslands (Fig. 
6b). Whereas enzyme families like GH6, 8 and 9 that are mainly characterized with 
cellulolytic activities (Brumm, 2013) were highly upregulated in agricultural soils 
(Fig. 6a).  

 

Figure 6. The significantly upregulated transcripts by the straw addition in wheat (a) and grassland soils (b). Each box 
represents a CAZy or the protease enzyme family with their area representing the number of differentially expressed 
transcripts and the colour gradient represents their mean fold-change values of those transcripts. The boxes are sorted 
based on each enzyme family’s area and also the enzyme class that they belong to. Abbreviations: auxiliary activities 
(AA), carbohydrate-binding modules (CBM), carbohydrate esterases (CE), glycoside hydrolases (GH), 
glycosyltransferases (GT), and polysaccharide lyases (PL) (Paper I). 
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Farming systems 
The effects of different farming practices, such as organic or conventional farming 
on soil microbial communities have been widely studied (Xue et al., 2013; 
Hartmann et al., 2015; Lori et al., 2017). However, there are contrasting results of 
how different farming practices influence communities of AMF. Results in Paper 
II showed that long-term organic (biodynamic) and conventional farming systems 
did not affect the diversity of these important root-associated fungal communities, 
while the AMF community composition was significantly affected (Fig. 7). 
Contrary to expectations, organic farming did not promote the diversity of AMF. In 
line with previous findings (Birkhofer et al., 2012; Xiang et al., 2014; Manoharan 
et al., 2017b), AMF community composition differed significantly between the 
farming systems and also across the growing season of winter wheat (Fig. 7). Taken 
together, several lines of evidence highlight changes in the community composition 
of AMF in contrast to AMF diversity due to different farming systems. This suggests 
that the same taxa are present across the farming systems with shifts in abundance 
rather than AMF diversity changes. 

Figure 7. Distance-based redundancy analysis (db-RDA) of arbuscular mycorrhizal fungal (AMF) community 
composition at the genus level, constrained for the farming systems and the sampling time. The different shapes 
represent the association with one of the farming systems (BIODYN, CONMIN), and the sampling times (4 and 13 
weeks after the rainout-shelter establishment) and colours represent the AMF genera (Paper II). 
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Effects of short-term drought on soil microbial diversity 
Agricultural land-use intensification in combination with increased occurrence of 
extreme weather events such as drought, could impact soil microbial communities, 
their diversity and functioning and consequently limit their capacity to provide 
crucial ecosystem services to humanity. Negative effects of drought on soil 
microorganisms were reported (Zhou et al., 2020), however the studies addressing 
these effects on the taxonomic and functional diversity at a high resolution in 
agricultural soils are limited. This thesis (Paper II, III and IV) provides more 
insights on how the above-mentioned threat influenced the taxonomic and 
functional diversity of soil microbial communities.  

Effects on the taxonomic diversity 
The short-term experimental drought did not influence the AMF diversity or their 
community composition (Paper II). The resistance of AMF to drought periods is 
probably due to their filamentous structures with the ability to form complex hyphal 
networks which allow them to survive in environments with limited water 
availability (Allen, 2007; Manzoni et al., 2012). An alternative explanation for AMF 
communities being able to cope well with short-term drought could be high SOC 
content in these soils. Generally, high levels of SOC can improve the soil quality, 
enhancing soil infiltration and soil water retention (Rawls et al., 2003; Lal, 2016) 
and can potentially act as a buffer to drought effects (Lal et al., 2011). SOC content 
in both farming systems influenced soil water content, however it was not possible 
to conclude if high levels of SOC had a direct influence on the AMF communities. 
To better understand if SOC content has beneficial effects on AMF communities 
under drought, factors influencing SOC dynamics in soils should be studied 
separately. Although no effects of the short-term experimental drought on AMF 
communities were detected, some AMF taxa were identified as indicators for 
drought conditions. Particularly, we found drought indicator taxa represented by 
ASVs in the family Archaeosporaceae. So far only a few studies have investigated 
AMF responses to drought and have found Glomus and Diversispora species (Yang 
et al., 2010; Zhang et al., 2016; Deveautour et al., 2018) being tolerant to drought. 
Thus, it remains to be further explored if fungi from the family Archaeosporaceae 
are particularly resistant to drought conditions.  

