
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Automatic Collection Selection using Machine Learning

Couderc, Noric

2022

Link to publication

Citation for published version (APA):
Couderc, N. (2022). Automatic Collection Selection using Machine Learning. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/fc550dca-03ff-4f69-813d-674a6eb7685e

Automatic Collection Selection
using Machine Learning

Noric Couderc

Licentiate thesis, 2022

Department of Computer Science
Lund University

ii

ISBN 978-91-8039-193-1 (electronic version)
ISBN 978-91-8039-194-8 (print version)
ISSN 1404-1200
Technical Report 110, 2022
Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: noric.couderc@cs.lth.se

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2022

c© 2022 Noric Couderc

Abstract i

Abstract
Most recent programming languages include a collection framework as part of
their standard library (or runtime). Examples are Java, C#, Python and Ruby.
The Java Collection Framework provides a number of collection classes, some
of which implement the same abstract data type, which makes them interchange-
able. Developers can therefore choose between several functionally equivalent
options. Since collections have different performance characteristics, and may
be allocated in thousands of programs locations, the choice of collection has an
important impact on performance. Unfortunately, programmers often make sub-
optimal choices when picking their collections. In this licentiate thesis, we con-
sider the problem of building automated tooling, which would help the developer
choose among several collection implementations. We consider an existing tool
called Brainy, which targets C++, and adapt it to the Java context. In doing so,
we investigate how to synthesize benchmarks and analyze their behavior to create
training data for automated classification. We propose one new generative model
for collection benchmarks and present the challenges that porting JBrainy to Java
entails. Finally, we compare JBrainy’s suggestions versus greedy search, on five
well known benchmarks. Our investigations show that JBrainy’s suggestions were
almost as effective than those of greedy search in minimizing the running time of
programs. However, we also find that Brainy’s benchmark synthesis methods do
not apply well to the Java context, since they introduce some significant biases.

Contributions of the author iii

This thesis is a compilation consisting of an introduction, one paper, and a
technical report.

Contributions of the author
List of included peer-reviewed publications by the thesis author.

Paper I Noric Couderc, Emma Söderberg, and Christoph Reichenbach. “JBrainy:
Micro-benchmarking Java Collections with Interference”. In: Companion of the
ACM/SPEC International Conference on Performance Engineering. 2020, pp. 42–
45

The thesis author did all of the technical work and is the main author of sec-
tions 3-4.

Other publications

Paper II Noric Couderc, Christoph Reichenbach, and Emma Söderberg. JBrainy,
Effective Selection of Data-Structures in Java. Tech. rep. Lund Tekniska Högskola,
2022

The thesis author is the main author of the paper, and did all the technical
work regarding evaluation.

CONTENTS

Introduction 1
1 The collection selection problem 2
2 A map of the territory . 2
3 Research questions . 9
4 Contributions . 9
5 Conclusions and future work . 10
References . 11

Included Papers 15

I JBrainy: Micro-benchmarking Java Collections with Interference (Work
in Progress Paper) 17
1 Introduction . 17
2 Methods . 18
3 Experiments . 19
4 Discussion . 23
5 Related work . 24
6 Conclusions and Future Work . 25
7 Acknowledgements . 25
References . 25

II JBrainy: Effective Selection of Data Structures in Java 29
1 Introduction . 29
2 Background: Brainy . 30
3 JBrainy . 34
4 Experimental setup . 39
5 Results . 41
6 Discussion . 44

vi Table of contents

7 Threats to validity . 46
8 Related work . 49
9 Conclusion . 50
10 Acknowledgements . 51
References . 51

INTRODUCTION

2 Introduction

1 The collection selection problem

Seen from very far, all software is the same: it reads data, processes it, and stores
the processed data. This similarity can be misleading: even two programs that
compute exactly the same result can be different. For example, there exists several
ways to sort a list of numbers. How can two programs be different if they com-
pute the same thing? The difference lies in how they compute the result: which
operations are done, and in which order. Both these things have an impact on how
much time and resources the process requires. Since computers have limited re-
sources, and humans have limited time, time and resources are important aspects
of software quality [Noa].

One way to make processing faster and storage more efficient is to look at
how a piece of software stores data in memory. When software developers have to
group data items together (for example, making a list of all the cities the system
knows), they typically use what is called a collection. Many standard libraries for
programming languages provide different collections implementations, each with
different performance characteristics.

Unfortunately, developers often make sub-optimal choices when choosing col-
lections, leading to both memory bloat (using too much memory), and runtime
bloat (taking longer than optimal to finish a task). The first problem developers
face is their limited knowledge on how data-structures work. In their review of
software bloat, Mitchell et al. [MSS10] report that HashMaps and HashSets, two
commonly used Java collections, take more space than is truly needed: they cache
hashcodes, even if these are not expensive to compute. Another problem Mitchell
et al. highlight is that framework implementers do not know how their software
will be used: they argue it is difficult to make performance design decisions with-
out knowing the context [MSS10]. To make things worse, even very small changes
have a big impact: In one study [LR09], Google engineers noticed that changing a
single line of code improved the running time of their program by 17%.

Choosing the wrong collection doesn’t lead to obvious failure. Two collections
from the same family (list, sets, maps) have roughly the same functional properties,
swap one for the other, and it works anyway. This flexibility is appreciated by
developers, but has an impact on performance [MSS10].

Why would choosing the right collection be the task of the developer? Com-
pilers already automate many optimizations [WO18], why not include collection
selection too? In this thesis, we will assume that we can indeed help developers
choose the right collections, and explore techniques to do that.

2 A map of the territory

If we aim to have a tool look at the collections that a program uses and suggest
a better configuration, there are several design choices we need to consider. In

Introduction 3

this section, we will review what design choices were made in existing systems. I
chose to compare Chameleon [SVY09], Brainy [Jun+11], CoCo [Xu13], Collec-
tionSwitch [CA18], and finally, Artemis [Bas+18]. Automated collection selection
dates back to 1983 with the work of Freudenberger et al. on the SETL language
[FSS83]: I chose to focus on systems which target Java (Brainy being the excep-
tion, for reasons which will become clear soon) and aim to improve running time.

There are systems which target other languages and use other definitions of
efficiency, like energy usage. Perflint [LR09] improves the running time of C++
programs. On energy usage, the SEEDS system [MPC14] aims at improving en-
ergy usage, while Hasan et al. [Has+16] investigated why some collections require
more energy than others.

Coming back to our comparison, I will focus on how different systems answer
the following design questions.

• What language do we target?

• What are we trying to improve?

• What collections and optimizations do we consider?

• How do we perform replacements?

2.1 What language do we target?

Chameleon, CoCo, and CollectionSwitch target Java. Brainy targets C++, while
Artemis supports both C++ and Java. The choice of target language is mostly an
engineering choice, but as we will see, porting Brainy from C++ to Java introduces
challenges.

2.2 What are we trying to improve?

All of these works claim to improve performance. What definition of performance
do they use? Here, performance is a trade-off between two resources, which should
not be wasted: running time, and memory used. Artemis and Chameleon try to
optimize both simultaneously, while CollectionSwitch allows the user to choose
between optimizing one, or the other. CoCo, on the other hand, trades memory
usage with better running times (by sharing the data across several collections).
Lastly, Brainy only optimizes running time.

2.3 What collections and optimizations do we consider?

A major design decision revolves around what changes the tool is allowed to do.
What collections can it choose between? What are the changes the tool is allowed
to make on the program to optimize?

4 Introduction

Collection Tuning

Several collections (e.g. ArrayLists and HashMaps) have parameters that do not
change their functional behavior, but change their performance. ArrayList takes
a capacity parameter, which is the initial size of the underlying array. For
HashMaps, the load factor specifies when the map’s array is full enough to
justify a full copy of it. These parameters do not matter that much when the collec-
tion becomes big, but in programs with many, small collections, constants matter
[SVY09]. Both Artemis and Chameleon use collection tuning to improve perfor-
mance. Brainy, CoCo, and CollectionSwitch do not.

Lazy Collections

Sometimes, a collection might remain empty. Even when that is the case, Hashsets
and ArrayLists still allocate an array, which is then wasted space [MSS10]. In the
case of the bloat DaCapo benchmark, Shacham et al [SVY09] were able to gain
20% memory usage but switching a LinkedList to a LazyLinkedList, which would
only create a first node if one element was added to the list.

Array-based Maps

When Maps are small, it is actually faster and more memory-effective to look
for the key-value pair linearly than to use a regular hash map. This technique is
common among the tools we considered, since Chameleon, CoCo, and Collection-
Switch all use this type of Map. CollectionSwitch’s authors implemented “Adap-
tive” maps and sets, which automatically switch between the “linear-search” mode,
and the “hash-based mode”. These collections are popular among Collection-
Switch’s suggestions. Chameleon presented the same data-type (called SizeAdapt-
ingSets and SizeAdaptingMaps). In the case of Chameleon, using ArrayMaps was
important in getting 13.79% of reduction in memory space used by the program
FindBugs.

Hash-based Lists

Converse to using lists of pairs to implement maps is the method of coupling
an ArrayList and a HashSet in the same object, with the hope that it will speed
up calls to the contains method. Both CollectionSwitch and CoCo use this
method. CoCo’s authors call their implementation an HashArrayList, while Col-
lectionSwitch’s AdaptiveList uses this technique and is also reported as an option
often favored by the CollectionSwitch tool.

A word about consistency

We have listed some of the common techniques these tools use. However, I noted
that the set of collections differs often between systems. CollectionSwitch uses

Introduction 5

OpenHashSets (sets which use a map with open addressing) which weren’t used
in Chameleon, and CoCo. Likewise, Artemis uses synchronized collections which
were not used in Chameleon, CoCo, and CollectionSwitch. Moreover, lazy collec-
tions, array-based maps, and hash-based lists are not popular among Java program-
mers [CASL17]. An interesting line of work would be to evaluate these methods
on the same set of collections, to see how much the decision-making matters, com-
pared to the features of each collection.

2.4 How do we perform replacements?

Developers usually work on an existing code base. The existing program likely al-
ready uses collections. The developer therefore faces the two following questions:

1. Which collections should we replace first?

2. When should we make replacements?

3. What replacements should we use?

Which collections should we replace first?

The question of choosing the most important collections in the program of inter-
est can either be considered a problem that the tool should solve, or developer’s
responsibility.

