
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Towards Optimization of Anomaly Detection Using Autonomous Monitors in DevOps

Hrusto, Adha

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Hrusto, A. (2022). Towards Optimization of Anomaly Detection Using Autonomous Monitors in DevOps. Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2024

https://portal.research.lu.se/en/publications/e02869a2-16f5-429c-bc2c-bcd279ecab26

Towards Optimization of Anomaly

Detection Using Autonomous

Monitors in DevOps

Adha Hrusto

Licentiate Thesis, 2022

Department of Computer Science

Lund University

2

ISBN 978-91-8039-213-6 (printed version)
ISBN 978-91-8039-214-3 (electronic version)
Licentiate Thesis 3, 2022
ISSN: 1652-4691

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: adha.hrusto@cs.lth.se
WWW: http://cs.lth.se//adha-hrusto/

Printed in Sweden by Tryckeriet i E-huset, Lund, 2022

© 2022 Adha Hrusto

ABSTRACT

Continuous practices including continuous integration, continuous testing, and
continuous deployment are foundations of many software development initiatives.
Another very popular industrial concept, DevOps, promotes automation, collabo-
ration, and monitoring, to even more empower development processes. The scope
of this thesis is on continuous monitoring and the data collected through continu-
ous measurement in operations as it may carry very valuable details on the health
of the software system.

Aim: We aim to explore and improve existing solutions for managing moni-
toring data in operations, instantiated in the specific industry context. Specifically,
we collaborated with a Swedish company responsible for ticket management and
sales in public transportation to identify challenges in the information flow from
operations to development and explore approaches for improved data management
inspired by state-of-the-art machine learning (ML) solutions.

Research approach: Our research activities span from practice to theory and
from problem to solution domain, including problem conceptualization, solution
design, instantiation, and empirical validation. This complies with the main prin-
ciples of the design science paradigm mainly used to frame problem-driven studies
aiming to improve specific areas of practice.

Results: We present identified problem instances in the case company con-
sidering the general goal of better incorporating feedback from operations to de-
velopment and corresponding solution design for reducing information overflow,
e.g. alert flooding, by introducing a new element, a smart filter, in the feedback
loop. Therefore, we propose a simpler version of the solution design based on ML
decision rules as well as a more advanced deep learning (DL) alternative. We have
implemented and partially evaluated the former solution design while we present
the plan for implementation and optimization of the DL version of the smart filter,
as a kind of autonomous monitor.

Conclusion: We propose using a smart filter to tighten and improve feedback
from operations to development. The smart filter utilizes operations data to dis-
cover anomalies and timely report alerts on strange and unusual system’s behavior.
Full-scale implementation and empirical evaluation of the smart filter based on the
DL solution will be carried out in future work.

ACKNOWLEDGEMENTS

This thesis was partially supported by the Wallenberg Artificial Intelligence, Au-
tonomous Systems and Software Program (WASP) funded by Knut and Alice Wal-
lenberg Foundation.

I would like to express my gratitude and appreciation for Prof. Per Runeson,
Dr. Emelie Engström, and Dr. Magnus C Ohlsson whose guidance, support, and
encouragement have been invaluable throughout this Ph.D. journey. It has been a
privilege to have you as supervisors and to collaborate with you on the studies.

I would also like to thank my colleagues from the Department of Computer
Science, especially the SERG members for inspiring discussions and very pleasant
lunches and fikas. Alma, Song, Sergio, Momina, and Idriss thank you for making
this journey even more wonderful.

I would like to offer my special thanks to System Verification, the company
where I have always been warmly welcomed, appreciated, and encouraged to pur-
sue my personal and professional goals. In particular, I would like to thank Kadira
Šubo and Henrik Sällman for initiating and encouraging application for the doc-
toral program, as well as to my immediate manager Andreas Axelsson and HR
manager Joanna Doweyko for continuous support and patience in managing all
relocation formalities.

I have had an opportunity to collaborate with the development and test teams
from an anonymous case company and System Verification. I am thankful for their
willingness to share insights and respond to all questions. I would like to specially
thank Tobias Anderson for the helpful advice and unlimited assistance at any time.

I am extremely grateful to my family and friends for their unconditional love,
unwavering support, and belief in me.

Finally, all praises and thanks are due to God, the Almighty, for His blessings
and knowledge granted to me.

Tack så mycket!
Adha Hrusto

LIST OF PUBLICATIONS

This thesis consists of an introduction and a compilation of two papers listed below
and referred to by Roman numerals.

Publications included in the thesis
I Closing the Feedback Loop in DevOps Through Autonomous Monitors

in Operations
Adha Hrusto, Per Runeson, Emelie Engström
Springer Nature Computer Science (2021) 2:447
DOI:10.1007/s42979-021-00826-y

II Optimization of Anomaly Detection in a Microservice System Through
Continuous Feedback from Development
Adha Hrusto, Emelie Engström, Per Runeson
In Proceedings of 10th ACM/IEEE International Workshop on Software En-
gineering for Systems-of-Systems and Software Ecosystems (SESoS 2022).

8

Contribution statement
All papers included in this thesis have been co-authored with other researchers.
The authors’ individual contributions to Papers I-II are as follows:

Paper I
Adha Hrusto, Prof. Per Runeson, and Dr. Emelie Engström initiated study and
collaboration with the industry partner. All authors contributed in conducting in-
terviews with the practitioners and formulating identified problem instances. Adha
Hrusto has led the solution design and implementation of the solution prototype
while the decisions and actions taken were critically assessed by Prof. Per Rune-
son and dr. Emelie Engström. Adha Hrusto was mainly responsible for writing the
paper while Prof. Per Runeson and dr. Emelie Engström have also contributed to
writing, reviewing, and editing.

Paper II
Adha Hrusto designed the study and as a lead author, was responsible for writ-
ing the paper. Dr. Emelie Engström initiated very important discussions about
the research approach, while Prof. Per Runeson assisted in refining and formulat-
ing design science concepts of the study. Adha Hrusto proposed reviewing deep
learning approaches for advancing solution design and a plan for its in-context im-
plementation and optimization. Dr. Emelie Engström and Prof. Per Runeson have
also contributed to reviewing and editing the paper.

CONTENTS

Introduction 1
1 Background and Related Work 3
2 Research Approach . 9
3 Results and Contributions . 12
4 Limitations . 16
5 Conclusion and Future Work . 17

Included papers 21

I Closing the Feedback Loop in DevOps Through Autonomous Moni-
tors in Operations 23
1 Introduction . 24
2 Background and Related work 25
3 Research Approach . 28
4 Case Description . 30
5 Problem Conceptualization . 32
6 Solution Design . 34
7 Prototype Implementation and Empirical Validation 37
8 Discussion and Conclusion . 40

II Optimization of Anomaly Detection in a Microservice System Through
Continuous Feedback from Development 45
1 Introduction . 46
2 Background and Related Work 48
3 Research Approach . 49
4 Problem Context . 50
5 Review of DL Methods for Anomaly Detection in MTS 51
6 Guidance for a Minimum Feasible DL Method 55
7 Towards Reliable DL Solutions: Evaluation and Maintenance . . . 57
8 Conclusion and Future Work . 59

10 CONTENTS

Bibliography 61
References . 61

INTRODUCTION

Continuous software engineering (CSE) embraces continuous practices such
as continuous integration, continuous testing, continuous deployment, continuous
run-time monitoring, to support and enhance the entire software life-cycle all the
way from the business strategy to the final software product. Another term, closely
related to continuous practices and more often used in industry, DevOps, stands for
cross-functional collaboration between development (Dev) and operations (Ops)
and complements continuous practices by stressing the importance of collabora-
tion and culture in software development environments. Automation and monitor-
ing are additional dimensions of DevOps [44], also highly important within CSE.
Thus, automation infrastructure is a means of achieving continuity of CSE activi-
ties while run-time monitoring in operations monitors the health and performance
of the deployed software through continuous measurements. Accumulated mon-
itoring data may provide particular insights to development e.g. timely exposing
unusual discrepancies in performance metrics. Accordingly, analyzing and manag-
ing operational data is of high importance for providing fast and valuable feedback
to development, which is the focus of our ongoing research.

One of the benefits of implementing continuous run-time monitoring is im-
proved release reliability due to shorter testing cycles and more frequent releases.
Hence, extensive testing prior to deployment might be less favored due to shorter
time-to-market demands. However, some development teams have started relying
on production monitoring for discovering bugs, glitches, or performance degra-
dation as long as they can be easily and quickly fixed. This is enabled thanks to
automated continuous integration/continuous deployment (CI/CD) infrastructure.
On the other hand, monitoring highly complex software systems, e.g. consisting
of dozens of microservices might be challenging as the volume and complexity of
monitoring data increases over time with the software system evolution. There-
fore, collected monitoring data in such systems may burden operations and cause
information overflow e.g. alert flooding, in the feedback loop to development.

A microservice system is an example of a distributed software system where
every component is separately monitored and potential issues are individually re-
ported for each of the services even though they might be dependent. Therefore, in
order to capture the health status of a system as a whole, it is important to consider

2 INTRODUCTION

operational data across multiple microservices. For such systems, selecting proper
algorithms for the analysis and detection of specific events in multidimensional
operational data is highly significant. Even more challenging are the industrial
contexts with unknown expectations and alerting events, where each reported alert
needs to be manually checked in order to be resolved.

In our research, we specifically focus on the detection of anomalous system’s
behavior in monitoring data, e.g. performance metrics, and timely reporting alerts
to development, providing all needed details for fast debugging and root cause
analysis. Anomaly detection in operations data is an important activity for dis-
covering faulty system states and performance degradation that could evolve into
severe problems if not properly addressed and resolved on time. For addressing
anomaly detection tasks, we focus on machine learning (ML) inspired approaches
as they have been recognized as very suitable and reliable for discovering devia-
tions in high-volume data [1, 16, 28, 57, 75].

We collaborated with a Swedish company responsible for ticket management
and sales in public transportation, to be able to further explore the usage of run-
time monitoring data for the detection of anomalies. Since we only collaborated
with one industry partner, in further text we refer to it as the case company. The
research work was divided into the following three areas:

• Exploration and identification of main challenges in the case company with
respect to feedback from operations to development, focusing on the avail-
able operations data and its utilization for discovering alerting events.

• Reading relevant state-of-the-art literature, analyzing the findings and suit-
able ML approaches and accordingly designing a solution for identified
challenging problem instances.

• Implementation and validation of the proposed solution design in the case
company using tools applicable for the studied industrial context.

