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Populirvetenskaplig sammanfattning

Vattenvigor pd 6ppna ytor ir ett vilbekant naturfenomen for manga fran barndomens
havsutflykter, och det finns utan tvekan ett intresse f6r samhillet att forsta samt forvalta
dess krafter. Denna avhandling studerar rorelser hos sidana vigor. Den matematiska
beskrivningen for vagrorelsen ges av Leonhard Euler for drygt 300 ér sen, och bestir av
partiella differentialekvationer med tva okinda variabler: den fria vattenytan och vatten-
partiklarnas hastighet. Ekvationerna kallas f6r Eulers ekvationer. Eftersom variablerna
forekommer icke-linjdrt 4r Eulers ekvationer utmanande att studera och ett fortsatt aktivt
forskningsomrade trots sin rika matematiska historia. For enkelhetens skull antar vi att
havsbottnen ir en plan yta som inte har nigon lutning. Vi antar ocksd att vattnet har
konstant densitet, att det inte virvlar, samt att det inte dr trogflytande. Dessa antaganden
passar bl.a. vil in pa havsvigor som inte dr alltfor nira stranden. I denna avhandling
undersoks fortskridande gravitations- och kapillar-gravitationsvagor. En védg dr fortskri-
dande om den fortplantas lings en horisontell riktning med konstant hastighet utan att
dess form dndras. Med gravitationsvigor menas 16sningar till Eulers ekvationer dir jordens
tyngdkraftir den dominerande dterstillande kraften. Med kapillar-gravitationsvigor menas
16sningar till Eulers ekvationers dir bdde ytspanningen och tyngdkraften har en paverkan.
Sadana vagor ir vanligt fdrekommande i naturen.

P4 grund av komplexiteten hos Eulers ekvationer ir det vanligt att studera dess approx-
imationer, som ir enklare och som ger en god 6verblick 6ver bade losningar och kvalitativa
egenskaper hos Eulers ekvationer. Ett exempel dr KdV-ekvationen, som lyckas finga ett
sillsynt vagfenomen, nimligen solitdra vagor. Dessa ir fortskridande vigor dir vattnets
massa koncentreras kring en punket. Ett annat exempel dr Whithamekvationen, dir man
anvinder den fullstindiga linjira dispersionen fran Eulers ekvationer. Dispersion ir ett
fenomen dir vigens fortplantningshastiget beror pa viglingden. Den fullstindiga linjira
dispersionen gor att Whithamekvationen blir icke-lokal, vilket innebir att lokal information
nira en punkt ir otillrdcklig for att rikna ut termerna i ekvationen. Det formodas att denna
icke-lokala och icke-linjira struktur hos Whithamekvationen kan fanga hégsta vagor, som
uppnir den hdgsta méjliga amplituden och som férlorar glatthet. Férmodan i4r bekriftad
for periodiska vigor och, i denna avhandling, for solitira vagor. Vir analys dr baserad pa
nya matematiska verktyg for icke-lokala och icke-linjira ekvationer, och dr en utgingspunke
for fortsatt matematisk forskning kring andra icke-lokala och icke-linjira ekvationer pa
liknande form. I den forsta artikeln ges ett bevis for existens av hogsta solitdra vigor for



Whithamekvationen. Hir beh6vs en ny konstruktion av glatta och smé solitira vagor for
Whithamekvationen, d.v.s. en lokal bifurkation fran det triviala jimviktsliget dér vattnet
ir i vila. Direfter studeras global bifurkation, dir vigamplituden inte lingre 4r liten. Tar
vi grinsvirdet av dessa “stora” solitira vigor kan ett antal fall incriffa. Exempelvis kan
gransvirdet bli noll eller saknas. Genom att studera hur solitdra vigor uppfor sig i allminhet
kan vi utesluta dessa odnskade fall. Slutligen kvarstdr ett enda fall, dir vigorna konvergerar
mot en av dessa hdgsta solitira vigor.

Artikel IT fordjupar sig i ett verktyg frin artikel I. Mélet 4r att konstruera smé véagor for
kapilldr-gravitationsvagor i en Whithamekvation med svag ytspanning. Ytspanningseffekten
medfér nya och intressanta matematiska komplikationer, som delvis studeras med hjilp
av ett klassiskt verkeyg for dndligedimensionella system. Artikel II ger ett nytt bevis for
existensen av generaliserade solitdra vigor. Dessa har ocksa en koncentrerad massa kring en
punkt. Dock tillfor den kapillira effekten oscillerande svansar lingre ut frin masskoncentra-
tionen. Ettannat resultat, som ir helt nytt, 4r existensen av modulerade solitira vigor. Bada
vagfenomen existerar och ir vilstuderade for Eulers ekvationer. Artikel II ligger fram ett
ramverk for att behandla godtycklig ytspanning och fortplantningshastighet. Dessutom
illustrerar artikeln vilken roll den fullstindiga linjira dispersionen spelar f6r vagformation.

I den tredje och sista artikeln undersoks uppkomsten av tredimensionella periodiska
kapilldr-gravitationsvagor i Eulers ekvation genom en instabilitetsegenskap hos tvidimen-
sionella vagor. Fenomenet ir kint som dimensionsbrytande bifurkation pa grund av den
okade dimensionen, dir tredimensionella vagor forgrenas frin en tvaddimensionell vig.
Tidigare arbeten har studerat detta fenomen for bide periodiska och solitira vigor med
ytspanning och fortplantningshastighet nira kritiska virden. Artikel Il kompletterar dessa
arbeten genom att undersoka fallet dir ytspanning och fortplantningshastighet inte nod-
vindigtvis 4r ndra nigot kritiskt virde. Utmaningen hir 4r att ta fram spektralegenskaper
hos en linjir operator, vars koefficienter ar funktioner som saknar explicita uttryck. For att
16sa detta betrakear vi den linjira operatorn i frigan som en storning av en enklare linjir
operator med konstanta koefficienter.

Avhandlingen undersoker alltsd vigformation utifrén olika perspektiv, och innehaller
dirfor ett utbud av bide moderna och klassiska matematiska verktyg.
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Preface

I THE WATER WAVE PROBLEM

It is perhaps not surprising that the list of water deities from Wikipedia is impressively
long with a staggering contribution of 45 different deities from the Greek mythologies
alone, whereas only five are listed for fire. This is a reflection of the wide variety of water
waves, as these permeate our daily life in the most fundamental way, and their impact
ranges from being a necessity of life to an absolute life-threatening catastrophe. There is
without doubt an interest for the society to gain more understanding of water waves, and
instead of inventing new deities we have shifted to studying water waves systematically.
Often, “water” is modeled as an inviscid fluid, the motion of which owes its mathematical
description to Leonhard Euler in 1757 [29]. This description is known as the Euler equations
in the literature. Despite extensive research effort, the intriguing 300-year-old equations
for water motions are not fully understood. Thus, the objective of this thesis is to improve
our knowledge on this subject. The other category of fluids — viscous! fluids — can be
modeled by the Navier—Stokes equations, and will not be treated in this thesis.

Let us now give an account of the Euler equations. The motion of a fluid can be
described by a fluid velocity function u which depends on Cartesian coordinates x =
(x,y,2) and time t. To be consistent with our presentation in Paper III, the vertical
direction is y, whereas = and z are horizontal directions. There are numerous physical
aspects of water-wave modeling: density homogeneity, compressibility?, vorticity?, forces
acting on the fluid and the region in which the fluid occupies. We consider here an
incompressible fluid with constant density and irrotational flow. Assume further that the
fluid surface is free and can be expressed as a graph of the horizontal coordinates x, 2. Thus,
the fluid occupies a three-dimensional region

Dy, = {(z,y,2) eER3 : 0<y<h+n(z zt)},

where we have taken a flat bottom {y = 0}, a depth h at which the fluid is at rest, and
surface profile n(x, z,t) > —h relative to the depth h; see an illustration in Figure 1. In

'Roughly speaking, viscosity is a measure of the internal friction in a material. For example, honey is more
viscous than water and water is more viscous than air.

2A fluid’s ability to significantly change its density

3This is curl u, which measures the local rotation of the fluid.

xiii



this case, the Euler equations have the form

V-u=0,

@
u+u-Vu=-VP+F,

where u: (x,t) — (u1(x,t),u2(x,t),us(x,t)) is the fluid velocity function, F(x, ) is
the resultant external force, and P(x, t) is the pressure acting on the fluid. In addtion, u
and P must satisfy the boundary conditions

UQZO Ony:O)

U = N + ULy + UM, ony = h+mn, ()
T

P:Patmf;IC ony =h+n.

Here, Pyy is the atmospheric pressure, 1" is a surface tension constant, p is a fluid density
constant, and

Nz Nz

V14102 +n? V1412 +n?

is twice the mean curvature of the surface profile 7. Since curlu = 0, there exists a so-
called velocity potential ¢ such that u = V¢. Assume that the gravity F = (0, —g,0) is
the only external force present. Then, the nonlinear equations (1)—(2) reduce to

IC =

T z

¢xm+¢yy+¢z220 for0 <y <h+n 3)
where ¢ satisfies the boundary conditions

¢y:0 ony =0,
¢y:77t+77w¢x+7lz¢z ony=h+mn, 4)

1 T
¢t+§(¢§+¢§+¢z)+gn—;I€:B ony=h-+n.

Here, B is the Bernoulli constant. The unknowns in equations (3)—(4) are both ¢ and
7, posing a challenge to study as both appear nonlinearly in the boundary conditions. A
solution pair (7, @) to (3)—(4) is called a wave, and with the free-surface domain D,; being
part of the unknowns, equations (3)—(4) constitute the water wave problem. Research topics
for equations (3)—(4) include for example existence theory, stability, qualitative properties,
well-posedness and asymptotic models. Each of these topics is further divided into three
categories of gravity, gravity—capillary and capillary waves. In the gravity case, the surface
tension effect is negligible. In the capillary case, the gravity effect is negligible. In the
gravity—capillary case, none of these effects is negligible. Equations (3)—(4) describe water
waves in finite depth. We mention that there is a version of (3)—(4) for infinite depth, which
will not be covered here but can be found in for example [60]. This thesis investigates
gravity and gravity—capillary waves with the following topic division:

Xiv
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Figure 1: A sketch of the domain D,,, which is shaded gray, for the two-
dimensional water wave problem. The bottom is flat, that is {y = 0}, and
impermeable. The top surface is free, and is described by h + n(x, t).

1. the existence of two-dimensional traveling small-amplitude waves as local bifurcation
phenomena through a model equation,

2. the existence of two-dimensional traveling large-amplitude waves as global bifurcation
phenomena through a model equation,

3. the existence of three-dimensional traveling doubly periodic waves induced by an
instability phenomenon.

A rraveling wave by definition maintains a permanent form when propagating with constant
velocity along a horizontal direction, which is taken as 2 throughout this thesis. A rwo-
dimensional wave in this thesis is a wave that is constant along the z-direction. In the

literature, these might also be referred to as one-dimensional waves*

. Special attention
will be paid to two-dimensional so/itary waves, which are traveling waves that possess a
localized profile, tending to 0 as || — oo. Two-dimensional periodic waves on the other
hand are periodic in x, thus never localized. A three-dimensional wave is not constant in
any horizontal direction. Finally, a doubly periodic wave is three-dimensional and periodic
along x and z. Topics 1 & 2 are investigated for a famous model equation, namely the
Whitham equation, and topic 3 is examined for the water wave problem (3)—(4). We shall
motivate these concepts and topics below. Local and global bifurcation are however best
discussed in connection with mathematical tools for them, and will therefore be postponed
to Section 2. For research topics which are not covered here, see for example [59, 45, 21] on
the well-posedness of (3)—(4) as an initial-value problem, and for example [60, s1, 15, 21]
on asymptotic models. An overview of different versions of the water wave problems and
more references can be found in [60, 50].

“Two-dimensional in this thesis refers to the dimension of the fluid domain D,;, whereas one-dimensional
in the literature refers to the dimension of the fluid surface 7.



r.1 TraveLING waves For simplicity, consider the two-dimensional gravity water wave
problem. This problem can be approached via approximations obtained from a number of
additional assumptions. One such is the long-wave approximation, that is, equations (3)—
(4) under the assumption that the wavelength is substantially larger than the fluid depth A.
To aid our discussion, we perform a nondimensionalization

A -
r=A¢, y=hy, t=—

t
vl
(s)
n=an o=an/%

where A > 0 is a characteristic wavelength, and @ > 0 is a characteristic wave amplitude.
The point is that the new variables are independent of the measuring units. Define

6:; and 52%. (6)

These are referred to as the shallowness parameter and the amplitude parameter, respectively.
The long-wave approximation of equations (3)—(4) is obtained by letting 6 — 0. Then, a
linearization of this approximation gives

N — Nzz = 0,

which by the method of characterics possesses d’Alembert’s solutions

MED) = 0@ 1) + (@ + D,

where ¢ and ¢ are determined from suitable initial data at a time Zy. This means that
7 is a superposition of a right-traveling profile ¢ of unit constant velocity ¢ = 1, and a
left-traveling profile (. Taking for example a compactly supported initial wave profile ¢,
the right-traveling profile ¢ will not be affected by ¢ after some time. Hence, it suffices
to study one of these, say 7j(#,t) = (& — t). This motivates the #raveling-wave Ansatz
n(z, tN) = (T — cf), where we allow an arbitrary constant velocity ¢ > 0. Finally, solving
equations (3)—(4) using this Ansatz would rigorously confirm the existence of traveling
waves.

1.2  GRAVITY SOLITARY WAVES Traveling waves which are periodic in one horizontal
variable and constant in the other are well observed in nature. A more elusive wave occurence
includes solitary waves, the first observation of which was in 1834 by John Scott Russell in
the Edinburgh—Glasgow canal. Russell referred to these as “the great waves of translations”
and described them in his 1844 publication [69] as follows

“a large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed [...].”

xvi



See an illustration in Figure 4. This caused much debate among the water wave community,
including initial sceptic opinions from acknowledged contributors within the field, such as
Stokes and Airy. The existence of solitary waves was finally settled in 1877 by Boussinesq [8]
and in 1895 by Korteweg and de Vries [57]. After a nondimensionalizing change of variables
as in (5), taking

2 =e &0, (z7)
followed by another scaling, equations (3)—(4) for two-dimensional gravity waves can be
approximated by

L 3. 1.
g 1w+ 500 + G = 0, (8)

which is called the Korteweg—de Vries equation, or shortly the KdV equation. Here, we use
the same notations for the new variables for convenience. A derivation of (8) is found
in [50], and the assumptions (7) are often referred to as the KdV regime when it comes to
asymptotic model equations. Note that (8) only depends on the wave profile 7). With the
traveling-wave Ansatz 7j(, 1) = ¢(Z—t) and a slow time scale = £7, equation (8) belongs
to one of the rare nonlinear partial differential equations which can be solved explicitly,
admitting a solitary-wave solution of the sech? form as well as periodic waves. Its success
in capturing the solitary wave lies in a balance between the dispersion and the nonlinearity.
Dispersion is the phenomenon that waves with different frequencies travel at different phase
speeds. This is in general demonstrated by considering the linearized equation, for instance
the linearized KdV equation

. 1.
N+ Nz + gleaz = 0. 9)

By making the Ansatz 7j(Z,t) = exp(i{(Z — ct)), it is found that 7] is a solution if

—1- ¢
c 65

Here, & is the wavenumber and ¢ is the phase speed of 7. Equation (10) clearly shows
that the phase speed ¢ depends on the wavenumber &, and two waves each with different
&1 and & travel at different speeds ¢(&1) and ¢(&2), respectively. Thus, after some time,

(10)

the waves will disperse. Equation (8) is therefore called dispersive, and the special algebraic
relation (10) is called #he linear dispersion relation of (8). Roughly speaking, the nonlinearity
7Nz is responsible for steepening the wave profile which eventually leads to loss of smooth-
ness, while the dispersive term 7335 has a smoothing effect. Once these two elements are
in balance, a solitary wave arises as a result and this balance manifests itself in the solution

nCut)—-ah&th[\%il(x——yﬁﬂl<l%—i?)t)},

where € > 0 is the amplitude parameter introduced in (6) and ¢ is small. Here, we
have switched back to the original variables 7, 2 and ¢. The strength of the dispersion

formula

xvii



is determined by the shallowness parameter § = /¢, whereas the strength of the nonlinear
effect is determined by the amplitude parameter €. Since both parameters are small, the
wave 1) is called weakly dispersive and weakly nonlinear. It is also referred to as a small-
amplitude wave due to the smallness of €. In Section 2, we will depict the allure of solitary
waves from the technical point of view and discuss some mathematical challenges of working
with these waves.

1.3 THeE WHITHAM EQUATION FOR LARGE-AMPLITUDE GRAVITY WAVES The contribution
of Korteweg and de Vries was significant, but more work needed to be done. This was
noted in a 1967 publication [77] by Whitham, according to whom the polynomial linear
dispersion relation of the KdV equation could not feature large-amplitude waves, or highest
waves. These were conjectured in 1880 by Stokes [74], who also argued that the highest wave
was sharp-crested and included an angle of 27/3 at the crest. Indeed, 100 years later, the
existence of highest water waves was rigorously confirmed by Amick & Toland [3, 4], Amick
et al. [2] and Craig & Sternberg [16]. However, during the 6os, this was far from being
proved. In an attempt to find highest waves, Whitham proposed replacing the polynomial
linear dispersion in the KdV equation with that in equations (3)—(4) for unidirectional

c=\ / tan?(f). (11)

Here, we have nondimens}onalized asin (5), linearized (3)—(4) and used the Ansitze 7j(Z, tN)
= exp(i&(7 — ct)) and ¢(7, 9, ) = () exp(i&(Z — ct)). For small frequency & < 1,

we have
_ Jtanh(§) . 1, 4
c= £ - 1 65 + O(&Y).

This shows that the polynomial linear dispersion (10) in the KdV equation is a second-order
approximation of the full linear dispersion (11) in (3)—(4). The proposal of Whitham leads

propagating waves, which is

to the equation

N + [m(D)ﬁ + f}z]i =0, where m(D)= \/%, (12)

which is now known as the Whitham equation. Here, the Fourier multiplier operator m(D)
acts on the spatial variable Z as follows

m(D)i@.0) = 5= [ /= Fa(e. D expliae) ds.

2

where F denotes the Fourier transform in Z. Because (12) uses the full linear dispersion
rather than an approximation for small &, it is a fully dispersive equation in the water wave
context. Expressing m(D) as a convolution operator, the convolution kernel is found
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to be integrable near the origin and exponentially decaying as |Z| — oo. Thus, the
Whitham equation is a nonlocal equation, as values 7j(, ) locally near a point (Zg, )
are not sufficient to determine the left-hand side in (12) at (Zg, p). Whitham conjectured
that (12) would admit a highest wave with a C''/2 cusp at its crest, and thus this crest could
not include an angle of 27/3. Although the Whitham equation was introduced as a toy
model, it has recently been justified rigorously as an accurate approximation of (3)—(4)
in a certain asymptotic limit by Emerald [27]. An earlier contribution includes the work
of Klein et al. [56], which validates the Whitham equation as an approximation of the
KdV equation in the KdV regime (7). Another contribution is the work of Moldabayev ez
al. [65], which formally derives the Whitham equation from a Hamiltonian formulation
of (3)—(4) in the regime ¢ = O(exp(—A;/542)) for some constants Ay, Ay > 0. These
works [27, 56, 65] also investigate the modeling capacity of (12). The expectation has been
that since the Whitham equation is fully dispersive, it should be able to describe both
long waves in the KdV regime and some regime for shorter waves. This is numerically
demonstrated in [65] and confirmed in [27]. However, experiments in [65] indicate that
the accuracy of the Whitham equation is not better than that of the KdV equation in the
KdV regime. At the same time, there is a strong theoretical interest in understanding the
effect of the full linear dispersion of (3)—(4) in an equation.

Indeed, even before Emerald’s contribution and despite that Stokes™ conjecture has
already been confirmed in the 80s, the two past decades have seen extensive research effort
for equation (12): qualitative properies [9, 24, 25, 28], local well-posedness [23], existence
of solutions [25, 6, 73, 42], modeling capacity [26, 56, 65], and stability [43, 70]; see also
references therein. In particular, the work [25] by Ehrnstrom & Wahlén established the
existence of a highest periodic wave for (12) witha C' 1/2 cusp at the maximum point, thus
proving Whitham’s conjecture. See Figure 2 for a comparison between the extreme forms of
two highest waves conjectured by Stokes and Whitham. We point out the works [42, 71] on
wave breaking, which according to [77] also belongs to high-frequency wave phenomena.
Paper I contributes to this line of research by proving the existence of a highest solitary
wave for the Whitham equation. As we will see in Section 2, the construction is different
to that for highest periodic waves. A cornerstone of Paper I consists in an application of
a recently developed center manifold theorem for nonlocal and nonlinear equations by
Faye & Scheel [30, 31]. The rich qualitative properties of this equation allow us to use an
analytic global bifurcation theorem adapted for solitary waves, and analyze its outcome.
These important theorems will be discussed in Section 2.

1.4 GRAVITY-CAPILLARY WAVES IN FINITE DEPTH Let us return to equations (3)—(4) for
two-dimensional right-traveling gravity—capillary waves with constant speed ¢ > 0. A
revolutionary work of Kirchgissner in 1982 [54] shows that these can be studied as an
evolutionary system of equations, where an unbounded spatial variable plays the role of
time. This technique is known as spatial dynamics in modern literature. The process of
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27/3

Figure 2: (Left) A highest wave of the gravity water wave problem (3)—(4)
conjectured by Stokes. The crest of this wave includes an angle of 277 /3. (Right)
A highest wave of the Whitham equation (12) conjectured by Whitham. The
crest of this wave is a C''/2 cusp.

deriving a spatial dynamics formulation ultimately results in a system of the form

dU
dz

=LU + R(U, \), (13)

where £ = x — ct, U is a vector-valued function, A is a small parameter modeling the
gravity and surface tension effects, and R satisfies a tangency condition R(0, \g) = 0
and DyR(0,\g) = 0 at the trivial wave (0, Ag). There are several spatial dynamics
formulations (13) of equations (3)—(4), for instance by Kirchgissner [s4], Levi-Civita [61],
and Groves & Toland [36]. Cast as (13), equations (3)—(4) have been studied using a center
manifold reduction, which we will discuss in Section 2. To apply this technique, the linear
operator L and its purely imaginary eigenvalues play an important role. In particular, i€ is
an eigenvalue of L if and only if

1= \/(a + B§2>tanh(§) where [ =

£ phc? A

The parameters 8 and « are dimensionless, they are the Weber number and the inverse
square of the Froude number, respectively. We note that equation (14) is the linear dispersion
relation of equations (3)—(4). The linear operator L has four eigenvalues near the origin
counting algebraic multiplicity. Using symmetries in equations (3)—(4), one finds that these
are symmetric with respect to the origin. Depending on their locations in the complex
plane, the study of (3)—(4) further divides into different parameter regimes. One simple
division is by weak/strong surface tension (0 < § < 1/3 or 5 > 1/3, respectively) and
super-/subcritical wave speed (0 < @ < 1 or v > 1, respectively). Another division is by
bifurcation phenomena near special parameter curves, when two eigenvalues collide. These
are

e (1, along which L has a pair of real eigenvalues £ near the origin, each of double
algebraic multiplicity. Near (3, ) = (1/3, 1), an 0** bifurcation occurs;



* (5, along which L has a pair of purely imaginary eigenvalues +ik, each of double
algebraic multiplicity. These induce an (ili)2 bifurcation;

* (3, given by f < 1/3 and @ = 1. Along this curve, L has one eigenvalue 0
of double algebraic multiplicity, and a pair of simple purely imaginary eigenvalues
+ik. These induce an 02T (ik) bifurcation;

* Cy, given by B > 1/3 and @ = 1. Along this curve, L has one ecigenvalue 0 of
double algebraic multiplicity, and two real eigenvalues near the origin. These induce
an 0% bifurcation.

The parameter curves above are a discovery by Kirchgissner [55]; see Figure 3. Roughly
speaking, a pair of purely imaginary eigenvalues will generate an oscillatory wave profile.
The 0?F (i) bifurcation near Cy of the gravity—capillary water wave problem manifests
in a generalized solitary wave, that has a localized crest but limits to periodic functions as
|#| — oc. The (ir)? bifurcation takes the form of a modulated solitary wave, that has
a localized envelope about an oscillating function. When approaching the critical point
(B,a) = (1/3,1), one finds either multipulse solitary waves along C'3, or multitrough
solitary waves along C7. On the other hand, the 0?* bifurcation near Cy results in solitary
waves of depression, lacking oscillatory feature. A catalogue of these waves is found in
Figure 4. These existence results are due to [s, 11, 12, 47]; see also the references therein. An
important ingredient in their proofs lies in the symmetries of equations (3)—(4).

Along the same lines of Section 1.3, one can derive a gravity—capillary Whitham equation.
Equations (3)—(4) with surface tension have a KdV-equation approximation, where only a
coeflicient in front of the third derivative term in (8) is affected by the surface tension
T. Replacing the polynomial linear dispersion in this KdV equation with the full linear
dispersion in (3)—(4) gives a gravity—capillary Whitham equation. Unlike (12), it is not clear
whether this artificial replacement yields an actual approximation of (3)—(4). However, it
is interesting to investigate whether it at least is able to capture small-amplitude solutions
of the full problem (3)—(4). Paper II delivers a partial answer to this question, as it confirms
the existence of generalized solitary waves and modulated solitary waves in the regime of
small surface tension. In fact, solitary waves of depression can be found using similar
analysis as in Paper I. The main technique of Paper II is a version of the Faye—Scheel
center manifold theorem from Paper I. However, in Paper II, the application of this tool is
different as the capillary effect adds two more dimensions. Thus, the analysis as well as the
computations involved are much more requiring. Paper II also illustrates the role of the
full linear dispersion in wave formation, and how the Faye—Scheel center manifold theorem
serves as a bridge between the problem (3)—(4) and its nonlocal toy model. We mention
an earlier work by Johnson & Wright [48], who establish the existence of both solitary
waves of depression and generalized solitary waves using an implicit function theorem.
The work by Arnesen [6] employs a variational approach and provides an existence theory
of solitary waves for a class of equations, which covers the gravity—capillary Whitham
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Figure 3: A disvision of the gravity—capillary water wave problem in finite depth
by the spectrum of L near the origin. Here, dots indicate a simple eigenvalue,
whereas crosses indicate an eigenvalue of algebraic multiplicity two. The grey
areas are parameter regions in which modulated solitary waves, multitrough
solitary waves and solitary waves of depression are found.

equation. Hur & Johnson [44] give an existence result for periodic waves and an instability
result. The work of Ehrnstrém ez a/. [22] investigates global bifurcation of periodic waves
and provides many important qualitative properties of the equation in question. Numerical
investigations of the Whitham equation with surface tension can be found in [20]. To end
this section, we comment that another potential tool is from the paper [33] by Groves,
who re-establishes the gravity—capillary waves mentioned here using a rigorously derived
nonlocal formulation for (3)—(4) and Fourier analysis.

1.; THREE-DIMENSIONAL GRAVITY—CAPILLARY WAVES Qur search for waves extends to

three-dimensional ones in this section. The trivial wave (0, \g) in previous sections is

replaced by a two-dimensional traveling wave (U, \,). Here, = continues to be the direction
of propagation, whereas 2 is the other horizontal direction — the mransverse direction to

x. Further, we consider a full three-dimensional transverse spatial dynamics formulation of
equations (3)—(4), in which z plays the role of time. To contrast, the previous sections

study two-dimensional waves homogeneous in z. Thus, all derivatives in z disappear and

the only spatial variable available is the direction of propagation x. The transverse spatial

dynamics formulation in a traveling frame & = = — ct has the form

dU
- DU; + LU + R, (U, \) (1s)
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(a) A gravity solitary wave. Ithas supercritical ~ (b) A periodic wave with wavelength A.
wave speed (a0 < 1). Here, the wavenumber is £ = 27 /.

(c) A solitary wave of depression found near  (d) A generalized solitary wave found near
Cj. It has subcritical wave speed (o > 1). C'. It has supercritical wave speed (a < 1).

(e) A modulated solitary wave found near C2.  (f) A multipulse solitary wave near (3, ) =
It has subcritical wave speed (o > 1). (1/3,1) along C3. It has subcritical wave
speed (o > 1).

(g) A multitrough solitary wave with one  (h) A multitrough solitary wave with two
trough near (3,) = (1/3,1) along C1. It troughs
has subcritical wave speed (ov > 1).

Figure 4: A catalogue of small-amplitude waves, both gravity and gravity—

illary.
capillary. i



where D, L, are linear operators, and R, satisfies the tangency condition R(U,, A\y) = 0
and DR, (Uy, i) = 0. A traveling-wave solution U with the same constant speed ¢ > 0
satisfies

d
(TZ =L, U+ R (U, \). (16)

Thus, Ly, is the linearization of the right-hand side in (16) at (U, A.). We are interested
in traveling-wave solutions to (16) that are not constant in any horizontal direction. As
before, the purely imaginary spectrum of L is of fundamental importance. In this case, it
poses a major challenge to study. Its coefficients are no longer constant, as in the case of
linearization at trivial waves. These now depend on (U, A«) which lacks explicit formulas.
If L, possesses exactly a pair of purely imaginary eigenvalues ik, with k£, > 0 and
equation (16) satisfies a number of other requirements, there will be a solution curve of
three-dimensional waves emerging from a two-dimensional wave. This phenomenon is
called a dimension-breaking bifurcation.

A related topic to dimension-breaking bifurcation is the mansverse instability of two-
dimensional traveling waves. The most classical stability definition is by Lyapunov. A
solution U, to (13) with parameter A, is said to be stable if any other solution U with
initial value close to U, remains close to U, for all future time. It is customary that the
stability of (U, A«) is studied first via the linearized equation of (15) at (U, A,). The
solution (Uy, A, ) is called transversely linearly unstable if

% =DU; + L,U (17)
has a solution exponentially growing in time ¢ as £ — 0o but bounded in z, z. A result
by Godey [32] gives a simple criterion for transverse linear instability: if L, has a pair of
purely imaginary eigenvalues +ik, with k. # 0 and equation (17) satisfies a number of
other requirements, then (U, \,) is transversely linearly unstable.

Both phenomena relate to the rransverse dynamics of a solution and they boil down to
the same investigation of the purely imaginary spectrum of L,. Before attempting them,
one might consult simpler model equations which describe the transverse dynamics of (3)—
(4) well. An example is the Kadomtsev—Petviashvili equations, for short the KP equations.
These are two-dimensional versions of the KdV equations when the transverse effect is weak.
To clarify, the nondimensionalization (5) in the three-dimensional equations is completed
with the scaling Z = A, z, where A, is a characteristic wavelength in the z-direction. An
additional parameter is defined to measure the transverse effect, namely v = A/\,. The
KP equations are valid in the regime

2 =e, ~*=¢e and e—0.

These are further grouped into the KP-I equation for strong surface tension (8 > 1/3),
and the KP-II equation for weak or zero surface tension (0 < 8 < 1/3). In other words,
the KP-I equation is valid in the parameter region near Cy, and the KP-II equation is valid
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in the parameter region near C3. The transverse dynamics of periodic and solitary waves
in the parameter region near Cy has been extensively studied in the literature, first for the
KP-I equation [1, 49, 37] and then for the full gravity—capillary water wave problem [34,
38, 68]; sce also references therein. The transverse dynamics of modulated solitary waves in
the parameter region near Co has been studied by Groves ez al. [35] using another model
equation, namely the Davey—Stewartson equation. The case of C3 has not received as
much attention. However, there are predictions provided by Haragus & Wahlén [40] for
periodic and generalized solitary waves from studying a fifth-order improvement of the
KP-II equation. These predictions are not confirmed for the full problem (3)—(4).

In this exciting field of research, the contribution of Paper III consists in establishing
the transverse dynamics of two-dimensional traveling periodic waves with fixed parameters
(B, @), not near any parameter curves C;, i = 1,2,3, 4. It fills in a gap in the above line
of research, and is an initial step to confirm the instability predictions for two-dimensional
periodic and generalized solitary waves near Cs in [40].

2 MATHEMATICAL TOOLS

Let X, A and Y be real Banach spaces. Consider an abstract parameter-dependent equation
F(U,\) =0, (18)

where F: X x A - Y, U: R™ — R" is a function and A € Rl is a parameter. Assume
that the trivial state is a solution of (18) for each A € A, that is F'(0, \) = 0. Bifurcation
is a phenomenon that when A varies and hits a critical value )¢, there are solutions (U, \)
accumulating at (0, Ao) and they are qualitatively different to the trivial solution (0, Ag).
Another scenario is the dimension-breaking bifurcation, in which (¢ + 1)-dimensional
solutions emerge from a family of g-dimensional solutions. For the water wave problem in
Section 1, U could be the fluid surface or the couple (7, ¢), A could be the gravity parameter
« or the surface tension parameter 3, and the trivial state corresponds to the fluid at rest,
that is, 7 = 0 and & = 0. Bifurcation phenomena are generally divided into two topics:
local and global. In local bifurcation, one studies nontrivial solutions accumulating at
(0, o), which might form a continuous curve of solutions near (0, \g). For example,
the small-amplitude waves in Sections 1.2 and 1.4 bifurcate locally from (0, \p) and they
constitute a local bifurcation curve. In global bifurcation, one studies what happens with a
continuation of this local bifurcation curve, for instance how it connects to other solution
curves or bifurcation points. The highest waves discussed in Section 1.3 are a result of global
bifurcation. We present some mathematical tools to study these phenomena below.

2.1 TECHNIQUES FOR LOCAL BIFURCATION We are interested in small solutions U to
equation (18) for each A sufficiently near Ag. According to the implicit function theorem, if
the linearization Dy F'(0, \o) is invertible, there is a unique solution curve {(U (), A) }a

XXV



parametrized by the parameter A near (0, \g). From the assumption, this must be the
trivial solution curve. As a consequence, the trivial solution curve cannot branch out, or
equivalently no bifurcation occurs. A more exciting scenario arises when Dy F'(0, Ag) is not
invertible. Depending on the degeneracy of Dy F'(0, Ag), one might employ a reduction
technique, which is a collective term for techniques that transform (18) into an equation
in fewer dimensions, preferably finite. Below is a short excursion into the realm of these
techniques and we assume without loss of generality that (Up, \g) = (0, 0).

Obur first example is the Lyapunov—Schmidt reduction, due to Lyapunov [62, 63] and
Schmidt [72]. Its setup starts with a C? mapping F in a neighborhood of (0, 0). Further, it
requires that Di7 F'(0, 0) is a Fredholm operator. By definition, this means that Dy £/(0, 0)
is bounded with closed range, and that its kernel and cokernel have finite dimensions. Its
lack of invertibility is measured by a so-called Fredholm index, which is the difference
between the kernel dimension and the cokernel dimension. As a consequence, Dy F'(0, 0)
becomes invertible once these finite-dimensional subspaces are taken care of. The Lyapunov—
Schmidt reduction does this as follows. First, decompose the spaces

X =kerDyF(0,0)®X and Y =Y @ coker Dy F(0,0).
Let Q be a projection operator onto Y. Equation (18) can be decomposed into
QF(U,A\) =0 and (Id—Q)F(U,\) =0.

Further, U = Uy + Uy with Uy € ker Dy F(0,0) and Us € X. The first equation
can be solved using the implicit function theorem, as @Dy, F(0,0): X — Y is now
invertible. The solutions can be written as U = U; + Uz(U, A) in a neighborhood of
(0,0) in X x A. Inserting this representation into the second equation, we obtain a finite-
dimensional equation

(Id =Q)F (U1 + U(Ut, M), A) = 0.

This is a reduction and the finite-dimensional equation aboved is called a reduced equation.
The Lyapunov—Schmidt reduction is a basis of many local bifurcation results, such as the
celebrated Crandall-Rabinowitz local bifurcation theorem; see for instance [17, 18]. It lists
sufficient conditions for (18) to have a local bifurcation point at (0, 0). In particular, if F'
is C* with k > 2, then the local bifurcation curve is C*~ 1.