Artemis and Chameleon take the most aggressive approach: every allocation
site can be optimized. CollectionSwitch optimized allocation sites from which at
least 1000 instances originated. CoCo’s authors do not state how many allocation
sites were switched to CoCo collections. Lastly, Brainy’s authors manually chose
one allocation site for each benchmark they considered.

When should we make replacements?

I could find two families of replacements: static replacements (before running
the program) and dynamic replacements (while the program is running). Both
methods have their advantages and drawbacks, and which method is best is still an
open question.

One aspect that makes static replacements attractive is the lack of run-time
overhead. Just like developers, tools that perform static replacements can think
for as long as they need 1. They can also use features which would be very ex-
pensive to get at run-time. As examples, Brainy gathers hardware performance
counters and evaluates a neural network to decide which collection to use. Sim-
ilarly, Artemis uses a multi-objective genetic search algorithm (NSGA-II), which
evaluates modified variants of the program, taking 3.05 hours on average [Bas+18].

1managers might disagree with this statement

6 Introduction

Chameleon, on the other hand, uses handwritten rules, which could be cheap, how-
ever it also uses expensive information about the state of the heap. Dynamic re-
placement tools cannot afford such expensive decision making.

Now, static replacements can suffer from their lack of adaptability. Static re-
placement tools can only perform allocation-site level replacements, which might
be too coarse. For example, if the constructor is called in a loop, all collections
will have the same type. Moreover, static replacements cannot take into account
the program inputs, nor can they adapt naturally to code changes: If the developer
changes their code, they have to re-run the tool.

How do we decide what collection to use?

Most of the tools use a hand-crafted performance model to select which collection
to use. Chameleon uses hand-written heuristics to make a choice. For example,
the rule:

ArrayList: #contains > X and maxSize > Y -> LinkedHashSet

Specifies that an ArrayList should be switched to a LinkedHashSet if the num-
ber of calls to contains and the maximum size of the instance exceed some fixed
thresholds X and Y . Finding the thresholds X and Y is the user’s task. CoCo
uses a similar strategy, using hand-written rules, except these are evaluated at run-
time. Perflint uses a similar model, mixing rules about asymptotic complexity, and
considerations of CPU architecture.

Brainy and CollectionSwitch use a different approach: They try to learn this
model with micro-benchmarking. Brainy being an offline tool, it can be more
ambitious in this regard, and uses neural networks to predict the best collection
to use, given hardware performance counters (like branch mispredictions and L1
cache miss rates). CollectionSwitch must make decisions at run-time, and must
therefore use a simpler model. It evaluates the cost of an operation as a polynomial
of the size of the collection at the moment. The parameters of the polynomial are
learned offline, on hand-written micro-benchmarks.

Lastly, Artemis takes the minimalist-maximalist approach: It does not use a
model at all. Instead, it evaluates variants of the program of interest in a multi-
objective optimization algorithm: NSGA-II. The fitness function evaluates the test
suite of the program, and measures how long it runs.

One may argue that using the test-suite of the program for optimization is
not representative of the performance characteristics of the program. This issue
extends to tools which use machine learning to deduce their performance model:
What training data did they use? To some extent, the rules that Chameleon and
CoCo use are also up to debate, where do they come from?

Brainy provides an interesting solution to the problem: They needed a lot of
training data quickly, so they generated programs to serve as micro-benchmarks.
How representative are these benchmarks? This is one of the main questions we
will look at in this thesis.

Introduction 7

2.5 Cutting corners: which one is the best?
A nice property of performance engineering is its clear definition of success: we
want faster, less memory-intensive programs. How do these tools compare, in
terms of numbers?

A
v
ro
ra

B
lo
a
t

C
h
a
rt

Fi
n
d
B
u
g
s

Fo
p

H
2

Lu
se
a
rc
h

P
M
D

S
o
o
t

S
u
n
fl
o
w

T
V
LA

X
a
la
n

Benchmark

Artemis

Chameleon

CoCo

CollectionSwitch

To
o
l

0

20

40

60

speedup

50

100

150

Best Memory usage (%)

Figure 1: Comparison of speedups and memory usage for each tool and bench-
mark

A
v
ro
ra

B
lo
a
t

C
h
a
rt

Fi
n
d
B
u
g
s

Fo
p

H
2

Lu
se
a
rc
h

P
M
D

S
o
o
t

S
u
n
fl
o
w

T
V
LA

X
a
la
n

Benchmark

Artemis

Chameleon

CoCo

CollectionSwitch

To
o
l

false
true

Memory usage improved

50

100

150

Best Memory usage (%)

Figure 2: Comparison of memory usage for each tool and benchmark

Figure 1 shows the speedup and memory usage each tool gives, for each bench-
mark. Color represents the speedup (greener is better), and the size of the circle
represents the memory usage. Greener, smaller circles are better. Figure 2 shows
how much memory each benchmark uses, after optimization with each tool. When
memory usage was lower than the original, the circle is green. Otherwise, it is red.

We can see that different tools were often tested on different benchmarks,
as there are several “holes” in the plot. Only fop was tested with every tool.
Chameleon was the most effective at reducing running time, while Artemis yielded
the most modest improvements. Lusearch was the benchmark that was improved
the most with CoCo and CollectionSwitch, but unfortunately, Chameleon was not
tested on lusearch.

8 Introduction

In terms of memory consumption, CoCo increased it, but that was the goal:
trading memory consumption for speed. Once again, the most effective tool was
Chameleon. Comparing the memory usage of programs is a bit difficult on the
plot, but for good reason: apart from Chameleon, the improvements of other tools
remain below 10%.

For completeness, we provide the data in tabular form.

Benchmark Tool Best running time Best memory usage
(%) (%)

Sunflow Artemis 98 95
PMD Artemis 97 98
Fop Artemis 95 95
Avrora Artemis 95 96
Xalan Artemis 95 80
PMD Chameleon 91 100
Soot Chameleon 89 95
Fop Chameleon 82 92
Bloat Chameleon 71 44
FindBugs Chameleon 46 85
TVLA Chameleon 40 45
Bloat CoCo 96 181
Chart CoCo 91 121
Avrora CoCo 89 106
Fop CoCo 84 102
Lusearch CoCo 66 100
Avrora CollectionSwitch 100 90
Fop CollectionSwitch 100 100
H2 CollectionSwitch 94 92
Bloat CollectionSwitch 88 92
Lusearch CollectionSwitch 85 95

If we compare with Brainy, we see that it found substantial improvements,
getting up to an impressive 77% speedup. Brainy’s authors highlight the impor-
tance of the CPU architecture, as their tool suggests different options, depending
on what architecture the software is running on. This aspect is neglected by the
works on Java. Artemis, in particular, optimizes programs by running them in
the cloud. Could the importance of the CPU architecture explain the somewhat
modest improvements provided by Artemis?

Benchmark Tool Best running time Architecture
(%)

Xalanbmk Brainy 79 Core2
Chord Similator Brainy 23 Atom
RelpimoC Brainy 70 Atom
Raytrace Brainy 84 Core2

Introduction 9

3 Research questions
We have seen several tools which try to make both static and dynamic replace-
ments, and we have seen that both techniques can yield speedups. A thorough
comparison of both approaches is still lacking.

In this context, given that Brainy looked promising, we decided to port Brainy
to Java. It would give an opportunity to compare the Brainy approach to CoCo and
CollectionSwitch (Chameleon is harder to compare with, as it requires a modified
JVM).

Another interesting set of questions around Brainy is connected to how Brainy
generates its data. The micro-benchmark generation scheme that Brainy uses en-
codes theories about how collections are used. Do these assumptions make sense?
How can we generate realistic micro-benchmarks, which show the strengths and
weaknesses of the different collections we have available?

In the rest of this thesis, we will focus on the following questions.

• What is an effective model of how data-structure are used?

• Can we predict data-structure performance?

4 Contributions

4.1 JBrainy: Micro-benchmarking Java Collections with
Interference (Work in Progress Paper)

In this paper, we consider the problem of evaluating the performance of collections
directly, using micro-benchmarking.

In their study, Costa et al. [CASL17] evaluated collections, one method at
a time. Brainy generated micro-benchmarks with random sequences of method
calls. The latter method has an advantage over the former, in the sense that it
may capture “interference” between different operations. For example, is it worth
sacrificing a little time at insertion, if iteration is faster?

Now, a generative approach like that of Brainy’s requires a model of how col-
lections are used. How realistic is Brainy’s model? We explain that Brainy’s
model could be improved, and present an alternative, which we call Pólya profiles.
We evaluate nine collections from the Java Collections Framework on synthetic
benchmarks.

We report that we found ArrayList to yield the best running time in 90% of
our benchmarks, in accordance with previous results. In contrast with previous
works, we found LinkedHashSet to be faster than alternatives in 78% of cases,
while TreeMap and LinkedHashMap yielded better performance than HashMap in
84% of cases.

We conjecture that LinkedHashSet and LinkedHashMap work so well in our
case because our benchmarks exercise one of their strengths: They sacrifice a little

10 Introduction

time when doing insertions, to gain a lot when iterating over the whole collection.
Single-operation benchmarks do not exercise this feature, but our multi-operation
workloads trigger this behavior quite often.

Contributions of the paper

• A port of the Brainy benchmark generation process to Java.

• A new model for collection usage.

• A study of how Java collections react to workloads built with the model

• A comparison of the result with existing previous work on micro-benchmarking
collections

4.2 Paper II
In this paper, we test our synthetic benchmarks on real-world programs. Chameleon,
CoCo, and CollectionSwitch used benchmarks from the DaCapo benchmark suite.
We ported the full Brainy approach to Java, and compared JBrainy’s improvements
with greedy search, on five benchmarks of the DaCapo suite [Bla+06]. JBrainy and
greedy search could use any of the 9 most popular Java collections.

This comparison revealed that JBrainy’s classifier suffers from biases in the
training data. We describe how the benchmark synthesis model we borrowed from
Brainy is biased in favor of ArrayList, LinkedHashSet, and LinkedHashMap. We
highlight that despite these problems, it could nonetheless do as well as greedy
search for a fraction of the time spent. JBrainy and greedy search were not as
effective as the state of the art, and we suspect this difference is due to biases in
the training data, but also to the set of collections we used: Chameleon, Collec-
tionSwitch and CoCo use a wider set of collections than we did, including lazy
collections, array-based maps, and hash-based lists.

