LUND UNIVERSITY

Control Design for Two Lab-Processes: The Flexible Servo, the Fan and the Plate

Gustafsson, Kjell; Bernhardsson, Bo

1990

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Gustafsson, K., & Bernhardsson, B. (1990). Control Design for Two Lab-Processes: The Flexible Servo, the Fan
and the Plate. (Technical Reports TFRT-7456). Department of Automatic Control, Lund Institute of Technology
(LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 13. Jul. 2025

https://portal.research.lu.se/en/publications/ffae1e41-8954-4c31-b31a-8defb28ef20f

CODEN: LUTFD2/(TFRT-7456)/1-37/(1990)

Control Design for Two Lab-processes:
The Flexible Servo

The Fan and the Plate

Kjell Gustafsson
Bo Bernhardsson

Department of Automatic Control
Lund Institute of Technology
July 1990

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

Internal Report

Date of issue

July 1990

Document Number

CODEN: LUTFD2/(TFRT-7456)/1-37/(1990)

Author(s)
Kjell Gustafsson, Bo Bernhardsson

Supervisor

Sponsoring organisation

Title and subtitle

Control Design for Two Lab-processes: The Flexible Servo, The Fan and the Plate

Abstract

and realtime Simnon can be used to achieve this end.

This report describes the control design for two lab processes. Modern facilities make the calculations less
time consuming, and it is possible to try a large number of different controllers. We demonstrate how Matlab

Key words

Automatic Control, Education, Control Design, Pole Placement, LQG

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 37

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

New facilities available at the Department of Automatic Control have made
controller design less time consuming. These new facilities are both in form of
new hardware, Sun workstation with window system, and new software in the
form of Matlab routines. When doing a realistic design the calculations are
quite extensive, and for the lab processes available at the Department one has
normally settled with trying a few different designs. It is now possible to try
a large number of different designs quickly, and the practical design procedure
hence changes making the iterativeness more pronounced.

Automatic control is great fun and trying it out in practice is even better.
This fact has been our main motivation for doing the projects, but since this
reason may seem unserious we instead claim: The purpose for this report is
manifold. Firstly, it is to serve as documentation for the designs themselves,
and, secondly, when doing the designs there are things we have noted and
would like to communicate. It is our hope to exemplify how to use Matlab
[Gustafsson, Lilja and Lundh] to do the design and then use realtime Simnon
to implement it.

A major message is the iterativeness of the design procedure. This fact
has often been discussed with the Computer Aided Control Design (CACE)
group at the department, and we would like to thank Mats Andersson and
Bernt Nilsson for interesting discussions. We have also had a lot of interesting
discussions with Per Hagander.

The two projects originate from our teaching assignments. The design for
the flexible servo was done as a large demonstration example in the Digital
Control Course and the plate and fan was used as one of the projects in
Adaptive Control. The two processes are very similar in terms of open loop
pole locations; one slow real pole and two poorly damped complex poles. The
control designs are, however, rather different. This is a consequence of different
types of disturbances, saturation and other nonlinearities and hence different
objectives for the design.

2. The Flexible Servo

The control design for the flexible servo was done as a demo in the Digital
Control Course. The aim was to exemplify some of the theory and methods
presented in [Astrom and Wittenmark]. The standard problems solved during
the course are simplified to facilitate hand calculation, but with tools like
Matlab and Simnon it is possible to attack realistic problems without getting
overwhelmed with the calculations. As a consequence one can concentrate on
the control design and try many different controllers. Recently, a set of Matlab
routines [Gustafsson, Lilja, and Lundh] have been implemented that further
simplifies the task. As will be seen in the sequel we will rely heavily on these
routines.

Any realistic design procedure is iterative. The designer tries many dif-
ferent possible designs and in the process he/she builds up a knowledge of
the essential properties of the system. This knowledge is then used to deduce
reasonable specifications and necessary properties of the controller. It is im-
portant to have tools that make the iteration fast. A fast iteration makes it
possible to evaluate many different designs, and one may hope for a better
final result.

The design itself is described in the slides at the end of this section. Ascan
be seen the design process is iterative and we will here describe how Matlab
and Simnon was used to organize the design calculations.

The Process Model

The design was done in Matlab using a linear process model. The real process
includes some nonlinear effects (static friction, control signal saturation) and
each design was therefore evaluated in Simnon using a full nonlinear model.
Both the linear and the nonlinear model were derived from first principles with
unknown parameters determined from component data and through practical
experiments [Andersson].

All data concerning the model was gathered in one file: servomod.m.
When called, this routine calculates the state space and polynomial form of
the model, as well as other model dependent parameters needed in the design.

function [A,B,C,D,b,a,J2] = servomod

% SERVOMOD defines matrices and polynomials for the flexible servo
%

% [A,B,C,D,b,a,J2] = servomod

% Flexible servo constants, compare with files servo.t and nlservo.t

J1 = 22E-6;
J2 = 6BE-6;
kf = 11.7E-3;
df = 2E-5;

di = 1E-5;

d2 = 1E-b;
km = 0.1;

ki = 0.256;
kvl = 0.1;
kw2 = 0.1;
kvin = 1/(1+10); % Resistive voltage divider on input

kvout = 20/(20+100); % Resistive voltage divider on output

% State space representation

A = [-(d1+d£)/J1 df/J1 -kf/J1
df/J2 -(d2+df)/J2 kf/J2
1 -1 0 1;
B = kvin#*[km+ki/J1 0 0]°;
C = kvout*[kwl 0 0; 0 kw2 0];
D = [0; 0];

% Transfer function

[b,a] = ss2tf(A,B,C.D, 1);

The process model must be extended with the antialiasing filter and a
disturbance model before it can be used for the design. Since the controller
will be discrete-time a sampled process description is also needed. These type
of operations are gathered in a script-file called defmod.m.

% File: defmod.m
% Get servo model
[4,B,C,D,b,a,J2] = servomod;

% Extend system with model for torque disturbance at second mass

A1l = [A [0; -1/J2; 0]; 0 0 0 0];
B1 = [B; 0];

c1 = [c(4,:) 0];

D1 = 0;

% Extend system with antialiasing filter

A1 = [A1 [0; 0; 0; 0]; C1 -BO];
B1 = [B1; 0];

€1 =1[000 0 50];

D1 = D1;

% Now define a second system A2, B2, C2, D2 with x4 excluded .
% We need this when doing the LQG design.

A2 = A1([1,2,3,5]1,[1,2,3,6]);
B2 = B1([1,2,3,51,:);

c2 = c1(:,[1,2,3,61);

D2 = Di;

% Sample system
h = 0.02;

[Phit,Gam1] = c2d(A1,B1,h);
[Phi2,Gam2] = c¢2d(A2,B2,h);

% Calculate polynomial description of system

[bid,ald]
[b2d,a2d]

sample(b(1,:)*50,conv(a,[1 60]),h);
sample(b(2,:),a,h);

The Specifications

The designer, normally, has an idea of how the closed loop system should be-
have. Even if these specifications would not change during the design, their
translation to quantitative figures, such as a loss function or certain pole loca-
tions, most certainly will. It is these quantitative figures the designer changes
when iterating through different possible controllers. It is therefore convenient
to keep them in one place for ease of reference and modification.

