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AN ADAPTIVE PENALTY APPROACH TO MULTI-PITCH ESTIMATION

Ted Kronvall, Filip Elvander, Stefan Ingi Adalbj¨ornsson, and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Sweden.
email: {ted, filipelv, sia, aj}@maths.lth.se

ABSTRACT
This work treats multi-pitch estimation, and in particular the
common misclassification issue wherein the pitch at half of
the true fundamental frequency, here referred to as a sub-
octave, is chosen instead of the true pitch. Extending on cur-
rent methods which use an extension of the Group LASSO
for pitch estimation, this work introduces an adaptive total
variation penalty, which both enforce group- and block spar-
sity, and deal with errors due to sub-octaves. The method is
shown to outperform current state-of-the-art sparse methods,
where the model orders are unknown, while also requiring
fewer tuning parameters than these. The method is also shown
to outperform several conventional pitch estimation methods,
even when these are virtued with oracle model orders.

Index Terms— multi-pitch estimation, block sparsity, adap-
tive sparse penalty, total variation, ADMM

1. INTRODUCTION

Pitch estimation, i.e., estimating the fundamental frequency
of a group of harmonically related sinusoids, is a problem
arising in a variety of fields, not least in audio processing.
For example, correctly determining the pitches present in a
signal is a fundamental building block in many music infor-
mation retrieval applications, such as automatic music tran-
scription and genre classification [1]. However, pitch esti-
mation for multi-pitch signals is a difficult problem, and al-
though notable efforts have been made to find reliable multi-
pitch estimators, (see e.g. [2]), most of the currently avail-
able methods which use the harmonic structure depend on a

priori model order information, i.e., knowing the number of
pitches present, as well as the number of harmonic overtones
for each pitch. Such information is in general notoriously dif-
ficult to obtain. Our approach is instead to solve the problem
in a group sparse modeling framework, which allows us to
avoid making explicit assumptions on the number of pitches,
nor the number of harmonics. Instead, the number of com-
ponents in the signal is chosen implicitly, by the setting of
some tuning parameters. These tuning parameters determine
how appropriate a given pitch candidate is to be present in
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the signal and may be set using some simple heuristics, or
by using cross-validation.The sparse modeling approach has
earlier been used for audio (see, e.g., [3]), and specifically
for sinusoidal components in [4]. We extend on these works
by exploiting the harmonic structure of the signals in a block
sparse framework, where each block represents a candidate
pitch. A similar method was introduced in [5], where block
sparsity was enforced using block-norms, penalizing the num-
ber of active pitches. As the block-norm penalty, under some
circumstances, cannot distinguish a true pitch from its sub-
octave, i.e., the pitch with half of the true fundamental fre-
quency, the method is also complemented by a total variation
penalty, which is shown to solve such issues. Total varia-
tion penalties are often applied in image analysis to obtain
block-wise smooth image reconstructions (see, e.g., [6]). For
audio data, one can similarly assume that signals often are
block-wise smooth, as the harmonics of a pitch are expected
to be of comparable magnitude [7]. Enforcing this feature
will specifically deal with octave errors (due to present sub-
octaves), as, in the noise free case, only every other harmonic
of the sub-octave will have non-zero power. In this paper,
we show that a total variation penalty, in itself, is enough to
enforce a block sparse solution, if utilized efficiently. More
specifically, by making the penalty function adaptive, we may
improve upon the convex approximation used in [5], allowing
us to drop the block-norm penalty altogether, and so reduce
the number of tuning parameters. In some estimation scenar-
ios, e.g., when estimating chroma using the approach in [8],
this would simplify the tuning procedure significantly. Fur-
thermore, we show that the proposed method performs com-
parably to that of [5], albeit with the notable improvement
of requiring fewer tuning parameters. The method operates
by solving a series of convex optimization problems, and so
solve these we present an efficient algorithm based on the al-
ternating directions method of multipliers (ADMM) [9].