Unfortunately, working with solitary waves often means that D7 (0, 0) has an essential
spectrum at 0, thus the Fredholm property cannot be fulfilled. A technique which handles
this and provides in addition a systematic way to analyze the solutions is the center manifold
reduction. The most established version treats equation (18) with F" of the form

F(U7 )‘) = % - LU — R(U7 )‘)7 (19)

where U: 7 +— U(7) € Y is a real-valued function, L: Z — Y, Z is a Banach space and
Z — X — Y are continuous embeddings. Equation (18) in this case is an evolutionary
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equation in 7, 7 is called the time variable, and Y is the phase space of (18). Assume that
R is at least C? in a neighborhood of (0,0), and that it satisfies a tangency condition
R(0,0) = 0 and DyR(0,0) = 0, which ensures that U — dU/dr — LU is the
linearization of F'at (0, 0). The center manifold reduction requires that the purely imaginary
spectrum of Li consists of finitely many eigenvalues counting multiplicities, and that it is
well-separated from the rest of the spectrum. One consequence of this requirement is
that the spectral subspace corresponding to these purely imaginary eigenvalues is finite-
dimensional. Using a spectral projection operator P given by Dunford’s integral formula,
equation (18) can be decomposed into an equivalent system

dU,
dr
Here, U = U, + Uy, U, = P.U, U, = (Id —=P.)U, and P.L = LP.. Note that U,

belongs to the finite-dimensional spectral subspace corresponding to imaginary eigenvalues

— LU, + P.R(U,\) and % — LU, + (Id —Po)R(U, ).

of L. Suppose U, solves the first equation. By cutting off in the phase space Y, one obtains
a modification of (18). In particular, this modified equation is the same as (18) if U, is
sufficiently small. A fixed point scheme involving a contraction with parameter U, can
be set up for the modified equation. As a result, there exists a unique solution to the
modified equation in a neighborhood of (0,0) for each such U, for all 7. The solution
set is parametrized by U, and this parametrization has the same smoothness as R. We
write U = U, + U(U., \), where U, belongs to the finite-dimensional spectral subspace
corresponding to the purely imaginary eigenvalues of L. The set given by U = U, +
U(Ug, A) is called the center manifold, the function W is called a reduction function. In
particular, the center manifold captures all sufficiently small solutions to (18). Finally, a
reduction is obtained by inserting the parametrization into the first equation

dU,
dr

just as for the Lyapunov—Schmidt reduction. This defines a finite-dimensional system, the

= LU, + P.R(Ue + U(U, \), \),

solution set to which contains sufficiently small solutions of (18). Moreover, by finding
sufficiently small solutions U, to the finite-dimensional reduction, one finds sufficiently
small solutions to (18). This correspondence has proved extremely useful in finding small
solutions to (18) and in understanding their qualitative properties. The center manifold
reduction is due to Pliss [66], Kelley [s52] for finite-dimensional systems, Mielke [64], and
Vanderbauwhede & Iooss [75] for infinite-dimensional systems. A modern presentation of
this theorem can be found in [39], along with examples and more references.

A recent development has combined the above techniques to study nonlocal equations,
where F is of the form

FUN =U+ K «U +R(U, ). (20)

This work is due to Faye & Scheel [30, 31], and we refer to the following reduction technique
as the Faye—Scheel center manifold theorem. Here, U: R — R”, R satisfies the tangency

XXVvii



condition R(0,0) = 0, DyR(0, 0) = 0 and several other technical conditions on smooth-
ness. The convolution kernel K' = (Kj;)7;_;: R — R"™" is matrix-valued with inte-
grable and exponentially localized entries K;j, which can be motivated as follows. Suppose
that Kjj(z) ~ exp(—nox) as © — oo. It follows that the linearization of (18) at (0,0),
thatis, 7 := U — U + K x U, will be bounded in an exponentially weighted Sobolev
space

Hin ={UcH., : w,nU(j) € L? for j = 0,1},

where n € (0,70) and w_;;: R — R is a positive, smooth and exponentially decaying
function with rate —7. In addition, 7 : Hln — H 177 is a pseudodifferential operator
with multiplier Id +F(K). To determine the nullspace of this linearization, the roots of
det(Id +F(K)) in the complex strip |Im z| < 7 containing the real line are considered.
Using Fourier analysis, these conditions on K ensure that det(Id +F(K)) in this strip
is analytic and has isolated roots, each of finite multiplicity. In particular, each real root
corresponds to a nullspace element of at most algebraic growth. Thus, by taking a sufficiently
thin strip, non-real roots (corresponding to an exponentially growing nullspace element as
T — 00 or * — —00) can be excluded. This bears resemblance to the spectral condition
placed on the linearization L in (19). The authors of [30, 31] impose further conditions on
K to guarantee that 7 is a Fredholm operator that is onto. This means in particular that
TU =V is uniquely solvable for each V" up to a nullspace element of 7. By performing
a Fredholm bordering using a projection operator Q: H ln — ker 7T, one obtains an
extended system (7, Q) which is invertible. Equation (18) can now be decomposed into

QU =U. and TU =—R(U,\).

Applying an appropriate cut-off operator in H ln’ a modified equation is obtained. As
before, one sets up a fixed-point scheme involving a contraction to solve the modified
equation uniquely for each parameter U, € ker 7. One can then express solutions to the
modified equation as a manifold U, + W (Ug, A) parametrized by U, € ker 7. So far,
this is just the Lyapunov—Schmidt reduction. One ingenuity of [30, 31] lies in the process
of constructing a reduced finite-dimensional evolutionary system. For this purpose, it is
required that equation (18) possesses the translation symmetry S;: U +— U(- + 7) for
all 7 € R. Choosing a projection Q that commutes with all translations, the resulting
center manifold is invariant under translations as well, which means U is a center manifold
element if and only if S;U is for any 7 € R. A finite-dimensional flow in the translation
parameter 7 is obtained by projecting S;U = S-(U; + ¥(Ue, A)) onto ker T for U
in the center manifold. By differentiating in 7 and evaluating at 7 = 0, one obrains
an autonomous evolutionary system in U;. This becomes a system of ODEs in U when
a special choice of projection Q is made, namely Q with projection coefficients that are
linear combinations of {U*)(0)}_ . Here, N is the dimension of ker 7. As before,
all sufficiently small solutions of (18) in the uniform local Sobolev norm are captured in
the center manifold, for which there is a one-to-one correspondence to the reduced system

XxXVviii



of ODEs. Thus, an analysis of sufficiently small solutions to this reduced system of ODEs
gives an approximate description of sufficiently small solutions to (18). At this step, one has
access to the generous toolbox for nonlinear ODEs. Paper I extends the Faye—Scheel center
manifold to kernels K that might lack one required integrability property but still give
rise to a Fredholm linearization with desired properties. The reference [14] offers another
version for quasilinear problems. Finally, the work of Bakker & Scheel [7] provides a
Hamitonian structure for a class of nonlocal equations.

There are several other techniques which can be used to establish solutions near a local
bifurcation point, for instance the implicit function theorem and variational methods.
However, the center manifold is able to capture all sufficiently small solutions near this
point. Moreover, it provides a description of these solutions via the corresponding reduced
finite-dimensional system of ODEs. To illuminate its role in our analysis, we move to the
topic of global bifurcation.

2.2  GLOBAL BIFURCATION For our convenience, we define

S={({U,\) e X xA: FU,N\) =0},
Cr={(0,\) : Ae A} CS,

which are the full solution set and the trivial solution curve, respectively. Let U: s —
U(s) € X and A\: s — A(s) € A be continuous functions in s € (0,¢), such that
F(U(s),A(s)) = 0. In addition, we suppose U(s) — 0 in X and A(s) — Ao in A as

s — 0. Define a local bifurcation curve
C)\o,loc = {(U(S),)\(S)) €S:s¢ (076)}'

One of the earliest and most well-known contributions to the theory of global bifurcation
was made by Rabinowitz [67] in 1971 for F' of the form

F(U,\) = U — A\LU — R(U, \),

where A = R, L: X — X is a compact linear operator, R is a completely continuous
mapping such that R(U, \) = O(||U||?) as U — 0 and uniformly bounded on compact
intervals of \. Suppose A\g € R \ {0} is such that )\61 is an eigenvalue of L. A value A\g
with this property is called a characteristic value of L. A result by Krasnosel'skii [58] gives
that if g has odd algebraic multiplicity, then (0, Ag) is a bifurcation point, and that Cy joc
exists. The Rabinowitz global bifurcation theorem now states that the closure S C X x A
possesses a maximum subcontinuum C,, that contains C) 1o and which

(1) meets infinity in X x A, or

(2) meets another bifurcation point (A, 0), where A, # Ag and A, is a characteristic
value of L.
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Alternative (1) is called blowup in the modern literature. The proof of Rabinowitz’ theorem
consists in two main ingredients: the Leray—Schauder degree and point-set topological
methods. The assumption on L guarantees that the Leray—Schauder degree is well-defined.
The assumptions on L and R imply that Id —AL — R( -, A) is a proper mapping, which
in turn gives that bounded solution sets are compact. This makes point-set topological
methods accessible. Unfortunately, these assumptions leave out many interesting mathe-
matical models. Observing that these two ingredients above could be accessible without
such strong assumptions, the works [53, 41] and references therein provide similar global
bifurcation theorems for other mappings.

Another area of global bifurcation theory deals with analytic mappings. We summarize
a version for one-dimensional global bifurcation from [12]. Here, A C R and F': X X
A — Y is real analytic on an open subset &/ C X x A containing the curve Cr. Further, it
is assumed that Dy F'(U, A) is Fredholm of index O for all (U, \) € SNU. Lastly, for some
critical value Ao, the kernel Dy F'(0, \g) is one-dimensional and satisfies a transversality
condition, which guarantees that the local bifurcation curve branches out from Cr in a
transversal fashion. Then, there exists a local bifurcation curve Cy 1o analytically parame-
trized by a real parameter s € (0, €). Suppose that the parametrization A(s) is injective,
and that bounded and closed subsets in & C X x A are compact. Then Cy joc has a
continuous-curve extension Cy, parametrized by s € (0, 00), such that

C/\O,loc C C>\0 cS.

Along this extension C,, there might be points (U, A+) such that ker Dy F/(Uy, A) is
nontrivial. These are potential secondary bifurcation points of Cy,, and they will not
have any accumulation point by analyticity. Even though the curve Cy, might not be
smooth, it has a reparametrization that is analytic locally near each point. The analytic
global bifurcation theorem gives three different alternatives for Cy,:

() [|[(U(s), A(8))]|xxa — 00 as s — oo,
(2a) (U(s), A(s)) tends to the boundary of U as s — oo,
(3a) Cy, is a closed loop.

These are not mutually exclusive. The global bifurcation picture here is much more detailed,
its success consists in the assumption on the analytic structure, which unlocks results on
analytic varieties and which is well-studied in complex analysis.

The Euler equations indeed have the analytic structure required by the above analytic
global bifurcation theorem. However, working with solitary waves still presents two major
challenges. First, the linearization Dy F'(0, Ag) is not Fredholm and therefore finding a
local bifurcation curve of solitary waves might prove difficult. Second, useful compactness
properties are not available for Sobolev spaces on unbounded intervals, which are common
analytic settings for solitary waves. None of these issues are present when working with
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(c) A blowup scenario, in which Cy, approaches  (d) A blowup scenario, in which a sequence of
OU by returning to the bifurcation point solutions along C», tends to infinity

Figure 5: An illustration of some alternatives given by the analytic global
bifurcation theorem adapted for solitary waves by Chen ez a/. [13]. Here, the
open set U is the gray area. The trivial solution U = 0 with parameter A = A
belongs to OU. Thus, the blowup alternative (1a-s) includes the closed-loop
alternative (3a).

periodic functions, for example. The first issue might not hinder a construction of the
local bifurcation curve. Thus, we might replace assumptions that give a local bifurcation
curve by the existence of Cy 1oc with desired properties. Given a local bifurcation curve,
the Fredholm property of Dy F'(U, A) for (U, A) € Chxoc \ {(0,X0)} can be used to
extend this curve a little further. To address the second issue, we simply include a loss
of compactness alternative and exclude it later using qualitative properties. This was first
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recognized by Wheeler in [76] and an analytic version of this is formulated in [13], which
is used in Paper I. In this version, F': X X A — Y and U C X X A is an open subset,
on which F is an analytic mapping. Assume that (0, \g) € OU is a bifurcation point.
Further, C) joc is a local bifurcation curve with a continuous parametrization by s € (0, €),
with U(s) — 0and A(s) — Xgas s — 0. For each (U, \) € Cy loc, the linearization
Dy F(U, A) is invertible. Lastly, foreach (U, \) € UNS, Dy F (U, \) is Fredholm of index
0. Then, Cy, joc has an extension Cy, which is continuously parametrized by s € (0, 00).
The extension Cy, has an analytic reparametrization locally near each point (U, \) € Cy,.

Define
1

dist((U(s), A(s)), 0U)

M(s) := [|U(s)llx + [IA(s)lla +
The alternatives for Cy, are now
(1a-s) the quantity M (s) tends to 00 as s — 00,

(2a-s) there exists a sequence s,, — 00 as n — 00, for which sup,, M(s,) < oo but
{U(sn)}n has no convergent subsequence in X.

The authors of [13] refer to (1a-s) as the blowup alternative. Note that it includes (1-a)—(3-a)
in the previous analytic global bifurcation theorem. Alternative (2a-s) is called the loss of
compactness alternative. An illustration is provided in Figure s.

In Paper I, the aim is to prove the existence of a highest wave using the analytic global
bifurcation theorem adapted for solitary waves. A lot of effort is dedicated to qualitative
properties of the solutions, which are used in the application and then in the analysis of
the global bifurcation theorem. In particular, by studying the highest wave, we see that it
reaches the highest amplitude only by losing regularity. This corresponds to one specific
scenario, namely ||U(s)||x — oo, in the blowup alternative if X = H¥(R) with k >
2. However, the blowup alternative contains more scenarios, for instance Cy, returning
to (0, \o); see Figure 5. It is precisely here that the center manifold reduction finds its
competitive edge. Through a qualitative description of solutions along the local bifurcation
curve, we can exclude one of the undesired scenarios.

3 SUMMARY OF THE RESEARCH PAPERS
PapeEr I The paper is concerned with the Whitham equation
co— Kxp—¢®=0, (21)

where K is the inverse Fourier transform of the Whitham symbol m: R — R given by

tanh(¢)
é— )

m(§) =

Xxxii



¢ > 0 is the wave speed and ¢ = 1 is the critical wave speed. We establish the existence of
a highest solitary-wave solution to equation (21). A local bifurcation curve emanating from
(¢p,c¢) = (0,1) is found using a version of the Faye—Scheel center manifold reduction.
This theorem provides a second-order ODE, which is equivalent to (21) near the point
(¢,¢) = (0,1) in the H x R norm, and which reads

19
¢ = —6p% + g(so')2 +6(c—1)p

+ 0 (lte, ) (e = 1% + |o]* + [¢'7)) -

Here, H3 is a space of uniformly local H? functions defined on R. After a rescaling,

(22)

equation (22) is a perturbation of the KdV equation for each ¢ — 1 > 0 sufficiently
small. Using reversibility of (21), we find a family of symmetric solitary-wave solutions
of the sech? form parametrized by ¢ — 1, which defines a local bifurcation curve Cjo¢
emanating from (¢, ¢) = (0,1). Using non-negativity of solutions to (21), we show that
any nontrivial, small-amplitude, even solitary-wave solution to (21) near (0,1) € H2 x R
belongs to Cic. This is precisely the advantage of a center manifold reduction. The local
curve is extended using an analytic global bifurcation theorem adapted for solitary waves,
where an additional possibility of loss of compactness is included. This possibility is ruled
out by an integral identity for (21) and qualitative properties of solutions. After excluding
other alternatives, we show that a sequence along the global bifurcation curve limits to a
highest, even solitary-wave solution, which has supercritical wave speed ¢ > 1, exponential
decay as |z| — oo, and a crest of exactly /2 Holder regularity at the origin. This aligns
with the findings of paper [25] for periodic waves.

Paper IT The paper studies a gravity—capillary Whitham equation
©— Ky %o+ Ky % p?=0. (23)

Here, K, is the inverse Fourier transform of

_ 1 £
&8 = \/1 + 7€2 tanh(§)’

¢ > 0 is a wave speed parameter and 7 > 0 is a surface tension parameter. Equation (23)
is divided into two regimes — that of small surface tension (7 < 1/3) and that of large

surface tension (7 > 1/3). Bifurcation phenomena of (23) are determined by complex
solutions of the algebraic equation

1—cl;(2) =0, (24)

close to the real line. The linear dispersion relation for the water wave problem emerges
after a rearrangement, suggesting
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1. an 02* (ikg ;) reversible bifurcation when crossing the curve

1
Cs = {(To,co) RIS 3 and ¢y = 1}_

Here, for each fixed (7, ¢) = (79, cg) € C3, the solutions to (24) consist precisely of
0, 0, —ko,r and ko counting multiplicity, where ko - > 0.

2. an (is)? reversible bifurcation when crossing the curve

1 1
_ . — 2. =
CZ = {(TQ,C()) LT — CO ( QSinhQ(s) + 25tanh(s)) B

52 s -
2
0 (281nh2(s) * Qtanh(s)) ) for 8 > }

from below. Here, for each fixed (7, ¢) = (70(s), co(s)) € Co, the solutions to (24)

are precisely —s, —s, s, s counting multiplicity.

These parameter curves Cy and Cf are in fact the ones discussed in Section 1.4 with o =
1/c3 and B = 79/c3. We use a version of the Faye—Scheel center manifold theorem from
Paper I and compute the reduced system of ODEs, which in this case is four-dimensional.
Normal form theory is then applied to analyze this system. The bifurcation when crossing
(5 gives rise to a family of small-amplitude generalized solitary waves

3 1/2 2 /’1/4C’1/2|/i|1/2$
= - h —_—_—m
p(z) = 5lulp” " sec 7

+ |ulk! 2 cos ( (ko + O()z + O, + O() ) + O(2p"/2),

) + g(l —sgn(p)p'/?)

where yt = ¢ — 1is small, ©, € R\ 27Z is arbitrary, 0 = (1/3 —7)~ 1, p = 1 + 24k and
k = O(|pu|~172%) for some k € [0,1/2). The bifurcation when crossing Cy gives two
distinct families of modulated solitary waves

—8qo
q1

o(x) = sech (y/qopz) cos (sz + O, + O(|uY?)) + O(1?),

of elevation (©, = 0) and depression (O, = 7), respectively. Here, i < 0 is small, the
coeflicients g, g1 are negative. These results align with the rich literature for the irrotational
water wave problem, for example [s, 10, 11, 19, 47, 46, 54, 55], dating back to the pioneering
work of Kirchgissner in 1982.
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Paper III' We consider the gravity—capillary water wave problem, that is, the Euler equa-
tions (3)—(4). Here, the capillary and gravity parameters, respectively 3 and «, are fixed.
Traveling waves, that are periodic along the direction of propagation and constant along
the other horizontal direction, are known to exist in

1. Region I, that satisfies 3 > 0 and o < 1,

2. Region II, that satisfies o« > 1 and lies to the left of the curve

1 1

- +
2sinh?(s)  2stanh(s)
s s

= +
“7 3 sinh?(s) ~ 2tanh(s)

and

Cr={(Ba): B=

, forse [0,00)}.

These waves will be referred to as two-dimensional traveling periodic waves. In Region I,
the linear dispersion relation (14) has precisely a pair of solutions £k, where k. > 0. This
implies that a two-dimensional spatial dynamics formulation of (3)—(4) with Z as time
linearized at a trivial flow possesses a pair of simple purely imaginary eigenvalues +iks,
each of algebraic multiplicity one. Consequently, for each (3, ) in Region I, there is a
one-parameter family of two-dimensional traveling periodic waves. In Region II, (14) has
two pairs of simple solutions -k, 1 and %k, 2, with 0 < k, 1 < ks 2. For simplicity,
we impose in addition a non-resonance condition that ky 2/k.1 = ¢ ¢ N. Equivalently,
parameters (3 and « are not allowed to lie on the curves

_ Ca 1 B ¢
Crq = {(5, a): fB= (1 —¢?)stanh(s) (1 — ¢2)stanh(gs) and
_ s gs
‘- 7(1 — ¢?) tanh(s) * (1 — ¢2) tanh(gs)’ fors € [0700)},

for ¢ € N. As a result, the linearization at a trivial flow has two pairs of simple purely
imaginary eigenvalues £ik, 1 and %ik, 2, each gives rise to a distinct one-parameter family
of two-dimensional traveling periodic waves. Our interest lies in the transverse dynamics
of these periodic waves, which in this paper includes two phenomena — that of transverse
linear instability and that of dimension-breaking bifurcation. The first step is to provide a
transverse spatial dynamics formulation, which is a spatial dynamics formulation that has
the horizontal direction transverse to the direction of propagation as “time”. Linearizing
the equations at these two-dimensional traveling periodic waves results in a linear operator.
The following step consists in a spectral analysis of this linear operator as a closed and
relatively bounded perturbation of the linearization at a trivial flow. It turns out that the
linear operator in question has a pair of simple purely imaginary eigenvalues in Region 1.
This allows us to apply a simple criterion for transverse linear instability from [32], which
readily establishes this transverse dynamics phenomenon of periodic waves in Region I.



The same spectral information enables an application of a Lyapunov center theorem, which
establishes dimension-breaking bifurcations at each of these two-dimensional waves. The
analysis for Region II is the same, but the outcome is slightly different. The family that
consists of periodic waves with big wavenumbers is shown to feature these two transverse
dynamics phenomena. However, this might not be the case for the other family of periodic
waves. We give a characterization using wavenumbers for the case when both families
exhibit transverse linear instability and dimension-breaking bifurcations.

REFERENCES

[Paper I] T. TRuoNG, E. WAHLEN, AND M. H. WHEELER, Global bifircation of solitary waves
for the Whitham equation, Math. Ann., (2021), https://doi.org/10.1007/
s00208-021-02243-1.

[Paper II] M. A. JounsoN, T. TRuoNg, AND M. H. WHEELER, Solitary waves in a Whitham
equation with small surface tension, Stud. Appl. Math., (2021), https://doi.org/
10.1111/sapm. 12459.

[Paper III] M. Haragus, T. TrRuoNG, anp E. WAHLEN, Transverse dynamics of two-
dimensional traveling periodic gravity—capillary water waves, (2022), preprint.

[1] J. C. ALEXANDER, R. L. PEGO, aAND R. L. Sacus, On the transverse instability of solitary
waves in the Kadomtsev—Petviashvili equation, Phys. Lett. A, 226 (1997), pp. 187-192.

[2] C.]. Amick, L. E. FRAENKEL, AND J. F. ToLaND, On the Stokes conjecture for the wave
of extreme form, Acta Math., 148 (1982), pp. 193—214.

(3] C.J.Amick anD J. F. ToLaND, On periodic water-waves and their convergence to solitary
waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A, 303 (1981),

pp- 633—669.

[4] C.]. Amick anD ]. E Toranp, On solitary water-waves of finite amplitude, Arch.
Rational Mech. Anal., 76 (1981), pp. 9-95s.

[s] J. C. Amick aND K. KIRCHGASSNER, A theory of solitary water-waves in the presence of
surface tension, Arch. Rational Mech. Anal., 105 (1989), pp. 1—49.

[6] M. N. ARNESEN, Existence of solitary-wave solutions to nonlocal equations, Discrete
Contin. Dyn. Syst., 36 (2016), pp. 3483—3510.

[7] B.BAKKER AND A. SCHEEL, Spatial Hamiltonian identities for nonlocally coupled systems,
Forum Math. Sigma, 6 (2018), p. e22.

(8] J. BOUSSINESQ, Essai sur la theorie des eaux courantes, Mémoires présentés par divers
savants & 'Acad. des Sci. Inst. Nat. France, XXIII (1877), pp. 1-680.

XXXVI



[9]

[10]

[x1]

[r2]

(13]

(14]

[15]

[16]

(17]

[18]

G. BRUELL, M. EHRNSTROM, AND L. PE1, Symmetry and decay of traveling wave solutions
to the Whitham equation, ]. Differential Equations, 262 (2017), pp. 4232—4254.

B. Burron1 aND M. D. Groves, A multiplicity result for solitary-capillary waves in deep
water via critical point theory, Arch. Rational Mech. Anal, 146 (1999), pp. 183—220.

B. Burroni, M. D. Groves, anp J. F. ToLanp, A plethora of solitary gravity-capillary
water waves with nearly critical Bond and Froude numbers, Philos. Trans. R. Soc.
London. Ser. A. Math. Phys. Sci. Eng., 354 (1996), pp. 575-607.

B. Burront aND ]. ToLaND, Analytic theory of global bifurcation: An introduction,
Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ,
2003.

R. M. CHEN, S. WaLsH, aAND M. H. WHEELER, Existence and qualitative theory for
stratified solitary water waves, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018),

pp. 517-576.

——, Center manifolds without a phase space for quasilinear problems in elasticity,
biology, and hydrodynamics, (2019). arXiv:1907.04370.

A. CoNSTANTIN AND D. LANNES, The hydrodynamical relevance of the Camassa—Holm
and Degasperis—Procesi equations, Arch. Rational Mech. Anal., 192 (2009), pp. 165—186.

W. CRrAIG AND P. STERNBERG, Symmetry of solitary waves, Commun. Partial Differ.
Equ., 13 (1988), pp. 603—633.

M. G. CranpaLL aND P H. RaBINOwITZ, Bifurcation from a simple eigenvalue, Jour.
Funct. Anal., 8 (1971), pp. 321-340.

———, Bifurcation, perturbation of simple eigenvalues and linearised stability, Arch.
Rational Mech. Anal,, 52 (1973), pp. 161-180.

E Dias anp G. looss, Capillary—gravity solitary waves with damped oscillations, Phys.
D, 65 (1993), pp. 399-423.

E. Dinvay, D. Movrpasavev, D. Duryks, anp H. Kaviscu, 7he Whitham equation
with surface tension, Nonlinear Dyn., 88 (2017), pp. 1125-1138.

W.-P. DuLL, On the Mathematical Description of Time-Dependent Surface Water Waves,
Jahresber. Dtsch. Math. Ver., 120 (2018), pp. 117-141.

M. EnrnsTROM, M. A. Jounson, O. I. H. MaeHLEN, aND E Remonato, On the
bifurcation diagram of the capillary-gravity Whitham equation, Water Waves, 1 (2019),

pp. 217-313.

XXXVil



(23]

(35]

(36]

M. EHRNSTROM, ]. EscHER, AND L. PE1, A note on the local well-posedness for the
Whitham equation, in Elliptic and parabolic equations, vol. 119 of Springer Proc. Math.
Stat., Springer, Cham, (2015), pp. 63—75.

M. ExrnsTROM aND H. KaviscH, Traveling waves for the Whitham equation, Differ.
Integral Equ., 22 (2009), pp. 1193-1210.

M. EHRNSTROM AND E. WAHLEN, On Whitham’s conjecture of a highest cusped wave for
a nonlocal dispersive equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019),

pp. 1603-1637.

M. EHRNSTROM AND Y. WANG, Enhanced existence time of solutions to evolution
equations of Whitham type, (2020). arXiv:2008.12722.

L. EMERALD, Rigorous derivation of the Whitham equations from the water waves
equations in the shallow water regime, Nonlinearity, 34 (2021), pp. 7470—7509.

A. Encisco, J. GOMEZ-SERRANO, AND B. VERGARA, Convexity of Whitham'’s highest
cusped wave, (2019). arXiv:1810.10935.

L. EULER, Principes généraux du mouvement des fluides, Mémoires de I'académie des
sciences de Berlin, II (1757), pp. 274-315.

G. Fave aND A. ScHEEL, Center manifolds without a phase space, Trans. Amer. Math.
Soc., 370 (2018), pp. 5843—588s.

——,  Corrigendum to center manifolds without a phase space, (2020).
arXiv:2007.14260.

C. Gobzy, A simple criterion for transverse linear instability of nonlinear waves, C. R.
Math, 2 (2016), pp. 175-179.

M. D. Groves, An existence theory for gravity-capillary solitary water waves, Water
Waves, 3 (2021), pp. 213—250.

M. D. Groves, M. HarRAGUS, AND S.-M. SuN, Transverse instability of gravity-capillary
line solitary water waves, C. R. Acad. Sci. Paris Sér I Math, 333 (2011), pp. 421—426.

M. D. Groves, S. M. SuN, anDp E. WaHLEN, A dimension-breaking phenomenon
for water waves with weak surface tension, Arch. Rational Mech. Anal., 220 (2016),

pp. 747-807.

M. D. Groves anD J. E. ToLanD, On variational formulations for steady water waves,
Arch. Rational Mech. Anal., 137 (1997), pp. 203—226.

Xxxviii



(371 M. Haracus, Transverse Spectral Stability of Small Periodic Traveling Waves for the KP
Equation, Stud. Appl. Math., 126 (2010), pp. 157-185.

(381 ——, Transverse dynamics of two-dimensional gravity-capillary periodic water waves, ].
Dynam. Differential Equations, 27 (2015), pp. 683—703.

[39] M. Haragus anD G. looss, Local Bifurcations, Center Manifolds, and Normal Forms
in Infinite-Dimensional Dynamical Systems, Springer, London, 2011.

[40] M. Haracus aND E. WAHLEN, Transverse instability of periodic and generalized solitary
waves for a fifth-order KP model, J. Differential Equations, 262 (2017), pp. 3235-3249.

[41] T.]. HeaLey anp H. C. StmpsoN, Global continuation in nonlinear elasticity, Arch.
Rational Mech. Anal., 143 (1998), pp. 1—28.

[42] V. M. Hur, Wave breaking in the Whitham equation, Adv. Math., 317 (2017), pp. 410—
437.

[43] V.M. Hur aND M. A. JouNsoN, Modulational instability in the Whitham equation for
water waves, Stud. Appl. Math., 134 (2015), pp. 120-143.

(44] ——, Modulational instability in the Whitham equation with surface tension and
vorticity, Nonlinear Anal., 129 (2015), pp. 104-118.

[45] A.D.IoNescu AND E PUSATERI, Recent advances on the global regularity for irrotational
water waves, Phil. Trans. R. Soc. A, 376 (2018), p. 20170089.

[46] G. looss aND K. KIRCHGASSNER, Water waves for small surface tension: an approach
via normal form, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1991), pp. 267—299.

[47] G. Iooss aND M. C. PEROUEME, Perturbed homoclinic solutions in reversible 1:1
resonance vector fields, J. Differential Equations, 102 (1993), pp. 62—88.

[48] M. A.JounsoN anD J. D. WriGHT, Generalized solitary waves in the gravity—capillary
Whitham equation, Stud. Appl. Math., 144 (2020), pp. 102-130.

[49] M. A. JounsoN aAND K. ZUMBRUN, Transverse instability of periodic traveling waves
in the generalized Kadomtsev—Petviashvili equation, SIAM ]. Math. Anal., 42 (2010),
pp- 2681—2702.

[so] R. S. JouNsoN, A modern introduction to the mathematical theory of water waves,
Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge,
1997.

[s1] R.S.Jounson, Camassa—Holm, Korteweg—de Vries and related models for water waves,
J. Fluid Mech., 457 (2002), pp. 63-82.

XXXIX



[52]

(63]

(64]

[65]

[66]

A. KeLiey, The stable, center-stable, center, center-unstable, unstable manifolds, ].
Differential Equations, 3 (1967), pp. 546—570.

H. KieLHOEER, Multiple eigenvalue bifurcation for Fredholm mappings, J. Reine Angew.
Math., 358 (1985), pp. 104-124.

K. KiRcHGASSNER, Wave solutions of reversible systems and applications, ]. Differential
Equations, 45 (1982), pp. 113-127.

———, Nonlinearly resonant surface waves and homoclinic bifurcation, vol. 26 of
Advances in applied mechanics, Academic Press, Boston, MA, 1988, pp. 135—181.

C. KLeIN, E LiNares, D. PiLop, anp J.-C. Saut, On Whitham and related equations,
Stud. Appl. Math., 140 (2018), pp. 140-177.

D. J. KorTEwWEG AND G. DE VRIES, On the change of form of long waves advancing in
a rectangular canal, and on a new type of long stationary waves, London, Edinburgh,
Dublin Philos. Mag. J. Sci. Fifth Ser., 39 (1895).

M. KrasNnosevskil, On a topological method in the problem of eigenfunctions of
nonlinear operators, Dokl. Akad. Nauk SSSR, 74 (1950), pp. 5—7.

D. LanNEs, Well-posedness of the water-waves equations, ]. Amer. Math. Soc., 18 (2005),
pp. 605—654.

———, The water waves problem: mathematical analysis and asymprotics, vol. 188 of
Mathematical Surveys and Monographs, Amer. Mat. Soc., Providence, 2013.

T. Levi-Civita, Détermination rigoureuse des ondes permanentes dampleur finie, Math.
Ann., 93 (1925), pp. 264—314.

A. M. LyaruNov, Sur les figures déquilibre peu différents des ellipsoides d’une masse
liquide homogéne douée d’un mouvement de rotation, Zap. Akad. Nauk St. Petersburg,

(1906), pp. 1—225.

———, Probléme général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse, (1907),
pp. 203-474.

A. MIELKE, Reduction of quasilinear elliptic equations in cylindrical domains with
applications, Math. Methods Appl. Sci., 10 (1988), pp. 51-66.

D. Movrpasayev, H. Karisch, aNp D. DutykH, 7he Whitham equation as a model for
surface waves, Physica D, 309 (2015), pp. 99-107.

V. Puiss, A reduction principle in the theory of stability of motion, Izv. Akad. Nau SSSR
Ser. Mat., 28 (1964), pp. 1297-1324.

x|



[67] P H. RaBNnowrtz, Some global results for nonlinear eigenvalue problems, J. Funct.
Anal., 7 (1971), pp. 487—513.
[68] E Rousser aND N. Tzverkov, Transverse instability of the line solitary water-waves,

Invent. Math., 184 (2011), pp. 257—388.

[69] J. S. RuUsskL, Report on waves, Rep. fourteenth Meet. Br. Assoc. Adv. Sci., (1844),
pp- 311-390.
[70] N. Sanrorp, K. Kobama, J. D. CARTER, AND H. KaviscH, Stability of traveling wave

solutions to the Whitham equation, Phys. Lett. A, 378 (2014), pp. 2100—2107.

[71] J.-C. Saut anD Y. WaNG, The wave breaking for Whitham-type equations revisited,
(2020). arXiv:2006.03803.

[72] E. Scamipt, Zur Theorie der linearen und nichtlinearen Integralgleichungen, Math.
Ann., 65 (1980), pp. 370-399.

[73] A. STEEANOV AND ]. D. WRIGHT, Small amplitude traveling waves in the full-dispersion
Whitham equation, J. Dyn. Diff. Eqns., 32 (2020), pp. 85-99.

[74] G. G. Stokes, On the theory of oscillatory waves, Mathematical and physical papers, I
(1880), pp. 197—219.

[75] A. VANDERBAUWHEDE AND G. looss, Center manifold theory in infinite dimensions,
vol. 1 of Dynamics reported: expositions in dynamical systems, Dynam. Report.
Expositions Dynam. Systems (N.S.), Springer, Berlin, 1992.

[76] M. H. WHEELER, Large-amplitude solitary water waves with vorticity, SIAM J. Math.
Anal,, 45 (2013), pp. 29372994

[77] G. B. WurtHAM, Variational methods and applications to water waves, in Hyperbolic
equations and waves (Rencontres, Battelle Res. Inst., Seattle, Wash., 1968), 1970,

pp- 153-172.

xli












Global bifurcation of solitary waves
for the Whitham equation

Tien Truong, Erik Wahlén & Miles H. Wheeler

Abstract

‘The Whitham equation is a nonlocal shallow water-wave model which combines
the quadratic nonlinearity of the KdV equation with the linear dispersion of the
full water wave problem. Whitham conjectured the existence of a highest, cusped,
traveling-wave solution, and his conjecture was recently verified in the periodic case
by Ehrnstrom and Wahlén. In the present paper we prove it for solitary waves. Like
in the periodic case, the proof is based on global bifurcation theory but with several
new challenges. In particular, the small-amplitude limit is singular and cannot be
handled using regular bifurcation theory. Instead we use an approach based on a
nonlocal version of the center manifold theorem. In the large-amplitude theory a
new challenge is a possible loss of compactness, which we rule out using qualitative
properties of the equation. The highest wave is found as a limit point of the global
bifurcation curve.

I INTRODUCTION

In this paper, we continue the story of singular wave phenomena featured in the Whitham
equation. The equation was proposed by G. B. Whitham in 1967 [33], in an attempt to
remedy the failure of the KdV equation in capturing wave breaking and peaking. He
proposed that the linear dispersion in the KdV equation with Fourier symbol 1 — %52
should be replaced by the exact linear dispersion in the Euler equation with Fourier symbol

_ frann(g)

Note that the dispersion in the KdV equation is the second-order approximation of m at
& = 0. This leads to the nonlinear nonlocal evolution equation

ug + (K % u+ u?), =0,

known as the Whitham equation. Here, u(z,t) describes the one-dimensional wave profile
and the integral kernel K is given by

K() = (F'm)(@) = o [ m(©) exp(iag) de.



The function K will be referred to as the Whitham kernel, and the function m as the Whitham
symbol. Specializing to traveling waves v = p(z — ct) where ¢ > 0 is the wave speed,
integrating and performing a Galilean change of variables, the Whitham equation reduces
to the nonlinear integral equation

co—Kxp—p?=0. (1)

We are interested in functions ¢: R — R which satisfy (1) pointwise on R, and which
we refer to as solutions of (1) with wave speed c¢. More specifically, the results of this
paper will concern solitary solutions, also called solitary-wave solutions. These are solutions
¢: R — R satisfying lim ;| ¢(x) = 0.

Despite its simple form, the nonlocal and nonlinear nature of the Whitham equation
has made it challenging to study. Recent years have seen a large amount of existence and
qualitative results on the solutions of the equation. Traveling small-amplitude periodic
solutions were found by Ehrnstrom and Kalisch [21] using the Crandall-Rabinowitz bifur-
cation theorem. Then, Ehrnstrom, Groves and Wahlén [19] proved the existence of solitary
waves using a variational method for a class of Whitham-type equations. This was followed
up by Arnesen [4] where a class covering the Whitham equation with surface tension was
considered. By applying a different technique — the implicit function theorem — Stefanov
and Wright [31] achieved the same result. Ehrnstrom and Wahlén [22] showed the existence
of a traveling cusped periodic wave ¢ using global bifurcation theory, and proved that
£ — p(x) ~ |z["? near the origin. This wave attains the highest amplitude possible
and is referred to as an extreme wave solution. They also conjectured that ¢ is convex and
p=735— V7 /8% + o(x) as © — 0. Convexity of the extreme wave was shown by
Encisco, Goméz-Serrano and Vergara [23] using a computer assisted proof.

