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Aims of this doctoral dissertation 
The overall aim of this doctoral dissertation was to investigate the molecular 
epidemiology and reconstruct the evolutionary history of HIV-1 in local and 
nationwide contexts using phylogenetic approaches. Most of the studies of the thesis 
relate to the HIV-1 epidemic in Kenya (with a focus on HIV-1 transmission within 
and between risk groups and geographic regions). In addition, one study focused on 
characterising an HIV-1 outbreak in 2019 in Larkana, Pakistan that predominantly 
affected children. 

Specific objectives: 

Paper I: To investigate the HIV-1 molecular epidemiology in various risk groups 
and geographic locations in Kenya. 

Paper II: To determine levels of HIV-1 drug resistance over time, within and 
between risk groups in Kenya. 

Paper III: To phylodynamically quantify rates of HIV-1 transmission among MSM 
in various geographic regions in Kenya. 

Paper IV: To study patterns of HIV-1 transmission within and between risk groups 
in Coastal Kenya. 

Paper V: To investigate the patterns and source of transmission in the largest HIV-
1 outbreak that has been described among children in Pakistan. 

Paper VI: To review the role of phylogenetics in discerning HIV-1 mixing between 
geographies and risk group populations in sub-Saharan Africa (sSA). 
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Summary 
 
With a national prevalence of 4.9% in the adult population, the HIV-1 epidemic in 
Kenya is the fifth largest in the world. HIV-1 prevalence is more than three-fold 
higher among HIV key populations – including men who have sex with men 
(MSM), people who inject drugs (PWID), and female sex workers (FSW) than in 
the general heterosexual (HET) population. However, the contribution of different 
risk groups in the propagation of the epidemic has not been investigated. Also, the 
epidemic is geographically heterogeneous (65% of all new infections occur in nine 
out of the 47 counties in Kenya). Yet, the rates of HIV-1 transmission between 
geographic regions have not been described. Also, data are lacking on how levels 
and trends of HIV drug resistance (HIVDR) in Kenya compare among individuals 
of different risk groups, with or without antiretroviral therapy (ART) exposure. 
 
The primary objective was to phylogenetically describe virus transmission within 
and between risk groups (MSM, PWID, FSW, and HET) and geographic locations 
as well as to determine levels of HIV-1 drug resistance over time within and between 
risk groups in Kenya. A secondary objective was to phylogenetically characterise 
transmission patterns in a paediatric HIV-1 outbreak in Pakistan.  
 
In the first objective, clustering patterns in Kenya indicated that HIV-1 transmission 
between risk groups was rare – where most HIV-1 transmission occurs within-risk 
groups. In addition, when HIV-1 (infrequently) jumped between risk populations, 
virus jumps from HET to key populations were more common than vice-versa. 
There was significant West-to-East transmission (i.e. from high-to-low HIV-1 
prevalence regions) in the mixed epidemic. Interestingly, Coast and Nairobi 
provinces were suggested to be important geographic hubs of HIV-1 dissemination 
in the MSM-specific HIV-1 sub-epidemic. HIVDR analysis revealed that overall 
pre-treatment HIVDR increased from 6.9% in 1986-2005 to 24.2% in 2016-2020. 
This was associated with increased non-nucleoside reverse transcriptase inhibitors 
(NNRTI) resistance in all risk groups. DRMs of any kind were found in treatment 
naïve HET (13.9%, 95% CI: 12.7-15.2), FSW (19.9%, 95% CI: 15.8-24.6), MSM 
(15.1%, 95% CI: 9.7-21.9), PWID (31.0%, 95% CI: 19.5-44.5), and children 
(41.3%, 95% CI: 30.1-53.3). PWID and children were more likely than HET to have 
DRMs (aOR, 3.5, 95% CI: 1.7-5.4, p<0.001, and aOR, 3.0, 95% CI: 1.8-4.8, 
p<0.001), respectively. No integrase strand transfer inhibitors (INSTI) drug 
resistance was detected. Hence, current INSTI-based ART regimens may remain 
effective in controlling HIV-1 in Kenya. In the secondary objective, clustering 
patterns in the Pakistani paediatric HIV-1 outbreak revealed multiple introductions 
of HIV-1 and no phylogenetic HIV-1 mixing between children and key populations.  
 
Findings may be relevant for HIV-1 control in Kenya and Pakistan. 
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HIV virology and epidemiology 
 
The epidemic  
The human immunodeficiency virus infection and acquired immunodeficiency 
syndrome (HIV/AIDS) is one of the world's most serious health and development 
challenges1. According to the Joint United Nations Programme on HIV and AIDS 
(UNAIDS), approximately 76 million people have become infected with HIV since 
the start of the epidemic – and an estimated 38 million people have died from AIDS-
related illnesses2. Majority (67%) of the individuals infected with HIV are in sub-
Saharan Africa (sSA, Fig. 1).  
 

 
Figure 1. The estimated number of people living with HIV-1 by the end of 2021. Data used in the map were 
UNAIDS epidemiological estimates available publicly at https://aidsinfo.unaids.org/ as of 10th February 2022. 
 
The number of people with HIV globally has increased consistently over the last 
three decades (Fig. 2a). The reason for this is the high numbers of infections 
particularly in low-income and middle-income countries (LMICs), and the global 
increase in treatment rates which have reduced mortality rates1,2. Although the 
number of new infections per year has reduced by 31%, from 2.1 million new 
infections in 2010 to 1.5 million in 2020 (Fig. 2b), the rate of decrease has not been 
enough to achieve the UNAIDS goal to reduce the global HIV incidence rate to less 
than half a million new infections by 20201. Likewise, two of three UNAIDS 90–
90–90 goals were not achieved as only 84% of people with HIV globally knew their 
HIV status in 2020, 87% of whom were accessing treatment, and 90% of whom 
were virally supressed2,3. 
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Figure 2. The global HIV epidemic transition metrics 1990-2020. The estimated number of people (in millions) 
over time are shown as continuous black lines. Graphs represent (a) time trends in the number of people living with 
HIV versus the number of people on treatment with antiretroviral drugs, and (b) the number of new infections 
versus AIDS-related deaths. Data in the plots were UNAIDS epidemiological estimates available publicly at 
https://aidsinfo.unaids.org/ as of 10th February 2022.

The global human immunodeficiency virus type 1 (HIV-1) distribution also varies 
between different populations with different HIV-1 transmission risks. The HIV-1 
epidemic outside sSA is concentrated to HIV-1 key populations (>90%) – defined 
by UNAIDs as sex workers (FSW), gay men and other men who have sex with men 
(MSM), people who inject drugs (PWID), transgender people, prisoners – and their 
sexual partners2,4-6. In contrast, the epidemic in sSA is dominated (>60%) by 
heterosexual transmission, but with pockets of concentrated sub-epidemics 
involving key populations7-9. In 2020, 65% of the new HIV-1 infections globally, 
93% of the new HIV-1 infections outside of sub-Saharan Africa, and 39% of the 
new HIV-1 infections in sSA were in HIV-1 key populations1. 

The HIV-1 epidemic in Kenya is highlighted in detail in this dissertation. According 
to UNAIDS epidemiological estimates, the epidemic (which emerged in the mid-
1980s) grew exponentially during the mid-1990s and has stabilised during recent 
years (Fig. 3). Mortality due to AIDS-related illnesses has decreased over time, rates 
of treatment with antiretroviral therapy (ART) have increased exponentially during 
recent years, and the number of new infections per year has stabilised. In 2020, 
approximately 1.3 million adults were living with HIV-1 in Kenya, and 36000 
became newly infected – making it the fifth largest HIV-1 epidemic in the world2. 
In addition, 96% of people living with HIV-1 knew their HIV-1 status, 86% of 
people with HIV-1 who knew their HIV-1 status were accessing antiretroviral 
therapy, and 81% of people on treatment were virally suppressed10. 



16 

 
Figure 3. Kenyan HIV-1 epidemic transition metrics between the years 1990 and 2020. The estimated number 
of people (in millions) over time are shown as continuous black lines. The shaded area represents the 95% 
confidence interval – coloured Green: infected individuals; Blue: individuals on treatment with antiretroviral drugs; 
Yellow: new infections; and Orange: deaths. Data are UNAIDS 2021 epidemiological estimates available publicly 
at https://aidsinfo.unaids.org/ as of 10th February 2022. 
 
The Kenyan Ministry of Health reports high a HIV-1 prevalence among key 
populations (about 29% among FSW, 18% among MSM, and 18% among PWID, 
compared to about 5% in the heterosexual (HET) epidemic) – and it has been 
hypothesised that the ongoing epidemic may be fuelled by HIV-1 key populations 
(mainly MSM, FSW, and PWID)11-16. A national survey on modes of HIV-1 
transmission conducted in Kenya suggested that of all new infections, 14% occur in 
FSW and their clients; 15% in MSM; and 4% in PWID12,17. This adds up to that 
approximately 33% of all new infections in the country would be attributed to key 
populations. There are reports that MSM sexual networks also involve heterosexual 
females, which could then be involved in bridging between risk populations18. 
However, the hypothesis of infection flow from high-to-low burden populations is 
rarely confirmed in practice, in part because it is difficult to measure empirically, 
and in part, because data from key populations in Africa are extremely scarce9.  
 
It is well documented that the HIV-1 epidemic in Kenya has extensive geographic 
heterogeneity, where HIV-1 prevalence ranges from less than 1% in the North 
Eastern province to more than 20% around the shores of Lake Victoria in the 
Western regions of the country11. The geographic and risk group distributions of 
HIV-1 in Kenya are summarised in Fig. 4.  
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Figure 4. The geographic and risk group distribution of HIV-1 in Kenya in 2019. (A) A map of Africa 
highlighting HIV-1 prevalence in sub-Saharan Africa, and in Kenya, with the provinces in Kenya coloured per 
HIV-1 prevalence as inset. The Nyanza province had the highest HIV-1 burden compared to other regions in the 
country in 2019. (B) In Kenya, key populations including men having sex with men (MSM), people who inject 
drugs (PWID), and female sex workers (FSW) had a three-fold higher prevalence than the relatively lower-at-risk 
general population (HET) and adolescents/perinatally infected children. The map of Africa was adapted with 
permission from Laura Dwyer-Lindgren et al., 201919, and the HIV-1 estimates in Kenya were adopted from the 
KENPHIA 2019 report, the 2018 national HIV-1 estimates report, and the 2016 County estimates report11,13,15. 
 
HIV origin and discovery 
Acquired Immune Deficiency Syndrome (AIDS) was first identified as a novel 
disease in 1981 – following increasing numbers of men who have sex with men 
(MSM) in New York and California, USA, being infected with Pneumocystis 
pneumonia and Kaposi’s sarcoma (a relatively rare and aggressive form of cancer)20-

22. Subsequently, HIV-1 was acknowledged in causing the emergent infections23-25. 
The identification of HIV-1 was soon followed by isolation of a morphologically 
similar but antigenically distinct virus causing AIDS in patients in West Africa26. 
The new virus was termed the human immunodeficiency virus type 2 (HIV-2) and 
was found to be related to both HIV-1 and a simian immunodeficiency virus (SIV) 
causing immunodeficiency and AIDS-related symptoms in captive macaque27,28. 
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Since then, several other simian AIDS viruses have been discovered that are 
essentially non-pathogenic in their natural non-human primate hosts – but that 
cluster together with the human and simian AIDS viruses in a phylogenetic lineage 
within the radiation of lentiviruses (refer to “HIV classification below”).  
 
It is now well-established that AIDS likely emerged due to cross-species infections 
with lentiviruses from different primate species, and that both HIV-1 and HIV-2 
originated from zoonotic transmissions of viruses infecting primates in Africa29,30. 
HIV-1 is the pandemic type and likely originated from Cameroon and the 
Democratic Republic of Congo during the 1920s, from where it expanded 
globally31. On the other hand, HIV-2 likely originated from Guinea-Bissau (together 
with Cape Verde, Côte d’Ivoire and Senegal) in the 1940s, from where the virus 
spread locally in West Africa, and to countries sharing socio-historical ties (such as 
Portugal and France)32,33. HIV-2 is thus largely endemic in West Africa, although it 
is increasingly being replaced by HIV-1 in recent years also in this region34-39.  
 
HIV classification  
HIV belongs to the Lentivirus genus of the family Retroviridae. Lentiviruses are 
host species-specific, exogenous, and non-oncogenic retroviruses that infect 
humans, primates, domestic cats, and a variety of livestock (sheep, cattle, horses)40. 
They contain the reverse transcriptase enzyme that converts ribonucleic acid (RNA) 
into deoxy-ribonucleic acid (DNA) before becoming integrated into the genome of 
the host (refer to HIV replication cycle). Lentiviruses are tropic for cells of the 
macrophage lineage in vivo41 – and infections associated with lentiviruses typically 
result in characteristically long-duration illnesses with a long asymptomatic stage 
indicative of latent proviruses42,43.  
 
HIV genetic variants and global distribution  
Phylogenetic analysis comparing the genetic relationship between HIV-1, HIV-2 
and SIVs indicate that HIV-1 is closely related to SIV from chimpanzees (SIVCPZ) 
and gorillas (SIVGOR) while HIV-2 is closely related to SIV from sooty mangabeys 
(SIVSM, Fig. 5). Thus, HIV-1 and HIV-2 comprise various groups, each having 
resulted from a separate cross-species transmission to humans of SIV from non-
human primates44. HIV-1 group M (Main group) subtypes (A-D, F, H, J, and K) and 
118 associated inter-subtype circulating recombinants forms (CRFs), are spread 
globally45,46. The global co-circulation of multiple HIV-1 subtypes – and co-
infection or super-infection of individuals with multiple subtypes has resulted in the 
emergence of recombinant forms (refer to “HIV-1 recombination”). HIV 
recombinants are classified into either circulating recombinant forms (CRFs) – 
defined as characteristic full-length or near full-length HIV sequences that are found 
in three epidemiologically unlinked individuals, or unique recombinant forms 
(URFs) when these criteria are not met44,47. Other HIV-1 groups such as group O 
(Outlier), group N (Not-M, Not-O) and P (pending the identification of further 
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human cases) are rare and have been identified mostly in West- Africa where they 
co-circulate with the HIV-2 epidemic group (A and B) and non-epidemic groups 
(C-G)32,47. 
 
 

 
Figure 5. The phylogenetic relatedness between human and simian immunodeficiency viruses: A molecular 
phylogeny depicting the genetic relationship between HIV-1, HIV-2 and SIV. Branch tips are coloured to represent 
the different strains. Orange: HIV-1 group M (Main group subtypes and circulating recombinant forms, CRFs – 
responsible for the global epidemic); Light green: HIV-1 group O (Outlier group); Yellow: HIV-1 group N (Not-
M, Not-O group); Dark green: HIV-1 group P (pending the identification of further human cases); Purple: SIVGOR 
(from gorillas); Magenta: SIVCPZ (from chimpanzees); Sky Blue: HIV-2A; Maroon: HIV-2B; and Red: SIVSM (from 
sooty mangabeys). The tree is rooted at mid-point and the scale bar indicates 7% nucleotide sequence substitutions 
per site. 
 
A recent global survey of the distribution of HIV-1 subtypes and CRFs showed that 
HIV-1 subtype C represents the largest proportion of all HIV-1 infections 
worldwide (46%), followed by different recombinants (CRFs & URFs, 23%), 
subtype B (12%), subtype A (10%), subtype G (5%), and subtype D (3%) and the 
subtypes F, H, J, K (all <1%, respectively)45. HIV-1 distribution also reveals distinct 
distribution patterns, where some strains are dominant in distinct geographic regions 
(Fig. 6). For instance, whereas all HIV-1 subtypes, many CRFs and URFs co-
circulate in Central Africa, the epidemic in Southern Africa, Ethiopia, and South 
Asia (India) is dominated by subtype C. On the other hand, subtype B is dominant 
in the Middle East and North Africa, Western and Central Europe, North America, 
Caribbean, Latin America, and Oceania. Interestingly, some regions are dominated 
by CRFs. For instance, the CRF01_AE dominates in Southeast Asia and East Asia, 
and the CRF02_AG is dominant in West Africa where it co-circulates with subtype 
G.  
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Figure 6. Global and regional distributions of major HIV-1 subtypes, circulating recombinant forms (CRFs), 
and unique recombinant forms (URFs): Subtypes C, A1, D are dominant in Africa, whereas subtype B infections 
dominate North America, Latin America, and Europe. CRFs are more common in Africa and Asia. The map of the 
world was obtained from Wikimedia Commons, the free media repository, and modified to depict HIV-1 subtype 
diversity worldwide.  
 
HIV virion 
The mature HIV-1 virion is spherical (approximately 100 nm in diameter) and is 
enveloped by an outer lipid membrane48. The HIV-1 virion has trimers of gp120 
(surface proteins) on the surface and these are anchored to the lipid membrane by 
trimers of the gp41 transmembrane protein (Fig. 7)49. The lipid membrane 
encapsulates a symmetrical layer of matrix proteins, protecting the capsid and the 
core of the virion. The HIV-1 core houses the replication enzymes reverse 
transcriptase (RT) and integrase (IN) as well as the virus genomic RNA and is 
encased by the cone-shaped HIV-1 capsid (CA). The HIV-1 genomic RNA exists 
as a non-covalent dimer, with a 5′ cap and 3′ polyadenylated tail, and is complexed 
with a human transfer RNA (tRNALys) molecule and the virus nucleocapsid protein 
(NP), a nucleic acid chaperone48,49.  
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Figure 7. Cross-sectional schematic diagram of the HIV-1 virion: The HIV-1 virion expresses around 35-70 
glycoproteins composed of gp120 and gp41 and are embedded with carbohydrate molecules (green). The gp41 
transmembrane protein associates non-covalently with the gp120 surface protein, and both are important for virus 
entry into host cells. The virus envelope has several host cell membrane proteins (Grey) such as class I and class II 
MHC molecules that are obtained as the virion buds off. Beneath the lipid membrane is a symmetrical layer of 
matrix proteins (Light blue), protecting the capsid (Orange) and the virus core/nucleocapsid. The nucleocapsid 
comprises the HIV-1 genome (two copies of positive-sense ssRNA) linked with two molecules of reverse 
transcriptase (Dark blue) and nucleoid proteins p10 (Green), a protease (Yellow), and integrase (Magenta). Tat, an 
activator of transcription of virus genes is also found in the virion core (Pink). Source: Thomas Splettstoesser 
(www.scistyle.com). 
 
HIV-1 genome  
The HIV-1 genome (Fig. 8) is a coding RNA having nine genes that encode for 
various virus proteins (Table 1). The protein-coding genes are flanked at the ends 
by the virus long terminal repeats (LTRs), containing transcriptional regulatory 
elements, RNA processing signals, packaging sites, and integration sites. 
 

 
Figure 8. A schematic summary of the HIV-1 genome: Open reading frames are shown as coloured rectangles 
representing three structural genes (gag, pol, and env), four accessory genes (vif, vpr, vpu, and nef), and two 
regulatory genes (tat, and rev). The proteins encoded by HIV-1 gag (MA, CA, p2, NC, p1, and p6), pol (PR, RT, 
IN) and env (gp120 and gp41) are also shown. The diagram was redrawn to simplify the HIV-1 genome available 
at www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html.  
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The Gag polyprotein precursor is proteolytically processed to generate the matrix 
(MA), capsid (CA), nucleocapsid (NC) and p6 proteins. The Gag-Pol polyprotein is 
cleaved to produce protease (PR), reverse transcriptase (RT) and integrase (IN).  
 
Gene Size *  Protein Function 

gag 

p24 Capsid protein (CA) Formation of conical capsid 

p17 Matrix protein (MA) Formation of the inner membrane layer 

p7 Nucleoprotein (NC) Formation of the nucleoprotein/RNA complex 

p6 Core protein Involved in virus particle release 

pol 

p10 Protease (PR) Proteolytic cleavage of Gag and Gag-Pol precursor protein 

p51 Reverse transcriptase (RT) Transcription of HIV-1 RNA in provirus DNA 

p15 (66) RNase H  Degradation of virus RNA in the virus RNA/DNA replication 
complex 

p32 Integrase (IN) Integration of provirus DNA into the host genome 

env 
gp120 Gp120 Attachment of virus to the target cell 

gp41 Gp41 Anchorage of gp120 and the fusion of virus and cell membrane 

tat p14 Trans-activator protein (Tat) Activator of transcription of virus genes 

rev p19 RNA splicing regulator (Rev) Regulates the export of non-spliced and partially spliced virus 
mRNA 

nef p27 Negative regulatory factor (Nef) Alters virus replication - downregulates CD4 and MHC I 

vif p23 Virus infectivity protein (Vif) For infectious virus production in vivo 

vpr p15 Virus protein r (Vpr) Facilitates virus infectivity, inhibits cell division  

vpu p16 Virus protein unique (Vpu) Enhances virion release from cells, downregulates CD4 and 
MHC class I expression 

Table 1. Functions of the different HIV-1 proteins. The major HIV-1 genes are the structural genes gag, pol, 
and env, but the genome also comprises regulatory (tat and rev) and accessory genes – nef, vif, vpr, and vpu. 
*Numbers corresponds to the size of the proteins (p) or glycoproteins (gp) in kilo Daltons (kDa).  
 
A key difference between the HIV-1 genome and the HIV-2 genome is that the HIV-
1 env gene encodes the gp120 and gp41 proteins, whilst the HIV-2 env encodes the 
gp125 and gp36 proteins50. Also, the HIV-2 vpx gene encodes the Vpx protein which 
plays a role in nuclear translocation of the virus pre-integration complex (PIC) and 
is therefore required for the virus to infect non-dividing cells. 
 
HIV-1 replication cycle  
The HIV-1 life cycle begins when the gp120 trimer binds non-covalently to CD4, 
the primary receptor on CD4+ T-lymphocytes, macrophages, dendritic cells, 
monocytes, and brain microglia (Fig. 9). For the first step (virus entry), gp120 
interacts with the surface receptor CD4 and triggers exposure and binding of a 
second co-receptor – classically the chemokine co-receptor CCR5, although some 
viruses can bind alternatively to the C-X-C chemokine receptor CXCR451-53. 
Viruses that use CCR5 are designated R5 viruses, CXCR4-using viruses, X4, and 
viruses able to utilize both receptors, R5X441. Additional minor co-receptors have 
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been described including CCR2b54, CCR355, CCR856, and CXCR657 that may be 
used – albeit in combination with CCR5 and/or CXCR458. The binding of the co-
receptor prompts fusion of the virus envelope and host cell envelope which is 
mediated by the gp41-fusion peptide, resulting in entry of the virus particle into the 
cell59,60. Upon entry, partial capsid uncoating occurs61. Concurrent with uncoating, 
reverse transcription is primed by a host transfer RNA (tRNALys) bound to the virus 
positive-strand RNA (+ssRNA) genome, allowing the virus RT to replicate the virus 
RNA genome into a complementary DNA (cDNA) molecule with long terminal 
repeats (LTRs) in the 5’ and 3’ ends of the genome. Unlike DNA polymerases, the 
HIV RT is error-prone and lacks proofreading capacity, thus allowing for the 
accumulation of mutations in the genome62.  

After reverse transcription, a pre-integration complex (PIC) is formed consisting of 
the HIV-1 DNA and virus proteins RT, IN, MA, NC, and Vpr63. However, HIV-
2/SIV PIC differs from that of HIV-1 by having an additional factor, virus protein 
X (Vpx), which is critical for nuclear import64. Formation of PIC allows import into 
the cell nucleus where the PIC-associated virus integrase orchestrates insertion of 
the virus DNA into the host cell genome forming a provirus that can remain 
transcriptionally latent65 or can be transcribed by a cellular RNA polymerase II61. 
The unspliced or partially spliced RNAs are transported from the nucleus into the 
cytoplasm for translation into proteins66. Env proteins are glycosylated and 
trimerized in the endoplasmic reticulum and the Golgi apparatus. Genomic RNA 
and virus proteins are positioned on the plasma membrane for virion assembly. 
Virions then bud off from the cell, acquiring a lipid envelope containing the gp160 
virus protein complex trimers and other host cell membrane proteins67.  

Shortly after budding, the virus life cycle ends with maturation involving cleavage 
of the Gag-Pol polyprotein by the virus protease resulting in functional proteins. 
The average duration of the HIV-1 life cycle in vivo is estimated to be 1.2 days, and 
the average HIV-1 generation time (the time from the release of a virus particle until 
it infects another cell and causes the release of a new generation of virus particles) 
is 2.6 days68.  
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Figure 9. A schematic overview of the HIV-1 replication cycle. The main stages of the HIV-1 life cycle include: 
(i) virus binding to CD4 primary receptor mediated by virus gp160 surface protein and virus envelope and host cell 
membrane fusion mediated by the gp41 virus transmembrane protein; (ii) partial capsid disassembly; (iii) reverse 
transcription mediated by the virus reverse transcriptase enzyme; (iv) formation of pre-initiation complex, nuclear 
import, and integration into host cell genome mediated by virus integrase enzyme; (v) replication and transcription 
to produce HIV-1 genomic RNA and HIV-1 mRNA; (vi) translation of virus mRNA to produce virus proteins; (vii) 
proteolysis of proteins and packaging of the virus genome and proteins into virions at the host cell inner membrane; 
and (viii) virus particle budding, release from the cell, and cleavage of Gag-Polypeptide by virus protease, resulting 
in a mature and infectious virus particle. Source: Jmarchn, Wikimedia Commons, 
https://commons.wikimedia.org/w/index.php?curid=58188472. The original image has been modified for clarity. 
  

HIV-1 recombination  
Co-infection or super-infection of individuals with multiple subtypes may result in 
the emergence of recombinant forms (refer to “HIV genetic variants and global 
distribution”). A recombinant is thus a genetic sequence that carries regions from 
two or more genetically distinct parental strains69. Given that two RNA copies of 
the HIV genome are found in each virion, and because of low processivity, the RT 
enzyme jumps between the two RNA templates during reverse transcription. In case 
the two RNA templates are of different strains, recombinant genomes may be 
produced62.  
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Figure 10. HIV-1 recombination. Two genetically distinct virus particles (red and black) infect the same target 
cell. Both viruses start to replicate within the cell, and during assembly, one genome from each virus variant are 
co-packaged into the same budding particle. Second, this new particle infects a new target cell, and during reverse 
transcription the viral reverse transcriptase jumps between the RNA strands, resulting in recombination events. 
Consequently, a recombinant progeny, with a mosaic genome from both the parental strains is generated. The figure 
was adopted with permission from Joakim Esbjörnsson70. 

HIV transmission 
HIV is most commonly transmitted through sexual contact across mucosal surfaces, 
maternal-infant exposure, or percutaneous inoculation71. Globally, approximately 
80% of HIV infections result from sexual transmission across anal and genital 
mucosal surfaces (approximately 70% of which are heterosexual transmissions); 
whilst the remaining proportion results from MSM, injection drug use, and perinatal 
infections1. Some risk factors for HIV transmission include: having unprotected 
vaginal72 or anal sex73; sharing contaminated needles and syringes when injecting 
drugs74; and parenteral exposure75 among others71,76. The HIV transmission 
probability per exposure event depends on transmission route – and is estimated to 
range between 1/200-1/2000 for exposures across the female genital tract (but could 
be as high as 95/100 for exposures through direct blood contacts, e.g. injection drug 
use and parenteral inoculations)71. 

The HIV viral load (VL) is defined as the number of copies of HIV RNA per 
millilitre of blood and influences the transmission probability in sexual 
transmission. Transmission is rare among individuals with levels of less than 1000 
copies of HIV RNA per millilitre, and a 2.5-fold increase in transmission rate has 
been reported for every 10-fold increase in VL77-79. The treatment status of the 
transmitting partner also influences HIV transmissibility. That is, the risk that 
individuals on successful treatment with ART (i.e. maintaining undetectable viral 
loads) should transmit the infection to others is negliglable80. Medical male 
circumcision has also been shown to decrease HIV-1 acquisition in the circumcised 
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male by a factor of 60%81,82. Overall, effective prevention strategies include 
implementing behaviour change programs83, serodiscordant couples counselling 
(about condoms, sexual risk, fertility, and contraception)84,85 harm reduction efforts 
for injecting drug users86, male circumcision82, and adherence to antiretroviral drugs 
that suppress viremia in infected individuals80,87,88.  
 
HIV pathogenesis and immunology 
As summarised in Fig. 11, the natural (untreated) course of an HIV infection may 
be divided into three stages: the acute stage, the asymptomatic stage, and the AIDS 
stage89,90.  
 
The acute HIV stage occurs during the first three to six weeks of infection and is 
characterised by elevated viremia levels and a rapid drop in CD4+ T cell counts (the 
concentration of CD4+ T cells in peripheral blood) because of increasing HIV-1 
replication in CD4+ T cells. During this stage, HIV-1 is widely disseminated in the 
host’s lymphoid tissues91. An initial innate immune response is mounted by 
cytotoxic CD8+ T cells, causing a decline in viremia, albeit without full suppression 
of virus replication (HIV expression can persist in lymph nodes even in the absence 
of detectable viremia in plasma, or HIV mRNA in peripheral blood mononuclear 
cells)92. At this point, seroconversion, (i.e. the development of antibodies, occurs 
and the CD4+ T cell counts begin to recover as the immune system attempts to fight 
the virus.  
 
During the asymptomatic stage, viral loads fluctuate around a steady set-point value 
(i.e. set-point viral load; spVL), and spVL varies up to 1,000-fold between 
patients93. Yet, HIV-infected individuals with higher spVL typically progress faster 
to AIDS without ART94,95. HIV disease progression is affected by the HIV-1 
subtype – for instance, subtype D may be associated with faster disease progression 
than subtype A96. Likewise, some subtype-specific variants may vary in virulence, 
as was recently shown in the Netherlands where individuals infected with a subtype-
B variant (termed VB variant) had higher viral loads (than those with non-VB 
variants) and would have experienced a faster decline in CD4+ T cells count without 
treatment initiaion97.  
 
Interestingly, one study has found no synergy between spVL and the infecting 
subtype in determining progression to clinical AIDS, suggesting that both may act 
independent of each other98. It has been hypothesised that spVL values cluster 
around 4.52 log10 copies per millilitre and that this value may be a possible outcome 
of natural selection acting on HIV-1 to maximize opportunities for onwards 
transmission93. Overall, the asymptomatic infection stage lasts several years 
(average, 10 years)99 and is characterized by low but persistent viral replication and 
a slow, continuous loss of CD4+ T-cells and high CD8+ anti-HIV responses92. Also, 
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X4 or R5/X4 virus populations may emerge, permitting entry into alternative host 
cells, increasing CD4+ T cell depletion rates100,101.  
 
Eventually, the number of effector T cells needed to mount an adequate immune 
response can no longer be maintained. Individuals become susceptible to lethal 
opportunistic infections such as tuberculosis102, and Pneumocystis Pneumonia103. 
This marks the AIDS stage and unless treated with appropriate antiretroviral drugs, 
an infected person has 2-3 years of life expectancy92. 
 

 
Figure 11. Natural history of HIV-1 infection. A schematic representation of the characteristics of HIV-1 disease 
progression course in the absence of treatment. Changing dynamics during the acute stage include a rapid increase 
in viremia, a decrease in CD4+ T cell count, and an increase in CD8+ T cell count. After the acute stage, a relatively 
stable (setpoint) viral load is achieved, which lasts throughout the asymptomatic stage. During the early AIDS 
stage, there is a rapid increase in viremia, a sharp decline in CD4+ T cells, and a decrease in CD8+ T cell counts. 
During the disease course, close to the onset of AIDS, the virus population may switch or broaden its coreceptor 
use to include CXCR4 (instead of, or in addition to CCR5). The figure was adapted with permission from Joakim 
Esbjörnsson70. 
 
HIV treatment 
HIV treatment comprises the use of antiretroviral drugs that target different stages 
of the HIV life cycle. These drugs are grouped into several classes depending on 
their properties and mechanism of interference with the HIV life cycle (Fig. 12 and 
Table 2).  
 
CCR5-inhibitors block the CCR5 coreceptor on the surface target cells to prevent 
virus attachment104. Fusion inhibitors and post-attachment inhibitors stop the fusion 
of the HIV envelope with the host cell lipid membrane, effectively blocking entry105. 
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Nucleoside reverse transcriptase inhibitors (NRTIs) prevent the formation of a 3’-
5’-phosphodiester bond in growing DNA chains to prevent virus replication106-110. 
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) interfere with the reverse 
transcriptase enzyme by binding directly to it, blocking the reverse transcription 
process)111-115. Protease inhibitors (PIs) bind selectively to the virus protease enzyme 
to block proteolytic cleavage of protein precursors that are necessary to produce 
infectious virus particles116-119. Integrase strand transfer inhibitors (INSTIs) block 
the integration of virus DNA into host DNA by virus integrase120-123. A capsid 
inhibitor (Lenacapavir) which disrupts the functions of HIV capsid protein is 
currently in early clinical trials, and has shown high potency and promises to be 
useful as a long-acting drug124,125.  

Drug class Mechanism of action  Examples 

CCR5 inhibitors Block the CCR5 coreceptor on the surface target cells 
to prevent HIV attachment Maraviroc104 

Fusion 
inhibitors 

Stops the fusion of the HIV envelope protein with the 
CD4+ T cell lipid membrane Enfuvirtide105 

NRTI Prevent the formation of a 3’-5’-phosphodiester bond 
in growing DNA chains to prevent viral replication 

Abacavir, emtricitabine, lamivudine, 
tenofovir, and zidovudine106-110 

NNRTI Bind to reverse transcriptase enzyme to block reverse 
transcription 

Doravirine, efavirenz, etravirine, 
nevirapine, and rilpivirine111-115 

INSTI Inhibit the viral enzyme integrase to block integration 
of viral DNA into the host cell DNA 

Elvitegravir, dolutegravir, bictegravir, 
and raltegravir120-123  

PI Block the viral protease enzyme necessary to produce 
mature virions 

Lopinavir, ritonavir, indinavir, nelfinavir, 
amprenavir, darunavir, and atazanavir116-

119

Capsid 
inhibitors Disrupt HIV capsid  Lenacapavir (an experimental drug)124,125 

Table 2. Common antiretroviral drug classes with their mechanisms of action. Abbreviations: CCR5, C-C 
chemokine receptor type 5; NRTI, nucleoside reverse transcriptase inhibitors; NNRTI, non-nucleoside reverse 
transcriptase inhibitors; INSTI, integrase inhibitors; and PI, protease inhibitors. 
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Figure 12. Schematic description of the mechanism of the four classes of available antiretroviral drugs 
against HIV. Antiretroviral drugs are broadly classified by the phase of the retrovirus life-cycle that the drug 
inhibits. Fusion inhibitors (interfere with the binding, fusion, or entry of an HIV virion), reverse-transcriptase 
inhibitors (interfere with the translation of viral RNA into DNA), integrase inhibitors (block the viral enzyme 
integrase, that inserts the viral genome into the DNA of the host cell), and protease inhibitors (block proteolytic 
cleavage of protein precursors that are necessary for the production of infectious viral particles). Source: Thomas 
Splettstoesser (www.scistyle.com). The original image has been modified for clarity. 
 
In the late 1980s and early 1990s, management of HIV/AIDS using the NRTI drug 
zidovudine (AZT) as a mono-therapy offered sub-optimal HIV-1 control due to the 
rapid emergence of viruses carrying mutations that permitted replication in the 
presence of the drug126. In 1995, the U.S. Food and Drug Administration (FDA) 
approved the first protease inhibitor, called Invirase (saquinavir)127. In 1996, the 
combined use of a PI with two NRTIs (an approach named highly active 
antiretroviral therapy, denoted HAART) resulted in better control of viremia, an 
increase in CD4+ T cell counts, and reduced mortality128-131.  
 
Although highly active, HAART had some disadvantages – some drugs of the time 
were toxic and caused potentially severe metabolic effects132. Also, there were 
concerns about the development of drug resistance if treatment adherence was not 
maintained – especially linked to the use of NNRTI133. In addition, HAART was 
associated with a high pill burden – for instance, patients were required to take three 
capsules of Invirase every 8 hours, and this schedule was difficult to sustain over 
the long term127. To maximize on risk-benefit ratio, HAART was delayed until the 
immune function dropped below a CD4+ T cell count of less than 350. In 2001, the 
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NRTI tenofovir disoproxil fumarate was introduced – and this drug had fewer side 
effects, required one pill daily, and could overcome drug resistance134.  
 
Combination antiretroviral therapy (cART, also generally referred to as ART) has 
since become the recommended treatment regimen, and modern ART regimens can 
suppress viral load to undetectable levels with a low pill burden and minimal side-
effects135,136. Other key developments include so-called “long-acting slow effective 
release ART” (LASER ART) such as the long-acting cabotegravir and rilpivirine 
combinations, which reduce the pill-burden, improve patient adherence, and 
effectively maintain HIV-1 suppression137.  
 
ART can also be taken as pre-exposure prophylaxis (PrEP) to reduce the risk of 
getting infected138. In high-income countries, treatment is often supplemented with 
plasma HIV-1 RNA quantification to monitor treatment efficacy and prognosis for 
patients on treatment, and drug resistance testing is part of routine care and is 
essential for maintaining treatment regimen efficacy135,139,140. 
 
Overall, HIV-1 treatment has become widely available and has contributed to 
preventing early mortality, improving lifelong survival, increasing quality of life, 
and preventing new HIV infections following studies showing a reduced risk of 
onward transmission in virologically suppressed patients141,142. 
 
HIV drug resistance 
Modern cART combination regimens are effective in blocking virus replication and 
maintaining long-term virus suppression – if no baseline pre-treatment HIV drug 
resistance is present and drug concentrations are maintained at an optimal 
concentration143. Yet, increased use of ART at the population level is known to 
contribute to HIV drug resistance (HIVDR) – and transmission of resistant viruses 
can also further compromise therapy128,144-146.  
 
HIVDR emergence is a consequence of within-host virus evolution which results in 
the generation of virus quasispecies (a swarm of closely related but genetically 
diverse virus populations) including numerous potentially drug-resistant mutant 
variants147. Such drug-resistant variants may have limited replicative fitness 
(presumably due to mutation-induced structural changes in the binding of the natural 
substrate and in the catalytic activity of the virus RT and PR)148,149 – and are in most 
cases outgrown by the more fit and drug-susceptible wild-type viruses. However, 
when drug concentration is sub-optimal (e.g. when patients fail to adhere to 
medication), selective pressure is exerted that encourages the growth of pre-existing 
drug-resistant mutants resulting in acquired drug resistance (ADR)150,151.  
 
Drug-resistant viruses may be transmitted to other individuals – this is referred to 
as transmitted drug resistance (TDR, resistance detected among antiretroviral drug-
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naïve people with no history of antiretroviral drug exposure). Pre-treatment drug 
resistance (PDR) comprises drug resistance (mutations) detected in HIV-infected 
persons before starting ART, and such resistance could be due to TDR or prior 
exposure to antiretroviral drugs (e.g. short-course prophylaxis for prevention of 
mother-to-child transmission (PMTCT), pre or post-exposure prophylaxis, or first-
line ART restarters after earlier treatment interruption152. 
 
Overall, multiple factors contribute to HIVDR. First, a drug-related factor is the 
drug’s genetic barrier to resistance – defined as the number of mutations needed for 
the virus to overcome the drug-selective pressure. Whereas some drugs (e.g. 
ritonavir-boosted PIs and the INSTI dolutegravir (DTG), bictegravir (BIC) and 
cabotegravir) have a high genetic barrier and their inhibitory ability is not easily 
overcome by virus mutations, drugs with a low genetic barrier – e.g. the NNRTIs 
efavirenz (EFV) and nevirapine (NVP), the NRTIs emtricitabine (FTC) and 
lamivudine (3TC), and the INSTIs raltegravir (RAL) and elvitegravir (EVG) may 
lose their effectiveness even in the presence of only a single mutation143,153.  
 
Second, some factors are virus-related154-157. For instance, when transmitted, the 
M184V mutation (where methionine replaces valine at position 184 in reverse 
transcriptase) reduces the virus replicative capacity in the absence of drug 
pressure154,155. Hence a variant with the M184V mutation is less likely to be 
transmitted compared to a variant harbouring a low-fitness-cost mutation (e.g. the 
K103N or L90M mutations)154,155,158. The infecting virus subtype may also influence 
the propensity for the development of resistance – this has been suggested to be 
linked to differences in virus polymorphisms that influence drug binding 
affinity/kinetics156,157.  
 
Third, patient-related factors comprise adherence levels (i.e. sustaining high-level 
adherence to self-administered medication ensures optimal drug concentration and 
reduce the risk of the emergence of resistant HIV-1 strains)159. Likewise, perinatally 
infected infants have been suggested to have a higher risk of harbouring PDRs due 
to prior exposure to suboptimal maternal ART during breastfeeding160. 
 
From a broader perspective, in high-income settings, the ART regimens are often 
guided by baseline assessment of drug-resistance mutations and then individually 
designed and monitored to minimize pill burden, therapeutic side-effects, and 
virological failure. In contrast, most low- and middle-income countries (LMICs) 
follow WHO-standardised ART guidelines – in 2021, these comprised the use of 
dolutegravir (DTG)-based regimens in combination with NRTIs as the preferred 
first-line treatment for adults and children152. In addition, baseline HIVDR testing 
is not common, virological monitoring is sub-optimal, and treatment history is not 
always known, altogether resulting in high levels of both PDR and ADR on the 
population level152,161-163. 
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HIV-1 evolutionary dynamics within and between hosts  
HIV-1 is characterised by a high evolutionary rate resulting from accumulated 
mutations because of an error-prone reverse transcriptase164, a high virus turnover68, 
and high genetic recombination rates165. It has been established that sexual 
transmission of HIV-1 is characterised by a genetic bottleneck where in most cases, 
systemic infection is derived from a single variant – the transmitted/founder virus 
(TF)166,167. The early within-host virus population is relatively homogenous and is 
targeted by both cellular and humoral immune responses168,169. This causes 
accumulation of immune-escape mutations and a rapid increase in HIV-1 within-
host diversity168,170,171.  
 
