LUND UNIVERSITY

A Collection of Matlab Routines for Control System Analysis and Synthesis
First edition
Gustafsson, Kjell; Lilja, Mats; Lundh, Michael

1990

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Gustafsson, K., Lilja, M., & Lundh, M. (1990). A Collection of Matlab Routines for Control System Analysis and
Synthesis: First edition. (Technical Reports TFRT-7454). Department of Automatic Control, Lund Institute of
Technology (LTH).

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/26f9e931-474e-40cd-9cfa-6acced2abda2

CODEN: LUTFD2/(TFRT-7454)/1-16/(1990)

A Collection of Matlab Routines for
Control System Analysis and Synthesis

Kjell Gustafsson
Mats Lilja
Michael Lundh

First edition

Department of Automatic Control
Lund Institute of Technology
July 1990

Document name

Department of Automatic Control INTERNAL REPORT

Lund Institute of Technology Date of isaue
P.O. Box 118 July 1990
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT—7454)/1-16/(1990)
Author(s) Supervisor

Kjell Gustafsson, Mats Lilja, Michael Lundh

Sponsoring organisation

Title and subtitle
A Collection of Matlab Routines for Control System Analysis and Synthesis

Abstract

A collection of Matlab routines for control system analysis and synthesis is described. The routines have
evolved during several years of frequent Matlab use. The report includes a brief description of all the routines
and examples of their intended use.

Key words

control system analysis, controller design, frequency response, LQG, pole placement, root locus, model reduc-
tion, simulation

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 16

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

Any devoted Matlab user soon ends up extending the available commands
with new routines. Many of these are special routines for specific projects but
some might be of interest also to other users. This report describes a set of
routines that we believe belong to the second category. The routines have
evolved during a couple of years of frequent Matlab use, and by presenting
them we hope to save at least someone from redoing our work.

The number of routines is fairly large and for ease of use they have been
divided into a couple of different toolboxes:

FRBOX Generating, manipulating and plotting frequency response data
PPBOX Pole placement design and simulation of closed loop systems
RLBOX Pole-zero and root loci plots
FRLSBOX Approximation and design in the frequency domain
LQGBOX LQG design of controller and estimator

By using help directly on a box-name, e.g. help frbox, one gets general
information on all the routines in the box. All individual routines are also
extensively documented (use help). Some of the boxes include a demo-file
that demonstrates how the routines may be used.

In order to make the collection of routines more useful we welcome sug-
gestions for changes and /or new routines to include.

How to Use the Toolboxes

The information in this subsection is specific to the setup at the Department
of Automatic Control, Lund, Sweden. When setting up Matlab using

setup matlab

an environment variable MATLABBOXES is defined. This environment variable
contains the path to all the functions described in this report. By using it
together with MATLABSYSPATH, an environment variable containing the path
to the functions in the Matlab distribution, each user can tailor his/her own
MATLABPATH. A common setup is to have

setenv MATLABPATH 7/matlab:${MATLABBOXES}:${MATLABSYSPATH}

in the login file. The MATLABBOXES path also includes a directory called
misc, containing some locally customized m-files, e.g. print, and m-files of
general interest.

FRBOX and PPBOX use a few global variables. These can be defined by
executing frbox and ppbox, i.e. include the line

frbox, ppbox

in your startup.m file.

2. FRBOX

This is a collection of routines to calculate, plot, and manipulate the frequency
response of a system. The data structure used is matrices on the form

[w G1(iw) G2(iw)] (1)

The first column contains a vector of frequency points w [rad/s|, and the other
columns consist of frequency responses evaluated at these frequency points.
The multicolumn format makes it easy to represent and manipulate several
related frequency responses at the same time, e.g. several measurements of
the transfer function of an unknown system, the transfer function of a system
evaluated for different parameter values, or all transfer functions for a MIMO
system.

The routines in FRBOX can be divided into different categories having
the frequency response data structure (1) in common. Some routines gener-
ate frequency responses, some plot them, and, finally, there are routines for
manipulating frequency responses.