The goal of this paper is to prove the existence of an extreme solitary-wave solution of (1)
and our plan is to use a global bifurcation theorem appearing in [11]; see also [15, 16, 10].
The first main step is the construction of a local bifurcation curve, emanating from the
point (¢, ¢) = (0, 1), and the second is the application of the global bifurcation theorem.

A key to our success is the fact that a lot of qualitative properties have been shown for
the Whitham kernel, the Whitham symbol and the solutions of (1), thanks to [22], [9]
and [21]. These guide us in choosing a convenient function space to study (1) and have
been extremely useful in the application of the global bifurcation theorem. In Section 2,
we list the relevant properties and prove an integral identity. We also study how sequences
of solutions converge and the Fredholm properties of important linear operators.

Another key is the recently developed center manifold theorem for nonlocal equations
in [24]. This result states that nonlocal equations with exponentially decaying convolution
kernels are essentially local equations near an equilibrium. It also provides a method to
derive the local equation, which can then be studied using familiar ODE tools. In our
case, the equilibrium is (¢, ¢) = (0,1). Although the Whitham kernel has the required
exponential decay, it fails a local integrability condition. Seeing that this condition is
only for proving Fredholm properties of linear operators, we directly prove these properties



instead. All necessary changes for the general center manifold theorem are listed in Appen-
dix B. In Section 3, we state the center manifold theorem for the Whitham equation and
compute the corresponding local equation. More specifically, we prove the following.

Lemma 1.1. There exist a neighborhood V' C R of ¢ = 1 and a number §' > 0 such that
ifo: R — Ratisfies supyep |o(- + y)|| 53 (o,1) < &', then o solves (1) with wave speed
c € V' ifand only if p solves the second-order ODE

! 19 / / /
' = —6" + —(¢)? +6(c = D+ Ol(p, I((e = * + el + 1) @)

The ODE in this lemma is a c-dependent family of perturbed KdV equations. Res-
tricting to ¢ > 1 with ¢ sufficiently close to 1, it features a unique positive even solitary-
wave solution ¢ with exponential decay for each fixed c¢. Using equation (2), we show that
supyer lo(- + ¥l 3 (o,17) S ¢ — 1. So for ¢ sufficiently close to 1, ¢ is also a solution
to equation (1). We thus arrive at the first main result of this paper (repeated as Theorem
3.3 in Section 3).

Theorem 1.2. There exists a unique local bifurcation curve Cioc which emanates from (p, c)
= (0,1) and consists of the non-trivial even solitary-wave solutions o to (1) with wave speeds

¢ € V' satisfying supyer 1o+ +v)|lm3(j0,1)) < 0"

While both [19] and [31] contain existence results for supercritical solitary waves, the
additional information provided by the center manifold approach concerning uniqueness
is crucial in the subsequent analysis. To end Section 3, we use the center manifold theorem
to prove that the linearization of the left-hand side of (1) along Ciq. is invertible. This is in
preparation for the global bifurcation theorem.

The global bifurcation theory in [11] can now be applied to extend Cjo¢ and this extension
is referred to as the global bifurcation curve C. The theory dictates several possible behaviors
for C and the content of Section 4 is the exclusion of unwanted behaviors. We rule out the
loss of compactness alternative using qualitative properties of the solutions, how sequences
of solutions converge and an integral identity for (1). Then, we show that the blowup
alternative happens as the Sobolev norm blows up and that an extreme solitary-wave solution
is obtained in the limit. More precisely, we have the following result (repeated as Theorem
4.8 in Section 4).

Theorem 1.3. There exists a sequence of elements (py,, ¢y) on the global bifurcation curve C
such that limy, oo ||¢n || g3 = 00 and (pn, cn) — (@, ¢) locally uniformly, where ¢ is a
solitary-wave solution of (1) with supercritical wave speed ¢ > 1. The solitary solution  is
even, bounded, continuous, exponentially decaying, smooth everywhere except at the origin and

Cl|x]1/2 < g —p(z) < Cg|x]1/2 as |x| — 0,

Sor some constants 0 < Cy < Ch.



The function ¢ in the above theorem is the extreme solitary-wave solution we set out

to find.

|
T

0

Figure 1: An extreme solitary-wave solution found by taking a limit of elements
along the global bifurcation curve in Theorem 4.8. The wave speed ¢ is
supercritical, that is, ¢ > 1. The wave profile ¢ is even and smooth on R \ {0}.
It has exponential decay as || — 0o and behaves like £ — C|z[*/? as 2| — 0.

Ehrnstrdm and Wahlén conjecture in [22] that C' = /7/8.

By demonstrating the use of recent spatial-dynamics tools, this paper serves as an
example to studies of other nonlocal nonlinear evolution equations. In particular, these
results will likely extend to a larger class of equation, such as in [s] and [20].

Finally, it is interesting to compare our results with the global bifurcation theory for
the water wave problem. The existence of an unbounded, connected set of solitary water
waves, including a highest wave in a certain limit, was proved by Amick & Toland [2, 3]
following several earlier small-amplitude results. Around the same time, Amick, Fraenkel
& Toland [1] verified Stokes” conjecture for both periodic and solitary water waves, showing
in particular that the limiting solitary wave is Lipschitz continuous at the crest with a
corner enclosing a 120° angle. Thus, the behavior at the crest is different from the extreme
Whitham wave, which has no corner due to the C'/2 cusp in Theorem 1.3. The construction
of the global solution continua in [2, 3] is also different from ours. While both proofs are
based on nonlinear integral equations, the common approach in [2, 3] is to first apply
global bifurcation theory to a regularized problem and then pass to the limit. On the
other hand, we use global bifurcation theory directly on the solitary Whitham problem. A
similar approach has in fact recently been used for solitary water waves with vorticity and
stratification, but based on a PDE formulation [32, 11]. For the water wave problem with
vorticity and stratification, the limiting behavior of large-amplitude waves is more complex
and there is numerical and some analytical evidence of overhanging waves; see for example
(14, 17, 18, 28] and references therein.

Notarion We use the following notations for function spaces.

— The space of p™ power integrable functions on an interval I C R with respect to a



measure /4 is denoted by

LP(Lp) = {f: R=R|[fllzogn < 0},
where
1/p
ez = </I f|pdu) if p € [1,00)
and
[f 1l Loc (1) = p-ess-sup, ¢ | f ()] if p = oc.
For o € R, we write

LP(I) = LP(I,dx), LP:=LP(R,dz) and LP:=LP(R,w? - dx),

where dz is the Lebesgue measure and w, : R — Risa positive and smooth function,
which equals exp(c|z|) for [z| > 1. In particular, functions in L} when 1 > 0 are
necessarily exponentially decaying while functions in L” , can grow exponentially.

The Sobolev space is denoted by
WP (]) == {f; I—R . F™ e LP(I), for 0 <n < j}
and the weighted Sobolev space is
WP = {f: R—>R(f<”> €Lp, for0§n§j},

where (™) are weak derivatives of f for 1 < n < j. These spaces are equipped with
the norms

j 1/p j 1/p
[ llwiw = (Z ||f(")||’2p) and || fl[yy50 = (Z ||f(")||§g) :
n=0 n=0

We have the natural inclusions W7’ C WZP whenever o1 < o3. Forp = 2, we
denote the Hilbert spaces W72(I) and W22 by H(I) and H, respectively. As
before, when I = R, we omit writing R.

We define the space of uniformly local H7 functions

H) = {f € H]

ocC

1fll g < o0} whete [|fl = sup | F(- + )]l 1501
yeR



— C% denotes the space of k times continuously differentiable functions f: R —
R. BUC* C COF denotes the space of functions with bounded and uniformly
continuous derivatives of order up to and including k. C*< denotes the Holder
spaces

(k) — (k)
che = fGBUC'k‘ sup'f (z+h) = fFO)] <00 p.
h£0 |h[*

— The Besov space is denoted by B ,, where s € R, p, q € [1, o0]. We have

B, =H® scR and Biomzctsj,stsJ’ seRy\N.

— €"%(X, ) denotes the space of k times Fréchet differentiable mappings between two
normed spaces X" and ).

We use the following scaling of the Fourier transform:

Fre) = /R f () exp(—ix€) dz

and )
f_lg(x) = 2—]—"9(—3:).
T
2 QUALITATIVE PROPERTIES

2.1 THE WHITHAM KERNEL AND THE WHITHAM SYMBOL The Whitham kernel K is
given by (F~1m)(z), where

_[tanh(§) _}2 1794 6
m(§)—1/7§ =1 65 +360£ + O(&°). 3)

Since m(0) = 1, we have [ K dz = 1. However, since m ¢ L', K is singular at the
origin. More specifically,

1
K@) = Jaaal

where K is real analytic on R; see Proposition 2.4 in [22]. In addition, as |z| — oo,

V2 T 7r
K(r)= —— . O(|a|3/? — =
@) = = (= glal) + O(lal ™ exp (= Zlal) ). )
by Corollary 2.26 in [22]. Since m is an even function, so is K. The fact that K is a positive
function has been shown in Proposition 2.23 in [22].

+ Kreg (-T) 5 (4)



Because the Whitham symbol m satisfies

mP(©)] < ¢ +1g) 2, forjeN,
the linear operator
p—=mD)p=Kx*p, By, — B;:;l/Q (6)

is bounded; see for example Proposition 2.78 in [6].

2.2 PROPERTIES OF sOLUTIONS When choosing appropriate function spaces for (1), we
will rely on the following qualitative properties of solutions.

Proposition 2.1. Let ¢ be a continuous and bounded solution to (1) with wave speed ¢ > 1.
We have

(i) (non-negativity) ¢ > 0;
(ii) (exponential decay) if @ is solitary and ¢ > 1, there exists 1) > O such that
exp(n|z[)e(z) € L7(R),
that is, © has exponential decay;

(iii) (symmetry) if  is solitary, ¢ > 1 and sup,ep @(x) < ¢/2, there exists xo € R such
that o( - — xq) is an even function which is non-increasing on [0, 00);

(iv) (regularity) @ is smooth on any open set where p < c/2;
(v) (boundedness) if p is of class BUC L even, non-constant and non-increasing on (0, 00),

then ' < 0andp < c/2 on (0,00). Ifp in addition is of class BUC?, then ¢ < c/2

everywhere;

(vi) (singularity) if p is even, non-constant, non-increasing on (0, 00), sup,cr () < ¢/2
and p(0) = ¢/2, then as |x| — 0,

1+v

Cilzl? < —— — () < Cala?;

(vii) (lower bound on the wave speed) if @ is non-trivial and has finite limitslimy,_, 1 o o (),
then ¢ > 1;

(viii) (upper bound on the wave speed) if  is non-constant and p < c¢/2, then ¢ < 2.



Item (i) is stated in Lemma 4.1 in [22]. Items (ii) and (iii) are Proposition 3.13 and
Theorem 4.4 in [9] respectively. The optimal exponent 77 = 7). depends on ¢ and is given
implicitly by v/tan(n.)/n. = ¢, withn. € (0,7/2); see [5], Theorem 6.2. We remark that
the requirement sup,cp ¢(x) < ¢/2 in (iii) is not mentioned in [9] despite its importance
in the proof; see the introduction in [30] for a detailed discussion. Items (iv), (v) and (vi) can
be found in Theorem 4.9, Theorem 5.1 and Theorem 5.4 in [22]. The upper bound in (viii)
comes from [22], equation (6.9). The lower bound in (vii) comes from non-negativity and
the following proposition.

Proposition 2.2. Let ¢ be a bounded and continuously differentiable solution to (1) with wave
speed ¢, such that the limits limy_, 1 o () exist. Then

R

Rlim ol —(c—1))dz =0. 7)
—oo J_R

In particular, inf ¢ < c—1 <supp, p =c—1orp =0ifc> 1. The latter statement is
in fact true for bounded and continuous solutions © with finite limits limy_, 1 o0 p().

Proof: In general, if ¢ is any bounded and continuously differentiable function, the limits
limy 400 () exist, and /C is any non-negative even function with [ I da = 1, then

R
lim (p—K*xp)dx =0.
R—o00 J_R
A proof of this can be found in [8], pp. 113-114.
Since ¢ solves (1) with wave speed c,

Kxp=cp— ¢

and since the Whitham kernel K is a non-negative even function with fR Kdx =1,

R
0= lim (p— K x¢)dx
R—o0 J_R
R
= lim / (¢ — cp+ ¢?) dz
R—oo J_R
R
= lim o(p —(c—1))dz.
R—oo J_R

By non-negativity of bounded and continuous solutions with ¢ > 1, ¢ — (¢ — 1) must be
sign-changing, ¢ = 0, or ¢ = ¢ — 1, otherwise the generalized integral cannot converge
to zero. This proves the claim for bounded and continuously differentiable functions .

If ¢ is only a bounded and continuous solution, convolution with a non-zero smooth
and compactly supported test function ¢ > 0 gives

dx(p—Kxp)=0¢*p(p—(c—1)).

10



The left-hand side equals
pxo— K (¢*p),

due to associativity and commutativity of convolution. By Lebesgue’s dominated conver-
gence theorem, the function ¢ * ¢ is bounded, continuously differentiable and the limits
as  — +oo exist. It follows that

R

lim [pxp—Kx*(dpxp)de=0,
R—oo0 J_R

which implies

R—o0

lim /Z(ﬁ* (p(p—(¢c—=1)))dx = 0.

Again, we must have ¢ =0, o = ¢ — 1, or ¢ — (¢ — 1) is sign-changing. O

2.3 CONVERGENCE OF SOLUTION SEQUENCES Modes of convergence of solution sequ-
ences will be important in ruling out alternatives from the global bifurcation theorem.
We start with pointwise convergence, using the Arzela—Ascoli theorem and the smoothing
property of convolution with K.

Proposition 2.3. Let ()52 be a sequence of continuous and bounded solutions to (1) such
that each py, has wave speed c,, € [1,2] and sup,cg on(x) < cn/2. Then, there exists a

subsequence (pp, )72, satisfying

lim ¢,, =c€[1,2], lim ¢y, ()= ¢(z),

k—o00 k— o0

Jor every x € R. The convergence is uniform on every bounded interval of R. The limit  is
a continuous, bounded and non-negative solution of (1) with wave speed ¢, and sup,cp o ()
<c/2.

Proof: We can without loss of generality assume that lim,,_, ¢, = ¢ € [1,2]. For each

n, we have , )
Cn c
P on) — = —Kxp
(2 “’) 1 i

A rearrangement gives

We claim that the right-hand side forms an equicontinuous sequence. Indeed, ¢ — K * ¢
is a bounded map from L>* C BY to Béo/?oo = V2 according to (6). Because

00,00
cn € [1,2], this gives

C

o<,
2

1K * @nllcr/e S suppn(z) <
z€eR

II



Hence, (K * ¢5,)22, is an equicontinuous sequence of functions. The square root of
a non-negative equicontinuous sequence is an equicontinuous sequence. So, (gpn)fle is
equicontinuous. The Arzela—Ascoli theorem gives a subsequence (¢, )3 1, which conver-
ges uniformly to a function ¢ on each bounded interval of R. Also, ¢ is continuous and
bounded by ¢/2.

Finally, since sup,cr ¢n(z) < 1and |[K||;1 = 1, Lebesgue’s dominated convergence
theorem gives K * o, () — K % p(z) asn — oo forall z. It follows that ¢ is a solution
to (1) with wave speed c. O

Here are several immediate consequences.
Corollary 2.4.

(i) If o solves (1) with wave speed ¢ € [1,2], sup,cr ¢(x) < ¢/2, and lim,_, ¢(z)
= a, then a solves (1) with wave speed c. In particular, the constant a is either zero or
c— 1.

(ii) Let o, Cn, @ and c be as in Proposition 2.3. If py, is even and monotone on [0, 00) for
each n, its locally uniform limit @ inberits evenness and monotonicity on [0, 00). Ifin
addition lim |, ©(x) = 0, then @y, converges to o uniformly on R.

(iii) Let (pn)o>y be a sequence of even solutions which are decreasing on [0,00). Define
TenPn = On( - + @) for a sequence of real numbers x,, with limy, o T, = 00.
Then, the sequence of translated solutions Ty, py, is a sequence of solutions to (1). It has
a non-increasing locally uniform limit .

Proof. Ttem (iii) is straightforward. We only prove items (i) and (ii).
For (i), we define
T =p(- +n), neN

Each 7,,¢ is a solution of (1) with wave speed ¢ € [1,2]. We have

Jim Thp(x) = Jim o(lx+n) = Jim o(x) =a, foreachx € R.

By Proposition 2.3, a is a constant solution to (1) with wave speed ¢ and hence by Proposition
2.2, wehavea =0ora=c—1.

The evenness and monotonicity in (i) are clear, so assume that lim, o ¢(x) = 0
and fix € > 0. Then, there exists R > 0 such that

lp(z)] <e for |z|>R. 8)
Due to limy, 00 ¢n(2) = ¢ () locally uniformly, there exists an N > 0 such that

sup |on(z) —(z)| <e for n> N
lz|<R

12



In particular, we have |, (R) — ¢(R)| < €, which in turn implies |y, (R)| < 2¢ by (8).
Since ¢y, is non-increasing, we have |, (z)| < 2¢ for |z| > R. But then, again by (8),
|on(z) —@(x)| < 3efor |x| > Rand n > N, and the claim about uniform convergence
is proved. O

Now, we consider convergence in H7 for j > 0. Combining the smoothing property
of convolution with K and (1), we use a bootstrap argument to increase the regularity of
the solutions, starting with convergence in L? = H°,

Proposition 2.5. Let @y, Cp, @ and ¢ be as in Proposition 2.3. If
(@) on — © uniformly and o, — ¢ in L2,
(6) sup,er on(x) < cn/2 andsup,cp o(x) < ¢/2,

then oy, — p in H7 for any j > 0.

Proof. Since ¢y, and ¢ solve (1) with wave speed ¢,, and ¢ respectively, we can write

2
o= = J(K % pn.ca) = [(K *0,), where f(w,0) = 5 =/ —w. )

Letting wy, = K * ¢, and w = K * ¢, the assumptions imply

@) w, = win HY/? and w,, — w uniformly,
(b) inf, . (% — wn) > e/3,

(¢) inf, » (% — wn> >e/3,

for some € > 0 and for sufficiently large n. Without loss of generality, (b") and () are
assumed to hold for all n. We claim that if (2"), (b’) and (¢’) are met, then

f(wn,cn) = f(w,¢) in H?, forsomej € (0,1/2).
Consider
[f (wn, cn) = f(w, )l < Nf (wns en) = Flwns )llms + 1f (wns €) = Fw, o)l s

A quick calculation gives

Cp — C 1 cp +c

1
f(wnacn) —f(wn,c) = . _ . .
2 NE 2
\/Cz—wn-l-\/z—wn

13



2 2
gn(z) = 1_5- C$L_$+\/Cz_x,withdomaiann = [O,min{z,if} —§>

For each n, gy, is smooth and g,,(0) = 0. Moreover, the range of wy, belongs to the domain
of g,. A standard result in the theory of paradifferential operators, for instance Theorem
2.87 in [6], gives

lgn(wn)llgs < Cllwnl|gs,

where C' > 0 depends on j, sup,cg |wn| and sup,ep, |95 ()|. A computation shows
that |g],| is uniformly bounded in n for ¢,,, ¢ € [1,2] and © € Dy, Also, sup,, ||wn || 1/2
< 00, as well as sup,, , |wn(7)| < oo by (@). It follows that /g, (wy )| g7 is uniformly
bounded in 7 and

1 () = F (@ &) 5 = &

5 len — ¢| - |lgn(wn)|l g — 0,  asn — 0.

To deal with the second term, let ¢ be fixed and define

2
h(z) = f'(x,¢) — f'(0,¢), with domain D) = lO, CZ - ;) .

Then, we can write
Foms) = £(0,6) = (o =) [ Rlion + 70 = )b+ £(0, ) — ).

Due to (2)) and (b’), we have wy,(s) + 7(w(s) — wn(s)) € Dy, for all s € R. Note that h
is smooth and ~(0) = 0. Theorem 2.87 in [6] gives an estimate for the integral

H/ol h(wn + 7(w —wp)) dr

< sup ||h(wn + T(w — wn))|| 172
HY2  7¢€[0,1]

< C sup |wn+ 7(w—wp)| g2,
7€[0,1]

where C depends on s, sup,, | f”(x, ¢)|, cand €. Another standard result in paradifferential
calculus, for example Theorem 8.3.1 in [29], gives

/01 h(wy + 7(w —wy)) dTH
+1£'0,0)| - llwn — wl s

1f(wns €) = Fw, )l S llwon = wllgye i

forall j € (0,1/2), which tends to 0 as n — oo by ().

14



So, the right-hand side of (9) tends to 0 in H7 forall j € (0,1/2). Hence, ¢, — ¢
in H7. Then, convolution with K increases the regularity of ¢, and ¢ by 1/2. Choosing
J = 1/4 and replacing (') with

Wp, — W in H1/4+1/2,

the critical case of Theorem 8.3.1 in [29] is no longer relevant and the convergence is in
H7 forall j/ € (0,1/4 + 1/2]. By iterating as many times as needed, the claim of the
proposition is proved. 0

Remark 2.6. Since Theorem 2.87 in [6] and Theorem 8.3.1 in [29] are valid for the Besov
spaces B, ,, we can replace the L? space in (a) with ng and obtain ¢, — ¢ in B, , for
s > 0 using the same proof idea.

2.4 FREDHOLMNESS OF LINEAR OPERATORS Let j > 0 be an integer. As a preparation
for future bifurcation results, we study the operators

T:p—=@—Kx*p, Hin—>Hi,7

and
Llp*,c*]: ¢ ¢ — K x¢p— 20", H' — HI,

where ¢* is a solitary-wave solution with wave speed ¢* > 1, satisfying sup,cr ¢*(2) <
c* /2. These are linearizations of the left-hand side in (1) at (0, 1) and (¢*, ¢*), respectively.
We show that 7 and L[¢*, ¢*] are Fredholm with Fredholm index two and zero respectively,
using results from [27]. The central idea is to relate a pseudodifferential operator ¢(z, D)
acting on HY to a positively homogeneous function A via the symbol ¢(x, £). By studying
the boundary value and the winding number of A around the origin, the Fredholm property
of t(x,D) can be determined. Appendix A summarizes the relevant theorems from [27].

Up until now, the weight 77 > 0 has remained somewhat mysterious. Since our interest
lies in the Fredholm properties of 7, 77 should be chosen so that 7 is at least bounded.
By (4), K is locally L' around the origin. From (s), we deduce that K € L7170 forny €
(0,7/2). It follows that 7 : Hin — Hzn is bounded for any 7 € (0, 7/2). Indeed, since
w_y is 1 on [—1, 1] and equals exp(—n|z|) as |x| — 00, we have

e plts, 5 [ ([ Kwete o) ) esp(-2nja) oz
S/ </ K(y)e(z —y) dy>2exp(—2n|w—y|+2nly|) da
~ [ ([ K@) e ) ot — ) exp (ol o) aw) o

= 11K - exp (] - )] o~ exp (=] - 72
< K13 el
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where Young’s inequality for the LP norms of convolutions is used in the last step. Noting

that
n

and applying the above estimates on go("),
1Tellgs S lelyi s
for 1) in the range (0, 7/2).
2.4.1 Fredholmness of T Multiplication with cosh(n-)
Meosh: ¢ = cosh(n-)p,  H — H”,.

is an invertible linear operator. Its inverse is multiplication with 1/ cosh(7 - ), mapping
H?, to HI. Conjugating T with these gives

%:Mil OTOMcosha H]_>H]7

cosh

and more explicitly

To(x) =Td—(K(-,2) % ¢)(x), where K<Z7$>=K(2>W'

Setting
exp(Enzx
¢+(z) = ()

= Zoosh(ne) and  Ki(z) = K(z)exp(£n2),

7T can be rewritten as
Tio(x) = p(x) — ¢4 (2) (K- * ) (2) — o (2) (K * 9) (@),
with the symbol
tx, ) =1 — ¢ (x)m(€ —in) — ¢—(z)m(€ +in).

Lemma 2.7. The conjugated pseudodifferential operator T = t(x,D): H' — HI is a
Fredholm operator.

Proof- The idea is to apply Proposition A.1. We define a positively homogeneous function
A by

A(zo,2,&0,§) = f( i £>

zo o
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for z,£ € Rand zg,& > 0. In order to apply Proposition A.1, we need to check that A
is smooth in

S = {(z0, 2, &, ) eR4(g;§+:c2:§§+§2= 1,29 > 0,& > 0},

and that A(xg,, &, €) # 0 on T, where I is the boundary of S. T' can be decomposed
into the arcs

T1={(0,1,60,8) |& +€ =1,& >0},
Py ={(0,-1,60,€)|& + & = 1,6 > 0},
I3 = { (zo,2,0,1) |22 + 2% = 1,29 > 0},
F4={($0,$,0,—1)\3§%+x2:1,93020}.

We compute the value of A along each arc I'; and show that A is nowhere vanishing. From
the computations, it will be apparent that A is smooth on S.

OnTj:=T7\{(0,1,0,1),(0,1,0,—1)}, we have & = /1 — €2 > 0 and

A(J](],l',f(],f)

(1 ¢
= lim | —,
I 2o—0t (:1:0 \/1—52)

since limy o0 ¢4 (y) = 1 and limy oo ¢—(y) = 0. Let 0 = £(1 — )12 As€ €
(—=1,1), 0 € (—00,00). To compute the values at the endpoint (0,1, 0, 1), we note that
taking the limitas £ — 17 corresponds to taking the limit as  — co. A calculation shows
that

sinh?(26) + sin?(2n)
(6% + n?)(cosh(20) + cos(2n))?

m (60 £ in)|* =

which gives
lim |m(0 £in)| = 0.
0—too

So, the value of A at (0,1,0,1) is 1. Similarly, A at (0, 1,0, —1) corresponds to taking
the limit as @ — —o0 and the value is 1. Along I'}, if 1 — m(6 — in) = 0 for some 6 € R,
then

Re(m(0 —in)?) =1 and Im(m(0 —in)*) =0,
where
6 sinh(26) + nsin(2n)

Re(m(6 — 177)2) = (62 + n?)(cosh(26) + cos(2n))

and
nsinh(26) — 0sin(2n)

(602 + n2)(cosh(20) + cos(2n))

Im(m (9 — in)?) =

7



The second equation is satisfied only when the numerator 7sinh(26) — 0 sin(2n) is zero.
Since this is an odd and smooth function in 0, a trivial solution is @ = 0. Since
sin(2n)

sinh(26)
T > 1 and T < 1,

for @ # 0 and € (0,7/2), there are no other solutions. When 6 = 0, Re(m(8 — in)?)
is tan(n)/n > 1 foralln € (0,7/2). We can thus conclude that A # 0 on T';.
Similar compurtations yield

A

1)

1—m(0+in), & >0,
1> 60 :O>

which is nowhere vanishing by the same argument. Along the other arcs,

Al =A

I's

=1.
Iy

So, A along I is nowhere vanishing and Proposition A.1 gives the desired conclusion. []
The next result is about the Fredholm index of 7.
Lemma 2.8. 7 = i(x,D): HI — HJ has Fredholm index two.

Proof. According to Proposition A.1, the total increase of the argument of A as I is traversed
with the counter-clockwise orientation

(0,—1,0,1) T (0,1,0,1)

e

(0,-1,0,—1) — (0,1,0, —1)

determines the Fredholm index of ¢(x, D). We begin with I'; from (0,1,0, —1) to (0, 1,
0, 1) and consider the total increase of the argument of 1 — m(# — in) from 6 = —oo to
0 = o0; see the proof of Lemma 2.7. As before, it is easier to deal with m(6 — in)2. The
sign of the real part of m (0 — in)? is determined by the sign of

6 sinh(26) + nsin(2n)

which is positive for § € R and € (0,7/2). This means that m? stays in the first and
fourth quadrant of C. The sign of the imaginary part equals the sign of

nsinh(20) — 0sin(2n),

which is a strictly increasing function in 6 taking the value zero at @ = 0. This means that
at @ = 0, m? enters the first quadrant from the fourth. By computing the value of m?
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/
\\ 1

Figure 2: Graphs of m? (blue line) and 1 —m (black line) along I'y. The increase
of the argument of 1 — m about the origin equals the increase of the argument
of m?2 around 1, which is 2.

as @ — —oo, at @ = 0 and as § — o0, we can conclude that m? along I'; makes one
counter-clockwise revolution about 1. Taking the square root of m? preserves the signs of
the real and imaginary part. Then, multiplication with —1 flips the signs and addition with
1 corresponds to horizontal translation to the right by 1; see Figure 2. Finally, we arrive
at the conclusion that the increase of the argument of A along I'y from (0,1,0,—1) to
(0,1,0,1) is 2.

A similar analysis shows that an additional increase of 27 is gained along I's. On I's
and I'y, A = 1, so there is no contribution from these arcs. In total, the increase of the
argument along I is 47r. Proposition A.1 now gives that the Fredholm index is two. [

Conjugation with the invertible linear operator M osp, preserves Fredholmness and the
Fredholm index. Hence, T = Mosn © T o ML - H]_77 — H]_n is Fredholm with

cosh *
Fredholm index two. We have proved the first part of the main result of this section, which

is the following.

Proposition 2.9. 7 : H’ y — H 7 y 15 Fredholm with Fredholm index two and
Ker 7 = span{l, z}.

Proof. The statement concerning the Fredholm properties of 7 is already proved. Note
that solving 7 = 0 for ¢ € LQ_77 using the Fourier transform is problematic because F¢
is not necessarily a tempered distribution. Thus, we consider the L2-adjoint of T acting
on L2, which is 7: L; — L2, and determine its range. The equation 74 = g in L
corresponds to (1 — m)F1p) = Fg on the Fourier side, where 1) and Fg are analytic
functions bounded on the strip | Im z| < 7. In view of (3), 1 — m(&) vanishes to second
order at § = 0 and is bounded away from zero if £ is. As a consequence, the range of 7 on
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L7 consists of functions g satisfying Fg(0) = (Fg)'(0) = 0, or equivalently [; g(x) dx
= Jg xg(z) dz = 0. This immediately implies that Ker 7 in L2_77 is span{1l,z} C H’,

and the claim is established. OJ

2.4.2 Fredholmness of L[¢*, c*]: H? — H7 The application of Proposition A.r is simpler
for L[¢*, c*]: H? — HY, as conjugation does not take place.

Proposition 2.10. Let ¢* be a solution with wave speed c* > 1, satisfying sup,cr ¢* () <
c* /2. Then L|p*, c*|: HI — HY is Fredholm with Fredholm index zero.

Proof. Proposition A.1 is employed once again. The linear operator
Ll c: o= o — K x ¢ — 207

has the symbol
U(,€) = ¢ — m(€) - 26%(x) € C(R x B),

where smoothness of ¢* is from Proposition 2.1(iv). The corresponding positively homo-
geneous function B is
r &
B(xo,z,&,&) =1 —, =), wherexg> 0and& > 0.
zo o
As before, we verify that B does not vanish at any point along I' = Uj<;<4I';; see the
proof of Lemma 2.7. Along I'1 and T'o,

B($07$,£07§) lim B(xo’lag()ug)

I'12\{&=0} - ro—0+

= lim [ &

7$0E>I(1)i .’L'07 \/1—62
. §

=C —m( @>,

as " is smooth and limy_,o ¢*(t) = 0. Since m < 1, B cannot attain the value
zero. Along I's and Ty, B is ¢* — 2¢p*(x/v/1 — 22). Since sup,cp ¢*(x) < ¢*/2 by
assumption, B cannot take the value zero. Moreover, the argument of B is constant along
I" as B is real-valued and the claim is proved. O

3 LOCAL BIFURCATION

We apply an adaptation of the nonlocal center manifold theorem in [24] to (1) in order to
construct a small-amplitude solitary-solution curve emanating from (¢, ¢) = (0,1). For
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convenience, we work with a different bifurcation parameter v := ¢— 1 which will be small
and positive along the local curve. In the notation of [24], equation (1) becomes

Te+N(p,v) =0, (10)
where 7 is defined in Section 2.4, and
N (p,v) = vp — %,

Equation (10) will be studied for v € (0, c0), in the Sobolev space of even functions H2,
and the weighted Sobolev spaces H in‘ This regularity choice j = 3 is with regard to
Proposition 2.1. A solution ¢ € H3,, with wave speed ¢ > 1, such that sup,cp ¢(z) <
¢/2, is smooth on R. Moreover, ¢’ < 0 on (0, 00) and ¢ has exponential decay.

The center-manifold reduction technique gives a reduced equation equivalent to the
nonlocal equation (10) near the bifurcation point (¢, ) = (0,0) in HS x R, where H
is the space of functions which are uniformly local H3. Since the reduced equation is an
ODE, standard arguments give the existence of small-amplitude solitary-wave solutions in
H in. Hence, by the exponential decay of solitary-wave solutions with supercritical wave
speed, these are of class H® C H?2. We also prove that the bifurcation curve of non-trivial
even solitary solutions is locally unique in H3 x (0, 00), and refer to it as Cloc.

The global bifurcation theorem demands L[¢*, %] to be invertible in H3,.,
(¢p*,v*) € Cioc and v* = ¢* — 1. Seeing that the Fredholm index of L[p*, v*] is zero,
it suffices to show that the nullspace of L[¢*, v*] is trivial. We consider equation (10),
together with the linearized equation L{¢*,v*]¢ = 0, and formulate a center manifold
theorem for this system. Exploiting the previous reduction for (10), we simplify the reduced

equation for the linearized problem and are able to solve it completely in H3,,,.

where

3.1 CENTER MANIFOLD REDUCTIONS Two center manifold reductions are presented: one
for the nonlinear problem (10) and the other for the linearized problem L[¢*, v*]¢ = 0.

For (10), we use an adaptation of the center manifold theorem in [24]. In this reference,
it is assumed that the convolution kernel belongs to Wg’l, which is not the case for the
Whitham kernel K, as K’ is not locally Lt according to (4). Seeing that this requirement
is only used for proving the Fredholm properties of the linear part 7, we replace it with
requirements on the Fredholm properties on 7T see Hypothesis B.1(ii) in Appendix B.1.
The rest of the proof of the center manifold theorem in [24] remains the same.

We consider (10) together with the modified equation

T‘»O +N(X6(90)7 V) =0, (1)

where x%(¢) is a nonlocal and translation invariant cutoff operator defined in Appendix B.
We have x%(¢) = ¢ if lellas < Cod and (@) = 0if ¢l s is sufficiently large. Since
H3 C Hin for all ) > 0, the operator Y9 is a cutoff in the Hﬁn norm. More details are
provided in Appendix B.
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We have shown that Ker 7 has dimension two in H in and equals span{1, x}. Hence,
elements A + Bx € Ker T will often be identified with (A4, B) € R2. We define a
projection on Ker 7T,

Q: o (0)+ ¢ (0)z, H? —KerT, (12)

which could also be considered as a mapping from H. En to R?. Finally, the shift ¢
(- + &) will be denoted by 7¢.

Theorem 3.1. For equation (10), there exist a neighborhood V of 0 € R, a cutoff radius 0, a
weight n* € (0,7/2) and a map

U:R*xV = KerQcC H?, .
with the center manifold
M ={A+Bz+V(A,B,v)|ABeRveV}CH?,.
as its graph. We have
(i) (smoothness) U € €3;
(ii) (tangency) (0,0,0) = 0 and D4 p)¥(0,0,0) = 0;

(iii) (global reduction) M consists precisely of p such that p € H §77* is a solution of the
modified equation (11) with parameter v;

(iv) (local reduction) any p solving (10) with parameter v and ||| g3 < Co0 is contained
in Mg;

(v) (correspondence) any element ¢ = A + Bx + V(A, B,v) € My solves the local
equation

‘P//(‘r) = f(@(x)asol(xLV% where f(A,B,I/) = \I’//(A,B,I/)(O)7 (13)

and conversely, any solution of this equation is an element in M. The Taylor expansion

of ¥ gives

19
¢ = 60" + () + 6 + O (|0, )07 + el + 1¢17))  (19)

(vi) (equivariance) besides the translations T¢, equations (10) and (11) possess a reflection
symmetry Ro(x) = @(—x), meaning TRe = RTp, N(Rp,v) = RN (p,v)
and X°(Rp) = RX° (). It is hence reversible. The function [ in (v) commutes with
all translations and anticommutes with the reflection symmetry.
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Proof. We use Theorem B.s5. Proposition 2.9 shows that Hypothesis B.1 is met. Also, the
fact that \V' is a Nemyrtskii operator verifies Hypothesis B.3. In particular, N' € € and N/
commutes with the translations 7¢ for all v € (0, 00). This means that in Hypothesis B.3,
we can choose any regularity & > 2, possibly at the price of a smaller cutoff radius ¢ and
weight 17*. Since a quadratic-order Taylor expansion of U suffices for our purposes, k = 3
is chosen. Statement (vi) concerning the reflection symmetry R follows directly from K
being an even function. Hence, Theorem B.s applies and gives items (i)—(vi).