Paradoxically, adaptive within-host evolution may decrease virus 
transmissibility172. Yet, it has been proposed that a fraction of ancestral (TF-like) 
variants with limited within-host evolution (and thus higher transmission potential) 
may persist as archived provirus sequences in long-lived memory CD4+ T cells173-

175. In a ‘store-and-retrieve’ fashion, these TF-like variants are likely resurrected and 
preferentially transmitted compared to non-TF-like variants176,177. Whilst within-
host evolutionary dynamics are influenced by selective forces and competitive 
fitness176,178-180, between-host HIV-1 evolution is mostly influenced by neutral 
processes – and depends on the social dynamics of the host population and the 
biological processes defining the transmission event180-182.  
 

 
Figure 13. Phylogenetic visualisation of intra-host and inter-host HIV-1 diversity. The phylogenies represent 
(A) HIV-1 within-host phylogeny with branch lengths in time units partial env gene longitudinally sampled from a 
single patient over 80 months (subtype B, 106 sequences, 516 bp; patient 3)171; and (B) HIV-1 population phylogeny 
with branch lengths in time units: full-length pol gene sampled from Coastal Kenya (subtypes A (A1), C, D and 
recombinants, 163 sequences, 967 bp)183. 
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The rapid rates of HIV-1 evolution allow for the reconstruction of phylogenetic trees 
that could be used to infer patterns in within-host or between-host relatedness of 
viruses. When visualised on a phylogeny, within-hosts heterochronous HIV-1 
sequences exhibit an asymmetrical or “ladder-like” profile with little diversity at 
any given time point (Fig. 13a)179,184. In comparison, a phylogeny of heterochronous 
inter-host HIV-1 sequences typically reflects the persistence of multiple lineages 
over time and display less of a ladder-like conformation (Fig. 13b)179,183. 
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Phylogenetic inference  
 
Introduction 
Phylogenetic inference applies to the study of evolutionary relationships among 
organisms based on genetic information. An evolutionary relationship can be 
thought of as a branching process – where organisms are altered over time through 
speciation (differentiation into separate branches and develop into novel species)185, 
hybridization (fusion into a new population by the mating of two former distinct 
populations)186, and extinction (disappearance of an entire species)187.  
 
Traditionally, relationships between organisms were estimated by comparing their 
morphological features188. However, in recent years, advances in genetic sequencing 
technology have increased the availability of sequence data, allowing the use of 
gene sequence data to infer genetic relationships. For instance, the genetic 
relationship between five hypothetical taxa is illustrated in Fig. 14. This is a typical 
bifurcating phylogenetic tree – where taxa (i.e. A-E) are placed on the tips of the 
tree and every two branches are linked at a node representing the most recent 
common ancestor (MRCA). Based on this tree, all taxa are descended from one 
common ancestor (MRCA 4) at the root. In the rectangular tree layout, the genetic 
relatedness between organisms is represented by the lengths of the horizontal (not 
vertical) branches.  
 

 
 
Figure 14. A typical bifurcating phylogenetic tree showing the genetic relationship between five taxa A-E. 
Horizontal lines represent genetic distance depicting divergence from their most recent common ancestors 
(MRCAs). The phylogeny depicts that sequences A and B are more closely related, but more distantly related to 
sequences C and D, and least related to sequence E. Nodes represent the MRCA of the branches leading up to that 
node. 
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Typically, organisms that are more genetically similar cluster more closely together 
in a phylogenetic tree compared to more distantly related organisms. For instance, 
the branching process in Fig. 14, shows that sequence A is more closely related to 
sequence B, but more distantly related to sequence C and D.  

In addition to revealing the pattern of evolutionary relationships itself, 
contemporary interests include generating phylogenies to derive information 
regarding the processes responsible for the observed pattern of evolutionary 
relationships. In this case, the tree topology is itself the framework upon which 
further inference is drawn. Thus, phylogenetic trees also facilitate inference of rates 
of evolution and population demographics189-191. In this thesis, phylogenetic trees 
have been used to determine the HIV-1 subtype, the underlying transmission 
network (based on HIV-1 sequence clustering patterns), and to infer populations 
dynamics. 

Sequence alignment 
One of the first steps in constructing phylogenetic trees involves aligning two or 
more biological sequences. In this process, gaps are added to a matrix of sequences 
such that nucleotides or amino acid residues in one column of the matrix are related 
to each other based on the assumption that they are descendants of a common 
ancestral residue192. Aligning multiple sequences allows the identification and 
localisation of specific evolutionary alterations, such as single nucleotide 
polymorphisms (SNPs), or insertions or deletions (indels) that have been 
accumulated by the studied lineages since they diverged from a shared ancestor. A 
match occurs when the corresponding nucleotide base or amino acid is encountered 
at a given position, a mismatch occurs where at least one substitution has occurred 
since the divergence event, and a gap indicates that an indel has occurred in one or 
more of the compared sequences (Fig 15). 

Several programs employing sequence alignments algorithms exist, the most widely 
used being ClustalX2 and MAFFT193,194. ClustalX2 implements a scoring system 
where base matches or mismatches are assigned a positive score, whereas gaps are 
assigned negative scores. The severity of the gap penalty varies when either a gap 
is introduced or extended. A heuristic search is then performed to select the best 
alignment, i.e. the alignment with the highest score193. The MAFFT alignment 
program involves a trade-off between accuracy and speed194. MAFFT aligns a large 
number of sequences by employing a fast group-to-group alignment algorithm 
based on Fast Fourier Transform (FFT) and an approximate distance calculation 
method (the so-called “6mer method”) to facilitate rapid alignments195.  



36 

 
Figure 15. A schematic multiple sequence alignment showing different types of bases impairments. A match 
occurs when the same base is encountered at a given position, a mismatch is found when at least one substitution 
occurred since the two sequences diverged from each other, and a gap indicates that one or more deletions or 
insertions have occurred in one or more of the compared sequences. 
 
Selecting nucleotide substitution models 
The second step in reconstructing phylogenetic trees involves selecting an 
appropriate nucleotide substitution model. Pairwise distance (a measure of 
divergence between two taxa from a common ancestor) can be estimated by 
comparing the observed distance between the taxa. However, divergence may not 
reflect the true number of point mutations that happened at a specific nucleotide site 
during the evolutionary process. Therefore, this is often addressed by modelling the 
evolutionary process using nucleotide substitution models that define the rates of 
change of fixed mutations among sequences196. Several substitution models are 
available, all of which use a matrix that stipulates the rates of nucleotide changes 
across sites (substitution rates, i.e. A-C, A-G, A-T, C-G, C-T, and G-T) along the 
alignment with the assumption that the relative frequencies of the nucleotide bases 
(πA, πC, πG, πT) are at equilibrium. The Jukes and Cantor (JC or JC69) model is 
the simplest model, and assumes equal equilibrium frequencies for all bases (i.e. 
πA=πC=πG=πT=0.25) and that the substitution rates are equal (i.e. 
a=b=c=d=e=f)197. In genetics, transitions (A↔G or C↔T) are generally more 
common than transversions (A↔C, A↔T, C↔G, or G↔T, Fig. 16) – therefore, too 
simplified substitution models may not be satisfactory as they do not account for the 
transition/transversion ratio and/or unequal base frequencies198. 
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Figure 16. Illustration of nucleotide substitutions. Transitions (A↔G or C↔T, coloured blue) are more common 
in the evolutionary process than transversions (A↔C, A↔T, C↔G, or G↔T, coloured red). Six possible rates of 
nucleotide substitution (labelled a-f) are also shown, assuming a reversible substitution process. 
 
Other models that are more parameter-rich, and that are often preferred over the 
JC69 model, include the Felsenstein model (F81, which allows the frequencies for 
all bases to change)199, the Kimura two-parameter model (K2P or K80, which 
assumes equal equilibrium frequencies for all bases whilst accommodating 
transitions/transversions)200, the Hasegawa, Kishino, and Yano model (HKY85, that 
allows both free base frequencies whilst accommodating 
transitions/transversions)201, and the general time-reversible model (GTR, that 
assumes that each nucleotide base has a separate rate and that 
transitions/transversions are reversible at similar rates)192. In addition, the different 
models can be complemented by allowing for rate variations in nucleotide 
distribution across the alignment (e.g. through a discrete gamma “Γ” distribution), 
sometimes acknowledging that a proportion of sites are invariant and hence have a 
zero rate of change. To increase accuracy in phylogenetic inference, some tree 
construction programs now allow for automatic model-selection and flexible rate 
heterogeneity across sites model, resulting in substantial improvements in the fit 
between tree, model and data, and with significant gains in computing time198,202. 
 
Methods for constructing phylogenetic trees 
Distance-based methods 
Tree-building methods are classified into distance methods or character-based 
methods. Distance-based methods exploit a matrix of pairwise genetic distances to 
infer a phylogenetic tree and include the unweighted pair-group method with 
arithmetic means (UPGMA) and the neighbour-joining (NJ) methods203,204. The 
UPGMA method finds the pair of sequences/taxa with the smallest genetic distance 
between them, where the distance from each of the two sequences to the MRCA is 
half the distance between the two sequences. These two taxa are then joined to form 
one cluster, reducing the number of the sequences in the alignment by one. The 
model then recalculates a new distance matrix considering the genetic distance from 
the cluster to each of the remaining taxa, and then adds the taxa with the shortest 
distance to the sequences in the cluster (unless there is a new pair with a shorter 
genetic distance). The reiterative process of generating new matrices and adding up 
taxa in the phylogeny based on genetic distance is repeated until culminating in a 
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tree. A limitation with the UPGMA method is that it (unrealistically) assumes that 
substitutions accumulate at the same rate in all lineages diverging from a common 
ancestor and that all taxa are equally distant from the root. These assumptions, 
therefore, reduce the reliability of UPGMA trees205.  

The more commonly used NJ method rejects the assumption of a constant molecular 
clock and does not construct intermediate clusters with nodes at the midpoint (unlike 
the UPGMA). The NJ method first assumes a star-like tree topology, converting all 
sequences into a distance matrix representing the genetic distance between all 
sequences in the alignment. The two taxa with the shortest distance are paired up 
and connected to a node representing their MRCA. A new matrix is then re-
computed in which the two taxa have been replaced with their MRCA. Internal 
branches are progressively inserted iteratively by calculating the genetic distance 
between the successive MRCAs and the most similar taxa among the remaining 
sequences in the alignment until all nodes are bound into one tree. The total length 
of the tree is then calculated by summing up the distances between each external 
node where the branches minimizing the total tree length are retained and the 
shortest tree is selected. However, the shortest tree may not be the “true” tree, but 
NJ provides a good starting tree for the generally more computer-intensive 
character-based methods. 

Character-based methods 
Character-based methods use discrete character states (such as amino acid or 
nucleotide positions) to infer a phylogenetic tree and include maximum parsimony, 
maximum likelihood (ML), and Bayesian inference methods. The maximum 
parsimony approach has been shown to result in inaccurate results with an infinite 
amount of data and is thus less often favoured206. 

The ML approach is the most used method, and requires a sequence alignment, a 
user-defined model of nucleotide substitution, and an initial tree topology199. The 
approach exploits the concept of likelihood, i.e. the probability P of observing the 
data D given the hypothesis H, denoted L=P(D/H) – where D is the sequence 
alignment of interest, and H is the given phylogenetic tree. In other words, ML 
searches for the tree that maximises the probability P(Data/Tree)199.  

Trees are searched by cutting off subtrees and reassembling them in different 
positions on the original tree using branch swapping. The three most commonly 
used branch swapping methods are the nearest-neighbour interchange (NNI), the 
subtree pruning and regrafting (SPR), and the tree bisection and reconnection (TBR) 
methods192. During the branch-swapping procedure, the likelihood of (almost) all 
possible (unrooted) trees for the specified alignment is calculated, and the tree(s) 
with the highest compound probabilities (maximum likelihood) of character 
distribution is selected as the ML tree. The higher the number of sequences in the 
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alignment, the more the expected number of possible trees, and hence the more 
computationally intensive it is to carry out a tree search (i.e. to investigate all 
possible trees). However, the iterative tree search process is terminated after many 
trees have been assessed without any increase in ML score during the iterations. To 
reduce computation time, a popular approach to tree construction is to use an NJ 
tree as a starting topology for an ML search, and this has been incorporated in most 
automated tree building algorithms207,208.  
 
Another common practice in tree construction is to place some measure of statistical 
confidence on the inferred phylogeny. Statistical support of a phylogenetic tree is a 
measure of the robustness of associations between the sequences within the 
suggested topology209. Traditionally, statistical support has been provided through 
so-called “bootstrapping” – i.e. when positions in the original alignment are 
randomly resampled (permuted) multiple times (usually 100-1000 times) with 
replacement to produce a set of pseudo-replicate alignments210. A phylogeny is then 
reconstructed from each of these pseudo-replicates, and support for a cluster can 
then be assessed as the number of independent pseudo-replicates in which that 
cluster occurs – i.e. if a cluster occurs in 95 of 100 pseudo-phylogenies, the assigned 
bootstrap value would be 95%192,211. A limitation with the bootstrap approach is that 
it can be challenging to select a reasonable cut-off for significance – although 
bootstrap values >70% have been suggested to indicate strong support for a cluster 
as bootstrap values can be thought of as conservative measurements212. An 
alternative to bootstrapping is the Shimodaira-Hasegawa-like approximate 
Likelihood Ratio Test (aLRT-SH). This test is based on a likelihood ratio test to 
evaluate if a specific branch is significantly longer than zero or not, and aLRT-SH 
values ≥0.90 are commonly considered significant212,213. Moreover, the aLRT-SH is 
implemented within most fast ML tree estimation programs, such as PHYML and 
IQ-tree (both adopted in this thesis), resulting in fast computation of branch 
support207,208. 
 
Bayesian inference (like ML) also requires a user-specified nucleotide substitution 
model but performs a search for the tree that maximises the probability of seeing a 
tree given both the data and the nucleotide substitution model – i.e. P(Tree/Data). 
At the core of Bayesian inference is Bayes’ theorem for calculating conditional 
probabilities. Bayes’ theorem describes the probability of an event based on prior 
knowledge of the conditions that might be relevant to the independent events214. 
That is, the probability of the outcome of event A does not depend on the probability 
of the outcome of event B. According to the Bayes’ theorem, the (posterior) 
probability P of a hypothesis (A|B) given the conditional event B is summarised in 
Fig 17. 
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Figure 17. The Bayes Theorem. Bayes’ mathematical formula is used to describe the probability of an event based 
on prior knowledge of the conditions that might be relevant to the event, where A and B are independent events 
(i.e., the probability of the outcome of event A does not depend on the probability of the outcome of event B). 
 
Here is an example to contextualize Bayes’ theorem. As a medical statistician, you 
need to calculate the probability of a patient having lung cancer if they are a smoker 
(it is generally said that “smoking” is linked to the development of lung cancer). In 
this example, A represents the event “patient has lung cancer”, and based on your 
past data, you know that 10% of patients visiting your clinic have lung cancer. 
Therefore, P(A) = 0.10. On the other hand, B represents the event that “the patient 
is a smoker”, and from recorded patient demographic data, 5% of the clinic’s 
patients are smokers. Therefore P(B) = 0.05. You might also have prior information 
that 7% of the patients diagnosed with lung cancer are smokers. Thus, the 
probability that a patient is a smoker given that they have lung cancer is 7%, and 
this is your B|A. Based on Bayes’ theorem, P(A|B) = (0.07×0.1)/0.05 = 0.14 
meaning that, if the patient is a smoker, their chances of having lung cancer is 0.14 
(14%). This is a larger proportion than the 10% suggested by past data – although it 
is still unlikely that any patient has lung cancer (i.e. there are uncertainties). 
 
In phylogenetics, Bayesian inference is computed using the Markov Chain Monte 
Carlo (MCMC) methods proposed by Metropolis and Hastings215,216. Based on the 
MCMC approach, the process of a heuristic tree search involves a random walk over 
the space of all possible tree combinations. The “heuristic tree search” process is 
comparable to the “hill-climbing process in a forested terrain” intending to find the 
highest peak and involves several steps. One random tree t1 is selected as the current 
tree and compared to a second tree t2; if the likelihood L1 of t1 is less than the 
likelihood L2 of t2, then t2 replaces t1 as the current tree (or solution) and the 
process proceeds one step up-hill. However, if LI is more than L2, t1 is retained as 
the current solution; t1 is saved (sampled) and the whole process is reiterated several 
times (usually millions of times depending on the chain length as specified by the 
user). The likelihood values characteristically increase rapidly during the initial 
stage of the tree search because the starting point is far away from the highest peak 
(i.e. regions in parameter space with high posterior probability). Trees logged in the 
initial stage of the Markov chain (typically referred to as the burn-in stage) are 
discarded as they are biased by the starting point. However, as the chain moves 
towards and around the highest likelihood, the likelihood values tend to reach a 
plateau stage where the chain “converges” – i.e. stays in the region with the highest 
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posterior probability. The frequency at which a tree is ‘re-visited’ is proportional to 
its likelihood given the data (thus the solutions are biased based on their likelihood 
score). At the end of the process, the algorithm produces “a set of trees” that has 
been visited repeatedly. The sampling frequency is also user-specified. One can 
choose to sample/log every 1000th tree in a chain length of 10 million generations 
thus yielding a set of 10000 trees, all with a specific posterior distribution likelihood, 
and one typically chooses to discard the first 10% trees as chain burn-in. 

An advantage of the Bayesian inference over the ML method is that many trees with 
a high likelihood are generated during the MCMC chain (the posterior likelihood). 
This means that, if the Markov chain runs for a sufficient number of generations, 
the amount of time it spends sampling a particular parameter value is proportional 
to the posterior probability of that value or interval192. For instance, if one clade is 
present in 85% of all sampled trees, then the likelihood that the clade is correct is 
85% given the assumed nucleotide substitution model. An example of a program 
that implements the Bayesian phylogenetics is BEAST (Bayesian Evolutionary 
Analysis Sampling Trees) which was adopted in this thesis217,218. 

Molecular evolution and the molecular clock 
The molecular clock hypothesis postulates that the rate of molecular evolution is 
constant over time or among species – where mutations accumulate at a uniform 
rate after species divergence, keeping time like a timepiece219. To infer divergence 
dates, it may seem fitting to assume a constant rate of evolution throughout the 
tree220. However, unless when analysing sequences from the same species (i.e. 
population data) or very closely related species, the concept of a perfectly constant 
rate of evolution (i.e. the ‘strict’ clock) has been challenged by results from datasets 
showing considerable departure from clock-like evolution221-223. Such rate variation 
among lineages can bias the estimated divergence dates224 as well as phylogenetic 
inference206.  

Therefore, models that “relax” the assumptions of the molecular clock by allowing 
evolutionary rates to vary over time and across lineages have been developed225-228. 
The approach allows for co-estimation of both the phylogeny and the divergence 
dates under a relaxed molecular clock229,230. However, performance is subject to the 
size of the dataset under investigation (analysing thousands of sequences using the 
MCMC procedure is extremely computationally intensive and MCMC parameters 
often fail to converge)231. 

Population dynamics and the coalescent 
Evolution is a gradual process that defines the characteristics of a population over 
time. Thus, molecular sequences, whether sampled simultaneously (homochronous) 
or serially through time (heterochronous), can be used to reconstruct the 
demographic history of natural populations232. Though observing evolutionary 
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variations in samples obtained from a population, we can retrospectively address 
biological questions regarding the historical demography of the population as well 
as the evolutionary dynamics that yielded the observed patterns in the population192. 
The coalescent population genetic model was developed to infer historical dynamics 
from contemporary character states in a population, and typically refers to a 
stochastic process that allows the estimation of historical states of a population from 
a genealogy of random samples from the population233-237. The theory assumes that 
all individuals in a population descend from one common ancestor and that genetic 
material is transmitted from ancestors to descendants along the branches of the 
phylogenetic tree (Fig 18). As we move back in time from the present, one can 
follow the number of lineages in the genealogy in each generation – the number of 
lineages decreases with every coalescent event (i.e. when two lineages share one 
common ancestor) but increases with every sampling event.  
 

 
Figure 18. Schematic representation of the relationship between the demographic history and the genealogy 
of individuals sampled assuming a constant population size. The phylogeny includes six individuals (green dots) 
that have been sampled over 15 generations. As we move backwards in time, the number of lineages per generation 
decreases where two individuals have a shared common ancestor (a coalescent event, orange dots), and increases 
when sampled individuals are encountered (a sampling event). The figure was simplified based on Drummond et 
al., (2003)232. 
 
The probability of a coalescence event at a given time is inversely proportional to 
the population size at the denoted time (i.e. the more the lineages, the faster the rate 
of convergence). The pattern of observed coalescence and sampling events can 
therefore be useful in estimating the demographic history of a study 
population218,232. When the molecular clock (strict or relaxed) is assumed, the 
coalescent theory permits dating the time to the most recent common ancestor 
(tMRCA) of a sub-population as well as estimating parameters such as nucleotide 
substitution rate (µ, site-1 year-1), growth rate (r), and effective population size (Ne) 
based on the tree topology.  
 



43 

The effective population size can be defined as the size of an idealized Wright-
Fisher population (with discrete, nonoverlapping generations)238 which would have 
the same carrying capacity for genetic variation as the given (census) population 
and thus loses or gains genetic diversity at the same rate as the census population 
size192. To reduce variability in the inferred estimates of population size and 
substitution rate, it is advisable to use heterochronous sequences (with broad 
temporal sampling). The selected demographic model influences the estimated 
demographic pattern, and a large variety of existing models has therefore been 
proposed, such as the constant size, exponential growth, logistic growth, expansion 
growth, and Bayesian skygrid or the Skyride model218,237,239,240.  
 
Furthermore, combining Bayesian inference with the coalescence theory and 
individual-specific demographic traits (such as geographic or transmission risk 
group) allows investigations into spatiotemporal evolution of (mostly fast-evolving) 
organisms/viruses based on genetic sequences6,31,32,240-242.  
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Materials and methods 
Systematic literature review 
For the literature review (paper VI), an exhaustive search of the PubMed database 
(https://pubmed.ncbi.nlm.nih.gov/) was carried out by analysing peer-reviewed 
research articles on HIV-1 phylodynamics in sSA published in English 1995-2021. 
Review articles, book chapters, editorials and articles published in other languages 
were excluded from the search.  

The MeSH terms (HIV-1) AND (Africa) were used to select HIV-1 articles from 
African countries. The keywords "phylogenetic analysis" OR "phylodynamics" OR 
"evolution" OR "phylogeny" OR "molecular epidemiology" OR "transmission" 
were used to widen the scope and to ensure that all relevant research articles were 
included. Filters on the year of publication, language and article type were applied 
to refine the search.  

Two investigators carried out the selection process independently. The articles were 
manually screened, first by title, then by abstract to assess relevance based on our 
eligibility criteria (i.e. description of HIV-1 mixing within and between geographic 
regions and risk groups). Any discordance between the two independent reviewers 
on the eligibility of articles was resolved through discussions for a consensus.  

Shortlisted articles were imported into EndNote X8 (Clarivate, Philadelphia, 
Pennsylvania, USA) for further management, and to compile the information 
presented in this review. 

Study population and partial HIV-1 pol sequence datasets 
The HIV-1 pol sequences analysed in this doctoral dissertation (papers I-V) were 
either newly generated or published sequences retrieved from the Los Alamos HIV 
sequence database243.  

New HIV-1 pol sequences from Kenya (papers I-IV) were generated from blood 
plasma obtained through studies conducted through the MSM Health Research 
Consortium – a multi-site collaboration between researchers affiliated with KEMRI-
Wellcome Trust (KWTRP) in Coastal Kenya, Nyanza Reproductive Health Society 
(NRHS) in Western Kenya, Kenya AIDS Vaccine Initiative’s Institute of Clinical 
Research (KAVI-ICR), and Sex Workers Outreach Program (SWOP) clinics in 
Nairobi.  

Table 3 shows a summary of the source of new HIV-1 sequences from Kenya. 
These included samples from Coast – derived from participants in a prospective 
observational cohort (2006-2019)244, samples from Nairobi from a respondent-
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driven sample survey (TRANSFORM, 2017)245, an unpublished study at the Kenya 
AIDS Vaccine Initiative’s Institute of Clinical Research, and samples from Nyanza 
derived from the Anza Mapema cohort (2015-2017)246. Additional nationwide HIV-
1 pol sequences (2008-2018) were obtained from the national HIV-1 reference 
laboratory at the Kenya Medical Research Institute (KEMRI) – Centre for Global 
Health Research.  
 
Site 

Risk group   
HET MSM FSW PWID Total 

KWTRP 48 21 107 0 176 
NHRS 0 57 14 0 71 
KAVI 30 0 7 0 37 
SWOP 0 50 0 0 50 
TRANSFORM 0 85 0 0 85 
KEMRI-CGHR 336 0 0 0 336 
Total 414 213 128 0 755 
Table 3. The source of new HIV-1 sequences in Kenya. Abbreviations: HET, heterosexual adults; MSM, men 
who have sex with men; FSW, female sex workers; PWID, people who inject drugs. Site abbreviations: KWTRP, 
Kenya Medical Research Institute (KEMRI)-Wellcome Trust (Coastal Kenya); NHRS, Nyanza Reproductive 
Health Society (in Western Kenya); KAVI-ICR, Kenya AIDS Vaccine Initiative’s Institute of Clinical Research (in 
Nairobi, Central Kenya); SWOP, Sex Workers Outreach Program clinics in Nairobi, TRANSFORM, a cohort of 
transfeminine people and cisgender men who have sex with men in Nairobi; KEMRI-CGHR, Kenya Medical 
Research Institute (KEMRI) – Centre for Global Health Research (Western Kenya). 
 
New sequences were supplemented with published Kenyan HIV-1 pol sequences 
(HXB2 positions 2000-3600) retrieved from the Los Alamos HIV-1 sequence 
database (1986-2019)243. In cases where more than one sequence per individual was 
available, the oldest sequence was retained. All sequences were annotated with 
sampling date, sampling location, treatment status, age, sex, and risk group – MSM 
(men who have sex with men); PWID (people who inject drugs); FSW (female sex 
workers); and HET (presumed heterosexuals including men and women for whom 
risk assessment was not available). Missing information for published sequences 
was retrieved from relevant studies or obtained through communication with study 
authors. 
 
New HIV-1 sequences from Pakistan (paper V) were from an individually matched 
case-control study247 that recruited cases, defined as children aged 0–15 years 
registered for HIV-1 care at the Paediatric Treatment Center, Shaikh Zayed 
Children’s Hospital that was established in response to the outbreak. Overall, we 
analysed 532 HIV-1 partial pol sequences, including outbreak sequences (N=344) 
and previously published sequences (N=188) representing Pakistani PWID, 
heterosexuals, sex workers, and other individuals with unknown transmission risks. 
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Partial HIV-1 pol sequencing 
The HIV-1 pol gene was selected for sequencing based on prior knowledge that it 
was the most abundant HIV-1 gene among all published Kenyan sequences in the 
Los Alamos HIV sequence database (and would thus increase sample size in our 
inference). Also, this region would enable the characterisation of HIV-1 drug 
resistance. 
 
For papers I-IV, HIV-1 RNA was extracted from patient plasma samples using the 
RNeasy Lipid Tissue Mini Kit (QIAGEN) with modifications from the 
manufacturer’s protocol248. Briefly, 100µl patient blood plasma was lysed in 1000μl 
Qiazol Reagent. An in-column DNase I treatment step was included to ensure the 
purity of the extracted RNA – before elution in 40µl polymerase chain reaction 
(PCR)-clean water.  
 
Reverse transcription and amplification of partial HIV-1 pol gene were performed 
using the One-Step Superscript III RT/Platinum Taq High Fidelity Enzyme Mix 
(ThermoFisher ScientificTM) with the pol-specific primer pair JA269 and JA272249. 
First-round PCR products were amplified in a nested PCR with DreamTaq Green 
DNA Polymerase (ThermoFisher ScientificTM) using pol-specific primers JA271 
and JA270249. For paper V, proviral DNA was extracted from blood samples using 
Qiagen’s QIAamp DNA blood mini kit according to the manufacturer’s protocol, 
followed by HIV-1 pol gene nested PCR amplification using a separate set of pol-
specific primers250. PCR products were sequenced in both directions with the nested 
PCR primers using the BigDye terminator kit v1.1 (Applied Biosystems). New HIV-
1 pol sequences (approximately 1020 nucleotides (nt), HXB2 (K03455) positions 
2267-3287 for Kenyan sequences and approximately 1200 nt, HXB2 positions 
2078-3320 for Pakistani sequences) were determined on an ABI PRISM 3130×1 
Genetic Analyzer (Applied Biosystems). 
 
HIV-1 subtype analysis 
HIV-1 pol sequences were aligned with the HIV-1 Group M (subtypes A-K + 
Recombinants) subtype reference dataset (available at the Los Alamos HIV 
database, http://www.hiv.lanl.gov) using Clustal X2 (v2.1) and the MAFFT 
algorithm in Geneious Prime 2019251,252. The resulting alignments were used to 
construct ML phylogenetic trees in PhyML using the general time-reversible 
substitution model with a gamma-distributed rate variation and proportion of 
invariant sites (GTR+Γ4+Ι)207. Branch support was assessed using the Shimodaira-
Hasegawa-like approximate Likelihood Ratio Test (aLRT-SH) in PhyML, with 
aLRT-SH ≥0.90 considered as significant212,213. The Subtype/CRF-resolved 
phylogenies were visualized using FigTree v1.4.4 
(https://github.com/rambaut/figtree/releases). Unique recombinant forms (URFs) 
were initially detected using the REGA HIV-1 subtyping tool (version 3) and further 
characterised by boot-scan analysis in SimPlot 253,254. 
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Cluster analysis  
Based on the subtyping results, sequences were grouped into the main subtypes that 
were observed in the datasets. For each subtype-specific dataset, a search for related 
sequences was done separately using the NCBI GenBank BLAST tool, with results 
limited to a threshold of 10 similar hits per patient sequence, as previously 
described6,212,255,256. Duplicate sequences were removed based on the sequence 
identifiers and accession numbers. Redundant sequences were manually removed, 
and every single hit was further explored to identify and exclude previously 
published volunteer sequences. All sequences were aligned by subtype and subtype-
specific phylogenies were reconstructed in PhyML257. 
 
Country-specific clusters (i.e. Kenyan or Pakistani clusters) were defined as any 
cluster with aLRT-SH ≥0.90 and comprising ≥80% country-specific sequences, 
regardless of the genetic distances within the cluster (exemplified for Kenya clusters 
in Fig. 19)6,212,255,256. In paper IV, potentially active transmission clusters were 
identified using aLRT-SH ≥0.90, and a genetic distance ≥0.015 substitutions/site in 
Cluster Picker212,258.  
 
Identified clusters were classified into dyads (2 sequences), networks (3-14 
sequences), or large clusters (>14 sequences)6. 
 

 
Figure 19. Phylogenetic identification of Kenyan HIV-1 subtype G clusters. A phylogeny of HIV-1 subtype G 
sequences from Kenya (shown as orange dots), and similar non-Kenyan GenBank reference sequences (black dots). Three 
monophyletic clusters are highlighted grey – but only cluster 1 and cluster 2 are considered Kenyan clusters as they meet 
both criteria (i.e. SH-aLRT branch support ≥0.90 and comprising ≥80% Kenyan HIV-1 sequences). Cluster 3 is not Kenyan 
as per the definition (although it has SH-aLRT branch support ≥0.90, it comprises <80% Kenyan sequences). 
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Bayesian phylodynamic inference 
HIV-1 evolutionary origins and past population dynamics were determined using a 
Bayesian approach – for sequences with information on sampling dates. The 
temporal signal of each dataset was initially assessed in TempEst (v1.5.3)259. 
Bayesian inferences were done in BEAST 1.10.4 using the Bayesian Skygrid model 
with an uncorrelated lognormal relaxed clock and inferred under the GTR+Γ4+Ι 
substitution model217,218,260,261. Where appropriate, and to enhance precision in 
estimating evolutionary parameters within and between clusters from different risk 
groups, a previously described hierarchical phylogenetic model (HPM) was used262. 
BEAST runs of 100 million - 500 million generations were computed, sampling 
every 10000th-50000th iteration, and discarding the first 10% as burn-in. 
Convergence was determined in Tracer v.1.7.0 and defined as effective sample sizes 
(ESS) ≥100217. 
 
Bayesian phylogeographic inference 
A discrete phylogeographic inference using an empirical tree distribution was 
computed where the expected number of HIV-1 migrations for every pathway were 
inferred on a branch-by-branch basis (papers I and III), as previously 
described31,231. The geographic area of sampling and/or risk group were used as 
discrete states. The asymmetric continuous-time Markov chain (CTMC) model was 
preferentially used as it relaxes the assumption of constant diffusion rates through 
time to realistically model phylogeographic processes231,263.  
 
A robust counting approach implemented in BEAST was used to estimate the 
forward and reverse HIV-1 movement events (Markov jumps) between locations 
and risk group states along the branches of dated phylogenetic trees264. Well-
supported movements and Bayes factors (BF) assessing statistical support were 
summarized using SPREAD v1.0.7, (BF≥3 was considered significant)231. 
Maximum clade credibility (MCC) trees annotated with key 
demographic/epidemiological data were summarized in Tree-Annotator v1.10.4 
(BEAST suite) and visualized in FigTree (v1.4.4). 
 
A phylogeographic analysis is sensitive to sampling size as small sample sizes might 
not be informative enough to infer migration profiles, and large sample sizes may 
be too computationally intensive to analyse resulting in evolutionary parameters that 
fail to converge)31,231,265. Therefore, several approaches were used to limit sampling 
bias arising from the disproportionate allocation of sequences from some discrete 
states.  
 
In paper I, in the first senario, sequences in the sub-subtype A1 dataset (sampled 
during 2004-2019) were sub-sampled proportional to the HIV-1 prevalence per 
geographic province. This procedure was independently replicated 30 times – 
resulting in 30 datasets each having 892 sequences of which 35% were from 
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Nyanza, 17% Rift Valley, 13% Nairobi, and 7% Coast. A similar approach was 
taken with risk group as a discrete state – resulting in thirty datasets  each having 
802 sequences of which 64% were from HET, 14% FSW, 15% MSM, and 4% 
PWID. Cluster analysis (as described above) was performed independently for each 
dataset. Clusters having >14 sequences were identified – and discrete state 
phylogeographic analysis with Markov jumps inferences were then performed 
independently for each of the identified clusters. 
 
In the second sensitivity analysis, HIV-1 A1 sequences collected during recent years 
(i.e. 2010-2019) were sub-sampled proportionally as was done in the first scenario 
– resulting in five independent datasets with location-annotation (each having 144 
sequences – 35% from Nyanza, 17% Rift Valley, 13% Nairobi, and 7% Coast), and 
five independent datasets with risk group annotation (each having 97 sequences – 
64% HET, 14% FSW, 15% MSM, and 4% PWID). However, unlike in the cluster-
wise approach, the complete sub-sampled datasets were used directly to estimate 
virus migration between states.  
 
In the third sensitivity analysis, HIV-1 A1 sequences collected during 2010-2019 
were sub-sampled uniformly into five datasets with equal number of sequences per 
discrete state. The location-annotated dataset had 100 sequences (25 sequences from 
each province), while the dataset annotated for risk group had 108 sequences (27 
sequences for each risk group).  
 
Additionally, in paper III, the sequences were first grouped by subtype (A1, C and 
D), and the phylogeographic inference was then performed by subtype using all 
available sequences. Second, to reduce sampling bias arising from the 
disproportional allocation of sequences per location, sequences in the sub-subtype 
A1-specific dataset (the largest of the three subtypes) were randomised and sub-
sampled into a dataset with an equal number of sequences per province, followed 
by phylogeographic inference. 
 
Characterisation of HIV-1 drug resistance  
For papers II and V, HIV-1 sequences were submitted to the Stanford HIV drug 
resistance database using the calibrated population resistance tool to screen for drug 
resistance-associated mutations (http://cpr.stanford.edu/cpr.cgi). Drug resistance 
mutations were identified based on the WHO list for surveillance of genotypic drug 
resistance mutations266,267. In this thesis, HIVDR mutations detected among ART-
naïve individuals were classified as pre-treatment drug resistance whilst those 
among individuals on treatment were classified as acquired drug resistance. In 
addition, phylogenetic cluster analysis was repeated, as described above, to assess 
for clustering amongst isolates identified with surveillance drug resistance 
mutations. 
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Statistical analysis 
Frequencies and percentages were used to describe the distribution of sequences 
within the study population. Changes in the proportion of variables over time were 
assessed using the nptrend non-parametric test for trends (a Stata plugin)268. 
Multivariable logistic regression models were used to assess associations between 
variables, and p<0.05 was defined as statistically significant. A Kruskal-Wallis H 
test and a post hoc Dunn’s test with Bonferroni correction for multiple comparisons 
were conducted to determine differences in HIV-1 evolutionary rate, cluster growth 
rates, and time to the most recent common ancestor (tMRCA) estimates among 
clusters from multiple risk groups. Statistics and summary plots were done using 
Stata 15 (College Station, Texas, USA) and RStudio (version 1.2.5001) with the 
packages: yarrr, circlize and ggplot2269-271. 
 
Ethical considerations 
Molecular epidemiology studies involve linking virus sequences to patient socio-
demographic data. This raises the issue of possible disclosure of confidential and 
private data, particularly among vulnerable populations. Individuals anonymity was 
ensured by delinking sequence identifiers with patient identifiers. 
 
For papers I-IV, plasma samples used to generate new HIV-1 sequences were 
obtained from ongoing or concluded studies approved by the Kenya Medical 
Research Institute (KEMRI) Scientific and Ethics Review Unit (SERU 3747, 3280 
and 3520, and SSC 894). Since published sequences were obtained from an open-
access public domain, informed consent was not retrospectively obtained. Instead, 
we sought approval through a study protocol that was reviewed by KEMRI/SERU 
(SERU 3547). 
 
For paper V, the study protocol was reviewed and approved by Aga Khan 
University Ethics Review Committee (ERC #2019-1536-4200). Written informed 
consent to participate in this study was provided by the participant's legal 
guardian/next of kin. 
 
Data availability 
Newly generated nucleotide sequences were deposited in GenBank under the 
following accession numbers: OM109695-OM110282, MT084914-MT085076. 
(papers I-IV), and MN698251, MN698252, MN698253, MN698255, MN698256, 
MN698257, MN698258, MN698259, MN698260, MN698261, MN698262, 
MN698263, MN698264, MN752136, MN752137, and MT748850-MT749178 
(paper V). 
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Main findings and discussion 
Molecular description of the HIV-1 epidemic in Kenya 

Main findings 
• HIV-1 subtype A (sub-subtype A1) was the dominant subtype among risk

groups and geographic locations in Kenya and had increasing proportions
between 2004-2019 compared to other identified strains (papers I-IV).

• HIV-1 transmission between risk groups was rare, most of the HIV-1
transmission occurred within-risk groups (papers I and IV).

• Albeit infrequent, viruses flow mostly from HET to key populations than
vice-versa (paper I).

• The sub-epidemic among PWID was separate from all other risk groups
(papers I and IV).

• There was extensive geographic HIV-1 mixing in Kenya and significant
transmission from high-to-low HIV-1 prevalence regions (papers I and
IV).

• In the MSM HIV-1 epidemic, there was more virus flow from Coastal
Kenya to other provinces than vice-versa (paper III).

• Pre-treatment HIVDR increased from 6.9% 1986-2005 to 24.2% 2016-
2020. No integrase-inhibitors drug resistance was detected in Kenya (paper
II).

HIV-1 subtype A (sub-subtype A1) dominated the epidemic, with increasing 
proportions (2004-2019) 
In paper I, we analysed 4058 sequences, of which the majority (N=3401, 83.8%) 
were HET followed by MSM (N=372, 9.2%), FSW (N=227, 5.6%), and PWID 
(N=58, 1.4%). Overall, these numbers represent an estimated sampling density of 
0.3% of the HIV-1 epidemic in Kenya, and specific sampling densities of 10.8% for 
MSM, 1.7% for PWID, 0.6% for FSW, and 0.3% for HET. Sequences were 
available from seven of eight former administrative provinces in Kenya: Nairobi 
(N=1440, 35.5% of the sequences in this study); Coast (N=1061, 26.2%); Nyanza 
(N=665, 16.4%); Rift Valley (N=508, 12.5%); Western (N=158, 3.8%); Central 
(N=44, 1.1%); Eastern (N=6, 0.2%); and 176 (4.3%) sequences with missing data 
on sampling location. 

Irrespective of geographic sampling province or risk group, HIV-1 sub-subtype A1 
was the most dominant strain (Fig. 20). Temporal trend analysis (2004-2019) in 
subtype distribution revealed that whilst the proportion in sub-subtype A1 infections 
increased from 59.7% to 78.3%, (linear-by-linear trend test, p<0.001), there was no 
significant change in subtype C (linear-by-linear trend test, p=0.30) or subtype D 
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(linear-by-linear trend test, p=0.59), whereas subtype G decreased from 1.2% to 
0.0%, (linear-by-linear trend test, p=0.013), and CRFs decreased from 2.7% to 0.0% 
(linear-by-linear trend test, p=0.001, Fig. 21). 
 

 
Figure 20. Distribution of HIV-1 subtypes by risk group and geographic provinces in Kenya. HIV-1 subtype 
A (A1) was the most dominant subtype among (A) different risk groups, and (B) geographic provinces in Kenya. 
Abbreviations: CRF, circulating recombinant form; URF, unique recombinant form; HET, heterosexual; MSM, 
men who have sex with men; FSW, female sex work; PWID, people who inject drugs. 
 