Contributions of the paper

• A port of the full Brainy approach to Java.

• A study of the challenges of porting the Brainy approach to Java

• An evaluation of the JBrainy tool on five well-known benchmarks, which
we compare with greedy search.

5 Conclusions and future work
In this thesis, we started with the Brainy study, by Jung et al. We have ported their
benchmark generation method to Java. We compared the behavior of collections

Introduction 11

from the Java Collections Framework with results by Costa et al. [CASL17]. We
ported the Brainy approach to Java, and compared its performance with greedy
search on five Java benchmarks. We notice that JBrainy works roughly as well
as greedy search, for a small fraction of the cost. However, JBrainy’s benchmark
synthesis models is biased, and the tool does not work as well as the state of the art.
Since greedy search did not outperform JBrainy significantly, we conjecture that
the poor performance of both methods is due to the restricted set of collections we
have considered. Expanding the set of collections available to JBrainy is a natural
next step in our work.

Next, the Brainy study highlights the importance of the CPU architecture in
choosing the right collection for a program. Is it the same for Java programs? We
still do not have an answer to this question.

Lastly, techniques like Brainy, which use machine learning to predict the cost
of an optimization, are becoming mainstream [WO18]. Now, machine learning
requires data, and labeled data about programs is not easy to come by. As Wang
and O’Boyle explain [WO18]:

The most immediate problem continues to be gathering enough suffi-
cient high quality training data. Although there are numerous bench-
mark sites publicly available, the number of programs available is rel-
atively sparse compared to the number that a typical compiler will en-
counter in its lifetime. This is particularly true in specialist domains
where there may not be any public benchmarks. Automatic bench-
mark generation work will help here, but existing approaches do not
guarantee that the generated benchmarks effectively represent the de-
sign space. Therefore, the larger issue of the structure of the program
space remains.

Brainy used automatic benchmark generation. Unfortunately, JBrainy some-
times generates programs nobody would ever write, and our investigations show
that the resulting training data is severely imbalanced. JBrainy does not know how
real traces look like, and it doesn’t know what constraints sequences of method
calls should satisfy (e.g. why would you call clear on an empty collection?).
In the future, we plan to work on more realistic generative models. We could ei-
ther learn them from real-world data or by instrumenting collections to inform the
generation of new benchmarks. Alternatively, we could derive a model from a
user specification of the abstract data-type, with hints about run-time properties of
implementations.

References
[Bas+18] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr.

“Darwinian data structure selection”. en. In: Proceedings of the 2018

12 Introduction

26th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
- ESEC/FSE 2018. Lake Buena Vista, FL, USA: ACM Press, 2018,
pp. 118–128.

[Bla+06] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khan,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosk-
ing, Maria Jump, Han Lee, J Eliot B Moss, Aashish Phansalkar,
Darko Stefanovic, and Thomas VanDrunen. “The DaCapo Bench-
marks: Java Benchmarking Development and Analysis”. en. In: (2006),
p. 22.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings
of the 2018 International Symposium on Code Generation and Op-
timization - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–
26.

[CASL17] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. “Em-
pirical Study of Usage and Performance of Java Collections”. en. In:
Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering - ICPE ’17. L’Aquila, Italy: ACM Press,
2017, pp. 389–400.

[FSS83] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. “Ex-
perience with the SETL Optimizer”. en. In: ACM Transactions on
Programming Languages and Systems 5.1 (Jan. 1983), pp. 26–45.

[Has+16] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh,
Bram Adams, and Abram Hindle. “Energy profiles of Java collec-
tions classes”. en. In: Proceedings of the 38th International Con-
ference on Software Engineering. Austin Texas: ACM, May 2016,
pp. 225–236.

[Noa] ISO 25010.

[Jun+11] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: effective selection of data structures”. In:
ACM SIGPLAN Notices 46.6 (June 2011), pp. 86–97.

[LR09] Lixia Liu and Silvius Rus. “Perflint: A Context Sensitive Perfor-
mance Advisor for C++ Programs”. In: 2009 International Sympo-
sium on Code Generation and Optimization. Mar. 2009, pp. 265–
274.

Introduction 13

[MPC14] Irene Manotas, Lori Pollock, and James Clause. “SEEDS: a software
engineer’s energy-optimization decision support framework”. en. In:
Proceedings of the 36th International Conference on Software Engi-
neering - ICSE 2014. Hyderabad, India: ACM Press, 2014, pp. 503–
514.

[MSS10] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. “Four Trends
Leading to Java Runtime Bloat”. In: IEEE Software 27.1 (Jan. 2010).
Conference Name: IEEE Software, pp. 56–63.

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adap-
tive Selection of Collections”. en. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation (2009), p. 11.

[WO18] Zheng Wang and Michael OBoyle. “Machine Learning in Compiler
Optimization”. In: Proceedings of the IEEE 106.11 (Nov. 2018). Con-
ference Name: Proceedings of the IEEE, pp. 1879–1901.

[Xu13] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Col-
lections”. In: ECOOP 2013 Object-Oriented Programming. Ed. by
Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–26.

INCLUDED PAPERS

PA
P

E
R

I

JBRAINY:
MICRO-BENCHMARKING

JAVA COLLECTIONS WITH
INTERFERENCE (WORK IN

PROGRESS PAPER)

1 Introduction

Java developers use collections extensively and are often faced with the task of
picking a collection class. The Java collection framework provides documentation
describing each collection’s functional properties in an interface, and supplies sev-
eral classes implementing this interface. However, it can be difficult to pick the
most appropriate implementation, and in practice software developers often make
sub-optimal choices when picking collections [SVY09].

When developers are unsure which collection class to use, they can run bench-
marks on their application and compare different solutions. This approach gives
precise insight, evaluating collection classes in the context in which they are used.
However, in practice developers may lack the time to benchmark each use of col-
lections in their code. Instead they turn to existing guidelines and look for general
strategies for datastructure selection.

Collections have different usage profiles, which we can think of as statisti-
cal distributions of sequences of operations. Different collection classes perform
better for different usage profiles, e.g., a linked list may more efficiently sup-
port insert-at-the-beginning operations than an array-based vector, whereas pro-
files dominated by index-based lookup may be faster on the vector.

18 Paper I: Micro-benchmarking Java Collections with Interference

Therefore, to recommend a collection class to a programmer, we must (a) un-
derstand what the programmer’s usage profile is, and (b) have a mechanism for
predicting the performance of a given collection class for that usage profile. Our
research question in this paper focuses on the second point: how can we obtain a
performance model that allows us to predict collection class performance with a
level of precision that is adequate for giving effective recommendations?

Related work has explored models for two kinds of profiles, which we here call
single-operation profiles and multi-operation profiles. Single-operation profiles
are the basis for the CollectionsBench study by Costa et al. [CASL17], in which
the authors study Java collections from the standard and third-party libraries by
examining one operation at a time. Multi-operation profiles are the basis for the
Brainy approach [Jun+11], in which the authors synthesise benchmarks for C++
to exercise random sequences of operations.

Both kinds of profiles can produce guidelines for developers for picking data
structures, but neither is perfect: single-operation profiles capture typical usage
scenarios, but cannot capture interference between different operations (one op-
eration affecting the performance of another). Multi-operation profiles can cap-
ture interference, but present a much larger and more challenging search space for
benchmarking. To facilitate the comparison between these two approaches this
paper makes the following contributions:

• a porting of the Brainy approach to Java via the JBrainy tool.

• Pólya Profiles, a refinement of multi-operation profiles.

• an evaluation of the JBrainy approach on Java collections.

• an initial comparison of JBrainy and CollectionsBench.

The rest of this paper is organised as follows: Section 2 describes the methods used
in the experiments presented in Section 3. We discuss results and implications of
the experiments in Section 6, review related work in Section 5, and conclude in
Section 9.

2 Methods
In this section we describe the three approaches that we consider in this paper in
terms of the usage profile they embody.

Single-Operation Profiles Costa et al.’s CollectionsBench system [CASL17]
builds models for five hand-written usage profiles that test, respectively, element
insertion, multi-element insertion, is-element-of checks, index-based lookup (lists
only), and iteration. Except for iteration, all of these profiles capture the exclusive
use of a single operation.

Paper I: Micro-benchmarking Java Collections with Interference 19

While these single-operation profiles represent some of the real-life usage of
collections, they do not directly capture e.g. uses in which the code alternates
between adding and deleting. If there is nontrivial statistical interference between
the performance of addition and deletion operations for a given collection class,
models built from single-operation profiles may be inaccurate.

Multi-Operation Profiles To account for the possibility of interference be-
tween different operations, Jung et al.’s Brainy system [Jun+11] explores a multi-
operation usage profile that assumes that operations occur with a certain proba-
bility distribution but independently of any previously selected operations. Brainy
uses this profile to generate a family of microbenchmarks, each a sequence of ran-
domly selected operations, and executes the benchmarks to build a performance
model.

Thus, Brainy’s multi-operation profiles allow for construction of a model that
can directly observe interference between operations, i.e., whether one opera-
tion coinciding with another may speed up or slow down that operation. On
the other hand, Brainy is unlikely to generate microbenchmarks that correspond
to CollectionsBench-style single-operation profiles, even though such profiles ar-
guably correspond to practically relevant usage patterns.

Pólya Profiles To address the limitation with multi-operation profiles, we pro-
pose a third model, which we call Pólya Profiles. Pólya profiles are multi-operation
profiles in which the probability distribution is biased through a Pólya urn [Mah03]:
for the first operation, we are equally likely to select any of a collection’s opera-
tions, but each time we choose an operation, we increase its likelihood of being
picked again. Consequently, when we use Pólya profiles to generate microbench-
marks, we lean towards generating benchmarks that use a small number of op-
erations frequently. However, when we consider all benchmarks, our approach
favours no particular method, as all methods have an equal probability of being
favoured in one benchmark. An example of such a generated profile is shown
in Figure 1, in which the method addAll is called many more times than other
methods.

3 Experiments

To explore the impact of Pólya profiles in generating more accurate performance
models, we here compare the recommendations from CollectionsBench’s single-
operation profiles against recommendations from our own JBrainy system, which
uses Pólya profiles.