Equation (14) in (v) is given by Theorem B.5(vii). We use Q defined in (12) to compute
the reduced vector field. Let ¢ € My. According to Theorem B.5(viii), M is invariant
under translation symmetries. Hence, ¢ is also an element of M{ for all { € R.
Applying Theorem B.5(vii) on 7¢p gives

Cotmmee)|_ =40 + (0
We compute ¢”(§) by noting that
d2
() =" @+ 6,0 = 3 3(e0)|

and since T¢p € Mg,

Tep(x) = (&) + ¢ )z + W ((§), ¢ (£),v) ().

Hence,

90//(6) = f(sﬁ(f)aSOI(@a’/)’ where f(A)va) = \I/”(A,B,V)(O),
which is (13).

To prove equation (14), we compute the Taylor expansion of . In view of (0, 0,0) =
0and D4 )¥(0,0,0) = 0, the Taylor expansion of ¥: R? x V — Ker Q is
V(A,B,v) = g(v)¥oo1 + Av¥i01 + Br¥ory
+ A?Wy00 + AB 10 + B*Wgyg
+O((JAl + [B))(v* + |A]? + |B*)),
where W, € Ker Qfor 1 < i+j+k < 2. Since N'(0, ) = 0, we have ¥(0,0, /) = 0

and consequently g(v) = 0 forall v € R. So, elements ¢ in the center manifold M have
the form

o(zr) =A+ Bx + V(A, B,v)(z)
=A+ Bz + AvVi1(z) + Bv¥oi(x)
+ A% Wo0(w) + ABP110(x) + B* Yoo ()
+O((|Al + B + |A]? + |B*)).
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Substituting ¢ = A 4+ Bx + V(A, B, v) into (10), then identifying coeflicients of orders
O(Av), O(Bv), O(A2), O(AB) and (9(32), we are led to the linear equations

TWa00 =T Y101 =1,
T g0 = 22,

uniquely determined by the condition Q(¥;5;) = 0,7+ j + k > 1. Indeed, if there are

two solutions Wz, and \ifijk, then Wy, — W, lies in Ker 7 N Ker Q, and hence is zero.
The linear equations are solved in Appendix C. This gives

U(A,B,v)(x) = ( —3A% + %BZ + 3A1/>ac2 + ( —2AB + By)ajg

B2
= <2t + O((|Al+ BN + |A + |BY)).

Differentiating ¥ twice with respect to « and evaluating at x = 0 shows equation (14). [J

When solving the linearized problem L[p*,1v*]¢p = 0, we want to take advantage
of the assumption that ¢* € MY is a solution of (10) with parameter v*. Hence, we
consider (10) and L[p*, v*|¢ = 0 simultaneously:

T(p,¢) + N(p, ¢,v) = 0, (15)
where T : (H?,)* — (H?,)? is an onto Fredholm operator with Fredholm index four
given by

T: (p,¢) = (T, T9),
and
N: (¢, 0, v) = (N(p,v), DoN(p,v)8).
The modified system is

T(p, ¢) + N(¢p,6,v) =0,

with the nonlinearity
N(;((,O, (Z)a V) = (N(S((p7 V)v DQON(;((Pv V>¢)

Since we only cut off in ¢, the modified linearized equation coincides with the original
one, as long as ¢ € MY is sufficiently small in the H? topology. Hence, all solutions to
the linearized equation will be captured. The downside of this scheme is that our previous
adaptation of the results in [24] cannot be applied directly. We replace the contraction
principle with a fiber contraction principle to achieve the following result; see Appendix B.2.
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Theorem 3.2. For (15), there exist a cutoff radius 6, a neighborhood V of 0 € R, a weight
n* € (0,7/2), two mappings V1 and Vo, where

Ui R*xV —KerQC H?, .,
with the center manifold
01 ={A+Bx+¥(A,B,v)|A,BER,veV}
as its graph, and at each fixed element ¢ € M | uniquely determined by (A, B),
UyA, B,v] : Ker T — Ker Q,

with graph

Mo2[A, B,v] = {C + Dz + ¥3[A, B,v|(C,D)| C,D € R} .
The following statements hold.

(i) MGy coincides with M{ in Theorem 3.1 and all statements in this theorem hold for
M5,1;

(i) VoA, B,v] = D4 ) V1(A, B,v), 50 V2[A, B, v| is a bounded linear operator from
Ker T to Ker Q. Also, Uy is €%~ in (A, B, v).

Suppose that p* € MlO’jl is sufficiently small in the H3 norm, so that p* is a solution of (10)
with parameter v*, uniquely determined by (A*, B*). Then,

(iii) Mo 2[A*, B*,v*] consists precisely of solutions ¢ € H %n* of the linearized equation
T+ DN (o, v*)p = 0;

(iv) every ¢ € Mo2[A*, B*,v*| is a solution of
¢"(x) = g(¢"(2), (¢") (2), $(x), ¢' (), V"),
where
g(A*, B*,C, D, v*) = Daf(A*, B*,u*)C + Dy f(A*, B*, 1) D,
and f(A, B,v) = W/ (A, B,v)(0). Conversely, any solution of the above second-order
ODE is an element in Mo 2[A*, B*, v*|. The Taylor expansion of g gives
38
§' = 1206+ T ()9 + 60
+O((e" ¢l + (™) N + @™ + (™))

Proof. Theorem B.6 applies and gives (i)—(iv). The cutoff radii d given by Theorem 3.1
and Theorem 3.2 are not necessarily the same, but the smallest one can be chosen to
have (i). Arguing along the same lines as the proof of Theorem 3.1 gives equation ((iv))
and differentiating the Taylor expansion of f in (14) gives equation (16). O]

(16)
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3.2 LocAL BIFURCATION CURVE The center manifold theorem states that a solution ¢
sufficiently small in the H norm solves the reduced ODE (14), which is local in nature
and allows spatial dynamics tools. Let ¢ = P, ¢’ = ) and regard the spatial variable x as
“time” t. Equation (14) defines the following system of ODEs

ar
dt

dQ _

19 (17)
= 6P + gcf +6UP + O((|P| + Q) (2 + | P> + |Q?)),

which is reversible by Theorem 3.1(vi). We aim to rescale (17) into a KdV equation when
v = 0, that is

P -

@ZQ(T)

aQ - 3.
ar ZP(T)—§P(T)2

Hence, we set
T—at, P(t)=pPT), Qt)=~Q(T).

Differentiating, substituting into (17) and identifying coeflicients yield

2
Dy gy 3
Ba ary ay 2
which are satisfied by
3,3
a =6y, B:§1/, v = 3—V
2 2
The resulting rescaled system is
P -
= _O(T
i =
dQ _ 5 352 1 27 A2 (18)
— =P(T)—- -P(T —vQ(T
W by - 2paye+ )

+0 (VP +v21QN A + [P+ vIQ) .

For v = 0, (18) is the KdV equation with the explicitly known pair of solutions

P(T) = sech® (g) . Q(T) = —sech? (Z) tanh (g) :

which corresponds to a symmetric and homoclinic orbit. For v > 0, the symmetric
homoclinic orbit persists by the same argument as in [26], p. 955. Undoing the rescaling
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and switching back to P = ¢ as well as Q = ¢’ give

o(t) = gusech2 (@t> +0(1?)

3/2,,3/2
O'(t) = —3217?2S€Ch2 (@t) tanh (\/?t> + 0w,

(19)

for v > 0. The supercritical solitary-wave solution ¢ is exponentially decaying, so both
¢ and ¢’ belong to H3 C H}. Also, they depend continuously on the parameter v. We
denote this solution as ¢}. with parameter v* and define

Cloc = {(¢he, ) |0 <v* <V},
for some v/ > 0. The main result of this section is reached.

Theorem 3.3. There exists a neighborhood of (p,v) = (0,0) in H3 x (0, 00), for which Cioe
is the unique v-dependent family of non-trivial even small-amplitude solitary solutions to (10)
emanating from (0, 0). We refer to Cioc as the local bifurcation curve.

Proof. The function ¢ belongs to M~ by the one-to-one correspondence between (17)
and ME* in Theorem 3.1(v). From (19) combined with the fact that ¢}« is exponentially
decaying, we have ||} || 71 < v*. Since the reduced vector field f in (13) is superlinear in
¥+ (z) and (%) (x) by Theorem 3.1(ii), the bound by v* in (19) is carried over to (7. )".
Differentiating (13) gives

(05)® =D f (), (5e) 1) - (050) + Daf (@5, (05) %) - (050)",
where D1 f and Dsf are bounded in view of Theorem 3.1(i). Hence, ((pl’ﬁ*)(g) is also
bounded by v*. We obtain the improvement ||¢}.[|z3 < v* and then by choosing
v* sufficiently small, ¢} is indeed a solution of (10) according to Theorem 3.1(iv). The

existence of Clc in H, g’ven is now established since ¢}« € H 3 is an even function.

Our argument for the uniqueness of Cioc is similar to the one in [11], Lemma s.10.
Suppose that (¢, V) is a non-trivial even solitary wave solution which is small enough in
H3 x (0, 00) that ¢ lies on the center manifold M. Then (P, Q) = (¢, ¢') is a reversible
homoclinic solution of the ODE (17), whose phase portrait is qualitatively the same as in
Figure 3. The homoclinic orbit in the right half plane corresponds to the case ¢ = ¢,
and hence (p, ) € Cloc. Any other solution must therefore approach the origin along the
portions of its stable and unstable manifolds lying in the left half plane. But this would
force P(t) = ¢(t) < 0 for sufficiently large |¢|, contradicting (i) in Proposition 2.1. [

Remark 3.4. Since the amplitude of ¢}« is O(v*) as v* — 0, we can find a v/ > 0, such
that

1 *
sup g« (x) < Ty forall v* € (0,0).

)
z€R 2
From Proposition 2.1, the solutions ¢« are everywhere smooth and strictly decreasing on

(0, 00).
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Figure 3: Phase portrait for (18) when v = 0. The homoclinic orbit persists for
v>0.

3.3 INVERTIBILITY OF L[p*, V*| Let* = ¢}. € Cioc and the corresponding parameter
v* be fixed. The linear operator L[p*, v*] is the linearization of the left-hand side of (10)
with respect to the p-component. Note that L[p*, v*|: H2., — H2,, is Fredholm with
Fredholm index zero. Hence, we only need to show that the nullspace of L[¢*, *] is trivial.
The invertibility of L[¢*, v*] has already been shown in [31]. In this section, we showcase
an alternative approach exploiting Theorem 3.2 and are able to make quantitative statements
for elements in the nullspace of L[¢*, v*] in H?, ., where 1" is as in Theorem 3.2. This

approach is inspired by Lemmas 4.14 and 4.15 in [32].

Proposition 3.5. The nullspace Ker L of L[p*,v*]: H?,.

spanned by the exponentially decaying function (©*)" and an exponentially growing function.
Seeing that (¢*)' is odd, Ker L restricted on H3,, is trivial and L{p*, v*] is thus invertible
in H3

even*

— Hin* is two-dimensional,

Proof. We use Theorem 3.2(iv), that is, elements ¢ € Ker L C H En* have a one-to-one
correspondence to the solutions of (16). Letting ¢ = U, ¢/ = V and regarding = as a time
variable t, we cast (16) into a system

dU
— =V
dt
dv

+O((l Ul + () V(@) + 1" + ("))
This can be considered as a perturbation problem of the form

du
& = (M + R(t))u,
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where u: R2 — R2, M € R2*2 is a matrix with constant coefficients and B: R — R? is
an integrable remainder term. In this case,

0 1
M= (61/* O) ’

so the eigenvalues for M are V6v* and —v/61v*. Moreover, the exponential decay of ¢*
and ()’ guarantees the integrability condition; see the discussion after (19). Applying
for example Problem 29, Chapter 3 in [13], as well as switching back to ¢ and ¢’, the
statements concerning Ker L are immediate. In particular, Ker L is spanned by a function
¢1 behaving as exp(tv/61%) and ¢o behaving as exp(—tv/6r*) as t — oo. It is a
straightforward calculation to show that one exponentially decaying function in Ker L
is (¢*)’, which is an odd function. Since even functions in H? cannot be written as linear
combinations of an odd exponentially decaying function and an exponentially growing

function, Ker L is trivial in H2,,,. O

4 (GGLOBAL BIFURCATION

We use a global bifurcation theorem from [11] in a slightly modified form because the open
set in our case is not a product set; see Appendix D. For (1), we take

X:y:Hgven’ F(SO?V) :TSD—FN(QO’V)’

and

M:{(@,V)GXX(O,oo) Sup 5

1+ 1/}
sup ¢(x) < .

Since H3 C BUC?, the supremum norm is controlled by the H? norm and ¢/ is thus an

opensetin H3 ., x R. We aim to use Theorem D.1. Proposition 2.10 verifies Hypothesis A

in this theorem, while Section 3.2 and Proposition 3.5 together verify Hypothesis B. Here,
the local curve Cjoc bifurcates from (0,0) € OU. We have thus the following global

. . . 3
bifurcation theorem for (1) in HZ,,, and U.

Theorem 4.1. The local bifurcation curve Cio in Section 3.2 is contained in a curve of solutions
C, which is parametrized as

C={(ps,vs)]|0<s <o} cUNFL0)
for some continuous map (0,00) > s — (s, Vs). We have
(a) One of the following alternatives holds:

(i) (blowup) as s — oo,

1
dist((ps, vs), OU)

M(s) = |lpsll s + vs + — 00;
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(ii) (loss of compactness) there exists a sequence s, — 00 asn — 00 such that
sup,, M (sp) < 00 but (s, )n has no subsequence convergent in X.

(b) Near each point (ps,,Vs,) € C, we can reparametrize C so that s — (s, Vs) is real
analytic.

(c) (ps,Vs) & Cioc for s sufficiently large.

In this section, we use the integral identity in Proposition 2.2 to exclude the loss
of compactness scenario. An alternative route is to employ the Hamiltonian structures
for nonlocal problems in [7]. Even though the Whitham kernel does not fit into this
framework, a direct differentiation confirms that equation (43) in [7] indeed gives a Hamil-
tonian for the Whitham equation. We also study how M (s) blows up as s — 0.

4.1 PRESERVATION OF NODAL STRUCTURE We begin by showing that the nodal structure
is preserved along the global bifurcation curve.

Theorem 4.2. If (¢, v) € C C U, then p is smooth on R and strictly decreasing on the interval
(0, 00).

Proof- 'The property sup,cr ¢(z) < (1 4 v)/2 for (¢,v) € U implies smoothness on
R by Proposition 2.1(iv). Because in addition ¢ € HJ,,, is a solitary-wave solution with
parameter v > 0, we have that ¢ is non-increasing by Proposition 2.1(iii). In order to
apply Proposition 2.1(v) to conclude that ¢ is strictly decreasing on (0, 00) we only need
to establish that ¢ is non-constant.

The only constant solutions are 0 and v > 0 and the latter is excluded by the fact that
¢ € H? is a solitary-wave solution. To show that ¢(x) # 0, note that the linearization
L[0,v]: ¢ — (1 +v)¢p — K * ¢ on HZ,, is Fredholm of index zero for all v € T by
Proposition 2.10 and Ker L[0, V] is trivial. So, L0, v/] is invertible. The implicit function
theorem applies and prevents C from intersecting the trivial solution line. Hence, this

alternative cannot occur. ]

4.2 CoMPACTNESS OF THE GLOBAL CURVEC The following result rules out alternative (ii)
in Theorem 4.1(a).

Theorem 4.3. Every sequence (@, Vn)orq = (Ps,s Vs, Joey C C satisfying

sup M (s,) < oo

has a convergent subsequence in H3,.,, % (0, 00).
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Proof. Proposition 2.3 gives a locally uniform limit ¢ for a subsequence of functions ¢y,
The idea is to use Proposition 2.5 to show that ¢,, converges to ¢ in H3. We observe that
the assumption sup,, M (s,) < oo implies

sup ||¢nllgs < oo and inf v, >0,
n

where v, = ¢, — 1. Also, according to Corollary 2.4, ¢ inherits non-negativity, continuity,
evenness, boundedness and monotonicity from ¢,. More precisely, we have shown in
Theorem 4.2 that ¢, is strictly decreasing on (0, 00). So, ¢ is at least non-increasing on
(0, 00).

First, we verify that ¢, — ¢ uniformly. Because the sequence of functions ¢, is
uniformly bounded in H 3 it has a weak limit which coincides with the locally uniform
limit ¢. So ¢ € H?3. Since ¢ is in addition monotone on the real half-lines, we have
lim ;|00 ¢(x) = 0. Corollary 2.4(ii) now confirms the desired uniform convergence of
©n, to Q.

Next, for the L? convergence, we use the integral identity in Proposition 2.2. For each
n, on € BUC? and lim,| 00 ¢n(7) = 0. Hence,

R
lim / on(on — vp)dz = 0.
—R

R—00

Also, since v, > 0, the solitary-wave solution ¢,, has exponential decay according to
Proposition 2.1(ii) and we are allowed to write

/gpidx:l/n/gondx.
JR JR

Since sup,, ||¢n || gs < oo, the L? integral on the left-hand side is uniformly bounded in
n. Because inf,, v, > 0, the L! integral on the right-hand side is uniformly bounded as
well. Taking into account that lim ||, ¥ (2) = 0 uniformly in 7, we obtain

/cpidx:/ @2 dx + @2 dx
R |z|<Re |z|>Re

<[ eldoteswlpln
|z|<Re n

Asn — 00, we have f|$|<RE 02 dr — fI$I<Re % dx. Letting € — 0 confirms that
0, — @ in L.
Finally, we observe that sup,, M (s;) < oo also implies

sup on(x) < (14+1v,)/2 and supe(x) < (1+4+v)/2.
z€R z€R

All prerequisites of Proposition 2.5 are now checked and we have ¢,, — ¢ in H3. O
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4.3 AnALysis oF THE BLowuP Having excluded the loss of compactness alternative, we
examine the blowup alternative

1
dist((cps,us),é)U)) oo

where (s, vs) € C. In this case, for any sequence s, — 00 we can extract a subsequence
(also denoted {s;,}) for which at least one of the following four possibilities holds:

S§—00

i (s s + e+

(1) [|ps, [l 2 — o0,

(P2) vs, — o0,

(P3) vs, =0,

(P4) (1+vs,)/2 = sup,cg ps, () = 0,
where (P3) and (P4) belong to the case when dist((¢s,,, Vs, ), 0U) — 0.
Theorem 4.4. The alternatives (P2) and (P3) cannot occur.

Proof. Alternative (P2) cannot occur since the definition of U and Proposition 2.1(viii)
imply thatv,, < 1.

To exclude alternative (P3), we assume v;, — 0 as n — 0o. Any locally uniform limit
(¢, 0) solves (1). Moreover, ¢ is bounded, continuous, and monotone; see Proposition 2.3.
Proposition 2.2 gives

ilgfgo(x) <0<supp(z) or @=0.
xT

Because ¢ is non-negative, we must have ¢ = 0. In particular, lim |, ¢(z) = 0. In
virtue of Corollary 2.4(ii), ¢s,, — 0 uniformly and now according to Remark 2.6, ¢, — 0
in O* for any k, which implies that 5, — ¢ in Hin for all n > 0 and that (ps,,, Vs, )
reenters any small neighborhood of (0, 0) in H3 x (0, c0). This cannot happen in light of
Theorem 4.1(c) and the uniqueness of Cjo¢ given by Theorem 3.3. ]

Next, we show a useful characterization for when the H® norm stays bounded.

Lemma 4.5. By possibly taking a subsequence of (s, , Vs, )oe1, we have vs, — v > 0 and
Ys, — @ locally uniformly asn — oo. Then, inf,, vs, > 0. Moreover,

1
v and lim ¢(z) =0.

sup ||@s, |3 < oo ifand only if sup p(x) <
n z€R

Proof. The existence of such a subsequence is given by Proposition 2.3. Since Theorem 4.4
has excluded (P3), we must have v5, — v > 0, which also implies that inf,, v5, > 0.
We focus on proving the last statement. The proof of Theorem 4.3 already gives that
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sup,, ||¢s, || s < oo implies o € H?, thus sup,cp () < (14 v/)/2 by Proposition 2.1
(v) and lim,| o (7)) = 0. Conversely, assume on the contrary that there exists a
subsequence of functions g, such that ||¢s, || g3 — 00 asn — oo, yet its locally uniform
limit ¢ satisfies sup,cg () < (14 v)/2 and lim,| o @() = 0. Then,  is smooth
by (iv) in Proposition 2.1. Also, Corollary 2.4(ii) gives 5, — ¢ uniformly, so @5, () — 0
as |z| — oo uniformly in 7. Similar to the proof of Theorem 4.3, we get

Vsn/ s, do = / <p§n dx g/ gpzn d:c+e/ s, dz,
R R |z|<Re R

where € and R, are independent of n. Rearranging gives

2R,

1 2R,
[ punda < [t des 2 e (@) < ,
R Vs, — € J|z|<R. " Vs, —€ zcR Vs, — €

where sup,cp ¢2 () < 1 because v5, € (0,1]. Recall that inf,, v5, > 0. Choosing
€ = inf), vy, /2, this shows sup,, ||¢s, || 1 < 00. It follows that the sequence of functions
¢, is uniformly bounded in L? and arguing as in the proof of Proposition 2.5 gives the
uniform boundedness in H?, which is a contradiction to the assumption. O

We can now establish the following equivalence.
Theorem 4.6. (P4) and (P1) are equivalent.

Proof Let (s, , Vs, )72 1 be a sequence satisfying (P4). By possibly taking a subsequence,
Proposition 2.3 gives that s, — ¢ locally uniformly and v5, — v, where v > 0 as we
have excluded (P3). Since each ¢, is even and strictly decreasing, (P4) is the same as

. 1+ vs,
dim | === =5, (0)| =0,
which is equivalent to
1+v
0) = .
p(0) = —;

By Lemma 4.5, this implies (P1). For the other implication, let (s, , Vs, )22, be a sequence
satisfying (P1). We also have that ¢s, — ¢ locally uniformly and v, — v > 0.
Once again by Proposition 2.3 and Corollary 2.4, ¢ solves (1) with parameter v > 0
and is continuous, bounded, even, and ¢ is non-increasing on (0, 00). Then, the limit
lim ;|00 ¢ () exists. According to Corollary 2.4(i), this can take the value

(@ lim p(z)=0 or (b)| lim p(z)=v > 0.

|z[—00 z|—o00
In addition, Proposition 2.2 says
@) inf p(z) <v <supp(z), B)p=0 or (OQp=v>0.

z€R
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The combinations (aC) and (bB) are quickly excluded. If ¢ = 0, then sup,cp p(z) <
(1 4+ v)/2 and Lemma 4.5 gives that sup,, [|@s,, || 73 < 00, which contradicts the blowup
alternative. This rules out (aB). The fact that ¢ is non-increasing on (0, 00) rules out (bA).
Assume (bC), which is just (C). Then, we arrive at a contradiction as follows. Consider the
sequence of translated solutions 7,,, ¢s,, = s, (- + Zy ), where each x,, is chosen in such
a way that

v

©s, () = U, where 0 < I < inf %

n

Such a number 7 exists because v5, > 0 cannot limit to 0. Moreover, lim, oo T, =
00, or we cannot have ¢ = v > 0 for every x while each ¢, has exponential decay.
Corollary 2.4(iii) applied to (74, ¢s,, )n gives a bounded, continuous and non-increasing
locally uniform limit ¢. The function ¢ is a solution to (10) with parameter v. Its limits
P(x) as © — %00 are guaranteed to exist and these can take the value zero or v > 0. By
construction,

¢(0) = hrrln @5, (0+a) =7 € (0,v),
which implies

xgrjloogo(x) =v and mlbngo o(z) =0.

On the other hand, this also shows that ¢ is not a constant function, implying

0= inf ¢(x) < v <supp(z) =v,
z€R z€R

which is a contradiction. We conclude that (C) cannot occur. Hence, we must have

lim p(z) =0 and in&(p(x) < v < supy(x),
TE

|z|—o0 z€R

where the first condition is the same as (P4). Applying Lemma 4.5 gives the desired implica-
tion. UJ

Remark 4.7. This in fact implies that C satisfies ||ps|| 3 — o0 and (1+v5)/2—sup,, ¢s(x)
— 0 as s — 00, without the need for considering subsequences.

Finally, since (P1) and (P4) are equivalent, (P2) and (P3) cannot happen and the blowup
alternative must take place, we must have a sequence (g5, , Vs, )52, C C such that

Jim l@s, || 73 = oo and Jim v, =v > 0.

By taking the limit of a subsequence, an extreme solitary-wave solution ¢ attaining the
highest possible amplitude (1 + v/)/2 is found; see Figure 1.

Theorem 4.8. There exists a sequence of elements (s, , Vs, ) € C, such that
lim ||@s, ||z =00  and  lim v, =v > 0.

n—oo n—oo

The sequence of solutions ps,, has a locally uniform limit . We have
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(i)  is continuous, bounded, even and non-increasing on the positive real half-line;
(ii)  is a non-trivial solitary-wave solution to (10) with parameter v > 0;
(iii) p(0) = (1 + v)/2 and more precisely

1
Cilalt < =22 — p(a) < Colal?, (20

near the origin and for some constants 0 < Cy < Cy;
(iv)  is smooth everywhere except ar x = 0;
(v) @ has exponential decay.

Proof. Existence has already been shown. According to Proposition 2.3, there is such a
locally uniform limit ¢. Statement (i) is immediate from Corollary 2.4(ii). Statement (ii)
follows from the proof of Theorem 4.6, as we have shown that

lim ¢(x) =0 and in]%cp(:r) < v <supy(x).
Tre

|z| =00 zeR

Statement (iii) is Theorem 4.6 and the estimate (21) for ¢ near the origin is Proposition
2.1(vi). Together with ¢ being non-increasing on (0, 00), we have p(z) < (14 v)/2if
x # 0. Proposition 2.1(iv) applies and gives statement (iv). Statement (v) follows from
Proposition 2.1(ii). [l
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A FREDHOLMNESS OF PSEUDODIFFERENTIAL OPERATORS
Let z* = (20, ) € R? and
X*={2* e R%|zp > 0,2 #0}.
Similarly, let £* = (&, &) € R? and

B = {€" € R?|£& > 0,¢" #0).
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We define
S= {(.To,l',fo,f) € RQ X R2|.’If% + |‘KI‘A|2 = 68 + |£|2 = 1,$0 > 0750 > 0}7

and denote the relative closure of S in X* x E* by S and the boundary of S by T".
Let A be the class of functions A(z*,£*) € C°°(X™* x E*) such that A is positively
homogeneous of degree 0 in * and £*, that is,

Az*, %) = Az \¥) = A(a*,€%), A > 0.

Clearly, each A € A is uniquely determined by its values on S. Conversely, each function
Ae C® (g) can be uniquely homogeneously extended to X* x E*. So, A = C* (S)
By 5'94, we denote the set of symbols p4(x, ) which are given by

pa(z, &) = A(L, 2, 1,€),

forsome A € A. Forpy € 594, we have the following result, which combines Theorems 4.1
and 4.2 in [27].

Proposition A.1. Let j € R. Ifpa(w,&) € SY and A(z*,£*) # 0 on T, then
pa(z,D): HY — HI

is Fredholm with Fredholm index

indps(z,D) = %(arg Az, €7)

F)’

where arg A(x*, £*)|p is the increase in the argument of A(x*, &*) around T as T is traversed
with the counter-clockwise orientation.

We comment that a version of Proposition A.1 is available for matrix-valued symbols

pa(x,§); see [27, Section 4].

B CENTER MANIFOLD THEOREMS

B.I A NONLOCAL VERSION OF THE CENTER MANIFOLD THEOREM Nonlocal nonlinear
parameter-dependent problems of the form

Tv+N(v,u) =0, (22)

where

To=v+ K xv,

are considered in the weighted Sobolev spaces H 9 5 (R™) for some 17 > 0, positive integers
n and j = 1. The following presentation focuses on dimension n = 1 and arbitrary
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regularity j > 1. T will be referred to as the linear part and A as the nonlinear part
of (22).

To obtain an appropriate modification of equation (22), we introduce the space of
uniformly local H J functions,

= {v € Hipe[ ol gy < 00} where ol g = sup lo(- + )l -

Note that the embeddings H/ C H} C H 7 , are continuous for all 7 > 0. Next, let
X : R — R be a smooth cutoff function satisfying

L zf<1 /
x(x) = and sup [x' (z)] < 2.
x(@) {Q Y sup ' (2)

In addition, let @ : R — R be a smooth and even function with

> b(x—j)=1, suppfC[-1,1], 6(x)>0, 9([0,;})c[1 1],

JEZ 2
so that
O(x — / Olx —y—j)dy = 1.
yeR geZZ
We define
v [ X0C 9ol 0 — g dy
and then

X‘S:vr—>6~x<§>, 0> 0.

The cutoff operator ¥ : Hin — Hlj1 is well-defined, Lipschitz continuous and Hx(v)HHg
< Cpforallv e H”. »- Lemma 2 in [25] proves these claims for j = 1 and an asymmetric
function € with suppf C [—1/4,5/4]. Generalizing to higher regularity j > 1 and
verifying the results in [25] with our choice of € are straightforward. The scaled cutoff
operator Y H’, — H}, naturally inherits these properties, in particular % (v)|| < Cod

forallv € H - The modification of equation (22) is

Tv+N°(v, 1) =0, (23)

where
N (v, 1)« (v, ) = N(XC (0), )

For & € R, 7ev = v(- + &) denotes the shift by £. Regarded as an operator on Hin
or H, 7¢ is bounded with || 7¢|| ;i i S exp(n€) and ||7¢|| i gy = 1.
-n -n
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Also, we let Q: H’. , — H I , be a bounded projection on the nullspace Ker 7 of T
with a continuous extension to H”. :)1, such that @ commutes with the inclusion map from
Hj_n toHin,,forall() <n <n.

Hypothesis B.1 (The linear parc 7).
(i) There exists g > 0 such that K € L7170.

(ii) The operator ' 4
T:v—=v+ K x*wv, HJ_H%H]_W

is Fredholm forn € (0,1n0), its nullspace Ker T is finite-dimensional and
ind T = dim Ker T,
where ind T is the Fredholm index of T In other words, T is onto.

Remark B.2. Hypothesis B.1(i) gives boundedness of 7 on Hin forn € (0,m0); see
Section 2.4. The original assumption IC € I/an’1 in [24] is only used to guarantee item (ii).
Since the Whitham kernel K ¢ W,71’1, we instead require (ii) directly.

Hypothesis B.3 (The nonlinear part ). There exist k > 2, a neighborhood U of 0 € H 7 -
andV of 0 € R, such that for all sufficiently small 5 > 0, we have

(i) NY: Hin XV = Hin isEr. In addition, for all non-negative pairs (¢, m) satisfying
0 < k¢ <n < mny DING: (HJ_C)Z — H]_77 is bounded for all 0 < I < n < ng
and 0 < | < k, and Lipschitz continuous in v for 1 <1 <k — 1 uniformly in 1 € V;

(i) NO(rev, 1) = TeNO(v, ) forall jp € V and € € R;

(iii) N°(0,0) = 0,D,N?(0,0) = 0 and as § — 0,

61(6) = szHznvaé = O3+ |u)).

In dimension n > 1, a symmetry is a triple (p, 7¢, k) € O(n) x (R x O(1)), where
the orthogonal linear transformation p € O(n) acts on v(x) € R™ while 7¢ and & act on
the variable 2 € R. In particular, a symmetry (p, ¢, &) is called equivariant if (p, 7¢, k) €
O(n) x (R x {Id}), and reversible otherwise. Lemma 2 in [25] and the fact that 6 is even
give the invariance of X under the whole group O(n) x (R x O(1)) for n = 1, that is,
X2 (yv) = vx (v) forall vy € O(1) x (R x O(1)).

Hypothesis B.4 (Symmetries). 7here exists a symmetry group S C O(1) x (R x O(1))
which contains all translations on the real line and which commutes with the linear part T as
well as the nonlinear part N, that is,

T(yv) =v(Tv) and N(yv,pu) =N (v, p),  forally € S.
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We state the equivariant parameter-dependent center manifold theorem. Even though
the hypothesis on K is changed, the proof is the same.

Theorem B.s. Assume Hypotheses B.1, B.3 and B.4 are met for equation (22). Then, by possibly
shrinking the neighborhoodV of 0 € R, there exist a cutoff radius § > 0, a weightn* € (0,10)
and a map

U KerTxVCHin* XR%KerQCHzn*
with the center manifold
MY = {vo + P(vo,p) |vg € Ker T, p € V} C Hzn*,
as its graph. The following statements hold:
(i) (smoothness) U € C*, where k is as in Hypothesis B.3;
(ii) (tangency) ¥(0,0) = 0 and D, ¥(0,0) = 0;

(iii) (global reduction) M consists precisely of functions v such that v € H 4 .y solution
of the modified equation (23) with parameter |i;

(iv) (local reduction) any function v € ];Iljl solving (22) with ||U||H] < Cy0 is contained in
M#;

(v) (translation invariance) the shift T¢ by § € R acting on MY induces a j1-dependent flow
®¢: Ker7T — Ker T
through ®¢ = Q o 1¢ o (Id +¥);

(vi) (reduced vector field) the reduced flow Py is of class €* in vo, i, & and is generated by
a reduced parameter-dependent vector field f of class €%~ on the finite-dimensional
Ker T;

(vii) (correspondence) any element v = vy + W (vg, ) of MY corresponds one-to-one to a
solution of

d’UO

d
T = floo, ) = 2 Q)

12:0)

(viii) (equivariance) Ker T is invariant under S and Q can be chosen to commute with all
v € S. Consequently, U commutes with~ € S and M is invariant under S. Finally,
the reduced vector field [ in item (vi) commutes with all equivariant symmetries and
anticommutes with the reversible ones in S.
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B.2 CENTER MANIFOLD THEOREM FOR AN AUGMENTED PROBLEM In this section, we
prove a center manifold theorem for a system consisting of the nonlocal equation (22) and
its linearization at (v, 1), that is,

Tw + DN (v, p)w = 0. (24)

More precisely, we study
T(v,w) + N(v,w, u) =0, (25)

where the linear part is
T: (v,w) = (T, Tw) = (v+ K *xv,w+ K*w),
and the nonlinear part is
N: (v,w, ) = (N (v, 1), DuN (v, p)w).
We consider the modified system
T(v, w) + N (v, w, 1) = 0, (26)

with
N° (v, w, 1) = (N (v, 12), DN (v, p)w),

where A°(v, 1) is defined in the previous section. Observe that we only cut off in v,
which allows capturing all solutions of the linearized equation (24). This requires yet
another adaptation of the center manifold theorem, where the usual contraction principle
is replaced with a fiber contraction principle.

Theorem B.6. Assume Hypotheses B.1, B.3, B.4 and let Q be the same projection as in Theorem
B.s. For (25), there exist a cutoff radius § > 0, a weight n* € (0,m0), a neighborhood V of
0 € R and two mappings

Uy: Ker7T xV — KerQ C Hin*,
with the center manifold
Mg = {vo + ¥1(vo, p) | vo € Ker T, p € V}
as its graph, and at each fixed element v = vo + W1 (vo, i) € M 4,
Uy lvg, p]: Ker T — Ker Q,

with graph
Mo 2[vo, 1] = {wo 4+ Walvo, ] (wo) |wo € Ker T} .

The following statements hold.
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(i) Mo 2[vo, p] consists precisely of the solutions to the modified linearized equation T w +
DUN(S(’U, ww = 0atv=vy+ Vy(vg,p) € M&l and the problem

Tw + DN (v, p)w =0 with Qu = wy

has a unique solution for each wy € Ker T.

(i1) My | coincides with My in Theorem B.5 and all siatements in this theorem hold for M .
In particular, if v = vy + W1 (vo, u) € My | is sufficiently small in the H, norm, so
that v solves the original equation (22) with parameter 1, then w € Mo 2[vo, 1] solves
the linearized equation (24) at v.

(iii) We have Walvy, jt] = Dy W1 (vo, ). Consequently, Wolvo, 1] is a bounded linear
map, U5[0,0] = 0 and Uy is €1 in (vo, ).

(iv) The shift T¢ acting on Mo 2| -, 1] induces a flow
Goe: Ker T — Ker T

t/w’oug/) ‘1)2’5 =Qo T¢ © (Id +\I’2[T§UO, ,U,])

(v) The reduced flow @y ¢ is of class CF=1 in vy, p, € and boundedly linear in wo. It is
generated by a reduced parameter-dependent vector field g of class €*2 in (vo, p) and
boundedly linear in wy.

(vi) Any elementw = wo+Va|vy, p|wo of Mo 2[vo, 1] corresponds one-to-one to a solution

! d d
w
——2 = g(vo, wo, ) = ~—Q(Tpwo + ‘I’z[vao,/i}(wao))’

x dx =0

We have g(vo, wo, ) = Dy, f(vo, ) wo.

We will use the following fiber contraction theorem in the proof; see Section 1.11.8
in [12].