The system under study, developed and operated by the case company, is an
example of a microservice system with distributed monitoring in operations. As a
consequence, all detected performance degradation and glitches, namely anoma-
lies, across individual services are reported as alerts to the single notification plat-
form (in this case a Slack channel). Those are the facts we started with after collab-
oration with the case company was initiated. Further, the focus was on exploring
ML approaches for anomaly detection and utilizing a monitoring platform and cor-
responding monitoring data for developing an autonomous monitor for detecting
anomalies and reporting alerts.

Conducting the work in the aforementioned research areas has led to the fol-
lowing threefold contributions:

• C1: Identification of problem instances on the borderline between opera-
tions and development, in particular, instances of problems related to the
management of the operations data and data complexity.

1 Background and Related Work 3

• C2: A solution design inspired by ML, preventing a bottleneck in the infor-
mation flow from operations to development, and timely reporting of alerts
on identified anomalous system’s behavior.

• C3: Partial empirical evaluation of the simpler version of the solution design
based on ML decision rules and a plan for implementation and evaluation of
the deep learning (DL) alternative.

1 Background and Related Work
In this section, the main aspects of continuous software engineering are discussed.
The presented aspects are related to current research done in this thesis, focusing
on the continuous activities in development and operations. Further, an overview
of continuous monitoring and monitoring data management is presented. More-
over, the overview extends to deep learning approaches for anomaly detection in
monitoring operations data in the previously introduced studied context.

1.1 Continuous Software Engineering
Continuous software engineering provides a set of continuous activities needed for
an iterative software development process with accelerated delivery. As shown in
Figure 1 by Fitzgerald and Stol [18], CSE spans across three domains: business
strategy, development and operations.

The software product creation starts with business strategy and planning, fol-
lowed by technical implementation, deployment, and continuous execution in op-
erations. This is accomplished in several cycles, were BizDev and DevOps, con-
necting the three domains, ensure continuous flow of information between busi-
ness strategy and development, and development and operations, respectively. In
this way, any discontinuities between sales/marketing expectations, development
decisions, and users’ satisfaction are eliminated [18].

DevOps gains more attention than BizDev as it is more frequently used within
both, academic and industrial circles. A common interpretation of DevOps is that
it is about culture, tooling, and processes and aims to improve collaboration and
integration between team members including developers, managers, operational
personnel, and everyone involved in product creation and deployment. This means
that DevOps is defined by four principles: collaboration, automation, measure-
ment, and monitoring [45].

As shown in Figure 1, the three domains are represented with continuous prac-
tices required for planning, developing, and operating software. In the conducted
research work, the focus was on the linkage between development and operations,
thus, the corresponding continuous practices are further explained:

• Continuous Integration (CI) is an automatically triggered process of inter-
connected steps including code compilation, execution of automated tests

4 INTRODUCTION

on unit, integration, system and acceptance level, validating code coverage,
and building deployment packages.

• Continuous Testing (CT) is an uninterrupted process of running automated
tests on the latest stable version of the software. Its main purpose is to help
reducing the time between the introduction of errors and their detection.

• Continuous Deployment (CD) is an automatic process of reliable deliver-
ing software to the customer environments as soon as new code is devel-
oped [54]. According to Rodríguez [54], the CD has roots in Agile Soft-
ware Development (ASD) as agile methodologies are based on the same
principles of delivering valuable software continuously while accelerating
development processes.

• Continuous Delivery is a prerequisite for continuous deployment and re-
leasing of software builds for this practice is done manually and not directly
to customers, while with continuous deployments it is done automatically
and directly to customer environments [18].

• Continuous Run-Time Monitoring (CM) is a continuous activity of moni-
toring running software services, which may enable tracking their health sta-

Business Strategy Development Operations

Continuous Improvement

Continuous Exper imentation and Innovation

Continuous Evolution

Continuous Compliance

Continuous Secur i ty

Continuous Testing

Continuous Deliver y

Continuous Integration

Continuous Deployment

Continuous Budgeting

Continuous Planning

Continuous Use

Continuous Trust

Cont inuous Run-Tim e
Moni tor i ng

BizDev DevOps

Figure 1: A holistic view on the continuous activities [18]

1 Background and Related Work 5

tus and timely detection of various malfunctions [18] while collected moni-
toring data may serve for improving development processes [11], generating
or prioritizing test cases [52, 64], or detecting anomalies [28].

• Continuous Improvement is a data-driven activity for improving software
quality and increasing customer satisfaction by utilizing data generated in
the CI/CD pipeline to drive decision-making and eliminate waste.

Another term, mostly used among practitioners, that encompasses the afore-
mentioned continuous activities is continuous integration/continuous deployment
(CI/CD) pipeline. It is considered as a set of automated steps that need to be per-
formed to be able to deliver software, while it is complemented with DevOps prin-
ciples of collaboration and culture to ensure uninterrupted responsiveness within
the pipeline [60].

Implementation of the continuous practices may bring various benefits to soft-
ware development environments such as [54]: 1) shorter time-to-market due to the
higher frequency of release cycles; 2) improved release reliability achieved with
a narrower test focus since each deployment introduces only a limited amount of
code while also relying on rollback mechanisms; 3) instant feedback from auto-
mated infrastructure that enables discovering, locating, and resolving issues more
rapidly, utilizing both pre-deployment extensive testing and post-deployment run-
time monitoring; 4) increased developers’ productivity as they can only be oriented
on the development of new features while relying on the automation infrastructure
and feedback from operations for discovering bugs and various anomalies.

Further, we narrow our focus to continuous run-time monitoring since it has
an important role in the feedback from operations to development and providing
valuable alerting notifications to development in case of detected anomalies, which
was recognized as crucial in addressing identified problem instances in the case
company.

1.2 Continuous Monitoring

The main idea of the term continuity is to ensure an uninterrupted software devel-
opment life-cycle, even after deployment. When a software product has been de-
ployed, it is important to continue with post-deployment activities, such as contin-
uous monitoring. Suonsyrja et al. [61] studied the importance of post-deployment
activities and how automatically collected data from operations could be used as
feedback for requirement modifications and further development processes. They
reviewed the literature that relates to the evolution of software development meth-
ods and created a questionnaire to examine if companies are interested in collect-
ing usage data and what they think the data could be used for. The results show
that practitioners are interested in adopting post-deployment activities and that
these activities are important for gathering data about performance, time, and the
way of using the software product but also for discovering system failures.

6 INTRODUCTION

Hence, continuous monitoring complements traditional testing, especially be-
cause the time intended for testing tends to be decreased due to short time-to-
market demands or limited development resources. In this way, continuous moni-
toring may serve in discovering various anomalous system’s behavior in case soft-
ware products are being released with limited testing coverage or with incomplete
functionalities. Furthermore, underlying automation infrastructure offers a lot of
opportunities for the further advancements of post-deployment activities.

Types of data collected through continuous monitoring in operations may take
different forms and provide diverse information about the software in operations.
For instance, Cito et al. [10] report a taxonomy of types of operations data, where
they differentiate between monitoring data and production data. Monitoring data
includes execution performance data (e.g. service response time), load data (e.g.
service requests rate), cost data (e.g. hourly costs for using specific cloud solu-
tion), and user behavior data (e.g. click-streams), while production data denotes
the data produced by the software system itself such as placed orders of customer
information. In a more recent study, Cito et al. [11] categorize operations data
in system metrics (e.g. CPU utilization), application metrics (e.g. number of ex-
ceptions, logs/events), and application system metrics (e.g. method-level response
time) where they also map identified categories with the phases of software de-
velopment life-cycle and their purpose. Further, Capizzi et al. [6] investigate data
management within DevOps all the way from the planning stage to the deploy-
ment stage. They have also recognized monitoring data such as logs, performance
metrics, and other types of data collected from monitoring tools, as an important
segment of DevOps data. However, there are also studies that specifically focus
only on a certain type of operations data such as logs – printing statements from
developers to trace the state of the running software [4]. Hence, the terminol-
ogy used to describe specific types of operations data may differ among research
circles and years of publication. However, some patterns may be noticed – perfor-
mance metrics data has been recognized as an important source of information for
providing valuable feedback for development.

One of the initial aims when collaborating with the DevOps team from the case
company was to explore available operations data types. Identified categories par-
tially match with aforementioned types, specifically including applications’ and
systems’ performance metrics (e.g. CPU Time, the total number of requests, num-
ber of failed dependency calls, or number of internal server errors), logs (e.g. failed
dependencies with attributes such as id, target, name, type or result code) and busi-
ness data (e.g. number of ticket purchases using specific payment method). Further
investigations on the management of operations data and observations on resolv-
ing alerting events indicated that we put our focus towards performance metrics as
they have been usually analyzed in case some severe failures and their numerical
form make them adequate to use with ML algorithms.

1 Background and Related Work 7

1.3 Monitoring Data Management
Monitoring data in operations may be leveraged for improving different aspects of
the software development life-cycle. Using feedback based on the operations data
aggregation, integration, and mapping for determining analytical and predictive
relation to development processes has been reported by Cito et al. [10, 11]. The
testing phase may also benefit from monitoring data, e.g. to improve the reliability
of testing with the iterative estimation of operational profile presented by Pietran-
tuono et al. [52] or for automatic generation of test cases reported by Deepika et
al. [64]. Moreover, security and privacy issues could be addressed utilizing moni-
toring data [49]. Detecting anomalous system’s behavior is another very important
aspect for timely reporting alerting events and fast recovery from failures [28]. In-
terestingly, some of the operations data has been used for decision making and
detection of harmful release candidates [6], while Fu et al. presented how to use
clusters of system logs to further infer dependencies that are used for failure pre-
diction and root cause analysis [20]. Those are selected examples of operations
data utilization for various purposes while there are many more use cases adapted
for specific industrial contexts.

Initial insights gained from collaboration with the case company has led to pri-
oritizing anomaly detection among other ways of utilizing monitoring data. During
the problem conceptualization, various flaws has been detected in the way alerting
events were being reported. Thus, a need for a new and improved way of dis-
covering unusual and unexpected software behavior, namely anomalies, has been
recognized.

1.4 Anomaly Detection in Monitoring Data
Anomaly detection is a research area with growing attention across numerous do-
mains such as cybersecurity, healthcare, bioinformatics, industrial fault detection,
genetics, and many more [55]. An observation that significantly and unexpect-
edly deviates from the normal pattern in the observation data is considered as
an anomaly [3]. However, the concept of anomaly detection may be context-
dependent and different approaches might be needed for different types of data.
According to Hagemann et al. [23], the three most common approaches to anomaly
detection entails classical machine learning, deep learning, and statistical meth-
ods. The selection of the approaches substantially depends on the available data,
its type, and volume. Moreover, the data available for the learning of normal
and anomalous dependencies may define selection between unsupervised and su-
pervised methods. Labeled data for applications of anomaly detection are rarely
available and even when there are at least partial annotations, they might be in-
sufficient and unreliable since anomalies in most of the industrial context do not
appear often and periodically [55]. Thus, they are hardly detected and require
special treatment. Moreover, a careful selection of suitable approaches for their
analysis is needed.

