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Abstract 

Traffic on railways is increasing and this makes train traffic to be highly interconnected . 
This paper investigates how passing of train affects dwell time delays in Sweden. Three 

scenarios are considered by combining the scheduled and actual operations: passes that 

happened as scheduled, unscheduled passes that happened in operations, and scheduled 

passes that were cancelled. A logistic regression model is used to explore the effects of 

these spassing on delays. The results show that  train passes rarely occur as scheduled, more 

frequently they are cancelled or unscheduled. When passes are cancelled, the probability of 

delay decreases, and when the passes are unscheduled, the delay probability increases. The 

approach used in this paper can be extended to other types of  train movement, such as 

meeting of train , as well as other delay-influencing factors.   
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1 Introduction 

Traffic on the railways has been increasing steadily in recent years. High utilization 

combined with highly heterogeneous traffic has increased the complexity of railway traffic 

in Sweden. According to (Trafikanalys, 2018), the number of passenger trains increased by 

19% from 852,000 to 1,016,000 between 2013 and 2018. Busy networks of railway traffic 

are constantly subjected to random disturbances. To minimize the impact of these 

disturbances, effective real-time dispatching measures are needed to reschedule train 

services into new conflict-free train path plans. However, dispatching actions can also lead 

to new conflicts between trains, and further propagation of delays. 

 

Dwell Time Delays 

Dwell times play an important role in ensuring the system performance, service reliability, 

and quality in public transportation, and are typically where most delays first occur 

(Palmqvist, 2019). Train dwell time can be defined as the time a train stops at the platform, 

often for the purpose of allowing passengers to board or alight. Andersson (2014) mentions 

that a delayed train can use its dwell time margin to recover in time. Realistic allocation of 

dwell time reduces the risk of a train from exceeding its track occupation time, thereby 

preventing deviations from the scheduled train paths. Nie (2005) statistically analyses train 

operations between two Dutch major railway stations in the Hague. She indicates that when 



scheduled dwell times at stations and running times are exceeded due to hindrance by other 

trains, then the scheduled headway between arrival and departure of some pairs of trains at 

critical route nodes will be insufficient and this consequently causes route conflicts. Delays 

can propagate as secondary delays to other trains, and consequently, disturb the entire 

network, as was identified already by Carey & Kwieciński (1994). On the other hand, 

Goverde & Hansen (2013) find that a train will not hinder other trains as long as it is kept 

within its allocated train path envelope, as indicated by a high percentile of realized process 

times (for running, dwelling, and turning processes) and a sufficient buffer time in addition 

to minimum headway times between train paths. 

 

Delay Management 

Delays can be avoided through effective timetabling and dispatching decisions of traffic 

controllers. Goverde & Hansen (2013) defined timetable resilience as the flexibility of a 

timetable to prevent or reduce secondary delays using dispatching (retiming, reordering, 

rerouting). Management of unexpected delays depends on the ability of the train dispatchers 

to make accurate decisions in advance by taking into consideration the interdependency 

between trains. However, dispatching measures are often sub-optimal as train dispatchers 

have a limited view of the effects of conflict resolution methods and are unable to compare 

alternative solutions based on various performance indicators due to the limited time 

available for real-time decision making. D’Ariano & Pranzo (2009) mention that 

dispatchers are unable to precisely evaluate the consequences of timetable disturbances in 

complicated railway networks. Lindfeldt (2015) also finds that the dispatching algorithm is 

less efficient if it considers only one station ahead instead of two when calculating the best 

dispatching solution.  