20 Paper I: Micro-benchmarking Java Collections with Interference

count_mean

0 100 200 300 400 500
addAll(Collection)

remove(Object)
isEmpty()

containsAll(Collection)
toArray(Object[])
contains(Object)

toArray()
iterator()

retainAll(Collection)
hashCode()

size()
removeAll(Collection)

add(Object)
equals(Object)

clear()

m
et

ho
d

Figure 1: The distribution of method calls for one synthetic benchmark

3.1 Experimental setup

Our experiments focused on collections in the Java standard library, where we
considered a selection of lists (ArrayList, LinkedList and Vector), sets (HashSet,
LinkedHashSet and TreeSet), and maps(HashMap, LinkedHashMap, and TreeMap).
Each collection was tested with integer elements, using the Java Microbenchmark-
ing Harness [CBLA19] for compatibility with CollectionsBench and to simplify
our evaluation methodology [Bla+08].

We ran our microbenchmarks on an Intel(R) Core(TM) i7-3820 CPU 3.60GHz
with 16 GB of RAM, running Ubuntu 18.04 (Linux 4.18.0-15-generic), on Open-
JDK 10.0.2. Each benchmark ran as many times as possible during 250ms, with
three warm-up runs and five sampling runs.

We configured the microbenchmarks to execute 10, 100, and 1000 operations
each, and initialised the collections to initially contain 0, 1000, or 10000 entries.
Together, these two parameters yielded 3× 3 different configurations. For brevity,
we only report results aggregated over all configurations, the impact of benchmark
size and collection size are briefly discussed in section 6.

CollectionsBench We re-ran CollectionsBench with the configuration that we
reported above. The only changes that we made were to reconfigure Collections-
Bench to use integers instead of strings as collection elements, and to analyse only
collections from the Java standard library.

JBrainy For JBrainy, we first re-implemented Jung al.’s benchmarking strategy
from their Brainy system in Java. We then augmented it to utilise Pólya profiles.
For each interface of interest, we synthesised 4500 (500×3×3) microbenchmarks
for each collection class that each exercised the methods declared in the interface.

Comparison of CollectionsBench and JBrainy To compare the two ap-
proaches, we first identified the dominant operation for each JBrainy microbench-

Paper I: Micro-benchmarking Java Collections with Interference 21

0 1 20.5 1.5

add
addAll

contains
LinkedHashSet

add
addAll

contains
TreeSet

put
containsKeyTreeMap

entrySetLinkedHashMap
addLinkedList

CollectionsBench
JBrainy speedup

Figure 2: Comparison between speedup predictions by CollectionsBench and
JBrainy for various operations

mark, i.e., the operation with the largest number of invocations in the bench-
mark. Second, we computed the speedup of each benchmark, compared with a
baseline collection, for which we chose the most popular collections reported by
Costa et al.: ArrayList for lists, HashSet for sets, HashMap for maps. For each
single-operation profile in CollectionsBench, we then aggregated results from all
JBrainy microbenchmarks with a matching dominant operation and compared me-
dian speedups for each tool.

3.2 Results

Figure 2 shows the ten largest differences between JBrainy’s and Collections-
Bench’s results (out of 26 results in total). For example, CollectionsBench reports
that LinkedList.add has roughly the same performance as ArrayList.add, while
JBrainy reports it as being slower by approximately a factor of two. Conversely
CollectionsBench reports a speedup of 0.41 for TreeSet.add compared to Hash-
Set, while JBrainy reports these operations as having roughly comparable perfor-
mance, and we observe a similar difference for TreeMap.put when compared to
HashMap.

For completeness, we also report the recommendations that JBrainy gives for
operations that CollectionsBench does not report on. Figure 3 shows the median
speedups for each collection class and the dominant operation in each synthetic
benchmark. We report medians instead of averages as the distribution of speedups
is skewed (skewness ≈ 14.78).

In the case of lists, LinkedLists are approximately twice as slow as ArrayLists,
while Vectors are approximately 1.1 times slower than ArrayLists. In the case of
maps, LinkedHashMap is faster for most of the methods in the interface, and par-
ticularly for methods put (speedup ≈ 1.28), hashCode (s ≈ 1.20), and remove
(s ≈ 1.10). TreeMap is only faster for benchmarks where the most common
method is clear, with a median speedup of 1.07. Similarly in the case of sets,
LinkedHashSet is faster for all of the methods that we considered, and particu-

22 Paper I: Micro-benchmarking Java Collections with Interference

larly for methods toArray (s ≈ 2.96), toArray (s ≈ 2.85), and add (s ≈ 2.10).
TreeSet is faster on method clear with a median speedup of 1.18.

Speedup

M
et

ho
d

0.4 0.5 0.6 0.7 0.8 0.9 1.0

LinkedList
Vector

Collection

toArray(Object[])
add(int, Object)

addAll(int, Collection)
containsAll(Collection)

remove(Object)
add(Object)
hashCode()

contains(Object)
clear()
get(int)

equals(Object)
size()

remove(int)
listIterator()

toArray()
isEmpty()

addAll(Collection)
listIterator(int)

lastIndexOf(Object)
set(int, Object)

removeAll(Collection)
retainAll(Collection)

indexOf(Object)
sort(Comparator)

iterator()
subList(int, int)

0.0 0.5 1.0 1.5 2.0

TreeMap
LinkedHashMap

Collection

values()
hashCode()

size()
get(int)
clear()

containsKey(Object)
containsValue(Object)

keySet()
put(Object, Object)

equals(Object)
entrySet()

remove(int)
isEmpty()

putAll(Map)

0 1 2 3 4 5

TreeSet
LinkedHashSet

Collection

contains(Object)
add(Object)

size()
toArray(Object[])

clear()
addAll(Collection)

containsAll(Collection)
isEmpty()

hashCode()
equals(Object)

toArray()
iterator()

retainAll(Collection)
remove(Object)

removeAll(Collection)

Figure 3: Median speedup of various collections compared to baseline (in ma-
genta), with 25% and 75% quantiles

Paper I: Micro-benchmarking Java Collections with Interference 23

SetMapList

Figure 4: Count of fastest benchmarks depending on the collection class used.

Figure 4 summarises how often JBrainy found a particular collection class to
be optimal for any of its benchmarks. For lists, ArrayList is fastest in 91% of our
benchmarks, while Vector and LinkedList are the best fit in respectively 7% and
2% of all runs. This agrees with Costa et al.’s findings that ArrayList may be a good
default choice. For maps, the situation is more nuanced. LinkedHashMap and
TreeMap are the best fit for respectively 42% of benchmarks, while HashMap
is the best fit for 16% of benchmarks. For sets, LinkedHashSet is the best data
structure for 78% of our generated benchmarks, while HashSet and TreeSet are
the best fit for 11% of benchmarks each.

4 Discussion

JBrainy does not explore iteration over lists directly. However, the implementation
of the operations toArray() and hashCode() is dominated by iterating over the
underlying collection, so we use these as a proxy for iteration performance, since
adaptive inlining is likely to be equally effective for both sets of microbenchmarks.

We can conjecture why LinkedHashSet performs well on toArray() and sim-
ilar operations: These operations iterating over all the elements of the set. In
a HashSet, this iteration requires iterating over all buckets in the hash table,
whereas for a LinkedHashSet, the iteration only goes through the set’s inter-
nal linked list of the set elements. The same considerations apply to hashCode(),
which requires iterating over all elements for both LinkedHashSet and Linked-
HashMap.

24 Paper I: Micro-benchmarking Java Collections with Interference

We further note that LinkedHashMap’s put and add operations perform sur-
prisingly well. We conjecture that the additional overhead of these operations is
amortised by later calls. In the case of TreeSet and TreeMap, the performance
of the clear method comes about because clearing a tree only requires NULLing
the root node, while clearing (linked) hash maps requires iterating over all hash
buckets.

For sets, Costa et al. focus on third-party alternatives to HashSet [CASL17],
while our results show that LinkedHashSet is faster than HashSet in a majority
of cases. For Maps, Costa et al. describe HashMap as providing solid perfor-
mance, while our results show that LinkedHashMap often performs better. For
Lists, our results confirm the findings of the CollectionsBench study: ArrayLists
are significantly faster than LinkedLists in the majority of cases.

A key insight from our work is that LinkedHashSet and LinkedHashMap,
which account for a small percentage of Java collection classes used in real-world
programs [CASL17], can outperform more popular alternatives when the bench-
mark involves calling many different methods on the object. If binning by collec-
tion and benchmark size does have an effect on the median speedup, the fastest
collection remains the same in 84% of cases.

Our results strongly suggest that there is interference between different opera-
tions in the interfaces that we examined. This in turn means that performance mod-
els based on Pólya profiles (or other multi-operation profiles) may provide more
accurate suggestions for collection class selection than those of single-operation
profiles.

Threats to Validity. While our initial results are very encouraging, we observe
a number of threats to validity that we will explore in future work. Regarding
internal validity, we have not yet systematically analysed the difference in recom-
mendations from JBrainy and CollectionsBench, nor have we validated our mod-
els and recommendations by exploring their impact on the performance of existing
software. Moreover, we have not yet explored fully the impact of collection size
on results.

Regarding external validity, we have only benchmarked one hardware setup
and one virtual machine, and not considered third-party collection classes.

5 Related work

Automatic datastructure replacement for Java has been explored e.g. by Shacham
et al. [SVY09] who explored a modified Java VM that could automatically pro-
pose or perform container class migrations, though the authors only explored
automatic migration for reducing memory footprint. Xu’s CoCo system [Xu13]
similarly enabled automatic dynamic collection class migration, but successfully
targeted performance optimisation with the ability to migrate more than once

Paper I: Micro-benchmarking Java Collections with Interference 25

at runtime. Both tools used hand-written rules for controlling migration. Re-
cently, Costa et al. presented a dynamic migration technique [CA18] that improves
over CoCo by utilising performance models generated from single-operation pro-
files [CASL17], for dynamic collection class selection instead of hand-coded rules.
Hasan et al. [Has+16] similarly obtain energy usage models for container classes
of varying sizes.

Similar ideas have also been explored for C++ [Jun+11], though research in
automatic datastructure selection dates back further [FSS83].

6 Conclusions and Future Work
Developers are often faced with the need to pick a collection datastructure from
options that appear functionally equal. One way to assist them is to providing
decision support in the form of performance insights from micro-benchmarking.

