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Variable Elimination for Scalable Receding Horizon Temporal Logic
Planning

Mattias Fält1, Vasumathi Raman2, Richard M. Murray3

Abstract— Correct-by-construction synthesis of high-level re-
active control relies on the use of formal methods to generate
controllers with provable guarantees on their behavior. While
this approach has been successfully applied to a wide range
of systems and environments, it scales poorly. A receding
horizon framework mitigates this computational blowup, by
decomposing the global control problem into several tractable
subproblems. The existence of a global controller is ensured
through symbolic checks of the specification, and local con-
trollers are synthesized when needed. This reduces the size of
the synthesized strategy, but still scales poorly for problems
with dynamic environments because of the large number of
environment strategies in each subproblem. Ad-hoc methods to
locally restrict the environment come with the risk of losing
correctness. We present a method for reducing the size of
these subproblems by eliminating locally redundant variables,
while maintaining correctness of the local (and thus global)
controllers. We demonstrate the method using an autonomous
car example, on problem sizes that were previously unsolvable
due to the number of variables in the environment. We also
demonstrate how the reduced specifications can be used to iden-
tify opportunities for reusing the synthesized local controllers.

I. INTRODUCTION

As autonomous systems are deployed in situations of
increasing complexity, it is important to be able to verify
their correctness. We are interested in complex tasks where
safety is critical, such as aircraft systems, autonomous cars
and space missions. It is essential to have formal and unam-
biguous specifications of these tasks to be able to guarantee
the desired system behavior.

Linear Temporal Logic (LTL) has proven effective for
correct-by-construction synthesis of controllers for a wide
range of applications. To apply these specifications to con-
tinuous domains, the system and its operating environment
are usually represented by a discrete abstraction over which
the problem can be specified. It is desirable to be able
to automatically create provably correct reactive controllers
from these specifications, and several methods for doing
so have been presented, such as those in [5], [7], [12],
[9]. In particular, efficient methods have been developed
for the Generalized Reactivity (GR(1)) fragment of LTL.
These methods are based on finding a winning strategy in
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a two player game between the system and environment. If
successful, a correct-by-construction controller is generated
that satisfies the specification on the discrete abstraction. A
continuous controller can then be used to implement this
strategy on the real system. However, as the problems grow
in size, the curse of dimensionality sets in and it becomes
increasingly intractable to generate these reactive strategies.

Receding horizon control has been successfully applied to
many situations where solving the full problem at once is
too hard. The method is shown to be effective not only in
terms of computational scalability, but also robustness and
stability. A receding horizon framework was therefore re-
cently introduced to exploit these advantages in the temporal
logic synthesis setting [11]. The framework relies on splitting
the problem into several short horizons by partitioning the
state-space. Realizability of the global problem is determined
through symbolic checks of the specification, and the extrac-
tion of controllers for each of the smaller problems postponed
until the respective partitions are reached.

The gain from this is twofold: the shorter problems will
limit the number of events that have to be considered before
the next problem is reached, and the controller extraction
can be restricted to the current state, ignoring extraction
for states that never occur. This method is effective at
reducing the size of the synthesis problems, but is not
enough in the presence of large environments with a lot
of non-determinism. Although the controller extraction can
be restricted to the choices the system will take towards its
goal, all possible actions of the environment still have to be
considered. This results in a computational blowup when the
number of environment actions increases.

However, in each of the short horizon problems, usually
only a small subset of the environment variables is actually
interesting. This observation was previously addressed by
manually restricting the parts of the environment that were
deemed irrelevant in each of the short horizon problems [12].
This ad hoc method results in problems of a manageable
size, but the guarantee of correctness is lost, as it is easy
to accidentally restrict the environment in ways that over-
simplify the problem.

Previous work on reducing specifications has resulted in
tools to find unhelpful parts of a specification and min-
imally sufficient specifications. The authors of [3] define
a notion of “helpful” signals, and iteratively remove un-
helpful ones. However, their approach relies on expensive
iterated realizability tests, which we circumvent in this paper.
The authors in [6] use model-based diagnosis to remove
irrelevant output signals from the specification; these are



output signals that can be set arbitrarily without affecting
the unrealizability of the specification. Their approach also
uses repeated realizability checks, and is unhelpful in the
case of realizable specifications. Moreover, these approaches
do not use any domain-specific knowledge to restrict the
specifications, unlike that which we present in this paper.