8 INTRODUCTION

In our case, the selection of anomaly detection approaches has been defined by
the software system and environment in the case company. Thus, we focused on
approaches for treating multidimensional time series data as the monitoring data,
indicating the health of the software, consists of multiple numerical observations
captured within a specific time range across multiple services. This type of data,
known as multivariate time series, is quite challenging for analysis especially if
there are no ground truth data, which is the case. Initially, we focused on classical
machine learning approaches for labeling the data and predicting anomalies but
due to data complexity and untrustworthiness of the labeling process, we shifted
focus towards advanced approaches for anomaly detection such as deep learning.

Deep Learning for Anomaly Detection

There is a tendency to use deep learning (DL) approaches for solving diverse
tasks in a plethora of applications. The main idea behind those, human brain-
inspired methods, lies in the pile of interconnected neural network layers capable
of learning complex and non-linear dependencies in the data [55]. Deep learn-
ing approaches for anomaly detection differ in the type of neural networks layers,
the way inter-correlation between observations is defined, and the way of calcu-
lating the anomaly score [8]. Hence, a wide variety of approaches can be found
in the state-of-the-art literature [8, 28, 55] where most common approaches in-
clude reconstruction-based, prediction-based, and dissimilarity-based deep learn-
ing methods for anomaly detection. Choosing between the aforementioned meth-
ods and their variations is mostly defined by the industrial context since, to our
knowledge, there is no all-purpose method that fits into diverse contexts.

A challenging fact in the studied problem context was the highly unstructured
and unpredictable monitoring data with unknown anomalous labels. Hence, se-
lecting and evaluating a single deep learning method that will perform optimally is
quite untrustworthy. Instead, we relied on feedback from the development team to
generate labels that will afterward be used for evaluating and selecting the method
with the best accuracy. Thereafter, the continuous feedback from practitioners on
reported alerts based on detected anomalies will further serve for updating the best
candidate in several iterations. As more data becomes available over time, each up-
date will drive the DL model towards the optimum and the entire solution towards
an autonomous solution for managing monitoring data.

1.5 Alerts in DevOps

Alerts are warning or error notifications reported based on detected software mal-
functions or performance degradation. They are a convenient way of notifying
development teams about the state and the health of the software running in op-
erations. The alert rules can be implemented either using a heuristic approach –
manually thresholding monitored data or more advanced algorithms treating the

2 Research Approach 9

raw monitoring data such as anomaly detection. However, there might be some
variations depending on the industry domain, such as a large-scale service system
of a commercial bank [72], cyber-physical systems [41], process plants e.g. an off-
shore oil gas separation plant [43] or large-scale enterprise IT system [39], on how
alerting events are triggered.

Alerts are useful for timely diagnosing severe failures but on the other hand
they might cause information overflow and confusion within the development
teams if they are not properly managed. For instance, Zhao et al. [72] report a
case where the development team had wasted a time debugging non-severe alerts
while severe ones were missed. Thus, they propose an effective ML-based algo-
rithm, which utilizes both reported alerts and key performance indicators (metrics)
to more accurately trigger high-priority alerts. Similarly, to improve operational
efficiency and support manual alert examination, Lin et al. [39] propose an unsu-
pervised ML approach for clustering alerts based on their content.

The studied industrial context also comprises alerts in the feedback loop from
operations to development. The aforementioned approaches for improving alert
management were not applicable due to the low quality of implemented alerting
rules. Thus, a different approach, including raw monitoring data analysis, was
needed. Instead of alert prioritization, we focused on mining monitoring data in
order to discover highly relevant anomalies also considering dependencies among
services and timely reporting alerts.

2 Research Approach

An overview of the research work in this thesis is presented in Figure 2. The goals
of the design science studies were to explore problems in the specific industrial
context, a microservice system developed and operated in the DevOps environ-
ment (Paper I and Paper II), investigate how to improve the problem context by
applying state-of-the-art machine learning methods (Paper I and Paper II), and
implement and evaluate the ML inspired solution instance (Paper I, Paper II and
Evaluation paper). Afterwards, based on the synthesis, the steps for further work
towards generalization are decided.

Throughout the collaboration with the case company and while studying chal-
lenges in managing operations data, we aimed at answering the following research
questions:

• RQ1: What are the main challenges on the borderline between development
and operations with regards to operations data flow and overflow?

• RQ2: What available ML approaches may be used for designing a solution
for the identified problems of data overflow from operations to develop-
ment?

10 INTRODUCTION

Futur e wor k

Paper I

Paper I I

Evaluat i on
paper

DESIGN SCIENCE
studies

RQs

Speci f i c i ndust r i al contex t

Synthesi s

Completed
work

Future
work

Figure 2: Research overview of the completed work

• RQ3: What tools and cloud platforms are needed for the deployment and
evaluation of the implemented ML based solution?

• RQ4: How to evaluate ML based solutions without ground truth data and
how to examine if selected ML approaches successfully address identified
problem instances of data overflow?

The details of the future work are elaborated in Section 5.
The conducted research work, presented in the papers included in this thesis,

follows the principles of the design science (DS) paradigm [56]. We aimed to
explore and address challenges in managing operations data by studying the case
company, which perfectly fits the design science concept of understanding and
improving certain practices, in our case in an industrial DevOps context. A con-
ceptual overview of the research approaches, for the two papers under the design
science frame, is shown in Figure 3. Each of the research approaches in Paper
I and Paper II include activities shown in arrows (see Figure 3) that span from
problem to solution and from practice to theory domain.

The design science frame entails four main activities: problem conceptualiza-
tion, solution design, instantiation, and empirical validation [56]. Problem con-
ceptualization is a fundamental constituent of design science research but it is not
necessarily the first step [56]. However, it may be a starting point of problem-
driven research as the problem first needs to be understood in order to envision
potential solutions. Solution design is an activity of mapping identified problem to
a matching solution [56]. Furthermore, identified problem instances and matching

2 Research Approach 11

P
ro

b
le

m

co
n

ce
p

tu
a

li
za

ti
o

n

P
ra

ct
ic

e
T

h
eo

ry
Problem domain Solution domain

Solut i on design

Technological
r ule(s)

Em pi r i cal
val i dat i on

In
sta

n
tia

tio
n

Problem
instance(s)

Solution
instance(s)

Problem
construct(s)

Design
constr uct(s)

Evaluat i on
paper

Future
work

Completed
work

Paper I

Paper I I

Figure 3: Research approach under the design science frame

solutions may be expressed as technological rules, e.g. prescriptive recommen-
dations for practice. Instantiation refers to the implementation of the solution
design in a specific industrial context while empirical validation aims at evaluat-
ing the solution instance and examining how well it addresses identified problem
instances [56].

The four research questions are in line with the design science paradigm and
we aim at answering them by conducting the aforementioned DS activities. Thus,
in the first study (Paper I) we used interviews and observations to explore the
problem domain in the case company to identify problem instances and formulate

12 INTRODUCTION

a general problem construct considering related work in the field, which adds to
the contribution C1. Further, the matching solution was designed considering pre-
vious research and available solutions to similar problems and served as a proof
of concept for further work. The solution design presented in Paper I, was im-
plemented using exiting ML solutions and Python libraries for learning decision
rules. The complexity of the industrial context hindered us from a full-scale im-
plementation. Thus, the solution instance served as a proof of concept to explore
possibilities for further work and more advanced algorithms. However, it aims at
answering the RQ2 and leads to the contribution C2. As presented in Paper I, we
managed to execute a partial empirical validation of the initial solution instance
considering time and environment constraints. Thus, the circle, shown in Figure 3,
is not fully complete and only partially adds to C3.

Research questions RQ2, RQ3, and RQ4 are further explored in the second
study, published in Paper II. As shown in Figure 3, the problem conceptualiza-
tion step in the second study (Paper II) was less extensive, including brief dis-
cussions with practitioners and investigation of relevant solutions to formulate a
more condensed problem construct. Moreover, in Paper II, we advance the pro-
posed solution design, presented in Paper I, with respect to the state-of-the-art deep
learning solutions in order to capture all notions of anomalousness in operations
data. The goal is to provide a more robust and reliable solution than the initial one,
which complements contributions from Paper I and finalizes C2. Furthermore, the
guidelines for implementation and full-scale evaluation in a cloud environment are
presented, which adds to contribution C3. We aim to complete the design science
cycle with an evaluation paper (see Figure 3), where an actual implementation and
empirical validation of the advanced solution instance will be presented.

3 Results and Contributions

The overall contribution of this thesis is related to the goal of improving feedback
from operations to development in cloud-based and large-scale software systems,
developed and operated in DevOps environments. In particular, it entails optimiza-
tion of anomaly detection in multidimensional operations data needed for timely
reporting alerts and reducing information overflow between the two domains. A
more detailed overview of specific results and contributions per paper is given
below.

3.1 Paper I: Closing the Feedback Loop from Operations
to Development

The goal of a study, presented in Paper I, was to explore the problem context
in the case company and design a solution for a conceptualized problem, which
is later instantiated and will be evaluated as a proof of concept in further work.

3 Results and Contributions 13

Next, individual contributions of Paper I and their relation to the three overall
contributions of this thesis are presented below.

Throughout the problem conceptualization, we identified the following three
problem instances of the general alert flooding problem to answer RQ1, which
correspond to the contribution C1:

• Targeting problem: The distribution of alerts to target recipients, teams,
and individuals is not fully explicit, which causes lack of precision in re-
solving fired alerts.

• Optimization problem (High priority alerts vs. noisy alerts): The dif-
ferentiation between alerts that cause failures and alerts causing temporary
glitches that don’t affect the system’s performance, is not clear.

• Interoperability flaws with external services: Disruptions in external ser-
vices are often discovered through customer service after end customers
have been affected.

We provided a conceptual design for only one of the problem instances, alert
flooding as an optimization problem since addressing this particular instance may
reduce the scope of the remaining problems. As shown in Figure 4, the proposed
solution design entails an additional element in the feedback loop from operations
to development, a smart filter. The smart filter is a kind of autonomous monitor
that is capable of detecting performance anomalies in monitoring data and trigger-
ing alerts in a development environment. In particular, it fetches various systems’
and applications’ metrics in near-real-time and outputs a triggering event if an un-
usual system behavior is detected based on the alert rules, created as functions of
multiple input variables. In this way, we urge treating the metrics data across dif-
ferent services as some hidden dependencies might be discovered, which is crucial
for a fast response from development on fired alerts.