 
Figure 21. Temporal changes (2004-2019) in the overall proportion of HIV-1 subtypes and recombinants 
over two-year intervals in Kenya. The proportion of sub-subtype A1 increased significantly over the study period 
(2004-2019, 59.7% to 78.3%, linear-by-linear trend test, p<0.001). 
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HIV-1 transmission was compartmentalised by risk groups 
We investigated HIV-1 clustering by risk groups: MSM, PWID, FSW, and HET. 
By integrating HIV-1 phylogenetic and patient epidemiological data, we showed 
that on a nationwide scale, HIV-1 transmission in Kenya was largely 
compartmentalized by risk groups. This result was based on the identification of 409 
statistically supported phylogenetic clusters (Table 4) – where a majority (88.5%) 
represented within-risk-group clustering (paper I). Furthermore, we found that 
11.5% of the clusters represented HIV-1 mixing between risk groups – in detail, 
mixing between MSM/HET (3.7% of all clusters), FSW/HET (3.7%), 
MSM/FSW/HET (2.2%), MSM/FSW (1.5%), MSM/PWID/FSW/HET (0.2%), and 
PWID/HET (0.2%). Furthermore, this translated to 7.6% HIV-1 mixing between 
MSM and HET in Kenya (paper I). Sequences from HET females in clusters 
dominated by MSM sequences provided evidence for heterosexual linkages in these 
clusters.  
 
These findings at the countrywide scale were also consistent with our phylogenetic 
estimates specific for the epidemic in Coastal Kenya (paper IV) which 
demonstrated frequent (85%) within-risk group clustering, and minimal (15%) HIV-
1 mixing between MSM and the heterosexual population183. A previous analysis by 
Bezemer et al. (albeit with a small sample size i.e. N=674) had also concluded that 
there was infrequent mixing between MSM and HET in Kenya272.  
 
Combined, finding from our study and the previous analysis by Bezemer and 
colleagues demonstrate that HIV-1 transmission involved predominantly within-
risk group transmission chains.  
 
  Dyadsa Networksb Large clustersc Total (N,%) 
Subtype         
A (A1) 182 (59%) 105 (34%) 19 (6%) 306 (75%) 
C 16 (64%) 8 (32%) 1 (4%) 25 (6%) 
D 51 (65%) 27 (35%) 0 (0%) 78 (19%) 
Risk category      
HET 204 (65%) 101 (32%) 11 (3%) 316 (77%) 

Mixed* 24 (51%) 16 (34%) 7 (15%) 47 (11%) 

MSM 13 (35%) 23 (62%) 1 (3%) 37 (9%) 
FSW 7 (100.0%) 0 (0%) 0 (0%) 7 (2%) 
PWID 1 (50%) 0 (0%) 1 (50%) 2 (<1%) 
Total 249 (61%) 140 (34%) 20 (5%) 409 
Table 4. The distribution of Kenyan HIV-1 clusters (N=409) by HIV-1 subtype and transmission route. 
Abbreviations: HET, heterosexual transmission; Mixed, clusters with sequences from different risk groups; MSM, 
men who have sex with men; FSW, female sex work; PWID, people who inject drugs. *Risk groups in mixed 
clusters (N, proportion in all clusters): mixing between MSM/HET (3.7% of all clusters), FSW/HET (3.7%), 
MSM/FSW/HET (2.2%), MSM/FSW (1.5%), MSM/PWID/FSW/HET (0.2%), and PWID/HET (0.2%). aDyads: 
clusters of 2 sequences; bNetworks: clusters of 3-14 sequences; cLarge clusters: clusters of >14 sequences. 
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Interestingly, the majority of the MSM in mixed clusters also reported having 
female sexual partners (i.e. bisexual) – indicating that this group, in addition to 
female sex workers, could have been an important transmission link to the HET 
epidemic (papers I and IV). Also, the majority (73%) of HIV-1 sequences from 
transgender people clustered with HIV-1 sequences from MSM – although there 
was considerable (28.6%) HIV-1 mixing between transgender people and HET, 
suggesting that transgender people in Kenya could also have linked HIV-1 
transmission between HET and MSM. HIV-1 among transgender people (and 
MSM) has been exceptionally understudied in the African setting. The reason for 
this has been that these populations are particularly hard to reach in most African 
countries, which has made it exceedingly difficult to obtain samples from these 
populations. The HIV-1 sub-epidemics among key populations, and how it 
influences the mixed epidemic in Africa, warrant further research.  
 
In paper I, we phylodynamically quantified the number of virus jumps between 
different risk groups. We found that when HIV-1 jumped between risk groups it was 
more often from heterosexual to key populations than vice-versa. In detail, we found 
significantly more HIV-1 flow from heterosexual to key populations than vice versa 
(82.9% vs. 12.8%, Student’s T-test, p<0.001) – these results were confirmed by 
multiple sensitivity analyses testing the robustness of our data.  
 
It should be emphasised that the detected virus jumps represented rare events 
because overall transmission between risk groups was itself rare in the Kenyan 
epidemic. Put otherwise, transitions/jumps between populations identified in the 
phylogeographic analyses may not be equated with transmission events because 
phylogeographic modelling only counts jumps between populations. Hence, most 
transmission events that occur within risk groups were not counted as jumps (as also 
supported by the clustering analysis).  
 
From paper I and paper IV, it is, therefore, possible that HIV-1 key populations 
may not have had disproportionately transmitted HIV-1 to heterosexuals in the 
general epidemic, as had been hypothesised previously13. Indeed, it has been well 
established that the vast majority of HIV-1 transmission in Kenya could be 
attributed to risky heterosexual behaviours17,273. However, this needs to be further 
assessed in future studies based on larger datasets representative of all key 
populations and the general population. 
 
We found that the HIV-1 sub-epidemic among PWID may have been separate from 
all other risk groups (paper 1, and IV). Amongst PWID (all derived from Coastal 
Kenya), only two clusters were identified (one dyad and one large cluster, both 
PWID exclusive), with the large cluster comprising 80% of all PWID sequences in 
the dataset (N=41). This suggested that the majority of the HIV-1 PWID epidemic 
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was most likely introduced from one single source followed by a long-term gradual 
spread within the PWID population – a pattern that distinguished PWID 
transmission from that of other risk groups in Kenya.  
 
On the other hand, the MSM HIV-1 sub-epidemic showed numerous 
phylogenetically linked (MSM-exclusive) HIV-1 clusters, consistent with multiple 
introductions and ongoing infections among MSM within close networks in Kenya 
(papers I, III and IV)6,274,275. Half of the clusters comprised sequences collected 
from MSM from different geographic regions – indicating geographically extensive 
MSM HIV-1 linkages. High rates of clustering involving HIV-1 in MSM could be 
linked to an increased risk of infection among MSM within close networks, both in 
our setting and in other higher-income settings6,272,274,276,277. We also estimated that 
a high proportion (65%) of HIV-1 transmissions occurred between 2000 and 2014 
and that several clusters extended over multiple years, suggesting onward HIV-1 
transmission among MSM within geographically diverse HIV-1 networks (paper 
III). MSM HIV-1 sequences in this study were not closely related to reference 
sequences from the global epidemic, implying that the HIV-1 epidemic among 
MSM in Kenya had been sustained locally.  
 
Overall, our results are of relevance for the roll-out of interventions designed to 
target key populations. For example, although such targeted interventions may 
reduce HIV-1 incidence and transmission among the targeted key populations, it is 
possible that that under similar conditions as in the mixed Kenyan HIV-1 epidemic, 
targeting key populations may only have a limited effect on HIV-1 incidence in the 
much larger heterosexual population and other intervention strategies may, 
therefore, be more cost-effective.  
 
Evidence of geographic HIV-1 mixing in Kenya 
Of the 409 HIV-1 clusters identified (paper I), the majority (60.6%) were province-
exclusive irrespective of transmission risk group, including clusters from Nairobi 
(26.2% of all clusters), Coast (14.2%), Nyanza (12.5%), Rift Valley (5.6%), 
Western (1.5%), and Central provinces (0.7%). The remaining clusters (39.4%) 
were mixed between different geographic provinces.  
 
Pairs of geographic provinces located next to each other were involved in an 
extensive cyclic HIV-1 exchange – and West-to-East migration accounted for the 
majority (76.1%) of all within-country jumps (compared to East-to-West migration 
which accounted for only 23.9% jumps between provinces). These phylodynamic 
estimates reveal a pattern of HIV-1 transmission from higher-to-lower HIV-1 
prevalence regions than vice versa (76.1% vs. 23.9%, Student’s T-test, p=0.001; 
with both uniform and proportional sub-sampling, as well as when restricting the 
temporal focus to recent years, i.e. 2010-2019). Irrespective of transmission risk, the 
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largest number of people with HIV-1, and approximately 40% of all newly 
diagnosed HIV-1 infections in Kenya have occurred in Western Kenya11. 

Interestingly, inter-provincial transmission dynamics in the MSM HIV-1 epidemic 
(paper III) revealed a high proportion of HIV-1 export from Coast province to other 
provinces (Nairobi and Nyanza) – implying that the Coast province could have been 
a major geographic source of HIV-1 transmission amongst Kenyan MSM. Of all 
provinces in Kenya, the Coast province has had the highest prevalence of HIV-1 
among MSM278. In addition, MSM in Coastal Kenya have been known to be highly 
mobile, and some reported engaging in sex work in different locations across the 
country277. This might explain the high rates of HIV-1 export from Coast observed 
in this study. 

Taken together results from papers I and III demonstrate that transmission 
dynamics involving HIV-1 key populations in Africa may vary compared to 
dynamics in the heterosexual epidemic. There is a need to increase HIV-1 research 
involving different risk populations in Africa.  

The effective population size had stabilised at a high level 
Phylodynamic analysis investigating the evolutionary dynamics of HIV-1 in various 
risk groups revealed that the number of effective infections279 had stabilised at a 
high level (Fig. 22). The estimated trends in past effective population sizes also 
mirrored overall temporal trends in the Kenyan HIV-1 epidemic (as shown in Fig. 
3). The epidemic grew exponentially during the mid-1980s to late-1990s but had 
stabilised during recent years, perhaps owing to the national roll-out of ART in 2004 
and increased linkage to HIV-1 care programs which may have reduced the number 
of new infections. 

Figure 22. Population dynamics in the HIV-1 epidemic among HET and mixed-risk group clusters. Bayesian 
Skygrid plots showing historical population dynamics in different risk groups in Kenya. Median estimates of the 
effective population size over time are shown as continuous lines (Yellow, HET; Blue, PWID; and Green, MSM). 
The shaded area represents the 95% higher posterior density (HPD) intervals of the inferred effective population 
size.
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Likewise, a closer look at the MSM HIV-1 epidemic (paper III) revealed a 
declining effective population size for the dominant strain (HIV-1 A1, 2017-2019, 
albeit with a broad confidence interval, Fig. 23). This could probably reflect benefits 
from earlier ART initiation280, risk reduction counselling281,282, or early recognition 
of acute HIV-1 infections283-285. Some studies have also shown some uptake of pre-
exposure prophylaxis among MSM in recent years286-289. Although it has been 
difficult to model the effectiveness of these recent interventions on the epidemic 
size, future studies may be able to do so using MSM HIV-1 sequences that are 
currently being sampled in various ongoing cohorts. 
 

 
Figure 23. Population dynamics of HIV-1 sub-subtype A1, subtype D and subtype C lineages among MSM 
in Kenya. Bayesian Skygrid plots showing population dynamics of the (a) HIV-1 sub-subtype A1, (b) HIV-1 
subtype C and (c) HIV-1 subtype D lineages in Kenyan MSM. Median estimates of the number of MSM 
contributing to new infections are shown as continuous lines ( Red for sub-subtype A1, Brown for subtype C, and 
Blue for subtype D). The shaded area represents the 95% higher posterior density (HPD) intervals of the inferred 
effective population size for each lineage. HIV-1 A1 had declining dynamics approaching 2020.  
 
Overall, in addition to existing broad epidemic control strategies in the general 
epidemic, increasing access to treatment – as well as de-stigmatisation and 
diversification of providers may further reduce HIV-1 incidence among key 
populations in Kenya245. 
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High levels of pre-treatment and acquired drug resistance in different risk 
groups 
The overall prevalence of pre-treatment HIVDR in Kenya was high (>15%) – 
exceeding WHO’s 10% threshold for changing first-line NNRTI-based ART to 
INSTI-based ART135. Compared to HET, pre-treatment HIVDR was higher among 
PWID (adjusted odds ratio, aOR, 3.5, 95% confidence interval, CI: 1.7-5.4, 
p<0.001), and children (aOR, 4.3, 95% CI: 2.7-7.0, p<0.001, paper II).  

The high pre-treatment HIVDR observed mostly reflected high levels of NNRTI 
drug resistance in all risk groups. There was no significant difference in pre-
treatment HIVDR  between HET and MSM (aOR, 1.0, 95% CI: 0.7-1.5, p=0.921) 
and between HET and FSW (aOR, 1.1, 95% CI: 0.6-1.7, p=0.842).  

Notably, pre-treatment NRTI drug resistance was only moderate (<10%) and there 
was no pre-treatment HIVDR to INSTIs, a key component of globally 
recommended regimens for HIV-1 treatment.  

Interestingly, whilst overall (and NNRTI) pre-treatment HIVDR among FSW and 
MSM increased during 2015-2020, there was a decreasing trend among HET during 
2016-2020 which coincided with the nationwide transition from NNRTI to INSTI-
based ART regimens290. Thus, the pre-treatment HIVDR identified against older 
drug classes (NNRTIs) may not be clinically relevant, and current ART guidelines 
combining DTG with two NRTIs may remain effective in controlling the nationwide 
epidemic290.  

In the recent past, ART coverage in Kenya has been much lower among key 
populations compared to HET in the general population10. As of 2020, ART 
coverage was 73% in FSW, 68% in PWID, and 63% in MSM, compared to 86% in 
the general (largely heterosexual) epidemic10. Low ART coverage (and 
consequently lower virus suppression rates) among key populations could have 
increased the risk of transmission of resistant strains within these groups. This may 
explain the higher proportion of pre-treatment HIVDR among MSM and PWID 
compared to lower risk HET with better access to HIV-1 treatment services.  

The drug resistance levels estimated among key populations in Kenya were higher 
than estimates from higher-income settings with equitable access to ART and better 
patient monitoring291. Our findings may reflect the status of HIVDR in other global 
regions with a similar HIV epidemic as Kenya. Further research may be necessary 
to monitor trends in HIV-1 drug resistance trends among different populations in 
sSA.  
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Conclusions from a review of studies on HIV-1 phylogenetic linkages between 
populations in sSA 
In summary, in paper VI9, the HIV-1 sub-epidemics in several African countries 
appeared to be localized in specific communities (with limited HIV-1 flow between 
neighboring communities) – although some HIV-1 geographic hotspots have been 
identified. Furthermore, human migration linked to economic activities (including 
mining and fishing) may have contributed to increased HIV-1 transmission.  
 
Few studies had investigated HIV-1 clustering between different risk groups in 
sSA9. Overall, in addition to the expected HIV-1 links between HET and FSW 
owing to sex work, several studies had observed low rates of HIV-1 clustering 
between HET females and MSM – proof of HIV-1 mixing between MSM and HET. 
However, HIV-1 mixing appeared to be at relatively low rates across the region 
(although this had been difficult to quantify empirically because of the shortage of 
HIV-1 sequence data from MSM, FSW, and PWID). Further research to reveal the 
factors driving the HIV-1 epidemic in sSA is needed. 
 
Molecular characterization of a paediatric HIV-1 outbreak in Larkana, 
Pakistan 
 
Main findings 

• HIV-1 CRF02_AG and sub-subtype A1 were the dominant HIV-1 variants 
in the epidemic (paper V). 

• Outbreak sequences exhibited no phylogenetic mixing with sequences from 
other HIV-1 infected key populations in Pakistan (paper V). 

• Multiple clusters were indicative of a multi-source, and not a single-source 
outbreak (paper V). 

 
Previously, the HIV-1 epidemic in Pakistan has concentrated among PWID, MSM, 
transgender people, and sex workers292. However, in April 2019, an extensive HIV-
1 outbreak involving more than 1000 children occurred in the Larkana District, 
Pakistan293. Perinatal transmissions were ruled out because the majority of the 
children were from HIV-1 seronegative mothers294. Clinicians and researchers 
suspected that HIV-1 transmission in this outbreak was linked to poor infection 
prevention control practices including reuse of needles and inadequate blood 
screening. Initial reports alluded to a single-source outbreak247. In paper V, we 
investigated HIV-1 clustering patterns using HIV-1 sequences from the outbreak 
and HIV-1 key populations (PWID, FSW, and MSM)250.  
 
HIV-1 sequences from the outbreak belonged to different HIV-1 strains (mostly the 
recombinant CRF02_AG and sub-subtype A1). Four phylogenetically linked 
clusters within the outbreak were identified. The HIV-1 outbreak sequences 
exhibited no phylogenetic mixing with sequences from other key populations of 
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Pakistan. The presence of multiple clusters of different subtypes was evidence of 
several introductions of HIV-1 into the children population in Larkana, contrasting 
speculations of a single source outbreak from a single health practitioner247. The 
median tMRCAs of the Larkana outbreak sequences were estimated to 2016 for both 
the CRF02_AG and the subtype A1 clusters. This suggested longstanding 
transmissions going back several years before the reported outbreak in 2019.  
 
The multiple introductions were likely a consequence of ongoing transmission 
within key populations in Larkana, and possibly, the Larkana strain may have been 
introduced into the general population through poor infection prevention control 
practices in healthcare settings295-297. Overall, the study (paper V) highlights the 
need to scale up HIV-1 prevention programmes among different population groups, 
to improve blood safety and infection prevention control, and to eliminate structural 
and social barriers to health service delivery to different HIV key populations in 
Pakistan, and other LMICs. 
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Limitations, potential solutions, and 
future perspectives 
Determining the driving factors in the global HIV-1 epidemic may be important to 
guide targeted HIV-1 prevention298. Phylogenetic methods could help in 
characterizing such driving factors but rely on the availability of densely sampled 
virus sequences obtained from well-characterised cohorts. Unfortunately, HIV-1 
key populations are particularly hard to reach in most African countries, which 
makes it exceedingly difficult to obtain virus samples from these populations. 
However, where some HIV-1 data are available from key populations (as in this 
dissertation), it is possible to discern patterns in HIV-1 spread between various risk 
groups, even in a mixed epidemic. 

Phylogenetic clustering represents indirect evidence of epidemiologic linkages and 
might not fully represent the true transmission networks – especially in datasets with 
low sequence coverage in the studied epidemic. Studies with well characterised 
patient demographics and dense sampling among infected individuals have provided 
useful information for HIV-1 prevention (especially in Europe and Northern 
America settings)4,5,274,299-303. However, low sampling density (and the shortage of 
HIV-1 sequences from key populations) is a constant limitation to phylogenetic 
studies in sSA9. A low sampling density generally results in missing links and 
smaller HIV-1 clusters, and may therefore limit the reliability of phylogenetic 
inference304. 

In sSA, few phylogenetic studies have investigated HIV-1 clustering between HIV-
1 key populations and HET (summarized in the review paper VI)9. In addition to 
the expected HIV-1 links between HET and FSW owing to sex work, several other 
studies have reported low rates of HIV-1 clustering between HET females and MSM 
– concrete proof of HIV-1 mixing between MSM and HET. Likewise, findings from
studies in this dissertation (paper I and IV) support the hypothesis of limited HIV-
1 mixing between HET and key populations (MSM and PWID) in Kenya. This fi
ding likely applies to other countries with a similar epidemic in sSA.

However, future studies in sSA need to achieve larger and proportional sample 
coverage across all risk groups and geographic locations. Concurrent with 
increasing sampling coverage, emphasis should be made to capture patient 
demographic information (and data on sampling dates and location) during 
sampling. We observed that many publicly available HIV-1 sequences from Africa 
lack accompanying patient demographic data. Despite this shortcoming, such 
published sequences still represent an incredible source of HIV-1 sequence data 
(although findings based on such sequences may require careful interpretation). For 
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instance, in the case of published sequences lacking risk data, based on phylogenetic 
clustering, the probable risk group for nodes within a cluster with inadequate 
annotation may be deduced from association with nodes with a known risk group. 
This approach was recently used to identify potential non-disclosed MSM (self-
reported HET men who clustered only with men) in the United Kingdom301. Yet, 
given that low HIV-1 sampling in sSA may persist in the unforeseen future, 
statistical and or phylogenetic models that control for missed sampling may need to 
be developed. 
 
While phylogenetic models may reveal and quantify the movement of viruses 
between locations and risk groups, they are limited in the in-depth determination of 
how and where virus transmission have occurred without additional information, 
e.g. on human movement. Residents in a community may get infected while living 
or travelling outside their homes and such external introductions could be further 
disentangled by combining movement and migration data with virus data. Although 
these mobility methodologies have been developed and used to quantify the impact 
of human mobility on malaria transmission in different African countries, their 
application in deciphering HIV-1 transmission is limited305-307. Therefore, there is a 
need to incorporate mobility networks into the phylogenetic spatiotemporal models 
to quantify the HIV-1 movement patterns and links between locations and 
communities more precisely. 
 
Overall, some consortia (such as the MSM Health Research Consortium in Kenya 
and PANGEA-HIV: phylogenetics for generalized epidemics in Africa) have been 
established to sample various populations across Africa. There are also plans to 
expand sampling – especially among MSM and other HIV key populations in 
various countries in sSA. It is possible that a more homogenous and dense sampling 
from the participating countries may be achieved in the near future to improve and 
strengthen the limitations of phylodynamic methods in characterizing the mixed 
HIV-1 epidemic in sSA8. 
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ABSTRACT 

In Kenya, HIV-1 key populations including men having sex with men (MSM), people who inject drugs 

(PWID) and female sex workers (FSW) are thought to significantly contribute to HIV-1 transmission 

in the wider, mostly heterosexual (HET) HIV-1 transmission network. However, clear data on HIV-1 

transmission dynamics within and between these groups are limited. We aimed to empirically quantify 

rates of HIV-1 flow between key populations and the HET population, as well as between different 

geographic regions to determine HIV-1 “hotspots” and their contribution to HIV-1 transmission in 

Kenya. We used maximum-likelihood phylogenetic and Bayesian inference to analyse 4058 HIV-1 pol 

sequences (representing 0.3% of the epidemic in Kenya) sampled 1986–2019 from individuals of 

different risk groups and regions in Kenya. We found 89% within-risk group transmission and 11% 

mixing between risk groups, cyclic HIV-1 exchange between adjoining geographic provinces and 

strong evidence of HIV-1 dissemination from (i) West-to-East (i.e. higher-to-lower HIV-1 prevalence 

regions), and (ii) heterosexual-to-key populations. Low HIV-1 prevalence regions and key populations 

are sinks rather than major sources of HIV-1 transmission in Kenya. Targeting key populations in Kenya 

needs to occur concurrently with strengthening interventions in the general epidemic.
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INTRODUCTION 

The world is off-track on the United Nations Programme on HIV and AIDS (UNAIDS) objective to 

reduce the global HIV-1 incidence rate, with an estimated 1.7 million new HIV-1 infections in 20191. 

To fast-track reduction in global HIV-1 incidence whilst also achieving efficiency gains, UNAIDS 

directs national governments to invest strategically in HIV-1 programmes. This includes directing 

treatment and prevention to HIV-1 key populations (defined as UNAIDS as gay men and other men 

who have sex with men [MSM], people who inject drugs [PWID], sex workers [FSW], transgender 

people, and sex partners of key populations)2. An approach to inform decision-making is to identify 

populations populations that contribute with a disproportionate number of infections in local epidemic 

and to eliminate structural and social barriers to health service delivery among key populations3,4.  

 

In North America and European settings, the HIV-1 epidemic mainly affects HIV-1 key populations, 

and the availability of large numbers of HIV-1 genetic sequences and associated patient risk group 

information have allowed extensive characterisation of HIV-1 networks5-7. In contrast, in sub-Saharan 

Africa (accounting for 65% of all new HIV-1 infections globally), the HIV-1 epidemic mainly affects 

the heterosexual population (HET). However,  pockets of concentrated sub-epidemics involving high-

risk groups have also been described8-10. Additionally, there is evidence of overlapping sexual networks 

and phylogenetic linkages between HIV-1 key populations and HET10. However, the scarcity of HIV-

1 sequences from key populations has limited phylogenetic assessment of HIV-1 transmsission within 

and between key populations and lower-risk populations in sub-Saharan Africa. 

 

Kenya has the fifth-largest number of people with HIV-1 in the world, and the early HIV-1 epidemic in 

the country was defined exclusively as heterosexual and involving FSW and long-distance truck 

drivers11,12. As a consequence, governmental HIV-1 surveillance did not focus on other marginalised 

key populations such as MSM and PWID4,13,14. The Kenyan Ministry of Health has reported high HIV-

1 prevalence among key populations (29.3% among FSW, 18.2% among MSM and 18.2% among 

PWID, compared to 4.5% in the general epidemic)15,16. As a consequence, directed programmes for key 

populations have been initiated based on the assumption that they contribute with a disproportionate 

number of infections to the larger HIV-1 transmission network in the nationwide epidemic16,17. 

However, phylogenetic studies in Coastal Kenya have suggested that most HIV-1 transmissions occur 

within risk groups (with only 15% of the identified clusters reflecting mixing between MSM, FSW, and 

HET in Coastal Kenya)18,19. Moreover, to the best of our knowledge, no study has empirically assessed 

the rates of HIV-1 flow between key populations and the heterosexual population in Kenya. Also, spatial 

mapping of the Kenyan epidemic has revealed extensive geographic heterogeneity with HIV-1 

prevalence ranging from less than 1% in the North Eastern province to more than 20% around the shores 

of Lake Victoria in the Western regions of the country 11. Such spatial differences in HIV-1 distribution 

likely influence HIV-1 diffusion dynamics 20,21, but HIV-1 transmission rates between different 

geographic areas in Kenya are still unknown.  

 

Phylodynamic analysis has been widely used to determine HIV-1 networks, reconstruct virus historical 

spatial dissemination, as well as assessing rates of virus flow between populations with varying HIV-1 

prevalence7,18,19,22-29. However, due to the scarcity of HIV-1 sequences from key populations, 

phylogeographic assessment of HIV-1 transmission rates between populations are rare in sub-Saharan 

Africa28. Here, we combined HIV-1 phylogenetic and epidemiological data to reconstruct HIV-1 

networks and to empirically quantify rates of HIV-1 flow between risk groups and geographic regions 

to identify and determine the contribution of HIV-1 “hotspots” in sustaining HIV-1 transmission in 

Kenya. We hypothesised that virus flow would be predominantly from high prevalence “hotspots” to 

the lower prevalence populations.  
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METHODS  

 

Study population and sequence dataset 

New HIV-1 pol sequences were generated from blood plasma obtained through studies conducted 

through the MSM Health Research Consortium – a multi-site collaboration between researchers 

affiliated with KEMRI-Wellcome Trust (KWTRP) in Coastal Kenya, Nyanza Reproductive Health 

Society (NRHS) in Western Kenya, Kenya AIDS Vaccine Initiative’s Institute of Clinical Research 

(KAVI-ICR), and Sex Workers Outreach Program (SWOP) clinics in Nairobi. These included samples 

from Coast derived from participants in a prospective observational cohort (2006-2019)30, samples from 

Nairobi from a respondent-driven sample survey (TRANSFORM, 2017)31, and samples from Nyanza 

derived from the Anza Mapema cohort (2015-2017)32. Additional nationwide HIV-1 pol sequences 

(2008-2018) were obtained from the national HIV-1 reference laboratory at the Kenya Medical 

Research Institute (KEMRI) – Centre for  Global Health Research.  

 

In addition, all published Kenyan HIV-1 pol sequences (1986-2019, corresponding to HXB2 positions 

2000-3600) available in the Los Alamos HIV-1 sequence database were retrieved March 19th 202033. 

In cases where more than one sequence per individual was available, the oldest sequence was retained. 

Newly generated and publicly available sequences were annotated with sampling date, sampling 

location  (province), treatment status, age, sex, and risk group (MSM [men who reported having sex 

with men]; PWID [men and women who inject drugs]; FSW [female sex workers]; and HET [presumed 

heterosexuals including men and women for whom risk assessment was not available]). Missing 

information for published sequences was retrieved from relevant studies or obtained through 

communication with study authors 19,24,34-42.  

 

RNA extraction, DNA amplification, and partial HIV-1 pol sequencing 

HIV-1 RNA was extracted from blood plasma samples using the RNeasy Lipid Tissue Mini Kit 

(QIAGEN) with modifications from the manufacturer’s standard protocol43. Briefly, 100 µl patient 

blood plasma was lysed in 1000 μl Qiazol Reagent. Reverse transcription and amplification of partial 

HIV-1 pol gene were performed using the One-Step Superscript III RT/Platinum Taq High Fidelity 

Enzyme Mix (ThermoFisher ScientificTM) with the pol-specific primer pair JA269 and JA27244. First-

round PCR products were amplified in a nested PCR with DreamTaq Green DNA Polymerase 

(ThermoFisher ScientificTM) using pol-specific primers JA271 and JA27044. PCR products were 

sequenced in both directions with the nested PCR primers using the BigDye terminator kit v1.1 (Applied 

Biosystems). New HIV-1 pol sequences (approximately 1020 nucleotides [nt], HXB2 [K03455] 

positions 2267-3287) were determined on an ABI PRISM 3130×1 Genetic Analyzer (Applied 

Biosystems). 

 

Population estimates and sampling density 

Sampling density (the proportion of genotyped HIV-1 sequences in the estimated number of HIV-

infected individuals per geographic location and risk group) was computed based on national HIV-1 

prevalence estimates 11,16,17,45-47. 

 

Subtype analysis 

All Kenyan HIV-1 pol sequences were combined and aligned with the Los Alamos HIV-1 Group M 

(subtypes A-K + Recombinants) subtype reference dataset (http://www.hiv.lanl.gov) using the MAFFT 

algorithm in Geneious Prime 2019 48. The HIV-1 subtype/circulating recombinant form (CRF) for each 

sequence was determined by maximum-likelihood (ML) phylogenetic analysis in PhyML using the 

general time-reversible substitution model with a gamma-distributed rate variation and proportion of 

invariant sites (GTR+Γ4+Ι) 49. Branch support was determined by the approximate likelihood ratio test 

with the Shimodaira-Hasegawa-like procedure (SH-aLRT) in PhyML, and SH-aLRT support values 

0.90 were considered significant 49. The Subtype/CRF-resolved phylogeny was visualized using 

FigTree v1.4.4 (https://github.com/rambaut/figtree/releases). Unique recombinant forms (URFs) were 

characterised by boot-scan analysis in SimPlot 50-52. 

 

 

http://www.hiv.lanl.gov/
https://github.com/rambaut/figtree/releases
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Cluster analysis  

Sequences were grouped into subtype-specific datasets and the most similar non-Kenyan sequences for 

each available Kenyan sequence were determined by a BLAST, as previously described7,18,26. 

Redundant sequences or clonal sequences from the same individual were removed from the dataset. All 

sequences were aligned by subtype and subtype-specific, and alignments were manually edited to 

exclude codon positions associated with drug resistance. Maximum-likelihood phylogenies were 

reconstructed in PhyML49. For each subtype, monophyletic clades with aLRT-SH support 0.9 and 

which were dominated (80%) by Kenyan sequences (compared to reference sequences) were defined 

as Kenyan HIV-17,18,26,53. Identified clusters were classified into dyads (2 sequences), networks (3-14 

sequences), or large clusters (>14 sequences)7. 

 

Bayesian phylodynamic inference 

HIV-1 evolutionary origins and past population dynamics were determined using subsets of the main 

subtypes as well as for the large clusters identified in the cluster analysis. Only sequences with 

information on sampling dates were included in this analysis. The temporal signal was assessed in 

TempEst (v1.5.3) 54. Bayesian inferences were done in BEAST 1.10.4 using the Bayesian Skygrid 

model with an uncorrelated lognormal relaxed clock and inferred under the GTR + Γ4 + Ι substitution 

model55-58. To enhance precision in estimating evolutionary parameters within and between clusters 

from different risk groups, a previously described hierarchical phylogenetic model (HPM) was specified 

on evolutionary parameters59. Each MCMC chain was run for 300 million states, sampling every 

30,000th iteration and discarding the first 10% as burn-in. Convergence was determined in Tracer v.1.7.0 

and defined as effective sample sizes (ESS) ≥20055 – and where this was not achieved, the burnin was 

adjusted or the analysis re-run with a longer chain60. 

 

Bayesian phylogeographic inference 

We computed a discrete phylogeographic inference using an empirical tree distribution – where the 

expected number of HIV-1 migrations for every pathway were inferred on a branch-by-branch basis as 

previously described20,61. Sampling province and risk group were used as independent discrete states. 

The asymmetric continuous-time Markov chain (CTMC) model was preferentially used as it relaxes the 

assumption of constant diffusion rates through time to realistically model phylogeographic 

processes61,62. A robust counting approach implemented in BEAST was used to estimate the forward 

and reverse HIV-1  movement events (Markov jumps) between locations and risk group states along 

the branches of time dated phylogenetic trees 63. Well-supported movements and Bayes factors (BF) 

assessing statistical support were summarized using SPREAD v1.0.7, (BF≥3 was considered 

significant) 61. Maximum clade credibility (MCC) trees annotated with key demographic and 

epidemiological data were summarized in Tree-Annotator v1.10.4 (BEAST suite) and visualized in 

Figtree (v1.4.4). 

 

Sensitivity analysis 

In Kenya, the vast majority (35%) of people with HIV-1 are in Nyanza province, followed by Rift 

Valley (17%), Nairobi (13%), Western (9%), Central (9%), Eastern (9%), Coast (7%), North Eastern 

(<1%) –  and modes of transmission estimates have shown that 64% of infections result from 

heterosexual contact among casual or married couples, female sex work (14%), men having sex with 

men (15%) and injection drug use (4%)11,16,46.  

 

Phylogeographic analysis is sensitive to sampling size (on one hand, a small sample size might not be 

informative enough to infer migration profiles and on the other hand, analyzing thousands of sequences 

using the MCMC procedure is extremely computationally intensive and MCMC parameters often fail 

to converge)20,28,61. In addition, skewed sampling may further bias inference due to over-sampling some 

traits compared to others. It is therefore essential that the sampling strategy ensures a sufficiently 

representative number of samples from each discrete trait to avoid over-scoring transitions or counts in 

the empirical tree distribution. This necessitates down-sampling over-sampled traits to reduce bias, and 

excluding under-represented traits from the analysis60,64,65. In our dataset, Western, Central, Eastern and 

North-Eastern provinces were underrepresented and hence excluded, and temporal focus was limited to 

sequences collected after 2004. Focus was on transitions between four locations (Nyanza, Rift Valley, 
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Nairobi, and Coast),  and between risk groups (MSM, PWID, FSW, and HET), and several approaches 

were used to limit sampling bias arising from the disproportional allocation of sequences per discrete 

state (described in detail below). HIV-1 sequences were first annotated with the year of sampling (2004-

2019) and a discrete trait (risk group or location). In-house Perl scripts were used to randomize and 

select a set of sequences with uniform or proportional probability whilst also ensuring temporal 

sampling fidelity60.  

 

In detail, in the first scenario, location-annotated HIV-1 sequences were sub-sampled proportional to 

the HIV-1 prevalence per geographic province. This procedure was independently replicated 30 times 

– resulting in 30 datasets each having 892 sequences of which 35% were from Nyanza, 17% Rift Valley, 

13% Nairobi, and 7% Coast. A similar approach was taken with risk group as a discrete state – resulting 

in thirty datasets  each having 802 sequences of which 64% were from HET, 14% FSW, 15% MSM, 

and 4% PWID. Cluster analysis (as described above) was performed independently for each dataset. 

Clusters having >14 sequences were identified – and discrete state phylogeographic analysis with 

Markov jumps inferences were then performed independently for each of the identified clusters. 

Next, we further explored whether the population dynamics seen in recent years (i.e. 2010-2019) were 

different from those observed in the complete dataset (i.e. 2004-2019). In the second sensitivity 

analysis, HIV-1 A1 sequences collected during 2010-2019 were sub-sampled proportionally as was 

done in the first scenario – resulting in five independent datasets with location-annotation (each having 

144 sequences – 35% from Nyanza, 17% Rift Valley, 13% Nairobi, and 7% Coast), and five 

independent datasets with risk group annotation (each having 97 sequences – 64% HET, 14% FSW, 

15% MSM, and 4% PWID). However, unlike in the cluster-wise approach, the complete sub-sampled 

datasets were used directly to estimate virus migration between states. In the third sensitivity analysis, 

HIV-1 A1 sequences collected during 2010-2019 were sub-sampled uniformly into five datasets with 

equal number of sequences per discrete state. The location-annotated dataset had 100 sequences (25 

sequences from each province), while the dataset annotated for risk group had 108 sequences (27 

sequences for each risk group).  

 

Statistical analysis 

Changes in the proportion of HIV-1 subtypes and recombinants over time were assessed using the 

nptrend non-parametric test for trends 66. Frequencies and percentages were used to describe the 

distribution of sequences within the study population. A logistic regression model was used to assess 

associations between individual sequence characteristics (e.g. subtype/CRF, location of sampling, risk 

group, and year [range] of sampling) and phylogenetic clustering. Variables with p<0.1 in exploratory 

bivariable analyses were included in the multivariable model, in which p<0.05 was defined as 

statistically significant. A Kruskal-Wallis H test and a post hoc Dunn’s test with Bonferroni correction 

for multiple comparisons were conducted to determine differences in HIV-1 evolutionary rate, cluster 

growth rates, and time to the most recent common ancestor (tMRCA) estimates among clusters from 

multiple risk groups. Statistics and summary plots were done using Stata 15 (StataCorp LLC, College 

Station, Texas, USA) and RStudio (version 1.2.5001) with the packages: yarrr, circlize and ggplot2 67-

69. 

 

Ethical considerations 

All research was performed following relevant guidelines/regulations. For the newly generated 

sequences, informed consent for use of plasma samples was obtained from all participants from 

respective studies. Since published sequences were obtained from an open-access public domain, 

informed consent was not retrospectively obtained. Instead, we sought approval through a study 

protocol that was reviewed by the Kenya Medical Research Institute (KEMRI) Scientific and Ethics 

Review Unit (SERU 3547). 

 

Data availability 

Newly generated nucleotide sequences were deposited in GenBank under the following accession 

numbers: MT084914-MT085076, and OM109695-OM110282. 
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RESULTS  

Study population and sequence dataset  

We analysed 4058 HIV-1 pol sequences collected 1986-2019, of which 3303 (81.4%) were previously 

published and 755 (18.6%) newly generated for this study (Table 1, Supplementary Figure S1, and 

Supplementary Table S1). Most sequences were from HET (N=3401, 83.8%), followed by MSM 

(N=372, 9.2%), FSW (N=227, 5.6%), and PWID (N=58, 1.4%). Overall, these numbers represent an 

estimated sampling density of 0.3% of the HIV-1 epidemic in Kenya, and specific sampling densities 

of 10.8% for MSM, 1.7% for PWID, 0.6% for FSW, and 0.3% for HET (Supplementary Table S2). 

Sequences were available from seven (of eight) former administrative provinces in Kenya: Nairobi 

(N=1440, 35.5% of the sequences in this study); Coast (N=1061, 26.2%); Nyanza (N=665, 16.4%); Rift 

Valley (N=508, 12.5%); Western (N=158, 3.8%); Central (N=44, 1.1%); Eastern (N=6, 0.2%); and 176 

(4.3%) sequences with missing data on sampling location (Table 1, and Figure 1). All PWID sequences 

were derived from the Coast province. Sampling year and place were missing for 176 (4.3%) of the 

newly generated HET sequences. These sequences were included in the assessment of subtype diversity 

in Kenya but excluded from the Bayesian phylodynamic analysis (which necessitates information on 

sampling date). In our dataset, 14 MSM identified as transgender persons. Subsequent sub-analyses 

were made to tease out clustering patterns specific for transgender persons relative to other risk groups. 

 

HIV-1 sub-subtype A1 and subtype D dominated the epidemic in Kenya 

Among the combined new and published Kenyan sequences (N=4058, Supplementary Table S3), HIV-

1 sub-subtype A1 was most common (70.5%) followed by subtype D (11.4%, Supplementary Figure 

S2). Sub-subtype A1 was also the most common HIV-1 strain in all provinces and amongst all risk 

groups (Supplementary Table S4, and Supplementary Table S5, respectively). Temporal trend analysis 

in subtype distribution was restricted to the period after 2004 that comprised 92.0% of the sequences 

(Supplementary Figure S2). Sub-subtype A1 infections increased from 59.7% to 78.3%, 2004-2019 

(p<0.001). No significant change was seen for subtype C (p=0.30) or subtype D (p=0.59), whereas 

subtype G decreased from 1.2% to 0.0%, 2004-2019 (p=0.013). Overall, CRFs decreased from 2.7% to 

0.0%, 2004-2019 (p=0.005), whereas URFs decreased from 11% to 0.9%, 2004-2019 (p=0.001). 

Bayesian inference also revealed that the effective population size estimates for HIV-1 sub-subtype A1 

were consistently higher than those for HIV-1 subtypes C and D throughout the study period (Figure 

2). 

 

HIV-1 geographic mixing within and between provinces in Kenyan  

Overall, 1832 (45%) of Kenyan sequences were found in 409 clusters including sub-subtype A1 

(N=306, 74.8%), subtype C (N=25, 6.1%), and subtype D (N=78, 19.1%) clusters (Table 2, 

Supplementary Table S6, Supplementary Figure S3, and Supplementary Figure S4).  