Two different design methods where used: LQG and pole placement.
These methods are in a way equivalent, but they still have quite different
properties as design methods. In the first case the designer chooses a loss
function and a noise description while pole locations are specified in the second.
Some system properties are more easily described using pole locations than

loss functions (and vice versa), and hence certain properties are more easy to
get using one of the methods than the other.

For each one of the two methods a script file containing all specification
parameters was created. In the case of the LQG design the file was called
deflqg.m

% File: deflqg.m

% Specifications for the LQG design

% Before running this script you must define rho, lambda, vi, v2.
% Suggested values are:

% rho = 5, lembda = 200, vi = 10000, v2 = 1E7

% Loss function
Q1 = diag([0 1 lambda 0]);

Q2 = rho;
Q12 = [0 0 0 0]°;

% Noise description
R1 = diag([v2 0 0 1 01);

R2 = vi;
R12 = [0 0 0 0 0]’;

and, similarly, defrst.m for the pole placement design.

% File: defrst.m

% Specifications for the RST design

% Before running this script you must define zetam, zetao, alpha, beta,
% and gamma. Suggested values are:

% zetam = 0.6, zetao = 0.3, alpha = 0.8, beta = 0.8, gamma = 0.2

% Construct am

% Start with a polynomial corresponding to the two oscillative modes
% of the servo. Change the damping to ’zetam’ but keep the frequency
% unchanged.

aml = poly(exp(h*27+(-zetam/sqrt(1-zetam~2)*[1 1] + [i -il1)));

% Contstruct a polynomial corresponding to the antialiasing filter.
am2 = poly(exp(-h*50));

% Construct am from aml, am2 and add one pole in alpha.

am = conv(ami,conv(am2,[1 -alphal));

% Construct ao

% Start with a polynomial corresponding to the two oscillative modes
% of the servo. Change the damping to 'zetao’ but keep the frequency
% unchanged.

aol = poly(exp(h#27*(-zetao/sqrt(1-zetao~2)*[1 11 + [i -i1)));

% Add two poles at beta +- i*gamma

ao = conv(aol,poly(beta*[1 1]+gamma*i*[1 -11));

“Free” parameters and reasonable values are listed in the beginning of the

files. As the design iteration progressed the parameter values were adjusted,
and served as an online documentation of the current status in the design.

The Design and the Evaluation

After having defined both the model and the parameters depending on the
specifications it is rather straightforward to do the design. The design com-
mands where kept in two files: dolqg.m

% File: dolqg.m

% Design specifications
deflqg

% Do the design

1qrd(Phi2,Gam2,C2,Q1,Q2,Q12)

[L2,Lv2,1r] =
= 1lqed(Phii,C1,R1,R2,R12)

[K,K£,Kv]
14 = C2*inv(eye(4)-Phi2+Gam2*L2)*Phii([1,2.3,5],4)*1:
Li = [L2(1:3) 14 L2(4)]
Lvi = [Lv2(1:3) 0 Lv2(4)]; % O is probably not the correct choice,

% but Kv = 0 so it does not matter in LQGD
% Calculate a controller with direct term

{Lx,Ly,Phic,Gany,Gamyr,Cc,Dy,Dyr] = 1qgd(Phiil,Gam1,C1,L1,Lvl,1r K ,Kf ,Kv,1);

% Calculate frequency responses needed in the evaluation

gfb = frdss(Phic,Gamy,Cc,Dy,h,-1,[]1,200);

gif = frdss (Phic,Gamyr,Cc,Dyr,h,-1, [1,200);

gp = frdss(Phii,Gemi1,C1,D1,h,-1,[1,200);

gz = frdss(Phii,Gam1, [0 0.0167 0 0 0],0,h,-1,[],200);

gl = fdiv(frdss(Phi2,Phi1([1,2,3,61,4),€2,0,h,-1,[],200),gp);
gn = frc(60,[1 50],0,gp(:,1));

% Save controller data on a Simnon parameter file

delete sfpar.t

p2sim(’sfpar’, 'reg’,’1’,L1,1,’1r’,1r,1)

delete dirpar.t
p2sim(’dirpar’,’reg’,’1’,Lx.1,’lr’.lr,l,’1y’,Ly,1,’k’,K,1)

% Calculate a controller without direct term
[Lx,Ly,Phic,Gamy,Gamyr,Cc,Dy,Dyr] = 1qgd(Phii1,Gami,C1,L1,Lv1,1r,K,Kf,Kv);
% Save controller data on a Simnon parameter file

delete nodirpar.t
p2sim(’nodirpar’,’reg’.’l’,Lx,l,’lr’,lr,l,’ly’.Ly,i,'k’,K,l)

% Useful evaluation commands

% Matlab
% evpl(gp.gfb,gff,gl,gn,gz)
%

% Simnon

% syst servo aafilt dsf sfcon " state feedback
% syst servo aafilt dsfka sfkacon " state feedback with Kalman filter

% evaxes
% doeval

and dorst.m.

% File: dorst.m

% Design specifications

defrst

% Do the design

[r,s,t] = rstd(1,bid,aid,1,am,a0,[1 -1],1)

% Calculate frequency responses needed in the evaluation

gfb = frd(s,r,h,-1,[1,200);

gff = frd(t,r,h,-1,[1,200);

gp = frdss(Phil,Gami,C1,D1,h,-1,[],200);

gz = frdss(Phii,Gami,[0 0.0167 0 0 0],0,h,-1,[],200);

gl = fdiv(frdss(Phi2,Phii([1,2,3,5],4),C2,0,h,-1,[1,200),gp);
gn = frc(50,[1 601,0,gp(:,1));

% Save controller data on a Simnon parameter file

delete rstpar.t
rst2sim(’rstpar’, ’reg’,r,s,t,poly(0.5%ones(1,length(r)-1)),1)

% Useful evaluation commands

% Matlab

% evpl(gp,gfb,gff,gl,gn,gz)

% step = dstep(b2d*sum(am)/sum(b2d),am,50);
%

% Simnon

% syst servo aafilt drst rstcon " RST controller

% evaxes " new axes

% doeval " step, load and noise response

The design was evaluated both in Matlab (different frequency domain
plots) and in Simnon (response to step/load change and measurement noise),
and to facilitate this both dolqg.m and dorst.m include commands to cal-
culate interesting frequency responses and commands to save the controller
parameters on a form readable by Simnon.