Proposition B.7. Let X and Y be complete metric spaces. Consider a continuous map A: X x
Y = X x Y of the form
A((E, y) = ()‘1 (I’), A2(1.7 y))a

where \1: X — X and \y: X x Y — V. If \1 is a contraction in X, andy — \o(x,y) is
a contraction in Y for every fixed v € X, then \ has a unique fixed point (xo,y0) € X X Y.

Proof of Theorem B.6. We present the necessary changes in the proof of the center manifold
theorem in [24] without the parameter p. The transition to the parameter-dependent
version is the same as in [24].
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In view of Hypothesis B.1(ii), the operator T = (7, T') is Fredholm and its Fredholm
index is twice the index of 7. We define the Fredholm-bordered operator

T: (H.,)? = (H?, x Ker T)?

with

T: (v,w) — (Tv, Tw) == (Tv, Qu, Tw, Qu).
By Lemma 3.2 in [24], T is invertible for any 7 € (0, 79) with

T =7 L7, and |T° < C(n),

1
HHJ_ n—>HJ_ "
where C is a continuous function of 7). We define the bordered nonlinearity
3 5 5
N (Uy w, Vo, ’UJU) — (N (U)7 —vo, DUN ("U)’UJ, —”LU())-

Due to Hypothesis B.3, K° is continuous in (v,w) € (HZW)Q. The bordered equation
becomes . 5

T(Ua w) +N (1}, w, Vo, ’IU()) =0.

Applying T~ on both sides, then moving the nonlinear term to the right-hand side, we
obtain a fixed point equation

(v, w) = 1! (Na(v,w,vg,w()»

= 8% (v, w, vo, wp).

Let vg and wg be fixed. We apply Proposition B.7 with A = SlandX¥ =Y = Hin.
Continuity of S? in (v,w) is clear in view of Hypothesis B.3(i) and Theorem B.s already
shows that the first component of S° is a contraction mapping for appropriately chosen
cutoff radii § > 0 and weights 7 € (0,70). Now, let v be fixed in the second component
of S9. Hypothesis B.3(iii) together with N H]_77 — H]_77 being €F for k > 2 imply
that
sup DA ()]
vEH’ " B

=0(), asd—0.

J
’W‘}H*U

This gives
DN (v)wy — DUN(S(v)wQHHj Sollwr —wall
-n -n

Choosing 0 sufficiently small, the second component is a contraction mapping on H: J " for

each fixed v. By Theorem B.7, there exists a unique fixed point (v, w) = \i/(vo, wy) for
each prescribed v and wy:

(v,w) = ‘i’(’l)o, wp) = (vo + ¥1(vg), wo + Yalvoe](wp)),
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where Qv = vy, Qw = wg and ¥;: Ker7 — Ker O fori = 1,2. Item (i) is thus
established.

Item (ii) follows from the uniqueness of My and the fact that Xé(v) = w if the
H{ norm of v is sufficiently small. Since elements of Mg 1 are precisely solutions of the
modified equation 7v + N?(v) = 0, we insert v = Qu + ¥ (Qu) into the equation and
differentiate with respect to v. This gives that

w = Quw + D‘Iﬁ(Q’U)Qw = wo + DUO\Ifl(vo)wo
is a solution of the modified linearized equation 7w + D, 0 (v)w = 0. Since
Dy W1 (vg)wo € Ker Q,

we get Q(wg + Dy ¥ (vo)wp) = wp. By uniqueness of a solution w for each Quw = wy,
we obtain Walvg] = Dy, W1 (vp). The remaining claims in (iii) are straightforward in view
of (ii) and Theorem B.s. It follows from Hypothesis B.4 that 7¢ o N = NP0 T¢, which
after a differentiation gives

Te (Dv./\/'é(v)w) = DN (1ev) Tew.

Then, reasoning as in [24] validates statements (iv)—(vi), except for the last claim g(vg, wp)
= Dy, f(vo)wo. This is shown by plugging 7,w = (Id +D,,¥1(7,v0))7zwo into the
reduced vector field ¢ in (vi), and then identifying the result with

Dyof =Dy (Qo 7y 0 (Id+T7)).

O]
C COMPUTATION OF THE COEFFICIENTS W
We wish to solve
TWa00 = =T Y101 = 1, (27)
T\I’HO = —27-\11011 = 2%, (28)
T o0 = 22, (29)

subjected to the condition Q(W;;,) = 0 forall i 4+ j + k > 1. This condition is imposed
for unique solvability of W;;1; see the proof of Theorem 3.1.

Using the fact that multiplication by 2™ corresponds to n-times differentiation on the
Fourier side, we have

0 if n is odd

K "Adr =
(x)x ’ {(_1)n/2m(n)(0) if n is even.

R
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Now, we can compute the convolution of K and monomials 2", where n € N. For
instance, K * 1 = 1 and

/RK(y)(fv—y)dyZx/RK(y)dy—/RyK(y)dyzx-(K*l)—ozx,

where [p yK (y) dy = 0 because the integrand is odd. Utilizing the binomial theorem to
expand (x — y)" together with symmetries of the integrands, we arrive at

22— /RK(y)(x — y)2 dy = m”(0), (30)
o~ [ K@) ) dy =30 0)a, G1)
o' = [ K@) =)' dy = 6m"(0)a* — m(0) (52)

To solve (27), we are motivated by (30) and make the Ansatz Wagg = ax? — Q(ax?),
where subtraction by Q(ax?) is to make sure that Q(Wagg) = 0. Since Q(ax?) = 0 for
all @ € R, it can be removed. Plugging the Ansatz into (27) yields

T\IIQOO == am"(O) = 1.

Since m”(0) = —1/3, @ = —3 necessarily. In conclusion, Wagg = —3x2. The linear
equations (28) and (29) are solved in a similar way. We summarize the results below.

2 2
Vi1 = 327, Wopp = —3z7,
1 19
W10 = —22° Voo = —5z' + —a
’ 2 1077
3
\11011 =X .
D A GLOBAL BIFURCATION THEOREM

Let X', Y be Banach spaces and i/ C X’ x R an open set. Consider the abstract operator
equation
F(p,v) =0,

where F': U — ) is an analytic mapping. The following is a version of Theorem 6.1 in [11]
which has been slightly modified to better fit the situation in the present paper. The proof
remains the same.

Theorem D.1. Assume

(A) for all (p*,v*) € U N F~Y0), the Fréchet derivative D, F (p*,v*) is Fredholm of

index zero;
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(B) there exists a local curve of solutions Cioc with a continuous parametrization (0,1') > v*
— (@i, V%), so that

Cloc = { (@5, ") [0 < v* <V} cUNFH0)
and
lim_(.,0%) € AU,

v*—0t

as well as

DoF(py.,v*): X — Y is invertible for all (¢}, ") € Cioc.

Then, Cioc is contained in a curve of solutions C, which is parametrized as
C={(psvs)|0< s <o} cUNF0)

Jfor some continuous map (0,00) > s — (ps,Vs). The global curve C has the following
properties.

(a) One of the following alternatives holds:

(i) (blowup) as s — oo,

1
M(s) = lloslla + lvs + o — 00;

ist((¢s, vs), OU)

(ii) (loss of compactness) there exists a sequence s, — 00 as . — 00 such that
sup,, M (syp) < 00 but (s, )n has no subsequence convergent in X.

(b) Near each point (ps,,Vs,) € C, we can reparametrize C so that s — (s, Vs) is real
analytic.

(©) (@s,vs) & Cioc for s sufficiently large.
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Solitary waves in a Whitham equation
with small surface tension

Mathew A. Johnson" Tien Truong" Miles H. Wheeler*

Abstract

Using a nonlocal version of the center manifold theorem and a normal form
reduction, we prove the existence of small-amplitude generalized solitary-wave solu-
tions and modulated solitary-wave solutions to the steady gravity—capillary Whitham
equation with weak surface tension. Through the application of the center manifold
theorem, the nonlocal equation for the solitary wave profiles is reduced to a four-
dimensional system of ODEs inheriting reversibility. Along particular parameter
curves, relating directly to the classical gravity—capillary water wave problem, the
associated linear operator is seen to undergo either a reversible 0> (ikq) bifurcation
or a reversible (is)? bifurcation. Through a normal form transformation, the reduced
system of ODEs along each relevant parameter curve is seen to be well approximated
by a truncated system retaining only second-order or third-order terms. These trun-
cated systems relate directly to systems obtained in the study of the full gravity—
capillary water wave equation and, as such, the existence of generalized and modulated
solitary waves for the truncated systems is guaranteed by classical works, and they are
readily seen to persist as solutions of the gravity—capillary Whitham equation due to
reversibility. Consequently, this work illuminates further connections between the
gravity—capillary Whitham equation and the full two-dimensional gravity—capillary
water wave problem.

I INTRODUCTION

In this paper, we consider the existence of small-amplitude solitary-wave solutions of the
gravity—capillary Whitham equation

U + (Mg,d,Tu + u2)$ =0, (@)

"Department of Mathematics, University of Kansas; mat john@ku . edu
fCentre for Mathematical Sciences, Lund University; tien.truong@math.lu.se
jtDepartment of Mathematical Sciences, University of Bath; mw2319@bath.ac.uk
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where here M 4 7 is a Fourier-multiplier operator, acting on the spatial variable , defined
via its symbol

tanh(d¢) > 1/2
— .

Here, u(z,t) corresponds to the height of the fluid surface at position z € R and time
t, g is the gravitational constant, d is the undisturbed depth of the fluid, and 7" > 0
is the coefficient of surface tension. This symbol is precisely the phase speed for uni-
directional waves in the full gravity—capillary water wave problem in [27, 35]. In the
absence of surface tension, that is when T = 0, equation (1) is referred to as the gravity
Whitham equation, or simply the Whitham equation, and was introduced by Whitham

mg.a7(§) = ((g + T¢€?)

in [35, 34] as a full-dispersion generalization of the standard KdV equation. In the case
T = 0, the bifurcation and dynamics of both periodic and solitary solutions of (1) have
been studied intensively over the last decade by many authors. It has been found that
many high-frequency phenomena in water waves, such as breaking, peaking and the famous
Benjamin—Feir instability, which do not manifest in the KdV or other shallow water, are
indeed manifested the Whitham equation. See for example [6, 14, 12, 11, 15, 21, 20] and
references therein.

Given the success of the Whitham equation it is thus natural to consider the existence
and dynamics of solutions when additional physical effects are incorporated. In this work,
we will concentrate on the existence of solitary-wave solutions! of (1) with non-zero surface
tension 7' > 0.

It is straightforward to see that the properties of mgy 4 7 depend on the non-dimensional
ratio

T
T=—
gd*’
which is referred to as the Bond number. In the full gravity—capillary water wave problem,

it is known that the existence of solutions depends sensitively on whether 7 € (0,1/3) or
T > 1/3, referred to as the weak- and strong-surface tension cases, respectively. Indeed,

@)

in the case of strong surface tension the full gravity—capillary water wave problem admits
subcritical solitary waves of depression, i.e. asymptotically constant traveling wave solutions
with a unique critical point corresponding to an absolute minimum. See, for instance,
[1, 2]. Here, “subcritical” means the speed of the traveling wave is strictly less than the
long-wave speed m 4 7(0) = \/gd. If the traveling wave’s speed is greater than \/gd, it
is said to be supercritical. In the small surface tension case, however, considerably less is
known about the existence of truly localized (e.g. integrable) solitary waves. It is known,
however, that for small surface tension there exist generalized solitary waves, sometimes
referred to as solitary waves with ripples. These correspond to bounded solutions of (4) which
are (roughly) a superposition of a solitary wave and a co-propagating periodic wave with

"Note that the bifurcation and dynamics of periodic waves has been previously studied in [13, 22, 26].
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Figure 1: Illustration of a generalized solitary-wave solution (left) and a
modulated solitary-wave (of elevation) solution (right). The arrow indicates the
direction of travel, that is, ¢ > 0.

significantly smaller amplitude?®. See [31, 5, 32, 29, 30]. In particular, note that generalized
solitary waves are not, in fact, solitary waves in the traditional sense since they are not
asymptotically constant at z = F00. It is also known that there exist modulated solitary
waves, which are bounded solutions of (4) with a solitary-wave envelope multiplying a
complex exponential. See, for instance, [25, 23, 7]. Specifically, we note that [7] proves the
existence of geometrically distinct multipulse modulated solitary waves with exponential
decay. Illustrations of both generalized and modulated solitary waves can be seen in Figure
I

Unfortunately, many of the existence proofs described above for the full gravity—capil-
lary water wave problem rely fundamentally on classical dynamical systems techniques,
requiring, in particular, that the equation governing the profile of the traveling wave be
recast as a first-order system of ordinary differential equations. Such techniques seem
at first glance to not be applicable to the gravity—capillary Whitham equation (1) due to
the nonlocal operator M 4 7. However, [16, 17] recently derived a generalization of the
classical center-manifold theory that is applicable to a wide class of nonlocal problems,
and this was further extended in [33] to an even wider class of nonlocal problems which,
as we will show, includes (1). With this in mind, the primary goal of this paper is to
use a nonlocal version of the center manifold theorem and a corresponding normal form
reduction to establish the existence of small amplitude generalized solitary and modulated
solitary-wave solutions to the gravity—capillary Whitham equation (1) in the small surface
tension case. While such solutions were recently shown to exist in [26], this work relies
on direct implicit function theorem techniques. Our goal is to attempt to establish similar

2We allow for the possibility of an asymptotic phase shift in the periodic wave between = —o0 and
T = +00.
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results using a center-manifold reduction technique.
To begin our search for solitary waves, we note that a straightforward nondimensionaliz-
ation converts (1) to

w -+ <M7u + u2) =0 (3)

xT

where now M is a Fourier multiplier with symbol

taunh(f))l/2
5 )

and 7 > 0 is the Bond number defined in (2). Making the traveling wave Ansatz u(z, t) =
¢(x — ct) in (3) and integrating yields the (nonlocal) stationary profile equation?

e (€) = ((1 L re?)

Mo —cp+¢* = 0. (4)

The profile equation (4) has received several treatments in recent years and theoretical
frameworks for studying them are expanding. Existence results for (4) include periodic
waves by Hur & Johnson [22] in 2015 and Ehrnstrém, Johnson, Machlen & Remonato [13]
in 2019, solitary (e.g. integrable) waves for both strong and weak surface tension by
Arnesen [3] in 2016, solitary waves of depression for strong surface tension 7 > 1/3 and
subcritical wave speed ¢ < 1 by Johnson & Wright [26] in 2018, as well as generalized
solitary waves for weak surface tension 7 € (0,1/3) and supercritical wave speed ¢ > 1
also by [26]. Each of these known results use either the implicit function theorem and a
Lyapunov—Schmidt reduction or appropriate variational methods.

In this work, we utilize instead an approach based on the recent nonlocal center mani-
fold reduction technique developed by Faye & Scheel [16, 17] and further refined by Truong,
Wahlén & Wheeler [33]. Aswe will see, this set of techniques provides a unified approach for
proving existence of both periodic and solitary waves for (4). The nonlocal center manifold
theorem bears resemblance to its classical local counterpart, that there exists a neighborhood
in a uniform locally Sobolev space where the nonlocal equation is equivalent to a local finite-
dimensional system of ODEs. After this reduction, tools for ODEs can be applied to find
an approximate solution and then to investigate its persistence. Provided the solution is
sufficiently small in the uniform local Sobolev norm it qualifies as a true solution to the
original nonlocal equation. So, previously mentioned small-amplitude waves are likely to be
included in the center manifold. However, this framework does not fit nonlocal equations
from hydrodynamics. To remedy this, Truong, Wahlén & Wheeler [33] have extended this
result to a larger class of nonlocal equations. They also demonstrate the strength of this
reduction technique and exemplify how to extract qualitative information on the solutions
from the reduced ODE, which they use to construct an extreme solitary wave for the gravity
Whitham equation. This reduction technique is also available for local quasilinear problems

[9].

3Note that thanks to Galilean invariance, one can without loss of generality take the constant of integration

to be zero. See Remark 5.2 for more details.
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Remark 1.1. As noted above, the nonlocal center manifold theorem developed in [16, 17]
does not directly apply to the profile equation (4). Indeed, one of the hypotheses of
Faye & Scheel’s result is that both of the functions* F~1(m_ ') and 9, F ~!(m-1) are
integrable and exhibit exponential decay, which are highly non-trivial properties. While
the exponential decay and integrability of 7! (m_1) was recently established in [13], this
reference also unfortunately shows that 9, F ~(m;!) is not an integrable function. By
carefully considering the methodologies used in [16, 17], Truong, Wahlén and Wheeler
were recently able to circumvent this difficulty in [33], where they present a refinement of
the result in [16, 17] which does not rely on the integrability of F~!(m;!)". The authors
explain the purpose of this hypothesis is to establish the Fredholmness of the linearized
operator obtained by linearizing (4) about ¢ = 0. Fortunately, this can be checked
directly by other means for equations of the form (4), which is one of the achievements
of the refinement [33]. It is technically this refinement which we use in our analysis. For
comparison, we note that such properties of F~!(m1) are not needed in the implicit
function theorem approach used by Johnson & Wright [26].

We now provide an outline of the paper, as well as state the main results. We begin in
Section 2 by inverting the operator M in (4), thereby recasting the profile equation into
the form studied in [16, 17, 33]. We then study the equation

tanh(§)\'*
¢ ) e=o

which gives solutions to the linearized equation of (4) about the trivial solution ¢ =

mel€) — e = (14 7€)

0. By writing c™2 = a, 7¢”2 = f3 and rearranging the terms, the above equation is
recognized as the well-known linear dispersion relation for purely imaginary eigenvalues in
two-dimensional capillary-gravity water wave equations, modeling the motion of a perfect
unit-density fluid with irrotational flow under the influence of gravity and surface tension in
finite depth: see, for example, the works of Kirchgissner [28], Buffoni, Groves & Toland [8],
Amick & Kirchgissner [2] and Diass & looss [10]. These classical bifurcation curves in
the (3, «)-plane naturally guide us in selecting two parameter curves where, restricting
ourselves now to the case of small surface tension 7 € (0,1/3), we expect generalized
solitary-wave and modulated solitary-wave solutions could be found: see Figure 2 below.
We further establish a key Fredholm property for the associated linearized operator in
Section 3 which is required for the application of the center manifold theorem.

With this preliminary linear analysis completed, we then turn towards applying the
nonlocal center manifold theorems from [16, 17, 33] to the profile equation (4). These
results, as mentioned before, reduce the nonlocal profile equation considered here to a
local ODE near the equilibrium and provide an algorithmic method of approximating the
local ODE. We often refer to this local ODE as the reduced ODE. For completeness, we

“Here and throughout, F denotes the Fourier transform. For the specific normalization used here, see
equation (5) below.
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state the general center manifold theorem from [33] in Appendix B, and we apply it in
Section 4 along both bifurcation curves in the (/3, «)-plane of interest.

In Section 5 we approximate the reduced ODE near the bifurcation curve where gener-
alized solitary-wave solutions are expected to be found as a result of an 02 (ikg) reversible
bifurcation.

Up to a standard normal form reduction, rescaling and truncating the nonlinearity,
this ends up being almost identical to the normal form equation obtained by Iooss &
Kirchgissner in [24] in their analysis of the full gravity—capillary water wave equations.
In particular, the truncated reduced ODE in this case admits an explicit family of small
amplitude generalized solitary-wave solutions which are then shown to persist as solutions
of (4) by a reversibility argument. Putting this all together establishes our first main result.

Theorem 1.2 (Existence of Generalized Solitary Waves). For each sufficiently small v € R,
there exists a family of generalized solitary waves to the gravity—capillary Whitham equation
with wave speed ¢ = 1 + (i and T < 1/3, given by

3 1/4_1/2),11/2
p(z) = §|M|p1/2sech2 <pa\/2l'u|x +g

+ [lk! 2 cos ((ko + O()z + O, + O(w)) + O(u?p'/?),

(1 —sgn(p)p'/?)

where O, € R /217 is arbitrary, o0 = (1/3 — T)fl, p = 1424k, kg > 0 is such that
mr(ko) = 1, and k = O(|u|~172%) for any x € [0,1/2).

It is interesting to note that the above allows for an asymptotic phase shift in the
cosinus term between 22 = —oc and & = o0 of order O(p'/*|p|'/?). Further, after a
Galilean change of variables, all the generalized solitary-wave solutions found above may
be seen to have supercritical wave speed ¢ > 1: see Remark 5.2 below for details. Note,
however, this result does not establish that some waves have asymptotic oscillations which
are exponentially small in relation to the solitary term as in Johnson & Wright [26]. On
the other hand, we are able to allow for a more general asymptotic phase shift between
T = %o0.

In Section 6 we analogously treat the bifurcation curve in the (3, &)-plane where
modulated solitary waves are expected to be found as a result of a Hamiltonian-Hopf
bifurcation, also known as an (is)? bifurcation. By computing the necessary center manifold
coeflicients and performing the appropriate normal form reduction, we again find the
results from [25] applicable, thus establishing our second main result.

Theorem 1.3 (Existence of Modulated Solitary Waves). Fix s > 0 and set

2 52 n S ! o2 1 n 1
07 \ 2sinh?(s) ~ 2tanh(s) R 2sinh?(s)  2stanh(s) )’
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so that ¢y ?(1 + 1) sinh(s) = scosh(s). Then, for p < O sufficiently small, there exist
two distinct modulated solitary-wave solutions to the gravity—capillary Whitham equation with
amplitude of order O u|1/ 2), surface tension 7o and subcritical wave speed co + 1 < 1. More
precisely, the modulated solitary-wave solutions are described asymprotically via

-8
pl) =\ = 1 sech(yaor ) cos (52 + O. + O(l'?)) + O(#), 6. € 0,7},
1

which have an asymprotic phase shift between x = —oc and x = 0o of order O(|p|'/?). Here,
the coefficients qo and q are

2 4o+ me(25) 71+ 8(1 — o)

do = _m//(s)’ q1 = m;{(s) )

and are both negative.

The solutions constructed in Theorem 1.3 correspond to (distinct) modulated solitary
waves of elevation (O, = 0) and depression (0, = 7). Note that Figure 1 depicts a
modulated solitary-wave solution of elevation.

Remark 1.4. As mentioned above, the center manifold methodology used here provides a
unified approach for proving existence of both periodic and solitary waves for (4). Conse-
quently, one could continue the above line of investigation to establish the existence of
other classes of solutions as well including, for instance, the subcritical, small amplitude
solitary waves of depression in the case of large surface tension 7 > 1/3 constructed in
[26]. This specific case is very similar to the gravity Whitham equation studied by Truong,
Wahlén and Wheeler [33] and is thus excluded here.

This paper provides further connections between the model equation (1) and the two-
dimensional gravity—capillary water wave problem. It also exemplifies the application of
nonlocal center manifold reduction in existence theory. A natural continuation of this
paper could be to investigate the existence of multipulse modulated solitary-wave solutions
as in [7], as well as bifurcation phenomena in other parameter regions.

Notation The following notation will be used throughout this work.

— For o € R, we define the o-weighted L spaces

I = {f:R—MR. /R|f|pw§dx}.

Here the weight function w, : R — R is positive and smooth. Also, w, is constantly
1on [—1,1] and equals exp(o|z|) for |z| > 2.
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— Similarly, we define the weighted Sobolev spaces
wr = {f: R—>R]f<”> € Lb, for0<n<m}.

We have the natural inclusions WP C WP whenever 01 < 03. For p = 2, we
denote the Hilbert space Wg”’Q by H.

— The non-weighted Sobolev spaces are denoted by W™ P and the special case wm2
is denoted by H™.

— The uniformly local H™ space is

HY = {f: R R fllmp < 0o} with [|fllmp :=sup || £(- +9)llm(o1)-
yeR
— We use the following scaling of the Fourier transform:

FIE = 1) = [ f@ep(-is)de and  Flgla) = 5-Fy(~a)
(s)

2 THE OPERATOR EQUATION

In this section, we begin our study of the nonlocal profile equation (4). Observe that since
m is strictly positive on R, the operator M is invertible on any Fourier based space. We
denote the inverse of M, by £, defined via

Lo (€) = (€, (&) =ma(&) 7"
In particular, the profile equation (4) can be written in the “smoothing” form
= Ky xp+ Ko " =0, ()

where here K, := F 1/, denotes the convolution kernel corresponding to the operator
L. Observe that (6) is similar to the profile equation for the gravity Whitham equation
(i.e. (1) with T' = 0), but now with a nonlocal nonlinearity.

As we seek small amplitude solutions of (6), we begin by linearizing (6) about ¢ = 0
which, after applying the Fourier transform, yields the equation

(1 —cel-(€))0(8) =0,

which we seek to solve for non-trivial v € L?(IR). This motivates considering the equation

1—cl:(§) =0, ie ¢&cosh(§) = <cl2 + ;§2> sinh(&). (7)
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By setting

1 T

o = ? and B = g,

equation (7) is recognized as the well-known linear dispersion relation for purely imaginary
eigenvalues in the two-dimensional water wave equations in finite depth: see, for example,
[27, 35]. The importance of (7) in finding solutions to the gravity—capillary water wave
equations was recognized by Kirchgissner [28], followed by a multitude of other papers
(see e.g. [2, 10, 24, 8]). Looking at the bifurcation curves in the (3, «)-planes for the

classical gravity—capillary water wave problem, it is natural to expect the following:

* that modulated solitary-wave solutions may be found as a result of a Hamiltonian—
Hopf bifurcation, when crossing the curve

1 1
— + ,
2sinh?(s)  2stanh(s)

i , SE[0,00)}

c:={(5.0) |5 -

S S
= +
@7 2sinh?(s) | 2tanh(s)

from below;

o that generalized solitary-wave solutions may be found as a result of an 0%* (ik)
bifurcation, when crossing the curve

03:{(5,a)\ﬂ§%anda:1}

either from above or below. Here, kg € R satisfies equation (7) for a fixed 8 along
Cs;
e and that solitary-wave solutions of depression may be found as a result of an 0%
bifurcation, when crossing the curve

C4z{(6,@)‘ﬂ2%anda:1}
from above.

There is an additional curve C in the (3, «)-plane along which one may expect the
existence of multipulse solitary waves [8]. The argument in [8] uses the Hamiltonian
structure of the full water wave problem. While equation (1) exhibits a variational formu-
lation in the form investigated by Bakker & Scheel [4], its smoothing form (10) below does
not. As m, does not have an L' Fourier transform, using results in [4] would therefore
call for a careful examination and adaptation. Thus, it is more appropriate to consider this
bifurcation phenomenon in a separate paper and we will not comment further regarding
(1. See Figure 2 for depictions of the curves C'1, Ca, C3 and C in the (3, )-plane.
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173 ;

Figure 2: Sketch of the bifurcation curves C', Cz, Cs and Cy along with zeros
of the function 1 — ¢/, (&), which is the same as those of (a + 3¢2) sinh (&) —
& cosh(§). Here, dots and crosses represent algebraic multiplicity one and two,
respectively.

It is illustrative to understand what these curves mean in terms of the physical (7, ¢)
parameters. For example, crossing (5o, ) = (5o, 1) € C3 corresponds to studying (6)
for f = fpand o« = a9 — i = 1 — fi for some | /1] < 1 which, in terms of 7 and ¢, gives

1
T:ﬁoc(2)<§ and ¢=cy+ p with ¢g =1 and |p| < 1. (8)

Thus, crossing the curve C3 corresponds to waves with weak surface tension, while the wave
speed is nearly critical. Likewise, crossing a point (o, o) € C3 from below corresponds
to studying (6) with 5 = By and @ = ap + i with 0 < i < 1 which, in terms of 7 and
c gives

/

T:BOC(Q) and ¢ = cg + pu, with co:aalzand 0< —pkl. (9)

Since ap > 1, it follows that 7 € (0, 1/3), i.e. the surface tension is again weak, and the
speed ¢ is subcritical. By similar reasoning, crossing the curve Cy from above corresponds
to strong surface tension, i.e. 7 > 1/3, and subcritical speeds. Note that in this work,
we focus only on bifurcation phenomena connected to the curves Cy and C3. The 02+
bifurcation along Cj, as one might expect, resembles the one already covered in [33] for the
gravity Whitham equation and is thus excluded here.

As mentioned previously, we approach the above bifurcation phenomena for the non-
local profile equation (6) by following the center manifold reduction strategy in [16, 17, 33].
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To this end, we rewrite (6) as

Te+N(p,p) =0, (10)

which is now of the structural form studied in Faye & Scheel [16, 17], where here
T:o—=@—coKrxp and N: (SOaM)HKT*(tp2—Mg0).

Since 7 is fixed, the subscript 7 will be dropped for notational convenience. Our goal
is to study the operator equation (10) for parameters T, cg satisfying (8) corresponding to
crossing Cs, as well as for 7, ¢q satisfying (9) corresponding to crossing C. The first step
of this analysis is to understand the linear operator 7, which we now turn to studying.

3 THE LINEAR OPERATOR T

Fix 7 € (0,1/3). As preparation for our forthcoming bifurcation analysis, and following
the general strategy in [16, 17, 33], in this section we study the linear operator’

T:p—=9o—coK ¢, HEW%HEW,

for n > 0 along the two parameter curves (8) and (9). Note that 7 is precisely the
linearization of (10) about the trivial solution o = 0 and, as such, it is crucial to understand
the Fredholm and invertibility properties of 7 along the curves C' and C3. Key to this
analysis is an understanding of convolution kernel K. The relevant properties are detailed
in the following result.

Proposition 3.1. 7he convolution kernel K is even. Moreover, we have
(i) the singularity of K as |x| — 0 is
1

7
2T

tim /[l K () =

(i) K has exponential decay as |x| — oo, that is
|K(2)| S exp(=nlz])  for [z >1,
where ) < n < n* = min{l/\/7,7/2}.

For a proof, see Ehrnstréom, Johnson, Machlen & Remonato [13, Theorem 2.7]. An
immediate consequence is that K € L}7 forn € (0,7*) and hence, by a straightforward
application of Young’s inequality, that for such 7 the linear operator

. 175 5
T:H2, — H2,

Recall that since 7 is fixed, for convenience the corresponding subscript will be dropped from K and

lr.
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is bounded regardless of the choice of ¢g. A proof of this claim is found in [33] but is
repeated here for the readers’ convenience. We estimate

el 5 [ ([ Kot ay) exp(-2nfel) gz
S/R</RK(y)<P(:v—y)dy)QeXp(—%x—yl+277|y|)d$
=/R</RK(:U)eXp(77IyI)-w(w—y)exp(—nlw—yl)dy)2d$

- H(K-exp(nl D) = (W'GXP(_M'))‘ ;

< IKI3 - lgle -

This establishes that 7 is bounded on L?, . Using that

d

d
I —— (K *xp)=Kx* (dx”(p)’ foralln >0,

the boundedness of 7 on H® , readily follows. Note that the works [16, 17] additionally
require K’ € L1 which, by Proposmon 3.1, does not hold in this case. Next, we follow
Truong, Wahlén & Wheeler [33] and study the Fredholm properties of 7 using theory for
pseudodifferential operators in non-weighted Sobolev spaces H° from Grushin [18] (see
also Appendix A).

To this end, we fix 7 € (0,7*) and consider the conjugated operator

T=M"‘'oToM, H°’— H®

where M : H® — H En is multiplication with the strictly positive function cosh(n-).
Noting that conjugation by M preserves Fredholmness and the Fredholm index, we may
establish the desired Fredholm properties of 7 = M o T o M~ acting on the weighted
space H® , by studying the operator T acting on the non-weighted H°. These latter
properties are established by following the work [18], where the author relates the pseudo-
differential operator 7 acting on H® to a positively homogeneous function A and deter-
mining the winding number of A around the origin. The relevant details are summarized
in Appendix A.
By direct calculation, the symbol of T is seen to be

tH(x,6) = 1 — cop (2) (€ — in) — cop—(x)0(€ +in),
where ¢+ (7) = exp(£nx)/(2 cosh(nz)). In particular, note that
lim ¢1(z) =1 and lim ¢ (z) =0
{ lim ¢ (z) =0 and lim ¢_(z)=1.

T—00
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Following [18], we define the positive, homogeneous degree-zero function
[ x g
A 33(),37,6[),& =1 (a )
( ) zo &o
for z,& € Rand z¢, & > 0 and study A acting on®

gxg:: {(x07x7£07£)€R4’x%+x2:£(2)+£2:17 .’IJ()ZO, 5020}

According to Proposition A.1, the linear opertaor T is Fredholm provided that the function
Ais smooth in S} x S! and nowhere vanishing along the boundary I' of SL. x S1, which
can be decomposed into the arcs

Li={ (0,1,&,6)]&&+&=1,&2>0}
Ty ={(0,-1,60,8) | & +& =1,&% >0}
Iy ={ (0,2,0,1) |af+2° =120 >0}
Ty = {(z0,,0,—1) |2} + 2> = 1,29 > 0}.

Further, the Fredholm index of T is precisely the winding number of A as I' is traversed
in the counter-clockwise direction, that is

(0,-1,0,1) «—— (0,1,0,1)

BT

(0,-1,0,—1) — (0,1,0, —1).

As such, it is important to locate the roots of the function 1 — ¢ when the parameters
T, cg correspond to crossing the bifurcation curves Cj and Co. This motivates the following
Lemma.

Lemma 3.2. The multiplier (: C — C is analytic in the complex strip |Im z| < n*, with n*
as in Proposition 3.1. Moreover, there exists a possibly smaller strip |Im z| < 7] in which the
Sfunction 1 — col: C — C has precisely the zeros

(i) ko, —ko, 0, and O counting multiplicities for some ko > 0, when T and co are as in (8),
(ii) s,s,—5 and —s counting multiplicities for some s > 0, when T and cq are as in (9).
See Figure 3.

Proof. See Corollary 2.2 in [13] for the analyticity of £. Item (i) can be found as Lemma 2
in [2] and item (ii) can be found in Section IV in [28]. O]

SNote A may be extended by continuity down to g = 0 and {n = 0.
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0 S

Figure 3: The multiplier ¢of for (8) (left) and for (9) (right).

With this preliminary result, we are now ready to prove the main result of this section.

Theorem 3.3. For each n) € (0, min{n*,n}) and choice of parameters T, cy satisfying either
(8) or (9), the linear operator T : H in — H iﬁ is Fredholm with Fredholm index four. For
each set of parameters, its nullspace Ker T is four-dimensional, given by

Ker T = span{l, z, cos(koz), sin(koz)} (12)
if T, co satisfy (8), and
Ker 7T = span{cos(sx), z cos(sz),sin(sz), z sin(sx) } (13)

if T, co satisfy (9).

Proof. Letn € (0, min{n",7}) be fixed. Following the outline above, we first verify the
Fredholmness of 7" by showing that A is non-vanishing on I'. To this end, recall that

¢ ! = )" C
(2) = (1 + 722 tanh(z)) y FEL

Along I'; we have §g = /1 — &2 and hence for (0,1,&,£) € 'y with & # 0, i.e.
& # £1, we have, recalling (11),

I U S Y (I S
A(071,§o,€)—$3%+t<movm>_1 E(ﬁ ")‘

To evaluate at the end points (0, 1,0, 1) and (0, 1,0, —1), it is equivalent to compute the
limit of £(¢ — in) as ¢ — oo and & — —o0, respectively. A calculation gives

A€ + 4 (cosh®(¢') — 1+ cos?())?
A+ T @2 F P2+ @7Em)?  cosh®(2€)) — cos’(2n)

o' +in)|* =
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in in

£/

______>________

:_R —kg kO R :_R —S S R
L )_i/r] L )_in

Figure 4: The rectangular contour I' in Theorem 3.3. It consists of the arcs
{¢ £in : [¢| < R}and {£R +i¢ : |{| < n}. The left picture illustrates
the case (8) and the right illustrates (9). Here, dots and crosses represent zeroes
of 1 — ¢pl(&) with multiplicity one and two, respectively.

which implies that |[¢(¢" £ in)| — 0 as |¢'| = oo. Consequently, A(0,1,0,+1) = 1. By

similar calculations, we find

1—col \/f_?fin , onTy\{(0,1,0,£1)}

Ao, 7,80,8) = 41 — ¢l \/I’i?—kin . onDy\ {(0,—1,0,41)}

1, on '3 UTy.

In view of Lemma 3.2, A is smooth and nowhere vanishing on I" = U?:J‘j and hence
Proposition A.1 implies that 7 is a Fredholm operator, as desired.

Next, we compute the Fredholm index of the operator 7~ by computing the winding
number of A along I' transversed in the counter-clockwise direction (as described above).
Setting &' = &£(1 — €2)7Y/2 for || < 1 we see that traversing from (0, 1,0, —1) to
(0,1,0,1) along I’y corresponds to considering 1 — col(£ —in) as &' varies from £ = —o0
to & = oo, while traversing from (0, —1,0,1) to (0, —1,0, —1) along I's corresponds to
considering 1 — col(&' + in) as &' varies from £’ = 0o to § = —oo. Further, since A is
constant along I'3 and I'y, traversing along these arcs does not contribute to the winding
number of A along I'. To compute the winding number, choose 7, ¢ to satisfy either (8)
or (9). Let R > 0 be strictly larger than the corresponding values kg > 0 or s > 0
from Lemma 3.2, and consider the rectangular contour I' g with vertices at (£ R, £in): see
Figure 4. The winding number of A along I is in fact the limit of the winding number of
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1 — col along I'p as R — oo. The latter is computed via
27 Jrp 1 — col(z2) 2mi —r1—col(& +in) _r 1 —col(€ —1in)

T el (R+i() col' (=R + i)
+/ 1 —col(R+1iC) de - / 1 —col(—R+ i) C)

Since 1 — ¢/ is analytic, it follows from Lemma 3.2 and the residue theorem that the above
integrals sum to exactly four. Noting that the last two integrals vanish as R — o0 since
[{(£+R+1i¢)| — 0 and [¢'(£R +i¢)| — 0 as R — oo and || < 7, the winding number
of A around I is four. Proposition A.1 now gives that the Fredholm index of T, and hence
that of 7, is indeed four.