Bui ld Test Deploy Moni torRelease

Sm ar t Fi l ter
Decision r ules

MONITORING DATAALERTS

DEVELOPMENT OPERATIONS

Figure 4: Smart filter (decision rules) in the feedback loop

Alongside the proposed solution design, which is contribution C2, we imple-
mented and evaluated a prototype instance, which leads to contribution C3. The

14 INTRODUCTION

goal of the implementation part was to explore limitations of the operations data
and the corresponding context. Thus, we focused on basic ML methods, e.g. tree-
based machine learning methods [19,21], to generate new advanced decision rules.
Moreover, such rule-based ML methods require labeled data so we used the base-
line ML anomaly detection method, e.g. isolation forests [38] to generate labels
while also considering the service vulnerability and observed metrics frequency.

We evaluated the solution instance against the current solution in the case com-
pany for alert detection, as well as against the unsupervised multivariate anomaly
detection (MAD) method for detecting anomalies that will thereafter trigger alert-
ing events. For that purpose, a limited test data set was used to explore the effec-
tiveness of the proposed solution in the studied context. In each of the evaluation
instances, the results showed that the MAD trained model produced the same level
of noisy alerts as the existing alert system in the case company, while the smart
filter outperformed them by significantly reducing the alert flooding, simplifying
the root cause analysis, and further resolving altering events. This was a pilot im-
plementation and evaluation of the proposed solution in the case environment as a
proof of concept for further work.

Throughout this study, we identified several challenges that impacted our fur-
ther decision-making about the future work in the case company. We were struck
by how much uncertainty each of the fired alerts was continuously bringing into
the development environment, as they were sent through two different platforms
(Slack channel and email) and there were no clear attempts at resolving them.
Moreover, it was hard to understand what triggers developers to act upon fired
alerts, which could further help in defining a real alert and evaluating any al-
ternative approach for alert detection. The previously presented solution design
included a labeling process, which is, in general, a very thorny process and highly
sensitive in case of anomaly detection problems. Hence, we decided to shift our fo-
cus towards unsupervised deep learning approaches for anomaly detection in mul-
tivariate data, governed by the existing solutions in the state-of-the-art literature.
Furthermore, we decided to explore approaches for evaluation of the ML-based
solutions without any ground truth data. The final aim was to create a unique tech-
nical solution that will overcome all aforementioned challenges and enable timely
reporting of the most relevant alerts to only one of the communication platforms.

3.2 Paper II: Optimization of Anomaly Detection

In Paper II, we address shortcomings of the solution design presented in Paper I
and explore state-of-the-art deep learning (DL) approaches for its improvement.
We were inspired by the results achieved using the unsupervised DL methods in
addressing anomaly detection tasks [28, 42, 46]. Unsupervised learning does not
require data labeling, which is preferable due to the ambiguity of fired alerts in the
case company, while deep learning enables capturing highly complex and nonlin-
ear dynamics in the multivariate data. Below, we present the individual contribu-

3 Results and Contributions 15

tions of Paper II and the corresponding mapping to the three overall contributions
of this thesis.

An additional contribution to C2 was made by advancing the solution design
from Paper I, with deep learning approaches. For that purpose, we firstly presented
a brief overview of unsupervised deep learning methods for anomaly detection
in multivariate time series, which addresses RQ2. The methods were presented
across three dimensions including inter-correlation between variables, type of neu-
ral networks and the way anomaly score was calculated. Moreover, we provided
guidelines on how to select minimum feasible DL methods, in terms of simplicity
and applicability, when firstly attacking the problem of anomaly detection in time
series. We proposed three variations of DL methods with brief descriptions on how
to use them and corresponding examples. These guidelines were also planned to
be used for advancing the smart filter and further exploration of the fitting between
the selected methods and the studied context.

For answering RQ3 and RQ4, we presented a cloud solution for the deploy-
ment of the DL model and in-context implementation of the smart filter. Moreover,
the context in the case company, characterized by a shortage of ground truth data
on real alerts, required a special plan for evaluation of the overall solution. Thus,
we introduced a concept of iterative evaluation through feedback from the devel-
opment team on each reported alert. As shown in Figure 5, there is a connection
between the development and the smart filter utilized for evaluating and updating
the solution instance. In this way, collected feedback data, representing ground
truth annotations, may be used for exploring different variations of the solution
and afterward for optimizing the selected, best performing, DL solution. This par-
ticular contribution adds to the C3 contribution of this thesis.

Bui ld Test Deploy Moni torRelease

Sm ar t Fi l ter
Deep Learning

Solution
MONITORING DATAALERTS

EVALUATE AND UPDATE

OPERATIONS
DEVELOPMENT

Figure 5: Smart filter (DL version) in the feedback loop

As previously mentioned, the full-scale implementation and evaluation of the
advanced version of the smart filter are planned as future work and will be pub-
lished as an evaluation paper. The details of the further future work are discussed
in Section 5.

16 INTRODUCTION

4 Limitations

As proposed by Runeson et al. [56], we assess the contributions of conducted
design science research, published in Paper I and Paper II, by considering rele-
vance, rigor and novelty. Below, the limitations of the thesis contributions across
the aforementioned factors are discussed.

4.1 Relevance

The relevance of the design science research can be discussed ether from other
practitioners or research community perspective [56]. To be useful for other prac-
titioners than in the case company, the proposed solution including a kind of an au-
tonomous monitor in the feedback loop to development, needs to be easily adapted
to any other relevant industry context. Currently, we are not able to assess whether
the presented research outcomes are applicable in different contexts as we only col-
laborated with one industry partner. However, based on knowledge gained from
the related literature and previous industry experience, we may assume that the
studied problem is highly relevant and that the designed solution may be used for
addressing similar problems in different contexts. We plan to address this limi-
tation in our future work where additional effort is needed to prove the previous
statement.

The research community may benefit from the design knowledge with regards
to the relevance of the studied problem and the degree of its generalizability.
In each of the papers included in this thesis, there is a section that presents re-
lated work, which supports the relevance of the studied research phenomena. The
designed solution presented in Paper I and Paper II is currently highly context-
dependent and its generalizability will be further explored in future work.

4.2 Rigor

The rigor of the design science studies presented in this thesis is determined by
assessing the knowledge creating activities: problem conceptualization, solution
design and validation [56]. Regarding the problem conceptualization, we used in-
terviews, observations, documentation, and informal discussion with practitioners
to collect qualitative data and identify the most challenging problem instances of
data flow and overflow in operations. These techniques provide direct insights into
the studied phenomenon as they require quite close collaboration with the practi-
tioners.

We assess the rigor of the design activity by estimating to which extent the
proposed design builds on the prior designs from state-of-the-art solutions [56]. In
Paper II, we provide an overview of the most relevant deep learning approaches
which we considered for improving the initial version of the smart filter. Thus,
our solution is based on the approaches used for addressing similar problems. In

5 Conclusion and Future Work 17

Paper II we also elaborate why we focus on DL-inspired solutions instead of less
complex alternative solutions.

We have the least evidence for the rigor of the validation activity. Since the full-
scale implementation of the DL-inspired solution is underway, we are not able to
conduct thorough validation. Moreover, we plan to execute an interactive and iter-
ative validation where practitioners will be involved in validating reported alerting
events, which will be used for measuring the accuracy of the prediction and im-
proving the solution by retraining the unsupervised DL models or training new
supervised DL models. Thus, in several iterations, we aim to find the best per-
forming solution that includes either an individual DL model or an ensemble of
more DL models (unsupervised and supervised).

4.3 Novelty
The novelty of conducted research work is expressed through a new techno-

logical rule:
To timely expose unusual software system’s behavior in cloud-based environments
without known ground truth data on expected anomalies, use a technical solution
based on a deep learning approach with periodical updates with regards to the
feedback from development.

The novelty of the contribution stated in the technological rule is in the context
to which the proposed intervention is applied. Similar solutions have already been
proposed for addressing anomaly detection problems in monitoring data. How-
ever, the difference is that the latest and most relevant publications do not ex-
plicitly address the real struggle of development teams in assessing whether the
reported alerts are true or false positives [28, 48, 75]. This uncertainty caused the
ignorance of reported alerts and shortage of annotated real alerts in the case com-
pany. With our research outcomes, we aim to address this gap in a real-world
context and propose an intervention that includes a smart filter in the feedback
loop from operations to development and iterative updates based on the feedback
from development. In this way, the deep learning based solution may be iteratively
optimized.

5 Conclusion and Future Work
Throughout the design science studies, we focused on the specific industrial

context to explore the usage of operations data for addressing challenges on the
borderline between operations and development. All the three studies, including
published papers (Paper I and Paper II) and ongoing work planned for an evalua-
tion paper, are related and focused on the same problem of data flow and overflow
from operations to development. The studies tackle the problem from different
perspectives, focusing on the specific parts of the design science frames to answer
research questions, presented in Section 2.

18 INTRODUCTION

RQ1 and partially RQ2 were addressed in Paper I where identified problem
instances and initial solution prototype were presented. RQ2, RQ3 and RQ4 were
further investigated in the second study and the results were reported in Paper II.
The contributions of Paper II include a review of state-of-the-art deep learning
methods for anomaly detection in monitoring data (performance metrics repre-
sented by multivariate time series), an overview of a cloud platform for deployment
and maintenance of deep learning solution, and an approach for evaluation and
optimization of deep learning solutions without ground truth labels on expected
anomalies. To complete the design science cycle, the full-scale implementation
and evaluation are planned as future work and will be published in an evaluation
paper. As shown in Figure 6, after the three design science studies, we synthesize
the results and limitations to further decide on future work.