Overall, 1485 (51.9%) of sub-subtype A1 sequences, 137 (48.1%) subtype C, and 210 (45.6%) subtype 

D formed clusters. The remaining 1375 (48.1%) sub-subtype A1, 148 (51.9%) subtype C, and 251 

(54.5%) sequences were singletons (Supplementary Table S6). Majority (N=248, 60.6%) were 

province-exclusive, including clusters from Nairobi (N=107, 26.2%), Coast (N=58, 14.2%), Nyanza 

(N=51, 12.5%), Rift Valley (N=23, 5.6%), Western (N=6, 1.5%), and Central (N=3, 0.7%). The 

remaining clusters (N=161, 39.4%) were mixed between different geographic provinces 

(Supplementary Figure S5a).  

 

Within-risk group clustering dominated among Kenyan HIV-1 clusters 

Majority (N=362, 88.5%) of the clusters represented within-risk group HIV-1 transmission including 

HET (N=316; 72.1%), MSM (N=37, 9.1%), FSW (N=7, 1.7%) and PWID (N=2, 0.5%). Further and 

amongst PWID, only two clusters were identified (one dyad and one large cluster, both PWID 

exclusive), with the large cluster comprising 80% of all PWID sequences in the dataset (N=41). The 

remaining clusters (N=47, 11.5%) involved mixed linkages between different risk groups including 

MSM/HET (N=15, 3.7% of all clusters), FSW/HET (N=15, 3.7%), MSM/FSW/HET (N=9, 2.2%), 

MSM/FSW (N=6, 1.5%), MSM/PWID/FSW/HET (N=1, 0.2%), and PWID/HET (N=1, 0.2%) mixed 

clusters (Table 2, Supplementary Figure S5b). A sub-analysis of clustering patterns involving 

transgender people showed that nine of 14 (64.3%) clustered with MSM, four clustered with  HET 

(28.6%), and one did not cluster with any other sequences in the dataset (7.1%). Compared to HET, 
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MSM and PWID sequences were more likely to cluster (adjusted odds ratio [aOR] 4.4, 95% confidence 

interval [CI] 3.2-6.0, p<0.001; and aOR 3.4, CI 1.8-6.5, p<0.001, respectively, Table 3). 

 

The effective population size has stabilised over time amongst all risk groups 

The correlation between divergence from root and time of sampling was low in our dataset (i.e. R2 = 

0.139,  0.136, and 0.121 for the sub-subtype A1, subtype C, and subtype D datasets, respectively, 

Supplementary Figure S6). Thus normal priors were specified for the time of the most recent common 

ancestor (tMRCA) of sub-subtype A1, subtype C and subtype D, based on previous estimations20,22.  

The inference of HIV-1 dynamics in the Kenyan epidemic was based on a Bayesian phylodynamic 

analysis of the large Kenyan HIV-1 clusters (19 sub-subtype A1 and one subtype C cluster 

(Supplementary Table S7). All sub-subtype A1 HET clusters exhibited similar dynamics 

(Supplementary Figure S7) and were merged in one plot to assess overall dynamics among HET (Figure 

3a). The number of effective infections (proportional to the transmission rate over the prevalence) for 

HET increased over time from 1987 to the mid-2000s, after which infections stabilised. The number of 

Kenyan PWID contributing to new HIV-1 infections over time increased gradually from 1987 to 2010, 

the latest sampling date for PWID (Figure 3c), whereas the MSM-exclusive cluster showed stable 

dynamics with no periods of exponential growth between 1991 and 2019, the latest sampling date for 

MSM (Figure 3d). The only large subtype C cluster that was found was a HET cluster – this cluster 

showed similar dynamics as the sub-subtype A1 HET clusters, with increasing effective population size 

from 1983 to the early 2000s followed by a stabilisation (Figure 3b).  

 

Evolutionary parameters were similar among clusters of different risk groups  

Subtype C had the earliest tMRCA (1977, 95% higher posterior density [HPD] interval: 1968-1985) of 

all clusters. The median tMRCA estimates of sub-subtype A1 clusters indicated multiple introductions 

into Kenya over 42 years (1978-2019), with most clusters introduced between the late 1980s and early 

1990s. The earliest tMRCA for a Kenyan HET cluster was estimated to 1978 (95% HPD interval: 1971-

1990); MSM to 1991 (HPD interval: 1974-2004); and PWID to 1987 (HPD interval: 1985-1990). The 

median HIV-1 evolutionary rates ranged from 1.01×10₋3 to 1.3×10₋3 substitutions site−1 year−1 (s/s/y) for 

subtype A1 in HET clusters and 1.28×10₋3 to 1.34×10₋3 s/s/y for mixed-risk group clusters. The median 

HIV-1 evolutionary rate for the only large MSM cluster was 9.80×10₋4 s/s/y, and 1.06×10₋3 s/s/y for the 

only large PWID cluster. Pairwise comparison of median evolutionary rates (with Bonferroni correction 

for multiple comparisons) showed no difference in evolutionary rates between HET and MSM 

(p=0.169), HET and PWID (p=1.00), and MSM and PWID (p=0.297). No statistical differences were 

found between tMRCA estimates or cluster growths between clusters of different risk groups, 

respectively (p=0.822, and p=0.321, Table 4, Figure 4). 

 

Evidence of West-to-East HIV-1 migration, and transmission from HET to key populations 

Phylogeographic analysis was based on HIV-1 sub-subtype A1 – the strain with the highest number of 

sequences in our study, and the most dominant strain circulating strain in Kenya. In all sensitivity 

analyses, Western, Central and Eastern provinces were excluded as they had the smallest number of 

sequences in the study, and sequences from transgender people and MSM were analysed together as 

one risk group.  The Markov jumps estimates from the cluster-wise phylogeographic inference indicated 

that the majority (62.6%) of HIV-1 jumps occurred within Kenyan borders whilst the remaining 

involved HIV-1 export (24.1%) from Kenya to other countries, and HIV-1 import (13.2%) to Kenya 

(Table 5). The proportion of West-to-East jumps over time was significantly higher than that of East-

to-West jumps (p=0.001, Figure 5a, and 4b). West-to-East migration accounted for the majority (76.1%) 

of all within-country jumps – including jumps from Nyanza to Nairobi (10.3%), Rift Valley to Nairobi 

(9.8%), Nyanza to Rift Valley (9.2%), Nyanza to Coast (6.3%), Rift Valley to Coast (6.3%), and Nairobi 

to Coast (5.7%). East-to-West migration accounted for only 23.9% within-country jumps and comprised 

jumps from Rift Valley to Nyanza (7.5%), Nairobi to Nyanza (4.6%), and Nairobi to Rift Valley (2.9%, 

Figure 5b). Pairs of geographic provinces located next to each other were involved in an extensive 

cyclic HIV-1 exchange – including transmission from Nyanza to Rift Valley (9.2% forward jumps 

versus 7.5% reverse jumps) and Rift Valley to Nairobi (9.8% vs 2.9%). Although Coast province 

received a significant proportion of translocated HIV-1  lineages (18.3% of all HIV-1 jumps), no within-

country HIV-1 jumps were observed as originating from Coast province. Uniform and proportional sub-
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sampling of the sequences collected 2010-2019 indicated more West-to-East virus flow than vice-versa 

(p<0.001 for all comparisons, Table 6, Supplementary Figure S8a and Supplementary Figure S8b). 

 

The cluster-wise phylogeographic inference showed that 82.9% of virus jumps between risk groups 

were from HET (involving HET-to-FSW [34.0%], HET-to-MSM [31.9%], and HET-to-PWID 

[17.0%]). Only 12.8% virus jumps were from key populations (involving MSM-to-HET [6.4%] and 

PWID-to-HET [6.4%], Figure 5d). The remaining were MSM-to-FSW virus jumps (4.3%, Table 5). 

Also, the proportion of virus jumps from HET to key populations over time was significantly higher 

compared with virus jumps from key populations to HET (p<0.001, Figure 5c). The earliest estimated 

Markov jump event from HET-to-FSW occurred in 1981, followed by HET-to-MSM (1986), and HET-

to-PWID (1990, Figure 5d). Virus jumps among HET were common as early as during the 1980s while 

virus jumps among  MSM (i.e. MSM-to-MSM) and among PWID (i.e. PWID-to-PWID) increased 

during the 1990s and 2000s, respectively (Figure 5d). Uniform and proportional sub-sampling of the 

sequences collected 2010-2019 indicated more HIV-1 jumps from HET to key populations than vice-

versa (p<0.001 for all comparisons, Table 6, Supplementary Figure S8c and Supplementary Figure S8d) 
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DISCUSSION 

We show that HIV-1 transmission in Kenya was largely compartmentalized by risk groups. This result 

is based on the identification of 409 statistically supported phylogenetic clusters – where a majority 

(88.5%) represents within-risk group clustering. Furthermore, we found that 11.5% of the clusters 

represented HIV-1 mixing between risk groups – including approximately 7.6% HIV-1 mixing between 

MSM and HET in Kenya. These findings are consistent with previous phylogenetic data in Coastal 

Kenya demonstrating minimal HIV-1 mixing between key populations and the heterosexual 

population18,19. We have previously estimated frequent (85%) within-risk group clustering, and minimal 

(15%) HIV-1 mixing between MSM and the HET in Coastal Kenya18. Likewise, Bezemer and 

colleagues – albeit with a small sample size and sequences only from Nairobi and Coast province only 

found one HIV-1 MSM/HET link, indicating infrequent HIV-1 mixing between MSM and HET19. The 

phylogeographic inference indicated a higher proportion of HIV-1 jumps from HET to MSM, FSW and 

PWID. However, the detected virus jumps represent rare events as overall transmission between risk 

groups is itself rare in the Kenyan epidemic (as shown in the cluster analysis). Yet, these findings 

indicate that contrary to concerns by the Ministry of Health in Kenya16, HIV-1 key populations may not 

disproportionately transmit HIV-1 to heterosexuals in the general epidemic. Also, it is well established 

that the vast majority of HIV-1 transmission in Kenya could be attributed to risky heterosexual 

behaviours15,70.  

 

Overall, our study highlights important dynamics in HIV-1 spread in the context of a mixed HIV-1 

epidemic and support the hypothesis of frequent within-risk group transmission and limited between-

risk group transmission18,19. This hypothesis is further strengthened by findings from a review of 35 

studies assessing HIV-1 mixing between HIV-1 populations in sub-Saharan Africa highlighting the 

predominance of within-risk group transmission chains in most countries10. To reduce population-level 

HIV-1 incidence in sub-Saharan Africa, HIV-1 control programs may require both broad-reaching 

interventions aimed at the general epidemic, as well as strengthening micro-strategies that address 

disparities among population categories (including scale-up of ART, HIV-1 testing and other prevention 

programs directed towards key populations such as MSM, PWID and FSW who are most-at-risk of 

infection)2,31,71-74. 

 

In this study, HIV-1 transmission in Kenya involved predominantly West-to-East dissemination, 

notably from high HIV-1 prevalence regions (including the former Nyanza province in Western Kenya) 

to comparatively lower HIV-1 prevalence regions (including former Coastal province). Irrespective of 

transmission risk, the largest number of people with HIV-1, and approximately 40% of all newly 

diagnosed HIV-1 infections have been suggested to occur in Western Kenya11. It is therefore plausible 

that the observed HIV-1 dissemination pattern reflects considerable HIV-1 transmission from high-to-

low HIV-1 prevalence regions, a finding that likely applies to other sub-Saharan African countries with 

substantial within-country variation in the prevalence of HIV-1. However, our findings contrast data 

from Uganda showing significant virus flow from low-to-high HIV-1 prevalence populations along the 

Lake Victoria21,27,28. In the current study, we did not have data on fishing folk and we did not assess 

transmission between fishing folk and inland communities. Yet, it is possible that some undisclosed 

fishing-folk were grouped with HET (unless where the risk group was known) and classified as 

belonging to the Nyanza province. The gradient in HIV-1 prevalence in Kenya decreases Eastwards, 

and we observe an overall higher proportion of HIV-1 migration from provinces in the West (Nyanza 

and Rift valley) towards provinces in the East (such as the Coast province). Mathematical modelling 

and empirical evidence have shown that directed approaches may reduce HIV-1 incidence across sub-

Saharan Africa76-79. Optimizing existing prevention strategies in geographic HIV-1 hotspots75 in sub-

Saharan Africa (such as Western Kenya) may therefore result in declining population-level HIV-1 

incidence3,80. 

 

Our study represents one of the largest national-level analyses of HIV-1 pol diversity that has been done 

in Africa. However, we were still limited by a low sampling density and data on how the study 

participants in the published studies were identified for sequencing. Low sampling likely resulted in 

missing links in identified Kenyan clusters and low probability of detecting some rare subtypes 

circulating in Kenya81. Moreover, PWID and their partners, as well as the clients of sex workers, were 
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less likely to get into treatment studies and were therefore underrepresented in this study. It is therefore 

likely that the rates of HIV-1 transmissions from FSW, MSM and PWID to the HET population were 

underestimated owing to those missing links. Despite the lower sampling density of HET compared to 

MSM, PWID, and FSW sequences in the full dataset, our sensitivity analyses controlling for sampling 

bias indicated more virus jumps from HET to key populations. The observed links would likely not be 

fewer if additional HET samples were included to match the higher sampling density among MSM, 

PWID and FSW. Also, excluding some geographic locations from our sensitivity analysis due to few 

numbers of sequences from these provinces in our dataset may have resulted in missing transmission 

chains and links which may have implications in the dynamics of geographic HIV-1 spread in 

Kenya53,81. Nonetheless, the excluded provinces have HIV-1 prevalence rates lower than the national 

average and based on findings from this analysis, it is unlikely that they would be major sources of 

HIV-1 in Kenya. Lastly, we assessed HIV-1 flow between populations, not between individuals, and 

these population-level inferences may not be extrapolated to individual transmissions. Also, virus jumps 

between risk populations in the phylogeographic analyses may not be equated with transmission events 

because the discrete phylogeographic modelling used in this analysis only accounts for between-risk 

group jump, and not within-risk group jumps. Other similar studies from developed settings with 

concentrated epidemics and dense sampling among infected individuals (as well as readily available 

patient demographic data) have provided information useful in HIV-1 prevention5,6,23,82-86. To minimise 

phylogenetic uncertainties arising from low sample coverage, future studies in sub-Saharan Africa 

should aim to achieve higher sampling densities and aim to include sequences collected in years that 

are more recent to determine more active Kenyan clusters.  

 

In conclusion, we have estimated the rates of transmission between the general heterosexual population 

and HIV-1 key populations, and between geographic regions with varying HIV-1 prevalence in Kenya. 

We showed that high HIV-1 prevalence regions may be important sources of HIV-1 to lower-prevalence 

regions, and that the Kenyan HIV-1 epidemic is largely compartmentalized by risk groups and that the 

contribution of key populations to the wider heterosexual transmission network may be significantly 

lower than vice versa. In the mixed Kenyan HIV-1 epidemic, targeting HIV-1 key populations needs to 

occur concurrently with strengthening broad interventions in the general population. These findings 

could pave the way towards strengthening HIV-1 control in Kenya and other countries in sub-Saharan 

Africa.
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TABLES 

 
Table 1. Demographics and distribution of newly generated and published Kenyan HIV-1 pol sequences by risk group. 

 

Category Risk group 

   HET  MSM  FSW  PWID  Total  

Sequences Published 2987 (87.8%) 159 (42.7%) 99 (43.6%) 58 (100.0%) 3303 (81.4%) 

  New 414 (12.2%) 213 (57.3%) 128 (56.4%) 0 (0.0%) 755 (18.6%) 

Province Nairobi 1212 (35.6%) 137 (36.8%) 91 (40.1%) 0 (0.0%) 1440 (35.5%) 

  Coast 704 (20.7%) 178 (47.9%) 121 (53.3%) 58 (100.0%) 1061 (26.2%) 

  Nyanza 594 (17.5%) 57 (15.3%) 14 (6.2%) 0 (0.0%) 665 (16.4%) 

  Rift Valley 507 (14.9%) 0 (0.0%) 1 (0.4%) 0 (0.0%) 508 (12.5%) 

  Western 158 (4.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 158 (3.9%) 

  Central 44 (1.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 44 (1.1%) 

  Eastern 6 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 6 (0.2%) 

  Missing* 176 (5.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 176 (4.3%) 

Year (range) 2001-2010 2077 (64.4%) 118 (31.7%) 170 (74.9%) 58 (100.0%) 2423 (59.7%) 

  2011-2019 1070 (33.2%) 254 (68.3%) 36 (15.9%) 0 (0.0%) 1360 (33.5%) 

  1986-2000 78 (2.4%) 0 (0.0%) 21 (9.3%) 0 (0.0%) 99 (2.4%) 

  Missing* 176 (5.2%%) 0 (0.0%) 1 (0.0%) 2 (0.0%) 176 (4.3%) 

Total  3401 (83.8%) 372 (9.2%) 227 (5.6%) 58 (1.4%) 4058 (100.0%) 

Abbreviations: MSM, men who have sex with men; PWID, people who inject drugs; FSW, female sex worker; HET, at-risk men and women 

who did not report sex work or male same-sex behaviour. *Sequences lacking information on year and geographic area of sampling. *Estimated 

number of people with HIV-1 as per geographic and transmission route category in Kenya11,45-47. **Number of people with HIV-1 included in 
the study based on the estimated number of people with HIV-1 in Kenya. 
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Table 2. Kenyan HIV-1 clusters (N=409) grouped into different subtypes and HIV-1 transmission routes. 

 

 Dyads a Networks b Large clusters c Total (N,%) 

Subtype     

A (A1) 182 (59%) 105 (34%) 19 (6%) 306 (75%) 

C 16 (64%) 8 (32%) 1 (4%) 25 (6%) 

D 51 (65%) 27 (35%) 0 (0%) 78 (19%) 

Risk category     

HET 204 (65%) 101 (32%) 11 (3%) 316 (77%) 

Mixed* 24 (51%) 16 (34%) 7 (15%) 47 (11%) 

MSM 13 (35%) 23 (62%) 1 (3%) 37 (9%) 

FSW 7 (100.0%) 0 (0%) 0 (0%) 7 (2%) 

PWID 1 (50%) 0 (0%) 1 (50%) 2 (<1%) 

Total 249 (61%) 140 (34%) 20 (5%) 409 

Abbreviations: HET, heterosexual transmission; Mixed; MSM, men who have sex with men; FSW, female sex work; PWID, people who 
inject drugs. *Risk groups in mixed clusters (N, proportion of mixed clusters) : MSM/HET (15, 32%), FSW/HET (15, 32%), MSM/FSW/HET 

(9, 19%), MSM/FSW (6, 13%), MSM/PWID/FSW/HET (1, 2%), and PWID/HET (1, 2%). a Dyads: clusters of 2 sequences b Networks: clusters 

of 3-14 sequences c Large clusters: clusters of >14 sequences. 
 

Table 3. Factors associated with clustering among HIV-1 sequences from Kenya.  

 

Characteristics   Bivariate Analysis*    Multivariate Analysis**   

    OR (95% CI) p-value aOR (95% CI)   p-value 

Risk category HET Reference       

  MSM 3.8 (3-4.8) <0.001 4.4 (3.2-6.0) <0.001 

  PWID 4.7 (2.5-8.8) <0.001 3.4 (1.8-6.5) <0.001 

  FSW 0.6 (0.5-0.9) 0.003 1.2 (0.8-1.7) 0.391 

Subtype A1 Reference     

  C 0.9 (0.7-1.1) 0.215    

  D 0.8 (0.6-0.9) 0.011 0.68 (0.6-0.9) <0.001 

Year (range) 1986-2000 Reference  Reference   

  2001-2010 3.7 (2.2-6.2) <0.001 3.9 (2.1-7.0) <0.001 

  2011-2019 5.1 (3.0-8.7) <0.001 5.3 (2.9-9.9) <0.001 

Province Central Reference     

  Coast 1.3 (0.7-2.4) 0.383    

  Eastern 0.3 (0-3) 0.314    

  Nairobi 1.6 (0.9-2.9) 0.141    

  Nyanza 1.4 (0.7-2.6) 0.297    

  Rift Valley 0.8 (0.4-1.6) 0.576    

  Western 1 (0.5-1.9) 0.936    

  Unknown 1 (0.5-1.9) 0.945    

Sequence category New  Reference     

  Published  1.2 (1.1-1.5) 0.007 0.6 (0.5-0.8) <0.001 

Abbreviations: MSM, men who have sex with men; PWID, people who inject drugs; FSW, female sex worker; HET, at-risk men and women 
who did not report sex work or male same-sex behaviour. *Only variables with a p<0.1 in the bivariate analysis were included in the 

multivariate model (thus subtype C and province were excluded from the multivariate analysis). 
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Table 4. Estimated dates of origin and evolutionary parameters of the large Kenyan HIV-1 clusters.  

 

Cluster tMRCA*  Evolutionary rate (E₋3) Growth rate (per year) 

A1.1.MIX 1989 [1984, 1994] 1.32 [1.00, 1.66] 0.16 [0.11, 0.21] 

A1.2.HET 1986 [1977, 1993] 1.05 [0.73, 1.39] 0.18 [0.12, 0.25] 

A1.3.HET 1982 [1971, 1990] 1.05 [0.72, 1.39] 0.24 [0.13, 0.36] 

A1.4.MIX 1989 [1983, 1996] 1.31 [0.97, 1.67] 0.28 [0.17, 0.41] 

A1.6.PWID 1987 [1985, 1990] 1.06 [0.67, 1.52] 0.15 [0.07, 0.26] 

A1.7.MIX 1988 [1977, 1997] 1.28 [0.93, 1.64] 0.21 [0.12, 0.30] 

A1.8.MIX 1978 [1963, 1993] 1.32 [0.97, 1.69] 0.15 [0.09, 0.23] 

A1.9.HET 1998 [1992, 2004] 1.09 [0.69, 1.71] 0.31 [0.15, 0.55] 

A1.10.MIX 1993 [1984, 2000] 1.34 [0.99, 1.70] 0.07 [0.02, 0.12] 

A1.11.HET 1998 [1993, 2001] 1.31 [0.91, 1.71] 0.07 [0.04, 0.12] 

A1.12.HET 1991 [1983, 1999] 1.08 [0.73, 1.50] 0.19 [0.10, 0.33] 

A1.13.HET 1987 [1977, 1995] 1.05 [0.72, 1.40] 0.22 [0.12, 0.36] 

A1.14.HET 1991 [1981, 2001] 1.03 [0.69, 1.39] 0.21 [0.09, 0.37] 

A1.15.MSM 1991 [1974, 2004] 0.98 [0.65, 1.29] 0.19 [0.09, 0.31] 

A1.16.HET 1991 [1983, 1998] 1.06 [0.73, 1.47] 0.19 [0.09, 0.33] 

A1.17.HET 1992 [1982, 2000] 1.07 [0.71, 1.54] 0.29 [0.15, 0.49] 

A1.19.HET 1983 [1971, 1991] 1.01 [0.67, 1.35] 0.25 [0.17, 0.47] 

C.1.HET 1977 [1968, 1985] 1.48 [1.09, 1.95] 0.07 [0.01, 0.14] 

Abbreviations: HET, Heterosexual transmission; Mixed; MSM, men who have sex with men; FSW, female sex work; MTMC, perinatal 

transmission; PWID, people who inject drugs. Results are not shown for two clusters (A1.5.HET and A1.18.HET) whose parameters did not 
converge. *HPD: Higher posterior density interval. *TMRCA: time to the most recent common ancestor. Data are median and 95% higher 

posterior density intervals. 
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Table 5. Number of expected (Markov) jumps (BF≥3) inferred for HIV-1 migration between geographic locations and between risk 

groups based on the cluster-wise sub-sampling approach. 

 

The direction of migration events (from-to) Number of HIV-1 jumps (N, %) 

Geographic  174 (100.0%) 

 Within-country 109 (62.6%) 

Nyanza-Nairobi 18 (10.3%) 

Rift Valley-Nairobi 17 (9.8%) 

Nyanza-Rift Valley 16 (9.2%) 

Rift Valley-Nyanza 13 (7.5%) 

Nyanza-Coast 11 (6.3%) 

Rift Valley-Coast 11 (6.3%) 

Nairobi-Coast 10 (5.7%) 

Nairobi-Nyanza 8 (4.6%) 

Nairobi-Rift Valley 5 (2.9%) 

 Export from Kenya 42 (24.1%) 

Nyanza-Ref 20 (11.5%) 

Rift Valley-Ref 13 (7.5%) 

Nairobi-Ref 6 (3.4%) 

Coast-Ref 3 (1.7%) 

 Import into Kenya 23 (13.2%) 

Ref-Coast 9 (5.2%) 

Ref-Nyanza 5 (2.9%) 

Ref-Rift Valley 5 (2.9%) 

Ref-Nairobi 4 (2.3%) 

Risk group  47 (100.0%) 

HET-FSW 16 (34.0%) 

HET-MSM 15 (31.9%) 

HET-PWID 8 (17.0%) 

PWID-HET 3 (6.4%) 

MSM-HET 3 (6.4%) 

MSM-FSW 2 (4.3%) 

Abbreviations: Ref, reference HIV-1 pol sequences from the global epidemic that clustered closely with Kenyan sequences; HET, heterosexual 

transmission; Mixed; MSM, men who have sex with men; FSW, female sex work; MTMC, perinatal transmission; PWID, people who inject 

drugs.
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Table 6. The number of HIV-1 jumps (2010-2019) based on proportional and uniform sub-sampling. 

 

Jumps direction  (from-to) Number of Jumps (N) 

Jumps between locations Proportional sub-sampling Uniform sub-sampling 

West to East  319 (88%) 213 (78%) 

Nyanza-Rift Valley 129 (36%) 50 (18%) 

Nyanza-Nairobi 113 (31%) 73 (27%) 

Nyanza-Coast 50 (14%) 54 (20%) 

Nairobi-Coast 8 (2%) 19 (7%) 

Rift Valley-Nairobi 14 (4%) 8 (3%) 

Rift Valley-Coast 5 (1%) 9 (3%) 

East to west  43 (12%) 61 (22%) 

Rift Valley-Nyanza 11 (3%) 6 (2%) 

Nairobi-Rift Valley 9 (2%) 21 (8%) 

Nairobi-Nyanza 9 (2%) 25 (9%) 

Coast-Nyanza 7 (2%) 3 (1%) 

Coast-Nairobi 4 (1%) 3 (1%) 

Coast-Rift Valley 3 (1%) 3 (1%) 

Jumps between risk groups    

HET to key populations 126 (94%) 126 (72%) 

HET-FSW 64 (48%) 75 (43%) 

HET-MSM 58 (43%) 46 (26%) 

HET-PWID 4 (3%) 5 (3%) 

Key populations to HET 3 (2%) 20 (11%) 

FSW-HET 1 (1%) 15 (9%) 

PWID-HET 1 (1%) 3 (2%) 

MSM-HET 1 (1%) 2 (1%) 

Key populations to others 5 (4%) 29 (17%) 

FSW-MSM 2 (1%) 14 (8%) 

FSW-PWID 1 (1%) 4 (2%) 

MSM-FSW 2 (1%) 9 (5%) 

MSM-PWID 0 (0%) 1 (1%) 

PWID-FSW 0 (0%) 1 (1%) 

PWID-MSM 0 (0%) 0 (0%) 

Abbreviations: HET, heterosexual; MSM, men who have sex with men; FSW, female sex workers; PWID, people who inject drugs.  
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FIGURES 

 
Figure 1. Map of Kenya highlighting geographic locations and sampling density. 

Map of Kenya highlighting geographic locations (former administrative provinces), HIV-1 burden per province (proportion of people with 

HIV-1 as per province in Kenya 11,45-47), and the sampling density (number of people with HIV-1 included in the study based on the estimated 
number of people with HIV-1 in Kenya). 
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Figure 2. Population dynamics of HIV-1 sub-subtype A1, subtype D and subtype C lineages in Kenya. 

Bayesian Skygrid plots showing effective population size of the (a) HIV-1 sub-subtype A1, (b) HIV-1 subtype C and (c) HIV-1 subtype D 

lineages in the Kenyan  dataset. Median estimates of the effective population size overtime are shown as a continuous line in each plot 

(coloured Red for sub-subtype A1, Brown for subtype C, and Blue for subtype D). The shaded area represents the 95% higher posterior density 
intervals of the inferred effective population size for each lineage.  

 

 
 

Figure 3. HIV-1 risk group-specific estimates in the effective population size through time in Kenya. 

Bayesian Skygrid plots showing historical population dynamics of (a) the main HIV-1 sub-subtype A1 HET clusters, (b) the only large subtype 

C HET cluster, (c) the only large HIV-1 sub-subtype A1 PWID cluster and (d) the only large HIV-1 sub-subtype A1 MSM cluster in Kenya. 

Median estimates of the number of individuals contributing to new infections over time are shown as a continuous line coloured as per the 
dominant risk group per cluster (bluish-green: MSM; sky blue: PWID; and yellow: HET). The area shaded grey represents the 95% higher 

posterior density intervals of the inferred effective population size. Information on geographic representation per cluster is provided in the 
figure legends.  
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Figure 4. Date of origin, evolutionary rate, and growth rate among sub-subtype A1 and subtype C clusters of different risk groups. 
Time to the most recent common ancestor (a), evolutionary rate (b), and growth rate (c) estimates among seventeen sub-subtype A1 and one 

subtype C clusters. Median estimates and 95% higher posterior density interval are shown for the different categories per cluster, coloured by 

the dominant risk group per cluster. Results are not shown for two clusters (A1.5.HET and A1.18.HET) whose parameters did not converge.  
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Figure 5. Proportion and dates of HIV-1 transitions between geographic provinces and risk groups. 

Dates of HIV-1 transitions between geographic provinces and risk groups summarised from trait-annotated maximum clade credibility trees. 

Plots represent (a) proportion of West-to-East vs East-to-West geographic migration over time, (b) dates of HIV-1 dissemination between 

different geographic locations (where group median and interquartile range are coloured by the direction of transmission – coloured sky blue: 
West-to-East, and vermillion: East-to-West), (c) proportion of HIV-1 transmission from heterosexuals to key populations and vice-versa over 

time, and (d) dates of HIV-1 transmission within and between different risk groups (where group median and interquartile range are coloured 

by “source” risk group – coloured green: MSM; sky blue: PWID; vermillion: FSW; yellow: HET). Only transitions with a posterior probability 
higher than 0.90 are plotted. Dots in the pirate plots represent HIV-1 migration events.  
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SUPPLEMENTARY DATA  

 

Files in this Data Supplement: 

 

Supplementary tables 

Table S1. The number and sources of plasma samples used to generate new HIV-1 pol sequences  

Table S2. The number of Kenyan HIV-1 partial pol sequences (N=4058, 1986-2019) sequences 

analysed in this study compared to national estimates of the number of people living with HIV-1 in 

Kenya belonging to different risk groups and geographic regions.  

Table S3. The number and temporal distribution of Kenyan HIV-1 partial pol sequences (N=4058, 

1986-2019). 

Table S4. Distribution of HIV-1 subtypes by geographic area. 

Table S5. Distribution of HIV-1 subtypes by risk groups. 

Table S6. Proportions of Kenyan sequences in clusters relative to Kenyan sequences that did not cluster 

and their distribution into risk groups and geographic provinces. 

Table S7. Characteristics of large Kenyan clusters (N=20) used in the inference of past population 

dynamics. 

 

Supplementary figures. 

Figure S1. A summary scheme of sampling criteria in this study. 

Figure S2. Distribution of HIV-1 sequences and subtypes (1986-2019). 

Figure S3. Maximum-likelihood trees used to identify transmission clusters. 

Figure S4. Size and subtype distribution of 409 Kenyan HIV-1 clusters identified in this study. 

Figure S5. Graphical summary of the distribution of 409 Kenyan clusters by geographic locations and  

risk groups. 

Figure S6. Root-to-tip regression analyses of phylogenetic temporal signal. 

Figure S7. Population dynamics in the HET and mixed-risk group HIV-1 clusters. 

Figure S8. Pirate plots quantifying direction and number of HIV-1 jumps between geographic locations 

and risk groups.  
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Tables 

 
Table S1. A summary scheme of sampling criteria in this study. 

 

Site 
Risk group 

HET MSM FSW PWID 

KWTRP 48 21 107 0 

NHRS 0 57 14 0 

KAVI-ICR 30 0 7 0 

SWOP 0 50 0 0 

TRANSFORM 0 85 0 0 

KEMRI-CGHR 336 0 0 0 

Total 414 213 128 0 

Abbreviations: HET, heterosexual adults; MSM, men who have sex with men; FSW, female sex workers; PWID, people who inject drugs. 

Site abbreviations: KWTRP, Kenya Medical Research Institute (KEMRI) -Wellcome Trust (Coastal Kenya); NHRS,  Nyanza Reproductive 
Health Society (in Western Kenya); KAVI-ICR, Kenya AIDS Vaccine Initiative’s Institute of Clinical Research (in Nairobi, Central Kenya); 

SWOP, Sex Workers Outreach Program clinics in Nairobi,  TRANSFORM, a cohort of transfeminine people and cisgender men who have 

sex with men in Nairobi; KEMRI-CGHR, Kenya Medical Research Institute (KEMRI) – Centre for  Global Health Research (Western Kenya). 
 

Table S2. The number of Kenyan HIV-1 partial pol sequences (N=4058, 1986-2019) analysed in this study compared to national 

estimates of the number of people with HIV-1 in Kenya belonging to different risk groups and geographic regions. 

 

Characteristic   aTotal population estimates  bPWHIV (N) cSample size (N) dSampling density (%) 

Overall  Kenya 47,564,296 1,493,413 (100%) 4,058 0.3 

Sampling location 

Nyanza 7,163,260 526,972 (35%) 665 0.1 

Rift Valley 12,752,966 247,127 (17%) 508 0.2 

Nairobi 4,397,073 190,993 (13%) 1,440 0.8 

Western 4,128,162 141,561 (9%) 158 0.1 

Central 5,482,239 141,306 (9%) 44 0.0 

Eastern 6,821,049 132,232 (9%) 6 0.0 

Coast 4,329,474 108,994 (7%) 1,061 1.0 

North Eastern 2,490,073 4,196 (<1%) 0 0.0 

Risk group 

HET 26,642,987 1,341,164 (90%) 3,401 0.3 

FSW 133,675 40,103 (3%) 227 0.6 

MSM 19,175 3,452 (>1%) 372 10.8 

PWID 18,327 3,482 (>1%) 58 1.7 

 Children (>15 years) 2,0750,132 105,213 (7%) 0 0.0 

Abbreviations: HET, heterosexual adults; MSM, men who have sex with men; FSW, female sex workers; PWID, people who inject drugs; 

PWHIV, people with HIV. aKenyan population estimates as of 2019 (Kenya National Bureau of Statistics, 2019). bThe estimated number of 

PWHIV as per geographic area [computed from national population data (Kenya National Bureau of Statistics, 2019) and HIV-1 prevalence 
data per geographic region (National AIDS and STI Control Programme (NASCOP), 2020)], and risk groups [computed from key populations 

estimates (National AIDS and STI Control Programme (NASCOP), 2019) and HIV-1 prevalence per risk group (Kenya National AIDS control 

council (NACC), 2018)] in Kenya. cThe number of people living with HIV-1 included in the study, and dthe estimated proportion of people 
living with HIV-1 in Kenya included in the study.  
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Table S3. The number and temporal distribution of Kenyan HIV-1 partial pol sequences (N=4058, 1986-2019). 

 

  Risk group       Province               

Sampling year HET MSM FSW PWID Nairobi Coast Nyanza Rift Valley Western Central Eastern Total 

1986 0 0 2 0 2 0 0 0 0 0 0 2 

1991 4 0 0 0 4 0 0 0 0 0 0 4 

1993 1 0 0 0 1 0 0 0 0 0 0 1 

1994 0 0 1 0 1 0 0 0 0 0 0 1 

1996 4 0 12 0 0 12 4 0 0 0 0 16 

1997 13 0 6 0 6 0 13 0 0 0 0 19 

1998 7 0 0 0 0 0 7 0 0 0 0 7 

1999 18 0 0 0 4 0 13 1 0 0 0 18 

2000 31 0 0 0 7 8 8 8 0 0 0 31 

2001 8 0 5 0 11 1 0 1 0 0 0 13 

2002 4 0 7 0 11 0 0 0 0 0 0 11 

2003 3 0 0 0 0 2 0 1 0 0 0 3 

2004 199 0 0 0 5 0 171 23 0 0 0 199 

2005 198 0 10 0 44 18 125 21 0 0 0 208 

2006 380 28 20 0 154 57 16 201 0 0 0 428 

2007 554 12 35 0 282 293 26 0 0 0 0 601 

2008 236 19 75 0 97 230 3 0 0 0 0 330 

2009 228 33 16 0 61 173 0 43 0 0 0 277 

2010 267 26 2 58 127 118 107 1 0 0 0 353 

2011 243 13 2 0 96 26 6 129 1 0 0 258 

2012 284 6 4 0 144 6 5 0 139 0 0 294 

2013 201 5 0 0 137 31 2 36 0 0 0 206 

2014 94 6 2 0 36 11 55 0 0 0 0 102 

2015 58 22 2 0 25 5 19 0 0 33 0 82 

2016 44 68 22 0 37 40 50 2 3 1 1 134 

2017 56 118 4 0 126 14 17 8 8 5 0 178 

2018 90 2 0 0 22 2 18 33 7 5 5 92 

2019 0 14 0 0 0 14 0 0 0 0 0 14 

*Missing 176 0 0 0 0 0 0 0 0 0 0 176 

Total 3,401 372 227 58 1,440 1,061 665 508 158 44 6 4,058 

Abbreviations: HET, heterosexual; MSM, men who have sex with men; FSW, female sex work; PWID, people who inject drugs.  
*Missing: some (N=176, 4% of all sequences, all HET) of the newly generated sequences lacked data on the geographic area of sampling. 
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Table S4. Distribution of HIV-1 subtypes by geographic provinces in Kenya. 

 

Subtype (N, %) Central Coast Eastern Nairobi Nyanza Rift Valley Western Unknown Total 

A1 35 (1.2%) 765 (26.8%) 5 (0.2%) 1044 (36.5%) 424 (14.8%) 304 (10.6%) 118 (4.1%) 165 (5.8%) 2860 (70.5%) 

B 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

C 2 (0.7%) 75 (26.3%) 0 (0.0%) 84 (29.5%) 53 (18.6%) 55 (19.3%) 10 (3.5%) 6 (2.1%) 285 (7.0%) 

CRF01_AE 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

CRF02_AG 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

CRF10_CD 0 (0.0%) 8 (32%) 0 (0.0%) 7 (28%) 4 (16%) 2 (8%) 4 (16%) 0 (0.0%) 25 (0.6%) 

CRF16_A2D 3 (7%) 9 (20.9%) 0 (0.0%) 19 (44.2%) 10 (23.3%) 2 (4.7%) 0 (0.0%) 0 (0.0%) 43 (1.1%) 

CRF18_cpx 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

CRF21_A2D 0 (0.0%) 8 (38.1%) 0 (0.0%) 6 (28.6%) 4 (19.1%) 2 (9.5%) 1 (4.8%) 0 (0.0%) 21 (0.5%) 

CRF43_02G 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

D 3 (0.7%) 86 (18.7%) 1 (0.2%) 169 (36.7%) 84 (18.2%) 100 (21.7%) 13 (2.8%) 5 (1.1%) 461 (11.4%) 

G 0 (0.0%) 4 (20%) 0 (0.0%) 8 (40%) 3 (15%) 5 (25%) 0 (0.0%) 0 (0.0%) 20 (0.5%) 

URF 1 (0.3%) 105 (31.1%) 0 (0.0%) 100 (29.6%) 82 (24.3%) 38 (11.2%) 12 (3.6%) 0 (0.0%) 338 (8.3%) 

Total 44 (1.1%) 1061 (26.2%) 6 (0.2%) 1440 (35.5%) 665 (16.4%) 508 (12.5%) 158 (3.8%) 176 (4.3%) 4058 (100.0%) 

Abbreviations: CRF, circulating recombinant form; URF, unique recombinant form; HET, heterosexual; MSM, men who have sex with men; 
FSW, female sex work; PWID, people who inject drugs. *Missing: some of the newly generated sequences (N=176, 4% of all sequences, all 

HET) had missing information on the geographic area of sampling. 

 
Table S5. Distribution of HIV-1 subtypes by risk groups in Kenya. 

 

Subtype  Risk group         

  HET MSM FSW PWID Total 

A1 2388 (70.2%) 276 (74.2%) 140 (61.7%) 56 (96.6%) 2860 (70.5%) 

B 1 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

C 232 (6.8%) 31 (8.3%) 20 (8.8%) 2 (3.4%) 285 (7.0%) 

CRF01_AE 1 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

CRF02_AG 1 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

CRF10_CD 23 (0.7%) 1 (0.3%) 1 (0.4%) 0 (0.0%) 25 (0.6%) 

CRF16_A2D 36 (1.1%) 4 (1.1%) 3 (1.3%) 0 (0.0%) 43 (1.1%) 

CRF18_cpx 0 (0.0%) 0 (0.0%) 1 (0.4%) 0 (0.0%) 1 (0.0%) 

CRF21_A2D 16 (0.5%) 1 (0.3%) 4 (1.8%) 0 (0.0%) 21 (0.5%) 

CRF43_02G 1 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.0%) 

D 391 (11.5%) 49 (13.2%) 21 (9.3%) 0 (0.0%) 461 (11.4%) 

G 18 (0.5%) 0 (0.0%) 2 (0.9%) 0 (0.0%) 20 (0.5%) 

URF 293 (8.6%) 10 (2.7%) 35 (15.4%) 0 (0.0%) 338 (8.3%) 

Total 3401 (100.0%) 372 (100.0%) 227 (100.0%) 58 (100.0%) 4058 (100.0%) 

Abbreviations: CRF, circulating recombinant form; URF, unique recombinant form; HET, heterosexual; MSM, men who have sex with men; 
FSW, female sex work; PWID, people who inject drugs. *Missing: some of the newly generated sequences (N=176, 4% of all sequences, all 

HET) had missing information on the geographic area of sampling. 
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Table S6. Proportions of Kenyan sequences in clusters relative to Kenyan sequences that did not cluster and their distribution into 

subtype, risk groups and geographic provinces. 