Finally, it remains to characterize the kernel of T acting on H in when 7 and ¢y satisfy
either (8) or (9). Observe here that the equation 7f = 0 with f € LQ_n can not be
studied directly by the Fourier transform since the Fourier transform of such f is not a
tempered distribution. To this end, we argue along the same lines as [33, Proposition 2.9]
and consider instead the range of 7: L7 — L2, which is the adjoint of T7: L2, — L2,
under the L?-pairing. The Fourier transform of the range equation 7 f = g in L2 1s
precisely

(1 —col(§)Ff(E) = Fg()-
In view of Lemma 3.2, it follows that the range of 7 on L2 consists of functions g whose

Fourier transforms vanish on the zero set of 1 — ¢ol(&). If 7, ¢g satisfy (8), it follows from
Lemma 3.2 that the range of 7 acting on L% consists of functions ¢ that satisfy

Fg(0) = (Fg)'(0) = Fg(£ko) = 0

or, equivalently,
/ 1-g(x)dx = / x-g(r)de = / exp(Fikox)g(x) dx = 0.
R

By duality, such 7, ¢y the kernel of 7 acting on L? y 18 given by (12), which clearly also
belongs to H

Similarly, 1f T, o satisfy (9) then Lemma 3.2 implies that the kernel of T acting on L%
consists of functions ¢ satisfying

Fg(£s) = (Fg)/(&£s) =0

or, equivalently,

/ exp(tisx)g(x)dr = / x - exp(tisz)g(x) dz = 0.
R R

Again by duality, this shows that the kernel of 7 on L2, is given by (13), which again
belongs to Hin. O
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4 CENTER MANIFOLD REDUCTION

We use a nonlocal center manifold theorem, originally introduced in [16] and later adapted
in [33] to account for the non-integrability of K”. For completeness, the general result used
here is recorded in Appendix B. In this section, we apply this general result to the nonlocal
profile equation (10) together with the modified equation

To+N(p,p) =0, (14)

where
N, 1) = N(x (), 1)

and \° : H E?] — HY is the nonlocal and translationally invariant cutoff operator defined
in (38) in Appendix B. In particular, x° maps ¢ € Hin to a ball of radius C'§ in H?, the
space of uniform locally H® functions, with norm

lellgs = sup (- + )l a5 o))
teR

More precisely, there exists a constant C' > 0 such that

by = {1 g < €9
0 if |l¢[lgs is sufficiently large

and hence for |||z < C'6 we have N?(p, 1) = N (g, ). Then, such small solutions
of (14) are also solutions of the original profile equation (10). Furthermore, note that since
H?3 is continuously embedded in H Eﬂ forall ) > 0, the operator X also serves as a cutoff
in the H 517 norm as well. For more details, see Appendix B.

A central ingredient of the center manifold reduction is the construction of a bounded
projection Q : H i?] —H in onto Ker 7, which could be any bounded projection having
a continuous extension to H in and commuting with the inclusion map from H in to H° W
forall 0 < n’ < 7. Since the nonlocal profile equation (10) is invariant under all spatial
translations, a specific choice of Q simplifies the computations significantly. Indeed, from
Theorem 3.3 we know Ker 7 has dimension four and hence, keeping generality for the
moment, we may take

Ker 7 = span {ey, €2, €3,€e4}

for appropriately chosen, linearly independent functions e;. Follow the recommendation
in [16], we aim to choose a projection Q: HEn — Ker T

Q: o Ae; + Beg + Ces + Dey,

which relates the coefficients A, B, C'and D to ¢(0), ¢'(0), ¢”(0) and ¢"(0) via a transi-
tion matrix .7

T ((0), £'(0), ¢"(0), ¢"(0)) = (4, B,C, D).
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Using that Q¢ = Q2¢, a straightforward computation yields

61(0) 62(0) 63(0) 64(0)
o _ | €0 &(0) es0) e0)
ef(0) e3(0) e5(0) €/(0)
el'(0) €3'(0) e3'(0) €f'(0)

When the parameters 7, ¢g satisfy (8), Ker 7 = span{1, x, cos(kox), sin(koz) } according
to Theorem 3.3 and the transition matrix with respect to these basis functions is

10 k? 0
(o1 o ko?
% - 0 0 _ko_2 0 b (IS)
00 0 —k°
which gives the explicit choice
_ -2 n / -2 m
Qip(w) = (#(0) + kg 2¢"(0)) + (#(0) + k5 20" (0)) @ ”

— kg 2¢"(0) cos(kox) — kg 3" (0) sin (ko).

Similarly, when 7, ¢g satisfy (9) we have Ker T = span{cos(sz), z cos(sx), sin(sx),
xsin(sz)}, and the transition matrix with respect to these basis functions is

1 0 0 0
10 —1/2 0 —(2s)7!
=10 30290 0 @)t | (17)
5/2 0 (25)~1 0
which gives the explicit choice
1 / ]‘ "
Qup(z) = p(0) cos(sa) ~ (5/(0) + 55"(0) ) cos(so)
i / L 1 ) : <5 i " > .
+ (23(’0 (0) + 5537 (0) ) sin(sz) 4+ 290(0) + 5. (0) ) x sin(sz).

(18)

Remark 4.1. Our analysis up until this point holds in any space H, with m > 1 and
the choice of space H En is made here. The projections Q1 and Qg are required to have
a continuous extension to Tnfl. Because these involve pointwise evaluation of ¢, we

need at least m — 1 = 4 which explains the choice H in'

Lastly, the shift operator ¢ — (- + t) will be denoted by S;. We are in position to
apply the nonlocal center manifold theorem to equation (10).
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Theorem 4.2. There exist a neighborhood V of 0 € R, a cutoff radius 6 > 0, a weight
n < min{n*, 7} and a map

U:R*xV —KerQC H’,
with the center manifold
MY = {Aey + Bey + Cez + Dey + W(A, B,C, D, ) | (A, B,C, D) € R*}

as its graph for each |1 € V. Here, Ker T = span{e; }?:1 and functions e; are taken to be
as in Theorem 3.3 for the given choices of T, co. The following statements hold:

(i) (smoothness) U is €*;
(ii) (tangency) ¥(0,0,0,0,0) = 0 and D4 g c,p)¥(0,0,0,0,0) = 0;

(iii) (global reduction) M} consists precisely of solutions p € H En with parameter |4 to the
modified equation (14);

(iv) (local reduction) any @ solving (10) with parameter | and || || ms S 0 is contained in

%M’.
() (correspondence) o € M1" if and only if it solves the ODE
@""'(t) = g(T(p(t),¢' (), " (1), " (1)), 1), (19)
where
9(A,B,C, D, 1)
= ;; (Ael(x) + Besy(z) + Ces(z) + Des(z) + ¥(A, B,C, D, ,u)(a:)) .

and T is the transition matrix 7 in (15), Ta in (17) for (8) and (9), respectively;

(vi) (reversibility) equation (10) possesses the translation symmetries Sy and a reflection sym-
metry Rp(x) == p(—1x), meaning

TSp=STy and N(Sp,u)=SN(p,u)

if S is St or R. Equation (10) is thus reversible; so is the modified equation (14) and the
reduced ODE (19) in item (v).

Proof. We use the nonlocal center manifold theorem from [33], which for completeness
is stated in Theorem B.5. Hypothesis B.1 on the linear operator 7 has been verified in
the previous section and, further, Hypothesis B.3 for the nonlinearity ¢ — ¢? in H m, for
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m > 1 was verified in” [17, 33]. Using that convolution with K isa bounded linear mapping
on H EW it follows that Hypothesis B.3 holds for our nonlocal nonlinearity ¢ +— K * 2 as
well. Note that the regularity k > 2 in Hypothesis B.3 is arbitrary for N in (14), possibly
at the cost of a smaller cutoff radius  and > 0. Forthcoming computations with the
reduced ODEs motivate the choice of k = 4, which we now take. Finally, the symmetries
in item (vi) above are easily checked, using that equation (10) is steady, that the cutoff x°
commutes with both R and S}, and that K is an even function. It follows that Theorem B.s
applies directly to the present case, giving statements (i)—(iv) and (vi).

It remains to prove the claim in (v) above. To this end, let ¢ € //lé‘ and note that,
since Theorem B.5(vi) implies that .#}' is invariant under translation symmetries, we have
Spp € A} forall t € R. Consequently, there exist functions A(t), B(t), C(t) and D(t)
defined for all t € R such that

Sip(z) =A(t)er(z) + B(t)ea(x) + C(t)es(x) + D(t)es(x)
+W(A(®), B(1), C(1), D(t), o) (x).

(20)

for each t € R. Noting that the left-hand side of (19) can be rewritten as

d4
mepy — M t - g
PO =" @) =S|

differentiating the identity (20) four times in = and evaluating at = 0 yields precisely the

right-hand side in (19) with A(¢), B(t), C(t) and D(t). Statement (v) is now proved by

using the transition matrix .7 to rewrite (19) in terms of p(t), ¢'(t), ¢ (t) and "' (t).
O

Remark 4.3. The above proof shows that the projection coefficients A(t), B(t), C(t) and
D(t), defined by the shift action S; on ¢ € ///éL, are in fact Hin functions in ¢ because

(A(t), B(t),C(t), D(t)) = T (o(t), ¢ (1), " (1), " (1)), tER.

Here, .7 is the transition matrix 7] for (8) and 7 for (9).

In the next sections, we will verify our main results Theorem 1.2 and Theorem 1.3 by
studying the reduced ODE equations for (14) for appropriate values of of the parameters 7
and Co.

S EXISTENCE OF GENERALIZED SOLITARY WAVES

We now establish Theorem 1.2 by deriving and studying the reduced ODE for equation (14)
for 7, ¢ satisfying (8). First, we assume that ¢ € .} is so small in the H? norm

7Technically, the hypothesis was verified in [17] in the case m = 1, and then later extended to m > 1 in
(33].
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that it is a solution of (10). Expanding the reduced function ¥ in A, B,C, D and p,
and then substituting into (10) gives the reduced ODE up to second-order terms. We
observe from the linear part of the truncated ODE that we have a reversible 02 (ikq)
bifurcation and then apply normal form theory for this bifurcation phenomenon. It turns
out that equation (19) at leading orders is almost identical to the reduced ODE for the two-
dimensional gravity—capillary water wave equations in this parameter region. Theorem 1.2
is then established after a persistence argument.

5.1 THE REDUCED sYSTEM Recall that Remark 4.3 highlights how the projection coeffi-
cients A, B, C' and D may be interpreted as differentiable functions and, further, Theorem
4.2(v) suggests working with these rather than the ¢(t), ¢'(t), ¢” (t) and ¢"(t) directly.
Next, we Taylor expand the function ¥ up to second-order terms to obtain the following
truncated system of ODEs.

Proposition s.1. Equation (19) in terms of A, B, C and D is

dA
~ _B
dt
S8 W4, B,0.D. )" (0)
0
o .
a
dD 1
= _ "oy,
dt kOC k% (A,B,C,D,,U,) (O)

Moreover, with o = £"(0)™1 = 1/(1/3 — 79), we have

k3 4k3
n _ 2 _ 0 — 2A? 0
U(A,B,C,D, )" (0) = 20kiuA g,(ko),uC 20k A" + E’(kO)AC
-2 -1 _
) (30 Ao —4/15 oo 40> B
3
0" (ko) — 2¢'(ko)®  10kj
ok3 — °)BD (2)
+ < 0 0 (ko)2 (ko)
80(2ko)kg o\ o 82ko)KE | 5\ 12
otleko)fo g ~\ 00—y toky | D

+0 (I(A,B,C, D)| (1 + [AP +|BP +|CI* +|DP?)) .

Proof. Deriving equation (21) from (19) using the transition matrix .7 is straightforward.
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Indeed, simply note that (19) is equivalent to

A 0100 A 0
d| B | 0o010]|_,|B 0
#lec = o001 |D ||t 0

D 0000 D 9(A,B,C, D, 1)

Noting that, in this case,
9(A,B,C, D, i) = kgC + U (A, B,C, D, 1) (0),

a direct calculation shows that the above is precisely (21).

It remains to compute the asymptotic expansion (22). Specifically, we focus on compu-
ting the function ¥ (A, B, C, D, u)"" evaluated at # = 0 up to order two in A, B,C, D
and p1. According to Theorem 4.2(i), W is € in (A, B, C, D, ). Together with item (i)
in Theorem 4.2 and the fact that ¢ = 0 is a solution to (10) for all i € R, it follows that
the Taylor expansion of ¥ must be of the form

U(A,B,C,D, u)(z) = > U pgtmn () - APBIC' D™ - - -

2<p+q+i+m+n<3
n>1

where each Wp,i0m, 1 R — R belongs to Ker Q1 C Hin. It thus remains to compute
U (0) forp+ g +1+m+n = 2andn > 1. To this end, let ¢ € A and
|llgs < 0 and note by Theorem 4.2(iv) that ¢ solves (10). To conveniently group the

~

terms, we rewrite the left-hand side of equation (10) to have
Te+ 1d=T)(¢* - pp) = 0.

Since ¢ belongs to .}, we know that p(x) = Qip(z) + V(A, B,C, D, 1)(z), and
plugging this into the above equation gives

T(Qup+¥) + (1d=T)((Qip + ¥)* = p(Qup + W) =0,
Using that 7 Q;¢ = 0 by definition, the above can be rearranged as
TU +(Qup)? — 1Qup — T(Qup)? = — (=T (2(Qup) ¥ + ¥ — o).

where we note the right-hand side above consists of all terms that are at least cubic in
(A,B,C,D, ). Linear equations for the functions Wpgimy can now be read off easily,
and are recorded in Appendix C.1. Note that by the condition Q1 W, = 0, these
coefhicient functions W g,y are uniquely determined. Indeed, as seen in Appendix C.1, if
there are two solutions ¥y, and W1, then their difference must belong to Ker 7N
Ker 91, and hence must be zero. Further, we observe that symmetries can be used to greatly
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simplify the necessary computations. Indeed, note that the basis functions 1, x, cos(kox)
and sin(kox) are either even or odd and that the operators 7, Id —7 and Q; map even to
even and odd to odd functions. Consequently, as seen in Appendix C.1 the linear equations
for Wgimn involve either only even or odd functions and hence the solutions W,y are
also necessarily either even or odd functions. Since only even functions W,,q1,,, contribute
to W(A, B,C, D, )" evaluated at 0, equations for odd W,4,,,, may be disregarded. The
computations for ¥y, are detailed in Appendix C.1 and these give equation (22). [

5.2 NORMAL FORM REDUCTION We use normal form theory to study the reduced system
(21), which can be written as
dU
— =LU +R(U, ), (23)
dt
where U = (A, B, C, D), and L is precisely the linearization of (21) about the origin, that

1S,

01 0 O
00 0 O
L= 00 0 ko’
0 0 —ko O
and R is €™ in a neighborhood of (0, 0) € R* xR, satisfying R(0, 0) = 0 and DyyR/(0, 0)

= 0. The spectrum of L consists of the algebraically double and geometrically simple
eigenvalue 0, as well as the pair of simple purely imaginary eigenvalues £ikg. Further, we
note that the reflection symmetry Rp(z) = ¢(—z) on Ker T with respect to the basis
functions 1, x, cos(kox) and sin(kox) is

A+ B(—x) 4 C cos(—kox) + Dsin(—kox) = A — Bx + C cos(kox) — D sin(kox).
This shows that R restricted to Ker 7 is a linear mapping on R*, given by
R: (A,B,C,D) s (A,—B,C,~D)

and, clearly, R? = 1d. Further, by Theorem 4.2(vi), R anticommutes with L and R, that
is, RLU = —LRU and RR(U, 1) = —R(RU, p). Taken together, it follows that it is
natural to expect that the origin undergoes a reversible 02" (kg ) bifurcation for parameters
p sufficiently small. In this section, we use the corresponding normal form theory for such
bifurcations from [19, Chapter 4.3.1] to study (23) near the origin for p sufficiently small.
To begin, we note that the eigenvectors and generalized eigenvectors of L are given by

0

5(): 7€1: ,andC:

o O O
o O = O
== O
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which are readily seen to satisfy

L€0 = O) L{l = 505 LC = ikOCa
R& =&, R& = —&1, RC=C.

Based on the structure of L, throughout the remainder of this section R* will be identified
with R? x R2 where R? := {(C,C): C € C}. We are now in the position to directly
apply the normal form result [19, Lemma 3.5]. This result implies that there exist neighbor-
hoods V; and V5 of 0 € R2 x H@ and 0 € R, respectively, and a polynomial change of

variables

(24)

U =A& +B& +C(+ C(+ ®(A,B,C,C,p) (25)
defined in V; and Vs, which transforms the reduced system (21) into the normal form
dA
B
dt
& = P(A7|C| 7:U')+pB(A7B7 C7C7/J’) (2’6)

5 = *oC+iCQ(A, [CI%, ) + pc(A, B,C, C, ),

where P and @ are polynomials of degree two and one in (A, B, C, C), respectively. Here,
the function @ is €4, satisfying

$(0,0,0,0,0) =0, 8(A,B,C,6)(I>(070707 0,0)=0
CD(A7 7B7é7 C7 :U’) = R(I)(A7 B> Cvéu :u)
while the remainders pg and pc are € with
|pB(A5 B,C,é, ,u’)| + |pC(A’ B,C,é, :u’)| = 0((|A| + |B| + |C|)2)

For proof and more details, see [19, Chapter 4.3.1].
Let

P(A,|CI%, u) = pop + p1uA + p2A® + p3|CJ?
Q(A, |C*, 1) = qopt + q1A.

The scalar coefficients pg, p1, p2, 3, go and g1 are computed in Appendix D.1. Setting
o = (1/3 — 7)7 these calculations yield the normal form of (21) as

dA
E_B
dB
= 20uA - 2aA2—4a|C|2+o<|m2 (il + A +1C)) @)
dC
— A A
G = HIC+ GG = GaAC +O(CH (1l + 1Al + (PP,
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5.3 GENERALIZED SOLITARY WAVES Next, we consider the normal form system (27)
truncated at second-order terms, i.e.

dA
B
dt
dB
i 20 A — 20A% — 40|C|? (28)
dC i 21
— = ikoC — C AC.
a " T k)" ’ (ko)
The change of variables
1 3~ 3 ~
t=—w, A()=—-—=A(w), B(t)=—-——F-B(w),
7 (t) 5Aw) (t) 5 (w) (29)

C(t) = [ulk'/? exp(iO(t))

transforms (28) into the system (3.14) studied by looss & Kirchgissner in [24] in their search
for generalized solitary waves in the context of the full gravity—capillary water wave problem.
The only difference between our rescaled system and that studied in [24] is the coefhicients
of terms involving C, which is inconsequential. Note in [24] that the small parameter used
is -5 — 1, which corresponds to — in our case. Here, k is fixed but arbitrary. We observe
that

O'(t) = ko — 5 (’;0) +7 éO)A(t).

Equations (3.17)—(3.19) in [24] provide us with a one-parameter family of explicit solutions,
parametrized by k, of the rescaled truncated system given by

p1/4,u1/201/2w>
(30)

A(w) = —§(1 — sgn(u)p'/?) — |plp' *sech® < 5

B(w) = A (w).

Then, substituting A(t) = —3A(w)/2 into the differential equation for ©(t) gives

o(t) = O, + (kzo = 6/(’;0) + 6'?150) (1- Sgn(ﬂ)p1/2>> t

3\/§p1/4|,u|1/2 o p1/4|,u\1/201/2t
0'1/25/(1430) \/§ ’

where ©, € R\ 27Z is arbitrary and p = 1 + 24k.

It remains to see if the above family of solutions of the rescaled truncated normal-form
system persist as solutions of the full rescaled normal-form system. Luckily, the persistence
of (30) under reversible perturbations has received considerable treatment (see, for example,
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the work of Tooss & Kirchgissner in [24]). In particular, these persistence results are
summarized for €™ vector fields in [19, Theorem 3.10] and, in the present context, this
work guarantees that the family of explicit solutions (30) persists provided that

r= |k > v (p) = O(|uM?). (1)

In particular, note that since p is small the persistence condition (31) is effectively a lower
bound on the frequency k, corresponding to high-frequency oscillation in C.

Finally, we undo the above variable changes to return to the original unknown function
. Undoing (29) in (5.3) yields

Alt) =

1\9\‘:

3
(1= sgn(p)p"/?) + Slulp!/*sech® (

B(t) = A'(t),
C(t) = |u|k"? exp (i(ko + O(n))t + 6. + O()),

P A\ 22t
\/§ ’

while undoing the polynomial change of variables (25) in the above normal form analysis
yields

A(t) = ()+(9(u2 12), B(t) = B(t) + O(u*p'/?),

c) = <c+ C) + O(u2p"?). (32)

Recalling now that (16) implies A(t) = @(t) + kg 2¢"(t), C(t) = —kg2¢"(t) and
switching back to the original variable z, it follows that

p(x) = A(z) + C(z)
_ B0 ez (PR P 1/2
= 5 lulp™“sech < 7 + 5 (1 —sgn(u)p™’™)
k2 cos (Ko + O())z + O + O(u)) + O(up!/%).

Here, ©, € R/27Z is an arbitrary integration constant. Due to the hyperbolic tangent in
O, there is an asymptotic phase shift in the cosinus term between © = —o0 and z = o0 of
order O(p*/4|u'/?).

Provided the persistence condition (31) holds, the function ¢ above solves the modified
profile equation (14). For ¢ to be a solution to the original profile equation (10) with
parameter 4, it must additionally satisfy the smallness assumption [|¢[[f75 < 6. This can
be achieved by setting, for example,

k=Kk|u/~172%,  forsome x € [0,1/2) and some constant k' > 0.
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Indeed, under this condition the persistence condition (31) is clearly met and the functions
A, B, C, C have amplitude O(|u|'/>7*) which, in turn, implies that ¢, o', ", " are also
O(|u| 1/ 27"”) via (32) and (16). This bound is carried over to the fourth and fifth derivatives
by differentiating (19) twice (see [33, Theorem 3.3]). It follows from choosing p sufficiently
small that the H? norm of ¢ is small, and hence that ¢ is a solution to (10) with parameter
1. This establishes Theorem 1.2.

Remark s.2. When p1 > 0, (28) features an orbit which is homoclinic to the saddle equili-
brium (A, B) = (0, 0) once projected onto the (A, B)-plane. When z1 < 0, itis homoclinic
to (A,B) = (4(1+ p'/2),0), which is close to (0, 0). In the latter case, we point out that
this solution has supercritical wave speed. Indeed, equation (1) is invariant under a Galilean
change of variable

o o+uv, c—ec—2v, (1—c)?b— (1-¢)2?b+(1—c)v+12,

where b is an integration constant which doesn’t affect the critical wavespeed: see [22].
Putting v = 11/2(1 4 p*/?), the new wave speed is

0_2”:1+M—2-%(1+p1/2):1+Iu|p1/2>1.

To summarize, all generalized solitary-wave solutions in Theorem 1.2 have supercritical wave
speed ¢ > 1.

6 EXISTENCE OF MODULATED SOLITARY WAVES

The aim of this section is to prove existence of modulated solitary waves in (9). As for the
classical two-dimensional gravity—capillary water wave equations, the signs of two terms in
the normal form are to be determined — one of those terms will be of cubic order. Instead
of deriving the full reduced ODE as in Section 5, we only determine it roughly using the
symmetries. We then perform a normal form reduction and determine linear equations for
the relevant normal form coefficients. From these, it will be clear which center manifold
coeflicients are necessary. Throughout this section, we assume that the parameters 7 and

¢y satisfy (9).
6.1 NORMAL FORM REDUCTION As in Section 5, we will work with projection coeflicients

A, B, C, and D rather than ¢, ¢’, ¢"” and ¢"”. Using the transition matrix 5 from
Section 4 and proceeding along the same lines as the proof of Proposition 5.1, we find that
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(19) in this case is equivalent to the system

dA
— =B +sC
a + s
B 1
% = sD— S 5 W(4,B,C, D, )" (0)
40 S » (33)
— =-sA+D+ —V(A,B D
dt S + + 283 ( ) 307 )M) (O)
dD
& B
a
Letting U = (A, B, C, D), (33) can be rewritten as
dU
e LU +R(U, ), (34)
t
where here
0 1 s 0 0
10 0 0 s 1| —=sW(U, )" (0)
L=1_s 0 01| 2 ROM=35 (U, 1) (0)
0 —s 0 O 0

In particular, in view of Theorem 4.2(ii) the matrix L is precisely the linearization of (33)
about the trivial solution 0 € R*. The spectrum of L is readily seen to consist of a pair of
algebraically double and geometrically simple eigenvalues is and —is with corresponding
eigenvectors and generalized eigenvectors

1 1 0 0
0 — 0 1 — 1
CO - il CO - il Cl — 0 and Cl - 0 ;
0 0 i —i
that satisfy

(L—is)¢o =0, (L —is)C1 = (o,
(L+is)¢o =0, (L+1is)(1 = (.

As such, it is natural to expect that the system undergoes an (is)? bifurcation.

To analyze this bifurcation, observe that the set {(o, (1, (o, (1} spans R? x R2 ~ R4,
and that the reversible symmetry Ry (z) = ¢(—x) restricted on Ker 7 takes the form

R: (A,B,C,D)~ (A,—B,—C,D)
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with respect to the basis {cos(sz), x cos(sx), sin(sx), x sin(sz) }. Furthermore, the vectors

o and (; also satisfy

RCO = CT) and RCl = —a.
Normal form theory for (is)? bifurcations now asserts that there exists a polynomial change
of variable

U :ACO +BC1 +A7<0+B7€1+(I)(A,B,K,E,M),

where @ is a polynomial in (A, B, A, B) of degree 3, that transforms (34) into the normal
form A )
W A+ B4 iAP <|A|2, L (AB - AB)> + pa(A,B,A, B, 1)
B i
%t — isB+ {BP <|A|2, S(AB - AB)> (35)

+AQ (1A, J(AB ~ XB) ) + pu(A. BAB. ).

Here, the polynomials P and @ have degree 2 in (A, B, A, B). For details, see [19, Section
4.3.3] and, specifically, Lemma 3.17 in that reference.

6.2 MODULATED SOLITARY WAVES We now aim to consider the normal form system (35)
truncated at second-order terms. Let

i = — i _

P (IAR. 5(AB = AB)) = pojc-+ pi|A? + 22 (AB - AB),
. . (36)
1 — — 1 _ _

@ (IAP. 5(AB —AB)) = qoji+ AP + 2 (AB — AB).

The coeflicients go and ¢; are computed in Appendices C.2 and D.2,

2 4(—co +£(25)"H +8(1 — co)_l.

D= gy 0= 207(s)

One can check that this agrees with the formulas given in Theorem 1.3 by using that m(s) =
0(s)~1, £(s) = cg ' and £ (s) = 0. Moreover, g and q; are both negative because ¢y < 1,
col(2s) < 1while ¢”(s) < 0foreach s > 0asillustrated in Figure 3. Recalling that 4 < 0
in this case, the above puts (35) into the subcritical case considered by Iooss & Pérouéme
in [25, Section IV3]. Through the change of variables

A(t) = ro(t) exp(i(st + ©Oo(t))), B(t) = ri(t) exp(i(st + O1(t))),
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the normal form truncated at third order terms has explicit homoclinic solutions

—2
ro(t) = qf(”“‘sechmﬁqout),

r1(t) = |rol,
2p1\/qop
Oo(t) = pout — B tanh(y/qosit) + O,

0, -0 € {O,W},

(see [19, pp.217—223]). Here, po, p1 are as in (36) and ©, € R is an arbitrary integration
constant, resulting in a full circle of homoclinic solutions. However, only two distinct
homoclinic solutions persist under reversible perturbation, when ©, = 0 and O, = 7.
Tracing back to the original unknown ¢ and variable , we get

olz) = Wsech(\/@x) cos (sx +0 (|,u|1/2)) +0(u?),

and

p(r) = —4/ _Ezousech(\/@x) Ccos <s:z; +0 (|,u|1/2)) + O(1?).

The first solution ¢ is often referred to as a modulated solitary wave of elevation and
the latter is a modulated solitary wave of depression. We illustrate the elevation case
in Figure 1. Due to the hyperbolic tangent, there is an asymprotic phase shift of order
O(|p|*?) between 2 = —o0 and = = oo. Lastly, it can be shown that ¢, ¢, ¢” and "’
are of order O(|p|'/?) by arguing as in the previous section. The uniform locally Sobolev
norm ||| 5 can thus be made arbitrarily small, qualifying these as solutions to (10) with
parameters (9). This establishes Theorem 1.3.
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A FREDHOLM THEORY FOR PSEUDODIFFERENTIAL OPERATORS

In this appendix, we review a Fredholm theory for pseudodifferential operators developed
by Grushin in [18]. This theory is applied in Section 3 to determine the Fredholm properties
of the linear operator 7.
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Let 2* = (x0,2) € R x R™ and
X* = {2* ¢ R" ™| zg > 0,2* #0}.
Similarly, let £* = (£p,€) € R x R and
E* = {€" € R" & > 0,6 #0}.

Let A be the class of functions A(z*,£*) € C°°(X* x E*) such that A is positive-

homogeneous of degree 0 in 2™ and £*, that s,
ANz, &) = A(z™, X7) = A(2™, %), A >0.

Let S’} denote the hemisphere [z*| = 1 and 29 > 0, or [£*| = 1 and § > 0. Let ST
denote the relative closure of S7 in X*, or in E*, that is, ST} is the hemisphere |2*| = 1
(or [€*] = 1), z9 > 0 (or & > 0). Clearly, each A € A is uniquely determined by
its values on S"! x S'}. Conversely, each function AecC™ (ST x S™) can be uniquely
homogeneously extended to X* x E*. So, 4 = C* (@ X @) By 594, we denote the
set of symbols p 4 (z, £) which are given by

pA(xag) = A(17x> 175)7

forsome A € A. Forpy € SB‘, we have the following result, which combines Theorems 4.1
and 4.2 in Grushin [18].

Theorem A.1. I[fpa(x,&) € SY and det A(z*,£*) # 0 on T, then
pa(z,D): H® — H*®
is Fredholm and the index is

(arg det A(x*, &%)

1
indpa(z,D) = 5

s

r)’

where T is the boundary of ST x S, and arg det A(x*, £*)|p is the increase in the argument
of det A(z*,&") around T oriented counterclockwise.

B A NONLOCAL CENTER MANIFOLD THEOREM

In this section, we record a version due to Truong, Wahlén & Wheeler [33] of the nonlocal
center manifold theorem originally developed by Faye & Scheel [16, 17]. This result is the
main analytical tool used throughout Section 5 and Section 6.

We consider nonlocal nonlinear parameter-dependent problems of the form

Tv+N(v,pu) =0, (7)
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where
Tv=v+ K xv,

in the weighted Sobolev spaces H, for some 17 > 0 and positive integer m. T is
referred to as the linear part and AV as the nonlinear part of (37). Before introducing the
modified equation, we define a cutoff operator x which is invariant under all translations
and reversible symmetries. The translation map by ¢ € R, thatis ¢ — (- +1), is denoted
by S;. First, let x: R — R be a smooth cutoff function satisfying x = 1 for [z| < 1,0
for [x| > 2 and sup,cp |X/(2)| < 2. Secondly, let §: R — R be an even and smooth
function with B

S 0z —j) =1, suppf C [~1,1], 9([0, %]) c [%,1},
€z
for all x € R. Define

X:v|—>/Rx(HSyH‘UHHm)H(x—y)v(x)dy and X5:UI—>5-X<§), d>0. (38)

It has been shown in [17] that ¥ : H f”n — H"" is well-defined, Lipschitz continuous,
invariant under all Sy and reversible symmetries on R, and its image is contained in a ball
in H™. As a consequence, the scaled cutoff x° inherits all these properties except for its
image, which will be contained in a ball of radius ¢ in H]". The modified equation is

To+N°(v,0) =0 where  N°(v, ) = N(x’(v), ). (39)

Also, let O: HTH — HTH be a bounded projection on the nullspace Ker 7 of 7
with a continuous extension to H 7_”,7_1, such that Q@ commutes with the inclusion map
from H to H™,,, forall 0 < n <.

Hypothesis B.1 (The linear part 7).
(i) There exists g > 0 such that IC € L}lo‘

(ii) The operator
T:v—v+Kxv, HT — HT,

is Fredholm forn € (0,n0), its nullspace Ker T is finite-dimensional and T is onto.

Remark B.2. A straightforward application of Young’s inequality shows that Hypothesis
B.1(i) implies that the operator 7: H™, — H™, is bounded for each n € (0,ny0) for
each choice of ¢g. In the works [16, 17] the authors additionally assumed that K’ € L}IO
for some 19 > 0 which, as seen from Proposition 3.1, does not hold for the current case.
This assumption, however, is used to guarantee Hypothesis B.1(ii) which, here, we instead
require directly.

82



Hypothesis B.3 (The nonlinear part N). There exist k > 2, a neighborhood U of 0 € H s
andV of 0 € R, such that for all sufficiently small 6 > 0, we have

(@) N°: H™ xV — H™ is €*. Moreover, for all non-negative pairs (C,1) such that
0 < kC<mn<mny,DLN(- pu): (Hiq)l — Hin is bounded for all 0 < 1¢ <
n < mnoand0 <1 <k, and is Lipschitz in v for 1 <1 <k — 1 uniformly in p € V.

(b) N°O commutes with translations of v,

N (Spv, 1) = SN (v, ), forall t € R.

(c) N9 (0,0) =0, D, N? (0,0) = 0 and as 6 — O, the Lipschitz constant

LZ'PHTnva(s =05+ [ul).

Letv: R — R be a function. A symmetry is a triple (p, St, ©) € O(1) x (R x O(1)),
acting on v in the following way: the orthogonal linear transformation p € O(1) acts on
the value v(z) € R, while Sy and k act on the variable z € R. A symmetry (p, Si, k) is
equivariant if & = Id, and reversible otherwise.

Hypothesis B.4 (Symmetries). There exists a symmetry group S, under which the equation is
invariant, that is

Y(Tv) =T(yw), N(wv,p)=N(v,u), forallyesS,
such that S contains all translations on the real line.

Theorem B.s. Assume that Hypotheses B.1, B.3 and B.4 are met for the (37). Then, by possibly
shrinking the neighborhood V of 0 € R, there exists a cutoff radius 6 > 0, a weight 7 > 0

and a map
U: Ker7 xVCH" xR—KerQCHT,

with the center manifold

M = {vo + W(vg, ) |vo € Ker T, p € V} C HT,
as its graph for each . The following statements hold:
(i) (smoothness) U € €%, where k is as in Hypothesis B.3;
(ii) (tangency) ¥(0,0) = 0 and D,,,¥(0,0);

(iii) (global reduction) M consists precisely of functions v such that v € H'™, is a solution
of the modified equation (39) with parameter 1i;

83



(iv) (local reduction) any function v solving (37) with ||v|| g < 6 is contained in M;
(v) (translation invariance) the shifi S, t € R acting on MYy induces a pi-dependent flow
O,: Ker T — Ker T
through ®; = Q o Sy o (Id +);

(vi) (reduced vector field) the reduced flow @ (v, 1) is of class EF invy, i, t and is generated
by a reduced parameter dependent vector field f of class €5~ on the finite-dimensional
Ker T;

(vii) (correspondence) any element v = vy + W (vg, ) of MY corresponds one-to-one to a
solution of

d’l)() d
_ — 2 90(8 .
= f(w) = 3, QSw)|
(viii) (equivariance) Ker T isinvariant underl’ and Q can be chosen to commute with ally €
S. Consequently, U commutes with y € S and M is invariant under T. Finally, the
reduced vector field f in item (vi) commutes with all translations Sy and anticommutes

with reversible symmetries in S.

C COEFFICIENTS IN CENTER MANIFOLD REDUCTION

In this appendix, we compute the center manifold coethcients ¥pgimn = \I'Zglmn (0) up
to second-order terms in Proposition 5.1 as well as the coefficients

110001, ¥20000, 00200, V10010, Y01100, ¥102005 V30000

from Section 6. The proof of Proposition 5.1 observes that 7, Id —7 and Q map even
to even, and odd to odd functions. Also, the basis functions of Ker T are either even or
odd functions. Using these, vanishing ;s are identified and excluded. Then, linear
equations for non-vanishing 1,5, are written down. To compute ¥y iy, we will exten-
sively use

2
m(D): 2% cos(yx) — Z( k) DIm®) (y) - 229 cos(ya)

J=0 2j
( O 1> m(®+D)(y) . 226 sin )
N (40)
2k3+1 2j L2k=)+1 g
m(D): 2 sin(yz) — Z (=1)’m®) (y) - P sin(yx)
=

=0
k
2k +
jgo (2] 1 ) (y) @ (ya),
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where m: R — R is an even multiplier and y € R. Finally, we observe that if f satisfies
Tf=g,then h:= f — Qf satisfies Th = g and Qh = 0.