In this paper, we present an algorithm that automatically
identifies variables that can be ignored in each short hori-
zon problem. We show how to modify the specification
to ignore these variables without artificially restricting the
environment. This enables us to solve problems that were
previously unsolvable in a correct-by-construction manner.
We validate the method on an autonomous car example
with a dynamic environment. We also demonstrate how the
reduced specifications can be used to identify when several
short horizon problems are practically identical. This enables
the reuse of previously synthesized controllers.

II. PRELIMINARIES

A. Linear Temporal Logic

Syntax: Given a set of atomic propositions AP , an LTL
formula is defined by the recursive grammar:

ϕ ::= π | ϕ1 ∧ ϕ2 | ¬ϕ | #ϕ | ϕ1Uϕ2

where π ∈ AP , ∨ and ¬ are the Boolean operators for
disjunction and negation, and # and U are the temporal
operators “next” and “until”. From these operators, the fol-
lowing operators are derived: “disjunction” ∨, “implication”
⇒, “equivalence” ⇔, “always” �, and “eventually” 3.

Semantics: LTL is interpreted over sequences of truth
assignments σ : N→ 2AP . We say that a truth assignment σ
satisfies π ∈ AP at time t (denoted (σ, t) |= π) if π ∈ σ(t),
i.e. σ assigns π to True at time t. We say (σ, t) 6|= π if π is
assigned False at time t, i.e. π 6∈ σ(t). The semantics of
an LTL formula is then defined recursively over the structure
of the formula. For example, σ satisfies “next” ϕ, denoted
σ |= #ϕ, if and only if ϕ is true in σ(t + 1). Similarly,
σ |= �ϕ and σ |= 3ϕ if and only if ϕ is true in σ(t′) for
all t′ ≥ t and for some t′ ≥ t, respectively. The reader is
referred to [4] for the full syntax and semantics of LTL.

B. Reactive Synthesis

We let the system and environment state be character-
ized by a finite number of atomic propositions (also called
boolean variables). We denote by X and Y the sets of
variables that the environment and system can control respec-
tively. The state of the environment and system at any time
step is described by a truth assignment tuple (x, y) ∈ X×Y
where X = 2X and Y = 2Y . These states can be the result of
discretization, as described in [8], [11], where the variables
in X and Y abstract a continuous state space.

Given an LTL specification ϕ, the reactive synthesis
problem is to find a finite-state strategy for the system that,
at each time t, given xt, xt+1 ∈ X and yt ∈ Y , provides
yt+1 ∈ Y , such that the resulting infinite sequence of truth
assignments σ = (x0, y0), (x1, y1), ... satisfies ϕ at time 0

(i.e. (σ, 0) |= ϕ). If such a strategy exists, the specification
is called realizable. Reactive synthesis for general LTL spec-
ifications is 2EXPTIME-complete [10], but [1] presents a
tractable algorithm for the Generalized Reactivity(1) (GR(1))
fragment, which consists of specifications of the form

(
ψinit∧�ψe∧

∧
i∈If

�3ψf,i
)
=⇒
( ∧
i∈Is

�ψs,i∧
∧
i∈Ig

�3ψg,i
)
,

(1)
where:
• ψe is a propositional formula over X ,Y and #X , where

#AP = {#π | π ∈ AP}
• ψs,i is a propositional formula over X ,Y , #X and #Y
• ψinit, ψf,i and ψg,i are formulas over X and Y .
The antecedent of this implication is referred to as the

assumptions, and the consequent as the guarantees. It is
based on this form of specification that the synthesis problem
for the receding horizon framework was defined in [12].

C. Receding Horizon Temporal Logic Planning

To guarantee that it will still be possible to complete
the task using a receding horizon, additional constraints are
required on the execution. Formally, for each of the progress
properties ψg,i, we require:
• A partitioning of X × Y =Wi

0 ∪Wi
1 ∪ ... ∪Wi

p, such
that (x, y) ∈ Wi

0 only if (x, y) � ψg,i.
• A partial order (�ψg,i

) on partitions withWi
0 �ψg,i

Wi
j

for all j.
• A mapping F i : {Wi

0...,Wi
p} → {Wi

0...,Wi
p} such that

F i(Wi
j) �ψg,i

Wi
j .

• A propositional formula Φ (called the invariant) over
X ∪ Y such that ψinit =⇒ Φ is True.