At the end of each of the files dolqg.m and dorst .m there is a list of useful
evaluation commands. By including such a list (as well as including the list
of parameter values in deflqg.m and defrst.m) the evaluation is facilitated.
In a mouse-driven environment one only lists the m-file and then fetches the
different commands using the mouse.

Implementation

Realtime Simnon provided a very convenient tool for implementing the con-
trollers and testing them on the real process. During the design process all
controllers were tried on the nonlinear model using Simnon. It was then a
trivial task to convert these files to the realtime environment. In addition,
since the Matlab routines where written to automatically save the controller
parameters on data files that could be read by Simnon it was easy to save the
parameters of interesting controllers for later evaluation on the real process.

Control Design for A Flexible Servo

A practical illustration of some of the concepts in
Computer Controlled Systems

Kjell Gustafsson
Department of Automatic Control

A model from first principles

i kf J2

u__| |— s
el fi1 fi2

df

di d2

Simplifying assumptions

e neglect sensor dynamics
e neglect motor dynamics
e no static friction

e no disturbances

Torque balance

Jn = —kf (¢1 — (pz) —dijwy — df (w1 — wz) + ky kiu
Jaz = ky(p1 — p2) — dawz + df (w1 — w2)

A state space model
Introduce the states
= (w1 w32 <P1—$02]

and regard the angular velocities w; and w; as
outputs, then

¢ ditdy day _ kg k. k:
Iy J1 Jy Jy
z(t) = & _i;ﬂ EJL z(t) + 0 | u(?)
{1 -1 0 0
(ko, 0 O
y(t) =] z(t
(t) | 0 K, 0 (t)

Some of the parameters are known others need
to be measured.

Identification
Frequency analysis: Feed a sinusoid to the
process input and measure output.
Three different experiment conditions
1. 1.0 Vpp sinusoid and 1.5 V bias
2. 1.5 Vpp sinusoid
3. 3.0 Vpp sinusoid

Observations
e rather noisy measurements

e sinusoidal measurement disturbance
(tacho) corresponding to the angular ve-
locity (0 — 120 rad/s)

Identification (noncolocated sensor)

107 100 10 102 108
Frequency [rad/s]

1.0 Vpp sinusoid, 1.5 V bias
1.5 Vpp sinusoid
3.0 Vpp sinusoid

(full line)
(dashed line)
(dotted line)

Identification (colocated sensor)

100 ¢

Frequency [rad/s]

1.0 Vpp sinusoid, 1.5 V bias
1.5 Vpp sinusoid
3.0 Vpp sinusoid

(full line)
(dashed line)
(dotted line)

Comparison (model — identification)

101 ———r T T T T T T

107 100 10t
Frequency [rad/s]

model
measured data

(full line)
(dashed line)

Final model

The identification suggest the numerical values

(136 0909 —532 103

s(t)= | 0.308 —0462 180 |z(t)+ | 0 | u@)
| 100 —1.00 0 0
(00167 0 0

t) = i

vO=1{ o o067 o]z()

but

e strong static friction
e unmodeled dynamics start at ~ 50 rad/s
e sinusoidal measurement noise

e torque load at second mass

Specifications

Can only measure w; but want to control w;.

Want “nice” behavior in spite of friction, load
disturbance, and measurement noise. As for
step response we interpret nice as

6d o]

A 0.3 second rise time corresponds to an ap-
proximate loop bandwidth of 20 rad/s.

General observations

From the model and the measurements we may
deduce

e the friction and the load disturbance re-
quires an integrator in the controller

o the resonance at 25 rad/s is pronounced,
must be damped but not moved

o the measurement noise and unmodeled
dynamics demands the controller gain to
drop as soon as possible

o need controller gain at least up to 25 rad/s
to handle resonance and desired step re-
sponse

Conflicting objectives!

Disturbance model

Assume constant torque affecting the second
mass (a reasonable load!). Model this through
a state z, affecting &, as 1/J,

-1.36 0909 532 0
A= 0.308 —0.462 180 —15400
1.00 —1.00 0 0
0 0 0 0
103

_ [0.0167 0 0 0] B— 0

0 0.0167 0 0 0

0

This will force an integrator into the controller.

Sampling interval

CCS recommends

wh = 0.15 - 0.5

A reasonable value for w is 20 rad/s (step re-
sponse) which leads to

h =~ 0.01-0.025

Unfortunately, the shortest achievable h is 0.02
or 0.03 with our hardware. Tough!

Let's aim for h = 0.02.

10

Anti-aliasing filter

w,/2 =7/0.02 ~ 160 rad/s

Use first order filter with w, = 50. Would need
more filtering but so small margins.

50 —10dB,-73°, atw,/2
H(8)=—— =
s+ 50 { —1dB,—-30°, at resonance
Introduce a new state z5
—1.36 0.909 —-532 0 0
0.308 —0.462 180 —15400 0
A= 1.00 -1.00 0 0 0
0 0 0 0 0
0.0167 0 0 0 -50)
r 103
0.0167 0 0 0 0 0
C= 0 0.0167 0 0 O B= 0
0 0 0 0 50 0
. 0

Will only measure y;

LQG-design
Controller
u(k) = Lyr (k) — L& (k)

with 3(k) given by Kalman filter.

1. design L, exclude z, since not controllable

2. determine I, to eliminate steady state
influence from load

3. determine I, to get correct steady state
gain
4, design Kalman filter, direct term

5. connect together, evaluate design

MATLAB, Simnon

No continuous-time loss function

Guestimates of Ql; le, Qz, R1, R1z, Ry

Sampled model

Need two models one with z4 and one without

0.8716 0.1196 —9.9709 —13.356 0
0.0405 0.9563 3.3852 —302.69 0
&, = | 0.0187 —0.0188 0.8624 29776 0
0 0 0 1.0000 0
0.0002 0.0000 —0.0013 —0.0010 0.3679
103
0
Ci= [o 000 50] Ti=| 0
0
0
0.8716 0.1196 —9.9709 0
5, | 0005 09563 3382 0
0.0187 —0.0188 0.8624 0
0.0002 0.0000 —0.0013 0.3679
103
0
02:[00050] I‘2:[0]
0

State feedback

Use &, and I'; to get Ly = (L L I3 I]

First try:
min Z z3 + pu?

which corresponds to

0 0 0 0
T
010 0 Q12=(0000)
%=19 0 0 o
Q=p
0 0 0 0
Calculate
3 1
" Cy(I— &+ T2L;) 7T,
= Ca(I — &; +T2L) 1 @4([1,2,3,5],4)

C; (I - Py + :[‘21;2)-—1 | AP

1

Simulation (first design)

Measure all states, use simulation to evaluate
e step response
o load disturbance (torque at second mass)

e noise sensitivity (two sinusoids, 30 rad/s,
100 rad/s)

1.5, Y2

p=1(full), 5 (dashed), 20 (dotted)