In order to effectively reschedule trains during operations, many efforts have been 

devoted to developing automatic decision support tools to forecast delays propagation in 

the rail network. D’Ariano & Pranzo (2009) use a dispatching system to proactively detect 

and globally solve conflicts on each time interval that decomposed from a long time horizon 

with the objective of improving punctuality. Spatiotemporal probabilities and analyses on 

delay increase and recovery by Huang et al. (2019) help dispatchers to improve their 

decision-making qualities through a better understanding of the trains’ delay recovery 

abilities at each station and section. To help dispatchers in making more informed decisions 

when dealing with real-time traffic disturbances, Samà et al. (2015) present a multi-criteria 

decision support methodology that involved mixed-integer linear programming 

formulations, based on the alternative graph model and an iterative Data Envelopment 

Analysis based method to establish an efficient-inefficient classification of the formulations 

and to improve inefficient formulations. Goverde (2010) introduces an effective delay 

propagation algorithm based on a timed event graph representation of a scheduled railway 

system with its zutilization in real-time applications such as interactive timetable stability 

analysis and decision support systems to assist train dispatchers. Lee et al. (2016) propose 

a delay root cause discovery model which used a supervised decision tree method based on 

machine learning methodology to analyze the scheduled or unscheduled trains meetings and 

overtaking behaviors, and the subsequent delay propagations. Liang et al. (2017) develop a 

dispatching optimization algorithm based on greedy algorithm to achieve an optimal 

relationship between capacity and operation quality through the influence of dispatching. 

 

This Paper 

In order to improve the real-time decision-making abilities of train dispatchers, it is useful 

to first study the effects of their decisions. Dispatching decisions are closely related to the 



interaction between trains which can influence the train speed profiles and the orders of 

trains at conflict points, leading to complex problems if inaccurate decisions are made. 

Thus, this paper focuses on passing of passenger train and explores its effects on dwell 

time delays, which are the most common type of delay for passenger trains in Sweden. With 

a better understanding of train passings and their impacts on delays, the use of dispatching 

measures can be improved, ensuring more punctual railway operations.  

This paper is organized as follows: In Section 2, mathematical formulations and 

methodology used in this study are introduced. In Section 3, we analyze, and discuss the 

results generated, and measure of the effect of train passes. Finally, Section 4 makes a 

conclusion and recommendations for further research. 

2 Train Passing and Delays  

In this paper, we focus on the passing of train on double-track lines, because this is much 

more common than on single-track lines. The passing of trains occurs when a train passes 

another train moving in the same direction. Two assumptions are made in this study: 1) 

double tracks are treated as separate independent systems in each direction and 2) the 

separate systems are reserved for trains in one direction each. This implies that each track 

in the double track is subjected to one way traffic and the trains are assumed to not 

encountering oncoming trains or turns through oncoming trains since the trains can only 

move in one direction.  Thus, trains conflicts in the opposite directions as well as in 

switching areas are not taken into consideration in this study. These assumptions are 

illustrated in Figure 1. 

 

 
 

 

Figure 1: Double tracks as separate independent systems 

 

 

 

Comparing the timetable to actual operations there are three possible outcomes with 

regards to the passing of trains. For instance, passing can be scheduled (1), cancelled (2), 

or unscheduled (3). The most common case (4) when there is no passing in the timetable, 

and none in the actual operations, is not considered here. Table 1 illustrates these different 

possibilities.  

 

Table 1: Different types of train passing scenarios 

                  Scheduled operations 

Actual operations 

No pass  Pass  

No pass  No pass  Cancelled pass 

Pass  Unscheduled pass Scheduled pass 



 

Figure 2 shows a scenario where train A is scheduled to enter the line after train B. At 

stations A and D, there is no pass, as the trains do not overlap. At station B, there is a 

cancelled pass, because train A was scheduled to pass train B, but did not do so. At station 

C, there is instead an unscheduled pass, where no pass was scheduled but one took place.  

 

 

 

 
 

   

 
 

   

 
 

    

 

Figure 2: Scenario with different types of train passing  

 

 

Data Studied 

In this study, we used train operation data from the Swedish Transport Administration, 

which covers all train movements on double tracks in Sweden for the year 2014. 

Observations for Saturday and Sunday are omitted because there are differences in travel 

behavior between weekends and weekdays. There are also fewer trains on weekends, 

reducing the risk of delay propagation. As reported by Trafikanalys (2019), punctuality was 

measured to be 94-95% for Saturday and Sunday respectively but on weekdays, punctuality 

was in the range of between 90-91%.  