2. SIGNAL MODEL

Consider a complex-valued1 signal consisting of K pitches,
where the kth pitch is constituted by a set of Lk harmonically

1For notational simplicity and computational efficiency, we here use the
discrete-time analytical signal formed from the measured (real-valued) sig-
nal.



related sinusoids, defined by the component having the lowest
frequency !k, such that

x(t) =

KX

k=1

LkX

`=1

ak,`e
i!k`t (1)

for t = 1, . . . , N , where !k` is the frequency of the `th har-
monic in the kth pitch, and with ak,l denoting its magnitude
and phase. The occurrence of such harmonic signals is often
in combination with non-sinusoidal components, such as for
instance, colored broadband noise or non-stationary impulses.
In the scope of this work, we only treat the narrowband com-
ponents of the signal, although noting that audio signals often
also contain other features of notable perceptual importance
such as the signal’s timbre. In general, selecting model orders
in (1) is a daunting task, with both the number of sources, K,
and the number of harmonics in each of these sources, Lk,
being unknown, as well as often being structured such that
different sources may have spectrally overlapping overtones.
In order to remedy this, we propose a relaxation of the model
onto a predefined grid of P � K candidate fundamentals,
each having Lmax � maxk Lk, harmonics. Here, we chose
the candidates so numerous and so finely spaced that the ap-
proximation

x(t) ⇡
PX

p=1

LmaxX

`=1

ap,`e
i!p`t (2)

holds sufficiently well. We are only interested in such ap-
proximations where few, ideally K, of the fundamentals will
have non-zero power, and so steps must be taken to ensure this
sparse behavior of the to be estimated amplitudes ap,l. This
approach may be seen as a sparse linear regression problem
reminiscent of [4] and has been thoroughly examined in the
context of pitch estimation in, e.g., [5, 10, 11]. For notational
convenience, we define the set of all amplitude parameters to
be estimated as

 =

�
 !1 , . . . , !P

 
(3)

 !k =

�
ak,1, . . . , ak,Lmax

 
(4)

where, as described above, most ak,` in  will be zero. It
should be noted that the sparse pattern of  will be group-
wise, so that if a pitch with fundamental frequency !p is not
present, then neither will any of its harmonics, i.e., !p = 0 .
Furthermore, when a pitch is present, we may expect that not
all Lmax harmonics will be non-zero, but only the actual Lk

ones. For candidate pitches at fractions of the present pitch,
there will be a partial fit of its harmonics, which may render
misclassification, which is a cause for errors, which occurs
when a present pitch at !k may be perfectly modeled by a
pitch at !k/2 if Lmax � 2Lk, where then every other har-
monic, i.e., ` = 2, 4, 6, . . . , 2Lk, are non-zero and the oth-
ers equal to zero. To take these attributes into account and
to avoid misclassifications, we propose the iterative approach
detailed in the next section.

3. MULTI-PITCH ESTIMATION USING AN
ADAPTIVE TOTAL VARIATION PENALTY

Considering a measured time-frame of the sought signal, we
expect it to be corrupted by noise and perhaps other non-
sinusoidal structure, i.e., y(t) = x(t) + e(t), where e(t) is
such an additive broadband noise. In order to estimate the
parameter set  , one often strives to minimize the squared
residual cost function

g1( ) =

1

2

NX

t=1

�����y(t)�
PX

p=1

LmaxX

`=1

ap,`e
i!p`t

�����

2

(5)

where | · | denotes the absolute value. However, this function
will not enforce said sparsity. As requiring exactly sparse so-
lutions leads to combinatorially infeasible optimization prob-
lems, we herein adopt a convex modeling approach using a
number of convex cost functions. To discourage spurious har-
monics, we introduce a constraint on the `1-norm of by

g2( ) =

PX

p=1

LmaxX

`=1

|ap,`| (6)