 

  Clustered (N, %) Did not cluster (N, %) Total (N, %) 

Subtype    

A1 1485 (51.9%) 1375 (48.1%) 2860 (100.0%) 

C 137 (48.1%) 148 (51.9%) 285 (100.0%) 

D 210 (45.6%) 251 (54.5%) 461 (100.0%) 

Risk group      

HET 1441 (42.4%) 1960 (57.6%) 3401 (100.0%) 

MSM 273 (73.4%) 99 (26.6%) 372 (100.0%) 

FSW 73 (32.2%) 154 (67.8%) 227 (100.0%) 

PWID 45 (77.6%) 13 (22.4%) 58 (100.0%) 

Sampling location     

Nairobi 720 (50%) 720 (50%) 1440 (100.0%) 

Coast 481 (45.3%) 580 (54.7%) 1061 (100.0%) 

Nyanza 311 (46.8%) 354 (53.2%) 665 (100.0%) 

Rift Valley 175 (34.5%) 333 (65.6%) 508 (100.0%) 

Western 60 (38%) 98 (62%) 158 (100.0%) 

Central 17 (38.6%) 27 (61.4%) 44 (100.0%) 

Eastern 1 (16.7%) 5 (83.3%) 6 (100.0%) 

*Missing 67 (38.1%) 109 (61.9%) 176 (100.0%) 

Total 1832 (45.2%) 2226 (54.9%) 4058 (100.0%) 

Abbreviations: HET, heterosexual; MSM, men who have sex with men; FSW, female sex work; PWID, people who inject drugs.  

*Missing information on the geographic area of sampling
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Table S7. Characteristics of large Kenyan clusters (N=20) used in the inference of past population dynamics. 

 

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Subtype A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 C 

Sampling location (%) 

Central 1 0 0 0 0 0 14 0 4 4 0 0 0 0 0 0 6 0 0 4 

Coast 31 29 26 47 3 100 24 30 4 29 4 14 29 33 29 15 63 60 13 28 

Nairobi 31 44 15 32 60 0 38 48 38 39 96 36 29 28 52 30 19 20 53 30 

Nyanza 25 15 41 18 0 0 14 0 21 18 0 23 17 11 14 30 13 7 0 19 

Ref 0 0 0 0 0 0 0 0 0 0 0 0 17 6 5 5 0 13 20 5 

Rift Valley 8 7 18 0 28 0 3 15 21 11 0 18 4 22 0 20 0 0 7 14 

Western  3 4 0 3 10 0 7 6 13 0 0 9 4 0 0 0 0 0 7 0 

Risk groups (%) 

FSW 7 1 4 9 0 0 3 6 3 0 0 4 4 0 0 5 6 7 7 5 

HET 81 95 96 83 100 0 92 84 93 42 97 92 96 94 0 95 94 80 93 87 

MSM 12 4 0 9 0 0 6 11 3 58 0 4 0 6 100 0 0 7 0 3 

PWID 0 0 0 0 0 100 0 0 0 0 4 0 0 0 0 0 0 6 0 5 

Abbreviations: Ref, reference HIV-1 pol sequences from the global epidemic that clustered closely with Kenyan sequences; HET, 

heterosexual; MSM, men who have sex with men; FSW, female sex work; PWID, people who inject drugs.
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Supplementary figures 
 

Figure S1. Study scheme 

A summary scheme of sampling criteria in this study. 

 
 

Figure S2. Distribution of HIV-1 sequences and subtypes in this study (1986-2019). 

(a) Temporal distribution of the number of Kenyan HIV-1 sequences in this study. (b) ML phylogenetic reconstruction of HIV-1 group M 

genetic diversity based on genetic sequences (N=4058) from Kenya. Branch tips on the phylogenetic tree and proportion of HIV-1 lineages in 

different geographical locations are coloured according to subtypes (orange: sub-subtype A1; yellow: subtype B; brown: subtype C; blue: 
subtype D; maroon: subtype G; grey: circulating recombinant forms (CRFs); green: unique recombinant forms (URFs); black: HIV-1 group 

M reference sequences. (c) Temporal changes (2004-2019) in the overall proportion of HIV-1 subtypes and recombinants over two-years 

intervals in Kenya. A p<0.05 denotes a statistically significant increase or decrease in the proportion of respective circulating strains over 
time. 
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Figure S3. Maximum-likelihood trees used to identify transmission clusters. 

Maximum-likelihood trees used for identification of Kenya HIV-1 clusters. Trees represent (a) sub-subtype A1, (b) subtype C, and (c) subtype 

D transmission clusters, respectively. Each phylogeny is rooted at the midpoint. Monophyletic clusters with SH-aLRT support ≥0.9 and which 

have ≥80% sequences from Kenya are highlighted in grey. To enhance cluster visualization, some branches containing either reference 
sequences or Kenyan sequences that did not clusters have been collapsed (shown as black triangles). Branch tips within respective clusters are 

coloured as per cluster risk group (green: MSM; sky blue: PWID; vermillion: FSW; yellow: HET; and black: Reference sequences). Red bars 

in the respective trees represent statistically supported branches (i.e. branches with SH-aLRT support ≥0.9). Scale bars represent the genetic 
distance in substitutions per site in all phylogenies. 
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Figure S4. Distribution of clusters (N=409) of different subtypes by cluster size. 

Size and subtype distribution of 409 Kenyan HIV-1 clusters identified in this study. The number of clusters per subtype are shown in the Y-

axis (coloured by subtype: Red; sub-subtype A1, Brown; subtype C, and Deep Blue; subtype D clusters). The number of sequences per cluster 

is depicted in the X-axis.  
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Figure S5. Summary of Kenyan clusters (N=409) by geographic and risk group. 

Graphical summary of the distribution of 409 Kenyan clusters by (a) geographic locations (i.e. province) and (b) risk groups. 
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Figure S6. Root-to-tip regression analyses of phylogenetic temporal signal. 

Root-to-tip regression analyses of phylogenetic temporal signal for sub-subtype A1, subtype C, and subtype D sequences from Kenya. 

Correlation and determination coefficient (R2) were estimated with TempEst. 
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Figure S7. Population dynamics in the HIV-1 epidemic among HET and mixed-risk group clusters. 

Bayesian Skygrid plots showing historical population dynamics of the main (a) HET and (b) mixed-risk group HIV-1 sub-subtype A1 clusters. 

Median estimates of the number of individuals contributing to new infections over time are shown as a continuous black line. The shaded area 

represents the 95% higher posterior density intervals of the inferred effective population size. Figure legends highlight information on 
dominating risk group per cluster, and the provinces of sampling. 
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Figure S8. Number and direction of HIV-1 jumps between geographic locations and risk groups based on uniform and proportional 

sub-sampling of 1147 HIV-1 sub-subtype A1 sequences sampled 2010-2019 in Kenya. 

Pirate plots quantifying direction and number of HIV-1 jumps between geographic locations and risk groups. Graphs represent (a) virus jumps 

between geographic provinces based on proportional sub-sampling (n=5 datasets; 70 sequences from Nyanza, 34 sequences from Rift Valley, 
26 sequences from Nairobi, and 14 sequences from Coast); (b) virus jumps between geographic provinces based on uniform sub-sampling 

(n=5 datasets; 25 sequences from Nyanza, 25 sequences from Rift Valley, 25 sequences from Nairobi, and 25 sequences from Coast); (c) virus 

jumps between risk groups based on proportional sub-sampling (n=5 datasets; 64 sequences from HET, 14 sequences from FSW, 15 sequences 
from MSM, and 4 sequences from PWID); and (d) virus jumps between risk groups based on uniform sub-sampling (n=5 datasets; 27 

sequences from HET, 27 sequences from FSW, 27 sequences from MSM, and 27 sequences from PWID). Black lines in the plots represent 

median jumps estimates (and 95% confidence intervals). The geographic plots are coloured as per the direction of transmission (blue: West-
to-East; and green: East-to-West) whilst the risk group plots are coloured as per the source risk group (green: MSM; sky blue: PWID; 

vermillion: FSW; and yellow: HET). Overall, there was significantly more West-to-East virus flow than from East-to-West (p<0.0001; both 

uniform and proportional sub-sampling), and more virus flow from HET-to-key populations than vice-versa (p<0.001; both uniform and 
proportional sub-sampling). 
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ABSTRACT 

HIV-1 transmission dynamics involving men who have sex with men (MSM) in Africa are not well 

understood. We investigated the rates of HIV-1 transmission between MSM across three regions in 

Kenya: Coast, Nairobi and Nyanza. We analysed 372 HIV-1 partial pol sequences sampled during 2006-

2019 from MSM in Coast (N=178, 47.9%), Nairobi (N=137, 36.8%), and  Nyanza (N=57, 15.3%) 

provinces in Kenya. Maximum-Likelihood (ML) phylogenetics and Bayesian inference were used to 

determine HIV-1 clusters, evolutionary dynamics, and virus migration rates between geographic 

regions. HIV-1 sub-subtype A1 (72.0%) was most common followed by subtype D (11.0%), unique 

recombinant forms (8.9%), subtype C (5.9%), CRF 21A2D (0.8%), subtype G (0.8%), CRF 16A2D 

(0.3%), and subtype B (0.3%). Forty-six clusters (size range 2-20 sequences) were found – half (50.0%) 

of which had evidence of extensive HIV-1 mixing among different provinces. Data revealed an 

exponential increase in infections among MSM during the early-to-mid 2000s, and stable or decreasing 

transmission dynamics in recent years (2017-2019). Phylogeographic inference showed significant 

(Bayes Factor, BF>3) HIV-1 dissemination from Coast to Nairobi and Nyanza provinces, and from 

Nairobi to Nyanza province. Strengthening HIV-1 prevention programmes to MSM in geographic 

locations with higher HIV-1 prevalence among MSM (such as Coast and Nairobi) may reduce HIV-1 

incidence among MSM in Kenya.   
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INTRODUCTION 

In sub-Saharan Africa, the HIV-1 epidemic among men who have sex with men (MSM) has only 

recently received attention – and the role of MSM in HIV-1 transmission has been acknowledged1-3. In 

Kenya, the national HIV-1 prevalence is 4.9% in the adult population, but is three-fold higher in MSM 

than in heterosexual men4,5. HIV-1 prevalence among MSM in Kenya varies between regions – and 

ranges from 17.8% in Kisumu (Western Kenya)6 to 24.5% in Coastal Kenya7, and from 25.0% to 26.4% 

in Nairobi8,9. There is evidence of high mobility of MSM sex workers between regions which could link 

HIV-1 transmissions in different regions10.The Ministry of Health in Kenya through the National AIDS 

Control Council (NACC) has made efforts to strengthen HIV healthcare services for MSM11,12. Yet, 

stigma against male-same-sex practices and policies criminalizing consensual same-sex sexual practices 

have obstructed progress12-14. In the past, geographic mobility has been shown to play an important role 

in HIV-1 dispersal15,16. Taken together, it is possible that spatial differences in HIV-1 distribution in 

Kenya combined with geographically mobile MSM sex workers could impact HIV-1 spread among 

MSM throughout the country15,16. However, clear data on HIV-1 transmission dynamics within and 

between MSM in different geographic regions are lacking in Kenya. 

 

HIV-1 transmission dynamics can be assessed by linking socio-demographic, clinical, and behavioural 

data with HIV-1 sequence data through phylogenetics17-26. While limited HIV-1 sequences have been 

obtained from blood plasma from MSM living with HIV in Kenya, phylogenetic determination of 

patterns of HIV-1 transmission among Kenyan MSM suggest extensive MSM HIV-1 clustering (and 

infrequent HIV-1 mixing between MSM and presumed heterosexuals in the general population)2,27-30. 

In addition, a phylogenetic study in 2013 reported frequent HIV-1 gene flow between MSM in Coastal 

Kenya and Nairobi – albeit with small sample size and limited geographic coverage29. In the period 

2005-2019, more MSM HIV-1 sequences have become available from diverse geographical locations 

in Kenya, allowing in-depth characterization of evolutionary dynamics in the MSM HIV-1 epidemic in 

Kenya. Here, we used HIV-1 pol data to phylodynamically infer HIV-1 transmission rates among MSM 

in three different geographic regions in Kenya.  
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MATERIALS AND METHODS  

Study population  

New sequences were generated from blood plasma obtained through studies conducted through the 

MSM Health Research Consortium – a multi-site collaboration between researchers affiliated with 

KEMRI-Wellcome Trust (KWTRP) in Coastal Kenya, Nyanza Reproductive Health Society (NRHS) 

in Nyanza, and Sex Workers Outreach Program (SWOP) clinics in Nairobi. These included samples 

from Coast derived from participants in a prospective observational cohort (2006-2019)31, samples from 

Nairobi from a respondent-driven sample survey (TRANSFORM, 2017)32, and samples from Nyanza 

derived from the Anza Mapema cohort (2015-2017)33.  

 

HIV-1 pol sequence dataset 

The HIV-1 pol sequences were comprised of 1020 nucleotides, HXB2 [K03455] positions 2267-3287. 

HIV-1 RNA was purified from patient blood plasma using the RNeasy Lipid Tissue Mini Kit 

(QIAGEN) as previously described34. Reverse transcription and amplification of partial pol gene were 

performed using the One-Step Superscript III RT/Platinum Taq High Fidelity Enzyme Mix 

(ThermoFisher ScientificTM) with the pol-specific primer pair JA269 and JA27235. First-round PCR 

products were amplified in a nested PCR with DreamTaq Green DNA Polymerase (ThermoFisher 

ScientificTM) using pol-specific primers JA271 and JA27035.  PCR products were sequenced in both 

directions with the nested PCR primers using the BigDye terminator kit v1.1 (Applied Biosystems) and 

the sequences were determined on an ABI PRISM 3130×1 Genetic Analyzer (Applied Biosystems).  

 

Additional Kenyan HIV-1 pol sequences (referred to as published sequences, 2006-2019) were 

retrieved (October 11th 2021) from the Los Alamos HIV-1 sequence database36. The combined new and 

published sequences (referred to as Kenyan dataset) were annotated with information on sampling dates 

and geographical area of residence during sampling (i.e. province; Coast, Nairobi, Nyanza).  

 

HIV-1 Subtyping  

The Kenyan dataset was aligned with the HIV-1 Group M (subtypes A-K + Recombinants) subtype 

reference dataset (available at the Los Alamos HIV database, http://www.hiv.lanl.gov) using the 

MAFFT algorithm in Geneious Prime 201937,38. The resulting alignment was used to construct a 

Maximum-Likelihood phylogenetic tree in PhyML using the general time-reversible substitution model 

with a gamma-distributed rate variation and proportion of invariant sites (GTR+Γ4+Ι)39. Branch support 

was assessed using the Shimodaira-Hasegawa like approximate Likelihood Ratio Test (aLRT-SH) in 

PhyML, with aLRT-SH 0.90 considered as significant18,40. Subtypes were assigned based on the 

Subtype/CRF-resolved phylogeny visualized using FigTree v1.4.4 

(https://github.com/rambaut/figtree/releases). Subtype assignment was further verified using the REGA 

HIV-1 Subtyping Tool (v.3.0) and unique recombinant forms (URFs) were detected using the jumping 

profile Hidden Markov Model (jpHMM)41,42.  

 

HIV-1 Cluster analysis  

Sequences were grouped into subtype-specific datasets and a search for related sequences was done for 

each subtype-specific (A1, C and D) dataset using the NCBI GenBank BLAST tool, limiting results to 

the 10 most similar hits per sequence, and retaining the oldest sequence per individual23,24,43. Kenyan 

sequences and reference sequences were combined and aligned using the MAFFT algorithm in 

Geneious Prime 201937. Subtype-specific alignments were edited to exclude codon positions associated 

with drug resistance, and maximum-likelihood phylogenies were reconstructed in PhyML. For each 

subtype, monophyletic clades with aLRT-SH support 0.9 and which were dominated (80%) by 

Kenyan sequences (compared to reference sequences) were defined as Kenyan HIV-1 clusters18. 

Clusters were classified based on the number of sequences per cluster into dyads (2 sequences), 

networks (3-14 sequences) and large clusters (>14 sequences)24,28,44. 

 

Bayesian phylodynamic and discrete phylogeographic inference  

To date clusters and to estimate the effective population size through time (Ne.T), Bayesian 

phylodynamic inference was performed in BEAST 1.10.4 using the Bayesian Skygrid model, an 

uncorrelated lognormal relaxed clock, and the general time-reversible substitution model with a 

http://www.hiv.lanl.gov/
https://github.com/rambaut/figtree/releases
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gamma-distributed rate variation and proportion of invariant sites (GTR+Γ4+Ι)45-48. Only sequences 

classified as pure A1, C, and D subtypes were analysed. BEAST runs were computed with a chain 

length of 100-300 million generations for each dataset, sampling every 10,000th – 30,000th iteration, and 

discarding the first 10% as burn-in. Convergence was determined in Tracer v.1.7.0 and defined as 

effective sample sizes (ESS) ≥10045. Maximum clade credibility (MCC) trees were summarised using 

Tree-Annotator v1.8.2 (BEAST suite).  

 

To infer the direction of virus movements between geographic locations from HIV-1 sequence data, a 

discrete phylogeographic inference was computed, using specific locations as independent discrete 

states15,49,50. Several sensitivity analyses were performed to test the robustness of our data. First, the 

Kenyan dataset was grouped by subtype (A1, C and D), and the phylogeographic inference was 

performed using all the sequences per subtype. Secondly, to reduce sampling bias arising from the 

unproportionable allocation of sequences per location, sequences in the subtype A1-specific dataset (the 

largest of the three subtypes) were randomised and sub-sampled into a dataset with an equal number of 

sequences per province using in-house Perl scripts (available upon request). Lastly, subtype A1 

sequences from Coast Province were sub-sampled uniformly and used to estimate virus migration 

between three geographically distinct regions in Coastal Kenya (i.e. Mombasa, South Coast, and North 

Coast). 

 

In the phylogeographic inference, the asymmetric model was adopted (over the alternative symmetric 

model) as it relaxes the assumption of constant diffusion rates through time to realistically model the 

location-exchange processes15,50. In addition to estimating the direction of HIV-1 migration, the 

proportions of forward and reverse rates of migrations between geographic locations were quantified 

using a robust counting approach (Markov jumps) implemented in BEAST51. Maximum clade 

credibility (MCC) trees annotated with demographic and epidemiological data were summarized in 

Tree-Annotator v1.10.4 (BEAST suite) and visualized in Figtree (v1.4.4). Well-supported virus 

movements and Bayes factors (BF) assessing statistical support were summarized using SPREAD 

v1.0.7, and (BF≥3 was considered significant)49. 

 

Statistical analysis   

Continuous data were presented using medians and interquartile ranges (IQR). Frequencies and 

percentages were used to describe categorical data. A multivariable logistic regression model was used 

to assess associations between individual sequence characteristics (e.g. subtype, location of sampling, 

year [range] of sampling, and source of sequence data – i.e. published or newly generated) and 

phylogenetic clustering. Statistics and summary plots were done using Stata 15 (StataCorp LLC, 

College Station, Texas, USA) and RStudio (version 1.2.5001) with the packages: yarrr, and ggplot252,53. 

 

Nucleotide sequence accession numbers 

Nucleotide sequences were deposited in GenBank under the following accession numbers: OM109723-

OM109725, OM109756-OM109766, OM109772-OM109799, OM109814-OM109862, OM109879-

OM109949, OM110011-OM110019, OM110126-OM110127, OM110136-OM110149, OM110169-

OM110170, OM110171,OM110174, OM110178-OM110181, OM110193-OM110194, OM110212-

OM110218, OM110229-OM110240, OM110245-OM110246, and OM110272-OM110282. 

 

Ethical consideration 

Plasma samples used to generate the new sequences were obtained from ongoing or concluded studies 

that were also approved by Kenya Medical Research Institute (KEMRI) Scientific and Ethics Review 

Unit (SERU 3747, 3280 and 3520, and SSC 894). Since published sequences were obtained from an 

open-access public domain, informed consent was not retrospectively obtained. Instead, we sought 

approval through a study protocol that was reviewed by KEMRI/SERU (SERU 3547). 
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RESULTS 

Study Population, sequence dataset and subtype distribution 

Among the 372 HIV-1 partial pol sequences analysed, 213 (57.3%) were generated in this study, and 

159 (42.7%) were previously published. The majority (N=178, 47.9%) of the sequences were from the 

Coast province, 137 (36.8%) Nairobi province,  and 57 (15.3%) Nyanza province. (Figure1, Table 1, 

Supplementary Tables S1, and S2, and Supplementary Figure S1). Sequences belonged to sub-subtype 

A1 (N=268, 72.0%), subtype D (N=41, 11.0%), subtype C (N=22, 5.9%), subtype G (N=3, 0.8%), CRF 

21A2D (N=3, 0.8%), CRF 16A2D (N=1, 0.3%), and subtype B (N=1, 0.3%). Unique recombinant forms 

(URFs) identified included A1D (N=19, 5.1%), A1C (N=7, 1.9%), D01AE (N=5, 1.3%), A1B (N=1, 

0.3%), DB (N=1, 0.3%, Figure 2). 

 

MSM HIV-1 clusters  

Clusters were determined from Maximum-likelihood (ML) phylogenies reconstructed for the most 

prevalent HIV-1 subtypes in the population (subtypes A (A1), C, and D – cumulatively comprising 

89.0% of the sequences in the Kenyan dataset). Non-Kenyan HIV-1 reference sequences were obtained 

from GenBank based on similarity (where of 931 participant-unique sub-subtype A1 sequences 

remained after removal of redundancies; 488 for subtype C; and 350 for subtype D). Of 331 (A1, C and 

D) sequences in the cluster analysis, 229 sequences (61.2%) formed 46 statistically supported clusters 

(size range: 2-20 sequences). Dyad/pairs were most common (N=25, 54.4% of all clusters), followed 

by networks having 3-14 sequences (N=18, 39.1%), and large clusters having more than 14 sequences  

(N=3, 6.5%). The majority (N=34, 73.9%) were sub-subtype A1 clusters, followed by subtype D (N=8, 

17.4%), and subtype C (N=4, 8.7%, Table 2, and Supplementary Figure S2) 

 

Geographic stratification of clustering patterns 

Stratification of clusters by geographic regions showed two distinct clustering patterns. First, some 

clusters (N=23, 50.0%) had sequences belonging exclusively to one specific province including Coast 

(N=14, 30.4%), Nairobi (N=6, 13.0%), and Nyanza (N=3, 6.5%) province-exclusive clusters. The 

remaining clusters (N=23, 50.0%) were mixed between different provinces where HIV-1 mixing 

between Coast and Nairobi was most common (N=13, 28.3% clusters), followed by mixing between 

Nyanza, Nairobi, and Coast (N=5, 10.9%), Nyanza and Nairobi (N=3, 6.5%), and Nyanza and Coast 

(N=2, 4.4%, Table 2, and Supplementary Figure S2). Sequences from Nairobi province were more 

likely to cluster compared to sequences from Coast province (adjusted odds ratio [aOR] 3.5, 95% 

confidence interval [CI] 1.2-10..4, P=0.022, Table 3).  

 

Estimating effective population size through time and dating clusters  

In-depth phylodynamic analysis indicated that the number of MSM contributing to new HIV-1 A1 

infections over time increased exponentially during the early 2000s, followed by a period with some 

fluctuation (but largely steady) between 2000 and 2017, and mostly decreasing dynamics during recent 

years (2017-2019, Figure 3a). Likewise, for both subtype C and D lineages, the effective population 

size increased exponentially during 2007-2008 and has stabilized in recent years (2016-2019, Figure 

3b, and 3c). 
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Estimating dates of origins of all clusters indicated that the majority (65%) of transmissions within 

clusters took place between 2000 and 2014. The oldest sub-subtype A1 cluster had 9 MSM from 

Nyanza, Nairobi, and Coast, and had originated during 1987, whilst the youngest cluster was dated to 

2014 among MSM in Nyanza (Figure 4a, Supplementary Table S3, and Supplementary Figure S3). The 

largest A1 cluster (N=20, 2008-2017) had remained active over 20 years since the estimated time to the 

most recent common ancestor  (tMRCA) in 1997 and was geographically spread out to Nyanza, Nairobi, 

and Coast provinces. The second-largest A1 cluster (N=19, 2008-2017) originated in 1996 and had 

sequences from Nyanza, Nairobi, and Coast provinces. The four subtype C clusters originated during 

1988, 1998, 2009,  and 2014, respectively, whilst the earliest subtype D cluster originated during 1976 

and the youngest during 2014 (Figure 4b, Figure 4c, and Supplementary Table S3). Overall, there was 

evidence of onward HIV-1 transmission among MSM, within longstanding and geographically diverse 

HIV-1 networks.  

 

 HIV-1 migration between provinces in Kenya 

Ancestral locations and rates in historical virus jumps were first estimated based on all subtype-specific 

sequences in the Kenyan dataset (i.e. 268 sub-subtype A1, 41 subtype D, and 22 subtype C sequences). 

Phylogeographic analysis indicated significant support (Bayes Factor, BF3) for virus migration from 

Coast to Nairobi (BF=3716; subtype A1, BF=268; subtype C; and BF=16; subtype D) and from Nairobi 

to Nyanza (BF=3716; subtype A1, BF=43; subtyped D, Supplementary Table S4). Exploring temporal 

trends in virus transitions between geographic provinces summarised from trait-annotated maximum 

clade credibility trees indicated that the proportion of virus export from Coast to Nairobi increased from 

4.2% before 2000 to 14.2% during 2001-2010, and declined to 4.9% during 2011-2020. Likewise, virus 

export from Nairobi to Nyanza increased from 2.4% in 2000-2010 to 10.8% in 2011-2020, whilst 

reverse transitions were rare and occurred only from Nyanza to Nairobi (Supplementary Table S5, 

Suplementary Figure S4 and Suplementary Figure S5). 

 

A sensitivity analysis with uniform sampling per province was performed to confirm the robustness of 

the initial phylogeographic inference. The uniformly sub-sampled dataset comprised 135 HIV-1 sub-

subtype A1 sequences (45 sequences each from Nairobi, Mombasa, and Nyanza province). Based on 

this analysis, there was significant support for HIV-1 migration from Coast to Nairobi (BF=7766), 

Nairobi to Nyanza (BF=1293), and Coast to Nyanza (BF=336, Table 4). Furthermore, Markov jumps 

estimates with uniform sampling indicated that the majority (80.3%) of HIV-1 jumps between provinces 

occurred from Coast to other provinces including jumps from Coast to Nyanza (N=26, 42.6% of all 

virus jumps between provinces), and from Coast to Nairobi (N=23, 37.7%, Table 5, Figure 5). There 

was also some (N=10, 16.4%) virus exchange between Nairobi and Nyanza, such that virus jumps 

Nairobi to Nyanza (N=7, 11.5%) was two-fold higher than from Nyanza to Nairobi (N=3, 4.9%, Table 

5).  
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DISCUSSION 

We found high rates of HIV-1 geographic mixing and a high proportion of HIV-1 sequences exported 

from the Coast and Nairobi to Nyanza province – implying that the Coast and Nairobi provinces could 

be a major geographic sources of HIV-1 transmission amongst Kenyan MSM. Of all provinces in 

Kenya, the Coast and Nairobi provinces have the highest prevalence of HIV-1 among MSM54. In 

addition, MSM in Coastal Kenya are known to be highly mobile, and some engage in sex work in 

different locations across the country10. Taken together, our findings suggest that regions with the 

highest HIV-1 prevalence among MSM (such as Coast and Nairobi) may also have disseminated HIV-

1 disproportionately to regions with lower HIV-1 prevalence among MSM (such as Nyanza province) 

in Kenya.  

 

There are a few presumed mechanisms by which Coastal Kenya may serve as an important source of 

infections among MSM. One plausible explanation might be that as a very well recognised destination 

for domestic tourism and sex tourism, MSM (or non-disclosing HET) visit the area for sex tourism, 

effectively disseminating the virus upon returning from Coast. A second potential determinant could be 

connected to geographically mobile MSM sex workers – hypothetically, HIV-1 may first be acquired 

and/or amplified in the Coast, and then exported to other provinces. Thus the regional difference 

observed could potentially reflect amplification behaviour within Coastal Kenya – and onward spread 

to other provinces linked to an MSM migration gradient. Data on migration were not available during 

the current analysis but future studies may investigate this in detail. Future studies may also potentially 

investigate potential underlying demographic transitions – speculatively, young MSM sex workers may 

be drawn to the Coast province whilst older or socially privileged MSM or MSM sex workers may 

leave the region for other provinces. Overall, implementing HIV-1 prevention and care directed to MSM 

in Kenya (and considering areas with higher rates of HIV-1 dissemination such as Coast and Nairobi) 

might reduce ongoing HIV-1 transmission at a countrywide scale, as has been shown in other settings55-

58. 

 

The majority (61.2%) of sequences analyzed in this study formed phylogenetically linked HIV-1 

clusters, consistent with multiple introductions and ongoing infections among MSM within close 

networks in Kenya23,24,59. Half of the clusters comprised sequences collected from MSM from different 

geographic regions – indicating geographically extensive HIV-1 linkages. High rates of clustering 

involving HIV-1 in MSM have been reported both in our setting and other higher-income settings and 

could be linked to an increased risk of infection among MSM within close networks, involving 

geographically mobile individuals10,23,24,27,29. We estimated that a high proportion (65%) of HIV-1 

transmissions occurred between 2000 and 2014 and that several clusters extended over multiple years, 

suggesting onward HIV-1 transmission among MSM within geographically diverse HIV-1 networks. 

HIV-1 sequences in this study were not closely related to reference sequences from the global epidemic, 

implying that the HIV-1 epidemic among MSM in Kenya is sustained locally.  

 

In a broader context, several phylogenetic studies have revealed that the HIV-1 epidemic in Kenya is 

compartmentalized – where the majority of HIV-1 transmission occurs within risk groups28-30. Our 

recent work at a countrywide scale has demonstrated a minor (8%) proportion of HIV-1 MSM and 

heterosexual clustering30. Taken together, these studies indicate that ongoing transmission among MSM 

rarely impacts the general heterosexual HIV-1 epidemic in Kenya. MSM in Kenya have a high burden 

of HIV risk –  to bring reduce overall HIV-1 incidence in Kenya, there is a need to implement directed 

HIV-1 prevention and treatment to MSM in Kenya. 

 

The phylodynamic analysis investigating the evolutionary dynamics of the HIV-1 MSM sub-epidemic 

revealed an exponential increase in the number of infections during the early-to-mid 2000s (for HIV-1 

A1, C and D lineages) – indicative of multiple HIV-1 outbreaks among Kenyan MSM23,24,59. 

Interestingly, the effective population size did not decrease following the nationwide introduction and 

scale-up of combination antiretroviral therapy (ART) in 2004. One potential reason for this is sub-

optimal access to HIV-1 treatment and prevention services by MSM in Kenya due to fear of legal and 

social stigma and discrimination4,60,61. Nevertheless, the effective population size for the dominant strain 

(HIV-1 A1) showed fewer new infections in recent years (2017-2019) – possibly reflecting earlier  ART 
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initiation due to changes in treatment recommendations62 as well as some impact of risk reduction 

counselling, adherence support interventions63,64, early recognition of acute HIV-1 infections, especially 

on the Kenyan Coast65-67, and some uptake of pre-exposure prophylaxis targeting MSM in recent 

years68-71. Overall, increasing access to treatment – as well as destigmatisation and diversification of 

providers may further reduce HIV-1 incidence among MSM32. 

 

The major strength of our study is the use of HIV-1 sequences from well-characterized acute and early 

infected MSM cohorts sampled over 14 years in a sub-Saharan African setting. A limitation is that the 

study had a small sample size, which limited the identification of HIV-1 links in the entire MSM HIV-

1 epidemic in Kenya. Incomplete sampling likely resulted in missing links and reduced clustering of 

HIV-1 sequences72. However, our sensitivity analyses before and after controlling for sampling bias 

indicated more jumps from Coastal Kenya to other provinces (and from Nairobi to Nyanza) than vice 

versa, indicating the robustness of the analysed HIV-1 sequence dataset. Another limitation is skewed 

spation-temporal sampling, and variations in sampling methods between studies which may have 

resulted in overrepresentation of some types of location-specific and/or subtype-specific clusters. 

Indeed, the HIV-1 C and HIV D lineages did not have a decreasing trend in recent years (2017-2019, 

compared to HIV-1 A1) – the reason for this could be realeted to skewed sampling over time in various 

geographic locations in this study. In addition, although the conflation of MSM and transgender people 

may have relevance for the distinction between sexual network types, we did not have data on gender 

identity – thus some transgender people may have been conflated for MSM.  

 

In conclusion, we demonstrated extensive HIV-1 mixing among MSM in different regions in Kenya, 

where Coast and Nairobi provinces appears to have been a major source of virus dissemination. We 

hypothesise that MSM in these provinces may have disseminated HIV-1 disproportionately to MSM in 

other regions in the country. Increasing PrEP uptake and access to ART among MSM (and 

destigmatisation and diversification of providers) is necessary to reduce ongoing HIV-1 transmission 

among MSM in Kenya. 
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TABLES 
 

Table 1. Distribution of HIV-1 pol sequences (N=372) from Kenyan MSM, overall and by geographic location. 

Category Number of sequences (N, %) 

Geographic region Coast Nairobi Nyanza Total 

Year (range)  

2006–2010 117 (65.7%) 1 (0.7%) 0 (0.0%) 118 (31.7%) 

2011–2015  32 (18.0%) 1 (0.7%) 19 (33.3%) 52 (14.0%) 

2016–2019  29 (16.3%) 135 (98.5%) 38 (66.7%) 202 (54.3%) 

Sequences  

New  21 (11.8%) 135 (98.5%) 57 (100%) 213 (57.3%) 

Published  157 (88.2%) 2 (1.5%) 0 (0.0%) 159 (42.7%) 

Subtype      

A1 121 (68%) 102 (74.5%) 45 (79%) 268 (72%) 

D 22 (12.4%) 13 (9.5%) 6 (10.5%) 41 (11%) 

URF 16 (9%) 14 (10.2%) 3 (5.3%) 33 (8.9%) 

C 14 (7.9%) 5 (3.7%) 3 (5.3%) 22 (5.9%) 

21A2D 0 (0%) 3 (2.2%) 0 (0%) 3 (0.8%) 

G 3 (1.7%) 0 (0%) 0 (0%) 3 (0.8%) 

16A2D 1 (0.6%) 0 (0%) 0 (0%) 1 (0.3%) 

B 1 (0.6%) 0 (0%) 0 (0%) 1 (0.3%) 

Total 178 (47.9%) 137 (36.8%) 57 (15.3%) 372 (100%) 

Abbreviations: MSM, men who have sex with men.  URF; unique recombinant form, CRF; circulating recombinant form.

 

Table 2. The number of Kenyan MSM HIV-1 clusters by cluster size and geographic region. 

  Dyads (2 sequences) Networks (3-14) Large clusters (≥14 ) Total clusters 

Subtype         

A1 12 (66.7%) 19 (76.0%) 3 (100%) 34 (73.9%) 

C 2 (11.1%) 2 (8.0%) 0 (0.0%) 4 (8.7%) 

D 4 (22.2%) 4 (16.0%) 0 (0.0%) 8 (17.4%) 

Geographic region    

    Coast 6 (24.0%) 8 (44.4%) 0 (0.0%) 14 (30.4%) 

    Coast/Nairobi 11 (44.0%) 2 (11.1%) 0 (0.0%) 13 (28.3%) 

    Nairobi 2 (8.0%) 4 (22.2%) 0 (0.0%) 6 (13.0%) 

    Nyanza/Nairobi/Coast 2 (8.0%) 0 (0.0%) 3 (100%) 5 (10.9%) 

    Nyanza 0 (0.0%) 3 (16.67%) 0 (0.0%) 3 (6.5%) 

    Nyanza/Nairobi 3 (12.0%) 0 (0.0%) 0 (0.0%) 3 (6.5%) 

    Nyanza/Coast 1 (4.0%) 1 (5.56%) 0 (0.0%) 2 (4.4%) 

Total 25 (54.4%) 18 (39.1%) 3 (6.5%) 46 (100%) 

Abbreviations: MSM, men who have sex with men. Clusters were classified based on the number of sequences per cluster into dyads (2 
sequences), networks (3-14 sequences) and large clusters (>14 sequences) 

 

Table 3. Factors associated with HIV-1 clustering among MSM with HIV-1 in Kenya. 

Characteristics    Multivariate Analysis 

    *aOR, 95% CI), p-value 

Year (range) 2006-2010 Reference 

  2011-2015 1.0 (0.4-2.2), 0.937 

  2016-2020 1.1 (0.3-3.4), 0.932 

Subtype A1 Reference 

  C 0.6 (0.2-1.5), 0.258  

  D 1.0 (0.5-2.0), 0.884 

Province Coast Reference 
  Nairobi 3.5 (1.2-10.4), 0.022 
  Nyanza 1.8 (0.5-5.9), 0.34 

Sequence Published Reference 
  Newly generated 2.5 (1.7-4.0), <0.001 

Abbreviations: MSM, men who have sex with men; PWID; *aOR, adjusted odds ratio.  
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Table 4. HIV-1 migration rates (Bayes factor, BF≥3) between geographic locations in Kenya. 

The direction of migration events (from, to) Bayes Factor (BF) Posterior probability 

Migration between provinces    

Coast-to-Nairobi 7766 1 

Nairobi-to-Nyanza 1293 1 

Coast-to-Nyanza 336 1 

Nyanza-to-Nairobi 3 0.7 

Nyanza-to-Coast 3 0.7 

 

Table 5. The number of expected (Markov) jumps inferred for HIV-1 A1 migration between geographic locations. 

The direction of migration events (from, to) Number of HIV-1 jumps (N, %) 

Between provinces 61 (100%) 

Coast-Nyanza 26 (42.6%) 

Coast-Nairobi 23 (37.7%) 

Nairobi-Nyanza 7 (11.5%) 

Nyanza-Nairobi 3 (4.9%) 

Nairobi-Coast 1 (1.6%) 

Nyanza-Coast 1 (1.6%) 
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FIGURES 

 
Figure 1. Map of Kenya showing the distribution of sequences in this study.  

A map of Kenya showing the number of HIV-1 sequences from MSM analysed in this study, and distribution by different geographic regions.  
The map is coloured based on the estimated number of MSM as mapped at the county level during the 2018 key population size estimates 

national survey73.  
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Figure 2. HIV-1 genotypes among 372 MSM sequences from Kenya. 

Maximum-likelihood phylogenetic tree of 372 HIV-1 pol sequences from MSM living with HIV-1 in Kenya (and 194 HIV-1 Group M subtype 

reference sequences from the Los Alamos HIV database). Branch tips colours correspond to the respective HIV-1 subtype, sub-subtype or 

recombinant form as shown in the legend. Key nodes with aLRT-SH support ≥0.9 are highlighted with an asterisk. The tree is drawn to scale, 
with branch lengths measured in the number of substitutions per site. 

 

 
 
Figure 3. Population dynamics of HIV-1 sub-subtype A1, subtype D and subtype C lineages among MSM in Kenya. 

Bayesian Skygrid plots showing population dynamics of the (a) HIV-1 sub-subtype A1, (b) HIV-1 subtype C and (c) HIV-1 subtype D lineages 

in Kenyan MSM. Median estimates of the number of MSM contributing to new infections are shown as a continuous line in each plot (coloured 

Red for sub-subtype A1, Brown for subtype C, and Blue for subtype D). The shaded area represents the 95% higher posterior density intervals 

of the inferred effective population size for each lineage.  
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Figure 4. Characteristics and posterior distribution of time to most recent common ancestors estimated for all Kenya clusters. 

Bayesian tMRCA estimates for (a) HIV-1 sub-subtype A1, (b) HIV-1 subtype C and (c) HIV-1 subtype D lineages in Kenyan MSM HIV-1 

clusters. Dots represent the estimated tMRCA and are coloured as per the provinces represented by sequences in each cluster as shown in the 

legend. Black error bars represent sampling time (with lower interval representing the oldest sampling time per cluster and upper interval 
representing the most recent sampling time per cluster).  

 

 
Figure 5. Summary of the expected number of HIV-1 migration between geographic regions in Kenya 
Summary of the median number (and 95% HPD interval) of Markov jumps inferred with a uniform sampling of geographic regions. Plots 

represent (a) HIV-1 exchange between provinces. Plots are coloured by the “source” location as shown in the legend. Only statistically 

significant transitions (Bayes Factor (BF) ≥3) are plotted.   
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SUPPLEMENTARY DATA  

 

Files in this Data Supplement:  

Table S1. Distribution of HIV-1 subtypes by year (range) of sampling. 

Table S2. Distribution of HIV-1 subtypes by year (range) and geographic province of sampling. 

Table S3. Characteristics and posterior distribution of time to most recent common ancestors estimated 

for all Kenya clusters. 

Table S4. Phylogeographic inference of HIV-1 migration rates (Bayes factor, BF≥3) between 

geographic locations in the full Kenyan dataset. 

 

Legends for supplementary figures. 

Figure S1. The frequency of HIV-1 subtypes per province and by year (range) of sampling. 

Figure S2. The maximum-likelihood tree used to identify HIV-1 clusters. 

Figure S3. The maximum clade credibility trees used to date clusters. 

Figure S4. The maximum clade credibility tree summary of the Bayesian inference.   

Figure S5. The proportion and dates of HIV-1 transitions between geographic provinces and risk 

groups.
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TABLES 

 
Table S1. Overall distribution of HIV-1 subtypes by year (range) of sampling. 