Paper I

Paper I I

Evaluat i on
paper

DESIGN SCIENCE
studies

RQs

Speci f i c i ndust r i al contex t
New indust r i al contex t
(di f fer ent system , the
sam e envi r onm ent)

Synthesi s

Implementing the
solution design in a

new industr ial context

Towar ds gener al i zat i on
(di f fer ent system ,

di f fer ent envi r onm ent)

RQs

Explor ing l imitations
of the solution design
in di f ferent industr ial

contexts and
environments

RQs

Completed
work

Future
work

Figure 6: Research overview of the completed and future work

The accomplished results, presented in Section 3, were only significant for a
specific industrial context. Moreover, considering the limitations discussed in Sec-
tion 4, we decide to focus future work on increasing the relevance of the conducted
research work. Accordingly, we divide future work into two separate studies that
will explore the applicability of the solution proposed in Paper I and Paper II in dif-
ferent contexts. Firstly, we plan for a smooth transition to a new context by keeping
the same environment (built using Microsoft tools and services) but shifting to a
new system under study, which requires collaboration with another industry part-
ner. In this way, we would get an opportunity to examine the functionality of the
smart filter in the feedback loop of another cloud-based software system. The sec-
ond planned study of the thesis will aim towards the generalization of the solution

5 Conclusion and Future Work 19

for smarter detection and management of alerting events in operations. This may
include mapping of identified Microsoft Services, needed for implementation of
the smart filter, with services from other cloud solution providers. Moreover, this
could be additionally supported by surveying practitioners from different software
development companies on the applicability of the smart filter for the same or sim-
ilar problems within their monitoring platforms. Collected data may help improve
and adjust the smart filter to be less context-dependent as well as govern the cre-
ation of clear guidelines for implementation of the smart filter using tools from
different cloud providers. Thus, future work will be mainly focused on addressing
the limitations of current research outcomes.

To conclude, we investigated challenges in continuous monitoring and mon-
itoring data management by collaborating with the case company. The studied
research area is highly connected to the industry context, thus, we wanted to iden-
tify relevant problems from the practitioners’ perspective in order to design and
implement solutions that will afterward be beneficial both for software develop-
ment companies and the research community in terms of designed knowledge. In
our future work, we aim to demonstrate that the identified problems are common
for similar software systems and that the proposed solution may be used for im-
proving different industrial contexts.

INCLUDED PAPERS

PAPER I

CLOSING THE FEEDBACK
LOOP IN DEVOPS THROUGH
AUTONOMOUS MONITORS IN

OPERATIONS

Adha Hrusto, Per Runeson, Emelie Engström

Abstract

DevOps represent the tight connection between development and operations. To
address challenges that arise on the borderline between development and opera-
tions, we conducted a study in collaboration with a Swedish company responsible
for ticket management and sales in public transportation. The aim of our study
was to explore and describe the existing DevOps environment, as well as to iden-
tify how the feedback from operations can be improved, specifically with respect
to the alerts sent from system operations. Our study complies with the basic princi-
ples of the design science paradigm, such as understanding and improving design
solutions in the specific areas of practice. Our diagnosis, based on qualitative data
collected through interviews and observations, shows that alert flooding is a chal-
lenge in the feedback loop, i.e. too much signals from operations create noise in
the feedback loop. Therefore, we design a solution to improve the alert manage-
ment by optimizing when to raise alerts and accordingly introducing a new element
in the feedback loop, a smart filter. Moreover, we implemented a prototype of the
proposed solution design and showed that a tighter relation between operations and
development can be achieved, using a hybrid method which combines rule-based
and unsupervised machine learning for operations data analysis.

24 CLOSING THE FEEDBACK LOOP IN DEVOPS

1 Introduction

The software industry has gone through several revolutionary changes over the last
decades. A major change is that software is no longer delivered as a box product.
Technological advancements and availability of cloud computing platforms have
enabled continuous delivery of software systems leveraging the flexibility and re-
liability of various cloud delivery solutions [53]. Moreover, cloud providers offer
an infrastructure for developing and operating large-scale software systems em-
powered by continuous practices and DevOps, the latest industry concept based
on principles of collaboration, automation, measurements, and monitoring [60].
However, it also comes with an abundance of data to be managed as it is consid-
ered to be the fuel of the DevOps process [6].

The software life cycle includes continuous integration, continuous testing,
and continuous deployment practices [18]. During deployment, software systems
are transitioned from development to operations, to be continuously used by end-
users. The connection between development (Dev) and operations (Ops), known
as DevOps, ensures faster development cycles and frequent releases. However,
keeping the same level of software quality becomes challenging due to shorter
testing cycles. Run-time monitoring of services in operations [17], which is the
focus of this study, is of high importance for gaining confidence in a software
system and providing feedback to the development.

Through the run-time monitoring system, a vast amount of data is continuously
collected and saved for manual or automatic analysis. The data analysis serves as
feedback to development teams and provides deep and quick insight into the status
of the software system during operational execution [6]. Consequently, developers
and project managers can act as soon as they are notified about anomalies. The
notification is typically implemented as alerts sent through a messaging platform,
like Slack, triggered by alert rules, which are defined as functions of the opera-
tional data. However, the abundance of data and particularly alerts from minor or
major malfunctions in system components, tend to flood over the developers and
create noise that drowns the important alerts.

In the literature, there are examples of various methods for the analysis of oper-
ations data but only a few are addressing real industrial needs and challenges com-
panies are facing in relation to the feedback from operations to development [71].
Consequently, there is a limited choice of potential solutions available in the liter-
ature for designing more context-specific solution designs based on the identified
industrial needs. Thus, with our research, we aim to fill this gap by addressing
challenges related to the flow – and overflow – of data from operations to devel-
opment. We intend to explore and improve existing solution designs in the context
of the case company’s feedback loop from operations to development. Thus our
study complies with the principles of a design science paradigm [56].

We conducted a study in collaboration with a Swedish company responsible
for ticket management and sales in public transportation. Their main product is

2 Background and Related work 25

the back-end system for ticketing and payments, developed and operated in a Dev-
Ops environment using Microsoft services and tools. Following design science
principles, we explore and describe the existing DevOps environment and iden-
tify main challenges on the borderline between operations and development, us-
ing qualitative data collected through interviews and observations. To address the
identified challenges, we design a solution for more effective processing of data
available through the monitoring system in operations by introducing a smart filter
in the feedback loop. Thus our research adds to the new research and innovation
discipline called AIOps, artificial intelligence for IT operations [13]. Moreover,
we present a prototype implementation and validation of the proposed design. It
includes a description of the labeling process of unlabeled operations data, us-
ing unsupervised anomaly detection and considering the service vulnerabilities, as
well as learning new advanced alert rules using a supervised, decision tree-based
Python module.

The contributions of our paper are threefold:

C1. Problem conceptualization. We identified alert targeting, signal to noise
optimization, and system interoperability as being three important problem
instances of the general alert flooding problem in the feedback from opera-
tions to development.

C2. Solution design. We present a unique technical solution that combines var-
ious systems’ and applications’ metrics for learning advanced alert rules
within the new element in the feedback loop, a smart filter.

C3. Prototype implementation. We performed a pilot implementation of the
proposed solution in the case environment as a proof of concept for further
work.

The rest of the paper is structured as follows. In Section 2 we present the
background and previous work in this field. In Section 3 we elaborate the research
approach while in Section 4 we describe the case company. Identified problem
instances are introduced in Section 5. The solution proposal is presented in Section
6. Prototype implementation of the proposed solution and empirical validation are
given in Section 7, while Section 8 discusses the contributions and concludes the
paper.

2 Background and Related work
Ståhl et al. [60] conclude in their systematic mapping study on continuous prac-
tices and DevOps, that the concepts of continuous software engineering practices
and DevOps are ambiguous in the literature. We adhere to their proposed definition
that “Continuous deployment is an operations practice where release candidates
evaluated in continuous delivery are frequently and rapidly placed in a production

26 CLOSING THE FEEDBACK LOOP IN DEVOPS

environment”. In contrast, “Continuous release is a business practice where re-
lease candidates evaluated in continuous delivery are frequently and rapidly made
generally available to users/customers.” Depending on the environment, a release
may be achieved through deployment, for example in most SaaS (Software as a
Service) environments. On the contrary, for user installed software, continuous
deployment is not an applicable concept as the user must take actions to install a
new version. However, continuous releases may still be offered to the users.

Ståhl et al. [60] find DevOps be a broader term, including culture and mindset.
It also comprises tools, processes, and practices. We adhere to this broad definition
of DevOps, as we want to investigate “the interplay between specific continuous
practices and DevOps principles, processes and methods” [60], which aligns well
with Fitzgerald and Stol’s scoping of continuous software engineering [18].

Despite the observed ambiguity, there are additional research summaries. Lau-
kkanen et al. [35] presented a literature review of problems, causes and solutions,
when adopting continuous delivery. They build on a previous literature review by
Rodriguez et al. [54], and summarize topics related to build design, system de-
sign, integration, testing, release, human and organizations, and resources. How-
ever, the operational aspects are not included. Similarly, Shahin et al. [58] do
not cover practices beyond continuous deployment in their review and Mishra and
Otaiwi [47] only briefly mention operational feedback as contributing to software
quality in DevOps, in their systematic mapping study.

There is, however, research related to post-deployment activities. Suonsyrjä et
al. [62] studied how automatically collected data from operations could be used
as feedback to the development. They reviewed the literature and surveyed prac-
titioners’ interest in such activities. They conclude that topics related to post-
deployment monitoring appeared in the scientific literature during the 20th century
but, not during the last two decades [62]. As an exception, Orso et al. [50] pre-
sented the GAMMA system 2002, as an approach to support monitoring software’s
behavior during its lifetime.

Monitoring is not only focused on the software. According to Pietrantuono et
al. [51], monitoring of the software product in operation can be used for collecting
usage data. The data is afterward analyzed and reused for selecting the most rep-
resentative test cases, based on usage profiles, which are used in their approach to
“continuous software reliability testing”.

Moreover, monitoring has also been part of alarm systems used for triggering
warning signals in case of unusual rises in systems’ metrics. Xu et al. [66] pro-
posed a Process-Oriented Dependability (POD)-Monitor for reducing a number of
false alarms focusing on sporadic and infrequent operations. Their approach uti-
lizes process-context information and the Support Vector Machines (SVM) algo-
rithm for learning when to suppress alarms and reduce the overload on operators.

Alerts is another term used for denoting the same or similar events as alarms
and according to Zhao et al. [71], they represent a key source of anomalous events
in operations. Zhao et al. [71] reported an approach for handling alert storms

2 Background and Related work 27

consisting of alert storm detection using Extreme Value Theory (EVT), alert fil-
tering using ML Isolation Forest method, alert clustering using Similarity Matrix
Construction, and representative alert selection. Furthermore, Zhao et al. [72]
published another study on enhancing the quality of services by utilizing the mon-
itoring data. Similarly, they analyzed alerts but with aim of identifying the severity
level. They proposed a framework AlertRank for extracting severe alerts based on
textual and temporal alert features as well as features extracted from monitoring
metrics. Since there are two different terms in the literature, in the rest of the paper
we use alerts to denote signals of unexpected systems’ behaviors in operations.