Improved damping
Sufficient speed but bad damping for

p=5

Introduce damping by penalizing z3, i.e. don't
allow too much angular difference

0 0 0 0
T
01 0 0 Qu:[o 0 0 0]
Q=
0 0 A 0 Q= p
00 0 0
Note: 2, ~10—50rad/s, =z3~1-—3rad

2 2
— Aw(%) =100, (?) = 280

Simulation (improved design)

0.5

=

A = 200,
A=0,

(full)
(dashed)

Final control law

Final control law
u(k) = 20.001, — L &(k)

L= [0.2424 0.0803 2.3049 —637.0 O]

Closed (x) and open (+) loop poles

12

Kalman filter
Process

z(k + 1) = ®=(k) + T'u(k) + v(k)

y(k) = Cz(k) + e(k)

Kalman filter
#(k + 1|k) = (& — KC) 2(k|k — 1) + Tu(k) + Ky(k)
’U.no,ﬁ,-(k) = —Lﬁ(klk - 1)
ugir (k) = — {L(I - K;C) + L, K,C} 3(k|k — 1)

—{LK; + L, K.} y(k)

Noise description

EwT =R,, EveT =Ry;, Eeel =Ry,

gives K, Ky, and K, through Riccati equation.

Noise description

First try:

Load disturbance

Ry

I
o oo o o
o o oo o
o oo o o
o — o o o
o o o oo

High pass noise (in reality sinusoids) at output
y; is modeled as white noise after anti-aliasing

filter

Also

Note:

Rz =N

R12:[0 0 0 0 o]T

za~1Nm < y =30V

2
== |] (?) = 900

Kalman filter evaluation

Frequency domain evaluation of Kalman filter

z - angular velocity of second mass
l - torque load at second mass
n - measurement noise at first mass

1>z
T T

109

E i aipjies 3 nboium 8300

100 10t 102 103
Frequency [rad/s]

Robustness to mult uncest

100 101 102 108
Frequency {rad/s]

n-->u

Aiajiss o jisepiw 30 deedd
- —
g2 2
T

104 b i o ki i 104 L
107 100 100 10t 103 107 100 100 102 109
Frequency [rad/s] Frequency [rad/s]
vy =103, (full) vy =104, (dotted)
v1 =10%, (dashed) vy =10°, (dash-dotted)

Simulation (Kalman + state feedback)

v = 103
15, Y2
1
0s
o T
1 2 3 4
u
10|
o
5 ™
1 2 3 4
"= 104
15, 2

13

Kalman filter poles

Kalman filter poles (o) for v, = 10%, process (+)

0&,
b
06+

o4k

Two very resonant poles as a consequence of
no process noise directly on z; or z;. Modify R,

v 0 0 0 O
0 0 0 0 O
Riy=|0 0 0 0 0
0 0 0 1 0
0 0 0 0 O

Note: zy~ lrad/s & y1 =01V = 1, = (53)2”1

Kalman filter poles (improved)

Kalman filter poles (A) when v, = 107

os

b
0.6F

04l

-

02

u..

02PN

Hardly any difference in the simulation or in
the frequency domain plots. Natural, since nei-
ther of these specifically test v;-noise proper-
ties.

Direct or no direct term

Direct term in Kalman filter gives better con-
trol performance

15, Y2
1
rd
05
0 T
0 1 2 3 4
u
10}
5]
o
-5
Ll T
0 1 2 3 4

direct term (full), no direct term (dashed)

Final controller (LQG)
The controller can be written
Zc(k) = @cwc(k) + I‘cuu’aat(k) + Fcyy(k)

u(k) = Ly, (k) + Cezc(k) + Dcy(k)

Final controller transfer function (almost PI!)

10

Magnitude
g

luml_ TSN
101 100 ot 102 100
50
w0
2
i
100 H Lidia A5 iadaial Aod 4 ikl R
108 100 101 102 103
Frequency [rad/s)
—Hyy (full), Hyy, (dashed)

14

Polynomial design

Controller

u(k) = T (8) — 3 u(k)

model on polynomial form
cancel zeros?
choice of closed loop poles (4., 4,)

Diophantine equation, unique solution?

A S T ST

evaluate design

Valuable information from the LQG design
MATLAB, Simnon

Model on polynomial form

¥y Y

i = Anti-aliasing |———
— Servo
- y2
o= 103 (12.30¢° — 14.81¢% — 4.69q + 8.71)
vt T g% — 3.06¢3 + 3.66¢2 — 1.94¢ + 0.35
10~ (5.06¢% -+ 15.76q + 2.95)

Hy:"‘ =

g% — 2.69¢2 + 2.66¢ — 0.96

e common poles (except anti-aliasing filter)

e different zeros

Cancel any zeros?

x servo poles, + anti-aliasing pole
o zeros of Hy,,, A zeros of Hy,,

2

1.5 e e

1

(] T r——

0.5

Y% I

-2

When solving
AR+ BS=B%A,A,,

note that B relates to (o) but B+ to (A)

Don’t cancel any zeros!

Choosing desired poles (1)

servo + anti-aliasing = 4 poles
e keep anti-aliasing pole

e damp ((n) oscillatory mode, don’t change

frequency

e remaining pole at «

Damping ¢, = 0.6 and
a=0.75, (full) a=0.85, (dotted)
a=0.80, (dashed) o =10.90, (dash-dotted)

Choosing closed loop poles (2)

0B

06

04l

02t

Real pole at o = 0.8 and

(m =04, (full) {m = 0.6, (dotted)
¢m = 0.8, (dashed)
Final choice
a=0.8 {m = 0.6

Choosing observer poles

deg A, > 2deg A —deg A;, —deg Bt +1-1
—8-4-04+1—1=4

degA,=4 = reduced order observer!

e two poles corresponding to the oscillatory
mode, change damping (¢,) but not fre-
quency

¢ LQG suggests two poles at B+ yi~ 0.8 +0.2

Try

¢, =03, B=08 y=02

Unique solution for deg R = deg S = degT = 4

RST (full),

LQG (dashed)

Note how the control signal saturation de-
grades the step response.

Frequency domain (RST - LQG)

4 101k .
£ E 3
£ 1ol
lo.! PRERTTTI S PRt PET T RS R T)
10! 100 10t 102 10 10 100 10t 102 10
Frequency [rad/s] Frequency [rad/s]
102 Robusiness to mult uncort

102 e rrre—rrrr

10 10¢ 10t 102 10 101 100 10t 102 103
Prequency [rad/s) Frequency [rad/s)

RST (full), LQG (dashed)

16

Final controller (RST)

The controller can be written
Ayu(k) = Ty, (k) — Sy(k) + (Aw — R)tae(k)

with 4, for anti-windup. (in the simulations:
Ay = (g —0.5)%).
Higher gain than LQG design.

g

Magnitude
3

400 =
_ gw_ N !.
é !m g a g il 1.
i

0

100 Ll
10 10%

Frequency [rad/s]
—Hyy (full), Hyy, (dashed)

Anti-windup important
Higher bandwidth in the second design (RST)
makes control signal saturate.