We have explored one such micro-benchmarking approach in our tool JBrainy,
which builds on the benchmark synthesis approach introduced in Brainy [Jun+11].
Using JBrainy and its novel Pólya profiles, we have run an initial performance
evaluation experiment following the setup of the CollectionsBench study [CASL17].
While CollectionsBench focused on improvements from using third-party Java
collections, we have focused our experiment on collections in the Java standard
library. For lists, our results agree with those of CollectionsBench, finding Ar-
rayList to be the best candidate for the vast majority of benchmarks. However,
for maps and sets, our results show that less well-used collections such as Linked-
HashMap or LinkedHashSet can improve the performance of benchmarks.

As an immediate next step we plan to include the third-party collections used
in the CollectionsBench study in our work to get a better comparison between the
two approaches, and to increase collection sizes further.

In addition, we plan to explore various threats to validity. Particularly, val-
idating the recommendations from JBrainy on real-world software would allow
to evaluate how realistic Pólya profiles and our configurations are and how much
insight can be gained with more realism.

7 Acknowledgements
This work was partially supported by Wallenberg Artificial Intelligence, Autonomous
Systems and Software Program (WASP), funded by Knut and Alice Wallenberg
Foundation.

26 Paper I: Micro-benchmarking Java Collections with Interference

References
[Bla+08] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris

Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. “Wake up and smell the coffee: evaluation method-
ology for the 21st century”. en. In: Communications of the ACM 51.8
(Aug. 2008), pp. 83–89.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings
of the 2018 International Symposium on Code Generation and Op-
timization - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–
26.

[CASL17] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. “Em-
pirical Study of Usage and Performance of Java Collections”. en. In:
Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering - ICPE ’17. L’Aquila, Italy: ACM Press,
2017, pp. 389–400.

[CBLA19] Diego Costa, Cor-Paul Bezemer, Philipp Leitner, and Artur Andrze-
jak. “What’s Wrong with My Benchmark Results? Studying Bad
Practices in JMH Benchmarks”. In: IEEE Transactions on Software
Engineering 47.7 (2019). Conference Name: IEEE Transactions on
Software Engineering, pp. 1452–1467.

[FSS83] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. “Ex-
perience with the SETL Optimizer”. en. In: ACM Transactions on
Programming Languages and Systems 5.1 (Jan. 1983), pp. 26–45.

[Has+16] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh,
Bram Adams, and Abram Hindle. “Energy profiles of Java collec-
tions classes”. en. In: Proceedings of the 38th International Con-
ference on Software Engineering. Austin Texas: ACM, May 2016,
pp. 225–236.

[Jun+11] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: effective selection of data structures”. In:
ACM SIGPLAN Notices 46.6 (June 2011), pp. 86–97.

[Mah03] Hosam M Mahmoud. “Pólya Urn Models and Connections to Ran-
dom Trees: A Review”. en. In: Journal of the Iranian Statistical So-
ciety (2003), p. 64.

Paper I: Micro-benchmarking Java Collections with Interference 27

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adap-
tive Selection of Collections”. en. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation (2009), p. 11.

[Xu13] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Col-
lections”. In: ECOOP 2013 Object-Oriented Programming. Ed. by
Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–26.

PA
P

E
R

II

JBRAINY: EFFECTIVE
SELECTION OF DATA

STRUCTURES IN JAVA

1 Introduction
There are many ways to make Java programs run faster. One way is to look at the
collections they use. Can we make the program faster by switching an ArrayList
to a LinkedList , or a HashMap to a TreeMap? Usually, knowing the answer to
those questions is considered a matter of professional skill.

In this paper, we consider the problem of helping the developer choosing what
data-structures to use, by providing them with suggestions. We could find solu-
tions that targeted C++ and Java. For Java, we found three solutions. Chameleon
[SVY09] requires to modify the JVM, so we decided that it was outside of the
scope of this work. CoCo [Xu13] and CollectionSwitch [CA18] both use dynamic
optimization: the developer doesn’t need to choose, they provide collections which
switch their underlying implementation at runtime. Another one, Brainy [Jun+11],
targets C++ programs, and suggests static changes. It uses a machine-learning
based classifier to give advice to the developer, based on runtime information.

Here is a picture of the design space:

Java C++
Dynamic CoCo, CollectionSwitch ???

Static ??? Brainy

In this table, a C++ implementation of CoCo or CollectionSwitch would be an
interesting engineering problem, but it’s probably not a research problem.

On the other hand, adapting Brainy to Java poses new challenges. Brainy uses
dynamic information (e.g. hardware performance counters) to take decisions, but

30 Paper II: Effective Selection of Data Structures in Java

Benchmark Generator

Synthetic benchmarks
(Plan + Collection)

Time measurement
seed selection Feature extraction

Selected benchmarks

Labels (best collection) Hardware Features

Model training

Neural Network

Figure 1: Overview of Brainy

benchmarking Java programs does not work like benchmarking C++ programs: the
Java Virtual Machine uses many dynamic optimizations which impact the running
time of programs in tricky ways. In this paper, we present our implementation of
the Brainy tool for Java programs, and answer the following research questions:

• RQ1: How well can the Brainy approach by applied to Java?

• RQ2: How well does the Brainy approach work on Java programs?

2 Background: Brainy
Brainy tries to answer the question: “what data-structure should I use, when the
original data-structure behaves a certain way?”. Provide Brainy with a program
and a source location, and it will suggest which collection to use there.

2.1 Overview
Brainy uses a learned classifier to give a data-structure suggestion, based on in-
formation about the hardware performance of a data-structure. To do that, Brainy
needs to know which data-structures are best, in which cases. Getting this infor-
mation from real programs would take a lot of effort, so instead, Brainy builds
random programs to test data-structures against. This information is then used to
train a classifier.

Figure 1 presents an overview of Brainy’s architecture. Brainy needs to gener-
ate benchmarks which would make a balanced training set. To do so, it generates
many benchmarks and evaluates how long they take with different data-structures.

Paper II: Effective Selection of Data Structures in Java 31

Some collections will win more often than others, so Brainy stops recording these
benchmarks when it has enough. Once this is done, Brainy has both a set of se-
lected benchmarks, and the best collection for these benchmarks. It can move
onto the more expensive task of collecting hardware features for the benchmarks.
Labels and features are then used to train a neural-network based classifier.

2.2 Building Brainy’s training set

Brainy generates random micro-benchmarks, which it runs, to get information
about how data-structures behave. These micro benchmarks are composed of a
plan – the sequence of methods to use – and a data-structure we want to experi-
ment with.

A plan can be uniquely identified with:

1. The abstract data-type (e.g. List, Map, Set) of the data-structures we’d like
to compare.

2. Its seed. The seed will be used to pick methods at random, and generate
arguments for these method calls.

Brainy’s model for generating plans is fairly simple: First, Brainy assigns a
weight to each method the abstract data-type supports, and then, it sample method
names according to these weights.

With a plan and a data-structure, we get a benchmark, which is runnable. We
measure how long the benchmark takes to run, which tells us how well the data-
structure performs for this specific plan. By running the same plan with different
data-structures, we can compare them. A data-structure wins for a plan if it runs
at least 5% faster that all the alternatives.

Phase I: Time measurements and seed selection

When comparing data-structures, we might observe that some are more versatile
than others: For example, in Java, ArrayList is the best data-structure for many
plans, while LinkedList rarely wins. Since getting the features for a benchmark
is expensive, we want a balanced dataset: Each data-structure should win for a
reasonable portion of the plans. To enforce that constraint, Brainy uses rejec-
tion sampling: Each data-structure is associated with a fixed-size bucket of plans.
When data-structure DS wins for plan p, p goes in the bucket for DS. If the bucket
is already full, the plan (and its seed) are discarded.

Once this phase is finished, the result is a list of pairs with the seed used to
generate the plan, and the best data-structure for that plan. Since each bucket is
full, the data-set should be balanced.

32 Paper II: Effective Selection of Data Structures in Java

Phase II: Getting the features

In this phase, we iterate over the results of Phase I. We already know which col-
lection is the best for each plan, the goal of this phase is to teach Brainy how to
recognize whether a data-structure is efficiently used or not. To do this, we try
each plan with other data-structures and collect hardware features.

In the original study, the authors selected the following features:

• Branch mispredictions

• L1 cache misses

• L1 cache miss rate (L1 cache misses / accesses)

• Size of collection elements / cache block size

• Branch mispredicition rates (Branch mispredictions / branch instructions)

• Cost features

Cost Features Intuitively, choosing the right data-structure requires knowing
what operations we want to do, and how much these cost: If we insert many el-
ements in a data-structure, we will pick one for which insertion is cheap. Brainy
therefore gathers the cost associated with insertions, deletions, and searches per-
formed during the benchmark. The authors use different definitions of cost:

• Cost of insertion: Number of data elements moved forwards or backwards
by the insertion.

• Cost of deletion: Number of data elements moved forwards or backwards
by the deletion.

• Cost of search: Number of data elements accessed before finding the ele-
ment of interest.

Training data The result of this phase is a list of samples, one for each bench-
mark. Each sample contains the following information:

• The data-structure used to collect features

• The features obtained with instrumentation

• The best data-structure for this benchmark’s plan.

Paper II: Effective Selection of Data Structures in Java 33

2.3 Classification

Brainy splits the training data, and trains one model for each data-structure to re-
place. For example, if the user wants to replace a vector, Brainy will feed the
features into a classifier specialized in doing replacements of vectors. Brainy con-
siders 9 collections: vector, list, deque, set, AVL_set, hash_set, map, AVL_map,
and hash_map.

For classification, Brainy uses artificial neural networks. Unfortunately, the
paper does not mention about the structure and size of the neural network.

2.4 Evaluation of Brainy

To evaluate Brainy, the authors report on both the training accuracy, and the effect
of applying Brainy’s suggestions to several C++ programs. They compare results
on two architectures, described below.

