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Preface

This report is the result of a project in a short-course on Ho, control held by
Michael Green 1990. I would like to express my gratitude to Michael Green
for his interesting seminars and to Per Hagander for his inspiring guidance
during the project.

Lund September 1990

Anders Hansson
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1. Introduction

The aim of this project in Ho, control has been to compare Ho, controllers
with other optimal controllers when adding more structure to the problem.

In Section 2 the problem is described, and in Section 3 the solutions are
presented. Then in Section 4 the behavior of the controllers are examined by
simulations. Section 5 contains the conclusions.

2. Problem

The model of interest is taken from [1] pp 45 and can approximately be de-
scribed by

¥ = f(u,w)= K(u+ w)
w(t) = Fet 5
y(0) = %o
where F € [Fo, Fy, p € [po, p1], Fo,po > 0, y is the variable to be controlled,

and where w can be interpreted as load-disturbance. The problem can then
be formulated as minimizing the loss-function

T
J(u) = / (P2 + u?)dt

over u for the worst case load-disturbance.

3. Solution

The different solutions are derived using the necessary condition of the Euler-
Lagrange equation.

In the first subsection a necessary and sufficient condition for a Hy, so-
lution is given. In the second subsection a controller is derived using the
necessary condition without utilizing the structure of the load-disturbance. In
the third subsection it is shown for a specific example that the control signal is
bounded although the gain is infinite. In the fourth subsection the structure
of the load-disturbance is utilized to derive another H,, controller. In the
fifth subsection an optimal controller is designed by fully utilizing the known
structure of the load-disturbance.

3.1 H,, control
The problem can be formulated as finding a u such that for yo =0

J(u) < 7?lwll3, Vw#0,

where ||w||2 = foT w?dt. It is shown in [3] pp 5-10 that the problem has a
solution if and only if the Euler-Lagrange equation

f
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where
H=L+X'f
L= pzyz tul— 72w2

under y(0) = yo = 0 and A(T') = 0 has a solution, and that one of the solutions
is given by the solution to this equation.

3.2 Simple H,, solution

The condition of the Euler-Lagrange equation can be summarized in
HE
A
u
w

with A(T') = 0 and y(0) = yo = 0. Solving for 7 < 1 will give the solution

Il
r—,
9 |
QJN wlx
—
p

y(s) = Asin(rs) + B cos(rs),

where » = Kpy/7~2 — 1 and A and B is found by solving

(veoety —ranemy) (5) = (")

Then
u(t) = ~ 3 Mt) = e tanlr( ~ ()

Ify > 1/,/1+ (3557)% then u(t) is defined V¢ € [0, T]. It is interesting to note
that the gain of the controller approaches infinity for £ = 0 as 4 approaches
its limit.

3.3 An example

It is tempting to believe that infinite gain implies infinite control signal. In
the solution in Subsection 2 let T = /2 —¢, K = 1, p* = n/(m — 2¢) and
4=2 = 14 (7 — 2¢)/x. It is easily seen that r = 1 and that these values satisfy
the inequality condition on « for all € > 0. Let

0 1/h, 0<t<h?
HEY o, m<t<T’

which implies ||w||2 = 1. Since
_ 1
~ tan(t + e)y’
the differential equation describing the behavior of the controlled system is

1

Vit et T

w,



which, if yo = 0, has the solution

cos € — cos(t + ¢€)

<t<h?

hsin(t +¢) ’ 0<t<h

y(t) = cos € — cos(h? + ¢€) h2<t<T'
hsin(t +¢) ’ =

Expanding y(t), t < h? for e = 0 in a Taylor series will give

_ )2+ 0(t%)
y( ) = 'It—-}- O(ts) .

Since the gain for € = 0 can be expanded as

1 cos(t)

tan(t) ¢+ O(3)’

the control signal is bounded for & > 0 and all values of € and ¢.

3.4 H_, solution for modeled load-disturbance

Model the load-disturbance as
U= HpV
with v(0) = F, € [Fo, F1] and pp € [po, 1] Then w is what is unmodelled.