The partial ordering of the partitions represents a measure of
closeness to the progress property ψg,i, while the mapping
F i decides where to set the short horizon goal while ensuring
that the system gets closer to fulfilling its progress property
ψg,i. Lastly, the invariant represents the additional constraints
required to ensure realizability when switching between short
horizon problems. Formally, the following sufficient short
horizon specification was proposed in [12]:

Ψi
j

.
=

(
(ν ∈ Wi

j) ∧ Φ ∧�ψe ∧
∧
k∈If

�3ψf,k
)

(2)

=⇒
( ∧
k∈Is

�ψs,k ∧�Φ ∧3
(
ν ∈ F i

(
Wi
j

)) )
.

If Φ can be constructed such that (2) is realizable for all
ψg,i,Wi

j , a controller for (1) can be constructed via reactive
synthesis on these short horizon problems [12].

III. PROBLEM

A. Scalability of receding horizon synthesis

The receding horizon method proposed by [11] enables
solving a large problem in steps by dividing it into sub
problems, and extracting a controller for each sub problem
only when that problem is encountered. This method reduces



the running time for synthesizing a controller, since the initial
state of a sub problem restricts the explored state space when
extracting a controller for this part. A detailed discussion on
this aspect can be found in [12].

Although the receding horizon method is effective in
reducing the total size of controllers (and therefore synthesis
time), it still scales poorly when the number of environment
variables is large. In many states, the system behavior is
independent of some of the environment actions. When the
horizons are short, it is often the case that some environment
variables do not affect the system within an entire short
horizon. This is often true in robotics and path planning
applications, where obstacles and environment actions in
one part of the workspace are almost unrelated to those
in another. In the examples presented in [12], this property
was exploited to simplify each of the short horizon spec-
ifications. However, the simplification was achieved manu-
ally, by including only parts of the full specification that
the user deemed relevant for each horizon. This is an ad
hoc approach, and the correctness of the solution can no
longer be guaranteed. We would therefore like a method of
automatically reducing the number of variables in the short
horizon specification while maintaining guarantees.

The variable elimination method proposed in this paper
is motivated by the observation that only a fraction of
environment variables are relevant within each short horizon
problem, reducing the time taken to synthesize each solution.
As we show in Section VI. this reduction moves many previ-
ously unsolvable correct-by-construction synthesis problems
into the realm of computational tractability.

IV. VARIABLE REDUCTION

Let X = {e1, e2, ..., en1}, Y = {s1, s2, ..., sn2} be the set
of environment and system variables, respectively. We denote
environment inputs by x ∈ X = 2X and system outputs by
y ∈ Y = 2Y , and a state is a tuple (x, y). For simplicity of
notation, we suppress the index i that indicates the current
horizon and rewrite (2) as follows:

φj = ϕe ⇒ ϕs (3)

= (ϕinit ∧ Φ ∧�ϕes ∧�3ϕel )⇒
(
�Φ ∧�ϕss ∧3ϕsp

)
,

where ϕss is a propositional formula over X ,Y , #X and #Y;
ϕel is over X ,Y and #X ; and ϕel , ϕ̂init,Φ and ϕsp are over
X and Y .

Let W = {X × Yj}j∈[1,k] where {Y1, ..., Yk} is a par-
titioning of Y . Define R : W → 2W and F : W → W ,
where Wj ,F(Wj) ∈ R(Wj) for all Wj ∈ W . R(Wj) is
the plan set for Wj , and contains subsets of W that are
relevant when constructing a plan over set Wj ∈ W . This
plan set restricts the short horizon solution, and should be
chosen as the smallest set such that the specifications can
still be satisfied. Finding a restriction is often not hard, and
an example is given in section VI-A.

For the rest of this section, we will view propositional
formulas as functions mapping truth assignments to the vari-
ables on which they are defined to a value in {0, 1} (denoting
the corresponding truth value of the formula); we call these

Boolean functions. For example, overloading notation, the
formula Φ can be viewed as a function Φ : X×Y → {0, 1}.

Definition 1: Let a Boolean variable xi be in the support
of a Boolean function f(x1, ..., xn), iff

f(x1, ..., xi = 0, ..., xn) 6= f(x1, ..., xi = 1, ..., xn).
Definition 2: The existential abstraction of Boolean func-

tion f with respect to Boolean variable xi is defined as

∃xi
f = f |xi=0 ∨ f |xi=1 .

Existential abstraction with respect to sets of Boolean vari-
ables is defined naturally via iteration over the set.