Finally, the observations of train movements are reduced from 13,000,000 to 403,000 

when all the trains with no passing are filtered out. Even though no passing constituted 

approximately 97% of the data, it is excluded from the analysis because inclusion trains 

without passing into the model reduce the representativeness of the model, causing a very 

large AIC and BIC and low R2 and AUC. Instead, we focus on the 3% of train movements 

with scheduled and/or actual passes.  

The whole data set is split into common split percentages, that is 80% training and 20% 

test data set. The 80% of training data is used for model training, while the remaining 20% 

is used for checking how well the model generalized on unseen data set by using 

performance measures. 

 

Combined Dwell Time Delays  

Yuan & Hansen (2007) and Harris et al. (2013) demonstrate that delays arise especially at 

stations since the crossing or merging of lines and platform tracks are in most cases the 

bottlenecks in highly used railway networks. Since delay is more common at stations, dwell 

time delay instead of delay in running time or arrival time is focussed in this study. Dwell 

time is the time that a train stops at a station. It is the difference between the arrival and 

departure times. If tdwell is dwell time, tdep departure time and tarr arrival time, then 

 

tdwell =tdep-tarr (1) 
 

A dwell time delay is the difference between the realised and scheduled dwell time, 

Station D 

Station C 

Station B 

Station A 

Train B scheduled 

Train A delayed 

No pass 

Unscheduled pass 

Cancelled pass 

No pass 

Train A scheduled 



given that the departure is delayed. It is also the difference between the arrival and departure 

delays at the given station. 

ddwell = tr
dwell - ts

dwell = (tr
dep - tr

arr) - (ts
dep - ts

arr) (2) 

 

where ddwell = dwell time delay; tr
dwell = realised dwell time delay;  ts

dwell = scheduled dwell 

time delay; tr
dep = realised departure times; tr

arr= realised arrival times; ts
dep= scheduled 

departure times; ts
arr = scheduled arrival times. The focus of this paper is on dwell time 

delays, here measured in terms of combined dwell delay for both trains: 

 

Cdwell= ddwellA + ddwellB (3) 

 

where Cdwell= combined dwell delay of A and B at the same station; ddwellA = dwell time 

delay of train A;  dwell B = dwell time delay of train B. This study does not take into account 

the prioritization issues among trains, and a delay is said to occur when there is a net delay 

across both trains, without giving more weight to either train A or B. Since the data used in 

this study are in hours and minutes, we can only calculate a minimum delay of at least one 

minute. Thus, if Cdwell is greater than 0 mins it is considered as an increase in dwell time. In 

this paper, we focus on instances when this delay increases, not on the size of the delay 

increase. 

3 Modelling with Odds Ratios and Logistic Regression 

Odds is a way of using probabilities to estimate the chance that an event will occur. 

 

𝑂𝑑𝑑𝑠 =
Probability of an event occurring 

Probability of an event not occurring 
=  

𝜋𝑖

1 − 𝜋𝑖

  (4) 

 

In this paper, we denote 𝜋𝑖 as the probability of Cdwell > 0, that is: 

 

𝜋𝑖  =  
Number of instances with Cdwell > 0

Total number of instances 
 (5) 

 

In this study, the odds ratio (OR) is used as a comparison. Specifically, we compare the 

odds of delay for two cancelled and unscheduled passes with that when the pass was carried 

out as scheduled:  

 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 = 𝑂𝑅 =
Odds 1 

Odds 2 
=

𝜋𝑖

1 − 𝜋𝑖
𝜋𝑗

1 − 𝜋𝑗

 (6) 

 

The logistic regression model is a statistical modelling technique that estimates the 

probability of a dichotomous outcome event being related to a set of explanatory variables. 

By convention, the dependent variable is designated as being positive when delays increase 

and negative when not with the scores of 1 versus 0 respectively for coding of the dependent 

variable in computerized data sets. The logistic regression model can also be written as  

 



𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 (7) 

 

Notice that the left-hand side of the equation is the log odds of a delay increase occurring.  