Desktop
CPU Intel Core2 Quad Q6600 2.4 GHz

Caches 4× 32 KB L1 data, 2× 4 MB L2 Unified
Memory 2GB SDRAM, 200GB HDD

Operating System 64-bit Ubuntu Desktop 8.04
Compiler GCC 4.5 with libstdc++ 4.5.0

Laptop
CPU Intel Atom N2700 1.6GHz with HyperThreading

Caches 32 KB L1 data, 512 KB L2 Unified
Memory 512MB SDRAM, 8 GB SSD

Operating System 32-bit Ubuntu Netbook Remix 9.10
Compiler GCC 4.5 with libstdc++ 4.5.0

Training accuracy

To test the training accuracy of Brainy, the authors generate a test set of 1000
benchmarks, for each data-structure model. They report an accuracy between 80%
and 90% for the Core2 architecture, and an accuracy between 70% and 80% for
the second architecture.

Effect on real-world programs

The authors compare Brainy’s suggestions and their effect on 4 programs: Xalancmbk,
Chord Simulator, RelipmoC, and Raytrace. They compare inputs of 3 different
sizes for Chord Simulator.

Brainy works well on these benchmarks. On average, Brainy improves perfor-
mance by 27% on the Core2 architecture, and by 33% on the Atom architecture.

34 Paper II: Effective Selection of Data Structures in Java

All benchmarks report at least 10% of improvement, and up to 77% of improve-
ment in one case.

3 JBrainy
JBrainy is the tool we developed, which tries to adapt the same process to Java
Programs. We tried to stay as close to the original work as possible. Figure 2
shows that the structure is similar to that of Brainy. The only structural difference
is that Brainy measures the run-times of programs while doing seed selection,
while we split this in two steps. This difference is explained in section 3.3, and it’s
impact is detailed in section 7. Here we list some key differences between our tool
and Brainy.

Benchmark Generator

Synthetic benchmarks
(Plan + Collection)

Seed selection

Time measurement Feature extraction
Selected benchmarks

Selected benchmarks

Labels (best collection) Hardware Features

Model training

Neural Network

Figure 2: Overview of JBrainy

3.1 Candidates for replacement
In this work, we focus on collections in the Java Collections Framework that im-
plement the interfaces List, Map, and Set in the java.util package, each of which
represent an abstract datatype (ADT).

Figure 3 lists these interfaces. For each, we consider the three implementations
of this data structure offered by the java.util package, as follows:

1. we consider every point in the program that invokes the constructor of such a
data structure a replacement slot, meaning that we will consider performing
replacement at that program point, and

Paper II: Effective Selection of Data Structures in Java 35

List Set Map
LinkedList HashSet HashMap
ArrayList LinkedHashSet LinkedHashMap
Vector TreeSet TreeMap

Figure 3: The three Java collection interfaces (header row) that we consider, and
the three data structures each that serve as the interfaces’ implementations.

2. for any replacement slot for an implementation of some interface, we will
consider a replacement by any other implementation of that same interface;
in other words, we only allow sets to be replaced by other sets, etc.

This restriction accommodates both fundamental differences in the opera-
tions offered by each interface and differences in the interfaces’ semantics,
at least where these are specified.

In practice, real-world programs have hundreds of replacement slots. Since
we are not aware of any simple static strategies that allow pre-selecting the most
significant replacement slots, JBrainy must be able to potentially perform replace-
ment at any replacement slot. By contrast, Brainy (to the best of our understand-
ing) exploited expert knowledge to select only one replacement slot per benchmark
program.

3.2 Class replacement

Brainy performs replacements in two parts of its overall process: when generat-
ing synthetic applications for benchmarking, and when updating application code.
To vary which data structure a given piece of code uses, Brainy uses C++ tem-
plates that represent ADTs at least for benchmarking. We expect that the original
Brainy implementation uses the same or a similar technique for application code.
Since Java lacks a mechanism that is equivalent to (compile-time evaluated and
inlined) templates, JBrainy instead relies on dynamic inlining strategies whose
performance characteristics are not obvious.

We therefore designed JBrainy to vary data structures by replacing construc-
tor calls of data structures of interest by constructor calls to possible alternatives.
Since different Java programs use different build systems and may rely on gen-
erated code1, we perform replacement at the level of Java bytecode rather than
at source code level. Advanced program transformation frameworks may implic-
itly perform changes or even optimizations [VR+10] as part of going through an
intermediate representation; since this could cause interference with our measure-
ments, we instead constructed a minimally invasive transformation tool based on
the ASM library [Kul07].

1For example, the fop benchmark generates a number of Java files from XML specifications

36 Paper II: Effective Selection of Data Structures in Java

Since Brainy only used a single replacement slot, it could rely on manual adap-
tations instead of requiring automation as we do here.

JBrainy’s automatic replacement strategy induces a number of complications
that we describe below.

Interface mismatch A replacement across two implementations of the same
interface may not typecheck. For instance, consider the following code:

List<Integer> l1 = new LinkedList<>();
LinkedList<Integer> l2 = new LinkedList<>();

Here, the Java type system allows replacing the constructor call in the initializa-
tion of l1 by new ArrayList<>(), but not the initialization of l2, since ArrayList
is not a sub-type of LinkedList. Moreover, we cannot generally abstract the type
of l2 to List<Integer>, since LinkedList is more that a List: it also implements
the Deque interfaces, which offers operations not found in List. Meanwhile, Ar-
rayList does not implement Deque, which means that it is not generally a viable
replacement for LinkedList. In practice, a replacement for a concrete collection
data structure must thus be a sub-type of the data structure.

Semantic changes Java interfaces such as List or Map have no mechanism
for enforcing the behavioral properties of ADTs, and their (natural language) spec-
ifications are not usually comprehensive. As a consequence, two collections may
implement the same Java interface, but but not implement the same ADT.

For example, HashMap, LinkedHashMap and TreeMap are all Maps, but
their iteration orders can differ (e.g., iteration order for HashMap is undefined,
but guaranteed to be in a specific order for TreeMap). If the iteration order is
important for the program to be correct, some replacements will alter program
behavior.

Constraints on Elements Similarly, some collections might implement the
same interface but put different constraints on the type of elements they accept.
For example, a TreeMap requires its elements to implement the Comparable
interface, which is not a requirement for a HashMap.

Mitigating class replacement challenges

As we have seen, the Java collection interfaces themselves are not a sufficiently
strong mechanism to ensure that their implementing data structures are mutually
replaceable. Given a replacement slot that constructs an object of type A, the
de-facto requirement for a replacement from A to B is that (1) B is statically a
sub-type of any type of any variable that the object constructed in that slot may
flow into, and (2) B dynamically expects no more constraints on elements as A

Paper II: Effective Selection of Data Structures in Java 37

List

LinkedListInterface ArrayListInterface

LinkedList ArrayList

LinkedListUniversal ArrayListUniversal

Legend
JCF

JBrainy

Class

Interface

Figure 4: JBrainy sub-typing hierarchy for two container classes, ArrayList and
LinkedList. For each such container T , T Interface serves as general interface, and
TUniversal serves as implementation (extending T) that implements all Interfaces.

and provides the same semantics as A for all possible program executions. We call
these requirements the shape of the replacement slot.

Interface mistmatch We define the shape of replacement slots with Java in-
terfaces, which define all the methods our replacement collection should support.
For example, we created an interface for LinkedList -shaped collections, called
LinkedList Interface. This interface defines all methods that LinkedLists support.
Any collection we might use to replace a LinkedList must implement LinkedList
Interface.

Now, the regular ArrayList does not implement LinkedList Interface, so how
do we replace a LinkedList? We wanted universal replacements: Any collection
should fit in any slot, as long as it’s from the same family (List, Map, or Set).
It does so by implementing the interface for every slot shape. We created wrap-
per classes which provide the methods we want, but use a different implemen-
tation. For example, ArrayListUniversal is a collection which implements both
LinkedListInterface, ArrayListInterface, and VectorInterface, but it uses an Ar-
rayList as the underlying implementation. It can fit in any list slot, but it performs
like an ArrayList.

Figure 4 illustrates the resultant inheritance hierarchy.
To ensure that this replacement strategy has no significant impact on overall ex-

ecution time, we evaluated the original benchmarks against benchmarks in which
we had transformed almost2 all types and all replacement slots as described above
with the same methodology as described in changes in overall execution time.

2Due to constraints imposed by the Java compiler, we had to exempt the Java standard library from
these transformations. As a consequence, we also had to replace a small number of static method
calls to helper operations in the standard library by calls to equivalent custom static methods that we
provided.

38 Paper II: Effective Selection of Data Structures in Java

Semantic Changes and Constraints on Elements It is not generally pos-
sible to determine whether client code depends on semantic properties such as iter-
ation order or universally satisfies constraints on elements. For the purposes of our
evaluation, we approximated these properties by verifying that our benchmarks
produced the expected output and otherwise manually identified and blocklisted
replacements that were responsible for output changes.

3.3 Microbenchmarks
Our approach towards generating microbenchmarks in JBrainy follows the genera-
tive strategy used by Brainy, except that instead of generating microbenchmarks as
source code, we directly generate them as bytecode. Since we lack information on
how exactly Brainy assigns probabilities to method calls for each plan [Jun+11],
we assign a weight of zero to each method, and increment the weight of a uni-
formly selected method, 100 times, then normalize.

Benchmarking Brainy targets C++ programs, while JBrainy targets Java Pro-
grams. The main consequence of this change is that the Java Virtual Machine
performs JIT compilation and dynamic optimizations: The JVM “warms up”, and
calling the same program several times in the same JVM instance can make the
program run faster. While the runtime of C++ programs can also vary due to
operating-system level caching, the runtime of Java programs is generally subject
to a more pronounced warmup effect [Bla+08].

We use three different methods for selecting seeds, gathering labels and fea-
tures when generating JBrainy’s training set. When selecting seeds, we run the
benchmark 30 times, and record the running time. We selected this naive method
because it is fast, as many seeds end up being rejected. After selecting interesting
seeds, we measure the running time of the associated benchmarks more precisely,
with the Java Microbenchmarking Harness (JMH). To warm up, the benchmark
runs for 2 × 2 × 250ms: We run the benchmark as many times as possible for
250ms, twice, for 2 JVM invocations. For measurements, the benchmark runs for
2 × 5 × 250ms. We run the benchmark as many times as possible for 250ms, 5
times. We do this for 2 JVM invocations. To get the features, we run each bench-
mark 10 times within 1 JVM invocation. This seems complicated.