Generating a Frequency Response

FRBOX contains the following commands for generating frequency responses

frc Frequency response from continuous-time polynomial descrip-
tion, G(s) = b(s)/a(s)e=*"

frd Frequency response from discrete-time polynomial description,
H(z) = b(z)/a(2)

frcss Frequency response from continuous-time state space descrip-
tion, G(s) = (C(sI — A)"'B + D)e™*"

frdss Frequency response from discrete-time state space description,
H(z)=C(z2I - A)™'B+D

frcsys Frequency response from continuous-time system description, as

frcss but A, B,C, D given as one system matrix

frdsys Frequency response from discrete-time system description, as
frdss but A, B,C, D given as one system matrix

frcpid Frequency response of continuous-time P, PI, PD, and PID con-
troller with and without filter on the derivative part

frdpid Frequency response of discrete-time P, PI, PD, and PID con-
troller with and without filter on the derivative part

frtust Frequency response of the Tustin approximation of a continuous-
time system on polynomial form

frcasymp The Bode amplitude asymptotes from continuous-time polyno-
mial description

BVCSS Singular value response from continuous-time state space de-
scription
SVCSys Singular value response from continuous-time system description

As an example of how to use the routines, consider a call to frc
fr = frc(b,a,tau,lgwl,lgw2,n)

After this call fr consists of two columns. The first contains n logarithmically
spaced points between 10'*! and 10'9“2, and the second the corresponding
values of b(iw)/a(iw)e=*7. The argument n is optional with default value
equal to 50. If the calling sequence

fr = frc(b,a,tau,wvec)

is used, the response is instead calculated for the frequency points in wvec.

‘When using frc it is possible to have several rows in b, a, and tau. For
each row k the response of bk(ﬁu)/ak(iw)e_"“"'* is calculated and stored in
column k + 1 of fr.

The other routines have similar syntax. Typically the first arguments are
used to define the system, e.g. state space matrices, numerator/denominator,
and the last ones to define the frequency points. In the case of discrete-time
systems 1gw2 can be omitted or supplied as []}, and it then defaults to half
the sampling frequency.

Plotting a Frequency Response

FRBOX includes routines for plotting a frequency response in many different
formats. The input is frequency responses on the form (1), and the following
types of plot formats can be produced

ampl Make a new amplitude plot

amsh Show an amplitude curve in a previous amplitude plot
amgrid Plot grid and mark the unit gain line in an amplitude plot
phpl Make a new phase plot

phsh Show a phase curve in a previous phase plot

phgrid Plot grid and mark the —180° line in a phase plot

bopl Make a new Bode plot

bosh Show a Bode curve in a previous Bode plot

bogrid Plot grid and mark the unit gain and the —180° line in a Bode
plot

nipl Make a new Nichols plot

nish Show a Nichols curve in a previous Nichols plot

nigrid Plot grid and mp-circles in a Nichols plot
nypl Make a new Nyquist plot
nysh Show a Nyquist curve in a previous Nyquist plot

nygrid Plot grid and mark real and imaginary axis in a Nyquist plot

evpl Make an evaluation plot (four different plots that helps evaluating
a closed loop system)

evsh Show an evaluation curve in a previous evaluation plot

evgrid Plot grid and mark unit gain line in an evaluation plot

Consider amplitude plots as an example of how to use the routines. ampl is
called using the format

ampl(fri,fr2,fr3,fr4,scale)

and an amplitude plot will be done using the frequency responses in fri
— fr4. The responses fri — fr4 may contain different number of columns
and/or frequency points. Both fr2 — fr4 and scale are optional. If scale
is omitted the plot scale will be chosen such that all the responses are fully
visible on the screen.

After an amplitude plot has been done amsh can be used to add new
curves. The calling format is

amsh(fr,option)

causing the amplitude of the responses in £r to be added to the plot currently
on screen. If the optional argument option is submitted it will be used as plot
option. A grid and a line marking unit gain can be added to an amplitude
plot using amgrid.