HIV-1 Subtype Years (Range) 

  2006-2010 2011-2015 2016-2019 Total 

A1 84 (31.3%) 38 (14.2%) 146 (54.5%) 268 (72.0%) 

D 13 (31.7%) 8 (19.5%) 20 (48.8%) 41 (11.0%) 

URF 9 (27.3%) 2 (6.1%) 22 (66.7%) 33 (8.9%) 

C 7 (31.8%) 4 (18.2%) 11 (50.0%) 22 (5.9%) 

21_A2D 0 (0.0%) 0 (0.0%) 3 (100.0%) 3 (0.8%) 

G 3 (100%) 0 (0.0%) 0 (0.0%) 3 (0.8%) 

16_A2D 1 (100%) 0 (0.0%) 0 (0.0%) 1 (0.3%) 

B       1 (100%) 0 (0.0%) 0 (0.0%) 1 (0.3%) 

Total 118 (31.7%) 52 (14.0%) 202 (54.3%) 372 (100.0%) 

 

Table S2. Distribution of HIV-1 subtypes by year (range) of sampling and geographic area of sampling. 

Province Subtype Year range (N, %)  Total (N, %) 

    2006-2010  2011-2015  2016-2019    

Coast 

  

  

  

  

  

  

A1 84 (71.8%) 26 (81.3%) 11 (37.9%) 121 (100.0%) 

D 13 (11.1%) 4 (12.5%) 5 (17.2%) 22 (100.0%) 

URF 8 (6.8%) 1 (3.1%) 7 (24.1%) 16 (100.0%) 

C 7 (6%) 1 (3.1%) 6 (20.7%) 14 (100.0%) 

G 3 (2.6%) 0 (0.0%) 0 (0.0%) 3 (100.0%) 

16A2D 1 (0.9%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 

B 1 (0.9%) 0 (0.0%) 0 (0.0%) 1 (100.0%) 

  Sub-total   117 (100.0%) 32 (100.0%) 29 (100.0%) 178 (100.0%) 

Nairobi 

  

  

  

  

A1 0 (0.0%) 1 (100%) 101 (74.8%) 102 (100.0%) 

URF 1 (100%) 0 (0.0%) 13 (9.6%) 14 (100.0%) 

D 0 (0.0%) 0 (0.0%) 13 (9.6%) 13 (100.0%) 

C 0 (0.0%) 0 (0.0%) 5 (3.7%) 5 (100.0%) 

21A2D 0 (0.0%) 0 (0.0%) 3 (2.2%) 3 (100.0%) 

  Sub-total   1 (100%) 1 (100%) 135 (100.0%) 137 (100.0%) 

Nyanza 

  

  

  

A1 0 (0.0%) 11 (57.9%) 34 (89.5%) 45 (100.0%) 

D 0 (0.0%) 4 (21.1%) 2 (5.3%) 6 (100.0%) 

C 0 (0.0%) 3 (15.8%) 0 (0.0%) 3 (100.0%) 

URF 0 (0.0%) 1 (5.3%) 2 (5.3%) 3 (100.0%) 

  Sub-total   0 (100.0%) 19 (100.0%) 38 (100.0%) 57 (100.0%) 

Total    118 (31.7%) 52 (14.0%) 202 (54.3%) 372 (100.0%) 
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Table S3. Characteristics and posterior distribution of time to most recent common ancestors estimated for Kenyan HIV-1 clusters. 

Cluster name1 Tips (N)2 Province Year(s) of diagnosis3 tMRCA4 

A1.28 9 Nyanza/Nairobi/Coast 2009-2017 1987 

A1.18 4 Coast/Nairobi 2009-2017 1993 

A1.20 4 Coast/Nairobi 2006-2016 1993 

A1.30 11 Coast 2007-2015 1996 

A1.32 16 Nyanza/Nairobi/Coast 2010-2017 1996 

A1.33 19 Nyanza/Nairobi/Coast 2015-2017 1997 

A1.34 20 Nyanza/Nairobi/Coast 2008-2017 1997 

A1.31 13 Coast/Nairobi 2009-2017 1998 

A1.17 4 Coast 2006 1999 

A1.26 7 Coast/Nairobi 2009-2017 1999 

A1.29 9 Nyanza/Nairobi 2016-2017 1999 

A1.23 5 Coast/Nairobi 2006-2017 2000 

A1.16 4 Coast/Nairobi 2008-2017 2001 

A1.3 2 Coast 2010-2013 2002 

A1.24 5 Coast 2008-2014 2002 

A1.25 6 Nairobi 2016-2017 2002 

A1.27 7 Nyanza/Nairobi/Coast 2007-2017 2002 

A1.15 3 Coast 2008 2003 

A1.11 2 Nairobi 2017 2004 

A1.5 2 Coast 2006 2005 

A1.8 2 Coast 2006 2005 

A1.13 3 Nyanza/Nairobi 2016-2017 2005 

A1.14 3 Nairobi 2017 2007 

A1.19 4 Coast/Nairobi 2015-2017 2007 

A1.7 2 Nairobi 2016-2017 2008 

A1.9 2 Nairobi 2016-2017 2008 

A1.21 4 Coast/Nairobi 2010-2017 2008 

A1.10 2 Coast 2010 2009 

A1.12 2 Coast 2014 2009 

A1.22 5 Coast 2011-2019 2009 

A1.1 2 Nyanza 2016 2010 

A1.4 2 Nairobi 2016-2018 2010 

A1.6 2 Nyanza 2015-2016 2012 

A1.2 2 Nyanza 2015 2014 

C.1 2 Coast 2008-2009 1988 

C.2 2 Nyanza/Coast 2008-2015 1998 

C.4 5 Coast/Nairobi 2010-2017 2009 

C.3 3 Coast/Nairobi 2017-2019 2014 

D.8 6 Nyanza/Coast 2010-2016 1976 

D.2 2 Coast/Nairobi 2016-2017 1983 

D.7 6 Coast/Nairobi 2008-2017 1988 

D.1 2 Coast 2009 2002 

D.3 2 Coast/Nairobi 2013-2017 2004 

D.5 3 Coast 2008-2009 2007 

D.4 2 Coast 2016-2019 2014 

D.6 5 Nyanza/Nairobi 2015-2017 2014 
1Clusters are named according to subtype/CRF, and risk group dominating the cluster. 
2Number of sequences per cluster. 
3The respective earliest and most recent date (year) of sampling of sequences in the cluster 

4Estimated tMRCA: Median time to the most recent common ancestor of the cluster. 
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Table S4. Phylogeographic inference of HIV-1 migration rates (Bayes factor, BF≥3) between geographic locations in the full Kenyan 

dataset. 

Bayes factor (BF) support and posterior probability inferred for HIV-1 transmission between geographic locations in the full Kenyan sub-

subtype A1, subtype C and subtype D datasets. Only significant transitions (BF≥3) are shown. 

  The direction of migration events (from-to) Bayes Factor (BF) Posterior Probability 

Migration between provinces 

HIV-1 A1 Coast-to-Nairobi 3716 1 

  Nairobi-to-Nyanza 3716 1 

  Nyanza-to-Coast 4 0.8 

HIV-1 C Coast-to-Nairobi 268 1 

  Coast-to-Nyanza 8 0.9 

  Nyanza-to-Coast 3 0.7 

  Nairobi-to-Coast 3 0.7 

HIV-1 D Nairobi-to-Nyanza 43 1 

  Coast-to-Nairobi 16 0.9 

  Nyanza-to-Coast 4 0.8 

 

Table S5. Temporal proportion in transitions within and between geographic provinces in the HIV-1 A1 dataset.  

Jumps (from – to)* Year (Range)  Total 

  1990-2000 2001-2010 2011-2020  

Within-provinces         

Coast-Coast 22 (91.7%) 117 (69.2%) 10 (9.8%) 149 (50.5%) 

Nairobi-Nairobi 0 (0%) 14 (8.3%) 56 (54.9%) 70 (23.7%) 

Nyanza-Nyanza 0 (0%) 4 (2%) 19 (19%) 23 (8%) 

Between provinces         

Coast-Nairobi 1 (4.2%) 24 (14.2%) 5 (4.9%) 30 (10.2%) 

Coast-Nyanza 1 (4.2%) 6 (3.6%) 0 (0%) 7 (2.4%) 

Nairobi-Nyanza 0 (0%) 4 (2.4%) 11 (10.8%) 15 (5.1%) 

Nyanza-Nairobi 0 (0%) 0 (0%) 1 (1%) 1 (0.3%) 

Total 24 (100%) 169 (100%) 102 (100%) 295 (100%) 
*Transitions between geographic provinces were summarised from the HIV-A1 trait-annotated maximum clade credibility tree which had 
denser sampling (number of sequences) and temporal coverage compared to other subtypes. 
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FIGURES 
 

Figure S1. The frequency of HIV-1 subtypes per province and by year (range) of sampling. 

The proportion of HIV-1 subtypes per province distributed into three time periods (i.e 2006-2010, 2011-2015, and 2016-2019). 
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Figure S2. Maximum-likelihood trees used to identify HIV-1 clusters. 

Maximum-likelihood trees used for the identification of MSM HIV-1 clusters. Trees represent A: Sub-subtype A1; B: Subtype C; and C: 

Subtype D HIV-1 clusters, respectively. Each phylogeny is rooted at the midpoint. Monophyletic clusters with aLRT-SH support ≥0.9 and 

which have 80% sequences from coastal Kenya are highlighted in grey. To enhance cluster visualization, some branches containing either 

reference sequences or Kenyan sequences that are not part of clusters have been collapsed (shown as black or red triangles, with the recent 

end of the triangle indicating the latest sampling date. Branch tips within respective clusters are coloured as per geographic province cluster 

(Orange: Coast; Green: Nairobi; Sky blue: Nyanza; and Black: Reference sequences). Scale bars represent a genetic distance of 0.01 in all 
phylogenies. 

 

 
 

Figure S3. Maximum clade credibility trees used to date clusters. 

Maximum clade credibility (MCC) trees used to determine the time to the most recent common ancestor of the Kenyan HIV-1 clusters. Trees 

represent A: Sub-subtype A1; B: Subtype C; and C: Subtype D, respectively. To enhance cluster visualization, some branches containing 

either reference sequences or coastal Kenya sequences that are not part of clusters have been collapsed (shown as non-coloured, black, or red 
triangles, with the recent end of the triangle indicating the latest sampling date. Branch tips are colour-coded as per geographic province cluster 

(Orange: Coast; Green: Nairobi; and Sky blue: Nyanza). 
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Figure S4. The maximum clade credibility tree summary of the Bayesian inference.   

Maximum clade credibility trees revealing phylogeographical estimates of HIV-1 spread in three Kenyan provinces. Trees represent A: Sub-

subtype A1; B: Subtype C; and C: Subtype D, respectively. Branch colours correspond to the province of origin as shown in the legend: 

Orange: Coast; Green: Nairobi; Sky blue: Nyanza.  
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Figure S5. The estimated proportion and dates of HIV-1 transitions between geographic provinces and risk groups.  

Pirate plots summarising the dates (year) and the frequency of HIV-1 transitions between geographic provinces summarised from trait-

annotated maximum clade credibility trees. Plots represent (a) sub-Subtype A1, (b) subtype C, and (c) subtype-D transitions – where group 

median and interquartile range are coloured by the source of transition (Orange; transitions from Coast, Green; transitions from Nairobi, and 
Sky-Blue; transitions from Nyanza). Only transitions with a posterior probability higher than 0.90 are plotted. Dots in the pirate plots represent 

HIV-1 migration events. 
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HIV-1 transmission patterns within and between populations at different risk of HIV-1 acquisition in 
Kenya are not well understood. We investigated HIV-1 transmission networks in men who have sex 
with men (MSM), injecting drug users (IDU), female sex workers (FSW) and heterosexuals (HET) in 
coastal Kenya. We used maximum-likelihood and Bayesian phylogenetics to analyse new (N = 163) and 
previously published (N = 495) HIV-1 polymerase sequences collected during 2005–2019. Of the 658 
sequences, 131 (20%) were from MSM, 58 (9%) IDU, 109 (17%) FSW, and 360 (55%) HET. Overall, 206 
(31%) sequences formed 61 clusters. Most clusters (85%) consisted of sequences from the same risk 
group, suggesting frequent within-group transmission. The remaining clusters were mixed between 
HET/MSM (7%), HET/FSW (5%), and MSM/FSW (3%) sequences. One large IDU-exclusive cluster was 
found, indicating an independent sub-epidemic among this group. Phylodynamic analysis of this cluster 
revealed a steady increase in HIV-1 infections among IDU since the estimated origin of the cluster in 
1987. Our results suggest mixing between high-risk groups and heterosexual populations and could be 
relevant for the development of targeted HIV-1 prevention programmes in coastal Kenya.

Approximately 5.6% in the population in Kenya are infected by HIV-1, with a more than three-fold higher HIV-1 
prevalence among so-called high-risk groups – including men who have sex with men (MSM), injecting drug 
users (IDU) and female sex workers1–4. Modelling data on modes of HIV-1 transmission in Kenya have shown 
that at least one-third of all new infections occur among high-risk groups5. However, little is known about local 
HIV-1 networks and transmission within and between high-risk groups and the heterosexual (HET) population 
in African settings6. Molecular epidemiology studies in coastal Kenya have described a dynamic HIV-1 epidemic 
characterised by subtypes A, C, D, and different circulating recombinant forms (CRFs)6–15. These studies have 
indicated high proportions of recombinants within HET, but this was not evident among MSM in a recent study8, 
alluding to separate epidemics. One study in coastal Kenya observed similar HIV-1 recombination patterns 
among HIV-1 strains in MSM and FSW, suggesting reinfections within mixed networks13.

HIV-1 transmission dynamics can be assessed by linking socio-demographic, clinical and behavioural data 
with HIV-1 sequence data by phylogenetics16,17. With few exceptions, most phylogenetic studies of the HIV-1 
epidemic in sub-Saharan Africa have focused on understanding HIV-1 subtype diversity and prevalence of 
antiretroviral resistance mutations18–24. Phylogenetic studies highlighting the dynamics of HIV-1 transmission 
and contribution of high-risk groups to onward viral transmission are common in North America and Europe, 
where largescale HIV-1 sequence data are available25–32. Due to the limited availability of HIV-1 sequences from 
sub-Saharan Africa, only a few phylogenetic studies have assessed the dynamics of the HIV-1 epidemic in the 
region33–35. Transmission networks studies in Kenya have demonstrated clustering of MSM sequences with evi-
dence of transmission between different geographical regions, and limited mixing between MSM and HET6,8,13. 
We have also demonstrated extensive clustering of HIV-1 pol sequences from MSM who have sex with only 
men and MSM who have sex with both men and women in coastal Kenya8. Given that many MSM on the coast 
of Kenya have sex with both men and women, there is a possibility of HIV-1 transmission linkages between 
MSM and the local HET community4. The primary objective of the current study was to investigate transmis-
sion networks within and between MSM, IDU, FSW, and HET in coastal Kenya using both newly generated 
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and previously published HIV-1 pol sequences. A secondary objective was to determine HIV-1 genetic diversity 
among different risk groups in coastal Kenya.

Results
Study Population, sequence dataset and sampling density. The analysed 658 coastal Kenyan HIV-1 
partial pol sequences included both newly generated (N = 163) and previously published sequences (N = 495). 
Sequences were collected during 2005–2019 in the Mombasa (N = 210, 32%) and Kilifi (N = 448, 68%) counties 
in coastal Kenya (Table 1). The risk groups included MSM (N = 131, 20%), IDU (N = 58, 9%), FSW (N = 109, 
17%), and HET (N = 360, 55%). Based on size estimation of risk groups and the number of infected populations 
infected with HIV-1 in Mombasa and Kilifi counties36, our study was more powered to pick out MSM (sampling 
density, 51%) and IDU (sampling density, 12%) clusters compared with FSW (sampling density 3%) and HET 
(sampling density, 1%) clusters (Supplementary Table S1).

HIV-1 subtypes A, C, and D dominated the epidemic in coastal Kenya. Phylogenetic analysis was 
used to determine the subtype distribution in the full coastal Kenya sequence dataset (N = 658). In total, 431 
subtype A (66%), 46 subtype C (7%), 69 subtype D (10%), 2 subtype G (>1%), and 110 CRF and unique recom-
binant form (URFs, 17%) sequences were identified (Table 1 and Supplementary Fig. S1). In addition, all sub-
type A sequences belonged to sub-subtype A1. Detailed recombination analyses of newly generated sequences 
demonstrated extensive recombination between subtypes, sub-subtypes, and recombinant forms (Supplementary 
Table S2).

Identification of coastal Kenya-specific HIV-1 transmission clusters. Maximum-likelihood 
(ML) phylogenies were reconstructed independently for the most prevalent HIV-1 subtypes in the population 
(subtypes A, C, and D). Reference sequences were obtained from GenBank based on similarity (whereof 731 
participant-unique sub-subtype A1 sequences remained after removal of redundancies; 256 for subtype C; and 
92 for subtype D).

Transmission networks were classified based on the number of sequences per cluster into dyads (2 sequences), 
networks (3–14 sequences), and large clusters (>14). Of the 658 coastal Kenyan sequences, 206 sequences (31%) 
formed 61 statistically supported clusters (size range: 2–41 sequences). These included 39 dyads (64% of all clus-
ters), 21 networks (34%), and one large cluster (2%) (Table 2 and Supplementary Table S3). Most of the clusters 
were found among the subtype A sequences (N = 50, 82%), followed by the subtype D sequences (N = 7, 11%), 
and the subtype C sequences (N = 4, 7%) (Supplementary Fig. S2).

Risk-group specific clustering patterns. Stratification by risk group showed two distinct clustering pat-
terns (Fig. 1). The first pattern represented exclusive within-risk group clustering, where sequences in a cluster 
belonged exclusively to one specific risk group. Compared to HET sequences, MSM and IDU sequences were 
more likely to cluster (adjusted odds ratio [aOR] 25.9, 95% confidence interval [CI] 10–63.9, P < 0.001; and aOR 
31.5, CI 12.2–81.6, P < 0.001, respectively, Table 3). Of the 61 clusters observed, 85% were risk group exclusive 
clusters. These included 24 MSM clusters (11 dyads and 13 networks), four IDU clusters (three dyads and one 
large cluster), six FSW clusters (six dyads), and 18 HET clusters (13 dyads and five networks). The majority of the 
MSM sequences (N = 84, 64%) formed small independent clusters ranging in size from two to nine sequences 
per cluster. Likewise, the majority of IDU sequences (N = 47, 82%) formed clusters. Interestingly, most of the 

Risk group
MSM 
(N = 131, 20%)

IDU (N = 58, 
9%)

FSW (N = 109, 
17%)

HET (N = 360, 
55%)

Total (N = 658, 
100%)

Sequences
New 9 (7%) 0 (0%) 102 (94%) 52 (14%) 163 (25%)

Published 122 (93%) 58 (100%) 7 (6%) 308 (86%) 495 (75%)

Subtype

A 92 (70%) 51 (88%) 71 (65%) 217 (60%) 431 (66%)

C 9 (7%) 2 (3%) 9 (8%) 26 (7%) 46 (7%)

D 13 (10%) 5 (9%) 12 (11%) 39 (11%) 69 (10%)

Others* 17 (13%) 0 (0%) 17 (16%) 78 (22%) 112 (17%)

Year (range)

2005–2007 27 (21%) 0 (0%) 54 (50%) 24 (7%) 105 (16%)

2008–2010 60 (46%) 58 (100%) 41 (38%) 302 (84%) 461 (70%)

2011–2013 18 (14%) 0 (0%) 0 (0%) 0 (0%) 18 (3%)

2014–2016 14 (11%) 0 (0%) 10 (9%) 32 (9%) 56 (8%)

2017–2019 12 (9%) 0 (0%) 4 (4%) 2 (1%) 18 (3%)

Area
Mombasa county 74 (57%) 58 (100%) 7 (6%) 71 (20%) 210 (32%)

Kilifi county 57 (44%) 0 (0%) 102 (94%) 289 (80%) 448 (68%)

Table 1. Demographics and distribution of newly generated and published coastal Kenya HIV-1 pol sequences 
by risk-group. Abbreviations: MSM, men who have sex with men; IDU, injecting drug user; FSW, female sex 
worker; HET, at-risk men and women who did not report sex work or male same-sex behaviour. *Subtype/
recombinant (N, %): B (1, 0.2%), G (2, 0.5%), A1D (42, 6.4%), A1C (18, 2.7%), A2D (13, 2.0%), 16_A2D 
(10, 1.5%), A2_16A2D (6, 0.9%), CD (6, 0.9%), A1A2 (3, 0.5%), A1A2D (3, 0.5%), A1_16A2D (1, 0.2%), 
A1A2_16A2D (1, 0.2%), A1A2C (1, 0.2%), A1A2CD (1, 0.2%), CA1D (1, 0.2%), DG (1, 0.2%).

https://doi.org/10.1038/s41598-020-63731-z


3Scientific RepoRtS |         (2020) 10:6775  | https://doi.org/10.1038/s41598-020-63731-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

clustering IDU sequences were of sub-subtype A1 and formed one single large cluster (N = 41, 80%). In contrast, 
only a small proportion of the FSW (N = 22, 20%) and HET (N = 67, 18%) sequences formed risk group-exclusive 
clusters.

In addition to risk group-exclusive clustering, 15% of all clusters were mixed between risk-groups (Table 2): 
Two (3%) MSM/FSW dyads, four (7%) MSM/HET mixed clusters (two dyads and two networks), and three (5%) 
FSW/HET clusters (two dyads and one network). Of relevance, both MSM/HET networks (one sub-subtype A1 
and one subtype D) had sequences from four MSM and one HET female. Moreover, of the eleven MSM sequences 
that were found in mixed clusters, eight (73%) reported sex work in the three months preceding sample collec-
tion, and 10 (91%) reported bisexual behaviour. The FSW/HET network consisted of two FSW sequences and 
one HET male sequence.

Risk group
Dyads (2 sequences, 
N = 39, 64%)

Networks (3–14, 
N = 21, 34%)

Large clusters 
(≥14, N = 1, 2%)

Total clusters 
(N = 61, 100%)

MSM 11 13 0 24 (39%)

IDU 3 0 1 4 (7%)

FSW 6 0 0 6 (10%)

HET 13 5 0 18 (30%)

HET/FSW 2 1 0 3 (5%)

MSM/HET 2 2 0 4 (7%)

MSM/FSW 2 0 0 2 (3%)

Table 2. The number of coastal Kenyan transmission clusters by cluster size and risk group. Abbreviations: 
MSM, men who have sex with men; IDU, injecting drug user; FSW, female sex worker; HET, at-risk men and 
women who did not report sex work or male same-sex behaviour.

Figure 1. Clustering patterns of different risk groups in coastal Kenya. Representative clusters selected to 
highlight typical clustering patterns of the different risk groups. The branches are coloured according to the 
different risk groups (Bluish- green: MSM; Sky blue: IDU; Vermillion: FSW; Yellow: HET, and Black: reference 
sequences). As an overview, MSM formed several small clusters ranging in size from two to nine sequences 
per cluster (A). Most IDU sequences (N = 41) formed one single large cluster (B). In contrast, FSW and HET 
clusters were small (mostly dyads containing two sequences), although most FSW and HET sequences existed 
as single sequences or clustered with reference sequences (C). Asterisks have been used to highlight branches 
leading to significantly supported clusters (aLRT-SH branch support of ≥0.9).
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Most sequences from coastal Kenya clustered exclusively with sequences of Kenyan origin. Only three clusters 
with sequences from coastal Kenya had links to published sequences from outside coastal Kenya. One sequence 
in an MSM cluster was from an MSM from Nairobi. One sequence in another MSM cluster was from a German 
MSM, and the last sequence was found in a mixed MSM/HET cluster and was from a Canadian individual of 
unknown gender (Supplementary Table S3).

Genetic diversity between clusters of different risk groups. To further dissect differences in clus-
tering patterns between risk groups, we determined the average genetic diversity in the identified clusters. A 
previously described ML bootstrap approach was employed to determine the genetic diversity (based on 1000 ML 
bootstrap trees)37. The median genetic diversity was 0.009 substitutions/site (s/s, IQR: 0.005–0.017 s/s) for 
MSM clusters, 0.03 s/s (IQR: 0.02–0.055 s/s) for IDU clusters, 0.008 s/s (IQR: 1×10–8–0.018 s/s) for FSW clus-
ters, 0.015 s/s (IQR: 0.006–0.023 s/s) for HET clusters, and 0.018 s/s (IQR: 0.013–0.024 s/s) for mixed clusters. A 
Kruskal-Wallis H test showed that the distribution of genetic diversity differed across the five groups (χ2 = 11.074, 
four degrees of freedom, P-value = 0.026). A Dunn’s post hoc test for multiple comparisons using rank sums 
showed a significant difference in diversity between FSW and IDU (mean rank difference = 33.08, adjusted 
P-value = 0.039, Fig. 2, Supplementary Table S4).

Analysis of active transmission clusters. Among the 61 clusters defined by risk group, we identified 34 
potentially active clusters as (determined by low genetic distance <1.5%), suggesting ongoing transmission at 
the time of sample collection. Stratification of the potentially active clusters by risk-group showed: Eight MSM 
dyads and five MSM networks; four IDU dyads; five FSW dyads; and seven HET dyads and two HET networks. 
Potentially active clusters with sequences from different risk groups included one FSW/HET network and two 
MSM/HET networks (Supplementary Table S5).

Estimation of time to the most recent common ancestor (tMRCA) and evolutionary rates. To 
gain insight into the evolutionary dynamics of the identified transmission clusters, we determined the evolution-
ary rate and the tMRCA of the clusters by Bayesian phylogenetic analysis. The median tMRCA of the 61 coastal 
Kenya clusters indicated that HIV-1 has been introduced in coastal Kenya several times over a period of 27 years 
(1985–2012, Supplementary Fig. S3 and Table S3). Only one cluster was large enough to allow for in-depth phy-
lodynamic analysis. This cluster comprised 41 IDU sequences and the tMRCA for this cluster was determined to 
be 1987 (95% higher posterior density [HPD] interval: 1985–1990) (Fig. 3) with a median evolutionary rate of 6.4 
× 10−3 substitutions/site/year (HPD interval: 3.9 × 10−3 − 1.1 × 10−2). The Skygrid analysis indicated that the 
number of IDU contributing to new HIV-1 infections over time increased gradually from 1987 to 2010.

Discussion
In this study, we found several HIV-1 links between MSM/HET, HET/FSW, and MSM/FSW, indicating mix-
ing between these risk groups in coastal Kenya. Sequences from HET females in clusters dominated by MSM 
sequences provided evidence for heterosexual linkages in these clusters. The majority of the MSM in mixed clus-
ters also reported having female sexual partners, indicating that this group, in addition to female sex workers, 
could be an important transmission link to the HET epidemic4.

Characteristics

Bivariable Analysis* Multivariable Analysis**

OR (95% CI) P-value aOR (95% CI) P-value

Risk group

HET Reference Reference

MSM 13.8 (8.6–22.2) <0.001 25.8 (10–63.9) <0.001

IDU 29.1 (13.8–61.1) <0.001 31.5 
(12.2–81.6) <0.001

FSW 1.1 (0.6–2) 0.71 1.2 (0.5–2.9) 0.656

Subtype

A1 Reference

C 0.4 (0.2–0.8) 0.01 0.4 (0. 1–0.9) 0.025

D 0.5 (0.3–0.8) 0.008 0.4 (0.2–0.8) 0.014

Year (range)

2005–2007 Reference

2008–2010 0.9 (0.6–1.4) 0.55

2011–2019 1.1 (0.6–1.9) 0.83

Area (county)
Kilifi Reference

Mombasa 3.9 (2.7–5.5) <0.001 0.9 (0.5–1.6) 0.675

Sequence category
Published Reference

New 0.3 (0.2–0.5) <0.001 0.8 (0.4–1.8) 0.555

Table 3. Factors associated with clustering among 546 subtypes A1, C, and D HIV-1 sequences from MSM, 
IDU, FSW, and HET individuals from coastal Kenya. Abbreviations: MSM, men who have sex with men; IDU, 
injecting drug user; FSW, female sex worker; HET, at-risk men and women who did not report sex work or male 
same-sex behaviour. *Variables at a P-value of <0.1 in the bivariable analysis were included in the multivariable 
model. Circulating and unique recombinant forms were excluded from the multivariable analysis.
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Transmission linkages between MSM and HET in coastal Kenya might be expected to some extent, given that 
sexual interaction between MSM and other risk groups in the community is common2–4,6,13. In the only previ-
ous study of phylogenetic HIV-1 transmission linkages between MSM and HET in coastal Kenya, Bezemer and 
colleagues only found one single transmission pair of an MSM and a known female partner. Hence, extensive 
mixing between the MSM and HET epidemics was not found in that study6. In comparison, our analysis included 
a higher sampling density and availability of risk-group annotated sequences obtained in more recent years. This 
likely explains the significantly higher number of mixed clusters between MSM and HET sequences in the current 
study. In a broader context, our study complements existing research on the role of mixed networks in HIV-1 
transmission – both globally and in sub-Saharan Africa26,30,31,38–40.

Although we found several instances of mixed clusters, the majority of the coastal Kenya clusters represented 
within-risk-group HIV-1 transmission. MSM-exclusive and IDU-exclusive clusters were more common than 
FSW and HET clusters. High rates of clustering among MSM and IDU have been described before, both in our 
setting and elsewhere, and have been linked to an elevated risk of infection among MSM and IDU within close 
networks6,8,17,29,30,41. Whereas the MSM sequences were found in several smaller clusters, the vast majority of the 
IDU sequences formed one large cluster. This suggests that the majority of the HIV-1 IDU epidemic in Coastal 
Kenya was introduced from one single source followed by a long-term gradual spread within the IDU population 
– a pattern that distinguishes IDU transmission from that of other risk groups in coastal Kenya. In contrast to 
previous studies where IDU sequences clustered with very low genetic diversity29,30,42, IDU clusters in our analysis 
had the highest genetic diversity compared to the other analysed risk groups. This indicates that the elapsed time 

Figure 2. Genetic diversity of different risk group-specific clusters in coastal Kenya. A pirate plot63 illustrating 
the differences in genetic diversity between MSM, IDU, FSW, HET and Mixed clusters. Black dots represent the 
median estimates of the genetic diversity per cluster. The group median and the interquartile range diversity 
estimates are indicated in box plots coloured by risk group (Bluish-green: MSM; Sky blue: IDU; Vermillion: 
FSW; Yellow: HET; Deep blue: Mixed risk groups).

Figure 3. Population dynamics of the HIV-1 sub-epidemic among injecting drug users in coastal Kenya. 
A Bayesian Skygrid plot showing population dynamics of the HIV-1 sub-subtype A1 injecting drug users’ 
sub-epidemic in coastal Kenya. Since the IDU pol sequence alignment did not contain temporal information 
(all sequences were sampled in 2010), the node height for this cluster was calibrated using information from 
the tMRCA posterior distribution obtained from dating the origin of subtype A1 Kenyan clusters64. Median 
estimates of the number of injecting drug users contributing to new infections are shown as a continuous black 
line. The shaded area represents the 95% higher posterior density intervals of the inferred effective population 
size.
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between HIV-1 infection and sample collection may have been longer among IDUs, and/or that the proportion 
of collected IDU sequences in relation to the true number of IDUs was lower compared to other risk groups. The 
underlying reasons for this are unknown and warrant further investigation. However, with or without missing 
links, such clustering pattern is indicative of long-standing HIV-1 transmission linked with intravenous drug use 
in coastal Kenya17.

This is the first study in Africa to investigate the evolutionary dynamics of an HIV-1 sub-epidemic among IDU. 
The phylodynamic analysis indicated a steady increase in the epidemic among IDU in coastal Kenya from 1987 to 
2010, with no evidence of a rapid exponential increase in the number infections that is typical of HIV-1 outbreaks 
among IDUs29,30,42. Still, the gradual increase in infections among IDU is compatible with a known period of 
increased injection of heroin in the region43. Interestingly, and given a general absence of epidemiological surveil-
lance data, new infections among IDU did not seem to decrease with the national rollout of combination antiret-
roviral therapy (ART) in 2004. This could be a consequence of the unfavourable climate of stigma, discrimination 
and hostile legislation associated with IDU and most-at-risk-populations in Kenya, which impedes these popu-
lations from accessing medical services including ART1,44. Opioid substitution therapy for IDU, Pre-Exposure 
Prophylaxis (PrEP) targeting all high-risk groups, and initiation of ART immediately upon diagnosis have all 
been introduced and scaled up after 2010, when the IDU samples used for this study were collected45,46. As new 
sequence data are made available, future studies may shed light on the effectiveness of these strategies.

This study had some limitations: First, the identified transmission chains are likely to suffer from missing links 
due to low sampling density. A low sampling density generally results in reduced clustering of HIV-1 sequences47. 
Because majority of the studies in the coastal Kenya setting have mostly focused on recruiting MSM participants, 
FSW and HET in our analysis had low sampling densities and inevitably, several transmission chains may have 
been missed. Furthermore, it is important to acknowledge that the IDU sequences were from one study, using 
samples from one setting (Mombasa), and collected over a period of less than one year (2010). It is therefore likely 
that our findings are not representative of the entire IDU epidemic in coastal Kenya. Larger studies of HIV-1 
transmission in the IDU population in coastal Kenya are therefore warranted; still we found clear branching 
patterns indicative of long-standing HIV-1 transmission associated with intravenous drug use. Second, skewed 
sampling between risk groups may result in overrepresentation of some types of risk group-specific and mixed 
clusters. Third, given that annotating sequences from sub-Saharan Africa with information about transmission 
risk factor has become common only in recent years, some published sequences used in this analysis lacked risk 
data and were assigned HET (by far the most dominant route of HIV-1 transmission in coastal Kenya). However, 
the risk group for nodes within a cluster that had inadequate annotation can often be deduced from association 
with nodes with a known risk group48. Since none of the presumed heterosexual sequences in this study was 
found in mixed clusters, it is unlikely that this potential caveat had any effect on our conclusions. Finally, few 
HIV-1 pol sequences were available after the year 2010 for all risk groups. This limited our analysis to the rep-
resentation of some risk groups by the year and area of sampling, further restraining characterisation of recent 
clusters and ongoing transmission chains.

In conclusion, we demonstrated that there is HIV-1 mixing between high-risk groups and heterosexual popu-
lations in coastal Kenya, with frequent within-risk-group transmission. We highlight that high-risk groups could 
contribute to the epidemic either through seeding and maintaining new infections within their own risk group or 
through linking infections across different risk groups. It is possible that HIV-1 prevention programmes targeting 
FSW, MSM and IDU populations could reduce overall HIV-1 transmission in coastal Kenya. As more sequences 
become available from wider geographic regions, further and larger studies with uniform sampling densities 
across different risk groups will be necessary to estimate the impact of mixing between risk groups and the gen-
eral population on HIV-1 spread and to determine the source populations that could most effectively be targeted 
to mitigate new infections in sub-Saharan Africa.

Methods
Study population and sequence dataset. All published HIV-1 pol sequences available in the HIV data-
base at the Los Alamos National Laboratory (LANL) originating from coastal Kenya and collected 2005–2019 
retrieved49. Sequences sampled from the same individuals were excluded from the data set, retaining only the 
oldest sequence per participant. Risk group information was obtained from LANL and any missing data were 
obtained by communication with study authors or inferred from reviewing literature from the respective stud-
ies6,8–15. In addition, new HIV-1 pol sequences were generated from samples collected 2005–2019 participants in 
an acute HIV-1 infection cohort and from a prospective observational study following high-risk volunteers in an 
HIV-1 vaccine feasibility cohort described elsewhere3. All new sequences were collected from treatment-naïve 
men and women aged 18 years and over. HIV-1 diagnosis for samples collected before 2016 was done using 
two rapid antibody tests in parallel (Determine, Abbott Laboratories; Unigold, Trinity Biotech), with conflicting 
results resolved by an enzyme-linked immunosorbent assay (ELISA, Genetic System HIV-1/2 plus O EIA; Bio-
Rad). HIV-1 diagnosis for samples collected after 2016 was made using the GeneXpert HIV-1 Qual (Cepheid, 
Sunnyvale, CA, USA).

Sequences were annotated by date of sample collection, geographical area (Mombasa or Kilifi county), and by 
risk group. Sequences were classified into: MSM (men who reported having sex with men); IDU (individuals who 
reported injecting drugs with a needle and syringe); FSW (females who reported ever receiving money, gifts, or 
favours in exchange for sex); and HET (all other individuals [both male and female] who did not report engaging 
in sex work, male same-sex behaviour or injection drug use).

RNA extraction, amplification of HIV-1 pol region and sequencing. HIV-1 RNA was extracted 
from blood plasma samples using the RNeasy Lipid Tissue Mini Kit (QIAGEN) with modifications from the 
manufacturer’s standard protocol50. Briefly, 100 µl of blood plasma was efficiently lysed in 1000 µl Qiazol Lysis 
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Reagent (Qiagen). DNA was removed by treating the column with RNase-free DNase 1 (Qiagen) prior to RNA 
elution in 40 µl nuclease-free water. Reverse transcription and amplification of partial pol gene were performed 
using the One-Step Superscript III RT/Platinum Taq High Fidelity Enzyme Mix (ThermoFisher ScientificTM) with 
the pol-specific primer pair JA269 and JA27251. First-round PCR products were amplified in a nested PCR with 
DreamTaq Green DNA Polymerase (ThermoFisher ScientificTM) using pol-specific primers JA271 and JA270. 
PCR products were sequenced in both directions with the nested PCR primers using the BigDye terminator 
kit v1.1 (Applied Biosystems) and the sequences were determined on an ABI PRISM 3130×1 Genetic Analyzer 
(Applied Biosystems).

Sampling density. County-exclusive estimates for HIV-1 prevalence for high-risk groups in Kenya were 
not available when this analysis was done. Hence, the national HIV-1 prevalence estimate for each risk group 
and the estimates of people infected with HIV-1 in Mombasa and Kilifi counties were used to estimate the sam-
pling density of our study (defined as the proportion of genotyped viral sequences in the estimated number of 
HIV-infected individuals in a risk group)36.

HIV-1 Subtyping. Newly generated consensus and published pol sequences from coastal Kenya were com-
bined, codon-aligned using ClustalX 2.0.11, and manually adjusted in Geneious Prime 2019 (Version 2019 
2.1) (https://www.geneious.com)52. The combined sequences were then aligned with the Group M (subtypes 
A-K + Recombinants) HIV-1 subtype reference dataset downloaded from Los Alamos HIV Database (http://
www.hiv.lanl.gov/)49.

To infer genetic relatedness, phylogenetic reconstruction was done in PhyML using the general time-reversible 
substitution model with a gamma-distributed rate variation and proportion of invariant sites (GTR + Γ4 + Ι)53. 
Branch support was estimated using the Shimodaira-Hasegawa approximate likelihood ratio test (aLRT-SH) as 
implemented in PhyML54. An aLRT-SH ≥0.9 was considered statistically significant17. The subtype-resolved 
maximum-likelihood phylogenetic tree was visualized in FigTree (v1.4.3). Unique recombinant forms (URFs) 
were further resolved by Bootscan analyses using SimPlot and breakpoints identified using a sliding window size 
of 300 bp and a step size of 20 bp55.

Transmission Cluster analysis. To detect local transmission clusters, newly generated and published 
HIV-1 pol sequences were combined into one coastal Kenya sequence dataset. In addition, the ten most similar 
GenBank reference sequences for each coastal Kenya sequence were obtained through BLAST29,30,56. The unique 
coastal Kenya sequences and the reference sequences were aligned and analysed to determine HIV-1 transmission 
clusters. Subtype-specific maximum-likelihood phylogenies were reconstructed in PhyML. For each subtype, 
transmission clusters were manually determined by inspecting the ML tree from root to terminal tips to ensure 
sequences clustered with high branch support. Monophyletic clades with aLRT-SH support ≥0.9 and which were 
dominated (≥80%) by sequences from coastal Kenya (compared to reference sequences) were defined as coastal 
Kenya transmission clusters17. To determine active transmission clusters, sequences were further explored using 
a genetic distance threshold (≤1.5%) and aLRT-SH branch support of ≥0.9 in Cluster Picker57. Transmission 
networks were classified based on the number of sequences per cluster into dyads (2 sequences), networks (3–14 
sequences) and large clusters (>14 sequences)30.

Diversity analysis. A previously described ML bootstrap approach was employed to determine the genetic 
diversity in the identified clusters37. Briefly, all sequences in coastal Kenya transmission clusters were used to con-
struct 1000 bootstrap ML phylogenies in Garli 2.058. Diversity estimates were determined in Perl (version 5.30.0) 
using in-house Perl and Bioperl scripts59. The diversity for each pre-defined cluster was estimated by averaging the 
pairwise tree-distances between the cluster-specific sequences in each bootstrap tree, resulting in 1000 diversity 
estimates per cluster. Next, the medians of these 1000 diversity estimates were determined for each cluster and 
then used in the analysis as previously described37. The scripts used in this analysis is available from the authors 
upon request.

Bayesian phylogenetic analysis. To estimate the dates of origin (time to most recent common ancestor; 
tMRCA) of the coastal Kenyan clusters, maximum clade credibility trees were generated using a Bayesian Markov 
Chain Monte Carlo (MCMC) approach as implemented in BEASTv1.8.260,61. Based on marginal likelihood esti-
mators for model selection and testing in BEAST, the Bayesian Skygrid model with an uncorrelated lognormal 
relaxed clock and inferred under the GTR + Γ4 + Ι substitution model was adopted as the best fit model for 
subsequent inferences. BEAST runs of 100–300 million generations were performed, logging samples after every 
10000–30000 steps with the initial 10–30% discarded as burn-in. The convergence of MCMC parameter estimates 
was accessed based on effective sample size estimates (ESS > 200) using Tracer v1.662. Trees were summarized in 
Tree-Annotator v1.8.2 (BEAST suite) and maximum clade credibility (MCC) trees were visualized in Figtree. 
We also aimed to dissect the demographic history of the only large coastal Kenya cluster identified. Since the 
sequences in this cluster did not contain temporal information (all IDU sequences were sampled in 2010), the 
node height posterior distribution (tMRCA) for the IDU cluster from the transmission clusters analysis described 
above was used as a tree-root height calibration prior (fixed the tree root height to 1985), guiding a skygrid anal-
ysis to estimate the effective population size (Ne) of the large IDU cluster over time.