Modify f to
f= [K(u+v+'w)]
B HibY

T
and y to [ y v ] . As in Subsection 2 the Euler-Lagrange equation can be

summarized in

((9Y (0 K X(+2-1) o Y
vl | 0 m 0 0 v
M| T -2 o0 0 0 ] [,\1]

4 X3; . 0 0 -K —Hb Az
2)-[%)>

\ W \2%7 '

with A1(T) = X2(T) = 0, y(t) = yo = 0 and v(t) = Fye**. Solving for v < 1
will give
y(8) = Asin(rs) + B cos(rs) + Cet*’,

where r = Kpy/y~2 — 1, C = K Fypy/(pé + r?), and where A and B are found
by solving

(it —vanemy) (5) = (e cumens)



Then

u(t) = —%Al(t)
1 . Bt
=~ ) (3(t) — K Fpe)
1 Mot ]
_m[r(y(t) — Ce**)tan(r(T —t))
K Fyr? T K Fyr? epbt]

+ (B2 +2) cos(r(T —t)) R4
It is interesting to note the feed-forward-terms. The constraint for v is the
same as in the previous subsection. Also for this controller the gain approaches
infinity, and so does the feed-forward-terms for ¢t = 0 as 4 approaches its limit.
3.5 Optimal solution

Suppose that the worst-case disturbance for the problem in Section 2 is w =
Fiettt) and find the optimal control for that disturbance. Define

H=L+\f
L=p*+u?’
where f is defined as in Section 2. Then the Euler-Lagrange equation
y=1
A= -H,
0=H,

is a necessary condition for minimizing J(u) in Section 2, (2] p 43. The Euler-
Lagrange equation is summarized in

j = K(u+w)
A= -2p%

K
= -2
v="3

with A(T') = 0 and y(0) = yo. If st1 # pK, then the solution is given by
z(8) = Ae™ + Be™ ™" + Ce'?,

where r = pK, C = -E;E”%‘-, D= %‘ and A and B as the solution of
1—Tr
et e-Tt A 3 y(t) — CeMt
reT  —re~'T B) \(KFL-Cm)emT)’

u(t) = %t’(t) — w(t)

1
= —E[r(y(t) — Ce"t) tanh(r(T — t))
KR -Cm
cosh(r(T - t))
This controller also introduces feed-forward, but it does not suffer from the
problem of having high gain for small values of ¢.

Then

e“‘T + (KF]_ - Cul)e"lt]



4. Simulations

To compare the different controllers with respect to load-disturbances of the
type described in Section 2, simulations in Simnon have been performed. The
values of the parameters has been K = p =T =1, p; = 1.1, F = 11,
pp = 0.8 and F, = 0.7. Three different load-disturbances has been used:
(F, p)=(01, o01), (0.7, 08), (1.1, 1.1). The value of v has been
chosen 0.01 above its limit. The initial value has been y(0) = 0. The results
are presented in figures 1-3.

It is obvious that the strategy of the Ho, controllers is to control most
at the beginning, knowing that errors in the beginning will be integrated over
the remaining time. The H,, controller with modeled load-disturbance is not
as good as the first one. This is perhaps due to v(0) # 0. The strategy of the
optimal controller is not to control too much in the beginning, because there
will be a big load-disturbance at the end. The values of J(u) are roughly equal
for the best H,, controller and the optimal controller. The H,, controller is
better for small disturbances, while the optimal controller is better for large
disturbances.

If the initial values are not equal to zero, there will be problems with
infinite gain for optimal values of 4 of Hu, controllers. One way to overcome
this is to choose a larger value of 7. Since there are no good rules for how to
choose 7, it is not easy to design good H, controllers.

5. Conclusions

It has been shown that utilizing known structure of load-disturbances can
improve control. Also the drawback of finding a good value of v in H, control
has been exemplified.

Since the solution to the Euler-Lagrange equation with yo # 0 will give

J(u) < yg A(0)yo + 72| |wl]3,

where A(0) is depending on 7, it would be interesting to try to make the right
hand side in the inequality as small as possible by varying v under for example
the assumption that yJ yo + ||w||2 < 1.

6. References

[1] AxeLssoN, J.P. (1989): “Modelling and Control of Fermentation
Processes,” Ph.D thesis CODEN: LUTFD2/TFRT-1030, Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

[2] SAGE, A.P. and C.C. WHITE, III (1977): Optimum systems control,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA.