which is a convex approximation of the `0 penalty. Parameter
estimation using a weighted sum of g1 and g2 is widely used
in the literature, being referred to as the lasso [12]. Taking the
block-wise sparse behavior described above into account, we
further introduce

g3( ) =

PX

p=1

vuut
LmaxX

`=1

a

2
p,` (7)

which also is a convex function. The inner sum corresponds
to the `2-norm, and does not enforce sparsity within each
pitch, whereas instead the outer sum, corresponding to the
`1-norm, enforces sparsity between pitches. Thereby, adding
the g3( ) constraint will penalize the number of non-zero
pitches. However, if we for some p have 2Lp  Lmax, the
above penalties have no way of discriminating between the
correct pitch candidate !p and the spurious sub-octave candi-
date !p/2. However, as the sub-octave will only contribute
to the harmonic signal at every other frequency in its block,
one may reduce the risk of such a misclassification by further
adding the penalty

ğ4( ) =

PLmax�1X

q=1

����|aq+1|� |aq|
���� (8)

where the reparametrization is q = (p � 1)Lmax + `, which
would add a cost to blocks where there are notable magnitude
variations between neighboring harmonics. Regrettably, (8)



is not convex, but a simple convex approximation would be
g̃4, detailed as

g̃4( ) =

PLmax�1X

q=1

��
aq+1 � aq

�� (9)

which would be a good approximation of (8) if all the har-
monics had the same phase. Clearly, this may not be the case,
resulting in that the penalty in (9) would also penalize the
correct candidate. An illustration of this is found by consid-
ering the worst-case scenario, when all the adjacent harmon-
ics are completely out of phase and have the same magni-
tudes, i.e., ap,`+1 = ap,`e

i⇡ with magnitude |ap,`| = r, for
` = 1, . . . , Lp � 1. Then, the penalty in (9) will yield a cost
of g̃4( !p) = 2rLp rather than the desired ğ4( !p) = 2r.
The cost may also be compared with that of (6), which is
g2( !p) = rLp, suggesting that this would add a relatively
large penalty. More interestingly, for the sub-octave candi-
date, the cost will be just as large, i.e. if !p0

= !p/2, then
g̃4( !p0 ) = 2rLp provided that Lmax � 2Lp, thereby of-
fering no possibility of discriminating between the true pitch
and its sub-octave. Obviously, such a worst case scenario is
just as unlikely as having all harmonics same-phased, if as-
suming that the phases are evenly distributed on [0, 2⇡). In-
stead, the g̃4 penalty of the true pitch will be slightly smaller
than its sub-octave, on average, and together with (7), the
scale tips in favour of the true pitch, as shown in [5]. We
may thus conclude that the combination of g3 and g̃4 pro-
vides a block sparse solution where sub-octaves are usually
discouraged. However, it should be noted that such a solu-
tion requires the tuning of two functions to control the block
sparsity. In this work, we propose to simplify the described
algorithm by improving the approximation in (9), by using an
adaptive penalty approach. In order to do so, let 'k,` denote
the phase of the component with frequency !k,` and collect
these phases in the parameter set

� =

�
�!1 , . . . ,�!P

 
(10)

�!k =

�
'k,1, . . . ,'k,Lmax

 
(11)

The penalty function in (9) may then be modified to

g4( ,�) =

PLmaxX

q=1

��
aq+1e

�'q+1 � aqe
�'q

�� (12)

thus penalizing only differences in magnitude. In order to do
so, the phases 'k,` need to be estimated as the arguments of
the latest available amplitude estimates ak,`. As a result, (12)
yields an improved approximation of (8), avoiding the issues
of (9) described above, and also promotes a block sparse so-
lution. And so, the block-norm penalty function g3 may be
omitted, which simplifies the algorithm noticeably. Thus, we
form the parameter estimates by solving

ˆ = argmin

 