The routines for Bode and phase plots are completely analogous to the
amplitude plot routines. The routines for Nyquist and Nichols are also similar,
but they include one extra argument: wmark. As an example take

nipl(fri,fr2,fr3,fr4,wmark,scale)

The parameter wmark specifies which frequency points to mark. If wmark is
empty, e.g. [], no points are marked. The special choice wmark = ’125°
marks the 1, 2, and 5 point in each decade.

The evaluation plot routine evpl differs from the other plot routines.
It takes the frequency response of a controller and a process as input and
produce four plots based on that. These plots make it possible to quickly
compare different designs in terms of transfer functions from reference value
to output, from load disturbance to output, and from measurement noise to
control signal.

Manipulating a Frequency Response

FRBOX includes some routines for manipulating frequency responses on the
format (1)

finv Invert a frequency response

fadd Add two frequency responses

fsub Subtract one frequency response from another

fomul Multiply two frequency responses

fdiv Divide one frequency response with another

fclose Calculate closed loop frequency response from open loop response
fopen Calculate open loop frequency response from closed loop response
fsens Calculate sensitivity function from open loop frequency response
The manipulation routines are all rather straight forward to use. The only

thing worth commenting is how frequency response data with several columns
is treated. As an example take the call

fr = fadd(fri,fr2)

If £r1 and fr2 contain the same number of frequency responses, then each
single response in fri is added to the corresponding response in fr2. If on
the other hand fr1 or fr2 contain only one response this one is used for all
the responses in the other variable.

Extracting Data from a Frequency Response

It might be necessary to interpolate in a frequency response in order to find
points of interest. One situation is when calculating the amplitude and phase
margins. To facilitate these operations FRBOX includes the following routines

fpick Pick out points from a frequency response
levcross Compute level crossings in a table
ampcross Compute frequencies of amplitude level crossing

phacross Compute frequencies of phase level crossing
fmarg Calculate amplitude and phase margin from frequency response

bandwidth Compute the bandwidth from a frequency response

The routine levcross is a general routine for calculating points (using inter-
polation) where a data vector cross a certain level. This routine is then used
as a subroutine by most of the other routines.

Frequency Response Format Conversion

The System Identification Toolbox in Matlab uses a different data format than
the one in FRBOX (1). Use the following routine to translate between the
two formats.

id2fr Convert a System Identification Toolbox frequency file to FRBOX
format

Miscellaneous Information

FRBOX uses a global variable glob_scales to store the scales of different
subplots. This variable is declared global by executing FRBOX. If a plot
routine is called without previously having defined glob_scales a message is
printed on the screen.

All frequency plotting scales and markings in Nyquist and Nichols plots
are done in Hz instead of rad/s if the variable glob_hz has a value different
from 0 or [].

Bugs

Sometimes different (and erroneous) scaling is used on the screen and in the
meta file. It is due to the way MATLAB handles its automatic scaling. Nor-
mally the problem can be avoided by using a larger plot window on screen.

MATLAB sometimes chooses an automatic scaling that one cannot get
through the axis command. It is then impossible to add new curves with the
*sh commands. The problem can be avoided by specifying a scale in the *pl
command or manipulating glob_scales.

When using routines that plot in several plot windows you will be left
in a window different from 111. This is an inconvenience but has to be done
since subplot(111) empties the plot buffer, i.e. no hard copies.

3. PPBOX

This is a collection of routines for pole placement design and simulation of
continuous-time or discrete-time closed loop systems. In addition to this there
are routines for polynomial creation and manipulation.

A system is represented as a fraction of polynomials

G:Z (2)

where B and A may be interpreted as continuous-time polynomials in the
Laplace operator s or as discrete-time polynomials in the forward shift operator

q. The data structure for a polynomial P is a row vector with the polynomial
coefficients. A transfer function is then described by two row vectors.