C.1  FOR GENERALIZED SOLITARY WAVES Here, let 7, ¢q satisfy (8) and note, specifically,
that ¢g = 1 here. Equation (10) with ¢ = Q1 + U is

TV — uQip+ (Id—T)(Q1p + ¥)* = 0.

By noting that second-order ji-inhomogeneous terms come from 7 and (Id —7)(Q1¢)?,
the linear equations from grouping A%, B?,C?%, D?, AB, AC, AD, BC, BD and CD

terms are given by

T Wanooo + (Id =T7)1 = 0, T Woo200 + (Id —T) cos?(kox) = 0,
T\I/OQOOO + (Id —T) £E2 = O, T‘I’ooogo + (Id —T) SinQ(k}ol’) = 0,
T¥11000 +2(Id =T) z = 0, T V10100 + 2(Id =T) cos(koz) = 0,

T V10010 + Q(Id —T) sin(k:gx) =0, TYo1100 + 2(Id —T) T COS(k‘Ox) =0,
T¥o0110 + (Id =T7) sin(2koz) =0, T Vo010 + 2(Id =T) xsin(kpz) = 0,

and, by noting that the p-homogeneous terms come from 7V and —p Q1 ¢,

T%10001 — 1 =0, T¥oo101 — cos(koz) = 0,
TYo1001 — 2 =0, TYoo011 — Sin(k‘om) = 0.

Note that equations arising from grouping AB, AD, BC,CD, uB and pD terms are
excluded here since they involve only odd functions. Using (40) withm = fandy = 0, ko
or 2k, we arrive at

T¥10001 = 1, T Vo101 = cos(koz),

T Wa0000 = —1, T 10100 = —2cos(ko),

T o000 = —22 + £"(0) TWUo0200 = —% — %E(%o) cos(2kox),

TYo1010 = —2w sin(kox) + 20 (ko) cos(kox), T ¥ooo20 = —% + %E(Zko) sin(2kox),
all subjected to the condition Q1 W41, = 0, which ensures uniqueness.

Leto = £7(0)~! = (1/3—7) L. Lengthy but straightforward calculations employing
(40) with m = 1 — £ now yield
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2k3

Y10001 = —¢20000 = 20k3, Poo101 = —5¥10100 = " Uhy)’
2" (0) — 602 0" (ko) — 2 (ko)? 10
Yozom0 = _%02]{% — 40, Yowoi0 =2 ( 02'(k0)2( o) Ko — El(k‘o)]{%7
_ 8U(2ko) 4 2 _ 8U(2ko) 4 P
Yo0200 = Wko okg, 00020 = Wko okg.

C.2 FoOrR MODULATED SOLITARY WAVES Now, let T, ¢ satisfy (9) and note in this case
that both ¢ and 79 are parametrized by s € (0, 00). The linear equations for the center
manifold coefficients are

T\I/mo()l = (Id —T) COS(S:E),

1

o
1

T ¥a0000 = —;(Id —T) cos?(sz),
0
1

T\I’10100 = —;(Id —T> sin(2sx),
0
1

T\I/()ono = —;(Id —T) Sin2 (sx),
0

1

TY¥10010 = T ¥o1100 = o

2
T ¥30000 = *%(Id —T) cos(sz) ¥a0000,

(Id =Tz sin(2sz),

2 .
TY19200 = —%(Id —T)(COS(S:L‘)\I’OOQOO + SID(SZL‘)\Plolgo),

where all ¥, are subject to QoWy,41mn = 0 and Qs is given in (18). Using (40) with

m =1—col,y =0,s,2s or 3s again, then evaluating \I/gglmn(()) = Upgimn gives

Y1001 = —8s%e,
Pa0000 = s*(a + 9b),
Vo000 = s*(a — 9b),

P10010 = Po1100 = 9s*c — 48s3b,
9
Ws0000 = ( (= 2a(a-+b) — 18b(a +b) + 128bd — ;(a — 3b)c)s?

+ 245%b(a — 3b) + 8(2a + b)e) 2,
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and
¢10200 = (( — 2a(a — b) — 18b(a — b) — 128bd — %(a + 3b)c)32
+ 245%b(a + 3b) 4 8(2a — b)e) s

+ (( — 54sbe + 4ab — 36b% — 256bs)s? + 2885 + 16be) 2,

with
1 1 1 1
Cl_(]_— )7 b_<]__)’
2¢ 1—¢o 2¢q 1 —col(2s)
/(2 1
S NI o (R S }
(1 — cpl(2s))? 2¢q 1 — col(3s)
and finally
1
‘= c2t'(s)
D COEFFICIENTS IN NORMAL FORM REDUCTION

D.1 FOR GENERALIZED SOLITARY WAVES Our goal here is to compute coeflicients py, p1,
P2, P3,qo and ¢ in Section 5.2. The expansion of @ in (A, B, C, C) and p up to second-
order terms is

®(A,B,C,C, 1)

= $00001 1 + $10001 HA + P01001 1B + P00101 C + P000111C + P20000A°
+ $11000AB + $10100AC + $10010AC + P02000B” + P01100BC + P01010BC
+ $00200C2 + Po0110|CI + o0020C + O(|?| + (|ul + (A, B,C, T)|)%)).

Denote the coefficients in front of APBIC'D™ ™ in (21) by Ypgimn. We also Taylor
expand the nonlinear term

R(U, p) = pRi1(U) + Roo(U,U) + O(|pf* + |(U, w)]?),

where
0 0
1 o i
Rii(z,y, 2,w) = y kotb10001 —(i)— kotboo1012 R (U.07) = . kOH(OU, U)
0 3 )
—110001Z — 001012 _H(U,T)
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with

H(U,U) = H((x,y, z,w), (%,7, %, 1))
¥10100

= 2000077 + (xZ 4 2Z) + 102000YY

01010

T

(yw + wy) + 10020022 + Yooo20WW.

Plugging U = A&y + BE; + CC + C{ + @ into (23), relevant linear equations are identified

O(p): po&1 = Leoooo
O(pA):  p1&1 + pogi1000 = Loiooor + Ri1(éo)
O(A?):  paé1 = Lbaoooo + Rao(&o, &)
O(ICP):  ps&1 = Lpooi1o + 2Ra0(¢, C)
OuC):  igo¢ + podo1ioo + ikodoo101 = Lidooror + Ri1(C)
O(AC):  iqi¢ +ikop10100 = L0100 + 2Ra20(&0, €)-

Since &1 is not in the range of L, pg = 0. Similarly, the equation from O(uA) terms

0
1 | E3py — K
Loiooo1 = p1&1 — Rai(&o) = = oP1 00#}10001
0
¥10001

is solvable if and only if kg’pl — ko10001 = 0. Equations for pa and p3 are handled in the
same fashion. To solve for gy, we note that

(L — iko)¢oo101 = igo¢ — Ra1(¢)

Writing ¢oo101 = zo&o + x1&1 + 3¢ + 23(, equation (24) can be used to show that
23¢ = 0 on the left-hand side. The right-hand side in the basis {£o, &1, ¢, C} s

. 1 . i 1 —
igo¢ —R11(¢) = —ﬁlﬁoowlﬁl + (IQO - 2k3¢00101> ¢+ ﬁga
0 0 0

which gives ¢ = (2]{:8’)_11/100101. Using results from Appendix C.1 and writing 0 =
(1/3 — 7)7 1, we get

1L 2
O(ko) BT U(ky)

po=0, p1 =20 = —p2, p3=—40, q = —
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D.2 FOR MODULATED SOLITARY WAVES As before, the Taylor expansion of ® is

©(A,B,A,B, 1) = > GpaimnAPBAB" 1" 4 - .

2<p+q+l+m+n<3
n>1

Our goal here is to determine the Taylor expansion of R(U, yt) from (34) up to order three.
Using the symmetries as in the proof of Proposition .1, contributing terms are

pA, uD, pi* A, i D,

A%, B?,C?,D* AD, BC, pA?, uB?, uC*, uD*, uAD, uBC,

A3 D3 A%D, AB?, AC? AD? ABC,B?D,BCD,C?D.

In short, if a multiplication between a pair or a triple of cos(sx), x cos(sz), sin(sz),
xsin(sx) is an even function in x, the product of their coefficients A, B, C, D will contri-

bute to W(A, B, C, D, 11)""(0). Denote the coefficients of AP BIC!D™ ™ by Ypglmn.-
The Taylor expansion of R(U, p) is

R(U, /J) =R + Roipt + RioU + Ry U + Rzo(U, U)
+ uRo1 (U, U) + p*RaaU + Rao (U, U, U),

where relevant terms for us are

0 0
1 | —sHp 1 | —sH(U)
R = — R - —
01 943 H, ) 11(U) 263 Hl(U) ’
0 0
0 0
~ 1 —SHQ(U, ﬁ) T 1 _SHS(Ua ~70)
Rog(U,U) = — ~ R3(U,U,U) = — A
0(U,U) = 53 Hy(U,U) |’ 00U U) =55 H3(U,U,U) |’
0 0

with U= (x7y7 Z,’U}), U = (i‘7g727u~))7U = (i’,g,f,’lﬂ),

Hy =0,
Hy(z,y, 2, w)
= 110001Z + P00011W,
Hy((z,y,2z,w), (%,7, Z,0))
= 1200002 + 0200097 + 0020022 + Pooo20WW

10010
2

101100

* 2

(z0 + Tw) + (yz + y2),
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and
H3(($a Y, =, 'LU), (5~C> Uy Z, ”LD), (ja :’ja Z, ’Lfl))
= 30000TTT + Yop030WWW

120010 112000
T( +3

3
10020
3

+ TIW + rEW 4 TTw) xyy + Tyy + Tyy)

4 10200 sy Gs 4 503) + (2 + Fwib + Fwid)

P11100
6
Po1110 (
6
102010
3

Let ¢ = $(0,1,0, —1)". It is a vector orthogonal to the range of L — is and satisfies
(€0, ¢1) =0, (C,¢) =0, (¢1,¢) =0, (C1,¢7) =0,
and R(; = —(. Equations (D.45) and (D.47), [19, Appendix D.2], give
g0 = (R11¢0 + 2R20(Co, doooo01); ¢7 ),
@1 = (2Ra0(Co; ¢10100) + 2Ra20(Co; $20000) + 3R30(Cos €0, €0), 1),
respectively. Here, ¢00001, 10100, ®20000 satisfy
Leoooo1 + Ro1 =0,

L10100 + 2Ro20 (o, C0) = 0,
(L — 2is)¢20000 + Ra20(Co, C0) = 0.

+ (xg2 + 29z + TyZ + TPz + 2yZ + £7z2)

+ Y20 + Y2 + Yz + gEw + §20 + Jiw)

100210

+ (ygw + ygw + gjw) + (220 + 22w + Z2w).

A computation gives

2/s 1
B 20000 + %o2000 | O 20000 — Yo2000 | 3is
®o0001 =0, 10100 = ———5 s $20000 = o1 :
s 0 9s —i
1 3s/2

which in turn yields

1
qo = —@¢10001,
20000 + P00200 (2 10010
G =——55 | =%20000 +
2s S 2
1 3s 3s
- @(%0000 — 100200) (7#20000 — tboo200 + 51/)01100 - 41/101100>
3 %0200)
152 <¢30000 )
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Transverse dynamics of two-dimensional traveling
periodic gravity—capillary water waves

Mariana Haragus, Tien Truong & Erik Wahlén

Abstract

We study the transverse dynamics of two-dimensional traveling periodic waves
for the gravity—capillary water-wave problem. The governing equations are the Euler
equations for the irrotational flow of an inviscid fluid layer with free surface under
the forces of gravity and surface tension. We focus on two open sets of dimensionless
parameters («, ), where v and 3 are the inverse square of the Froude number and the
Weber number, respectively. For each arbitrary but fixed pair (v, 3) in one of these
sets, two-dimensional traveling periodic waves bifurcate from the trivial constant flow.
In one open set we find a one-parameter family of periodic waves, whereas in the other
open set we find two geometrically distinct one-parameter families of periodic waves.
Starting from a transverse spatial dynamics formulation of the governing equations,
we investigate the transverse linear instability of these periodic waves and the induced
dimension-breaking bifurcation. The two results share a common analysis of the
purely imaginary spectrum of the linearization at a periodic wave. We apply a simple
general criterion for the transverse linear instability problem and a Lyapunov center
theorem for the dimension-breaking bifurcation. For parameters («, 3) in the open
set where there is only one family of periodic waves, we prove that these waves are
linearly transversely unstable. For the other open set, we show that the waves with
larger wavenumber are transversely linearly unstable. We identify an open subset of
parameters for which both families of periodic waves are tranversely linearly unstable.
For each of these transversely linearly unstable periodic waves, a dimension-breaking
bifurcation occurs in which three-dimensional doubly periodic waves bifurcate from
the two-dimensional periodic wave.

Keywords: Gravity—capillary water waves, periodic waves, transverse linear stability, dimen-
sion-breaking bifurcation.

I INTRODUCTION

We consider a three-dimensional inviscid fluid with constant density p occupying a region

D,={(X,Y,2) eR? : 0<Y < h+n(X, 21},
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where (XY, 2z) are Cartesian coordinates, h is the mean fluid depth, and n > —h is the
unknown free surface of the fluid depending on the horizontal spatial variables X, z and the
time variable ¢. The fluid is under the influence of the gravitational force with acceleration
constant g and surface tension with coefficient T'. We assume that the flow is irrotational
and denote by ¢ an Eulerian velocity potential. Choosing a coordinate frame moving from
left to right along the X -axis with constant velocity ¢ > 0, the fluid motion is described
by Laplace’s equation

pxx + dyy +¢.. =0 for 0<Y <1+, (1)
with boundary conditions
¢y =0 onY =0,
Gy =m —enx +nxox +n:0: onY =1+mn, )
¢t—c¢x+%(¢§(+¢%+¢§)+an—5lczo onY =1+1.

Here, we have used dimensionless variables by taking the characteristic length scale h and
characteristic time scale //c. The dimensionless parameters

gh T

052072 and B:M

are the inverse square of the Froude number and the Weber number, respectively, and the
quantity /C is twice the mean curvature of the free surface 7, given by

PR T S R S
yienk+n2] o Lyl+nk+n2],

The set of equations (1)—(2) are the Euler equations for gravity—capillary waves on water of
finite depth. The case § = 0, that we do not consider in this work, corresponds to gravity
water waves.

We are interested in the transverse dynamics of two-dimensional traveling periodic
waves. In the above formulation these are steady solutions which are periodic in X and
do not depend on the second horizontal coordinate z and on the time ¢. Their existence
is well-recorded in the literature; e.g., see [7, 12, 13, 22] and the references therein. Many
of these results are obtained using methods from bifurcation theory. Bifurcations of two-
dimensional periodic waves are determined by the positive roots of the linear dispersion
relation

D(k) == (a + fk*)sinh |k| — |k| cosh(k) = 0, 3)

obtained by looking for nontrivial solutions to the steady system (1)—(2) linearized at 0 of
the form (7(X), #(X,Y)) = (g, ¢r(Y)) exp(ikX). Associated to any positive root

98



k of the linear dispersion relation, one finds a one parameter family of periodic waves

{(1=(X), 9e(X,Y)) }ee(—eco,e0) With wavenumbers close to k, for sufficiently small 9 >

0. These periodic waves bifurcate from the trivial solution (79(X), ¢o(X,Y)) = (0,0).
Depending on the values of the two parameters o and 3, the linear dispersion relation

(3) possesses positive roots in the following cases:

1. one positive simple root kx > 0if @ € (0,1) and 8 > 0; we refer to this set of

parameters as Region I.

2. two positive simple roots 0 < ky1 < kypif @ > 1and 0 < 8 < fB(«), where
(cr, B(«)) belongs to the curve I" with parametric equations
s2 n 5 1 1
a= , =
2sinh?(s) 2 tanh(s)

s € (0,00);
(4)

~ 2sinh?(s) T2 tanh(s)’

we refer to this set of parameters as Region II;
3. one positive simple root kx > 0if « = 1 and 5 < 1/3;
4. one positive double root k. if (o, ) belongs to the curve I given in (4).

The linear dispersion relation being even in k, together with any positive root k we also
find the negative root —k. We illustrate these properties in the left panel of Figure 1.

o
o
o
1 .
e
1 5 .

Figure 1: Left: In the (3, a)-plane, sketch of the nonzero roots of the linear
dispersion relation (3). We use dots to indicate simple roots and crosses to
indicate double roots. Right: In Region I1, plot of the curves I'y,, form = 2,3, 4
which are excluded from our analysis.

Here, we focus on the periodic waves which bifurcate in the two open parameter regions
I and II. For simplicity, in Region II we assume that £, 1 and £, o satisfy the non-resonance
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condition k. 2/k.«1 ¢ N. This assumption means that (o, ) does not belong to any of
the curves I'y, form € N, m > 2, with parametric equations

m2s n ms
o= —
(1= m#)tanh(s) (1= m?) tanh(ms) ;¢ (0, 00);

b= (1 —m?2)stanh(s) (1 —m?2)stanh(ms)

see the right panel in Figure 1. Then, for any fixed (v, ) in Region I, there is a one
parameter family of two-dimensional periodic waves { (17-(X), (X, Y')) }ee(—cy,20) With
wavenumbers close to ky, whereas for (o, ) in Region II, there are two geometrically
distinct families of periodic waves

{(ne,1(X), g1 (X, Y))}se(—eo,eo) and {(7z,2(X), e 2(X, Y))}ee(—:—:o,eo)

with wavenumbers close to ks 1 and k. 2, respectively.

The purpose of our transverse dynamics analysis is twofold: to identify the periodic
waves in regions I and I which are transversely linearly unstable and to discuss the induced
dimension-breaking bifurcations. Roughly speaking, a two-dimensional wave is transversely
linearly unstable if the Euler equations (1)—(2) linearized at the wave possess solutions
which are bounded in the horizontal coordinates (X, z) and exponentially growing in time
t. The dimension-breaking bifurcation is the bifurcation of three-dimensional solutions
emerging from the two-dimensional transversely unstable wave. Typically, these three-
dimensional solutions are periodic in the transverse horizontal coordinate z; see Figure 2
for an illustration in the case of a two-dimensional periodic wave. Though of different
type, these two questions share a common spectral analysis of the linear operator at the
two-dimensional wave. This is the key, and most challenging, part of our analysis.

Figure 2: Illustration of a dimension-breaking bifurcation. Left: plot of a
two-dimensional periodic wave. Right: plot of a bifurcating three-dimensional
doubly periodic wave.
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The transverse stability of periodic waves was mostly studied for simpler model equations
obtained from the Euler equations (1)—(2) in different parameter regimes: the Kadomtsev—
Petviashvili-I equation for the regime of large surface tension (a ~ 1, > 1/3) was
considered in [19, 30, 18], the Davey—Stewartson system for the regime of weak surface
tension ((«, 3) close to the curve I') in [10], and a fifth order KP equation for the regime
of critical surface tension (o« ~ 1, 5 ~ 1/3) in [24]; see also the recent review paper
[21]. All these results predict that gravity—capillary periodic waves are linearly transversely
unstable. We point out that pure gravity periodic, or solitary, water waves (8 = 0) are
expected to be linearly transversely stable [1, 23].

For the Euler equations, previous works on transverse instability mostly treat the case
of solitary waves; see [14, 40, 41] for the large surface regime and the more recent work [17]
for the weak surface tension regime close to the curve I'. In both regimes, the dimension-
breaking bifurcation has been studied in [15] (large surface tension) and [17] (weak surface
tension). For periodic waves, the transverse instability predicted in the regime of large
surface tension (« ~ 1, 5 > 1/3) has been confirmed in [20]. In addition, the dimension-
breaking bifurcation was studied showing the bifurcation of a one parameter family of three-
dimensional doubly periodic waves, as illustrated in Figure 2. In the present work, we treat
these two questions for the periodic waves bifurcating in the open parameter regions I and
II.

For completeness, we mention that there are other stability/instability results for these
periodic waves. When the perturbations are constant in z, the references [34, 8, 9] through
formal expansions have provided a characterization for the Benjamin—Feir instability’, the
work [6] demonstrates numerically that periodic waves are sometimes spectrally unstable
even when the Benjamin—Feir instability is not present, references [37, 38, 39, 31, 32, 42]
indicate through both numerical and theoretical investigations that harmonic resonances
feature even more intriguing instability phenomena, e.g. nested instabilities or multiple
high-frequency instability bubbles. The works [27, 28, 29] approach these questions through
their own proposals of fully dispersive model equations. In particular, [28, 29] find qualita-
tively the same instability characterization for periodic waves in their models as [34, 8].
Instability under three-dimensional perturbations has been considered numerically, experi-
mentally and using various model equations, such as the Davey—Stewartson equation [s,
8, 25, 26, 44]. In particular, the instability criterion that we arrive at here can be formally
obtained by taking I = 0 in equation (3.9) in [5], and using the formulas for the coeflicients
for gravity—capillary waves in [8]. Note that in contrast to the previous studies, we restrict
our attention to perturbations which have the same wavelength as the periodic wave in the
X -direction.

Our approach to transverse dynamics follows the ideas developed for solitary waves
in [14, 15, 17]. The starting point of the analysis is a spatial dynamics formulation of the

UThis is linear instability with respect to sideband perturbations, which has a different period than that
of the main periodic wave. It is first discovered for gravity waves in deep fluids by Benjamin & Feir [4],
Benjamin [3] and independently by Whitham [43].
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three-dimensional, time-dependent equations (1)—(2) in which the horizontal coordinate z,
transverse to the direction of propagation, plays the role of time.

For the transverse linear instability problem, we consider the linearization of this dyna-
mical system at a two-dimensional periodic wave and apply a simple general instability
criterion [10] adapted to the Euler equations in [17]. In Region I, we show that the periodic
waves {(1e(X), #<(X,Y))}ee(—co,e0) are transversely linearly unstable, provided € is
sufficiently small. In Region II, we obtain transverse linear instability for the periodic
waves {(1e,2(X), ¢ 2(X,Y)) }eg(—eq,e0) With wavenumbers close to the largest root k. o
of the linear dispersion relation. For the second family of periodic waves, {(7:1(X),
G 1(X,Y)) bee(—ep,e0) With wavenumbers close to &y 1, we can only conclude on transverse
instability for parameter values («, ) situated in the open region between the curves I’
and I'y; see the right panel in Figure 1. The dimension-breaking bifurcation is studied for
the transversely linearly unstable periodic waves. Here, we use the time-independent, but
nonlinear, version of the dynamical system above. Applying a Lyapunov center theorem, we
prove that from each unstable periodic wave bifurcates a family of doubly periodic waves.

The common part of the proofs of these two results is the analysis of the purely imaginary
spectrum of the linearized operator at the two-dimensional periodic wave. This analysis is
the major part of our work. Our main result shows that this linear operator possesses
precisely one pair of simple nonzero purely imaginary eigenvalues. Though it relies upon
standard perturbation arguments for linear operators, the proof is rather long because of
the complicated formulas for the linear operator. This spectral result is the key property
allowing to apply both the transverse instability criterion and the Lyapunov center theorem.

In the following theorem, we summarize the results obtained for Region 1.

TueoreM 1.1 (Region 1) Fix (v, 3) in Region I and let k. > 0 be the unique positive root
of the linear dispersion relation (3).

(i) (Existence) There exist €g > O and a one-parameter family of two-dimensional steady

solutions {(1:(X), ¢e(X,Y)) Yee(—co,e0) 10 equations ()—(2), such that (0o, po) =
(0,0) and (n., ) are periodic in X with wavenumber k. = k. + O(?).

(ii) (Transverse instability) There exists €1 > 0 such that for each ¢ € (—e1,€1) the periodic
solution (N=(X), ¢<(X,Y')) is transversely linearly unstable.

(iii) (Dimension-breaking bifurcation) There exists €3 > 0, such that for each e € (—e2,€2)
there exist 6. > 0, LZ > 0, and a one-parameter family of three-dimensional doubly
periodic waves {(n) (X, ), 2(X, Y, 2))}se(=s.,5.)> with wavenumber ke in X and
wavenumber s = 05 + O(6%) in z, bifurcating from the periodic solution (n-(X),
62(X, V).

We point out that £if} where £7 > 0 is given in Theorem 1.1(iii) are the two nonzero
purely imaginary eigenvalues of the linearization at the periodic wave. The results found
for Region II are summarized in Theorem 5.1 from Section s.
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In our presentation we focus on Region I, the arguments being, up to some compu-
tations, the same for Region II. In Section 2 we recall the spatial dynamics formulation of
the three-dimensional time-dependent Euler equations (1)—(2) from [17] and the existence
result for two-dimensional periodic waves given in Theorem 1.1(i). We also give some
explicit expansions of these solutions which are computed in Appendix B. In Section 3
we prove the results for the linear operator. Some of the long computations needed here
are given in Appendices C and D. In Section 4 we present the transverse dynamics results
and in Section 5 we discuss the results for Region III. Finally, in Appendix A we recall an
infinite-dimensional version of the Lyapunov center theorem.

2 PRELIMINARIES

In this section, we recall the spatial dynamics formulation from [17] and the result on
existence of two-dimensional steady periodic solutions.

2.1 SPATIAL DYNAMICS FORMULATION Following [17], we make the change of variables
Y =y(l+n(X,21t), &X,Y, 21t)=2(X,y,z1),

in (1)—(2) to flatten the free surface. Since we consider periodic solutions, in addition, we
set X = kx with k the wavenumber in 2. We introduce two new variables,

1
ynz®y> 6772
— . — o, d
“ /0 < T )Y T A s

€= (1 (.- PEL).

and set U = (n,w, ®,€)T. Then, the equations (1)—(2) can be written as dynamical system
of the form

dU
— =DU+ F(U
@s ++ F(U), (5)
with boundary conditions
&, =y +B(U) on y=0,1. (6)

Here, D is the linear operator defined by

DU = (0, ®|,=1,0,0)T,
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F is the nonlinear mapping F(U) = (Fy(U), Fy(U), F5(U), Fy(U))" given by

1/2
1+ k%2
Ry -w (5]

W
F(U) = y®,&dy — k | kny — k®,|,—
»(U) (1+77/ y§dy — {n 1(U)} + an ly=1
o &0 +k2(¢ _ynz%)2+k2[(¢ Uy )
o |20+n)?% 2" 149 T4 )Y,
) i
+k2<¢x_ymg y> yne®y Ly
147 1+n
13 yq)y
F - F
3(U) 1+77+1+77 1(U),
and

A == = o (- 5]

+ K K% - m> YN ] +§yj)yF1(U)7

where

and B is the nonlinear mapping defined by

n®,  kynid 3
B(U) = —kyn, + k*yn.®, yo_ ] F(U).
(U) YNz + k“yn. +1+77 oo +1+17 1(U)

The choice of the function spaces is made precise later in Sections 3 and 4.
The system (5)—(6) inherits the symmetries of the Euler equations (1)—(2). As a conse-
quence of the horizontal spatial reflection z +— —z, the system (5)—(6) is reversible with

reversibility symmetry R acting by

n n
R g (CC,y,Z,t) = _CI) (xvyv_zat)a (7)
3 —£

which anti-commutes with D and F' and commutes with B. The second horizontal spatial
reflection & — —x, implies that the system (5)—(6) possesses a reflection symmetry

n
($,y72,t) = _wq) (—x,y,z,t), (8)
-

Mmoo E 3
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which commutes with D, F', and B. There are in addition two continuous symmetries,
which are the horizontal spatial translations in = and 2.

2.2 TwO-DIMENSIONAL STEADY PERIODIC WAVES Spatial dynamics also provides an effi-

cient method for the study of the existence of two-dimensional steady waves of the Euler

equations (1)—(2). This idea, which goes back to the work by Kirchgissner [35], consists in

writing the two-dimensional steady Euler equations as a dynamical system of the form
dU

G = LU+ RO), ©)

in which x is now the timelike variable, and L and R denote linear and nonlinear parts,
respectively. A phase space X" consisting of y-dependent functions is chosen such that the
linear operator L is closed with densely and compactly embedded domain ) C X. The first
two boundary conditions in (2) are part of the definition of the domain ). There are several
different such formulations of two-dimensional steady problem; see, for instance, [36, 22]
for two different formulations as a reversible dynamical system, and [12] for a formulation as
a Hamiltonian system. Two-dimensional steady water waves are bounded solutions of the
dynamical system (9) and can be found using tools from the theory of dynamical systems
and bifurcation theory.

In particular, periodic waves can be obtained by a direct application of the Lyapunov
center theorem; see Theorem A.1. The key observation is that the purely imaginary eigen-
values of the operator L are given by the real roots of the linear dispersion relation (3). As
shown, for instance in [36], for any pair of parameters («, 3) in Region I, the linear operator
L possesses precisely one pair of simple purely imaginary cigenvalues £ik., with k. the
unique positive root of the linear dispersion relation (3). Similarly, in Region II there are
two pairs of simple purely imaginary eigenvalue +ik, 1 and £ik, 2. Then, the reversibility
of the dynamical system (9) together with a direct check of the resolvent estimates (33) allow
to apply Theorem A.1 and prove the result in Theorem 1.1(i) for Region I and the result in
Theorem s.1(i) for Region II.

In addition, for our purposes we need to compute the first two terms of the expansion
in € of the two-dimensional periodic solutions. For («, /3) in Region I, we write

X =kex, n(X)=7(z), ®(X,y)=d(z,y),
so that 7. and ®, are 27-periodic in z, and consider the expansions
ke = ki + %ko + O(°),
7e(x) = em (@) + 2 (x) + O(E?), (10)
<I>E(x, y) = e®y(x,y) + 2Po(z, ) + O(3),

where k, is the positive root of the linear dispersion relation (3). Substituting these expan-
sions into the Euler equations (1)—(2), we obtain in Appendix B the following explicit
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formulas:

((9a8 + 16) k. — 1208k, cosh(2k.) + 3a3k. cosh(4k.)

— 8a(2¢(k.) — 1) sinh(2k,) — da(c(ky) + 2) sinh(4k:*)),

and
m(z) = sinh(k,) cos(z), 1 (z,y) = cosh(k.y) sin(z),
n(z) = % (c(ky) + 1) sinh(2k, ) cos(2z) — i )
Bo(,1) = % (c(ky) cosh(2hay) + 2 sinh (k. )y sinh (k) sin(22),
where
) 1 Eeloosh(h) 2

D(Qk?*) ’ (13)
d(ks) = 32a(2Pks(cosh(2k,) — 1) + 2k, — sinh(2k,)),

and D(k) is the linear dispersion relation (3). In addition, the function 7 is even in z,
whereas @, is an odd function.
For each € € (—¢q, €), the solution (7)., ®.) of the Euler equations (1)—(2) provides

a solution B
Ue(w,y) = (Ne(),0, Pc(2,9), O)T (14)
of the dynamical system (5)—(6) for k = k., hence satisfying

F(U.) =0,
{~( ) (15)

¢,y = B(U:), ony=0,1.

In addition, the above parity properties of 7. and P, imply that SU, = U, where S is the
reflection symmetry given in (8).

3 ANALYSIS OF THE LINEAR OPERATOR

For fixed (av, ) in Region I, we denote by L. the linear operator which appears in the
linearization of the dynamical sytem (5)—(6) at the periodic wave U, for k = k.. We prove
the properties of L. needed for the transverse dynamics analysis in Section 4.

For notational simplicity we remove the tilde from (15) and write from now on 7. and
®. instead of 7] and ®.., respectively.
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3.1 'THE LINEAR OPERATOR L. A direct computation of the differential of F at the
periodic wave U gives the following explicit formulas for L.U = dF[U,]U,

5 W/B+H1(W,£) n
an — BkZngs — k:—:q)zlyzl + H2(777 (I)) w
L.U = € , U= , 6
v £+ Hy(w,€) o 0
_kgq)m — Py + Hy(n, ®) §
where
(1 4 kZn2,)/? ( 1 /1 > w
Hy(w,€) = e (4 Doedy) 2.
1w 8) B “ 1+ ne 0! v dy B

Nz
Hs(n, ®) = ﬁkgnwz - 5]@‘3 |:(1_|_]£2772)3/2:|
e'lex x

1 b, b P2 22 o,
+/ B2, D, — Uy e g2 e Rey Ty
0 (1+775) (1+775) (1+"75)
2 y2"7€z (I)gyn:c y2776:c ‘I’gyﬁ

° (1+n)? : (L +n:)?

2 esPey®y Y PI N | YO P ean) ,
1+775 1+776 <1+77€>2 - ’

+ k? [yq)eyq)a: + yq)szq)y —

e 1 ( w>
Hi(w, &)+ = | yPoy,
T+ "1+ 1(w, ) 3 YPey

H4(777 (I)) = k? [ NPy — P + yCDsynz + ynm@yL + [k‘synm + Bzf(n, (I))}y~

HS(wv 6) ==

To this expression of L.U we add the linear boundary conditions obtained by taking the
differential of B at Us,

¢, =B (U) =dB[UJU =0 ony=0,1, (17)

where

Bla(U) = ka?/(_nx + kensocq)x + qu)ng]x)

NPy Peyn 4k2 Y02, eyt _ 2 Y712 Py _ 912 Y*NeaPeye
L+n. (1493 © (L 4me)? 1+ Sl

_|_

Notice that Bj.(U) only depends on the components 17 and ® of U. We sometimes write
By (n, ®) for convenience.
For s > 0, we define the Hilbert space

s __ s+1 s s+1 S
X = Hper (S) X Hper(S> X Hper (E) X Hper<z)7 (18)
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where S = (0,27), X =S x (0,1), and

Hpoo(S) = {u € Hipe(R) = u(z + 27) = u(x), € R},
Hper(3) = {u € Hipe(R x (0,1)) « u(z +2m,y) = u(z,y), y € (0,1), z € R}.

The action of the operator L is taken in X'° with domain of definition
VE={U=mnwo 8T ex! s &, =B.(n,®) ony=0,1},

chosen to include the boundary conditions. Then L. is well-defined and closed in X°,
and its domain )} is compactly embedded in X°. The latter property implies that the
operator L. has pure point spectrum consisting of isolated eigenvalues with finite algebraic
multiplicity. As a consequence of the reflection symmetry S given in (8), which commutes
with F" and leaves invariant Uy, the subspaces

X)={UeXx’:SU=U}, x°={Uecx’:SU=-U}, (19)

are invariant under the action of L..

One inconvenience of this functional-analytic setting is that the domain of definition
V! of the linear operator L. depends on €. This difficulty is well-known and can be handled
using an appropriate change of variables first introduced for the three-dimensional steady
nonlinear Euler equations in [16]. Here, we proceed as in [14] and replace ® by T = &+,
where x is the unique solution of the elliptic problem

_kz?X:tx — Xyy = Blt’;‘(U) in 3,
x=0 ony =0,1.
so that T satisfies the boundary conditions T, = 0 ony = 0, 1 which do not depend on €.
The linear mapping defined by G.(n,w, ®,&)T = (n,w, T, &), is a linear isomorphism

in both X° and X'}, it depends smoothly on ¢ and the same is true for its inverse G- L.
Setting L, = GELEGQ1 the operator L acts in X 0 with domain of definition

V9 ={U=nwT cx':T,=00ny=0,1},
which does not depend on € anymore. While EE allows us to rigorously apply general

results for linear operators, it is more convenient to use L. for explicit computations.

3.2 SPECTRAL PROPERTIES OF Lo The unperturbed operator L obtained fore = 0 is a
differential operator with constant coeflicients. Therefore, eigenvalues, eigenfunctions, and
generalized eigenfunctions can be explicitly computed using Fourier series in the variable
x. In particular, for purely imaginary values i¢ with £ € R the eigenvalue problem (Lo —
ilT)U = 0 possesses nontrivial solutions in the n™ Fourier mode if and only if

(a+ Bo?)osinho — n’kcosho =0 with o2 = n?k2 + 2
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For fixed (v, 3) in Region I, this equality holds if and only if ¢ = 0 and n € {0, £1}; see
also [11]. Consequently, O is the only purely imaginary eigenvalue of L and it has geometric
multiplicity three. The associated eigenvectors are given by the explicit formulas:

0 — sinh(k,) sin(x) sinh (k) cos(x)
0 0

G = 11’ = cosh(k.y) cos(z) |’ G = cosh(k,y) sin(z) (20)
0 0 0

Associated to each eigenvector there is a Jordan chain of length two, so that the algebraic
multiplicity of the eigenvalue 0 is six. The generalized eigenvectors associated to (o, (— and
(4 are given by, respectively,

0 0 0
o = 8 = -3 sinh((])c*) sin(x) oy = 5sinh(k5) cos(x) (@)
1 cosh(k.y) cos(z) cosh(k,y) sin(z)

Notice that the reflection symmetry S given in (8) acts on these eigenvectors as follows:

S(OZ_C07 SC—:_ — SQ-Q-ZC-H
S¢0:—¢07 S¢— :_¢—7 SQ/}+:¢+-

These formulas are consistent with the ones already found in [11]. The remaining eigenvalues
of Lg are bounded away from the imaginary axis.