X

j=1,2

�jgj( ) + �4g4( ,�) (13)

where �1 = 1, and where �i, for i = 2, 4, are user-defined
regularization parameters that weigh the importance of each
penalty function and the residual cost. To form the convex cri-
teria and to facilitate the implementation, consider the signal
expressed in matrix notation as

y =

⇥
y(1) ... y(N)

⇤T (14)

=

PX

p=0

Wp ap + e , Wa+ e (15)

where
W =

⇥
W1 . . . WP

⇤
(16)

Wp =

⇥
z1 . . . zLmax

⇤
(17)

zp =

⇥
e

i!p1
. . . e

i!pN
⇤T (18)

a =

⇥
aT1 . . . aTP

⇤T (19)

ap =

⇥
ap,1 . . . ap,Lmax

⇤T (20)

The dictionary matrix W is constructed of P horizontally
stacked blocks, or dictionary atoms Wp, where each is a ma-
trix with Lmax columns and N rows. In order to obtain an
acceptable approximation of (8), the problem must be solved
iteratively, where the last solution is used to improve the next.
To pursue an even sparser solution, a re-weighting procedure
is simultaneously used for g2, similar to that in [13]. The so-
lution is thus found at the k-th iteration by solving

â(k) = argmin

a

X

j=1,2,4

gj(H
(k)
j a,�j) (21)

where H
(k)
1 = W, H(k)

2 = diag
�
1/(

��
ˆa(k�1)

��
1
+ ✏)

�
,

H
(k)
4 = F diag(arg

�
â(k�1)

�
)

�1, and with

g1(H
(k)
1 a, 1) =

1

2

||y �Wa||22 (22)

g2(H
(k)
2 a,�2) = �2

���
���H(k)

2 a
���
���
1

(23)

g4(H
(k)
4 a,�4) = �4

���
���H(k)

4 a
���
���
1

(24)

where diag(·) denotes a diagonal matrix, arg(·) is the element-
wise complex argument, and ✏ ⌧ 1. Also, I denotes the
identity matrix, and F is a first order difference matrix, hav-
ing elements F{n, n} = 1, F{n, n + 1} = �1, for n =

1, . . . , PLmax � 1, and zeros everywhere else. As intended,
the minimization in (21) is convex, and may be solved using
one of many convex solvers publicly available, such as, for in-
stance, the interior point methods SeDuMi [14] or SDPT3 [9].
These are, however, quite computationally burdensome and
will scale poorly with increased data length and larger grid.
Instead, we here propose an efficient implementation using
ADMM. In brief, ADMM is a method where the original
problem is split into two or more subproblems, using a num-
ber of auxiliary variables, which are solved independently in
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Fig. 1. The periodogram estimate and the true signal studied
in Figure 2.

an iterative fashion. The problem in (21) may be implemented
in a similar manner as was done [6], thus requiring only two
tuning parameters, �2 and �4. The proposed method com-
pares to PEBS and PEBS-TV introduced in [5] as improving
upon the former, and requiring less tuning than the latter. We
therefore term the proposed method PEBSI-Lite. An outline
of its implementation is given in Algorithm 1 where z,u,d
are the introduced auxiliary variables, µ is an inner conver-
gence variable, and

G(k)
=

h
HT

1 , H
(k)T
2 , H

(k)T
4

iT
(25)

u =

⇥
u(1)T

, u(2)T
, u(3)T

⇤T (26)

d =

⇥
d(1)T

, d(2)T
, d(3)T

⇤T (27)

T (x, ⇠) =
max(|x|� ⇠, 0)

max(|x|� ⇠, 0) + ⇠

� x (28)

such that the solution is given as ˆa = z(`end) at iteration kend.