Further, in Paper II, the identification of AMF communities at a fine level of 
resolution, the ASV level, displayed some shortcomings. AMF have a high 
intraspecific genetic variation, within a species and also within a single spore 
(Sanders, 2004). Each ASV represents a unique DNA sequence of on organism 
(Callahan et al., 2017; Glassman and Martiny, 2018), here AMF taxa, but since 
current taxonomic databases lack detailed information on AMF intra- and 
interspecific variation, assignment of AMF ASVs to a genus or species level is 
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challenging. Altogether, these observations along with the challenge to infer 
microbial functions from taxonomy highlight the need to study the microbial 
functional genes. That way it is possible to better understand the behaviour of soil 
microorganisms.  

Moreover, based on the taxonomy obtained from the functional genes in Paper III, 
the short-term experimental drought did not have an impact on the taxonomic 
composition of the microbial communities in soils similar to Paper II. In both cases, 
taxonomic compositions were mainly explained by their regional differences, i.e., 
country of origin. When comparing soils between countries in Paper III, compared 
to Spain, Proteobacteria was more abundant in Sweden and Germany (SOC rich 
soils) while in Spain (SOC poor soils) Actinobacteria was prevalent. This trend was 
also observed in Paper I, where Actinobacteria was more active in SOC poor 
agricultural soils compared to SOC rich grassland soils, where Proteobacteria was 
more active. When straw was added to agricultural soils the abundance of 
Actinobacteria started diminishing. In Paper IV, Proteobacteria was downregulated 
by drought in SOC rich soils of Sweden, while Actinobacteria was upregulated by 
drought. Based on findings from Paper I, III and IV and previous studies (Bouskill 
et al., 2013; Mohammadipanah and Wink, 2016; Canarini et al., 2021), it is clear 
that Actinobacteria are more resistant to disturbances (nutrient or water availability) 
in soils compared to Proteobacteria. However, it is important to keep in mind that 
there were some Proteobacteria upregulated by drought that could potentially be 
specialists (Paper IV) (Spain et al., 2009).  

Effects on the functional diversity 
The drought effects on soil microorganisms have primarily been addressed to study 
changes in community composition and taxonomic diversity (Bouskill et al., 2013; 
Ochoa-Hueso et al., 2018; Canarini et al., 2021). In Paper III and IV, we 
investigated the effects of drought on soil microbial communities at their functional 
genetic level, specifically on their ability to degrade SOM. The diversity and 
composition of genes encoding for extracellular enzymes were determined on the 
DNA level in Paper III. Whereas in Paper IV, the expression of genes from Paper 
III was analysed on the RNA level, based on the glasshouse experiment simulating 
drought.  

While there were differences in their functional genetic potential to degrade SOM 
between the three European agricultural areas, Sweden, Germany and Sweden, the 
drought effect was only observed within agricultural fields in Germany (Paper III). 
The functional genetic composition in Sweden and Spain seemed resistant to short-
term drought (Paper III), however drought affected the microbial responses in their 
ability to degrade SOM (Paper IV). Resistance to short-term drought in Spanish 
soils based on their functional genetic potential (Paper III) might be explained by 
the regional adaptations of soil microorganisms to already dry environments, such 
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as arid and semiarid environments. Soil microorganisms in these environments 
developed different strategies to survive drought periods, such as thicker cell walls, 
ability to form spores, accumulation of osmolytes or production of extracellular 
polymeric substances (Schimel, 2018). However, it was interesting to note that the 
diversity of these enzymes in Spanish soils was higher compared to Swedish and 
German soils (Fig. 8.). On the other hand, the resistance to drought in Swedish soils 
could be explained by the extreme drought of the experimental year (Di Liberto, 
2018) and the potential buffering ability of SOC (Lal et al., 2011). In contrast to 
Spain and Germany, Swedish soils contained high levels of SOC, therefore the 
drought effect on the functional gene composition might be overshadowed by higher 
SOC levels. Most likely high levels of SOC buffered the soil water levels to a degree 
that made the composition of functional genes resistant to water shortages. 