Anti-windup automagically handled in LQG
implementation. Must choose 4, in RST.

A‘Iﬂ = q4:

Ay = (g 0.5)% (dotted)

no anti-windup,

(full)
(dashed)

Higher order observer

Need more filtering!

Could increase degree of 4,, but no longer
unique solution. How exploit non-uniqueness?

Example:
e include a pole at 0.7 in 4,

e degS < degR gives uniqueness

100 grrrrme—rrr by 10% g e T
4 101 E E
.ﬁ 3 E E
b 102}
15| EprT—— [V | e ————" PEPTYTIT AT TTYY
10 100 10t 102 102 101 100 10 102 103
Frequency [rad/s] Prequency [rad/s]
Robustriess to mult uncert

10? ——rrrrrm—rr i e 102

10t 100 10 100 100 10t 10 10
Frequency [rad/s]

100 100
Frequency [rad/s]

deg A, =4 (full), degA, =5 (dashed)

Simulation (high order observer)

1.5, Y2
! \/I
!
&
0.5
0 1 2 3 4

degA, = 4 (full), degA, =5 (dashed)

17

PID control
PID controller

U(s) = K (8. () ~ ¥ () + 57 (5 (6) - Y (2)

sTp
= Y(s))
85 +1
The parameters
K =20, T =03, Tg=1
Tp = 0.03, N =5, b=10.6

gives a rather well-tuned closed loop.

T, is the anti-windup time constant.

RST-LQG-PID

Froquency (mdfs) ”
—H,y RST (full), LQG (dashed), PID (dotted)
®]
- |
“I.(H w 00 e l;’
¥ 0
b
o 100 —— vt 10
Hy, RST (full), LQG (dashed), PID (dotted)

Simulation (RST -LQG - PID)

15, 2
1 Dl
0.5
% ; : ; :
10}
Rl l‘\ ~ TR TITTITH
) Gt L
o —=
0 1 2 3 4
LQG (full), PID (dashed)
15, 2
1 Lottt —
0.5
0 1 2 3 4
10}
F S
P e —
] 1 2 3 4
RST (fu||), PID (dashed)

Frequency domain (RST - LQG - PID)

100 —rrrmm——reboig S v

4 101

k=
E 102}
!0.’ PRI AR T W e il‘.i iid
101 100 10t 102 10%
Prequency [rad/s]
102 e

Wor Moo lor 100 108
Frequency [rad/s]
RST (full),

10

ST o S—

104 A i hedem 4 sdaauid 4 A3 " Ahiia
100 10! 102 103
Frequency [rad/s]
102 Robustniess to mult uncert

LQG (dashed),

1 100 101 102 103
Prequency [rad/s]

PID (dotted)

18

Observations

iterative design
good tools essential
need good model

time response easier to relate to poles than
loss function

much freedom (too much?) in polynomial
design

how use non-uniqueness?

Demonstration

19

3. The Fan and Plate Process

The second process consists of a fan and a plate, mounted as in Figure 1.

The input to the process is the voltage to the fan while the output is the
plate angle. The control objective is to keep the plate at a given angle using
the fan. It is possible to vary the distance between the fan and the plate,
thereby changing the process gain and time delay. The process has been used
for projects in the courses identification and adaptive control.

Identification

By studying the process in open loop one observes the following details: The
fan motor has a rise time of about half a second. The plate has a resonance
at about 1 Hz (6 rad/s). This resonance is excited by rather much noise.
The noise is probably due to turbulence. The turbulence is larger for larger
plate angles. The process is also nonlinear around large angles: there is e.g. a
maximal achievable angle on the plate.

The program LOGGER, see [Gustafsson]| was used to save input and out-
put using a Pseudo Random Binary Sequence as input signal. The experiments
were performed with the fan as close to the plate as possible, giving minimal
time delay.

The choice of experimental condition was rather iterative and went along
the following lines: The period of the uncontrolled plate is about 6 rad/s and
the rule of thumb from e.g. [Astrém-Wittenmark]

wh=02-0.6

gives a sampling time of 30-100 ms. The mean of the PRBS was chosen to
keep the plate hanging at a small positive angle. The amplitude was chosen
as large as possible without getting into the possibly nonlinear region. The
period was chosen to give input energy that excites the eigenfrequency of the
plate.

Five different experiments were performed. They were all used for identi-
fication and some of them also used for design. After some iterations, experi-
ment number 4 , see below, was considered the best and it will be used in the
following discussion. The setups in the experiments were:

20

% Tsamp(ms) 100 100 100 30 30
% mean (V) 0.6 1 0.6 0.6 1.2
% amp (V) 0.3 0.5 0.3 0.3 0.3
% per 10 10 5 10 15
“ n 500 500 500 1000 1000

The data was analyzed in Matlab and different Armax and Box-Jenkins
models were tested using the system identification toolbox. It turned out that
there was not much difference between the two methods and in the following
only Armax will be described.

Figure 2 shows how well the model predicts the real data for four different
model structures (about 20 were tested). They are named according to the
system identification toolbox.

2103 : q(q* + a1q + a2)y = bsu + g’e

3133 : (¢® + a1¢® + aaq + as)y = bau + (¢° + c1¢® + cag + c3)e

3331: (q° + a1g® + aaq + az)y = (b1g® + bag + ba)u + (¢° + c1¢® + c2g + ea)e
33310 g7(¢® + a1® + aaq + aa)y = bou+ ¢7(¢° + 18® + e20 + ca)e

2103 15 3133

3331 31310

Figure 2. Experiments 2103, 3133, 3331 and 31310, real process=full, simulated
model=dashed

From this, one clearly sees that a time delay of 10 samples (0.3 sec) is too
large. Both 3133 and 3331 are good models and we choose 3133 because of
simplicity.

21

Figure 3. Open loop poles of model 3133, b = 0.03s

Figure 3 shows the poles of the model 3133. The slow real pole is due
to the motor, it has a time constant of about half a second. The two badly
damped poles are due to the plate. They correspond to w = 6 and { = 0.15.

Figure 4 shows the Bode diagrams for B(q)/A(q) and C(q)/A(q) for ex-
periment 4 using model 3133.