Definition 3: Let the supporting set of a Boolean function
f be the set of variables in the support of f , and the non-
supporting set be the set variables not in the support of f .
We denote this as S(f) and NS(f) respectively.
We define

YR(Wj) =
⋃

is.t.Wi∈R(Wj)

Yi,

and denote a function f restricted to X × YR(Wj) by f̃ =
f |X×YR(Wj)

(where the index j is implied from the context).
We will restrict the specification to relevant variables on

the plan set for the current horizon. After restricting the
specifications to the current plan set R(Wj), we define sets

X s,sns =
{
ei ∈ X

∣∣∣ei, e′i ∈ NS (ϕ̃ss ∧ Φ̃
)}

,

X s,pns =
{
ei ∈ X

∣∣ei ∈ NS (ϕ̃sp)}
of variables that do not affect the two guarantee portions of
the specification; we can therefore eliminate the variables in
Xns = X s,sns ∩X s,pns . Given f , let f̂ = ∃Xns

f̃ , and denote by
Xs its domain, i.e. the powerset of variables in X\(Xns). It is
clear that existentially conditioning non-supporting variables
does not change a function in the sense that f(Xs,Xns) ⇔
∃Xns

f(Xs).
Definition 4: The reduced short horizon specification is

φ̂j
.
= ϕ̂e ⇒ ϕ̂s (4)
.
=
(
ϕ̂init ∧ Φ̂ ∧�ϕ̂es ∧�3ϕ̂el

)
⇒
(
�Φ̂ ∧�ϕ̂ss ∧3ϕ̂sp

)
,

where ϕsp = (ν ∈ F(Wj)), ϕinit = (ν ∈ Wj).
Lemma 1: For any infinite sequence of states σ = σ0σ1...

with σi = ((xs,i, xns,i), yi) ∈ (Xs×Xns)× YR(Wj), define
σs = σs,0σs,1... with σs,i = (xs,i, yi). Then

σ � (ϕinit ∧ Φ ∧�ϕes ∧�3ϕel )

=⇒ σs �
(
ϕ̂init ∧ Φ̂ ∧�ϕ̂es ∧3ϕ̂el

)
Proof: By definition, Φ̂ = ∃Xs

Φ̃ with Φ̃ = Φ on the
subspace X × YR(Wj). If Φ(σi) = Φ((xs,i, xns,i), yi) = 1
then it follows from the definition of existential abstraction
that Φ̂(σs,i) = Φ̂(xs,i, yi) = 1. Analogously, the same
applies to ϕinit, ϕ

e
s and ϕel . Thus, since any state σi or

transition (σi, σi+1) that satisfies ϕinit,Φ, ϕ
e
s, ϕ

e
l results

in the state σs,i or transition (σs,i, σs,i+1) that satisfies
ϕ̂init, Φ̂, ϕ̂

e
s, ϕ̂

e
l , the implication for the sequences follows.



Lemma 2: Given σs = σs,0σs,1..., with σs,i = (xs,i, yi) ∈
Xs × YR(Wj), for any σ = σ0σ1... with σi =
((xs,i, xns,i), yi) ∈ X × Y ,

σs �
(
�Φ̂ ∧�ϕ̂ss ∧�3ϕ̂sp

)
=⇒ σ �

(
�Φ ∧�ϕ ∧3ϕsp

)
.

Proof: Given a state σs,i = (xs,i, yi) � ϕ̂sp, from the
definition of existential abstraction there has to exist xns,i ∈
Xns such that ((xs,i, xns,i), yi) � ϕ̃sp. But since xns,i ∈ Xns,
all corresponding variables must be in the non-supporting set
X s,pns , and thus ϕ̂sp((xs,i, xns,i), yi) = ϕ̃sp((xs,i, x

′

ns,i), yi) for
any x

′

ns,i ∈ Xns. Since ϕ̃sp = ϕsp on X × YR(Wj), we have
shown that (xs,i, yi) � ϕ̂sp ⇒ ((xs,i, xns,i), yi) � ϕsp for any
xns,i. The same argument can be made for the conjunction
ϕ̂ss∧Φ̂, and the implication is therefore true for the sequences
σs and σ.

Theorem 1: Realizability of the reduced short horizon
specification (4) implies realizability of the short horizon
specification (3). Moreover, a strategy for the reduced short
horizon specification can be refined to a strategy for the short
horizon specification.