 

Figure 8. Rarefaction curves of the unique enzyme IDs obtained from random sampling of on-targets from the 
DIAMOND blastx matches against exTDB in the three countries (SE – Sweden, DE – Germany and ES – Spain). The 
x-axis represents the number of sequence reads, and the y-axis represents the number of captured unique enzyme IDs 
(Paper III). 

The drought resistance of microbial communities in Spain was even more evident 
when their response to drought on the RNA level was studied (Paper IV). The 
number of differentially expressed genes due to drought was much lower in Spain 
compared to Sweden (Fig. 9). Although the diversity of enzymes on the gene level 
in Spain was the highest (Paper III, Fig. 8), the diversity of expressed enzymes 
affected by the drought was much lower than in Sweden.  
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Figure 9. Bar plot showing the number of significantly (padj < 0.05) differentially expressed (DE) genes up- (drought) 
and down- (control) regulated by the treatment in each country (Spain and Sweden). The y-axis is scaled at log10 for 
visualization (Paper IV). 

Links between taxonomic groups and functions 
One of the main advantages of studying functional genes, present or expressed, is 
the ability to obtain information of the microbial taxonomic composition and their 
functional capabilities simultaneously. While studies focusing on only taxonomic 
diversity are primarily limited to describing taxonomic changes. In this thesis, links 
between microbial taxonomic groups and functional genes helped to better 
understand the microbial mechanisms behind SOM degradation. 

Class AA, a key class for the decomposition of lignin (Lombard et al., 2014), has 
been found in Paper III, and IV. More specifically, on the DNA level (Paper III), 
enzyme family AA10 has been found in all three countries and linked to 
Actinobacteria. However, this enzyme family was evidently more abundant in drier 
and SOC depleted soils of Spain. It was not surprising that this enzyme family was 
found in high abundance in these soils, because Actinobacteria are adapted to these 
harsher conditions (Acosta-Martínez et al., 2014; Mohammadipanah and Wink, 
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2016). On the other hand, on the RNA level (Paper IV), in the same soils, this 
enzyme family has been found to be promoted by the drought but linked to 
Proteobacteria. Therefore, this enzyme family could be a specialist for these soil 
types (Spain et al., 2009; Islam et al., 2020). In Swedish soils, AA10 was also 
promoted by the drought and found in Actinobacteria. Since AA10 is responsible 
for the degradation of complex carbohydrates and has been promoted by the drought 
in both countries, these results may indicate that due to low water availability 
simpler sugar molecules were not accessible and microorganisms were forced to 
search for complex carbohydrates. The enzyme family CBM50 was upregulated by 
straw addition in both land-uses (Paper I, Fig. 10), and mainly from Actinobacteria 
in agricultural soils and from Proteobacteria and Firmicutes in grasslands. In Paper 
III, on the DNA level, CBM50 was negatively correlated to SOC. In Sweden and 
Spain CBM50 was found in Actinobacteria and Proteobacteria, while in Germany 
this enzyme family was only of proteobacterial origin. Interestingly drought 
upregulated this enzyme family only from Proteobacteria (Paper IV). Observation 
on CBM50 is similar to that of AA10 in the sense that Actinobacteria are generally 
more adapted to drier and SOC depleted soils (Mohammadipanah and Wink, 2016), 
while there might be some Proteobacteria adapted to drought conditions (Spain et 
al., 2009). Among other CBM families, CBM13 has been found in Paper I, III and 
IV and linked to Actinobacteria. Interestingly, drought upregulated only 
Actinobacteria in Swedish soils, while it was only downregulated in Spanish soils 
(Paper IV). Actinobacteria perform well in dry soils (Acosta-Martínez et al., 2014; 
Maestre et al., 2015), but it might also be that the drought did not differentially affect 
Actinobacteria in Spanish soils. The same trend was also observed for CBM2.  
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Figure 10. The differentially expressed (DE) transcripts by the straw addition in both land-uses. These DE transcripts 
were sorted based on if they were common or specific to a particular land-use and also if they were up- (straw) or 
downregulated (control) by the straw addition (x-axis). Further they were sorted based on the CAZy or protease enzyme 
family they belong to (y-axis). The size of each point represents the number of DE transcripts in each category and the 
colour represents their taxonomy at the phylum level. Abbreviations: auxiliary activities (AA), carbohydrate-binding 
modules (CBM), carbohydrate esterases (CE), glycoside hydrolases (GH), glycosyltransferases (GT), polysaccharide 
lyases (PL), and proteases (P) (Paper I). 