It is sometimes of interset to consider transfer functions where one or more
parameters may take different values. Such a family of transfer functions is
represented by two matrices BB and AA. They have equal number of rows and
each pair of row vectors BB(j,:) and AA(j,:) represents a transfer function.

Polynomials

PPBOX contains the following routines for creation and manipulation of poly-
nomials and systems.

addpoly Add two polynomials, P(-) = Pi(-) + Pa(-)

polyc Create continuous-time polynomial,
P(s) = gz, (s + 2wiCies + wf) TIRZs (s + 7)

polybutt Create continuous-time Butterworth polynomial.

polybess Create continuous-time Bessel polynomial.

pade Pade approximation of time delay, G(s) = B(s)/A(s) ~ e~*"

sample Sampling of a continuous-time system, G(s) = B.(s)/A(s)
to yield H(q) = Ba(q)/Aa(q)

polyc2d Mapping of continuous-time characteristic polynomial A.(s)
to discrete-time counterpart Aq(q).

mksysp Defines a family of transfer functions. The system is defined
by

__ By(8)Bo(s)

Glo) = Z.(5)Aols)

where the coefficients of By and Ao are known accurately
and the coefficients of B, and A, belong to intervals b; €
bjo £+ 8b; and a; € a;p £ da;. Using the intervals where the
§ uncertain coefficients belong, 27 different transfer functions
are formed, each representing a corner of the convex set in
coefficient space that defines the transfer function family.

These routines may also be useful together with FRBOX.

Transfer Function Manipulation

Some routines to manipulate transfer functions are included.

gadd Calculate the sum of two rational transfer functions

stabpartc Separate a continuous-time rational transfer function into stable
and unstable partial fractions

stabpartd Separate a discrete-time rational transfer function into stable and
unstable partial fractions

In each case a rational function is represented by the corresponding pair of
polynomials. The stability regions used in stabpartc and stabpartd are the
open left half plane and the open unit circle respectively.

Polynomial Synthesis

Two routines for polynomial synthesis are available.

By T
Ll O S |u Gy y
Ag S R
n
-1 |
Figure 1. The Simulated Closed Loop System
rstc Polynomial synthesis for continuous-time systems
rstd Polynomial synthesis for discrete-time systems

They are identical with exception for how the DC-gain is normalized. A
controller Ru = T'r — Sy is calculated when the open system is defined by
the transfer function G = B*B~/A. The polynomial B* will be cancelled
and must therefore be stable and well damped. The closed loop characteristic
polynomial is A,, A, where the poles in A, are cancelled in the transfer function
from reference to output. This transfer function equals G,, = kB~ By.1/Am,
where k is chosen to make G,,(0) = 1 in the continuous-time case and G, (1) =
1 in the discrete-time case. It is possible to force R and S to include certain
factors. These are specified by ar and as. The routine rstc is called by

[r,s,t] = rstc(bplus,bminus,a,bml,am,ao,ar,as)

and as or both ar and as may be omitted. The call to rstd is similar.

Simulation and plotting

PPBOX also includes routines for simulation. Only pure continuous-time
systems or pure discrete-time systems can be simulated. Simulation of a
continuous-time system controlled by a discrete-time controller should be per-

formed in SIMNON.

yusimc ' Simulation of continuous-time systems

yusimd Simulation of discrete-time systems

yusignals Generation of signals affecting the closed loop system
yustairs Prepare signals for stair-step plots for discrete-time systems
yupl Plot of time response in a new diagram

yush Plot of time response in an existing diagram

The simulation routines yusimc and yusimd simulate a closed loop system
with four inputs and two outputs. The input signals are reference, input
disturbance, output disturbance and measurement noise. The output signals
are the process output and the control signal. The closed loop system is found
in figure 1. Simulation of a continuous-time closed loop system is performed
by the call

tryu = yusimc(bb,aa,r,s,t,bff,aff,trldn)

The open system Gr = BB/AA is controlled by a two degree of freedom
controller, that is given by