[3] LimeBeer, D.J.N., B.D.O. ANDERSON, P.P. KHARGONEKAR and
M. GREEN (1990): “A game theoretic approach to H* control for time
varying systems,” to be published.



0.08
0.04
04 T T T T 1
0 0.2 04 0.6 0.8
u
L T L T T 1
0 0.2 04 0.6 0.8 1
J
2107
T LI T T T 1
0 0.2 04 0.6 0.8 1
y
N K
-03 —
I T T T T 1
0 0.2 04 0.6 0.8

T L] Ll T L]
0 0.2 0.4 0.6 0.8
J
1r
e ¥ L] L L) L] L]
0 0.2 04 0.6 0.8
) )
-0.05
-
-0.15 T T ¥ T 1
0 0.2 0.4 0.6 0.8 1
4 u
-0.2
-0.6 T 7 T T 1
0 0.2 04 0.6 0.8
J
0.08
0.04 -
T L] T T 1
0 0.2 04 0.6 0.8 1

Figure 1. Simulation of Ho control with no disturbance model (top), with dis-
turbance model (middle) and optimal control (bottom), F = 0.1, = 0.1
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Figure 2. Simulation of Ho control with no disturbance model (top), with dis-

turbance model (middle) and optimal control (bottom), F = 0.7, » = 0.8
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Figure 3. Simulation of H,, control with no disturbance model (top), with dis-
turbance model (middle) and optimal control (bottom), F = 1.1,z =1.1



A. Simnon-code

continuous system PLANT
“"simulates an integrator

input u w
output y
state x v
der dx dv

dx=K*(u+w)
y=x

dv=u"2

continuous system REG

"A H-infinity controller with optimal gamma for
"[dx/dt] [a B1 B2 ][x]

“"[ s 1 = [c1 Dpi1 D12][v]

“[ y 1 [c2 p21 p22](u]

"A=0; Bi=B2=K

»Ci=[ 0 1; D11=[0]; D12=[1]

" [rho] fo] [o]

"C2=1; D21=D22=0

time t
input y
output u
state J
der dJ

u=-rho/sqrt(1/gamma~2-1)*tan(K+rho*sqrt(1/gamma~2-1) *(t1-t)) *y
gammna=1/sqrt (1+(pi/(2*rho*K#t1))~2)+0.01
dJ=rho"2#y~2+u~2

rho:1

K:1

t1:1 "final horizon-time
pi:3.1416926564

EED

continuous system REG
"An H-infinity-controller for an integrator and a modell of an exponentially
"growing load-disturbance

time ¢
input y
output u
state J
der 4J

u=-1/K/(1/gamma"2-1) * (t erm1+t erm2-term3)

termi=r*(y-C+exp (myb*t) ) #tan(r+(t1-t))
term2=(K*Fb*r~2)/(myb-2+r~2)/cos (r*(t1-t) ) *exp (myb*t1)
torm3=K+Fb+r~2/ (myb~2+r~2) *exp(myb+t)

C=Ké¢myb*Fb/ (myb~2+r"2)

r=rho*K*sqrt (1/gamma-2-1)

gamma=1/sqrt (1+(pi/2/K/rho/t1)~2)+0.01

dJ=rho~2%y~2+u-2
rho:1

myb:0.8
Fb:0.7



t1:1 "final horizon-time
K:1

pi:3.141692664

END

continuous system REG

"An optimal controller for an integrator with respect to an exponentially

"growving load-disturbance

time ©
input y
output u
state J
der 4J

u=-1/K* (terml-term2+term3)

termi=r*(y-Cxoxp(myi»t))+tanh(r*(ti-t))
term2=(K+F1-Cémy1) /cosh(r+(t1-t))vexp(myisti)
term3=(K*F1-Cémy1) *exp(my1+t)
C=K¢Fi*my1/(my1~2-r°2)

r=rho*K

dJ=rho~2%y~2+u~2

rho:1

myi:1.1

Fi:1.1

t1:1 "finel horizon-time
K:1

END

connecting system CON
“connecting system for H-infinity-control and optimal control of an
"integrator with ’exponentially’ growing load-disturbance

TIME ©

u[PLANT]=u[REG]
y [REG] =y [PLANT]
w[PLANT]=F+oxp(my+t)

F:1.1
my:1.1
E¥D
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