Families CE1 and CE4 were positively linked to SOC on the DNA level (Paper III) 
and were predominantly downregulated by drought in Sweden and Spain (Paper 
IV). Limited water availability upregulated Actinobacteria and Ascomycota of CE1 
in Sweden (Paper IV). These findings suggest that higher levels of SOC content 
could act as a buffer to drought by promoting upregulation of actinobacterial CE1 
(Lal et al., 2011). Links between CE1 and SOC were even more evident in Paper I 
(Fig. 10), as they were upregulated by the addition of straw in both land-uses. CE4 
was strongly linked to Proteobacteria in Swedish and German soils, while in Spain 
it was mostly linked to Actinobacteria (Paper III). Proteobacteria, Firmicutes, 
Actinobacteria and Ascomycota harbouring CE4 were downregulated by drought in 
Swedish soils, while Firmicutes were the only phylum that was upregulated by 
drought in these soils (Paper IV). In line with previous studies (Bouskill et al., 
2013; Hartmann et al., 2017) Firmicutes are resistant to desiccation and can perform 
well in dry environments, therefore not surprising they were upregulated by drought 
in Sweden (Paper IV). Among GTs, GT2 was found to be upregulated by straw in 
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grasslands and agricultural soils, however found in different taxonomic groups. In 
grasslands mainly in Actinobacteria and in agricultural soils mainly in 
Proteobacteria (Paper I, Fig. 10). Drought did not upregulate any specific GT2, 
while downregulation in Spanish soils was found for Firmicutes and Proteobacteria, 
and Proteobacteria and Acidobacteria in Swedish soils (Paper IV). As found in 
Paper I (Fig. 10), proteobacterial GT4 was strongly upregulated by straw addition 
in agricultural soils. Enzyme GT51 was negatively correlated to SOC (Paper III) 
but downregulated by the drought in Spain and Sweden (Paper IV). Moreover, the 
addition of straw downregulated most GT51 of actinobacterial origin in grasslands, 
while there was no effect on agricultural soils (Paper I, Fig. 10). As discussed 
earlier, GT class is mainly involved in building carbohydrate molecules (Schmid et 
al., 2016) and as expected enzyme families from this class were mainly upregulated 
by the addition of organic material but were downregulated by drought. In many 
GH families, such as GH7, 17, 10 and 1 Ascomycota was found to be upregulated 
by straw addition, but only in grasslands (Paper I, Fig. 10). Interestingly, none of 
these enzyme families was found in Paper III and IV. It is also worth mentioning 
families GH13 and GH23, as they were both up- and downregulated by straw 
addition in both land-uses, but strongly in grasslands (Paper I, Fig. 10). Across all 
three European countries, GH13 was linked to Proteobacteria in Sweden and 
Germany, and to Actinobacteria and Proteobacteria in Spain (Paper III). Drought 
upregulated actinobacterial GH13 in Sweden, while proteobacterial GH13 was 
upregulated in both countries. In the case of GH23, Sweden and Germany shared 
the same trend, with Actinobacteria and Proteobacteria in similar proportions, while 
in Spain the proportion of Actinobacteria compared to Proteobacteria was higher. 
In contrast to Sweden, where none of the GH23 taxa was upregulated by drought, 
but Proteobacteria was upregulated by drought in Spain. However, both 
Actinobacteria and Proteobacteria were upregulated by drought across both 
countries (Paper IV).  
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Conclusions and future perspectives 

Functional diversity of soil microorganisms is the essential link between soil 
microbial groups and ecosystem functions, which provides new insights in 
understanding soil biodiversity. There is an increasing recognition that in contrast 
to taxonomic information and inferring functions from taxonomy, functional 
diversity may provide a more comprehensive understanding of the functioning of 
microbial systems (Escalas et al., 2019). The advantage of studying functional 
genes, present or expressed, can enable the identification of soil functional groups 
in the ecosystem.  