101 T T LI N B e o I | T T T T T T T T T— T T 111
:

Phase [deg]

-600 i i R W L I SR T B A B I i L TR T T I
10+ 100 10! 102

Frequency [rad/s]
Figure 4. Bode diagram for model 3133, B/A (full), C/A (dashed)

A good model is hence of third order, without any zeros and there is a lot
of disturbances near the interesting frequencies. The identified parameters,

22

using h = 0.030s are (parameters on first row, standard deviations on second

TOW):
B =
0 0 0 0.0034
0 0 0 0.0002
A=
1.0000 -2.8786 2.7907 -0.9108
0 0.00120 0.0155 0.0076
C =
1.0000 -1.5112 0.7326 -0.1906
0 0.0448 0.0739 0.0448
Design

PID-controller
As a start a PID-controller was calculated using the Ziegler-Nichols self oscil-
lation method. This gave

K =025
T; = 0.55
Ty =0.14
N=5

The PID-controller was discretized and implemented in realtime Simnon,
as a discrete-time system with A = 0.03s. The resulting performance is shown

in Figure 5.

0.3

0.2

=]

—

 rEs T
T

(=]
ey |

10 20 30 40 50 60

0.15 T T T T

0.1

0.05

0

10 20 30 40 50 60

-0.05
0

Figure 5. Time responses for PID-controller on real process, y (full), y» (dashed)
and u (full).

The PID controller works rather badly. It is badly damped and rather
sensitive to load disturbances. It could be tuned for better damping and

23

less load disturbance sensitivity but then the performance to step changes in
reference value is degraded.

The step-response methods were also tested, both Ziegler-Nichols and
Cohen-Coons {Hagglund], see Figure 6. They performed very poorly.

Figure 6. Step-response for real process, output (full), input (dashed)

The resulting parameters (Coohen-Coons) are

K=31
T; =044
T, =0.11
N=5

These parameters give an unstable closed loop system. This is an example of
the fact that the step response method often works very poorly for oscillative
systems.

Pole placement

Different pole placement designs were then calculated using Matlab and the
routines in PPBOX. The designs were performed in discrete-time. The pole
placement was iterative and many more designs have been tested than the
ones documented below. In the presentation here we will follow the following
line:

e Choice of A,, polynomial.

e Choice of A, polynomial.

e Introduction of band stop filter.

No analog presampling filter was considered necessary since there was not
much high frequency noise present in the measurement signal. The controller
should have an integrator since we do not want a steady state control error.

24

Closed loop bandwidth A suitable closed loop bandwidth was found by
placing the poles in a butterworth pattern:

Am = A, = (8 + w)(8% + 28Cmwm + w2)

and varying w,, = 3,6,9, ({m = 0.7). Figures 7 and 8 were created by the
commands evpl and yush, yupl in PPBOX. One clearly sees that w,, = 6
is good. This corresponds to not moving the eigenfrequency from the plates
natural frequency. The main tradeoff is between high noise sensitivity (high
gain) and bad disturbance rejection (low gain). Note that both chosing a too
slow and too fast closed loop system gives a non robust system with respect
to multiplicative uncertainty. low is non robust.

100 g—rrrrrrme e 101 1=2 .
101 | 4 100
é’ E E 1‘»3? 8
‘g 102k s g 101 g
é" - 3 §° 3
103k = 102 g
.4— A8 4 gaiine A& 4 dainng A4 T 10.3 [AT [Rt | nT
101 100 10t 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]
103 n-—->u : 104 Robustness to mult uncert
102 k 103 E E
Q L] £ =
B 10! § 3 102§ o
= B E 3
& 100 & 10! | E
=k = F .]
10-1 | 100 f——seimsne A p
10.2 (WU - | |l'|nm L8 b aaink 10.1 - L nhnann T WA i JrE
101 100 10t 102 101 100 10! 102
Frequency [rad/s] Frequency [rad/s]

Figure 7. Varying closed loop bandwidth wy, = 3 (full), 6 (dashed), 9 (dotted)

It was also tried to vary the damping of the closed loop polynomial. The
same trade off as before shows up and the choice of {(m = 0.7 turns out to be
good.

Observer From the above w,, = 6 was chosen and different observers were
then tried. Figure 9 and 10 show the response when the observer poles are
varied in a butterworth pattern ((= 0.7) with w, = 4,6,8. One sees that
the tradeoff is between low noise sensitivity and good disturbance rejection.
w, = 6 is chosen, a higher observer bandwidth will give more than 10 times
amplification of measurement noise on input signal for high frequencies.

After this different (, were tried. Figure 11 shows the result. From the
Figures the value (, = 0.1 was chosen.

New choice of A,, The best design found so far does not change any zeros,
and places closed loop poles in

An =4, =(s+ w,,.)(s2 + 28(mWm + wfn)

25

15 s
g
$] ——
g — .
L] el
i i . . i time [s]
4 6 8 10 12 14 16
3 L} L T ¥ T
2F
E] 1F L
S 4]
’J,-- - S ?‘r o
of
_1 i 1 L : L
0 2 4 6 8 10

Figure 8. Simulated time response, wm = 3 (full), 6 (dashed), 9 (dotted)

1-->

100 101 Ll Trrrmr T rrerre T L) |lllé
101 100 .
Q Q 3
!] =
2 2 e .
g 102 H 101 5
% El
b = 3
103 102]
0-4 T NARIT] A i paaii T NTET] !0.3 RN i eaiin i ||:
10 100 101 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]
103 g n-->u 104 Robustness to mult uncert
102 | 10
) E 3 E
8 101 g a8 102 g
g g 2 E
%" 100 g é" 10t ;
101} 100 !
10.2 _ 1 (AR i i El'll 10.1 o 1 AL L ianil 1 LA hiiin - l.l.lll-
10t 100 101 102 101 109 10! 102
Frequency [rad/s] Frequency [rad/s]

Figure 9. Varying observer bandwidth, w, = 4 (solid), 6 (dashed) and 8 (dotted)

with w,, = 6 and (;» = 0.7. It was also tried to make the real pole slower than
the other poles. Different designs having

Ap =(s+ aw,)(8% + 28Cmwm + w?)
with varying a were tried. However a small value of a gives bad disturbance

rejection and a too large a a noise sensitive controller, i.e. the same trade off
as before. It turns out that a = 1 is a reasonable compromise for this system.

26

2 T T L] T T L}
1.5}¢ -
>
I
L]
05F 1
0 : : \ : : . time [s]
0 2 4 6 8 10 12 14 16

=
Figure 10. w, = 4 (solid), 6 (dashed) and 8 (dotted)
100 T IR R RALL] r--by 101 = I _—}
10 100 E
4 3 F ;
2 2 e
g2 102 g 101
; LIS
10-3 10-2 E
10-4 TR (W RTTTT] R R ETT 10-3- L& 3 i Eiin RN ETIT I B YT T
101 100 101 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]
103 R G- 104 Robustness to mult uncert
102 103 -
T 3 s
2 101 2 102 E
g g 3
é" 100 %" 101 -
101 100 L. :
10.2 Lt Lran L L LL LoLopaaan 10-1 J.I.ul_._._.l_.j_._l_uli
101 100 101 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]

Figure 11. {, = 0.7 (full), 0.5 (dashed), 0.3 (dotted)

Introduction of Notch filter Since there are so large disturbances due to
the turbulence it was also tried to put a factor in R(g) introducing a filtering
in the controller around 6 rad/s. The controller will then be of order five:

R(g) = (¢ — 1)(¢* - 2q¢** cos(why/1 - (?) + *“*)R/(q)

The results for w = 6 and different { values are shown in Figure 12 and 13.
Note that a small { value gives a very narrow bandpass filter. The value
¢ = 0.3 was chosen.