 

Logistic Regression Model  

The model in this paper is a logistic regression model that is created to contain the main 

effects of different types of train passing and with the occurrence of increase in dwell time 

delay as the response. There is always a trade-off between the prediction performance and 

the underlying causal inference that must be taken into consideration when selecting 

suitable models for the topics to be studied (Tang et al., 2020). In this case, we opt for a 

statistical model, which can provide better understanding about the relationship between 

parameters, instead of more complex models. Other types of models might provide better 

predictive power, but be more difficult to interpret.  

If x1, x2 are dummy variables representing cancelled and unscheduled passes, 

respectively, the model has the form: 

 

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 (8) 

 

In this model, the independent variable in this study is the types of passing, a categorical 

variable with three categories. Thus, two dummy variables are created, with trains in the 

category for scheduled pass as reference group and baseline of operations running mostly 

as intended. This reference group was coded as zero in the dataset, and odds ratios for other 

group relative to the reference group were calculated. For the three scenarios we consider, 

the expressions for the logistic regressions are thus as follows: 

 

log Odds (Scheduled pass) = log(
π0

1 − π0
) = β0 + 0 ∗ β1 + 0 ∗ β2 = β0 (9) 

 

log Odds (Cancelled pass) = log(
π1

1 − π1
) = β0 + 1 ∗ β1 + 0 ∗ β2 (10) 

 
 
 
 

= 
 

β0 + β1 
 

log Odds (Unscheduled pass) = log(
π2

1 − π2
) = β0 + 0 ∗ β1 + 1 ∗ β2 = β0 + β2 (11) 

 

Substituting and shifting these terms, we get the following:  

 

𝛽1 = 𝑙𝑜𝑔(
𝜋1

1−𝜋1
) − 𝑙𝑜𝑔(

𝜋0

1−𝜋0
) = 𝑙𝑜𝑔(

𝜋1/(1−𝜋1)

𝜋0/(1−𝜋0)
)= 𝑙𝑜𝑔 (

Odds (Cancelled pass)

Odds (Scheduled pass)
) (12) 

𝛽2 = 𝑙𝑜𝑔(
𝜋2

1−𝜋2
) − 𝑙𝑜𝑔(

𝜋0

1−𝜋0
) = 𝑙𝑜𝑔(

𝜋2/(1−𝜋2)

𝜋0/(1−𝜋0)
)= 𝑙𝑜𝑔 (

Odds (Unscheduled pass)

Odds (Scheduled pass)
) 

 
(13) 

 

The odds ratios can thus be expressed as:  

Odds ratio (
Cancelled pass

Scheduled pass
) = e

log(
Odds (Cancelled pass)
Odds (Scheduled pass)

)
= eβ1  (14) 

Odds ratio (
Unscheduled pass

Scheduled pass
) = e

log(
Odds (Unscheduled pass)

Odds (Scheduled pass)
)

= eβ2  (15) 



 

4 Results 

Our first finding is that, in the data we study, passes rarely happen as scheduled. As we see 

in Figure 3, cancelled passes of trains are most common at 76%, followed by unscheduled 

passes at 21%.  Scheduled passes are the least common, at 3%, and 97% of passes are thus 

not as scheduled. This indicates that the timetable is difficult to realize with a high level of 

accuracy, and it suggests a high degree of activity among dispatchers who cancel and 

reschedule train passes, often shifting them from one station to another.  

 

 
Figure 3: Distribution of different types of train passes 

 

Our second finding is that these three types of train passes are associated with very 

different delay probabilities. As indicated in Figure 4, unscheduled passes are at most risk 

of leading to dwell time delays with a probability of 69%, while a cancelled passes is only 

associated with an 8% probability of delay. Scheduled passes are in between these two, with 

a 46% probability of dwell time delay. Cancelling a pass is thus a good way to reduce the 

risk of delay at one station, but it can bring with it a large increase in the delay probability 

at another station. For context, when there is no pass, which is the most common situation 

in operations, there is a 22% probability of a dwell time delay. Better than when there is a 

scheduled pass, but worse than if there is a cancelled pass. 