This thesis gives further insights into how agricultural land-use intensification and 
extreme weather events, especially drought affect soil microbial communities, their 
taxonomic and functional diversity and how this is linked to ecosystem processes. 
In this sense, Paper I showed that different land-use types altered microbial 
responses, particularly in relation to SOM degradation. Then, it was further explored 
how different agricultural practices could prevent traditionally carbon depleted 
agricultural soils from becoming poorly productive in the long run and if some of 
these practices have the potential to mitigate the effects of extreme drought (Paper 
I, and II). Paper I showed that the addition of organic compounds enhanced the 
expression of carbon cycling genes, particularly in agricultural soils. Organic 
farming did not promote the diversity of AMF communities, however high levels of 
SOC in this farming system may have a positive effect on the resistance of AMF 
communities against drought (Paper II). Taxonomic diversity of soil microbial 
communities, specifically AMF was not affected by drought (Paper II), while 
functional gene composition across Europe was affected in one out of the three 
countries (Paper III). These results suggest that soil microbial communities 
respond differently to short-term drought due to (a) their structure, like filamentous 
structures and hyphal networks (Paper II), (b) regional adaptations to survive harsh 
conditions in dry environments (Paper III), (c) differences in soil physicochemical 
properties, like SOC (Paper II and III). Even though some microbial communities 
across Europe displayed higher resistance to drought (Paper III), results of Paper 
IV clearly showed that short-term drought affected expressed genes involved in the 
degradation of SOM. Taken together, results in this thesis suggest that careful 
agricultural practices, including crop residue incorporation, specific farming 
systems and increased levels of SOC have the potential to mitigate the effects of 
drought on soil microorganisms and can lead towards more sustainable agriculture. 
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However, the results and observations in this thesis opened several interesting 
questions that could be addressed in the future.  

For example, short-term experimental drought in Paper II, III and IV influenced 
soil water content, but soil microbial communities displayed a certain degree of 
resistance. As European and global climate models forecast higher occurrence and 
intensity of short-term drought periods (Masson-Delmotte, 2021), the verification 
of these results under even more extreme and repeated drought conditions should be 
studied. Additionally, microbial resistance to drought conditions should be further 
explored under an extended range of environmental conditions, including both, soil 
properties and climate conditions.  

In Paper II the potential of AMF to mitigate drought effects was found. However, it 
would be important to include plants, specifically roots in these studies, because AMF 
colonizes plant roots and helps them to obtain water and nutrients from places that roots 
would not be able to reach. That way it would be possible to unlock the potential of 
AMF communities to protect and help plants survive drought periods. Such knowledge 
may contribute to the development of sustainable land-use systems to remain 
productive in long-run and maximize crop yields even under extreme drought periods. 

There is potential in further using the collected data in this thesis, specifically 
metagenomics and metatranscriptomics from Paper I, III and IV. This information 
could be used in the integrative analysis, the so-called multi-omics as these data was 
obtained from the same soils. This approach may provide more comprehensive 
insights into soil microbial systems, both short- and long-term, and how these systems 
are influenced by different factors, either climate change or direct human activities. 
For example, the results from Manoharan et al. (2017a) showed land-use effects on 
the soil microbial DNA could be linked to their RNA from Paper I where straw was 
added. This way we could understand the long-term effects of land-use on the short-
term effects of straw addition at a higher resolution. Similarly, linking results from 
Paper III and IV will provide a better understanding of how short-term drought 
periods could affect soil microbial communities involved in the degradation of SOM.  

New sequencing technologies lead to larger amounts of high-quality data, with the 
potential to study even more specific microbial functions and increase the 
taxonomic resolution of soil microbial communities. This may further lead to the 
expansion of current references databases, for example fungal databases. This could 
(a) offer a better representation of fungal communities, which was limited in Paper
I, III and IV, (b) help to better understand the intraspecific variation of AMF
communities highlighted in Paper II. Captured approaches (metagenomics or
metatranscriptomics) used in this thesis (Paper I, III and IV) present a way forward
to better understand the functioning of complex soil ecosystems, especially carbon
cycling. However, to have a better representation of fungi, who are important
players in the degradation of SOM (Magdoff and Weil, 2004), a more specific
probe-capture enrichment technique targeting only fungi could be used.
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