Proof: If (4) is realizable then there exists a strategy
g : X2

s×YR(Wj) → YR(Wj) (or gi : Xs×YR(Wj) → YR(Wj)

for the initial state) that given inputs x will generate an
infinite sequence of states σs = ((xs,0, y0), (xs,1, y1), ... with
yi+1 = g(xs,i, xs,i+1, yi) such that σs satisfies equation (4).
We now show how this strategy can be refined to one that
satisfies equation (3). For an arbitrary set of states xi =
(xs,i, xns,i) ∈ Xs ×Xns = X , xi+1 ∈ X , yi ∈ Y , define
the strategy h : X2 × Y → YR(Wj) as

h(xi, xi+1, yi) = g(xs,i, xs,i+1, yi)

if yi ∈ YR(Wj), and arbitrarily otherwise. This strategy will
generate a sequence σ = σ0σ1... of states. Assume first that
the sequence σ 6� ϕe, then ϕe ⇒ ϕs imposes no restrictions
and σ � ϕe ⇒ ϕs. If σ � ϕe, then since ϕinit = (ν ∈ Wi

j)
we have that y0 ∈ YR(Wj) and since h is a function to
YR(Wj), we conclude that yi ∈ YR(Wj) for all i. Through
Lemma 1 it follows that σs � ϕ̂e, and because g is a strategy
for the reduced short horizon specification, it follows that
σs � ϕ̂s. It is therefore clear from Lemma 2 that σ � ϕs,
and we have thus shown that σ � ϕe ⇒ ϕs. Thus h is a
strategy for (3).

V. APPLICATION TO PROBLEM CLASSIFICATION

Short horizon problems often have very similar structure,
and it is useful to identify and leverage this property. Using
the method proposed in Section IV, each of the problems pre-
viously defined on X×Y will now be defined on the smaller
subset Xs × YR(Wj), and over fewer variables S = Xs ∪Y .
We denote the set of Boolean functions that characterizes φ̂i
by f ij ∈ F i =

{
(ϕ̂init ∧ Φ̂), ϕ̂es, ϕ̂

e
l , (Φ̂ ∧ ϕ̂ss), ϕ̂sp

}
.

Given two problems φ̂1, φ̂2 defined on sets of variables
S1,S2 respectively, if a mapping M : S1 → S2 exists such
that f1j ◦M = f2j for all j ∈ {1, ..., 5}, then a controller g1
for φ̂1 can be used as a controller g2 = g1 ◦M for φ̂2.

1: procedure ClassifyProbs({φ̂1, φ̂2, ..., φ̂n})
2: E ← {} . Equivalence classes
3: for 1 ≤ this ≤ n do . Iterate over horizons
4: c1, ..., cn ← VariableClassification(φ̂this)
5: for eq ∈ E do
6: φ̂other ← First(eq)
7: if |ci(φ̂this)| 6= |ci(φ̂other)| for any i then
8: continue
9: end if

10: for p ∈ Πc1 ×Πc2 × ...Πcn do
11: for f φ̂this

j ∈ F φ̂this do
12: if f φ̂this

j 6= f φ̂other
j ◦Mp then

13: Next p at line 10
14: end if
15: end for
16: Add φ̂this to eq . Mapping Mp works
17: Next φ̂this at line 3
18: end for
19: . No mapping exists for this eq
20: end for
21: . φ̂this does not belong to any class eq
22: Add new eq = {φ̂this} to E
23: end for
24: end procedure

25: procedure VariableClassification(φi)
26: c0, ..., ck ← {}, {}, ..., {}
27: for variable v ∈ S(φi) do
28: val← 0
29: C = (S(f i1), S(f i2), ..., , S(f i5)) . set sequence
30: for 1 ≤ j ≤ |C| do
31: if v ∈ C(j) then
32: val← val + 2j . encode that v ∈ C(j)
33: end if
34: end for
35: Add v to class cval . v′ ∈ cval have same val
36: end for
37: return c0, c1..., ck
38: end procedure

Fig. 1. Algorithm for Problem Classification. The algorithm starts by
classifying the variables in each φ̂i by looking at which of the functions
f ij ∈ F i they support. The algorithm then only considers bijections between
problems with the same number of variables in each class. In this case there
will be 2|F

i| = 32 variable classes.

Finding such a mappingM between variables is in general
NP-hard. The algorithm in Fig. 1 presents a method that
searches for such a mapping over the set of all bijectionsM :
S1 → S2 (assuming |S1| = |S2|), while trying to minimize
the number of bijections tested.