 

 
Figure 4: Probability of dwell time delays for each  type of train passing 
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Regression Results 

The results from the regression models are found in Table 2, and show essentially the same 

trend as Figure 4: delays are much less likely when passes are cancelled, and much more 

likely when they are unscheduled, compared to when they happen as scheduled. The odds 

ratios are about 0.1 and 2.6, respectively, in both models – where a value lower than 1 

indicates a reduced risk and above 1 an increase. Cancelling train passes can thus be a useful 

way to reduce or avoid delays, and this is often done. In many cases, however, passes cannot 

simply be cancelled, but must be shifted from one station to another, where it instead 

appears as an unscheduled pass, and then have a greatly increased probability of delay. 

 

Table 2: Summary of Logistic Regression Models 

Predictor Estimate Odds 

Ratio 

(OR) 

Confidence 

Interval 

Lower Upper 

(Intercept) -0.152***    

Train passes:     

Cancelled pass                           -2.283*** 0.102 0.098 0.107 

Unscheduled pass                            0.952*** 2.592 2.479 2.710 

R2 0.310 

 

 

Model Evaluation 

In this study, 80% of the data are used for training the model while 20% are used for testing 

the model that is built out of it. The performance from testing set data for the two logistic 

regression models set is measured with the receiver operating characteristic (ROC) curve. 

This plots the true positive rate (another name for recall) against the false positive rate (FPR) 

where: 

 

True positive rate = TPR = Recall =
TP

TP+FN
. 

 

(28) 

where TP is the number of true positives and FN is the number of false negatives. The recall 

is intuitively the ability of the classifier to find all the positive samples. The FPR is the ratio 

of negative instances that are incorrectly classified as positive:  

 

False Positive Rate = FPR =
FP

TP+FN
. (29) 

 

A perfect classifier will have area under the ROC curve (ROC AUC) equal to 1, whereas 

a purely random classifier will have a ROC AUC equal to 0.5. In Figure 5, the ROC AUC 

of the model used in this study is 0.79 

 

 



 
Figure 5: ROC curves for Logistic Regression Model 

5 Conclusion 

This analysis has shown two things:  

1) Only a small percentage (3%) of train passes happen as scheduled, with a great many 

(76%) instead of being cancelled and a substantial percentage (21%) being unscheduled. 

This indicates there is significantly fewer train passes in actual operations than in timetables, 

and that dispatchers play a very active role in operations.  

2) That train passes can significantly alter the probability of delays at stations. Compared 

to when they happen as scheduled, the odds of delays are reduced by about 90% when they 

are cancelled, and they increase by about 260% if they are unscheduled. Despite cancelling 

a pass can be used to mitigate the possibility of delay at one station, it will be registered  as 

as an unscheduled pass at another station, greatly increasing the odds of delay at that station.  

One of the main advantages of the applied logistic regression model is that is that it is 

simple, and not a ‘black box’ model,  that it is easy to interpret. However, the model is 

associated with several limitations and simplifactions. For one, it only accounts for different 

types of passes, and omits many other variables (including other types of train interactions 

and conflicts). It is also based on macroscopic train operations data, on a station-by-station 

level, rather than signal-by-signal, which would be more precise. The R2-value indicates 

that the model can only explain around 30% of the variance in dwell time delays, and that 

is only when considering the relatively small part of the data that includes some sort of 

(scheduled, cancelled, or unscheduled) pass. Including more variables, such as passenger 

data, other types of train movements, weather conditions, detailed timetable information, 

infrastructure failures, and so on, as well as using more complex models, would most likely 

improve the overall predictive power of the model. However, that would not necessarily 

teach us more about the importance of passing interactions.  

In future work, we will continue to work on identifying the actions of dispatchers, and 

evaluate their consequences with empirical data. Previously, this has mostly been done 

theoretically or with manual observation, with relatively little work on large, real datasets. 

We will also consider other types of interactions and ways in which delays propagate 

between trains.  
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