Monitoring in operations can be utilized even without alert rules, thus con-
sidering raw operations data. Cito et al. [11] identified three main categories
of operations data: system metrics, application metrics, and application system
metrics [11]. Recently, researchers and practitioners have devoted significant ef-
fort to the analysis of aforementioned operations data considering, among oth-
ers, machine learning techniques and to the development of various applications.
Anomaly detection is one of the available applications for early detection of a sys-
tem’s abnormal behavior. It has been used for detecting deviations in software
releases based on the data generated by a DevOps toolchain [5]. Further, Du et
al. [15] presented DeepLog, a model based on deep learning for natural language
processing, which is used for learning patterns in logs and detecting anomalies
in log data. More thorough research on anomaly detection has been undertaken
by He et al. [25] where they provide an overview of supervised and unsupervised
machine learning techniques used for log analysis. In addition, logs have been
studied for several other applications. Clustering log sequences into groups, iden-
tifying causal dependencies, and creating failure rules are the main steps in the
root cause analysis and failure prediction approach proposed by Fu et. al. [20].

More attempts at problem identification by log analysis can be found in papers
by He et al. [24] and Lin et al. [40] where KPI (Key Performance Indicators) are
used in a combination with logs. In both papers, the authors deal with clustering-
based techniques, but their solutions differ in the second phase of the proposed
approaches. In the solution by He et al. [24], the second phase consists of corre-
lation analysis of identified clusters with system KPIs, while the second phase by
Lin et al. [40] includes extracting most representative logs from clusters and com-
parison of clusters created in test and production environment for simpler problem
identification. Furthermore, feedback from operations has been used for decision
making and improving feature planning [11] as well as for feedback-driven devel-
opment where monitoring data has been used for improving developer’s tools [10].

In summary, operations data has been studied and analyzed for different pur-
poses but still, there is more to be explored in DevOps contexts, to improve the
feedback from operations to development. State of the art solutions [5, 28, 71]
address relevant challenges in managing operations data. However, situations of
alert flooding in DevOps environments are not extensively explored. Thus, we aim
to contribute to the design of solutions that better manage alerts in DevOps.

28 CLOSING THE FEEDBACK LOOP IN DEVOPS

3 Research Approach

Our study, as shown in Figure 1, is a problem-driven design science approach [56].
Thus our starting point was to gain deeper insights into the specific challenges of
our case company. As a first step, we explored how the general problem, of in-
corporating feedback from operations in the development, manifests as a problem
instance in the industrial context under study. For that purpose, we conducted six
interviews and performed observations in the case company to identify and articu-
late the main problem instances on which to focus further improvements.

P
ro

b
le

m

co
n

ce
p

tu
al

iz
at

io
n

P
ra

ct
ic

e
T

h
eo

ry

Designing a solution
construct

Smart Filter

Identifying problem
instances

- Conducting interviews
- Performing
observations

Problem domain Solution domain

Solution design

Empirical validation

In
stan

tiatio
n

Solution instance
Implementation of the

prototype solution

Problem construct
Alert flooding as a
challenge in the
feedback loop

Technological
rule(s)

Figure 1: Overview of the design science approach

To obtain a comprehensive overview of the issues, we selected interviewees in
senior positions with different responsibilities within the team including a product
owner, a test manager, a test developer, a system architect, and two developers.
During the interviews, we asked general as well as more specific questions related
to the DevOps cycle. The interviews were semi-structured since we wanted to

3 Research Approach 29

flexibly explore the interviewee’s opinions and let them speak about their main
issues. Focus areas and examples of questions used in the interviews are shown
in Table 1. All collected qualitative data, notes and video records, was analyzed
using the NVivo tool. Furthermore, we observed their processes in operations and
the way they were handling operations data. This enabled uncovering insights and
defining problem instances.

In the problem conceptualization step, we described three identified problem
instances (Section 5) through the lens of envisioned matching solutions, i.e. we
formulated three high level technological rules. However, in this paper, we refined
only one of them in the conceptual solution design. Hence, we improve the feed-
back loop from operations to development by introducing a new element, a smart
filter, for optimization of alert to noise ratio. In the design process, we considered
the insights gained through interviews, results of the intensive discussions with the
development team, and state of the art solutions for alert management [71, 72].

Table 1: Topic areas and examples of questions used in the semi-structured inter-
views

Focus area Examples of questions

CI/CD pipeline
- Could you describe the CI/CD pipeline?
- What are the shortcomings and how can they be
addressed?

Continuous monitoring
- Which parts of the system are monitored?
- Which signals are the most critical and good
candidates for monitoring?

Alerts
- How does the current alert system look like?
- In which periods you experience the highest
number of alerts?

Accessibility of
operations data

- Which types of operations data are available
for analysis?
- Which types of operations data are used for
setting the alert rules?

Potential improvements
- How/what would you improve in your current
monitoring system?

Moreover, alongside the proposed solution design, we implemented a proto-
type instance to get a better understanding of the opportunities of the available op-
erations data, its type and characteristics as well as the constraints of the context.
In the implementation of the prototype solution, we used unsupervised anomaly
detection throughout the labeling process of unlabeled operations data while also
considering the service vulnerability and observed metrics frequency. Further, for
generating new advanced alert rules, a supervised tree-based machine learning
technique was used. Regarding the empirical validation, there were time and en-

30 CLOSING THE FEEDBACK LOOP IN DEVOPS

vironment constraints that hindered a full evaluation of the implemented solution.
However, we were able to perform a partial evaluation using limited data set for
implementation of the multivariate anomaly detection in a prototype environment.
In this way, we were able to compare the results obtained by using the smart filter
in the feedback loop with the results of using the pure unsupervised ML technique
for predicting alerts based on multivariate unlabeled data set.

4 Case Description

The system under study is a backend system of an application for ticketing and
payments used in public transportation. It is a cloud-based system developed and
operated in a DevOps environment, using Microsoft tools and services. The system
architecture is leaning towards a microservice architecture which consists of 20
services that are highly maintainable, testable, and independently deployable.

Throughout the entire CI/CD cycle, shown in Figure 2, new features or up-
dates of each service are tested on: 1) unit level, every time the build process of
the system under test with its dependencies is triggered; 2) API and UI level, every
time the master branch is updated as well as every night on the latest build version
from the master branch. Moreover, the candidate version for the release is used as
a reference version by other teams in the company for a week, which is called the
“hardening process”. If necessary, the latest version is tested in the acceptance-test
environment which serves as a production-like environment. The release cycle is
weekly and ends by deploying to three production environments. Hence, the exis-
tence of several independent environments enables smooth development, testing,
and deployment activities but also multiplies the complexity of the entire system.

The health status of each service is monitored using the Microsoft data plat-
form, Azure Monitor. Azure Monitor collects the data from several sources such
as applications or Azure resources into a common platform to be used for analysis,
alerting, and visualization. Within this data platform, two types of data are avail-
able, metrics and logs. Metrics are numerical values denoting specific system’s
observations captured within a defined timestamp. Logs are represented by both,
numerical and textual values and they describe specific events that happened at
a particular moment in time. Both metrics and logs can be used for setting alert
rules that signalize that something unexpected is detected in the observations of the
targeted resources. The case company has implemented simple rules for detecting
failed requests with error 500 and unexpected raises of dependency calls and failed
Http requests, as shown in Table 2. When these rules are satisfied, then alerts are
triggered and alert notifications are sent either to a dedicated Slack channel or via
email.

Operations data shown in Table 2, represent only a small portion of all avail-
able data in Azure Monitor but in this paper, we focus on the selected logs and
metrics. Among all accessible observations of different system components, we

4 Case Description 31

Development

Source
Code

Management
(MS Azure)

Trigger
build

Continuous
Testing

Production
Environment

2

Unit testing

API testing

UI testing

Bugs free

Merge to
Master
Branch

Bugs free

Code
Review

Acceptance
testing (only
for specific

features)

Improve code based on PR comments

Bugs

Hardening
process

API testing

UI testing

Unit testing

Production
Environment

1

Production
Environment

3

Unit testing

PR approved

Bugs

Figure 2: CI/CD pipeline

chose metrics and logs related to the data types used for setting current alert rules
and the ones used in debugging in case of detected anomalies. Alert rules, shown
in Table 2, are configured for all 20 services, and notifications about raised alerts
are sent on two different platforms. Alerts that detect internal server error 500 are
sent to the Slack channel, while unusual rises in the rate of dependency failures
and failed requests are sent via email.

The development team has already reported various challenges in managing
and responding to fired alerts with this configuration. Moreover, their every day
development tasks are filled with the uncertainty that every alert brings into their
development environment due to overload of non relevant alerts. Consequently,
this might cause a bottleneck in the information flow from operations to develop-
ment. The flaws, identified within the monitoring and alert system, are elaborated
in the next section.

32 CLOSING THE FEEDBACK LOOP IN DEVOPS

Table 2: Types of operations data mapped with configured alerts

Operations data Configured alerts

Logs
Exceptions /

Traces /
Requests /

Application metrics

Dependency Failures
An unusual rise in the rate

of dependency failures
Exceptions /

Failed Requests /
Server Exceptions /

System Metrics

CPU Time /

Errors Http 4xx
An unusual rise in the rate of

failed HTTP requests

Server Errors 5xx
Whenever there is
a server error 500

Response Time /
Requests /

5 Problem Conceptualization
In this section, we present three main problem instances, identified in the problem
conceptualization step, with respect to the general goal of better incorporating
feedback from operations into development. Based on observations made in the
case company, alert flooding is identified as the main cause of all three problems.
Alert flooding is a phenomenon that appears in a case of a high number of alerts
that are not properly managed. In this paper, we focus on the specific aspects of
this phenomenon namely, targeting, optimization, and interoperability problems.

5.1 Alert flooding as targeting problem
The first problem is defined as a targeting problem. This means that the distribution
of alerts to target recipients, between the teams and individual assignment of a
single or group of alerts within the team, is not fully transparent. Moreover, a
lot of time is spent on discussions on how to resolve alerts and who is going to
take the responsibility. Currently, there are three teams that can be assigned when
an alert is fired. Each team consists of four or five members, mainly developers,
and every team is responsible for one of the domains which consist of multiple
services. Alert notifications are sent to a dedicated Slack channel, but no one is
tagged or directly assigned to the raised alerts. Individual responsibilities within
the team are not clear and team members usually discuss specific alerts in the same
Slack channel. Sometimes they tag each other and ask if that person has already
looked into raised alerts. As acknowledgment, they usually write that they will

5 Problem Conceptualization 33

look at it right away or later. If they agree that an action should be taken, a ticket
is created and added to a backlog of the board in Azure DevOps. Hence, two
different platforms for communicating alerts are used but the information is not
synchronized.