4. NUMERICAL RESULTS

In order to examine the performance of the proposed estima-
tor, we evaluate it using a simulated dual-pitch signal, mea-
sured in white Gaussian noise at different Signal-to-Noise Ra-
tios (SNR), ranging from �5 dB to 20 dB in steps of 5 dB.
At each level of SNR, 200 Monte Carlo simulations are per-
formed, each simulation generating a signal with fundamental
frequencies [600, 730] Hz. To reflect the performance in pres-
ence of off-grid effects, the fundamental frequencies are ran-
domly chosen at each simulation uniformly on ±d/2, where d
is the grid point spacing. The phases of the harmonics in each
pitch are chosen uniformly on [0, 2⇡), whereas all have unit
magnitude.The signal is sampled at fs = 48 kHz on a time
frame of 10 ms, yielding N = 480 samples per frame. As a
result, the pitches are spaced by just over fs/N , which is the

resolution limit of the periodogram. This is also seen in Fig-
ure 1, illustrating the resolution of the periodogram as well as
the frequencies of the harmonics, at SNR = �5 dB. From the
figure, it may be concluded that the signal contains more than
one harmonic source, as the observed peaks are not harmon-
ically related. Furthermore, it is clear that the fundamental
frequencies are not separated by the periodogram, indicating
that any pitch estimation algorithm based on the periodogram
would suffer notable difficulties. In order to form our es-
timates, we begin by using a coarse dictionary with candi-
date pitches uniformly distributed on the interval [280, 1500]
Hz, thus also including !p/2 and 2!p for both pitches. The
coarse resolution is d = 10 Hz, i.e., still a super-resolution of
1/10N . After estimation on this grid, a zooming step is taken
where a new grid with spacing d/10 is laid ±2d around each
pitch having non-zero power. This zooming approach is taken
for the proposed method, as well as for PEBS and PEBS-TV.
Comparisons are also made with the ANLS, ORTH, and the
harmonic Capon estimators, which have been given the or-
acle model orders (see [15] for more details on these meth-
ods). The simulation and estimation procedure is performed
for two cases; one where the number of harmonics Lk are set
to [5, 6] and one where Lk are set to [10, 11]. In the former
case, we set Lmax = 10 and in the latter we set Lmax = 20,
i.e. well above the true number of harmonics. Figures 2 and 3
show the percentage of pitch estimates where both lie within

Algorithm 1 The proposed PEBSI-Lite algorithm

1: initialize k := 0, H(0)
4 = F, and

a(0) = zsave = dsave = 0PLmax⇥1

2: repeat {adaptive penalty scheme}
3: initialize ` := 0, u(2)

(0) = a(k),
z(0) = zsave, and d(0) = dsave

4: repeat {ADMM scheme}
5: z(`) =

�
G(k)HG(k)

��1
G(k)H

�
u(`) + d(`)

�

6: u(1)
(`+ 1)

=

y�µ
(

H1z(`+1)�d(1)(`)
)

1+µ

7: u(2)
(`+ 1)

= T
⇣
H2z(`+ 1)� d(2)

(`),

�2
µ

⌘

8: u(3)
(`+ 1)

= T
⇣
H

(k)
4 z(`+ 1)� d(3)

(`),

�4
µ

⌘

9: d(`+ 1)

= d(`)�
�
G(k)z(`+ 1)� u(`+ 1)

�

10: ` `+ 1

11: until convergence
12: store a(k) = u(2)

(end), zsave = z(end), and
dsave = d(end)

13: update H
(k+1)
4 = Fdiag

�
arg

�
a(k)

���1

14: k  k + 1

15: until convergence
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Fig. 2. Percentage of estimated pitches where both fundamen-
tal frequencies lie at most 2 Hz, or d/5 = 1/50N , from the
ground truth, plotted as a function of SNR. Here, the pitches
have [5, 6] harmonics, respectively, and Lmax = 10.

±2 Hz from the true values for the six compared methods,
for the case of [5, 6] and [10, 11] harmonics, respectively. As
is clear from the figures, the proposed method performs as
well, or better, than the PEBS-TV algorithm, although requir-
ing fewer tuning parameters. In this setting, PEBS performs
poorly, as the generous choices of Lmax allows it to ambigu-
ously pick the sub-octave, as predicted.
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