27

100 L 101

101§
E 102k d :
2 F oy
= I = 101k
103 =
10.4-‘ i b iiding (N EETT I NET 10.2 I NN RIS A 3 iRl AW NEETT]
101 100 10! 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]
102 I - 104 Robustness to mult uncert
[y 16 o
E E
= F =
101 E
10.2— (R (AR (SN ET] -1 WA (AT [AR
101 100 10! 102 10! 100 101 102
Frequency [rad/s] Frequency [rad/s]
Figure 12. without filter (full), with filter { = 0.3 (dashed) and 0.1 (dotted)
1.5 T T T T Ll T Ll T L]
1 ’::r- ml"'/ S '——"'”‘7&'7- w“‘*‘"‘v
: v
a
T oosf -
. e, times]
0 2 4 6 8 10 12 14 16 18 20
]

time [s]
0 2 4 6 8 10 12 14 16 18 20

!
[,
.

Figure 13. without filter (full), with filter ¢ = 0.3 (dashed) and 0.1 (dotted)

The designs described aboved were all implemented and checked with
the real process with realtime-Simnon and the controller implementation in
Paclib. This was done along with the iterative designs above.

There where large problems to implement the fifth order regulators. This
was found to be due to numerical round off in Simnon and this was solved using
an implementation with delta operators, see the following section. After these
modifications the controller worked well. The problems with the turbulence
are smaller than with the PID controller. The system is also better damped.

28

100 .
10 -
[+] =
| 3
E) 102 E
= ¥
103 E
10.4 [NI L i aaiia (SRRt 10.2 (W ANE] Ll L llilnl SN
101 100 101 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]
102 B . 10¢ g—-Robusness tomult mncert
10! k 10° é
©) E
3 3 102
B0 B ok
10!
= s E
10 100 iagasilarbas: P A,

l -2 At b aaagys A4 4 3iai AT I{}.l AT

10-1 100 10! 102 10-t 100 101 102
Frequency [rad/s] Frequency [rad/s]

Figure 14. Same as Figure 12 but with numerical round off

1.5 — . ' " . ; v

randy
(

0.5+ N

I 1 L i 1 limc [s]
0 2 4 6 8 10 12 14 16

St ; i lime [s]

0 2 4 6 8 10 12 14 16

Figure 15. Same as Figure 13 but with numerical round off

A Delta operator implementation of RST-controllers

Figure 14 and 15 shows what happens if the parameters in R, S and T are
multipied by (1 + 10~8!cdotrand()). This corresponds approximately to a
round off to 6 valid figures.

There is a steady state error, very large for the fifth order controllers.
This is due to that S(1) = T(1) = 10~* is required to get unit gain for the
closed loop system. This is spoiled due to numerical round off.

Two Matlab routines were written, polyq2d and polyd2q, that transforms

29

100 T T rrremm l.-->¥IIIII T T illl= 101 l-->
o 10 ; Q 100 :
< = ° E
2 - 2 E
= 1 = 100 .
103 = E
10.4 A4 4 Bauing A0 1 Bl L ||n|‘|‘]0.2 A8 s apiail A8 8§ uBiNE AW NETIT]
101 100 101 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]
102 n-->u 104 Robustness to mult uncert
T TrrrTTnw L} LB AR L] LELBLRAL T T T TTImT T LML RRAL) L] L) |II|I£
: 103 k ;
3 1 3 :
2 b 2 102 5
B 101 5
p 1 5 F
100 g
-2 R WRTTT] (AR i ||n:: -1 B IR WETIT] A dhhia i IIII|-i:
101 100 101 102 101 100 101 102
Frequency [rad/s] Frequency [rad/s]
Figure 16. Same as Figure 14 but with delta form implementation
1-5 T L} L] T T L} T
1 4, o -
> ! vy Z g R o
o "
g
" o5t 1
X , tie [s]
0 2 4 6 8 10 12 14 16
5k ' ‘ I ' I I ‘ -
2 0OF
i . : : : , ; time [s]
0 2 4 6 8 10 12 14 16

Figure 17. Same as Figure 15 but with delta form implementation

a polynomial in forward shift to polynomial in the delta operator

and back.

The controller in Paclib is implemented in observable form using forward
shift operators. This controller was rewritten to delta form and implemented
in realtime Simnon.

30

RST y(ftﬂ?_ yr(dashed)

04 T T

0.4 T T T

021 -

04} -

_0.6 L 1 1 1 1 i i
0 5 10 15 20 25 30 35 40

Figure 18. Performance of RST-regulator with notch filter ((= 0.1). Load
disturbances are at time=32 and 35. Compare this Figure with Figure 5.

The results in Matlab was very good and are shown in Figures 16 and
17. The disturbance in the sixth decimal can not be noticed any more. Even
using as few as three valid figures was possible using delta operators, at least
in the Matlab simulations. The delta form controller worked well on the real
process, see Figure 18. The performance was considered satisfactorily and no
more design were done.

The final design (with notch filter) is given by (h = 0.03 s)

" rst2d.t

" Created in Matlab at 1990-7-6 5:54:33
"

[reg

rl : 5.02782
r2 : 11.1412
r3 : 5.93689
r4 : 3.68313
r5: 0

s0 : 12.542
sl : 16.0767
82 : 20.6164
s3 : 11.8944

s4 : 5.26107
sb : 1.00789
t0 : 1.36876
tl : 4.64124
t2 : 7.61997
t3 : 7.18227
t4 : 3.88962
t5 : 1.00789

31

4. References

AstroM, K.J., and WITTENMARK, B. (1990): Computer Controlled
Systems, Theory and Design, 2nd ed., Prentice-Hall, Englewood Cliffs,
pp. 250-254, 271.

ANDERSSON, M. (1988): “Reglering av flexibelt servo,” Laboration 4, AK
FED. Department of Automatic Control, Lund..

GusTaFssoN, K., LiLia, M., and LunpH, M. (1990): “A Collection of
Matlab Routines for Control System Analysis and Synthesis,” Report
TFRT-7454, Department of Automatic Control, Lund Institute of Tech-

nology, Lund, Sweden.

GusTarssoN, K. (1990): “logger — a program for data logging,” Report
TFRT-7457, Department of Automatic Control, Lund Institute of Technol-
ogy, Lund, Sweden.