B
Ru:T(l>r—sy (3)
Agg

The open loop system is specified by the matrices bb and aa. If these only have
one row each the simulation is done for this single system. If bb has n rows and
aa has 1 row then n systems bb(i, :) /a are simulated with the same controller,
and similarly if bb has 1 row and aa has n rows. If bb and aa both have n
rows then n systems bb(i,:)/aa(i,:) are simulated. This is convenient for
simulation of systems with parametric uncertainty. The output tryu from
yusimc and yusimd is a matrix where the columns should be interpreted as

(time * w1 w1 y2 uz ---) 4)

where r is the reference input and each pair (y;, 1;) is the process output signal
and the control signal for the #:th system. The full input to the simulation
routines is a matrix with five columns defining

(time r» | d n) (5)

A convenient way of forming this matrix is to use yusignals. This routine
has many options that are described in the help text. A simple way to use
yusimc is to specify the simulation time tmax.

tryu = yusimc(bb,aa,r,s,t,bff,aff,tmax)

Then the reference signal » = 1, an input disturbance | = —1 affects the
system from tmax/3, and an output disturbance d = —1 affects the system
from tmax*2/3. No noise is present. Other options are available. For more
information see the help text.

The routine yusimd has similar syntax. A parameter defining the sam-
pling interval is optional.

The simulation result may be plotted using yupl. This routine is called
using the format

yupl(tryul,tryu2,tryu3,tryus,scale)

giving a plot of the time responses tryul — tryu4. The responses tryul —
tryu4 may contain different number of columns and/or time points. Both
tryu2 - tryu4 and scale are optional. If scale is omitted the plot scale will
be chosen such that all the responses are fully visible on the screen.

After a time response plot has been done yush can be used to add new
curves. The calling format is

yush(tryu,option)

causing the time responses in tryu to be added to the plot currently on screen.
If the optional argument option is submitted it will be used as plot option.

File Output

In some cases it is desirable to transfer parameters to other programs, e.g.
SIMNON, TOOLBOX. Some routines provide this. Text files are created on
SIMNON parameter file format or on MATLAB .m script-file format.

rst2sim Write simnon parameter file with RST-regulator.

P2sim Write simnon parameter file with polynomials.

p2mat Write matlab .m script-file with polynomials.

Miscellaneous Information

A global variable (glob_scale) is used. It is defined by executing PPBOX or
FRBOX.

Bugs

The use of noise when simulating a continuous-time system is not correct since
the noise is only present at the instants when outputs are calculated. The same
scaling problems occur here as in FRBOX.

4. RLBOX

RLBOX contains routines to make pole-zero plots, and to calculate and plot
root loci.

Making Pole-zero Plots

pzpl Make a new pole-zero plot
pzsh Show poles-zeros in a previous pole-zero plot

pzgrid Make grid and plot the real and imaginary axis or the unit circle
in a pole-zero plot

mark A general routine for plotting and indexing markings

The pole-zero plot routines take two polynomials defining a transfer function
as input, calculate the poles and zeros, and finally plots them using mark. The
relation between pl, sh, and grid is similar to the plot routines in FRBOX.

Normally pzpl makes a square plot with equal scales on the x and y axis, but
by supplying a scale argument (optional) this can be changed.

Calculating and Plotting Root Loci

rootlocus Calculate root locus

rlocl Plot full root locus including start and end points

rloc2 Plot root locus around a nominal point

symloc Plot stable part of symmetric LQ locus for continuous-time sys-
tem

dsymloc Plot stable part of symmetric LQ locus for discrete-time system

The routine rootlocus uses the implicit function theorem in an attempt to
make the roots not vary to much between consecutive k-values. rootlocus is
seldom used directly, but functions rather as a subroutine for the other root
loci plot routines.

The routines symloc and dsymloc are used to plot the so called LQ root
locus, i.e. the closed loop poles one gets when solving the LQ problem mini-
mizing

/; ” (¥3(¢) + pu(2)) dt.