The complexity of this benchmarking scheme is justified by the tension be-
tween the JIT-compilation features of the JVM and the need for precise instru-
mentation. On the one hand, the JVM has elaborate dynamic optimization fea-
tures, which motivates the use of JMH make sure the recorded times are realistic
3. On the other hand, gathering the features 4, requires more control over instru-
mentation than JMH provides. These two aspects need to be balanced with the
total time spent building the training set. We want to run as few runs as possible

3For example by preventing abusive dead code elimination
4particularly the time spent doing certain classes of operations, like insertions

Paper II: Effective Selection of Data Structures in Java 39

while keeping the values stable enough for the classifier to work. Balancing those
aspects was not easy and caused some problems, reviewed in section 7.

Benchmark generation When using Brainy, the user might configure the size
of the elements to store in data-structures when running benchmarks. In the case of
Java, we chose to use only integers, because collections store references to objects.

Feature extraction Brainy’s original authors do not mention the tools they
used for instrumentation. We used Java bindings to the PAPI library. Our ex-
periments showed that starting and stopping the counters introduced an overhead,
which we could avoid by reading the current value and subtracting the previously
read value. With tracing, avrora runs 1.5 times slower with tracing, bloat runs 1.76
times slower, and fop runs 7.8 times slower.

For the cost of operations, Brainy’s authors used metrics on the number of
elements moved or accessed, while we used the number of cycles spent for each
class of operations.

Feature selection Brainy’s authors selected features using genetic algorithms.
We use the same list of features the Brainy’s authors have selected.

Classification Brainy uses Artificial Neural Networks for classification. We
use the same method, but since there was no information in the paper about the
size and structure of the networks, we used the defaults of the scikit-learn library.

4 Experimental setup

To evaluate JBrainy, we compare the effect of suggestions from JBrainy on a set
of real-world programs. We compare both the jbrainy-optimized version with the
original, but also with a ground truth, which is obtained by greedily trying different
collections and comparing the results, which we discuss in section 5.

As the authors of the original Brainy emphasize, the hardware architecture of
the machine influences the results, we therefore compare results on two different
machines.

4.1 Benchmark suite

The benchmark suite we used was the Dacapo Benchmark suite [Bla+06]. We
compare 6 programs: avrora, bloat, chart, fop, and lusearch. These benchmarks
were selected because they have been used in CoCo and CollectionSwitch.

40 Paper II: Effective Selection of Data Structures in Java

4.2 Machines used
We used one machine for running our benchmarks.

“Pascal”
java version 1.8.0_292

CPU 11th Gen Intel(R) Core(TM) i7-11700K @ 3.60GHz
Caches 8× 384 KB L1 data, 4 MB L2 unified, 16 MB L3 unified

kernel release 5.13.7-051307-generic
Memory 128 GB SDRAM, 2 GB Swap

Operating System 64 bit Ubuntu 21.04

We fixed the CPU frequency for the experiments to 3.6 GHz. We also enabled
user-space RDPMC access for PAPI to enable fast readout of the performance
counter registers.

4.3 Benchmarking programs
To get the runtime of one program, we run 20 JVM invocations with a heap size
of 12GB. For each invocation, we run the program until it converges. In section 5,
we compare the results of the first iteration with the results after convergence.

4.4 Ground truth
To get an idea of how good Brainy’s predictions are, we need to compare Brainy-
optimized programs with a baseline. Our baseline is a variant of greedily searching
for the optimal collection. We generate possible alternative programs, and bench-
mark them, we then pick the best we found.

First, we select interesting replacement slots in the program. Not all replace-
ment slots are equal: Some are the origin of a single large list used throughout the
program, some are the origin of a large number of small maps, or one single list
of maximum five elements. We measure the importance of a replacement slot by
counting the number of method invocations on collections which share this origin.
One could use other metrics, for example the total number of CPU cycles. Our
choice is motivated by the overhead of accessing performance counters in Java:
For example, tracing cycles for all collections on avrora took 13s, while tracing
method invocations took less than 3.5s. The resulting ranking of replacement slots
is not identical for both metrics, but the 10 busiest replacement slots were the same
for avrora.

We select the 10 busiest slots and consider what possible replacements. Pure
exhaustive search would generate every possible combination, but the number of
candidates to consider is prohibitive: in the case of fop, we would need to bench-
mark 59049 candidates. Instead, we optimize each replacement point indepen-
dently and merge the results to produce an “expected best” candidate. That way,

Paper II: Effective Selection of Data Structures in Java 41

we only need to benchmark 21 candidates. We then compare the running times
of these candidates: Each benchmark is ran until convergence, 20 times, and the
collection which yields the lowest median running time is selected.

5 Results

RQ1: How well can the Brainy approach be applied to
Java?
The main challenge of porting Brainy to Java concerns benchmarking. When gen-
erating micro-benchmarks, we generated the bytecode directly. One could also
generate Java code and compile it. We do not know the implications of that design
choice yet. When benchmarking, as we highlighted in section 2.4, the complexity
of the Java runtime system makes measuring the running time of many micro-
benchmarks more error-prone and more expensive than it probably was for the
original Brainy. While Jung et al. report 1000 micro-benchmarks for each collec-
tion as a low number, in our case, generating 100 benchmarks for each collection
can already take 6 hours.

Next to benchmarking, instrumentation is a major challenge. Brainy requires
fine-grained instrumentation for some features, like the cost of insertions. Sup-
porting the same instrumentation required interfacing Java with a native library
(PAPI), but this interfacing introduces some overhead, and this overhead influ-
ences the measurements!

RQ2: How well does the Brainy approach work on Java
programs?
A good tool for collection suggestions must provide two things: it should be
quicker than greedy search, and its suggestions should reduce effectively the run-
ning time of programs. We compare JBrainy with greedy search on several Da-
Capo benchmarks. Greedy search takes longer if we consider more replacement
slots, so we only focus on the ten busiest. For speed, we compare how long op-
timizing a program with JBrainy takes, versus using greedy search. For effec-
tiveness, we compare the running times of the greedily-optimized variants of the
benchmark, with one optimized by JBrainy. Running times contain some noise, so
we compare the median running time across 20 JVM invocations.

How fast is JBrainy?

Training the model takes approximately 6 hours. Seed sampling aims to find 100
seeds for each collection type. Some seeds were usable for benchmarks for all
families (List, Maps, and Sets), so the number of unique seeds is lower: 577. We
used 9 collections, for a total of 577× 9 = 5193 benchmarks. Using JMH, getting

42 Paper II: Effective Selection of Data Structures in Java

the running time of these benchmarks took 5 hours 35 minutes. We obtained the
feature vectors in 35 minutes, running each benchmark 10 times. Training the
classifier takes less than a minute.

Once the model is trained, building a new JBrainy-optimized program takes
around a minute. The classifier is quick to evaluate, so most of the time is spent
collecting features from the original program. We provide a table for comparison.

Benchmark Build time greedy (s) Build time JBrainy (s)
avrora 3931 12
bloat 2093 70
chart 1334 80
fop 2085 56
lusearch 1320 12

How effective is JBrainy?

Effect on real-world programs

We plotted the best variants found by greedy search (in dark blue), which we com-
pare with the original program (in red), and the program optimized with JBrainy
(in orange). On the x-axis is the speedup, relative to the median running time
of the original program, while the y-axis identifies which variant was run. To
help identify why a variant is better than another, the teal bars denote programs
where only one allocation site was changed to another collection. For example
5 → linkedhashset means that this program was the same as the original, except a
LinkedHashSet was used for the fifth busiest allocation site.

In the case of avrora, JBrainy does slightly worse than the original program,
while greedy search does a little bit better. Since the difference is less than 1%, we
assume it is negligible.

Paper II: Effective Selection of Data Structures in Java 43

In the case of bloat, both JBrainy and greedy search find an important optimiza-
tion: switching the busiest HashMap to a LinkedHashMap. This optimization
yields 30% of improvement in steady-state performance.

In the case of chart, greedy search found a change which multiplied running
time by five: Switching the busiest list to a LinkedList . This is reassuring, as it
shows the choice of collection did matter for that program. However, the original
program was already quite close to the optimal program found by both greedy
search and JBrainy.

In the case of fop, greedy search worsens steady-state performance by 5%. We
can see that the error bars cover most of the range of improvement, suggesting that
it’s not possible to improve the program much with the selected collections.

In the case of lusearch, Neither Greedy search nor JBrainy improved substan-
tially the running time of the program.

Major issues with classification

Comparing the suggestions provided by greedy search and JBrainy, we notice that
JBrainy agrees with greedy search in 36% of cases. Figure 5, comparing sugges-
tions by JBrainy, reveals that JBrainy always suggested the same things. All lists

44 Paper II: Effective Selection of Data Structures in Java

are replaced by ArrayList, all maps by LinkedHashMap, all sets by LinkedHash-
Set. Our classifier is not useful. We come back to possible reasons in section 7.

6 Discussion

JBrainy’s results are a bit disappointing: For four programs out of five, it did not
find substantial optimizations, while the state of the art found optimizations in the
tens of percents. It found one substantial optimization, for bloat. Interestingly,
greedy search did not find large optimizations either. We notice two things:

First, the original programs performed quite well. Apart from bloat, there is
no benchmark where greedy search found a substantially better program than the
original. Bloat was the only benchmark where the original program was signifi-
cantly worse than the JBrainy’s optimized version.

Second, for avrora, fop, and lusearch, it does not seem like the choice of col-
lection matters that much. For avrora, all variants stay within 1% of the original
program.

All in all, we get a surprising result: it seems like collection choice does not
matter a lot in 4 out of our 5 benchmarks. Now, related work did manage to find

Paper II: Effective Selection of Data Structures in Java 45

Figure 5: Comparison of Brainy’s suggestions with greedy search suggestions

inefficiencies. Chameleon improved fop’s performance by 20%. How did they do
it?

We can answer this question by looking at the collections they have consid-
ered. In this work, we considered nine popular collections: ArrayList, LinkedList,
Vector, HashSet, TreeSet, LinkedHashSet, HashMap, TreeMap, and Linked-
HashMap. Chameleon [SVY09] and other tools like CoCo [Xu13] and Collec-
tionSwitch [CA18], use different collections and techniques. These techniques
mostly improve memory usage, but we suspect that they also improve running
time by decreasing the time spent doing garbage collection. Now, is is unclear as
to which technique improves running time the most, and when.