While observing the team and their current practices, we noticed that some
team members showed more interest than others in resolving alerts and that some
look into alerts that are related only to services they are developing or they are
familiar with. Consequently, there is an increasing number of alert notifications
because no one takes full responsibility for looking into alerts that frequently ap-
pear every day. After talking to some team members, it was clear that they would
like to see some structured way of alert management and assignment but they also
pointed out that acting on every alert would take too much time since their main fo-
cus is development. Because of that, designing a solution for the targeting problem
becomes even more challenging.

5.2 Alert flooding as optimization problem

The second problem instance represents an optimization problem, which addresses
optimization of a signal to noise ratio. In this case, the signal consists of high pri-
ority alerts while the noise represents low priority alerts, which frequently appear
every day. Hence, the main question is how to differentiate between alerts that
cause failures and alerts that cause temporary glitches that don’t affect the sys-
tem’s performance.

While observing the current practices in alert management, we noticed that all
alert notifications come to the Slack channel with the same priority. Over time,
developers learned which alerts are reoccurring occasionally, and they consider
them as “normal alerts”. Normal alerts are mostly caused by glitches in an external
or internal service or represent a consequence of a failure related to the central
service. The central service represents the heart of the system and all alerts related
to this service have the highest priority. This priority is not specified as a part of
an alert notification, but is something that developers know since they developed
the system and they know how vulnerable each of the services is. “Normal alerts”
are not normal since they signalize that something might be wrong in the specific
service, but they are normal as they occur frequently, and the team got used to
them. They also produce noise in the channel used for communicating alerts and
because of that some critical things may pass unnoticed. The team raised concerns
about this and agreed that addressing and solving this particular problem might
help in faster and better response to other more important alerts. One more reason
to do so is because they currently do not act upon normal alerts unless there is a
high number of occurrences.

The majority of current alert rules aim at discovering internal server errors
with error code 500 while a significantly higher number of logs still remain unex-
plored, Table 2. Hence, there is a need for adding more alert rules. However, the

34 CLOSING THE FEEDBACK LOOP IN DEVOPS

team decided to stick with the existing alert rules since the current ones are not
successfully managed. Recently, the team reported that they missed over 20 000
failed Http requests with error code 400. They did not notice this anomaly because
they were overwhelmed with other alert notifications but also due to the fact that
they do not usually analyze logs or fix issues before they cause severe problems.
Hence, designing new or redesigning existing alert rules to optimize the signal to
noise ratio, is another challenge that they are facing while at the same time it is
important that the number of non-relevant alerts is not increased and that the most
critical alerts are prioritized.

5.3 Interoperability flaws between developed system and
external systems

Many large-scale software systems depend on external services developed by third
parties. In this way, the original system can offer more features to their end cus-
tomers. This seems to be a huge benefit but may also increase the vulnerability
of the entire system since even the smallest glitches in an external service might
cause serious deviations in the original system. Similar issues are experienced
in the case company as their backend system also depends on external payment
providers, Azure databases, and other software projects developed in their com-
pany. There is a special Slack channel where RSS (Really Simple Syndication)
feeds and emails from external services are forwarded. However, many problems
are still discovered through customer service and user complaints. So, they get
notified when something has already failed and is visible to end-users instead of
in advance. Moreover, the uncertainty of potential disruptions makes developers
even more confused. It is their responsibility to decide if a raised issue is some-
thing temporary or it really represents an issue they should look into and report.
They usually make a decision based on the alert frequency and side effect ap-
pearance. There are no statistics that can prove developers’ claims, but a huge
number of alerts are caused due to interoperability flaws with external services.
The existence of failed Http responses with unknown and unexpected error codes
complicates root cause analysis even more. It is important to address this problem,
otherwise the system stability will be degraded.

6 Solution Design

As stated in Section 3, we provide a conceptual design for the second problem in-
stance, alert flooding as an optimization problem. This problem causes the highest
information overflow in the feedback loop. By addressing this specific instance,
the scope of the first and the third problem instances will be reduced, and indi-
vidual solutions simplified. The first and the third problem instances will not be
individually treated in this paper but will be considered in our future work.

6 Solution Design 35

Hence, we propose one solution design and focus on the following challenges
related to the second problem instance: 1) reduce the number of noisy alerts with-
out missing the critical ones; 2) increase the number of alert rules without causing
an overload of alert notifications; 3) improve developer’s responses to the fired
alerts while minimizing interference with their development related tasks. Ac-
cordingly, we present the overview of the proposed solution for the second prob-
lem instance in Figure 3.

Target Resource Type

Application
Insights

Signal Type

Log Search

Microservices

Stored
Operations

Data

Metrics
Azure

MonitorApp Services

Updated
every
30 days

Alert
notifications in
Slack channel

Offline
learning

whenever
new data is
available

Smart Filter

1. Learning
thresholds for single
features
2. Generating labels
3. Learning logical
and interpretable
alert rules

Decision rules for
alert notifications

Figure 3: Overview of the proposed solution for the second problem instance

The upper part of Figure 3, illustrates the previously explained architecture of
the software system, consisting of 20 micro services and Azure Monitor, that mon-
itors real-time application performance (Application Insights) and performance of
Http-based services for hosting applications (App Services). The lower part of
Figure 3, visualizes the enhanced alert system with a new addition, representing
the bridge between MS Azure Monitor and Slack, the platform where alert no-
tifications are sent. The new box, the smart filter, serves as a middle-ware and
provides additional features to the existing alert management.

The main task of the introduced box is to generate alert rules for sending alert
notifications to the messaging platform. Hence, we temporally disregard current
alert notifications and instead focus directly on the most important data, specif-
ically metrics shown in Table 3, holding information about the system’s perfor-
mance. The reason for such an approach is that the current alert rules only catch
a limited number of system glitches and failures while at the same time not being
able to differentiate noisy alerts from important ones. The smart filter will analyze
more data and learn over time to identify new dependencies that may generate
new and better decision rules. In this way, we will reduce the risk of omitting

36 CLOSING THE FEEDBACK LOOP IN DEVOPS

Table 3: Overview of the selected data, service vulnerabilities and desired decision
rules

Selected application
and system metrics

- CPU Time
- Number of failed requests
- Number of exceptions
- Number of dependency failures
- Http 4xx errors
- Internal server errors
- Total number of requests
- Response time

Services with known
vulnerabilities

- Service B –>buying tickets on vending machines
- Service G –>service for validating selected locations
- Service M –>main service for ticketing
- Service P –>bridge to an external payment service

Example of
a decision rule

IF num_of_failed_requests_SG >threshold_1
AND response_time_SB >threshold_2
AND num_of_Http500_SB >threshold_3
THEN send_notification

important alert notifications while keeping the the Slack channel clean from noisy
information. Therefore, in our proposed solution design, new decision rules are
learnt based on the features representing the systems’ and applications’ perfor-
mance metrics of the mostly affected services. The output of the smart filter is
binary, meaning that new decision rules are able to determine when to send and
when not to send alert notifications. As shown in Figure 3, the smart filter involves
preprocessing and labeling of the data required for the learning process. The exact
procedure is presented in Section 7.

All things considered, the proposed approach of generating new decision rules
aims at filtering the incoming performance data and sending only relevant alert
notifications to the Slack channel. Newly learnt alert rules should not increase the
number of alert notifications in the Slack channel since the learning process also
involves learning about the noisy data.

Therefore, the proposed solution design addresses the aforementioned chal-
lenge regarding the insufficient alert rules. The purpose of the enhanced alert
management is to provide more insights into correlations between alerts and op-
erations data and at the same time enable forwarding more details about potential
failures within the alert notifications. In this way, the development team could have
all information needed to discover the root causes of potential failures. Moreover,
it is expected that developer’s awareness of raised alerts will increase and that they
will need less time for resolving critical systems behaviors. Therefore, the pro-
posed solution design intends to resolve the previously listed challenges related to

7 Prototype Implementation and Empirical Validation 37

the second problem instance.

7 Prototype Implementation and Empirical Val-
idation

In this section, we present technical details of the prototype implementation1 as
well as the effects of the implemented solution prototype in the identified prob-
lem context. Prototype implementation includes data selection, tools and methods
selection, threshold detection for each of the features, labeling process, training
process and testing. While working on the implementation of a solution prototype,
we have decided to stick with basic machine learning techniques since we primar-
ily wanted to examine the limitations of the suggested design. Hence, using deep
learning or reinforcement learning for identified problem instances is beyond the
scope of this paper.

Data selection. For the prototype implementation, we have chosen to only
work with numerical values representing the various systems’ and applications’
performance metrics, to keep the simplicity. Logs are not included in the pre-
liminary data selection due to their complex structure and due to the fact that the
observed logs including traces, types of exceptions, or failed requests could only
help with the explainability of potential failures. The metrics and services selected
to be part of the training data (see Table 3) are chosen based on the observations
made in the messaging and monitoring platform focusing on metrics frequency and
service vulnerability. Therefore, we selected 8 metrics for each of the 11 services,
which makes in total 88 features. Every feature vector has 8623 samples collected
during a period of one month with a time granularity of 5 minutes, which was
selected based on the current practice within the project.

Tools and method selection. The presented solution design involves learn-
ing new decision rules in the form of logical expressions “IF conditions THEN
response" and for such an approach the first choice of ML methods are tree based
methods, such as bagging and random forest. Therefore, for implementation, we
use Skope-rules [21], a Python machine learning module for extracting rules from
the tree ensemble as suggested by Friedman and Popescu [19]. The classification
is binary, thus, if an instance representing the combination of multiple features
satisfies conditions of the rule, then it is assigned to one of two output classes,
“send_notification” or “dont_send_notificat-
ion”. Using this Python module requires labeled data for the learning process,
thus making this approach even more challenging since the monitoring data plat-
form collects only raw data and the knowledge about the expected outcomes is
unknown.

Identifying thresholds. Therefore, we decided to generate labels based on the
known service vulnerabilities and desired level of contamination. The first step

1https://github.com/adha7/smart-alert-filter, available upon request

38 CLOSING THE FEEDBACK LOOP IN DEVOPS

of the labeling process is to identify thresholds for single features using machine
learning for anomaly detection (see Figure 3, step 1). For that purpose, we used a
Python toolkit PyOD [74] consisting of 30 different detection algorithms. Hence,
the thresholds are predicted for each of the 88 features where the outliers are ex-
pected to be extremely high values. By applying one of the algorithms from the
PyOD module on a feature vector, we get anomaly scores for each of the values
within a feature vector. Larger anomaly scores are assigned to outliers and the
threshold is simply determined by picking a value from a sorted feature vector
with a large enough score. The score value on the borderline between inliners
and outliers is chosen so that the level of contamination of the entire training data
equals 0.05. The contamination is determined by the number of outlying objects
in the data set, in our case alert notifications that need to be sent to the messaging
platform. Selected level of contamination corresponds to the 13 alert notifications
per day and represents three times less of the current number of alert notifications.
Since there is no optimal number of alert notifications per day we consider this
decrease significant and at the same time large enough to not miss the important
system failures.