3.3 MaINResuLr We summarize in the next theorem the properties of the linear operator
L needed for our transverse dynamics analysis. The same properties hold for the operator

L..

THEOREM 3.1 (Linear operator) 7here exist positive constants €1, C1, and Ly, such that for
cach e € (—e1,¢€1) the following properties hold.

(i) The linear operator L. actingin X 0 with domain yg has an eigenvalue O with algebraic
multiplicity four, and two simple purely imaginary eigenvalues +il. with £, > 0 and
by = 0. Any other purely imaginary value it € iR \ {0, £il.} belongs to the resolvent
set of Le.

(i) The restriction of L. to the invariant subspace X has the two simple purely imaginary
eigenvalues £il; and any other value il € iR \ {£il.} belongs to the resolvent set.

(iii) The inequality
1

|(ze —ien|, o < R

holds for each real number £ with |£| > (1.
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Proof. We rely on the properties of the operator Lo and perturbation arguments for ¢
sufficiently small. The operators L. and L having the same domain of definition R
standard perturbation arguments show that L. is a small relatively bounded perturbation
of Ly for ¢ sufficiently small. The result in item (iii) is an immediate consequence of this
property. Indeed, for ¢ = 0 the inequality from (iii) is given in [11], which implies that a
similar inequality holds for LO, with p0551bly different values C and ¢;. The operator L

being a relatively bounded perturbation of Ly for sufficiently small ¢, from the inequality
for Eo we obtain that item (iii) holds for EE, and then for L.. It remains to prove items (i)
and (ii). This is the main part of the proof of the theorem.

Spectral decomposition.  The results in Section 3.2 show that the spectrum o (Lg) of the
linear operator Ly satisfies

o(Lo) ={0}Uoi(Loy), o1(Lo) C{A€C : |[ReA| > di},

for some d; > 0, where 0 is an eigenvalue with algebraic multiplicity six and geometric
multiplicity three, and the same is true for the linear operator Lg. The six-dimensional
spectral subspace &y associated to the eigenvalue 0 of Ly is spanned by the eigenvectors
Co, C+ given in (20) and generalized eigenvectors 1g, 1+ given in (21). Fore # 0
sufficiently small, L. isa small relatively bounded perturbation of Lo. Consequently, there
exists a neighborhood Vp C C of the origin such that

Vo C{A e C : |[Re)| < di/4}
and
o(L.) = oo(L:) Uor(Ly), oo(Le) C Vo, o1(Le) C{AeC : |ReX| > dy/2},

for sufficiently small e, where the spectral subspace associated to o (EE) is six-dimensional,
and the same is true for L.. Moreover, for the operator Ly, there exists a basis { (o (), (4 (&),
o(e),1+(g)} of the six-dimensional spectral subspace & associated to o¢(L.) which is
the smooth continuation, for sufficiently small ¢, of the basis {{y, (4, 1o, 1¥+} of the
six-dimensional spectral subspace &y associated to the eigenvalue 0 of Lg. The two bases
share the symmetry properties,

SC(e) = —Co(e), SC-(e) = C (e), SCi(e) = ¢4 (),
Spo(e) = —tbo(e),  SY—(e) = —v—(e),  SP4(e) =¥+ (e).

Thus, we have the decomposition &, = &+ @ & _ with

5574» = {U €& : RU = U} = SPaH{C+(5),¢+(5)}v
E—={Uc& : RU=-U} =span{(y(e),(—(¢),Y0(e),—(e)}.
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These spaces & + are invariant under the action of L..

Purely imaginary eigenvalues of L. necessarily belong to the neighborhood Vj of 0.
Therefore, they are detemined by the action of L. on the spectral subspace &;. This action
is represented by a 6 x 6 matrix. The decomposition & = & @ &- _ above, implies
that we can further decompose the action of L. by restricting to the invariant subspaces
& +. In other words, the 6 x 6 matrix is a block matrix with a 2 x 2 block representing
the action of L. on &  and a4 x 4 block representing the action of L. on & _. Our task
is to determine the eigenvalues of these two matrices. This will prove the result in part (i)
of the theorem. For the restriction of the linear operator L. to the invariant subspace X
in part (ii) of the theorem, it is enough to consider the eigenvalues of the 2 X 2 matrix.

Eigenvalues of the 4 X 4 matrix. It turns out that a basis of the subspace £ _ can be
explicitly obtained using the symmetries of the Euler equations. First, the Euler equations
(1)—(2) are invariant under the transformation ¢ — ¢ + C for any real constant C. This
implies that the dynamical system (5)—(6) is invariant under the transformation U +— U +
Co where (o = (0,0,1,0)T. Consequently, (o belongs to the kernel of L. and since
SCo = —(p it belongs to £_. We choose (y(¢) = (p and then a direct computation gives
the generalized eigenvector

0
1
- ., d
1+
satisfying L.1)o(e) = (o and Stpp(e) = —1o(e).
Next, the invariance of the Euler equations under horizontal spatial translations in
x implies that the derivative Uz, = (1)z, 0, ®cs, 0)T of the periodic wave belongs to the
kernel of L. Since SU,; = —U,y, the vector U, belongs & _. From the expansions (10),
we find that U, = e(_ + O(e?). This gives a second vector (_(g) = £ *U., which
belongs to the kernel of L., and also to the invariant subspace £_, with the property that
(—(e) = ¢~ ase — 0. The corresponding generalized eigenvector is given by

0
Nez B 1 naa:yq)ay
—*f yP (‘I’ )dy
ooy L| Tz TRyt (P,
€ 0
namyq)ey
1 b, — —F—=
( +n€)< : 1+?75>

The above shows that there is a basis {(y (), ¥0(¢), (~(¢),9—(e) } for & _ satisfying
LeCo(e) =0,  Letpo(e) = Cole), LeC-(e) =0, Leyp_(g) =(-(g).

Thus, 0 is the only eigenvalue of the 4 X 4 matrix representing the action of L. onto & _
and it has geometric multiplicity two and algebraic multiplicity four.
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Eigenvalues of the 2 X 2 matrix. We consider a basis {((¢), 4 (¢)} of the subspace
&: + which is the smooth continuation of the basis {(, 11 } of & +, and denote by M (¢)
the 2 x 2 matrix representing the action of L. on this basis. At e = 0, we have that
Lo+ = 0and Loy = (4, which implies that

M(0) = (8 é) .

For € # 0, we write

mgl(&‘) m22(5>

M(E) _ (m11(€) 1 +m12(6>> ‘

The invariance of the Euler equations under horizontal spatial translations in x, implies that
the periodic waves translated by a half-period 7 are also periodic solutions. Comparing their
expansions in € with the ones of (7., ) we conclude that

Ne(z) =n_e(z+m), D (x,y)=P_(x+m,y).

Since the 2 X 2 matrices corresponding to these solutions are the same this implies that

(2) 2
7,] 8 +

M(e) = M(—¢), and as a consequence, we have the expansion m;j(e) = m,
O(e%), for e sufficiently small.

Next, the reversibility of L. implies that the spectrum of L. is symmetric with respect
to the origin in the complex plane. Moreover, because L. is a real operator, its spectrum
is also symmetric with respect to the real line. These observations combined imply that
the two eigenvalues of M () are either both real or both purely imaginary, and their sum
is equal to 0. Consequently, mj1(¢) = —maga(e). Further, the product of these two
eigenvalues is equal to the determinant of M (e). Therefore, the eigenvalues are both real

if det M(e) < 0 and both purely imaginary if det M(g) > 0. We have

det M(e) = —m2, (e) — may (€)(1 + maz(e)) = —m$Ve? + O(eY),
2)

so the result in theorem holds provided ms," < 0.

(2 )

The final step is the computation of the sign of ms,". We prove in Appendix C that

4Pk, sinh®(k,) + 2k, — sinh(2k.)
4Bk, sinh? (k) + 2k, + sinh(2k, )

(22)

(2)
My = —4kx
where ky is the coefficient in the expansion of the wavenumber k. given in (11). Replacing

the formula for ko we obtain

@ _ 1 e
el Sa 45k*sinh2(k*)+2k:*+sinh(2k*) e
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where

m$Y = — (908 + 16) k, + 1208k, cosh(2k,) — 30,8k, cosh(4k,)
+ 8a(2¢(ky) — 1) sinh(2k,) + 4a(c(ks) + 2) sinh(4k.),

(2) ~(2)

with ¢(k,) < —1 givenin (13). Clearly, ms,” and my;’ have the same sign. Proposition D.1

in Appendix D shows that mgzl) < 0 for (a, B) in Region I. This completes the proof of

the theorem. O]

4 TRANSVERSE DYNAMICS

We show that the two-dimensional periodic waves in Theorem 1.1(i) are linearly transversely
unstable for ¢ sufficiently small, and then discuss the induced dimension-breaking bifur-
cation. These two results prove the parts (ii) and (iii) of Theorem r.1.

Throughout this section, we consider a two-dimensional periodic wave U, such that
the associated linearized of operator L. studied in Section 3 possesses two simple purely
imaginary eigenvalues +i/. as in Theorem 3.1, hence by fixing ¢ € (—¢1,1).

4.1 TRANSVERSE LINEAR INSTABILITY Linearizing the system (5)—(6) at U, we obtain the
linear system

dU
- DU; +dF[U.]U, (24)
with boundary conditions
®y = yni + Bie(U) ony=0,1. (25)

The periodic wave Uy is transversely linearly unstable if the linear equation has a solution
of the form exp(ct)U,(z) with Reo > 0 and U, € CL(R, X°%) N C,(R, X'). For the
construction of such a function, we closely follow the approach developed in [17] where
the authors studied the transverse instability of solitary waves for the Euler equations. The
only difference is that the functions were localized in € R in [17], whereas here they
are periodic in . We use the following general result from [17], which we have slightly
modified; see Remark 4.2.

TueoReM 4.1 (Theorem 1.3 [17]) Consider real Banach spaces X, Z, Z;, i = 1,2, and a
partial differential equation of the form

dU
@ = DlUt + DQUtt + LU. (26)

Assume that the following properties hold:

(i) Z C Z; C X, i =1,2, with continuous and dense embeddings;

113



(ii) L, D1, and Dy are closed linear operators in X with domains Z, Z1, and Z, respectively;

(iii) the spectrum of L contains a pair of isolated purely imaginary eigenvalues *il, with odd
multiplicity;

(iv) there exists an involution R € L(X) which anticommutes with L and D;, i = 1,2,
i.e., the equation (26) is reversible.

Then, for each sufficiently small o > 0, equation (26) has a solution of the form exp(ot)Uy(2)
withReo > 0 and Uy € CH(R, X) N C(R, Z) a periodic function.

Remark 4.2. Theorem 1.3 [17] assumes that the linear operators L, D1, and Dy have the
same domain of definition, while we in Theorem 4.1 allow for different domains, just like in
Theorem 2.1 of [10]. This is needed since the operators D} and Dy in our application (and
in fact also in [r7]) have different domains than L. Note in particular that the hypotheses
imply that Dy and Dy are relatively bounded perturbations of L by Remarks 1.4 and .5,
Chapter 4.1.1 [33].

This general result does not directly apply to the system (24)—(25) because the boundary
condition (25) contains the extra term y7; which involves a derivative with respect to t. We
proceed as in [17] and eliminate this term by an appropriate change of variables, similar to
the one used for L. in Section 3.

We replace the variable ® in U by a new variable © = ® + 6,; where 6 is the unique
solution of the elliptic boundary value problem

k20,0 — Oyy + Bi-(0,60,) = yn in X,
=0 ony=0,1,

where we set Bj.(n, ®) = Bj.(U) because B;.(U) only depends on 1 and ®. In the
boundary value problem for 6, we regard ¢ as a parameter and assume analytic dependence
ont. Then the mapping defined by Q(n, w, ®, &)1 = (n,w, ©, )T isalinear isomorphism
on both X° and X'!. The transformed linearized problem (24)—(25) for V = (n,w, ©,&)"
is of the form

dv

o =DVt DoV + LV, (27)
with boundary conditions

©,=DBi(V) ony=0,1. (28)

The two linear operators Dy and Dj are bounded in X 0 and defined by

n 0 U 0

wl| @|y:1 + keexy|y:1 - HQ(O, 9y) w _9y|y:1
Dilg|= 0, o P2igl= 0 ’

3 /i k’?(—ﬂs%y + ynsxeyy)x I3 0
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where 0 is the unique solution of elliptic boundary value problem

k204 — 0,y + Bic(0,0,)

y(5+mwo)

0=0 ony =0,1.

We use the system (27)—(28) and the result in Theorem 4.1 to prove the transverse linear
instability of the periodic wave UL.

Proof of Theorem 1.1(ii). We apply Theorem 4.1 to the equation (27) with Hilbert spaces
X=2=x02= yg, i = 1,2, operators Dy, Dy defined as above, and L.. Since Dy
and Dy are bounded on X, they are closed operarors in X°. The first two hypotheses (%)
and (7i) are satisfied. The spectral condition (77) is verified by Theorem 3.1(i). The reverser
is R defined in Section 2.1 and its anti-commutativity with D1, D9 and L is preserved by
the change of variables (). Thus, equation (27) is reversible. Theorem 4.1 now gives the
statement of Theorem 1.1(ii). O]

4.2 DIMENSION-BREAKING BIFURCATION We look for three-dimensional steady solutions
of the system (5)—(6) which bifurcate from the transversely unstable periodic wave Uk.
Taking B B

U(z,y,2) = Ue(z,y) + U(z,y,2), U= (n,w,2,8)",
in (5)—(6) we obtain the equation

i _

dZ _F(UE+U)7 (29)
together with the boundary conditions
®,=B(U.+U)—-B(U.) ony=0,1. (30)

The mappings F' and B are defined on an open neighborhood M of 0 € X! which is
contained in the set

{(n,w,®,6)T e X' . [W(x)| < B,n(z) > —1forallz € R},

and are analytic. The periodic wave U, belongs to M, for sufficiently small €, and we look
for bounded solutions U such that U, + U(z) € M, for all z € R.

General bifurcation results cannot be directly applied to this system because the boun-
dary condition (30) is nonlinear. We make a nonlinear change of variables which transforms
these nonlinear boundary conditions into linear boundary conditions. Similarly to our
previous changes of variables from Section 3.1 and Section 4.1, we replace ® by a new
variable © = ® + 0, where 0 is the unique solution of the elliptic boundary value problem

k20,0 — 0,y + Bi-(0,60,) = B(U) inX,
0=0 ony =0,1.
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and define Q(n, w, ®,&)T = (n,w, 0, ). Using the method from [14] (see also [17]) one
can show that ) is a near-identity analytic diffeomorphism from a neighborhood M of
0 € X! onto possibly a different neighborhood M3 of 0 € X! and that for each U € M,
the linear operator dQ[U]: X' — X extends to an isomorphism dQ[U]: X0 — X
which depends analytically on U and the same holds for the inverse d/é[U ]=1. Then the

equation (29) is transformed into

dv
L = LV N, (31)

where

N:=F—L., F(V)=dQQ '(V)|(F(U.+Q  (V))),

and the boundary condition (30) becomes linear,
©, =B (V) ony=0,1.

In particular, we recover the linear operator L. studied in Section 3, and we can apply the
Lyapunov center theorem to conclude.

Proof of Theorem s.1(iii). The equation (31) is a dynamical system in the phase space A°
with vector field defined in a neighborhood of 0 in J}. Because the change of variables
(@ preserves reversibility and reflection symmetries, the vector field in (31) anti-commutes
with the reverser R and commutes with the reflection S. Consequently, the system (31) is
reversible with reverser R and the reflection symmetry S implies that the subspace X given
in (19) is invariant. Taking X = X¥ and Y = Y!NXY the results in Theorem 3.1 imply that
the hypotheses of Theorem A.1 hold, for ¢ sufficiently small. This proves Theorem r.1(iii).

O

5 PARAMETER REGION 1]

The analysis done for («, /3) in Region I can be easily transferred to the parameter Region II.
However, the final result is different because the linear dispersion relation (3) possesses two
positive roots for (c, 3) in this parameter region. We point out the differences and then
state the main result for this parameter region.

Denote by k1 and k. 2 the two positive roots of the dispersion relation. Take k, 1 <
k.2 and assume that ky 2 /ky 1 ¢ Z.

First, the existence of two-dimensional periodic waves is proved in the same way, with
the difference that we now find two geometrically distinct families of two-dimensional
periodic waves { (1,1 (X), ¢e,1(X, Y))}se(fao,eo) and {(n:,2(X), ¢- 2(X, Y))}ee(fso,so)
with wavenumbers k.1 = ki1 + O(e?) and koo = ko + O(g?), respectively. The
expansions (10) remain valid with k, replaced by k. 1 for the first family and by k. 2 for
the second family, and this is also the case for all other symbolic computations.
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Next, the analysis of the linear operator L. given in Section 3 stays the same until

2)

the last step of the proof of Theorem 3.1 which consists in showing that ms;" is negative.

(2)

The formula for ms;’ is the same, but the result is different for the first family of periodic
waves. The analysis in Appendix D gives the conclusion that mg) is negative for the second
family of periodic waves, whereas for the first family of periodic waves it is negative only
when 2k, 1 > k, 2. This condition is satisfied if and only if (v, ) belongs to the open
region between I'y and I in Figure 1.

Consequently, the two-dimensional periodic waves (7:2(X), ¢: 2(X,Y)) are trans-
versely linearly unstable, whereas the periodic waves (1 1(X), ¢z1(X,Y)) are unstable if
(c, B) lies between I' and I'. Notice that our approach does not allow us to conclude on
stability because the general criterion in Theorem 4.1 only provides sufficient conditions for
instability. Finally, the dimension-breaking result holds for all linearly transversely waves.

We summarize these results in the following theorem.

TueoreM s.1 (Region II) Fix (v, 3) in Region I and let k. 1, ki 2 be the two positive roots
of the dispersion relation (3). Assume that ki1 < ko and ki 2/ky1 ¢ Z. Denote by T'y the
(o, B)-parameter curve for which 2k, 1 = ki ».

(i) (Existence) There existeo > 0 and two geometrically distinct families of two-dimensional
steady periodic waves

{(na,l(X)a ¢8,1(X7 Y))}EG(*EQ,EQ) and {(UE,Q(X)v ¢6,2(X7 Y))}Ee(fso,ao)

to the equations (1)—(2), such that (1o, ¢0,i) = (0,0) and (ne;, ¢<i) are periodic in
X with wavenumbers k. ; = k; + O(e%) fori = 1,2.

(ii) (Transverse instability) There exists €1 > 0 such that for each ¢ € (—e1,€1) the
periodic solution (12, ¢z2) is transversely linearly unstable. The solution (121, ¢c1)
is transversely linearly unstable if 2k.1 > k.o, which occurs for (o, ) in the open
region between the curves I'y and T

(iii) (Dimension-breaking bifurcation) There exists €2 > O such that for each transversely
linearly unstable wave (e ;, ¢ ;) with € € (—ea,€2), i = 1,2, there exist 5 >
0, £2; > 0, and a family of three-dimensional doubly periodic waves {(ngﬂ- (X, 2),
¢g,i(Xa Y, 2)) Yoe(=5..1,5..) with wavenumber k. ; in X and wavenumber s =
U ;4 O(0%) in 2, bifurcating from the periodic solution (1 ;, ¢ ;).
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A LYAPUNOV CENTER THEOREM

We state a non-resonant version of the Lyapunov center theorem for reversible systems
which is a particular case of the more general version from [2].

THEOREM A1 Let X and Y be real Banach spaces such that Y is continuously embedded in
X. Consider the evolutionary equation
aw _
dt
where F € €5(U, X) withtd C Y a neighborhood of 0. Assume that F(0) = 0 and that
the following properties hold:

FU), (32)

(i) there exists an involution R € L(X) N L(Y) which anticommutes with F, i.e., the
equation (32) is reversible;

(ii) the linear operator L := A F'[0] possesses a pair of simple eigenvalues +iwo with wy > 0;
(iii) for eachn € 7\ {—1, 1}, inwq belongs to the resolvent set of L;

(iv) there exists a positive constant C' such that
. _ C . _
(L = inwol) ™ £(x,0) < Tl (L = inwol) H xp) <C,  (33)

asn — oQ.

Then, there exists a neighborhood E C R of 0 and a €*-curve {U (€), w(e) }ecr where U (<)
is a real periodic solution to (32) with period 21 |w(e). Furthermore, (U(0),w(0)) = (0, wp).

In the version of the above theorem from [2] the curve {U(g),w(e)}.cp was only
continuously differentiable and the vector field F was of class €. For our purposes we
need at least a 6**-dependence on ¢ and we therefore assume that F is of class €.

B EXPANSION OF THE TWO-DIMENSIONAL PERIODIC WAVES

For this computation it is more convenient to use the original system (1)—(2) instead of
the dynamical system (5). Restricting to two-dimensional steady solutions, we make the
change of variables

X =ka, YV=y(l+nX)), nX)=10x), oXY)=>o(z,y).

Dropping the tildes we obtain the equations

1 Yz
Ko, + —— &, — 2k> P
(L 4m)2 ™ 1+n ™ (4)
2 2 34
YN o 2yn; YNz
k> ) k — d, =0
- (1+77) wt ((1+n>2 1+n) v
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for 0 < y < 1 with boundary conditions

@y = 0 on y — O’
(I)y = (1 + ﬁ)(—kﬁx + anx(I)x) - kQU;%‘I)y ony =1,
Nz 2 Nz
— kP, — b, ) -k —F
an ( T 140 y) s <(1 T k27732¢)1/2)x (35)

1 N 2 @2
+ = ﬁ(@-@) +—Y _1=0 ny = 1.
2( Tol4n ) (L) oY

The scaled periodic wave (77:(z), ®-(x, y)) satisfies these equations for k = k.. We insert
the expansions (10) into equations (34)—(35) and expand the resulting equations in £. We

restrict to solutions with 7Jc even in x and ¢, odd in x.
At order O(e) we find the following equations for 7; and ®;:

kzq)lxx + q)lyy = O fOl’O < Yy < ].,
(1)1 - O on y = O’

’ (36)
(I)ly = _k*nlx ony = 1,

an — k*q)1z|y:1 - 5]{37711‘90 =0 ony = 1.

Taking Fourier series in x,

m(x) =Y mncos(nz), @i(w,y) =) ¢a(y)sin(nz),
n=0 n=1

we obtain the solvability condition D(nk,) = 0 where D is the linear dispersion relation
in (3). Consequently, n = 0 which gives solutions which are constant in z, only, and
n = %1 which gives the formulas for 71 and ®; in (12).

Next, at order O(g2) we obtain the equations for 72 and ®s,

kz(I)sz + ®2yy = 2771(I)1yy + ka?ﬂhz@uy + k‘f?ﬂhm‘i’ly for 0 < y < 1>
®yy =0 ony =0,
(I)Qy + k*772m = kf"]lazcbla: - k*nl"llaz ony =1,
ang — Bkianx — k*q)gx = _k*nlxq)ly — %(kzq)%x =+ @%y) ony = 1.

(7)
Inserting the explicit formulas for ; and ®1 we obtain

k2®g,, + ®oy,, = k2 sinh(k.) sin(2z) (cosh(k'*y) — 3k.y sinh(k*y)) for0 <y <1,

Dy =0 ony = 0,
— (ks gipnh2 k2 s . .
Doy + kumpop = (7 sinh®(k,) — % sinh(k,) COSh(k*)) sin(2z) ony =1,
any — Bk Nope — ki®op = —% cosh(2k.) cos(2z) — %3 ony = 1.
(38)
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Observing that the right-hand side only involves the second Fourier mode, we find the
formulas for 779 and @5 in (12).
Finally, the coefficient k3 is determined from the expansion at order (9(53),
kz‘DSzz + q)3yy = —Qk*kzq)lﬂg — 377%(I)1yy + 2772(I)1yy + 2171‘1)2%,
+ 2]{733/(7721(1)1@4 + 7713:(1)23734 - nlxnlq)la:y - 77%1@114)
- kfy%ﬁx‘lhyy + ykf (nlxa:q)Qy + anxCI)ly — Maz" <I)ly)
for0 <y <1, and

o3, =0 ony =0,
D3y + k)3 = =k (Mn22 + Man2) — k2

+ k2 (M2 ®Paz + 120 ®1a + MMa®ia) — k207, 1y ony =1,
ang — Bk n3er — kP = ko®1y — ke (N12Pay + 12:P1y — M2 P1y)

3
+ Zﬂk*k@nlwz - §5kfnlm7ﬁz
— k2 (@1, P2y — m1pP1P1y) — P1y Doy + 771@%3, ony =1

The right-hand sides involving only Fourier modes 1 and 3, we write

n3(xz) = 31 cos(z) + n3zcos(3x), Ps(x,y) = P31(y) sin(x) + ¢s3(y) sin(3z),

and the resulting systems for (731, ¢31) and (733, ¢33) are decoupled. The coefficient ko
only appears in the terms with Fourier mode 1 so that it is enough to solve the equations
for (n31, ¢31). These equations are of the form

—kibsi(y) +o(y) =F  for0<y<1,
(a+ Bk s — keda (1) = g3,
¢5,(0) =0,
¢31(1) = kamzr = [,

(39)

where, after computations, we find the explicit formulas

k2sinh?(k,) k% k3
Fy(y) = (Sntl() — 5= = o (e(k) + 1) sinh(2k.) + Qk*k2> cosh (k)

k2 sinh? (.,
+ %()y sinh(kyy) + k3c(k.) sinh(k,) cosh(2k,y)

3ktc(k,) sinh(k,)
+ 4

ysinh(2k,y),
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and

16 4

k3 3 4.
~ 16 cosh(3k,) + 3—2ﬁk’* sinh(3k.),
 Ke(k) Bolk) K

f3 = 16 COSh(kLk) + <—4 + E 4@ + k2> Slnh(k*)

k2c(k.)
16

Observe that the system (39) is equivalent to the linear nonhomogeneous equation

3 3
g5 = (’f _ Kelky) | k2) cosh(k,) + (_39251{3 + 2Bk*k2> sinh(k,)

3
cosh(3k.) + Ekf sinh(3k).

n31 cos(x) 0
0 - g3 cos(x)
Lo é31(y)sin(x) | 0 : (40)
0 —F3(y) sin(z)

where Ly is the linear operator from Section 3, together with the linear nonhomogeneous
boundary conditions

$31(0) =0 and ¢3(1) — kumpz1 = f3. (41)
Consider the dual vector
0
. sinh(k,) cos(z
<+ = 3 ) 9 (42)
cosh(k.y) sin(z)

which belongs to the kernel of the adjoint operator L. Taking into account the nonhomo-
geneous boundary conditions (41), a direct computation of the scalar product of (40) with
G leads to the solvability condition

1
facosh(ky) + g sinh(k,) = /0 Fy(y) cosh(k.y) dy. 43)

Indeed, integrating twice by parts we find
1
/ F5(y) cosh(kyy) dy — g3 sinh (k)
0

1
= [ (K203 — 6§ (1)) cosh(k.y) dy — gasinh(k.)
= ¢4, (1) cosh(ky) — kw31 (1) sinh(k,) — g3 sinh(k.)

= (f3 + kunz1) cosh(k) — (o + BE2)nz1 sinh (k)
= fscosh(ky),
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where we have also used the linear dispersion relation D(k.) = 0. Replacing the explicit
formulas for F3, f3, and g3 into the solvability condition (43) and solving for k3 we obtain
the formula (11).

(2)
C COMPUTATION OF THE COEFFICIENT 77057
. . . 2 . . .
We prove the equality (22) which connects the coefficient mgl) with the coeflicient ks in

the expansion of the wavenumber k. of the periodic wave.
We emphasize the dependence on k of the vector field F' in (5) by writing F'(U, k) and
similarly for B in the boundary conditions (6) we write B(U, k). Setting

B(U, k) = B(U,k) — ®,,
the two-dimensional periodic wave U, given in (15) satisfies

, ye(0,1)

y=0.1 (44)

The linear operator L. is equal to Dy F[Us, k-] with boundary conditions Dyy B[Us, k-] =

0. To determine mS>, we study the problem
LGy (e) = m11(e)¢4(e) + mar(e)v4(e), (45)
with the boundary conditions
Dy BUe, k] ¢4 (€) = 0. (46)

We will make a connection between (44) and (45)—(46) using the expansions in € of F/, B,

Ues ke, C4(€), 4 (€), ma1(e) and mos (€).
For the system (44), we write

U. =eUy 42Uy + U5 + (’)(54),
ke = ky + €%ky + O(e%),

and take the Taylor expansion of F'(U, k) at (0, k),
1
F(U,k) = Dy F[0, kU + 5D2UUF[0, k(U U)
1
+ D0, k(U k — k) + gD%,UUF[O, k(U U,U)

+0 (k= k2Tl + k= BT + U131 -
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where all derivatives Dlgq)F [0, k«] = 0 because F'(0,k) = O for all k. A similar Taylor
expansion can be written for the nonlinear boundary condition B. In particular Ly =
Dy F[0, k] with boundary conditions BoU = DUB[O, kU =0ony = 0, 1. Inserting
these expansions into (44), at order O(g), we find

{LOUl = 07 Yy e (07 1)7

~ (47)
BoUy =0, y=0,1. i

Thus U; belongs to the kernel of Lg and we choose U; = (4 which is in agreement with
the expansion of Uy given by (10). At order O(£?), we obtain the system

LoUs = —3D3u F[0, k) (U1, Uh),  y € (0,1), (49
ByUs = —iD{y B[O, kJ(Ur,Uh), y=0,1.
and at order O(e?) we find
LoUs = =Dy F[0, k) (U, Uz) — Dy F0, k. (Un, k)
_ %D?I)JQUF[OJg*](Ullele)?N (NS (071)7 (49)
BoUs = =D}, B[0, k] (U1, Us) — DF,.B[0, k.| (U, k2)
— D}y B0, k) (Ur, Uy, Uh), y=0,1.

The nonhomogencous systems (48) and (49) have each a unique solution Uy and Us,
respectively, up to an element in the kernel of Lg. Furthermore, Us = (12,0, ®2,0)T
in agreement with the expansion of U, given by (10).

Similarly, for the spectral problem (45)—(46) we take

Cr(e) = ¢ +elra +€%Cra +0(E),
¥ (e) = Yy + ety + %10 + O(E%),
mi(e) = e2ml? + O(eh),
mai(e) = £2m$y) + O(eY),

the Taylor expansion

Le =Dy F[Us, k()

= Dy P[0, k() + DRy FI0, ka)(Us, ) + D3 IO, k(- e — )
DU FI0 k(U U, ) + Ok — bl e — Rl U lLs + 0130 ).

and a similar Taylor expansion can be written for Dy B[U., k.]. Inserting these expansions
in equations (45)—(46), we find at order O(1) the system

LOC+ = Oa (NS (O) 1))
Byo¢+ =0, y=0,1
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This is precisely the system (47) and we may choose Uj = (. Next, at order O(¢), we
find
{Lo<+,1 = —D{y [0, k(U1 Uy, y € (0,1),
Boly 1 = —D¥B[0, k] (U1,Ur), y=0,1.

Comparing to (48), we choose (1 1 = 2U>. Finally, at order (’)(52), we have the system

L0C+,2 = _3D2UUF[07 k*](Ul’ UQ) - DQUkF[Ov k*](Ul) kQ)

— 1D}y Fl0, k(U1 Uy, Ur) + m{P ¢+ m$Byy, y e (0,1),
BoG+,2 = —3Dgy BIO, kJ(Ur, Ua) — Dy B[O, k.J(Un, ko)

— D}y BI0, k(U Uy, Th), y=0,1.

Substracting the system (49) from the one above we obtain the system

{LO(C+,2 — 3U3) = 2D, F[0, k.J (U, ko) + m§21)§+ + méﬁ)w, y € (0,1),
Bo(Cy2 — 3Us) = 2D, B0, k.| (Uy, ko), y=0,1,
(s0)

in which k2 and mg) appear in the right-hand sides of the two equalities.

We obtain the connection between k9 and mg) by taking the scalar product of the first
equation in (50) with the dual vector ¢} given by (42) which belongs to the kernel of the

adjoint operator L. This leads to the equality

m® _ (Lo(Ce2 —3Us), C1) 2<D%]kF[Oa k(U k2),CE) (51
2 (Y4, CL) (Y4, C) '

It remains to explicitly compute the right-hand side of this equality.
First, we compute the denominator

2 1 2
(s, (1) = / / cosh?® (kyy) sin?(z) dy dz + [ Bsinh®(k,) cos®(x) da
0 0 0

o (; + COSh(k*;kSlnh(k*) 4 ﬂsinhQ(k*)> .

Next, observe that (4 o = (14 2,0, @4 2,0)", and similarly the second and fourth components
of Us vanish. Setting
C+,2 - 3U3 = (77’ 03 ®7 O)Ta
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and taking into account the boundary conditions from (50), we find

1 r2n
(Lo(Cr2 —3U3), (%) = /0 /0 (—kf@m - <I>yy> cosh(k,y) sin(x) dz dy

2
+ / (an — Bk — k*q)x‘y_J sinh(k,) cos(x) dz
0 -

2T
=-2 kaniz cosh(ky) sin(z) dz
0

27
= 2ky / sinh (k. ) cosh(k,) sin?(z) dz
0
= mko sinh(2k,).

where we have integrated twice by parts and used the linear dispersion relation D(k,) = 0.
Finally,

0
-2 * . _
DIQJkF[Oak*](Ul,kQ) = ko Bk le% 1zly=1 ’
— 2%, D1 gs

which gives
(DEF(0, k] (Ur, k), C1) = mhs (2Bk. sinh? (k) + k)

Replacing these explicit formulas into (51) gives the equality (22).

2
D SIGN OF THE COEFFICIENT mgl)

Consider ﬁlgzl) given by (23) and assume k, > 0 is such that D(k.) = 0. From the linear

dispersion relation, we find that

1 «

b= kytanh(k,) k2

Since 3 > 0, we have 0 < a < k,/ tanh(k,). Setting

ki cosh(ky) w
~ sinh(k,) ’
we obtain , ,
_(2) 9 N3W” — naw” + njw + ng
= —16k; -
a1 Ok D(2k) ’
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in which w € [0, 1], and

n3 = 9cosh’(k,) (COShz(k*) - 1) ,

ny = 3cosh?(ky) (cosh4(k‘*) + 4 cosh?(k,) — 1) ,
ny = cosh?(k,)(2 cosh?(k,) + 13),

ng = 4 cosh?(k,) + 2.

We will now show that the numerator nsw? — now? + njw + ng is positive. To this end,
note that ng > 0 for all k£, > 0. This gives
3 2 2
nsw” — naw* + njw + ng > w(ngw” — now + ny).

Observe that the coefhicients n3, no and 71 have a common factor COSh2(k‘*). Factoring
this out, it suffices to show that the quadratic polynomial in w

Plw, k) : (ns(ka)w? = na(ka)w + i (k.))

_ 1
 cosh?(k,)

is positive for all k, > 0 and w € [0, 1]. A simple calculation shows that P(w,0) > 0 for
w € [0, 1]. Differentiating P(w, k) with respect to k yields

Dy, P(w, ky) = sinh(2k,) (9(2 cosh?(k,) — 1)w?
— 6(cosh?(k.) + 2)w + 4 cosh?(k,) + 13).

Set S = sinh(2k,) and K = cosh?(k,) > 1. Completing the square in w gives

)

2 2 _
Dk*P(w,k*)zgs(QK_l)[(w_ K+2)> TK? + 18K — 17

32K —1 92K —1)2

where TK? + 18K — 17 > 0 for all K > 1. This shows that Dy, P(w, k) > 0 for
all kx > 0and w € R, which together with P(w,0) > 0 establishes our claim on the
positivity of the numerator for w € [0, 1].

As a consequence, the sign of ﬁ%ézl) is completely determined by the sign of D(2k,). In
Region I, the linear dispersion relation D(k) = 0 has a unique positive simple root k = k.
It follows that the smooth function k +— D(2k) changes signs exactly once at k = ki /2.
Since D(0) = 0 and D’(0) < 0, we conclude that D(2k) is negative for k € (0, k./2),
and positive for k € (ki/2,00). In particular, we have D(2k,) > 0. In Region II, the
linear dispersion relation D(k) = 0 has two positive simple roots k = ks 1 and k = k., 2,
0 < k41 < k2. This means that the smooth function D(2k) changes signs exactly
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twice, first at k = k. 1/2 and then at k = k, 2/2. Since D(0) = 0 and D’(0) > 0, we
conclude that D(2k) is positive on (0, k«,1/2), negative on (ks 1/2, k« 1/2) and positive
on (ks 2/2,00). This implies that D(2ky 2) > 0, whereas

’D(2k’*’1) >0 if k‘*’l > k‘*,g/Q,
'D(2k‘*71) <0 if k‘*,l < k‘*,g/Q.

The parameter region in which we have D(2k, 1) > 0 is precisely the open region between
the curve I' and I'y. We summarize our findings below.

ProrosritioN D If (a, 3) belongs to Region I, the coefficient mg) is negative. If (o, [3)
belongs to Region I1, then

(2)

* My, is negative for both wavenumbers ky 1 and ky o if (a, B) lies in the open region
21 & , , ) <
between I and s,

. mg) is positive for k1 and negative for k. o if (v, [3) lies to the left of Ts.
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