6.1 Lazy collections
Chameleon introduces a lazy ArrayList which does not allocate the array when it
is created, but on the first update. They also introduce Lazy Sets and Lazy Maps,
which do the same. Chameleon suggests to replace any list which remains empty
by this LazyArrayList. They report that bloat allocates many LinkedList s which
remain empty. Even when empty, a LinkedList$Entry object is allocated at
the head of the linked list. Shacham et al. could save 20% of the heap by using
LazyArrayList instead. Interestingly, Chameleon did not use LinkedHashMap,
so it could not use the same optimization that JBrainy suggested. It is probably
possible to optimize bloat further by combining both optimizations.

46 Paper II: Effective Selection of Data Structures in Java

Collection Number of wins
ArrayList 1731
LinkedHashSet 1722
LinkedHashMap 1713
HashMap 18
HashSet 6
TreeSet 3

Table 1: Number of wins for each collection in the training data

6.2 Array-based maps

Costa [CA18], and Shacham [SVY09] use array-based maps, which are simply
arrays of entries. get does not run hashcode, it linearly searches through the
map. Array-based maps are more memory efficient, and can be more efficient if
the map remains small. Österlund [OL13] and Costa use collections which start
by allocating an array-based map, and switch to a regular HashMap once the
map reaches a certain size. Costa et al. replaced many maps in lusearch by their
AdaptiveMap, since these contained less than 20 elements, resulting in a 15%
improvement of running time.

6.3 Hash-based lists

Österlund and Costa present variants of ArrayList which also maintain a hash ta-
ble. That way, the hash table speeds up calls to contains. Costa report that
their AdaptiveList (which switches between hash-based lists and array-based lists)
could speed up h2 by 6%, but that it did not improve fop’s running time.

6.4 Collection tuning

The constructors of both ArrayList and HashMap have a parameter which sets
how big the underlying array should be. Setting this size prevents resizing the
collection as it grows, avoiding copies of the data with every resize. Shacham et
al. [SVY09] report using this method on fop, and report 18% speedup. However,
they used both collection tuning and array-based maps in this case, and it is unclear
which technique was most effective.

7 Threats to validity

Figure 5 shows that JBrainy’s classifier always make the same choices. This is
explained by a very strong imbalance in the training data. The table below shows
the number of wins per collection type in the training data.

Paper II: Effective Selection of Data Structures in Java 47

Despite our efforts to select a balanced dataset, it didn’t happen. There are four
possible reasons for this.

Seed selection To ensure the training data it uses is balanced, Brainy uses
seed selection, which we discussed in section 2.2. We can see in table 1 that this
method was not effective for JBrainy.

The reason for that discrepancy lies in the disagreement of the naive bench-
marking we perform for seed selection, compared to the use of JMH for measur-
ing the time benchmarks take precisely. The first method runs the benchmark 30
times, and prints the value of the collection to /dev/null. In practice, the two
methods often disagree.

Figure 6: Count of invocations for a JBrainy benchmark

48 Paper II: Effective Selection of Data Structures in Java

Figure 7: Count of invocations for an allocation site with roughly 1200 invoca-
tions

Bias in generated plans One possible reason for the large imbalances in
training data could be that JBrainy’s model of collection usage is not realistic.
For a comparison between synthetic benchmarks and actual traces, figure 6 and 7
show the number of invocations for each method, for traces of similar size. Figure
6 shows a synthetic benchmark, while figure 7 shows data from a trace of fop.
The synthetic benchmark calls 27 methods, between 10 and 80 times, while the
actual trace shows that only 4 methods are called. Two are called approximately
100 times, and two are called more than 400 times. It seems that real method
calls are more focused on a few methods, called many more times. For the busiest
allocation site in fop, only 5 methods are called, but the number of invocations lie
between 58 and more than 250000.

The differences, in hindsight, seem obvious. However, a similar model did
work in the original Brainy study. It could be that this model doesn’t work very
well for Java, or that LinkedHashSet and LinkedHashMap are particularly adapted
to workloads the model produces. To investigate this question, we compared seed
selection with the Brainy model of collection usage, with traces generated by sam-
pling markov chains. The markov chains were inferred using traces from avrora,
fop, and lusearch. Figure 8 shows the progress for each data-structure. We see that
the Brainy model does favor ArrayList, LinkedHashMap and LinkedHashSet,
while the Markov model struggles to find benchmarks in which one collection runs
at least 5% faster than the others.

Element types We chose to store integers in the collections we benchmark, but
real programs manipulate more complicated objects. For example, our tool does
not model the cost of methods like hashcode, equals, or compareTo. We
suspect that using only integers could be detrimental to some collections.

Generation of method arguments Our model generates uniformly distributed
random numbers to serve as arguments to methods, which might not show some
collections’ strengths. For example, a LinkedList typically performs better than an
ArrayList when elements are inserted at the beginning: the ArrayList reallocates
the whole array, which is expensive. Our model selects a uniformly distributed

Paper II: Effective Selection of Data Structures in Java 49

Figure 8: Wins relative to number of seeds for each collection, for two generation
methods

index between 0 and the size of the list, so insertions at the beginning can happen,
but the model doesn’t try to prepend elements repeatedly.

8 Related work

Static collection replacement In 2009, Shacham et al. presented Chameleon
[SVY09], a tool which used traces, heap information, and hand-written rules to se-
lect the collections to use. Artemis [Bas+18], presented in 2018, used a genetic
algorithm to optimize the program directly, it does not try to build a cost model at
all.

Our work is a direct port of Brainy, the tool presented by Jung et al in 2011
[Jun+11]. In contrast with Chameleon, we do not attempt to reduce memory con-
sumption and do not use heap information. Instead of hand-written heuristics, we
use a machine learning model. We also do not use the same collections, and restrict
ourselves to the collections available in the Java Collections Framework.

Artemis is different from our work, since it does not try to build a cost model:
The fitness function of its optimization algorithm runs the variant program directly.
Basios et al. report that Artemis takes 3.05 hours on average to optimize a program.
JBrainy goes faster, but Artemis was more effective: it improved fop and avrora’s
running time by approximately 5%.

Adaptive collections Xu [Xu13] and Österlund et al. [OL13] presented col-
lections that can instead switch implementation, depending on their usage. Öster-
lund et al. present lists which can switch between an array and a hashmap, and use
a state machine to decide when enough calls to contains have been performed
that it is worth switching. CoCo [Xu13], on the other hand, minimizes copies by
spreading the data across several collections, elements are moved between collec-

50 Paper II: Effective Selection of Data Structures in Java

tions on demand. Costa et al. presented CollectionSwitch [CA18] in 2018, which
builds on these two works: They present smart constructor which select which
type to instantiate based on monitoring of existing collections, and use adaptive
lists similar to those presented by Österlund et al. in their tool. The key difference
between our work and these adaptive collections is that they optimize at runtime.
JBrainy does use runtime information, but the replacements are static.

9 Conclusion

In this paper, we presented our port of the Brainy approach to Java programs. We
reported on the challenges that porting Brainy to Java entails. We conclude that
porting Brainy to Java requires knowing about bytecode generation (to generate
benchmarks), micro-benchmarking and interfacing Java with tracing libraries.

We evaluated JBrainy on five DaCapo benchmarks: avrora, bloat, chart, fop,
and lusearch. Our results show that JBrainy can speed up programs for a fraction
of the cost of greedy search, but we notice that JBrainy was less effective than the
state of the art. Here, we list some directions for future work.

Collections available Since greedy search was not as effective as the state
of the art, we suspect that the set of collections available to JBrainy could be
expanded. We expect that collections like Lazy ArrayList, or ArrayMap were im-
portant in the improvements obtained by Chameleon, CoCo and CollectionSwitch,
and could improve JBrainy’s performance. Adding these collections to the options
JBrainy and greedy search can use would allow for better comparisons with the
state of the art.

Imbalanced training data We suspect that JBrainy’s benchmark generation
model is biased, considering the large imbalances of its training data. In future
work, we plan to improve this situation by allowing the user to specify hints to
guide the synthesis of benchmarks, so that the resulting training data is more bal-
anced. We do not know yet which factor is most important between the distribution
of methods, the properties of the element type, or the distributions of arguments.

Importance of CPU architecture Jung et al. [Jun+11] reported that Brainy’s
suggestions were different for different CPU architectures, is it the same for Java
programs? We plan to compare JBrainy’s suggestions on different CPU architec-
tures, to see to which extent the importance of CPU architecture applies to Java.

Paper II: Effective Selection of Data Structures in Java 51

10 Acknowledgements
This work was partially supported by Wallenberg Artificial Intelligence, Autonomous
Systems and Software Program (WASP), funded by Knut and Alice Wallenberg
Foundation.

References
[Bas+18] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr.

“Darwinian data structure selection”. en. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
- ESEC/FSE 2018. Lake Buena Vista, FL, USA: ACM Press, 2018,
pp. 118–128.

[Bla+06] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khan,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosk-
ing, Maria Jump, Han Lee, J Eliot B Moss, Aashish Phansalkar,
Darko Stefanovic, and Thomas VanDrunen. “The DaCapo Bench-
marks: Java Benchmarking Development and Analysis”. en. In: (2006),
p. 22.

[Bla+08] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris
Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. “Wake up and smell the coffee: evaluation method-
ology for the 21st century”. en. In: Communications of the ACM 51.8
(Aug. 2008), pp. 83–89.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings
of the 2018 International Symposium on Code Generation and Op-
timization - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–
26.

[Jun+11] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: effective selection of data structures”. In:
ACM SIGPLAN Notices 46.6 (June 2011), pp. 86–97.

[Kul07] Eugene Kuleshov. “Using the ASM framework to implement com-
mon Java bytecode transformation patterns”. en. In: (2007), p. 7.

52 Paper II: Effective Selection of Data Structures in Java

[OL13] Erik Osterlund and Welf Lowe. “Dynamically transforming data struc-
tures”. en. In: 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). Silicon Valley, CA, USA:
IEEE, Nov. 2013, pp. 410–420.

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adap-
tive Selection of Collections”. en. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation (2009), p. 11.

[VR+10] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. “Soot: a Java bytecode optimization
framework”. In: CASCON First Decade High Impact Papers. CAS-
CON ’10. USA: IBM Corp., Nov. 2010, pp. 214–224.

[Xu13] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Col-
lections”. In: ECOOP 2013 Object-Oriented Programming. Ed. by
Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–26.