Normally the root loci plot routines make a square plot with equal scales
on the x and y axis. This can be changed by supplying a scale argument
(optional).

Pzgrid, pzsh, and mark can be used to make a grid and/or mark specific
points in a root locus plot. The Matlab routine zgrid may be of interest when
plotting poles-zeros of a discrete-time system.

5. FRLSBOX

This is a collection of routines for calculating transfer functions and controllers
by using least squares fitting in the frequency domain. Functions for optimal
Hankel norm approximation and Padé approximation are also included.

Least Squares Approximation

1sbac Fitting a rational function B(s)/A(s) to a frequency response
(continuous-time version).

1sbad Fitting a rational function B(z)/A(z) to a frequency response
(discrete-time version).

lsbatau Fitting e"7*B(s)/A(s) to a frequency response

1srstc Calculation of a controller of type Ru = —Sy+T'r by least squares
fitting to a closed loop transfer function (continuous-time version).

1lsrstd Calculation of a controller of type Ru = —Sy+T'r by least squares
fitting to a closed loop transfer function (discrete-time version).

bafit Fitting a rational function to a frequency response. Used by 1sbac
and lsbad.

rstfit Calculation of a controller of type Ru = —Sy+T'r by least squares
fitting to a closed loop transfer function. Used by lsrstc and
lsrstd.

The function bafit computes the rational function B(s)/A(s) which minimizes
the loss function

N
J(B,A) = Wi|A(z)gx — B(z)?

k=1
where z;, are the approximation points and g, are the corresponding complex
frequency response values. In lsbac the approximation points are given by
Zr = twy where wy are the frequencies of approximation (continuous-time).
The discrete-time version is called 1sbad where z, = e*“*. Both 1lsbac and
1sbad uses the FRBOX frequency response format. A generalization of 1sbac
is found in 1sbatau where a time delay is included in the model, i.e. the loss
function is modified to

N
J(B,A,m) = Wi |A(iwp)gr — e B(iwy)|*

k=1

This gives a non-quadratic problem which is solved iteratively.

10

Least squares approximation is also used in rstfit where the parameters
in the control law Ru = —Sy 4 T'r are computed to minimize the loss function

N
J(R,S,T) =Y |E(z)*
k=1

where
Gm(s) — Ga(s)
Ga(s)
is the relative closed loop model error. The desired closed loop transfer func-
tion is G,, and the actual closed loop transfer function is given by

E(s)=

G- CG)T(s)
¢~ R(s) + G(5)S(s)

where G(s) is the process transfer function. In 1srstc and 1lsrstd the ap-
proximation points are specialized to z; = iwy (continuous-time) and z; = e*“*
(discrete-time), respectively.

Transfer Function Approximation

hankelu Unweighted Hankel norm approximation of B(s)/A(s)
hankelw Weighted Hankel norm approximation of B(s)/A(s)
padeappr Padé approximation of any order of e="*B(s)/A(s)

sylvester Compute a Sylvester matrix of two polynomials

Approximation of stable rational transfer functions by minimization of the
Hankel norm of the error is performed by hankelu and hankelw. These func-
tions computes the optimal approximation directly from the coefficients of the
transfer function B(s)/A(s) without transforming the problem to state space.
The reason to have a separate function for the unweighted case is that some
unnecessary computations are eliminated to get the answer quicker.
The function padeappr computes the Padé approximant of specified order
of a function of type
_ —raB(s)
G(S) =e m
The function sylvester generates the Sylvester matrix of specified order
to two polynomials. This function is used by hankelu, hankelw and padeappr.

Lead Compensator Design

leadcomp _ Compute a lead compensator

Given a frequency response, a lead compensator is calculated such that the
cut off frequency (the frequency for which the magnitude passes 1 from above)
is increased by a certain factor. The compensator consists of a number of
identical first (or second) order filters. This number is determined by the
phase lead required to increase the cut off frequency by the specified factor.