Given a set of variables S = {s1, s2, ..., sn}, we denote
by ΠS the set of all permutations over S (corresponding to
permutations over the set of integers in [1, n]. Given S =
S1∪S2, we abuse notation slightly by writing ΠS1 ×ΠS2 =
{p1p2 | p1 ∈ ΠS1 , p2 ∈ ΠS2}. Given S1 = {s11, s12, ..., s1n}
and S2 = {s21, s22, ..., s2n}, each permutation p ∈ ΠS1 defines
a mapping Mp as Mp(s

1
i ) = s2p.

We incrementally construct a set E = {eq1, eq2, ..., eqn}
of equivalence classes of short horizon problems such that
for all φ̂1, φ̂2 ∈ eqi, there is a permutation p ∈ ΠS1 such
that φ̂2 = φ̂1 ◦Mp. We make several optimizations:

• We compute supporting sets only once for each function
f ij ∈ F i, categorizing each variable into one of 2|F

i| =



25 = 32 classes ci based on where it is present. We
can immediately quit if the specifications do not have
an equal number of variables in each class.

• Instead of considering all |Xs|! · |Y|! permutations of all
variables, we consider only permutations of variables
within each class (Πci ).

• We compare two Boolean functions using their Binary
Decision Diagrams (BDDs) [2], which are unique for
a fixed variable ordering. When computing f ij ◦ Mp,
the BDD (or a hash of the BDD) can be saved for
each permutation p and each f ij ∈ F for a single
representative function φ̂i ∈ eqi of every equivalence
class eqi ∈ E. It is then sufficient to compare the BDD
of fkj to all the previously-saved BDDs of f ij ◦ Mp

when looking for a mapping between φ̂i and φ̂k. This
greatly reduces the running time, since two BDDs can
be compared in time linear in the number of variables.

• Specifications are usually built via an automated pro-
cess. Equivalent specifications therefore usually have
corresponding variables in the same locations in the
specification, and the first variable in the first speci-
fication usually corresponds to the first variable in the
second specification, and so on. This fact can be used
to greatly reduce the number of mappings tried.

• This method can be extended to categorize variables
based on other characteristics, such as if a variable is
essential for a function (i.e. if f ⇔ f ∧ ei).

VI. RESULTS

The proposed methods were implemented and tested in the
Temporal Logic Planning Toolbox (TuLiP) [13]. We present
a simple demonstrative problem inspired by the road example
previously used for the receding horizon framework [11].

A. Example

We consider a discretized road with a bend, as depicted
in Fig. 2. We let the discrete length (in “cells”) before and
after the bend be n and m, and index the road segments
(each of which are 2 cells wide) by i, corresponding to their
distance from the starting cell. We denote by Oi,l and Oi,r
the presence of an obstacle in the left and right cells of
segment i, respectively, and the location of the car in road
segment i by Yi,l and Yi,r. There might be obstacles at any
location, with a few restrictions:
• they may not block the road completely:∧
i∈I
¬(Oi,l∧Oi,r)∧¬(Oi,l∧Oi+1,r)∧¬(Oi+1,l∧Oi,r),

• they may not appear or disappear while the car is
nearby:∧
i∈I

k∈[i−1,i+1]

(Yi,l∨Yi,r)⇒ ((Ok,l⇔#Ok,l) ∧ (Ok,r⇔#Ok,r)) ,

• they cannot block the turn: ¬(On−1,r ∧On,r).
The goal for the car is to get to ψg = Yn+m,l ∨ Yn+m,r
from ψinit = Y0,l ∨ Y0,r. It may move to adjacent cells but

n

m

Wi
R(Wi)F(Wi)

ψinit

ψg

Fig. 2. Example illustrating the road example of size n=6, m=7. ψinitand
ψg represents the initial condition and goal of the full specification. The
figure also illustrates Wi,F(Wi),R(Wi) for a specific short horizon
problem with horizon 2.

TABLE I
RESULTS FOR THE DOUBLE ROAD WITHOUT RECEDING HORIZON

FRAMEWORK

length states storage for extraction (array size)
3 163 <50000
4 698 >50000
5 2827 >400000
6 ? >3200000

not diagonally (this assumption is implicit in the rest of the
paper), and may never be in the same cell as an obstacle:∧

i∈I
¬ ((Yi,l ∧Oi,l) ∨ (Yi,r ∧Oi,r)) .