HxceLunD, T. (1990): Praktisk processreglering, Studentlitteratur.
SSPA SysTEMSs (1990): Simnon, User’s Guide.
THE MATHWORKS (1990): Pro-Matlab, User’s Guide.

5. Appendices

Delta form RST-controller

DISCRETE SYSTEM reg

" Delta’-form of Wallenborg regulator
" Discrete time polynomial regulator
" with input/output relation

v R(du(k) = -S(Dy(k) + T(Dyr(k)

" R(d) = d*n + rixd"(n-1) + ... + rn
" S(d) = s0*d"n + si*d"(n-1) + ... + sn
" T(d) = t0*d"n + ti*d"(n-1) + ... + tn

" maximum polynomial degree (n) = 6
" d = (q-1)/(om*h)

" The regulator is implemented as a minimal
" realisation on observable canonical form.

" Anti Reset Windup mechanism implemented as
" in CCS pp 371-372 with observer char. eqn

" det(zI-F+KC) = P(z) = z°n + pi*z°n-1 + ... + pn
" The antireset windup can be shut off using aw:0

STATE x1 x2 x3 x4 xb x6
NE¥ nx1 nx2 nx3 nx4 nxb nx6

TIME t
TSAMP ts

32

INITTIAL

omh = om*h

bsl = -sil+ri*s0
bs2 = -s2+r2%80
bs3 = -s83+r3%s80
bs4 = -s4trd*sl
bsb = -s8b+rb*s0
bs6 = -86+r6*s0
btl = t1-ri*t0
bt2 = t2-r2#*t0
bt3 = t3-r3*t0
bt4 = t4-r4+*t0
btb = tb-rb*t0
bt6 = t6-r6*t0
ds = -80

dt = t0

ki = pi-ri

k2 = p2-12

k3 = p3-r3

k4 = p4-r4d

kb6 = pb-rb

k6 = p6-r6

SORT

y = ADIN(O,t) - yO
yr = ADIN(1,t) - yOr
uclip = DAOUT(0,u + u0) " control signal

dumi
dum2
dum3

u=rx1

DAOUT(1,0.4)
DAOUT(2,-0.1)
SDAOUT(0,0)

+ ds*y + dt*yr

% = uclip-u-u0

nxl = x1 + omh*(-ri#x1
nx2 = x2 + omh*(~-r2*xl
nx3 = x3 + omh*(-r3*xil
nx4 = x4 + omh*(-r4*x1
nxb = x5 + omh*(-r5*x1
nx6 = x6 + omh*(-r6%xi
ts =t +h

" parameters

om : 6

h : 0.03 "
aw : 0 "
yor: 0.0 "
yo : 0.0 "
ud : 0.0 "
rl : 0.0

r2 : 0.0

r3 : 0.0

r4 : 0.0

rb : 0.0

ré : 0.0

" measured process output signal
" reference value

" used to create reference value
" used to create reference value
" safety value

+ x2 + balky + btikyr + awxkisw)
+ x3 + bs2+y + bt2¥yr + awxk2*w)
+ x4 + bs3*y + bt3*yr + awkk3*w)
+ xb + bsdxy + bt4+yr + awkk4*w)
+ x6 + bsbky + btbkyr + awtkb*w)

+ bs6xy + bt6xyr + aw+k6+w)

sampling interval
antiwindup, 1 - on, 0 - off
Dc-level on yr

Dc-level on y

Dc-level on u

33

s0 : 0.0
sl : 0.0
82 : 0.0
83 : 0.0
84 : 0.0
sb : 0.0
s6 : 0.0
t0 : 0.0
t1: 0.0
t2 : 0.0
t3 : 0.0
t4 : 0.0
tb : 0.0
t6 : 0.0
pli: 0.0
p2 : 0.0
p3 : 0.0
p2 : 0.0
pb : 0.0
pé : 0.0
END

Matlab functions for delta operators

function [pd] = polyq2d(p,h);
% function polyq2d(p,h);
% Transforms a polynomial p (row vector) in q to its delta form
% using sampling period h.
% q = i+h*delta
%
%
[nr,nc]l=size(p);
dum = ones(i,nc);
a=[];
for i = 1:nc,
a = [dum(1:nc);al;
dum = h*cumsum([0 dum]);
end
pd=p*rot90(a);
end

function [p] = polyd2q(pd,h);
% function polyq2d(pd,h);
% Transforms a polynomial pd (row vector) in delta to q
% using sampling period h.
% delta=(q-1)/h
%
%
p=0;
dum = 1;
vhile length(pd)>0,
p = addpoly(p,pd(length(pd))*dum);
dum = conv(dum,[1 -1]/h);
pd = pd(i:length(pd)-1);
end
end

Matlab code to generate Figure 7 and 8

% Designl, compare different w in Am
% a,b,h given
vhile b(1)==0, b=b(2:length(b)), end;

oml = 3;

om2 = 6;

om3 = 9;

amcl = polyc(omi,0.7,-om1);
aml = polyc2d(amci,h);

amc2 = polyc(om2,0.7,-om2);
am2 = polyc2d(amc2,h);

amc3 = polyc(om3,0.7,-om3);
am3 = polyc2d(amc3,h);

omlo = 3;
om20 = 6;
om3o = 9;

’
aocl = polyc(omio,0.7,-omlo);
aol = polyc2d(aoci,h);
aoc2 = polyc(om20,0.7,-om20);
ao2 = polyc2d(aoc2,h);
aoc3 = polyc(om30,0.7,-om30);
ao3 = polyc2d(aoc3,h);

[r1,s1,t1]=rstd(b,1,a,1,aml,a0l,[1 -1])
[x2,s2,t2]=rstd(b,1,a,1,am2,a02,[1 -1])
[r3,s3,t3]=rstd(b,1,a,1,am3,203,[1 ~1])

gp = frd(b,a,h,-1,[1,300);
gfb = frd([s1;s2;s3], [r1;r2;r3],h,-1,[1,300);
gff = frd([t1;t2;t3], [r1;r2;r3],h,-1,[1,300);

evpl(gp,gfb,gff,[-1 2 -4 0 ; -1 2-31; -1 2-23; -12-1 4])

if input(’hardcopy (yes - 1)? ’)==1,
meta fig7
'gpp -dps fig7
delete fig7.met
‘mv fig7.ps ../documentation/fig7.ps

end

trldn = yusignals(o:h:16.1,0,—0.2,4,0.3,8,0.003,12);
tryul = yusimd(b,a,ri,si,ti,trldn);

tryu2 = yusimd(b,a,r2,s2,12,trldn);

tryu3 = yusimd(b,a,r3,s3,t3,trldn);

yupl(tryul,tryu2,tryu3,[0 16 0 2 -1 31);

if input(’hardcopy (yes - 1)? ’)==1,
meta £ig8
‘gpp -dps fig8
delete fig8.met
Imv £fig8.ps ../documentation/fig8.ps
end

35