Statistical analysis. Frequencies and percentages were used to describe the distribution of sequences within 
the study population by risk group, HIV-1 subtype, calendar year of sampling and county of sampling. A logis-
tic regression model was used to assess factors associated with clustering. Variables with P-values <0.1 in the 

https://doi.org/10.1038/s41598-020-63731-z
https://www.geneious.com
http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/


8Scientific RepoRtS |         (2020) 10:6775  | https://doi.org/10.1038/s41598-020-63731-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

bivariable analysis were included in the multivariable model. A P-value of <0.05 was defined as statistically signif-
icant. A Kruskal-Wallis H test and a post hoc Dunn’s test (with Bonferroni correction for multiple comparisons) 
were conducted to determine differences in genetic diversity estimates among clusters from multiple risk groups. 
Statistics were done using Stata version 15 and RStudio (version 1.2.5001), and the packages: DescTools (version 
0.99.29, https://cran.r-project.org/package=DescTools) and yarrr (version 0.1.6)63. The full R code is available on 
request from the authors.

Nucleotide sequence accession numbers. Nucleotide sequences were deposited in GenBank under the 
following accession numbers: MT084914 - MT085076.

Ethical consideration. All research was performed in accordance with relevant guidelines/regulations. 
Informed consent was obtained from all participants who provided blood plasma samples from which new HIV-1 
sequences were generated (informed consent was not required for subjects whose sequences were obtained from 
LANL). Plasma samples used to generate the new sequences were obtained from on-going or concluded studies 
that were also approved by KEMRI/SERU (SERU 3747, 3280 and 3520, and SSC 894). The current study is part of 
a parent protocol that was reviewed and approved by the Kenya Medical Research Institute (KEMRI) Scientific 
and Ethics Review Unit (SERU 3547).
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Introduction: In April 2019, an HIV-1 outbreak among children occurred in Larkana,
Pakistan, affecting more than a thousand children. It was assumed that the outbreak
originated from a single source, namely a doctor at a private health facility. In this study,
we performed subtype distribution, phylogenetic and drug-resistance analysis of HIV-1
sequences from 2019 outbreak in Larkana, Pakistan.

Methods: A total of 401 blood samples were collected between April–June 2019, from
children infected with HIV-1 aged 0–15 years recruited into a case-control study to
investigate the risk factors for HIV-1 transmission. Partial HIV-1 pol sequences were
generated from 344 blood plasma samples to determine HIV-1 subtype and drug
resistance mutations (DRM). Maximum-likelihood phylogenetics based on outbreak
and reference sequences was used to identify transmission clusters and assess the
relationship between outbreak and key population sequences between and within the
determined clusters. Bayesian analysis was employed to identify the time to the most
recent common recent ancestor (tMRCA) of the main Pakistani clusters.

Results: The HIV-1 circulating recombinant form (CRF) 02_AG and subtype A1 were
most common among the outbreak sequences. Of the treatment-naïve participants,
the two most common mutations were RT: E138A (8%) and RT: K219Q (8%). Four
supported clusters within the outbreak were identified, and the median tMRCAs of the
Larkana outbreak sequences were estimated to 2016 for both the CRF02_AG and
the subtype A1 clusters. Furthermore, outbreak sequences exhibited no phylogenetic
mixing with sequences from other high-risk groups of Pakistan.
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Conclusion: The presence of multiple clusters indicated a multi-source outbreak, rather
than a single source outbreak from a single health practitioner as previously suggested.
The multiple introductions were likely a consequence of ongoing transmission within
the high-risk groups of Larkana, and it is possible that the so-called Larkana
strain was introduced into the general population through poor infection prevention
control practices in healthcare settings. The study highlights the need to scale up
HIV-1 prevention programmes among key population groups and improving infection
prevention control in Pakistan.

Keywords: HIV-1, outbreak investigation, phylogenetic analysis, drug resistance, paediatric [MeSH]

INTRODUCTION

The HIV-1 pandemic has been established for 40 years and has
resulted in approximately 32.7 million deaths worldwide (de
Mendoza, 2019). One of the characteristic features of HIV-1
is its high mutation rate and recombination rate within and
between hosts, leading to the emergence of distinct subtypes
and circulating recombinant forms (CRFs) (Taylor et al., 2008;
van Zyl et al., 2018). The subtypes can also recombine to
give rise to unique recombinant forms (URFs) and minor
HIV-1 variants (Taylor et al., 2008). The consequent genetic
diversity that characterises HIV-1 infection has implications for
virological control and transmission. Mutations encoded by the
virus can interfere with epitope processing and recognition,
leading to immune evasion. In addition, mutations may also
lead to resistance to anti-retroviral drugs (van Zyl et al., 2018).
Furthermore, certain immune- or drug-escape mutations may
facilitate rapid transmission (van Zyl et al., 2018).

The phylogenetic and phylodynamic analysis of sequences
derived from people living with HIV-1 (PLWH), particularly
those who are part of an outbreak, can help answer
fundamental questions such as the directionality and pattern
of transmission and in understanding the introduction of
HIV-1 into different regions, as well as identify clusters of
transmission (Kosakovsky Pond et al., 2018; Dawson et al., 2020;
Romero-Severson et al., 2020).

Pakistan has experienced a growing HIV-1 epidemic that is
concentrated among three key population groups namely persons
who inject drugs (PWID), transgender sex workers [also known
as Hijra sex workers (HSW)], and men who have sex with men
(MSM) (Raees et al., 2013) in whom prevalence is around 38–40,
11, and 7.5%, respectively (Baqi et al., 1998; Waheed and Waheed,
2017; Hasan et al., 2018). Only 36,000 of an estimated 160,000
PLWH in Pakistan were aware of their HIV-1 positive status in
2020, and only 24,606 PLWH were receiving HIV-1 treatment of
whom 7,693 were PWID (Esbjörnsson et al., 2016).

In April 2019, a cluster of fourteen HIV-1 diagnoses in
children was reported in Ratodero, a town in Larkana district,
Pakistan (Siddiqui et al., 2020). By December 2019, 1,167 children
have been diagnosed with HIV-1 through a screening programme
established in response to the outbreak (Brenner et al., 2007).
Larkana has had three previous outbreaks of HIV, the first among
PWID in 2003, the second in 2016 among 12 children in a
paediatric hospital, and the third in 2016 among 56 individuals

in a renal dialysis unit (Brenner et al., 2007; Altaf et al.,
2016). These outbreaks were linked to poor infection prevention
control practices including reuse of needles and inadequate
blood screening.

For Pakistan, the outbreak in 2019 is unprecedented in terms
of predominantly affecting children and its magnitude: prior
to the outbreak, 1041 children had ever registered for HIV-1
care nationally over the past 13 years (Mir et al., 2020a). Early
during the outbreak, media reports implicated a local doctor who
had treated several of the infected children and who was later
diagnosed with HIV, in spreading HIV-1 infection (Abi-Habib
and Masood, 2019; Siddiqui et al., 2020).

In this study, we conducted a phylogenetic analysis to
investigate the HIV-1 outbreak subtype and the pattern and
source of transmission, and specifically whether this was a single-
source outbreak. Furthermore, we also analysed the sequences for
presence of drug resistance mutations (DRMs).

MATERIALS AND METHODS

Study Design and Setting
This study was embedded in an individually matched case-
control study that recruited 401 cases defined as children
aged 0–15 years who registered for HIV-1 care at the
Paediatric Treatment Center at Shaikh Zayed Children’s Hospital
(Siddiqui et al., 2020). This centre was established by the
Sindh AIDS Control Program in response to the outbreak.
Prior to the outbreak, the nearest paediatric HIV-1 services
were in the provincial capital, Karachi, situated more than
400 kilometres from Ratodero. Age-, sex-, and neighbourhood-
matched HIV-uninfected controls were also recruited. An
interviewer-administered questionnaire collected data on risk
factors for HIV-1 infection. A blood sample was collected
for Hepatitis B and C serology, and for HIV-1 phylogenetic
studies (in cases only). Written informed consent was obtained
from guardians and assent from participants. The study was
approved by the Aga Khan University Ethical Review Committee
(ERC# 2019-1536-4200). Prior to sample collection, written
informed consent was obtained from the guardians, and if the
child was able to understand the study procedures, a written
assent was obtained. The study objectives were explained to
the patient at the time of taking consent/assent and patients
were informed that their identities will remain confidential. The
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participants were also informed that they had the opportunity
to withdraw from the study at any given time and that this
would have no consequences on the treatment or the care that
they would receive.

DNA Amplification and HIV-1 Genotyping
Proviral DNA was extracted from blood samples obtained
from cases using Qiagen’s QIAamp DNA blood mini kit
according to the manufacturer’s instructions and stored at
-80◦C. The pol gene was amplified from each extracted DNA
sample using a two-step nested polymerase chain reaction
(PCR) strategy. Two sets of outer primers were used: Forward
(POLOF CAGCATGYCAGGGAGTRGGRGGACC, amino acid;
1832-1856, HXB2, IBF1 5′-AAATGATGACAGCATGTCAG
GGAGT-3′. nt 1823-1847, HXB2) and Reverse (IBR1 5′-AACTT
CTGTATATCATTGACAGTCCA-3′. nt 3303-3328, HXB2). The
first-round product was used as a template for the second
round with primer set, Forward (POLIF 5′-AGGCTAATTTT
TTAGGGAARATYTGGCCTTCC-3′. nt 2078-2109, amino
acid PR: 1–9; HXB2) and reverse (RTOUT3 5′-TATGTCATT
GACAGTCCAGCT-3′. nt 3300–3320, amino acid RT: 251–257
HXB2) (Tariq et al., 2018). PCR Mastermix (ABM) Bestaq (2X)
cat# G464 and Hotstart (2X) cat# G906 were used to prepare
a 25 ul reaction mixture, and 0.8 pmol and 0.6 pmol primer
used for the first and second round, respectively. Thermo
cycle conditions were as follows: denaturation at 95◦C for
5 min, followed by 40 cycles of denaturation at 95◦C for 1 min,
annealing at 50◦C for IBF1/IBR1 and 55◦C for POLOF/IBR1 sets
(round 1), 60◦C (round 2) for 20 s, extension at 72◦C for 1 min
with a final extension of at 72◦C for 7 min. The protocol was
run with positive and negative control to confirm results. The
amplicons underwent sequencing using the Sanger sequencing
platform (Macrogen, South Korea) and the sequences were
deposited in the GenBank and assigned the accession numbers
MN698251-MN698253, MN698255-MN698264, MN752136,
MN752137, and MT748850-MT749178.

Subtype Analysis
HIV-1 pol sequence data used in the study comprised of
either newly generated sequences (referred to as outbreak
sequences) or Pakistani HIV-1 pol sequences retrieved from the
Los Alamos HIV sequence database1 (referred to as published
Pakistani sequences representing Pakistani people who inject
drugs (PWID), heterosexuals, sex workers, and other individuals
with unknown transmission risk) (Kuiken et al., 2003). Outbreak
sequences and published Pakistani HIV-1 pol sequences (referred
to as the Pakistani dataset) were aligned with HIV-1 Group M
(subtypes A-K + Recombinants) subtype reference sequences1

using the MAFFT algorithm in Geneious Prime 2019 (Larkin
et al., 2007). Subtyping of each sequence was determined
by maximum-likelihood (ML) phylogenetic analysis in PhyML
using the general time-reversible substitution model with a
gamma-distributed rate variation and proportion of invariant
sites (GTR + 04 + I) (Guindon et al., 2010). Branch support
was estimated using the approximate likelihood ratio test

1http://www.hiv.lanl.gov

with the Shimodaira-Hasegawa-like procedure (SH-aLRT) in
PhyML, where SH-aLRT support values ≥0.90 were considered
significant (Guindon et al., 2010). Phylogenies were visualised
in FigTree v1.4.4.2

Cluster Analysis
To identify local transmission clusters, subtype-specific ML
phylogenies were reconstructed for the main/predominant
HIV-1 strains identified in the outbreak. The most similar non-
Pakistani sequences for each sequence in the Pakistani dataset
were retrieved from the NCBI GenBank and used as reference
sequences as previously described (Esbjörnsson et al., 2016;
Nazziwa et al., 2020; Nduva et al., 2020). The Pakistani dataset
and GenBank reference sequences were aligned by subtype or
CRF and subtype/CRF-specific phylogenies were reconstructed
in PhyML (Guindon et al., 2010). Monophyletic clusters having
aLRT-SH ≥0.90 and comprising ≥80% Pakistani sequences
were defined as Pakistani-specific clusters (Esbjörnsson et al.,
2016; Hassan et al., 2017; Nazziwa et al., 2020; Nduva
et al., 2020). Clusters were classified into dyads (2 sequences),
networks (3–14 sequences), or large clusters (>14 sequences)
(Esbjörnsson et al., 2016).

Estimating Dates of the Most Recent
Common Ancestor for Each Cluster
The dates of origin (time to the most recent common
ancestor; tMRCA) of the large Pakistani-specific HIV-1 clusters
were estimated using Bayesian Markov Chain Monte Carlo
(MCMC) inference in BEAST (v1.10.4) (Gill et al., 2020). All
Larkana outbreak sequences were sampled in 2019 and did not
independently have a sufficient temporal signal for inference
of the dates of origin. Hence, supplementary non-Pakistani
reference sequences (seven CRF02_AG and six sub-subtype A1
sequences), and Pakistani sequences from previous outbreaks
(33 CRF02_AG and 11 sub-subtype A1 sequences) sampled
from different years were used to inform the temporal signal
(assessed in TempEst v1.5.3) (Rambaut et al., 2016). Subtype-
specific Bayesian inferences were done in BEAST 1.10.4 using the
Bayesian Skygrid model with an uncorrelated lognormal relaxed
clock and inferred under the GTR + 04 + I substitution model
(Drummond et al., 2005; Baele et al., 2012; Gill et al., 2013;
Suchard et al., 2018). BEAST runs of 500 million generations were
performed, sampling every 50,000th iteration, and discarding the
first 10% of samples as burn-in. Convergence was determined
in Tracer v.1.7.0, defined as effective sample sizes (ESS) ≥200
(Suchard et al., 2018). Maximum clade credibility (MCC) trees
were summarised in Tree-Annotator v1.10.4 and visualised in
Figtree (v1.4.4).

Drug Resistance Mutation Analysis
Mutations in the HIV-1 pol gene (protease and reverse
transcriptase region) associated with resistance against protease
and reverse transcriptase inhibitors was determined using
the Stanford HIV-1 drug resistance database (Rhee et al., 2003),

2https://github.com/rambaut/figtree/releases
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and confirmed using the 2019 Update of the Drug Resistance
Mutations in HIV-1 by the International AIDS Society–
United States (Wensing et al., 2019). The DRMs were
also classified as those conferring high, intermediate, low,
and potential low-level resistance using the algorithm
described in Stanford HIV-1 drug resistance database and
IAS-United States report.

RESULTS

Study Population
Of the blood samples obtained from the 401 cases enrolled
in the case-control study, 344 were successfully amplified and
sequenced. The remaining 57 samples failed to amplify possibly
due to low viral load secondary to receiving antiretroviral
treatment or due to genomic diversity attributed to quasi-
species in an individual (Debyser et al., 1998; Gupta et al.,
2017). Out of 344 cases, socio-demographic information was
available for 321 sequences, while information for 23 cases was
missing. The median age of participants was three (IQR: 2–5)
years and 65% were male (Table 1). The majority (84.4%) were
taking ART at the time of sampling for a median period of
41 days (range: 22–192 days). The ART regimen comprised of
zidovudine, lamivudine, and nevirapine. Most participants lived

TABLE 1 | Characteristics of study participants.

Category/variable Total no. (%)

Age (years)

0–5 248 (77%)

5–10 58 (18%)

10–15 15 (5%)

Sex

Male 208 (65%)

Female 113 (35%)

Location

Ratodero, Larkana 132 (41%)

Outside Ratodero but within Larkana district 141 (44%)

Shikarpur district 44 (13.7%)

Jafarabad district 1 (0.3%)

Khairpur district 1 (0.3%)

Nawabshah district 1 (0.3%)

ART History

Naïve 50 (15.6%)

Experienced 271 (84.4%)

ART duration (268)

<30 days 93 (28.97%)

>30–180 days 175 (54.5%)

HCVand HBV co-infections

HBV positive 75 (23.4%)

HCV positive 26 (8%)

Maternal HIV-1 status

HIV-1 positive mother 28 (8.7%)

Mother’s HIV-1 status unknown 4 (1.2%)

in Ratodero, the epicentre of the outbreak, while the remainder
were from other areas of Larkana district and neighbouring
districts (Table 1).

Pakistani HIV-1 Sequence Dataset and
HIV-1 Subtypes and CRFs
Overall, we analysed 532 HIV-1 partial pol sequences in the
Pakistani dataset including outbreak sequences (N = 344) and
previously published sequences (N = 188). HIV-1 CRF02_AG
(N = 338, 63.5%) dominated the outbreak, followed by sub-
subtype A1 (N = 149, 28.0%). Additional subtypes found in the
outbreak were subtype C (N = 20, 3.8%), subtype G (N = 8, 1.5%),
CRF35_AD (N = 7, 1.3%), subtype B (N = 5, 0.9%), and subtype
D (N = 5, 0.9%, Figure 1).

IDENTIFICATION OF
PAKISTANI-SPECIFIC HIV-1
TRANSMISSION CLUSTERS

ML phylogenies were reconstructed independently for
CRF02_AG (N = 338) and sub-subtypes A1 (N = 149),
which were the most prevalent HIV-1 strains in the outbreak.
The final reference dataset comprised of 310 non-Pakistani
reference sequences for CRF02_AG, and 382 for sub-subtype A1
remained. Overall, 291 (86.1% CRF02_AG outbreak sequences)
and 59 (40.0% sub-subtype A1 outbreak sequences) sequences
formed 17 supported Pakistani clusters (size range: 2–283
sequences per cluster). These 17 clusters included 9 dyads
(52.9% of all clusters), six networks (33.3%), and two large
clusters (11.8%, Table 2 and Figures 2A,B). Sub-subtype A1
clusters were more common (N = 13, 76.5%) as compared to
the CRF02_AG clusters (N = 4, 23.5%). Of the 344 outbreak
sequences, 312 (90.7%) were found in four distinct clusters.
More specifically, 283 sequences were found in one large
CRF02_AG cluster (Figure 2A), two sequences in a CRF02_AG
dyad (Figure 2A), 22 sequences in one large sub-subtype A1
cluster (Figure 2B), and four sequences in a sub-subtype A1
network (Figure 2B). HIV-1 clusters of outbreak sequences
showed no evidence of mixing with other HIV-1 risk groups
of Pakistan. Instead, the Pakistani sequences that were not
part of the outbreak formed an exclusive Pakistani cluster of
non-outbreak sequences (Table 2).

Estimation of Time to the Most Recent
Common Ancestor (tMRCA)
The tMRCAs were estimated for the two large clusters
(one CRF02_AG and one subtype A1 cluster) comprising of
the outbreak sequences. The median tMRCA of the CRF02_AG
cluster was estimated to 2016 (95% higher posterior density
[HPD] interval: 2015–2017), and the tMRCA of the sub-
subtype A1 cluster was estimated to be 2016 (95% HPD
interval: 2015–2018). In addition, the divergence time between
the outbreak sequences and that of other high-risk groups
in Pakistan, such as PWID, was dated to the year 1999
(95% HPD interval: 1994–2010) for the CRF02_AG cluster,
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FIGURE 1 | Maximum likelihood (ML)-based subtyping of HIV-1 sequences: ML-based phylogeny/subtyping of 532 HIV-1 sequences (including 344 outbreak
sequences from Larkana-Pakistan). Branch tips on the phylogenetic tree are coloured according to HIV CRF/subtype (Red: CRF_02AG; Blue: CRF_35AD, Green:
subtype A1; Sky Blue: subtype B; Brown: subtype C; Pink: subtype D; Yellow: subtype G; Black: reference sequences from the Los Alamos HIV database). Scale
bar units are nucleotide substitutions per site.

TABLE 2 | The number of Pakistani transmission clusters by cluster size, risk group, and shared drug resistance mutations.

Cluster name HIV-1 subtype Number of Tips Transmission group Number with shared DRM

Cluster_A1_1 A1 22 Paediatric RT:E138A; N = 21

Cluster_A1_2 A1 3 Paediatric RT:E138A; N = 3

Cluster_A1_3 A1 2 Unknown

Cluster_A1_4 A1 2 MSM/unknown

Cluster_A1_6 A1 2 PWID

Cluster_A1_7 A1 2 Unknown

Cluster_A1_8 A1 2 Unknown

Cluster_A1_9 A1 2 Unknown

Cluster_A1_10 A1 9 PWID/unknown

Cluster_A1_11 A1 2 Unknown

Cluster_A1_12 A1 5 Unknown

Cluster_A1_15 A1 3 MSM/unknown

Cluster_A1_16 A1 3 CWSW/unknown

Cluster_CRF02AG_1 CRF02_AG 283 Paediatric RT:K219Q; N = 5, RT:K103N; N = 19,
RT:E138A; N = 7, RT:V17; N = 10

Cluster_CRF02AG_2 CRF02_AG 4 Paediatric RT:E138A; N = 1, RT:V17; N = 2

Cluster_CRF02AG_3 CRF02_AG 2 Unknown

Cluster_CRF02AG_4 CRF02_AG 2 Unknown

Abbreviations: MSM, men who have sex with men; PWID, people who inject drugs; CWSW, female sex worker; Unknown, sequences lacking information on risk group or
transmission route; Outbreak, sequences collected from the 2019 Larkana outbreak; RT, HIV-1 reverse transcriptase gene.
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FIGURE 2 | Maximum-likelihood trees summarising clustering patterns of different risk groups in Pakistani: Trees represent (A) CRF02_AG, and (B) sub-subtype A1
transmission clusters, respectively. Each phylogeny is rooted at the midpoint, and branches are arranged in increasing node order. Branches with aLRT-SH support
≥0.9 are coloured red. Monophyletic clusters with aLRT-SH support ≥0.9 and which have ≥80% sequences from Pakistan are highlighted in grey. To enhance
cluster visualisation, some branches containing either reference sequences or Pakistani sequences that are not part of clusters have been collapsed (shown as black
triangles, with the recent end of the triangle indicating the latest sampling date). Branch tips within respective clusters are coloured as per cluster risk group (Bluish-
green: MSM; Sky blue: Pakistani PWID/other risk groups IDU; Yellow: Larkana paediatric sequences; and Black: Non-Pakistani Reference sequences). Scale bars
represent the genetic distance in substitutions per site in both phylogenies. As an overview, among CRF02_AG sequences, whereas PWID and other risk groups
formed small clusters (size range 2–4 sequences per cluster), paediatric sequences from the Larkana outbreak formed one large cluster (N = 283 sequences).
Likewise, among subtype A1 sequences, PWID and individuals from other risk groups formed several small clusters (size range, 2–9 sequences per cluster), whilst
paediatric sequences from the Larkana outbreak formed one large cluster (N = 22 sequences).

and 2004 (95% HPD interval: 1998–2014) for sub-subtype A1
cluster (Figure 3).

Drug Resistance Mutation Analysis
Drug resistance mutation analysis was conducted on both ART-
naïve (15.6%) and ART- experienced (84.4%) sequences from
the outbreak. Among ART naïve individuals, 15 (30%) had drug
resistance mutations (DRM); the most common of which were
the Reverse Transcriptase (RT):E138A (8.0%) and RT:K219Q
(8.0%) mutations. Among treatment-experienced individuals, the
most common mutations were RT:E138A (12.92%), RT:K219Q
(8.86%), and RT:K103N (6.64%). The DRMs RT:E138A and
RT:K103N confer resistance against non-nucleoside reverse
transcriptase inhibitors (NNRTI) rilpivirine and efavirenz,
respectively, while RT:K219Q is associated with resistance
against nucleoside reverse transcriptase inhibitors (NRTI)
zidovudine. Similarly, DRM PI:N88D, associated with resistance
against protease inhibitors (PI), such as atazanavir/ritonavir,

and tipranavir/ritonavir was observed in two treatment-
experienced participants, while DRMs PI:M46L, PI:D30N,
PI:N83D, PI:K43T, PI:G73S, PI:L33F were seen in one treatment-
experienced individual each (Table 3). No DRM against protease
inhibitors was observed in ART-naïve individuals. Analysis
also showed that 114 (42%) patients with DRMs belonged to
the drug-experienced group, while, 15 (30%) belonged to the
ART-naïve group (Table 3).

Next, sequences with any DRMs were analysed for clustering.
Among the 78 sequences from the Larkana outbreak with
prevalent drug resistance mutations, the DRM RT:K219Q was
shared between five sequences whereof all clustered together in
cluster_CRF02_AG_1 (Tables 2,3). The DRM RT:M184V was
found in two sequences – both in cluster_CRF02_AG_1. The
DRM RT:K103N was found among 21 sequences, whereof 19
sequences were found in cluster (cluster_CRF02_AG_1). The
two remaining sequences were not part of any cluster. The
DRM RT:E138A was found in 38 sequences of different subtypes
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FIGURE 3 | Maximum clade credibility trees used to date clusters: Maximum clade credibility (MCC) trees used to determine the time to the most recent common
ancestor of the Pakistani clusters. Trees represent (A) the large CRF02_AG outbreak cluster, and (B) the large sub-subtype A1 outbreak cluster, respectively. Nodes
representing divergence (tMRCA; median and 95% HPD estimates) between the Larkana outbreak and prevailing epidemic sequences (representing PWID and other
risk groups) are highlighted as asterisks only. Nodes representing the tMRCA of all outbreak sequences per sub-type/CRF have been highlighted using both an
arrow and an asterisk. Branches with posterior value ≥0.9 are coloured red.

including 21 sequences in cluster_A1_1, three sequences in
cluster A1_2, seven sequences in cluster_CRF02_AG_1, one
sequence in cluster_CRF02AG_2, and six sequences that were
not part of a cluster. The DRM RT:V179L was distributed among
10 sequences in cluster_CRF02AG_1, and two sequences in
cluster_CRF02AG_2 (Tables 2,3).

DISCUSSION

In this study, we determined the HIV-1 subtype distribution,
phylodynamics, and presence of HIV-1 drug-resistance
mutations of the 2019 HIV-1 outbreak among children in
Larkana, Pakistan. Seventeen distinct clusters were found among
the Larkana outbreak sequences, indicating that HIV-1 was
introduced from multiple sources rather than from a single
source, as previously suggested (Arif, 2019; Siddiqui et al., 2020).
A similar large-scale nosocomial HIV-1 outbreak was reported
in Libya 1998–1999 (Visco-Comandini et al., 2002), where a
monophyletic HIV-1 CRF02_AG cluster was identified among
children visiting the El-Fatih Children’s hospital in Benghazi.
The HIV-1 transmission in the Libyan children was suggested to
originate from contaminated intravenous injections (although
not from blood or blood products) (Visco-Comandini et al.,

2002). Similarly, the HIV-1 transmissions in the 2019 Larkana
outbreak were strongly associated with visits to both public
and private sector facilities, but not with a single healthcare
facility, and with receipt of infusions, injections and blood
transfusions (Mir et al., 2020b), implying transmission through
poor infection control practices. Some of the children had
HIV-1 positive mothers, raising the possibility of mother-to-
child HIV-1 transmission. However, the possibility of vertical
transmission could not be verified due to unavailability of
maternal samples. Taken together, our results indicate that
the Larkana outbreak was not the result of a single-source
transmission from one health care practitioner, but may have
resulted from through multiple sources at different health
facilities. Moreover, and as previously suggested, our results
indicate that poor infection prevention control is still present in
Larkana (Altaf, 2018).

The HIV-1 subtype analysis showed a high prevalence of
CRF02_AG and sub-subtype A1. This is consistent with previous
reports indicating sub-subtype A1 as the dominant circulating
subtype in Pakistan (Khan et al., 2018), whereas CRF02_AG has
shown increasing prevalence more recently (Chen et al., 2016).
A study reporting on the molecular epidemiology of HIV-1
in Pakistan suggested that sub-subtype A1 was introduced in
Pakistan 1989 (95% HPD: 1984–1994) (Chen et al., 2016).
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TABLE 3 | Classification of the Drug resistance mutations.

Drug Mutation Naïve, N (%)
(n = 50)

Experienced, N (%)
(n = 271)

Mutation
classification

Drug associated
with resistance

K219Q 4 (8.00) 1 (0.37) Major AZT

M184V 0 (0.00) 2 (0.74) Major ABC, 3TC

M184I 0 (0.00) 1 (0.37) Major ABC, 3TC

N
R

T
Is

L210W 0 (0.00) 1 (0.37) Major AZT

K70R 0 (0.00) 2 (0.74) Major ABC, TDF, AZT

Y115F 0 (0.00) 1 (0.37) Major TDF, ABC

A98G 0 (0.00) 3 (1.11) Minor NVP, EFV

R
ev

er
se

Tr
an

sc
ri

p
ta

se
In

hi
b

it
o

rs
(R

T
Is

)

K103N 2 (4.00) 19 (7.0) Major EFV, NVP

K101E 0 (0.00) 1 (0.37) Major/Minor NVP, EFV

E138A 4 (8.00) 35 (12.92) Major/Minor ETR, RPV

E138K 1 (2.00) 0 (0) Major/Minor EFV, NVP

E138G 0 (0.00) 1 (0.37) Major/Minor EFV, NVP

V179L 2 (4.00) 10 (3.69) Major EFV, NVP

N
N

R
T

Is

V179F 1 (2.00) 0 (0) Minor EFV, NVP

Y181C 0 (0.00) 1 (0.37) Major EFV, NVP

G190A 0 (0.00) 2 (0.74) Major/Minor EFV, NVP

V106I 1 (2.00) 2 (0.74) Minor NVP

F227C 0 (0.00) 1 (0.37) Major/Minor EFV, NVP

L234I 0 (0.00) 1 (0.37) Minor DOR

H221Y 0 (0.00) 1 (0.37) Major EFV, NVP

M46L 0 (0.00) 1 (0.37) Minor/Major LPV/r

D30N 0 (0.00) 1 (0.37) Major NFV

M
aj

o
r

N88D 0 (0.00) 2 (0.74) Minor ATV/r, SQV/r, NFV

P
ro

te
as

e
In

hi
b

it
o

rs
(P

Is
)

N83D 0 (0.00) 1 (0.37) Minor/Major ATV/r, TPV/r

G73S 0 (0.00) 1 (0.37) Minor LPV/r

M
in

o
r

L33F 0 (0.00) 1 (0.37) Minor LPV/r

The mutation classification column, indicates mutations that are classified as major or minor DRMs.
The last column shows the association of a mutation with resistance to a particular drug, as indicated in the Stanford drug resistance database and/or International AIDS
Society (IAS) 2019 report, respectively, while bold drug names indicate the major resistance by IAS 2019.
The abbreviations of the antiretroviral drugs are as follows: NRTI; zidovudine (AZT), lamivudine (3TC), abacavir (ABC), tenofovir (TDF), etravirine (ETR), rilpivirine
(RPV). NNRTI; efavirenz (EFV), nevirapine (NVP), doravirine (DOR). PI: lopinavir/ritonavir (LPV/r), nelfinavir (NFV), atazanavir/ritonavir (ATV/r), tipranavir/ritonavir (TPV/r),
Saquinavir/ritonavir (SQV/r). % = percentage of total participants.

After this introduction, sub-subtype A1 disseminated rapidly to
become the dominant HIV-1 strain (Chen et al., 2016). However,
no information exists about the introduction of CRF02_AG in
Pakistan, although it has been shown that the prevalence of
HIV-1 CRF02_AG infections are increasing – especially in high-
risk populations (Cholette et al., 2020). It is therefore possible
that HIV-1 CRF02_AG become the dominant HIV-1 strain in
Pakistan over time.

In our analysis, the tMRCA for the two large clusters
were both estimated to 2016 (CRF02_AG: 95% HPD interval:
2015–2017; A1: 95% HPD interval: 2015–2018), suggesting
ongoing HIV-1 transmissions several years prior to the 2019
outbreak. Interestingly, the estimated tMRCA of the two main
clusters coincides with the time of the previously reported HIV-1
outbreak in Larkana in 2016, which also occurred in a nosocomial
setting (Brenner et al., 2007; Siddiqui et al., 2020). Furthermore,
the majority (80%) of children identified in the outbreak had stage
3 or 4 disease (the moderately and severely symptomatic stage,
respectively, mostly associated with chronic to acute-chronic
infection) (Weinberg and Kovarik, 2010; Altaf et al., 2016),

indicating that some of the HIV-1 infections identified in the
2019 outbreak occurred a few years prior to 2019. Moreover, no
reference sequence from the global HIV-1 epidemic was found
in the Pakistani clusters, suggesting a localised HIV-1 epidemic.
It is possible that the transmission may have been ongoing
within healthcare settings, and the active screening programme
implemented by the provincial AIDS Control Program in
response to the initial diagnosis of HIV-1 in 14 children in 2019
identified these infections.

Phylogenetic analyses demonstrated no mixing between
the outbreak sequences and sequences previously obtained
from other high-risk groups in Pakistan. This was further
supported by dating of the outbreak and other Pakistani
clusters, indicating that the splitting time points between the
outbreak sequences and that of other high-risk groups in
Pakistan occurred between 1994 and 2012 (combined HPD
interval). This suggests that HIV-1 most likely were introduced
in Larkana between 10 and 27 years ago, and that the HIV-1
transmissions are now localised to certain regions of Larkana.
It is possible that HIV-1 arose from nosocomial routes through
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the widespread poor infection prevention control practices in
healthcare settings and contaminated blood (Cotton and Rabie,
2020; Mir et al., 2020a).

DRM analysis showed the presence of multiple DRMs
associated with resistance against reverse transcriptase inhibitors,
some of which were shared among sequences in the identified
clusters. The presence of shared DRMs may indicate transmission
of drug-resistant strains in outbreak sequences. The most
prevalence DRM identified among both ART-experienced and
ART-naïve individuals was RT:E138A which confers a high-level
resistance to NNRTIs such as Rilpivirine (Jeulin et al., 2014).
A high prevalence of this mutation has been seen previously in
ART-experienced PLWH in Pakistan (Shah et al., 2011) and when
found in the ART-naïve population, it may be present due to
transmission from non-compliant ART-experienced individuals.
The presence of DRMs, especially associated with resistance
to zidovudine and nevirapine, two out of three that are drugs
part of the ART regimen given to the children, may lead
to ART failure (correlating with failure to suppress the viral
load), and increase the possibility that these individuals may
acquire severe form of disease (Gupta-Wright et al., 2020).
A second DRM common in the outbreak sequences was the
RT:K219N mutation, a thymidine analogue mutation associated
with potential low-level resistance against zidovudine (Rhee
et al., 2003). Presence of DRMs and spread of strains containing
the mutation may lead to first line medications becoming
obsolete and present challenges due to limited availability of
second-line medications.

The strengths of the study are a relatively good sample
size, active collection of samples during the outbreak and
a comprehensive phylogenetic and phylodynamic analysis of
the Larkana outbreak to identify subtype distribution and
evolutionary relationship between sequences. The limitations
include amplification of a single gene (pol) only and short
sequence length. While the parent case-control study showed that
visits to both private and public sector health facilities and higher
frequency of injections was associated with HIV-1 infection, we
were unable to correlate the dyads and clusters with geographical
data. The lack of samples of all biological mothers, where the
mother was also HIV-positive, precluded investigation of the
role of mother-to-child transmission. Future studies based on
HIV-1 sequences sampled from different years (and HIV-1 risk
groups) could shed light on the effectiveness of ART programs
in Pakistan and provide an even more detailed picture of the
Larkana outbreak.

In conclusion, our study findings showed that the Larkana
paediatric outbreak did not originate from a single source
and is likely a consequence of ongoing transmission within
the high-risk groups of Larkana and introduced into the
exposed individuals at risk of acquiring through poor infection
prevention control practices in healthcare settings. Furthermore,
the presence of multiple drug resistance mutations in the
strains circulating in Larkana, especially to first-line ART
drugs, is worrying as it limits treatment options. Large-scale
transmission of resistant strains can hamper Pakistan’s efforts to
achieve the 90-90-90 goal (Maddali et al., 2016). These findings
highlight not only the urgent need to improve blood safety and

infection prevention control, but also the need for comprehensive
molecular epidemiological studies and molecular surveillance to
understand the distribution of different genotypes as well as
origin, transmission, and drug resistance patterns.
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Abstract: To reduce global HIV-1 incidence, there is a need to understand and disentangle HIV-1
transmission dynamics and to determine the geographic areas and populations that act as hubs or
drivers of HIV-1 spread. In Sub-Saharan Africa (sSA), the region with the highest HIV-1 burden,
information about such transmission dynamics is sparse. Phylogenetic inference is a powerful
method for the study of HIV-1 transmission networks and source attribution. In this review, we
assessed available phylogenetic data on mixing between HIV-1 hotspots (geographic areas and
populations with high HIV-1 incidence and prevalence) and areas or populations with lower HIV-1
burden in sSA. We searched PubMed and identified and reviewed 64 studies on HIV-1 transmission
dynamics within and between risk groups and geographic locations in sSA (published 1995–2021).
We describe HIV-1 transmission from both a geographic and a risk group perspective in sSA. Finally,
we discuss the challenges facing phylogenetic inference in mixed epidemics in sSA and offer our
perspectives and potential solutions to the identified challenges.

Keywords: HIV-1; phylogenetics; mixed epidemics; Sub-Saharan Africa; transmission dynamics

1. Introduction

Molecular phylogenetic approaches have evolved into powerful tools in understand-
ing pathogens and how they cause disease in human populations [1]. Based on genetic
relatedness between pathogen strains, these studies have been coupled with epidemi-
ological data to decipher transmission events in infected hosts [2]. This approach has
several applications and has been used to understand the geographic distribution of a large
number of pathogens (e.g., reconstructing the 2009 global spread of human influenza A
H1N1 pandemic and, more recently, characterising the emergence and global spread of
SARS-CoV-2) [3–6]. Phylogenetics and phylodynamics have also been used to reconstruct
and date the emergence and early spread of HIV-1, to assess epidemic growth dynamics, to
determine HIV-1 genetic diversity and the prevalence of antiretroviral resistance mutations,
to infer putative transmission events, and to determine evolutionary rates and spread of
specific HIV-1 strains [7–15]. In recent years, the phylogenetic analysis of HIV-1 sequences
from individuals with known risk behaviour and/or geographic location has become a
powerful tool to identify sources of infections that potentially could be targeted to reduce
HIV-1 incidence [13,16–22]. However, most of these studies have been conducted in well-
resourced countries with HIV-1 epidemics that are likely to differ in transmission dynamics
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compared with epidemics in Sub-Saharan Africa (sSA). For example, the HIV-1 epidemic
in North America and Europe is concentrated amongst key populations—defined by UN-
AIDS as men who have sex with men (MSM), female and male sex workers (FSW/MSW),
transgender people, people who inject drugs (PWID), and prisoners and other incarcerated
people [23]. In contrast, the epidemic in sSA is mostly spread out among heterosexuals
(HET, presumed heterosexuals) who have lower HIV-1 incidence and prevalence compared
to key populations [24–26]. The term “general population” has been used where risk assess-
ment data are not available for HET in sSA [27]. For ease in comparison between studies
in this review, the term HET is used to refer to populations not belonging to either HIV-1
key populations or HIV-1 vulnerable populations (i.e., adolescent girls in sSA, orphans,
street children, people with disabilities, and migrant or mobile workers as defined by
UNAIDS (including miners, fishing communities, and long-distance truck drivers)) [23].
Additionally, the HIV-1 epidemic in sSA has revealed extensive geographic heterogeneity
with HIV-1 hotspots (i.e., geographic areas and HIV-1 key populations with high HIV-1
incidence and prevalence) [25].

Targeting HIV-1 control strategies to HIV-1 hotspots has been proposed as a feasible
approach to reduce the global HIV-1 incidence [28–30]. However, targeting likely needs to
be guided by an in-depth understanding of the molecular epidemiology and drivers of local
epidemics [31]. Existing reviews have summarised phylogenetic studies of transmission in
concentrated epidemics and have offered perspectives on how transmission dynamics in
the mixed epidemics of sSA could be assessed by phylogenetics [32]. In a review article
from 1999, Dennis et al. reported high levels of both new and existing infections in high-
risk populations in Kenya, South Africa, and Uganda [32]. In another review article from
the African context, the PANGEA (Phylogenetics Additionally, Networks for Generalized
Epidemics in Africa) consortium proposed to use phylogenetics to identify characteristics of
individuals or groups most likely to be at risk of infection or at risk of infecting others [24].
However, to date, no published reviews have explicitly assessed the role of phylogenetics
in discerning the mixing between geographies and populations in sSA. In this review, we
provide an overview of the contribution of phylogenetic inference in dissecting HIV-1
mixing between geographic areas with varying HIV-1 prevalence, as well as HIV-1 mixing
between key populations and HET in sSA.

2. Materials and Methods
2.1. Systematic Literature Review
2.1.1. Information Sources

An exhaustive search of the PubMed database (https://pubmed.ncbi.nlm.nih.gov/
(accessed on 12 March 2021)) was carried out by analysing peer-reviewed research articles
on HIV-1 phylodynamics in sSA published in English in 1995–2021. Review articles, book
chapters, editorials, and articles published in other languages were excluded from the
search.

2.1.2. Search Strategy

First, we determined keywords and MeSH terms that could be used to identify research
articles where phylogenetic approaches have been used to understand HIV-1 transmission
in sSA. The MeSH terms (HIV-1) AND (Africa) were used to select HIV-1 articles from
African countries. The keywords “phylogenetic analysis” OR “phylodynamics” OR “evo-
lution” OR “phylogeny” OR “molecular epidemiology” OR “transmission” were used to
widen the scope and to ensure that all relevant research articles were included. Filters on
the year of publication, language, and article type were applied to refine the search.