This global specification is thus defined over the vari-
ables X = ∪i∈I(Oi,l ∪ Oi,r) and Y = ∪i∈I(Yi,l ∪
Yi,r) with implicit mutual exclusion over the system vari-
ables. For the receding horizon framework we choose the
partitioning Wi = 2X × 2{Yi,l,Yi,r} and the mapping
F(Wi) = Wmin(i+h,max(I)) where h is the horizon (as
a number of discrete cells). Lastly, we choose R(Wi) =
{Wi,Wi+1, ...,F(Wi)}. Fig. 2 illustrates these sets.

B. Regular road, no receding horizon

For comparison, we ran the GR(1) synthesis algorithm on
this example without using the receding horizon framework.
This problem quickly grows beyond what is possible to
solve because of the large number of available environment
transitions in each step. Table I shows the number of states
in the synthesized controllers for different road lengths, and
the approximate array sizes needed to store intermediate
fixpoints for strategy extraction. The solver crashed because
of excessive memory usage in the last example.
C. Double road, horizon 1

The receding horizon framework reduces the number of
states in the controllers significantly, as seen in table II.
tsynth is the total time (in seconds) for synthesizing all
controllers, which seems to increase linearly with the length.
Here treduce is the time spent reducing the short horizon



TABLE II
RESULTS FOR THE DOUBLE ROAD WITH HORIZON 1

n m tsynth treduce statemax statemed statetot

3 3 11s 22s 230 45 410
4 4 13s 47s 237 45 505
5 5 14s 84s 197 45 552
2 9 15s 109s 197 45 597
2 10 15s 109s 197 45 642

10 10 22s 568s 231 45 1012

TABLE III
RESULTS FOR THE DOUBLE ROAD WITH HORIZON 2

n m tsynth treduce statemax statemed statetot

5 5 43s 89s 303 303 1827
2 9 51s 112s 303 303 2179

10 10 105s 571s 303 303 4440

problems using the methods in this paper, and statemax,
statemed and statetot are the maximum, median and sum
of the number of states over all short horizon problems. The
number of states in each short horizon problem is constant
after reduction, as expected.

D. Double road, horizon 2

Table III shows results for horizon h = 2. The number
of states quickly increases with the horizon, as expected.
However, the time taken using variable elimination grows
much more slowly than the time taken without, and we are
able to solve much larger problems.

E. Problem classification

By using the algorithm in Fig. 1, we were able to classify
most of the short horizon problems into a small number
of equivalence classes, and can therefore check realizability
or extract a controller for just one problem per class. The
method produced 5 different classes in the case of h = 1, one
for the first partition, one for the last, two for the partitions
on the turn, and one for all other problems. An illustration
of the classification is shown in Figure 3. The resulting
reduced short horizon specification for the majority of the
specifications can be described by the following formulas

ϕ̂init ∧ Φ̂ = (Yk,l ∨ Yk,r) ∧ ¬Ck
ϕ̂es =

∧
i∈{k,k+1}

(Ok,l ⇔ #Ok,l) ∧ (Ok,r ⇔ #Ok,r)

ϕ̂el = True

ϕ̂ss ∧ Φ̂ = ¬Ck ∧ ¬Ck+1

ϕ̂sl = Yk+1,l ∨ Yk+1,r,

where k is the starting partition and Ci = (Yi,l ∧ Oi,l) ∨
(Yi,r ∧ Oi,r) denotes a crash in partition i. We have thus
reduced the set of environment variables X to the set
Xs = {Ok,l, Ok,r, Ok+1,l, Ok+1,r}. The mappings between
two specifications at index i and j is simplyM(Oi,l) = Oj,l
and analogously for the other variables Oi,r, Yi,l, Yi,r.

Fig. 3. Illustration of the five different categories of problems identified.
Each horizon is identified as equivalent to the others except for the horizons
in the start, turn and end.

VII. CONCLUSION

We have developed a method that greatly reduces the
size of the short horizon problems in a receding horizon
framework for temporal logic synthesis. This improves scal-
ability without compromising the correctness of controllers.
We have also shown how it is possible to identify and
reuse controllers for several short horizon problems. Future
work will improve efficiency of the problem classification
method using domain-specific heuristics, and better study the
tradeoffs involved in performing this procedure instead of
synthesizing each horizon separately.
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