11

6. LQGBOX

This collection of routines is written to facilitate the design of continuous-
time and discrete-time LQ(G) controllers. They not only solve the LQ(G)
problem but also provide output that help calculating the resulting controller.
In contrast to the routines in the control toolbox of MATLAB cross terms are
allowed in the loss function. The routines are also written such that it is easy
to change Riccati equation solver.

Regulator and Estimator Design

1grc Continuous-time linear quadratic regulator
1qrd Discrete-time linear quadratic regulator
1qec Continuous-time linear quadratic estimator

lged Discrete-time linear quadratic estimator

These routines solve the linear quadratic control/estimator problem for conti-
nuous-time and discrete-time systems. They also calculate variables that are
needed when calculating the final controller. Take as an example 1qrc

(L,1r,S] = 1qrc(4,B,C,D,Q1,Q2,Q12)

The routine calculates L such that the control law u(t) = — Lz(t) minimizes

/Ooo (=T (£)Q1z(t) + 22T (£)Q1au(t) + vT (£)Qou(t)) dt

for the system

£(t) = Az(t) + Bu(t)

y(t) = Ca(t) + Du(t
Strictly speaking, the matrices C and D are not needed to solve the LQ-
problem, but using them the routine can also calculate I, such that u(t) =
L.y, (t) — Lz(t) gives steady state gain equal to one from y,(t) to y(t).

Similarly, the routine 1qed provides output that makes it is easy to design
Kalman filters both with and without direct term.

Calculation of Complete Controller

lgge Complete continuous-time controller from 1grc, lgec results

lqgd Complete discrete-time controller from 1qrd, lqed results

After having designed both the feedback law and the estimator one needs to
connect them to get the final controller. The two routines 1qgc and 1qgd take
the output from the control/estimator design routines and calculate a state
space description of the resulting controller.

Riccati Equation Solver

care General dispatch routine for continuous-time Riccati solvers

12

dare General dispatch routine for discrete-time Riccati solvers

The usefulness of a set of LQG design routines hinges on the quality of the
Riccati equation solver. All the routines in LQGBOX that needs to solve such
an equation will call either care (continuous-time algebraic Riccati equation)
or dare (discrete-time algebraic Riccati equation). These two routines work
as dispatch routines. They examine the global variable caretype (or dare-
type) and then call the corresponding solver. If caretype (or daretype) are
undefined the default solver is called.

The number of different solvers currently implemented are not especially
impressive, but due to the structure of care and dare it is easy to add new
ones. The solvers currently available can be found by doing help on care and
dare.

Sampling of Continuous-time Loss Function

lqgsamp Samples loss function and continuous-time noise description

When designing a discrete-time controller using LQG one needs a discrete-
time loss function. Often it may be more natural to define the specifications
as a continuous-time loss function, and then translate it to discrete-time. This
can be done using l1qgsamp.

Miscellaneous

Currently there is a name conflict between 1qrc in LQGBOX and a similar
routine in the robust toolbox by Safanov.

7. References

Matlab is described in
THE MATEWORKS (1990): Pro-Matlab, User’s Guide.

The pole placement design (PPBOX) and the LQG-design (LQGBOX) are
described in

AsTtroM, K.J., and WITTENMARK, B. (1990): Computer Controlled
Systems, Theory and Design, 2nd ed., Prentice-Hall, Englewood Cliffs.

The following reference contains some examples on using root loci for control
system design. The symmetric root locus is also treated.

FrRANKLIN, G. F, PowkLL, J. D., and EMAMI-NAEINI, A. (1986): Feedback
Control Systems, Addison-Wesley.

The design methods implemented in FRLSBOX are developed and described

1m

Livia, M. (1989): Controller Design by Frequency Domain Approximation,
PhD Thesis, TFRT-1031, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

The routines are used for practical controller design in

13

GusTarssoN, K. and BERNHARDSSON, B. (1990): “Control Design for
Two Lab-processes: The Flexible Servo, The Fan and the Plate,” Internal
Report, TFRT-7456, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

14