2.1.3. Selection Process

Two investigators carried out the selection process independently. The articles were
manually screened, first by title, then by abstract, to assess relevance based on our eligibility
criteria (i.e., description of HIV-1 mixing within and between geographic regions and risk
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groups). Any discordance between the two independent reviewers on the eligibility of
articles was resolved through discussions for a consensus.

2.1.4. Data Extraction and Data Analysis

Shortlisted articles were imported into EndNote X8 (Clarivate, Philadelphia, PA, USA)
for further management and to compile the information presented in this review.

3. Results

Based on a literature search done on 12 March 2021, 2722 articles were identified.
Among these, 357 articles were not in English or involved nonhuman subjects, 2000 were
ineligible by title review, 85 were ineligible by abstract review, and 216 were ineligible by a
full-text review as they did not address HIV-1 transmission dynamics from a phylogenetic
perspective (Figure 1). Sixty-four articles were considered eligible for full-text review,
including 29 articles assessing geographic dispersion (Table 1) and 35 assessing HIV-1
mixing between HIV-1 populations in sSA.

Figure 1. Study flowchart. Overview of the inclusion and exclusion of articles assessed in this review.
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Table 1. Summary of HIV-1 phylogenetic studies in sSA from geographical context.

Country HIV-1
Subtype

Estimated Date of
Introduction Summary of the Main Findings PMID 1

Central and West African countries

F1 1958
(1934–1973)

Spread from DRC, derived from a single founder
event. “Pure” F1 variants are most common in

Angola.
19386115

Angola
F1 1983

(1978–1989)

The Angolan civil war was associated with a wave
of emigration and a phase of negative migratory

outflow during 1960–1980.
22484759

C

1978
(1973–1985)

1979
(1973–1985)

1983
(1977–1990)

1990
(1982–1997)

1994
(1989–1998)

2005
(2002–2008)

HIV-1 subtype C epidemic in Angola originated
from multiple independent introductions from
Burundi, Zambia, Zimbabwe, and South Africa.

The civil war (1974–2002) may have contributed to
the emergence of the HIV-1 epidemic in Angola.

22634597

J, H Not
available

HIV-1 subtypes J and H seem to have been present
in Angola since at least 1993. 27098898

Group M 1978
(1975–1985)

The majority of sequences sampled in 2008–2010 in
Luanda clustered together which is consistent with

a locally fuelled epidemic.
25479241

Cameroon
CRF02_AG 1973

(1972–1975)

Two distinct lineages of CRF02_AG seem to have
ignited in the urban centre of Cameroon.

Ethnographic data suggests that well-supported
HIV-1 migration was related to chance exportation
events rather than by sustained human migratory

flows.

21565285

CRF02_AG

1976
(1966–1984)

1976
(1968–1986)

1979
(1953–1989)

Three monophyletic variants were identified and
emerged in the mid-1970’s and spread slowly over

30 years. Continuous exchange of HIV-1 strains
between Cameroon and other African countries.

21453131

DRC 2 A1, C, D The 1960s

HIV-1 subtype C origin was estimated to originate
in Mbuji-Mayi in the 1950s and subtypes A1, D
originated in Kinshasa. The earliest dispersal

events of subtype C occurred in a mining region
close to Mbuji-Mayi and Lubumbashi. Subtype C

spread at least three-fold faster than other subtypes
circulating in Central and East Africa.

31809523

DRC 2,
RC 3 Group M 1920

(1909–1930)

Kinshasa estimated to be the origin of the HIV-1
group M pandemic. HIV-1 spread to Brazzaville in
the Republic of the Congo, and Lubumbashi and

Mbuji-Mayi in the 1930s, which were better
connected to Kinshasa, indicating a critical role of

mobility networks in the early spread and
establishment of the HIV-1 epidemic from the

epicentre.

25278604

DRC 2,
RC 3

General Eastward and Southward trends in the
spread of HIV-1 from the Kinshasa–Brazzaville and
the Pointe-Noire areas to other population centres.

27798403
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Table 1. Cont.

Country HIV-1
Subtype

Estimated Date of
Introduction Summary of the Main Findings PMID 1

Guinea-
Bissau

CRF02_AG

A3

1981
(1974–1986)

1976
(1968–1982)

1980
(1974–1984)

1979
(1972–1984)

1981
(1975–1985)

1979
(1960–1988)

Multiple introductions of CRF02_AG 1976–1981,
and a single introduction of sub-subtype A3 in 1979
(median estimates). HIV-1 was introduced into the

urban centre (the Capital Bissau) from where it
spread to rural areas.

21365013

Nigeria

G

CRF02_AG

CRF43_02G

1975
(1969–1982)

1963
(1948–1974)

1970
(1960–1980)

1960
(1947–1974)

1971
(1952–1983)

Urban areas (Abuja and Lagos) were the major
hubs of HIV-1 transmission in Nigeria. HIV-1 first
emerged and expanded within large urban centres

before migrating to smaller rural areas.

32103028

East and Southern African countries

Botswana C 1996–2002

Presence of multiple phylogenetically distinct
HIV-1 subtype C variants (subepidemics)

circulating in Mochudi with limited lifespans and
temporal dominance. None of the sequences from a

rural community of Mochudi clustered with
non-Botswana sequences.

26616041
24349005

Ethiopia C 1965
(1959–1973)

Reconstruction of the epidemic history in Ethiopia
revealed that subtype C likely originated from a

single lineage in the late 1960s.
20539092

C 1980 Evidence of clustering between Gondar sequences
and sequences from East Africa. 30304061

Kenya A1 1985–2012

Kilifi sequences clustered closely with sequences
from Kenya and other parts of Africa, including

West Africa. HIV-1 has been introduced in coastal
Kenya multiple times.

32317722

South
Africa

C 1960
(1956–1964)

Johannesburg was identified as the hub of HIV-1
dissemination in South Africa. The central region

of KwaZulu-Natal was identified as the most likely
ancestral location for HIV-1transmission in South

Africa for 2 of 14 variants.

26574165

C 1979–1992
The HIV-1 epidemic in South Africa is suggested to
have multiple, parallel subepidemics spreading in

the country at the same time.
30804361

C 1990–2000 Early HIV-1 epidemic dynamics in KwaZulu-Natal
were largely driven by external introductions. 30555720

Uganda A1 1960
(1950–1968)

Ugandan epidemics originated in rural
Southwestern Uganda with subsequent spread to

other locations without any substantial HIV-1
introductions into this location suggesting that

emerging infections from this low-incidence
location are mostly from within the region.

25724670

D 1973
(1970–1977) 33182587
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Table 1. Cont.

Country HIV-1
Subtype

Estimated Date of
Introduction Summary of the Main Findings PMID 1

Beyond borders

West and
Central
Africa

CRF02_AG 1980
(1978–1981)

CRF02_AG originated from Cameroon from where
it spread to other Central and West African

countries.
27063411

West and
Central
Africa

CRF02_AG
1967

(1961–1974)
West African

Five different CRF02_AG variants, four of which
were restricted to Cameroon and one that grew out

into West Africa.
27180893

West and
Central
Africa

CRF11_cpx 1957
(1950–1966)

Cameroon as the epicentre of dissemination of
CRF11_cpx to Central African Republic, Chad,

Gabon, and Equatorial Guinea.
27852214

West Africa CRF06_cpx 1979
(1970–1985)

Burkina Faso was the hub of dissemination of
CRF06_cpx to Mali, Nigeria, and the rest of western

Central Africa.
23343915

West and
Central
Africa

G
1974

(1966–1981)
1979 (1973–1984)

Subtype G epidemic clustered into two clusters
according to sequence location, i.e., either West or
Central Africa. Sequences from West Africa were
further subdivided into two large monophyletic

clusters that were nested within the Central African
variant.

24918930

East Africa C 1962
(1942–1975)

Subtype C sequences from East Africa (Burundi,
Ethiopia, Kenya, Tanzania, and Uganda) formed

one large monophyletic cluster separate from
sequences from Southern Africa.

22848653
29884822

East Africa A1
D

1948
(1958–1967)

Both subtype A1 and subtype D were suggested to
have spread exponentially during the 1970s. 19644346

East and
Southern

Africa
C Not available

The largest number of HIV-1 introductions into
South Africa came from Zambia, followed by

Botswana, Malawi, and Zimbabwe between 1985
and 2000, a period of mass inward immigration
from neighbouring countries into South Africa.

27421210

Zimbabwe C 1972
(1979–1981)

Multiple cross-border independent introductions of
subtype C HIV-1 into Zimbabwe between 1979 and

1981.
19770693

1 PMID: PubMed identifier or PubMed unique identifier; 2 DRC: The Demographic Republic of Congo; 3 RC: The Republic of the Congo.

3.1. HIV-1 Molecular Transmission Networks in sSA: What Has Been Done from a
Geographic Perspective?

The HIV-1 epidemic in sSA is driven by different HIV-1 subtypes, often geographically
restricted [33,34]. Between 2010 and 2015, about 99% of the HIV-1 infections in Southern
African countries and Ethiopia were subtype C, whereas the dominating HIV-1 strains in
East Africa were sub-subtype A1 and subtype D [35]. The epidemic in West Africa is mainly
driven by the circulating recombinant form (CRF) 02_AG, sub-subtype A3, and subtype
G [12,35,36]. In contrast, the HIV-1 epidemic in Central Africa is more complex and diverse,
and most HIV-1 subtypes have been found in this region [35,37]. In this review, we grouped
the assessment of HIV-1 transmissions in sSA into two geographic regions according to the
UNAIDS classification (https://aidsinfo.unaids.org/ (accessed on 20 January 2021)): East
and Southern Africa; and West and Central Africa (Figure 2).

https://aidsinfo.unaids.org/
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Figure 2. Subregions of Sub-Saharan Africa. A map showing different subregions of Sub-Saharan Africa as defined by
UNAIDS. Countries belonging to Central and West Africa (N = 25) are coloured blue whereas countries belonging to
Eastern and Southern Africa (N = 24) are coloured green. Where published information on HIV-1 transmission is available,
the country code is included in the map. Countries belonging to Central and West Africa include Angola (AN), Benin,
Burkina Faso, Cameroon (CM), Cape Verde, Chad, Central African Republic, Republic of the Congo (RC), Côte D’Ivoire,
Democratic Republic of Congo (DRC), Equatorial Guinea, Gabon, The Gambia, Ghana, Guinea, Guinea-Bissau (GM), Liberia,
Mali, Mauritania, Niger, Nigeria (NG), Saint Helena, Senegal, Sierra Leone, and Togo. Countries belonging to Eastern
and Southern Africa include Burundi, Botswana (BO), Comoros, Djibouti, Ethiopia (ET), Eritrea, Kenya (KE), Lesotho,
Madagascar, Malawi, Mauritius, Mozambique, Réunion, Namibia (NI), Rwanda, Seychelles, Somalia, Somaliland, Tanzania,
South Africa (SA), Eswatini (former Swaziland), Uganda (UG), Zambia (ZA), and Zimbabwe (ZI).

3.1.1. HIV-1 Transmission in West and Central African Countries

Nigeria is the most populous country in sSA. A recent study by Nazziwa et al. used
1442 pol sequences (collected in 1999–2013) from four geopolitical zones in Nigeria (South-
west, North Central, Northeast, and Northwest) to reconstruct HIV-1 transmission dy-
namics [12]. Phylogeographic analyses suggested that HIV-1 first emerged and expanded
within the large urban centres (Lagos and Abuja), before migrating to smaller and more
rural areas. Abuja, the capital city of Nigeria, was estimated to be the geographical origin
of both subtype G and CRF02_AG in Nigeria. In addition, the analysis indicated that one
single introduction resulted in the main Nigerian subtype G epidemic (time to the most
recent common ancestor, tMRCA; 1987). In contrast, the CRF02_AG had multiple intro-
ductions which expanded into larger subepidemics (tMRCAs; 1974, 1972 and 1961) [12].
Another study in Guinea-Bissau by Esbjörnsson et al. (based on 82 Guinean HIV-1 env
sequences collected 1993–2008) found that the dominating HIV-1 strains were CRF02_AG
and sub-subtype A3. In line with the study by Nazziwa et al., both subepidemics origi-
nated in the capital before dispersing out to smaller and more rural areas [36]. Interestingly,
although the two HIV-1 strains were introduced into the country around the same time
(median estimates 1976–1981), the phylogeographic analysis suggested that the CRF02_AG
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strain started to migrate to more rural areas almost instantly after being introduced into
the Capital Bissau. In contrast, sub-subtype A3 was estimated to have circulated within the
capital for approximately 10 years before migrating to more rural areas of the country. The
underlying reasons for this, however, remain to be determined.

In Cameroon, Véras et al. used 291 HIV-1 CRF02_AG pol sequences collected in 1996–
2007 with geographic information system (GIS) data to assess HIV-1 transmission dynamics.
Seventy percent of the sequences were found in three distinct clusters, suggesting several
subepidemics with different origins [38]. Southern Cameroon has denser human mobility
networks compared to the rest of the country; a large cluster comprising sequences from
southern Cameroon was identified, suggesting that human mobility may play a role in
increasing HIV-1 transmission. In another Cameroonian study, based on 336 HIV-1 gag,
pol, and env sequences collected in 1996–2004, two HIV-1 CRF02_AG Cameroonian clusters
were identified [39]. Interestingly, both clusters were estimated to have originated in
Yaoundé, the capital of Cameroon, before spreading to the Littoral and West regions
of Cameroon and remote areas in the South and East. In a study in the Democratic
Republic of the Congo (DRC), Faria et al. used a phylogeographic approach to analyse
346 HIV-1 pol sequences (subtypes A1, C and D) collected in 2008 from four locations—the
capital Kinshasa, Matadi (West DRC), Mbuji-Mayi (Central DRC), and Lubumbashi (South
DRC) [9]. Mbuji-Mayi was suggested as the origin of the subtype C epidemic, whereas
the origin for subtypes A1 and D was Kinshasa. The study also indicated that several
group M HIV-1 strains had spread from the DRC to other countries. In another study,
analysis of env C2V3 sequences collected at multiple sites in the DRC (from Bwamanda
in North, Kisangani and Mbuji-Mayi in Central, the Capital Kinshasa, Lubumbashi and
Likasi in South), and the Republic of the Congo (from the Capital city Brazzaville, and
Porte-Noire in West) suggested that HIV-1 dispersed from Kinshasa to Brazzaville, as
well as from Bwamanda and Kisangani [8,40]. The authors suggested that good transport
connectivity and human mobility linked to mining activities may have been involved in
the rapid expansion of HIV-1 spread between Kinshasa, Brazzaville, Lubumbashi, and
Mbuji-Mayi [8].

The HIV-1 epidemic in Angola is one of the most diverse in sSA, and all HIV-1 group M
subtypes and several CRFs have been identified here [37,41,42]. In a study by Bártolo et al.,
364 HIV-1 pol sequences collected in 1993–2010 from Luanda and seven other provinces in
Angola were analysed. The results indicated that 36% of the sequences formed relatively
small Angolan clusters. Seventy-four percent of the sequences in the identified clusters
were from Luanda, indicating extensive local transmission and much lower transmission
(24% of the clusters) beyond the capital city of Luanda [42].

3.1.2. HIV-1 Transmission in East and Southern Africa Countries

The HIV-1 epidemic in Kenya is diverse and has had multiple and separate intro-
ductions [10,43,44]. Hue and colleagues performed a phylogeographic analysis based on
153 sequences collected in Kilifi county in 2008–2009 together with published Kenyan
sequences to investigate how HIV-1 transmission in rural Coastal Kenya related to the
region [43]. It was observed that 73% of the HIV-1 sub-subtype A1 sequences from Kil-
ifi clustered with sequences from other areas in Kenya and that there was substantial
clustering with strains from other East African countries, such as Uganda and Tanzania,
possibly indicating HIV-1 transmission links between these countries. HIV-1 transmission
in Uganda has been well studied, especially in rural Southwestern Uganda (which is sug-
gested to be the geographic origin of HIV-1 sub-subtype A1 and subtype D in Uganda) [45].
To understand HIV-1 transmission dynamics in Uganda, Ssemwanga et al. used 3796 HIV-1
pol sequences collected between 2003 and 2015 from Southwestern, Central, and Eastern
Uganda [46]. HIV-1 subtype A infections were more common in Central Uganda, whereas
subtype D infections were more common in Southwestern Uganda. The study also found a
high proportion of localized clustering among sequences from Southwestern Uganda and
significant virus export from this region to other regions. However, no virus introductions
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into this region were observed. In another study, Yebra et al. used 162 HIV-1 pol sequences
collected in 2005–2010 from Kampala, Masaka, and Entebbe and 414 previously published
pol sequences from Rakai, Kampala, and Entebbe and observed that HIV-1 subtype D
initially spread from the rural Southwest, then to the Capital Kampala, before spreading
to areas around Lake Victoria [45]. In Ethiopia, the HIV-1 epidemic is dominated by two
phylogenetically distinct subtype C types—the Ethiopian HIV-1 C’-ET, and the East African
HIV-1 C-EA [47]. Arimide et al. used 301 HIV-1 pol sequences collected in 2003–2013
from Gondar (Northern Ethiopia) to define and understand the transmission dynamics
among these variants. The study showed that the C-EA sequences in Gondar clustered
with sequences from other East African countries and that multiple introductions of the
South African subtype C (C-SA) were observed in Gondar [47].

In Southern Africa, the mass migration of people into South Africa from neighbouring
countries has been suggested to have an impact on the local HIV-1 epidemic [48,49]. To
understand the transmission dynamics of HIV-1 within South Africa and its neighbouring
countries, Wilkinson and colleagues analysed 15257 HIV-1 subtype C southern African
sequences [50]. The analysis indicated that Johannesburg and KwaZulu-Natal were the
main epicentres of HIV-1 dissemination in South Africa. Viruses from KwaZulu-Natal
spread to the Northern regions close to the Mozambican and Swaziland borders, and to
Johannesburg, whereas viruses from Johannesburg spread to KwaZulu-Natal, Kimberly,
Bloemfontein, Mpumalanga, and Western and Eastern Cape. Another study quantified
the contribution of local transmission and external introductions to the HIV-1 incidence
specifically in KwaZulu-Natal [51]. Phylodynamic analysis of 1068 HIV-1 pol sequences
collected in 2011–2014 in KwaZulu-Natal together with 11,289 subtype C sequences from
Southern African countries revealed multiple HIV-1 introductions into KwaZulu-Natal
from other locations in South Africa and neighbouring countries. The majority of the virus
introductions in this study occurred in the early stages of the South African HIV-1 epidemic
during the 1990s, where human movements played a role in driving the epidemic and
sustaining high HIV-1 incidence in KwaZulu-Natal. In addition, 35% of new infections
in KwaZulu-Natal were due to HIV-1 imports from other regions. To understand the
structure of the local HIV-1 epidemic in periurban Botswana, Novitsky et al. analysed 2219
HIV-1 env sequences (785 sequences from Mochudi, 190 sequences from other locations
in Botswana, and 1244 non-Botswana sequences) [52]. Close clustering of sequences
originating from Mochudi suggested that the HIV-1 epidemic in Mochudi was dominated
by locally circulating HIV-1 variants. Moreover, none of the Mochudi sequences clustered
with non-Botswana sequences.

3.1.3. HIV-1 Transmission beyond Borders

Few studies have investigated the geographic mixing of HIV-1 between different
African regions.

To shed light on the dissemination of HIV-1 CRF02_AG in Central and West Africa,
Yebra et al. applied phylodynamic analysis to 1247 HIV-1 env and 1478 HIV-1 pol sequences
collected 1984–2013 from 19 African countries. The analysis indicated that CRF02_AG
originated from Cameroon from where it spread to other Central and West African coun-
tries [53]. To further characterise the CRF02_AG epidemic in West and Central Africa, Mir
et al. used 2246 HIV-1 pol sequences collected 1990–2013 from 20 African countries [54].
The study indicated that the current CRF02_AG diversity resulted from the spread of a
small number of founder strains from Central to West Africa in the period of 1960–1980.
The study identified five different CRF02_AG variants, four of which were restricted to
Cameroon and one that grew out into West Africa. In addition, other phylogeographic
studies have indicated Cameroon as the epicentre of the dissemination of HIV-1 CRF11_cpx
to Central African Republic, Chad, Gabon, and Equatorial Guinea. However, it has also
been suggested that CRF06_cpx spread from Burkina Faso to Mali, Nigeria, and the rest of
West-Central Africa [55,56].
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A phylogeographic study of the dissemination routes of HIV-1 subtype G in West and
Central Africa by Delatorre et al., using 305 HIV-1 pol sequences collected in 1992–2011
from 11 countries, showed that the African subtype G epidemic could be divided into two
subepidemics according to sequence location, i.e., West and Central Africa [57]. Sequences
from West Africa were further subdivided into two large monophyletic clusters that were
nested within the Central African variant. One of the Western African variants emerged
from Nigeria and spread to Benin, Cameroon, Equatorial Guinea, Ghana, and Senegal. The
other West African variant emerged from Togo and/or Ghana from which it spread to
Nigeria and then to Benin, Cameroon, Gabon, and Senegal [57].

To reconstruct the HIV-1 transmission dynamics of subtype C in East Africa, Delatorre
et al. analysed 1981 pol sequences collected in 1990–2010 from 13 countries in Central, East,
and Southern Africa [58]. Subtype C sequences from East Africa (Burundi, Ethiopia, Kenya,
Tanzania, and Uganda) formed one large monophyletic cluster separate from sequences
from Southern Africa. In addition to the East African C variant, another monophyletic
cluster exclusive to Ethiopia was observed. The East Africa subtype C cluster disseminated
from Burundi and later spread to other East African countries where local epidemics
were established [58]. A later study including sequences collected in recent years (2013–
2016) showed that most of the East African subtype C sequences still clustered into one
monophyletic variant, consistent with strong interconnectivity between population centres
across the East African region, which has likely fostered the rapid growth of the HIV-1
subtype A1, C, and D epidemic [59,60].

A comparative genetic analysis of HIV-1 subtypes A1, C, and D using 8701 pol se-
quences collected in 1996–2011 from DRC, Burundi, Kenya, Rwanda, Tanzania, and Uganda
by Faria et al. indicated that subtypes A1 and D originated from DRC and that sequences
from the same regions clustered closely together [9]. Additionally, 80% of total trans-
missions occurred within national borders and only 20% of transmissions were due to
cross-border virus movements. Furthermore, Rwanda, DRC, and Tanzania were identified
as the main exporters of subtype C in the Central and Eastern Africa region, whereas
Uganda was the source of subtypes A1 and D.

To understand how human migration has influenced HIV-1 diversity and spread
in Southern Africa, Wilkinson et al. performed a phylogeographic analysis of 11,289
sequences collected from DRC, Tanzania, Zambia, Malawi, Mozambique, Zimbabwe,
Botswana, Namibia, Swaziland, Lesotho, and South Africa. The study showed that the
high level of subtype C diversity in South Africa was linked to multiple HIV-1 introductions
into the country [49]. Zambia, Botswana, Malawi, and Zimbabwe contributed to most of
the HIV-1 introductions into South Africa between 1985 and 2000. However, South Africa
also contributed to HIV-1 export to its neighbouring countries. HIV-1 mixing between
Zimbabwe and other neighbouring countries (South Africa, Botswana, Zambia, Malawi,
Mozambique, and Tanzania) has also been reported in a study by Dalai et al. [61]. Moreover,
subtype C sequences from Southern and Central Africa have been shown to cluster closely
together but separate from other subtype C sequences from other parts of the world,
suggesting strong HIV-1 panmixia in Southern Africa [48,62].

3.1.4. Conclusion Phylogeographic Linkages in sSA

In summary, the HIV-1 epidemics in West and Central Africa seem to have emerged
and expanded within urban areas before spreading to rural areas—possibly driven by
human mobility [12,36,39,42]. In other instances, HIV-1 mixing between rural and urban
locations, as well as across national borders, has also been observed [9,42,43,47]. Some
HIV-1 subepidemics appear to be localized in specific communities where HIV-1 mixing
with neighbouring communities is not observed [54]. In contrast, in other settings local-
ized HIV-1 subepidemics serve as important sources of HIV-1 infection to neighbouring
communities [47,48]. Furthermore, human migration linked to economic activities such as
mining and fishing may contribute to increased HIV-1 transmission [9,49,63].
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3.2. The Role of HIV-1 Key and Vulnerable Populations in Mixed HIV-1 Epidemics: A Risk
Groups Perspective

The early HIV-1 epidemic in sSA was exclusively defined as heterosexual and involv-
ing FSW and long-distance truck drivers [64–66]. The role of other HIV-1 key populations
such as MSM and PWID was not apparent and this, coupled with ethical-legal hurdles,
led to the exclusion of these key populations from early HIV-1 responses in sSA [67–69].
HIV-1 key populations in sSA are strongly affected by legal and social stigma, where
risk behaviour associated with these populations (e.g., same-sex behaviour) are often
criminalized [70]. As a consequence, individuals in these populations often withhold
risk information, which results in limited HIV-1 research involving key populations [27].
Additionally, there is evidence of overlapping sexual networks and phylogenetic linkages
between HIV-1 key populations and HET, which may have implications for the dynamics
of HIV-1 spread [44,65]. Figure 3 summarises HIV-1 prevalence estimates among HIV-1 key
and vulnerable populations relative to HET in different regions of sSA. In general, HIV-1
key populations have higher HIV-1 prevalence compared to HET in all sSA countries (with
the exception of MSM in Eswatini, Malawi, Botswana, and Guinea Bissau).

Figure 3. HIV-1 prevalence in different risk groups in sub-Saharan Africa (sSA). A comparison of national estimates of
HIV-1 prevalence in the heterosexuals (HET) and among vulnerable populations in sSA as reported by UNAIDS in 2020
(https://aidsinfo.unaids.org/ (accessed on 20 January 2021)). East and Southern African (a), and West and Central African
(b) regions were grouped together, respectively. The countries in each region were arranged in increasing HIV-1 prevalence
among (HET), and HIV-1 prevalence data have been transformed into a log scale on the x-axis. Different risk groups are
coloured as shown in the legend (Red: female sex workers; Brown: HET; Green: men having sex with men; Sky Blue:
prisoners; Dark Blue: PWID; and Pink: transgender persons).

3.2.1. HIV-1 Phylogenetic Linkages Involving Heterosexual Transmission

Data on HIV-1 phylogenetic linkages involving HIV-1 key and vulnerable popula-
tions are not available in most sSA countries. Consequently, and albeit largely under
sampled, most studies investigating HIV-1 networks have focused on HET transmission.
In Botswana, a phylogenetic analysis of 1247 HIV-1 subtype C env sequences (collected in
2010–2013) by Novitsky et al. found 233 clusters, the majority of which were HET trans-
mission pairs, and where the largest cluster involved 18 individuals [71]. This study was
conducted in Mochudi, a periurban community, and it proposed tracking HIV-1 transmis-
sion clusters at the community level and extinguishing them, one by one, through targeted
interventions. In a similar setting in South Africa, another analysis by Sivay et al. reported

https://aidsinfo.unaids.org/
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partial transmission chains constructed among young women attending high school in
rural South Africa (in the context of missed sampling among males in the community)
and revealed a stable local epidemic with no evidence of super-spreading events or large
networks [72]. In addition, this study also showed that recent HIV-1 transmissions may
play a key role in driving the local HIV-1 epidemic. In Zambia, a phylogenetic analysis
of 149 married couples by Trask et al. showed that the majority (87%) of couples were
epidemiologically linked [73]. However, 13% of pairs in the study had distantly related
viruses, suggesting possible extramarital HIV-1 transmission. In Rwanda, a phylogenetic
analysis of men and high-risk women in the context of multiple heterosexual partnerships
by Rusine et al. identified only three potentially linked transmission pairs [74]. In the DRC,
a study by Rubio-Garrido et al. using 165 newly generated HIV-1 pol sequences repre-
senting adults and majority paediatric individuals found only four clusters, one of which
had sequences from children with no epidemiological links, indicating under sampling
in otherwise denser networks [75]. Small clusters have also been observed in Ethiopia by
Arimide et al., where data on MSM and PWID is not available, but the epidemic among
FSW and HET is acknowledged [47]. Overall, multiple studies in all geographic regions of
Sub-Saharan Africa have characterised HIV-1 phylogenetic linkages involving heterosexual
transmission. The majority of these studies identified only small clusters, highlighting
challenges in sampling coverage which results in many missing links in otherwise large
networks [76].

3.2.2. HIV-1 Phylogenetic Linkages among MSM

In the context of homosexual transmission, phylogenetic studies in East Africa have
demonstrated extensive clustering among MSM [10,44,77,78]. Studies in Coastal Kenya,
have demonstrated extensive clustering of HIV-1 pol sequences from men who have sex
with men only (MSM only) and bisexual men, suggesting that bisexual MSM may link
infections across different risk groups although such linkages may only be modest as ob-
served in Coastal Kenya [10,44]. In West Africa, studies in Nigeria have observed clustering
among MSM in a cohort involving a majority (62%) bisexual men [79,80]. Relatively large
clusters (with up to 15 individuals per cluster) have been found in this cohort. Interest-
ingly, 37% of bisexual men in this cohort were in clusters involving MSM [80]. In this
cohort, clustering between newly infected MSM and previously diagnosed MSM has been
reported, indicating ongoing transmission among MSM, the majority of whom were not
in treatment and did not report consistent condom use. Elsewhere in the region, phylo-
genetic clustering analysis of 67 Senegalese MSM (of whom 80% reported to be married)
identified 15 transmission clusters, three of which involved MSM from multiple regions
in Senegal, indicating linked MSM networks with a wide geographic presence [81]. High
numbers of MSM having female sex contacts and exclusive clustering among Senegalese
MSM have also been reported by Ndiaye and colleagues [82]. Although cross-risk groups
linkages between MSM and HET were not reported in either of these studies in West Africa,
such mixing could be expected, to some extent, as has been observed in East Africa [44].
Overall, although MSM in the majority of cohorts in sSA often report being married or
having female sex partners, phylogenetic evidence of HIV-1 transmission often reveals
MSM exclusive clusters and only a few clusters involving HIV-1 sequences from MSM and
HET, suggesting limited mixing.

3.2.3. HIV-1 Phylogenetic Linkages among PWID

Phylogenetic studies involving PWID in sSA are exceedingly rare and have only been
reported at a subnational scale in Kenya [44,78]. Nduva et al. used 658 sequences to
investigate HIV-1 phylogenetic linkages involving MSM, FSW, PWID, and HET in Coastal
Kenya [44]. Whereas MSM, FSW, and HET were found in several small clusters (indicating
introduction from multiple sources), the vast majority of PWID sequences were found
in one large PWID-exclusive cluster suggesting introduction from one single source and
long-term gradual spread within the PWID in Coastal Kenya. Phylodynamic analysis
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of PWID sequences in this study suggested that HIV-1 infections had increased steadily
among PWID since the date of origin in 1987. Additionally, unlike in previous studies
(non-African) where PWID sequences clustered with exceptionally low genetic diversity,
the genetic diversity among PWID in the Coastal Kenyan cluster was high [17,21,83]. The
reason for this could be long times between infection and sampling dates and/or low
sampling density among PWID in the region. Overall, studies so far suggest separate
transmission for PWID with limited overlap between other key populations. However,
more research is warranted as the molecular epidemiology of PWID in sSA is largely
understudied.

3.3. Phylogenetic Analysis to Examine HIV-1 Mixing between Risk Groups

Very few studies in sSA have investigated HIV-1 linkages involving individuals
belonging to different risk groups. In Southern Africa, Bártolo et al. assessed HIV-1
phylogenetic linkages in Angola using 364 HIV-1 pol sequences collected in 1993–2010
and identified 48 transmission clusters (size range: two to seven) [42]. More than half of
the clustering sequences did not have risk group information. However, three clusters
involving mixing between MSM and females were identified, suggesting HIV-1 genetic
mixing between HET and MSM. In South Africa, Wilkinson and colleagues detected
phylogenetic mixing between HET and MSM, where linkages involving two MSM (infected
through homosexual contact) and an incarcerated man (infected in a prison setting) were
found within a large cluster dominated by HET (including female individuals) [84]. HIV-1
mixing involving bisexual MSM and HET has also been reported in Cape Town, South
Africa [85].

In West Africa, phylogenetic intermixing of HIV-1 variants between HET women
and MSM has also been documented in Senegal, where sequences from HET females
were found among MSM clusters [86]. Another study has reported on the intermixing
of HIV-1 between MSM and HET in Togo [87]. The authors describe extensive clustering
among 79 MSM, where at least 40% of MSM were found in recent transmission chains of
two to seven sequences, and where almost half (49%) of MSM were found in one major
CRF02_AG cluster, indicating infections within a close network. Additionally, in this study,
a comparison of 950 published HIV-1 sequences from HET, perinatally infected infants,
and MSM indicated HIV-1 mixing between MSM and HET because strains from infants
and HET females were found among MSM-dominated clusters.

In East Africa, two studies in Kenya have reported limited mixing between key
populations and HET [44,77]. Bezemer et al. found only one single transmission pair of an
MSM and a known HET female partner in Coastal Kenya—indicating infrequent HIV-1
mixing between MSM and HET in Coastal Kenya [77]. A follow-up study by Nduva et al.
used a larger sample size to study mixing between MSM, PWID, FSW, and HET in Coastal
Kenya and found that only 7% of the clusters had MSM and HET sequences, indicating
limited mixing between MSM and HET in Coastal Kenya [44].

In Uganda, phylogenetic clustering has been studied among Lake Victoria’s fishing
communities (considered an HIV-1 vulnerable population) [88–90], and HIV-1 mixing be-
tween fishing communities and HET residing in in-land regions has been reported [90,91].
Grabowski et al. showed that HIV-1 diversity is similar both within and between fishing
communities and with HET in surrounding communities [91]. In a different study, phylo-
dynamic analysis of sequences from FSW, fishing communities, and HET identified only a
few small clusters of exclusively HET individuals [45]. Although the sample size and the
sampling coverage were low, no mixing between risk groups was observed. However, in
the context of missed sampling of sex partners of FSW, a study in Kampala observed clus-
tering among FSW, suggesting infection from the same source—possibly linked to frequent
partner exchange among FSW [92]. Overall, multiple studies have provided evidence of
HIV-1 phylogenetic linkages between HIV-1 key populations and HET in Sub-Saharan
Africa. A common observation in most of these studies is clustering between HET females
and MSM, in addition to the expected links between HET and FSW owing to sex work.
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HIV-1 mixing appears to be at relatively low rates across the region (although this has been
difficult to quantify empirically because of the dearth of HIV-1 sequence data from MSM,
FSW, and PWID).

3.4. Phylogenetic Analysis to Examine Sources and Direction of HIV-1 Transmission between
HIV-1 Key and Vulnerable Populations and HET in sSA

Few studies have investigated the directionality in HIV-1 transmission involving
different risk groups in sSA. Recent phylogenetic analyses have shown that fishing com-
munities do not serve as a source of HIV-1 infection to much larger populations with lower
HIV-1 prevalence in Uganda [46,90,93]. In Senegal, Nascimento et al. showed that 3.2%
of infections in HET females were acquired from MSM, whereas 0.3% infections among
MSM were acquired from HET females [94]. In Nigeria, a phylodynamic analysis of HIV-1
pol sequences from MSM and HET females by Volz et al. estimated a 9.1% virus flow from
MSM to HET females and 0.2% HIV-1 transmissions from HET females to MSM [95].

Dennis et al. evaluated HIV-1 phylogenetic and behavioural characteristics among 45
newly diagnosed and acutely infected HIV-1 individuals (index partners) and their referred
HET partners in Malawi [96]. None of the 45 index partners were closely linked phyloge-
netically. However, most index partners were linked with their chronically infected HET
partners, highlighting the contribution of chronic infections to new HIV-1 transmissions.
Another phylogenetic study by Jennes et al. analysed 46 HIV-1 concordant positive HET
couples in Dakar, Senegal, to understand the dynamics and risk factors of within-couple
HIV-1 transmissions [97]. The analysis showed that male partners were the most likely
index partners (and hence the source of infection) to married women.

Phylogenetic studies have also revealed the role of age-disparate HET relationships
in perpetuating local HIV-1 transmission in Sub-Saharan Africa [46,98,99]. In Uganda,
Ssemwanga et al. found that HET individuals older than 25 years were more likely to
appear in phylogenetic clusters than younger individuals [48]. This study suggested
that high-risk HET behaviour involving older individuals living with HIV-1 may drive
recurring new infections. In Botswana, a country-wide study involving 6078 sequences
by Novitsky et al. identified 984 phylogenetically distinct clusters, revealing complex
HIV-1 phylogenetic linkages with mixing between different communities and geographic
regions [99]. This study suggested that HIV-1 may first be transmitted from older women to
middle aged men, followed by transmission from these men to young women. This HIV-1
transmission cycle had been described earlier in KwaZulu-Natal, South Africa, where
HIV-1 is first transmitted from women aged 25–40 years to men aged 25–40 years who
would then transmit to girls and young women (15–25 years) [98]. Overall, research has
shown that key populations may contribute a modest fraction of infections to the HET
population and that key populations may be a sink and not the major source of infections in
the mixed epidemic. Further research is needed to reveal the drivers of the HIV-1 epidemic
in sSA [90,100].

4. Perspectives, Challenges, and Potential Solutions with Phylogenetic Inference
in sSA

First, most sequence-based studies in sSA have focused on transmitted drug resistance,
and more phylogenetic studies dissecting how HIV-1 in different populations mix and
spread are warranted. Second, there is a need to incorporate mobility networks into the
phylogenetic spatiotemporal models to quantify the movement patterns and links between
urban and rural communities more precisely. Although these mobility methodologies have
been developed and used to quantify the impact of human mobility on malaria transmission
in different African countries, including Kenya and Madagascar, their application in
deciphering HIV-1 transmission is limited [101–103]. While these phylogeographic models
can reveal and quantify the movement of viruses between locations, they are limited in
the in-depth determination of how and where virus transmission has occurred without
additional information, e.g., on human movement. Residents in a community may get
infected while living or travelling outside their homes, and such external introductions
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could be further disentangled by combining movement and migration data with virus data.
However, foreseeable hurdles include obtaining mobility data from telecommunication
companies as well as individual rights protection issues. Third, many phylogenetic studies
in sSA have been constrained by low sampling and limited geographic coverage. This
limits the extent to which the entirety of HIV-1 transmission dynamics in a country may
be characterised. A low sampling density generally results in missing links and smaller
clusters of HIV-1 sequences and may therefore limit the reliability of phylogenetic evidence
in guiding policy decisions [76]. A potential solution to this problem would be for studies
in sSA to aim to increase sampling efforts to achieve larger and proportional sample
coverage across all risk groups and geographic locations. Another related challenge is
skewed sampling between risk groups and locations resulting in the over representation of
some populations and, as a result, a bias in the phylogenetic assessment of transmission
dynamics and trait linkage. In the absence of dense sampling, some insights may be
accomplished through subsampling available datasets relative to HIV-1 prevalence per risk
group or geographic location for proportional representation, albeit with a loss of links
due to exclusion of some sequences [8,9,12]. Fourth, a substantial number of published
sequences lack information on patient demographics, sampling location, and sampling date,
hence limiting their use in phylogeographic studies. In the case of published sequences
lacking risk data in sSA, such sequences could be assumed to have been collected from HET
individuals (the dominant route of HIV-1 transmission in sSA) [44]. Thereafter, based on
phylogenetic clustering, the probable risk group for nodes within a cluster with inadequate
annotation may be deduced from association with nodes with a known risk group—as
was done to identify potential nondisclosed MSM (self-reported HET men who clustered
only with men) in the United Kingdom [104]. With the establishment of the PANGEA
consortium (although no data on the contribution of MSM, FSW, or PWID to the epidemic
have been reported), a more homogenous and dense sampling from the participating
countries may improve and strengthen the limitations of phylodynamic methods [24].
Finally, a potential limitation of our literature search is that it was restricted to studies
available only in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/ (accessed on
12 March 2021)). It is therefore possible that some studies were not assessed in our analysis.

5. Conclusions

Determining the drivers of the HIV-1 epidemic may be important to guide tar-
geted HIV-1 prevention [29]. Phylogenetic methods could help in characterising such
drivers but rely on the availability of large numbers of sequences obtained from well-
characterised cohorts. Where these criteria have been achieved (e.g., in European and
Northern American settings with dense sampling among infected individuals and patient
demographics), phylogenetic studies have provided useful information for HIV-1 preven-
tion [13,16,18,20,21,104–106]. Low sampling density is a constant limitation to phylogenetic
studies in Africa, and the shortage of HIV-1 sequences from key and vulnerable popula-
tions has limited our understanding of the contribution of these populations to the HIV-1
epidemic in sSA. Where data involving populations that are at high risk for HIV-1 infection
(such as young girls and fishing communities) are available in sSA, phylogenetic charac-
terisation of sources and directionality of HIV-1 transmission involving these vulnerable
populations has been achieved [63,90,93,98,99]. Likewise, if HIV-1 sequences from HIV-1
key populations (i.e., MSM, PWID, and FSW) are made available, phylogenetic studies
may guide understanding HIV-1 transmission dynamics and contemporary drivers in
these populations. Phylogenetic studies analysing densely sampled and well-characterised
HIV-1 key and vulnerable populations sampled in recent years from multiple geographic
locations may play a key role in identifying patterns that could be useful in informing
HIV-1 prevention strategies in sSA. Overall, although limited, available data from different
studies suggest that epidemics among MSM and PWID are more separated and could thus
be targeted to reduce population-level incidence. Given that limited HIV-1 sequence data
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in Africa may continue to present a challenge in the unforeseen future, there is a need to
develop statistical and or phylogenetic models that could control for missed sampling.
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