Labeling process. After determining the thresholds for each of the features,
the warnings are raised in the cases where the features reach values above these
border values. Based on these warnings, we generate labels (see Figure 3, step 2)
considering a fixed number of raised warnings in a time slot of 5 minutes as well
as capturing for which services warnings are raised, targeting services shown in
Table 3. Accordingly, the output class is labeled as 1, if there are more than 8 raised
warnings in the same time slot, which means that there are at least two services
affected considering that 8 warnings can be related to one service. Further, the
output is also denoted as anomalous or 1, if there are warnings raised for the most
vulnerable services, as shown in Table 3, no matter the number of raised warnings.
When the labeling process is completed, learning logical and interpretable alert
rules can be activated (see Figure 3, step 3).

Training process. Through the training process, Skope-rules generated 120
rules for the class “dont_send_notification” and 43 rules for the class “send_no-
tification”. The rules are generated by fitting single estimators, decision trees,
with predefined precision and recall as input parameters. The precision and recall
reached during the training phase are between 0.92 and 0.99 for the output class
“dont_send_notification”. The precision score for the output class “send_notifica-
tion” is evenly high as for the opposite class but the recall was significantly lower
due to very low contamination, the number of outliers, in the training data set.
A low recall score makes the algorithm “picky” when selecting outlying samples
which might be good for filtering the noise but on the other hand, it might miss
single and isolated outliers.

Testing. On this account, we analyze how the implemented prototype scales
the number of predicted alert notifications per day to the actual number of raised
alerts. We use test data collected within the 7 days (March 3, 20:35 – March 10,

7 Prototype Implementation and Empirical Validation 39

19:40) for predicting outlying objects, alerts, and present the results in Figure 4.

(a) Smart filter

(b) Multivariate anomaly detection

Figure 4: Number of alerts per day in the test data. RED color: alerts raised
with current alert rules; GREEN color: alerts raised with a) the smart filter and b)
multivariate anomaly detection

We conclude that the smart filter produces half the number of alerts in a period
of 7 days, 108 compared to 211. Regarding the distribution of alert notifications
per day, the number of predicted alerts during the weekend (March 6 and 7) is very
low which is expected due to lower stress on the ticketing and payments system.
During the workdays, the number of predicted alerts is less than actual except when
there are issues in the system that the current alert system is not able to capture.

40 CLOSING THE FEEDBACK LOOP IN DEVOPS

This was the case on March 5, when there was a problem with buying tickets on
the vending machines. The smart filter raised an alert 30 minutes earlier than it
was reported by customers, which means that this specific failure could have been
caught before it was noticed by users.

The implemented prototype reduces the overall overload on the development
team but also gives space for further improvement by introducing prioritization of
alerts and sending the alerts on different Slack channels based on their priority for
even better and clearer differentiation.

Empirical validation. In addition to the smart filter implementation, we also
implemented multivariate anomaly detection (MAD) to validate our prototype by
comparing it with the pure unsupervised ML technique for detecting outliers, rep-
resenting alerts, in multivariate unlabeled data set. We used the same Python
toolkit PyOD [74] for the MAD implementation and selected the COPOD model,
copula-based outlier detection introduced by Li at al. [38]. The COPOD model was
trained using the same training data but without labels. The predictions, shown in
Figure 4 (b), using the same test data set, revealed that the MAD trained model
does not scale very well the number of predicted alerts. It predicts almost the
same number of alerts as the actual alert system, making the same level of noise.
Both models, trained using the smart filter and MAD respectively, reach the F1-
score, a harmonic mean of precision and recall denoting a model’s accuracy, above
0.9. However, the pure unsupervised ML might not be able to capture the imbal-
ance between the target classes and the importance of specific services and their
metrics. To clarify this, we look at the alert distribution over the metrics of highly
affected services shown in Figure 5 (a) and (b). We noticed that the smart filter
produces less noise around the actual failures, such as the one marked with the
black arrow from March 5. This means that the actual failure can be more easily
identified among the alerts that appear close to the selected alert on the graph. The
predicted alerts using multivariate anomaly detection are grouped and based on the
graph, they produce several alert floods which is the opposite to what we want to
achieve. On the other hand, the smart filter predicts isolated alerts in case of short
system’s glitches and smaller groups of alerts when there is a larger issue rolling
out.

There are still some individual events that passed unnoticed but since this is
only a prototype version, imperfections and shortcomings are expected. Further-
more, we used a limited data set collected within one month, which could have
also affected the training process and learning when to send alert notifications due
to a low number of outlying objects. We aim to address this in our future work by
considering the larger data set.

8 Discussion and Conclusion
The synergy between development and operations in DevOps is important for de-
veloping and releasing high-quality software systems, but even more for gaining

8 Discussion and Conclusion 41

(a)

(b)

Figure 5: Distribution of raised alerts in the test data using a) the smart filter and b)
multivariate anomaly detection. BLUE color: selected performance metric; RED
color: raised alerts

42 CLOSING THE FEEDBACK LOOP IN DEVOPS

insights into the system’s behavior in the production environment. In order to en-
sure the latter, raw operations data, collected through runtime monitoring tools, is
analyzed to discover valuable feedback information. Our results have shown that
monitoring and utilizing data available in the production may help developer teams
to more easily identify, understand and communicate issues in the operations. Fur-
ther, it helps present the valuable information in an actionable manner and reduces
the pressure and overload.

The results obtained, following design science principles, directly relate to
three main contributions mentioned in the introduction section, problem concep-
tualization (C1), solution design (C2), and prototype implementation (C3). We
started with the problem conceptualization since the first step in solving a par-
ticular problem is understanding its causes and effects. Before our attempt to
identify the main challenges on the borderline between development and oper-
ations, the everyday routine work at the case company obscured shortcomings
in the information flow between operations and development. During the initial
stage of interviews and observations, we managed to identify targeting, optimiza-
tion and interoperability problem instances related to alert flooding. The problem
conceptualization (C1) helped both the development team in acknowledging ex-
isting issues and the research team, in creating a solution design, which is our
second contribution. After presenting our findings, the development team seemed
relieved since they finally understood what was hindering them from making full
use of operational data and how data overload in operations could be prevented.

The solution design (C2), as previously mentioned, addresses the problem of
alert flooding with the emphasis on reducing the number of noisy alerts. The
presented conceptual model includes a new element in the feedback loop, respon-
sible for learning new advanced alert rules capable of reducing the total number of
alerts and increasing their relevance. The smart filter addresses challenges in the
alert management such as insufficient number of alert rules, noisy alert notifica-
tions, and slow developer’s response on fired alerts. Therefore, this addition in the
feedback loop improves the information flow from operations to development by
introducing alert rules which combine various systems’ and applications’ metrics
and services with the aim of capturing unexpected and faulty system’s behaviors
and providing more detailed insights to the development team.

The third contribution (C3) includes implementation of the solution prototype
and validation in a specific context, i.e. our case, the ticketing and payment sys-
tem operated in the DevOps environment. We successfully implemented a proto-
type version of the smart filter using a hybrid method consisting of unsupervised
anomaly detection and supervised decision tree-based Python toolkit while also
considering the importance of highly vulnerable services in the labeling process.
The prototype was validated using a limited test data set collected through the
monitoring system in the production environment. Accordingly, we demonstrated
that a severe failure could have been caught if the smart filter was integrated in
the feedback loop instead of the current alert system. Furthermore, we compared

8 Discussion and Conclusion 43

the implementation of our prototype with the pure unsupervised ML technique for
multivariate anomaly detection. We showed that the customized hybrid method
better captures the systems’ unbalanced operations data and system-specific char-
acteristics needed for catching both systems’ glitches and severe failures. Hence,
the feedback information obtained as a final result has tightened the connection
between operations and development. There have been several attempts at ad-
dressing similar challenges using state of the art solutions based on deep learn-
ing [15,28,71], while our solution proposal reach promising results while keeping
simplicity of the ML approach.

The smart filter in the feedback loop improves the connection between opera-
tions and development but at the same time raises more challenges that need to be
addressed in the future. Even though it reduces the total number of alerts, it could
still be improved by increasing the level of differentiation between the raised alerts
by introducing several levels of priorities and target recipients. We plan for further
work to address the raised challenges by considering deep learning and other ma-
chine learning techniques as well as implementing the smart filter in the production
environment. Consequently, the smart filter will be fully integrated and automated
in the feedback loop and will require minimum human assistance. In this way, we
would be able to get immediate feedback and insights from developers involved
in the alert management, which is needed for obtaining a complete evaluation of
the smart filter. Moreover, since our study provides prescriptions for problems in
a very specific industrial context, in the future we aim to validate our solution in
other similar contexts.

PAPER II

OPTIMIZATION OF ANOMALY
DETECTION IN A

MICROSERVICE SYSTEM
THROUGH CONTINUOUS

FEEDBACK FROM
DEVELOPMENT

Adha Hrusto, Emelie Engström, Per Runeson

Abstract

Monitoring a microservice system may bring a lot of benefits to development
teams such as early detection of run-time errors and various performance anoma-
lies. In this study, we explore deep learning (DL) solutions for detection of anoma-
lous system’s behavior based on collected monitoring data that consists of applica-
tions’ and systems’ performance metrics. The study is conducted in a collaboration
with a Swedish company responsible for ticket and payment management in pub-
lic transportation. Moreover, we specifically address a shortage of approaches for
evaluating DL models without any ground truth data. Hence, we propose a solution
design for anomaly detection and reporting alerts inspired by state-of-the-art DL
solutions. Furthermore, we propose a plan for its in-context implementation and
evaluation empowered by feedback from the development team. Through con-
tinuous feedback from development, the labeled data is generated and used for
optimization of the DL model. In this way, a microservice system may leverage
DL solutions to address rising challenges within its architecture.

46 OPTIMIZATION OF ANOMALY DETECTION IN A MICROSERVICE SYSTEM

1 Introduction

The complexity and dimensionality of software systems are continuously increas-
ing to meet higher market demands and customer expectations. In order to stay
competitive, software companies have started adopting new and modern system
architectures that enable, among other things, development of scalable and reli-
able applications. The recent and popular architectural style entails microservices
as an approach towards developing applications as a suite of small services. The
main advantage of those services is that they are independently developed, tested,
deployed and maintained [63]. Some microservice systems can be considered as a
kind of a System-of-Systems (SoS) since they share a common origin from mono-
lithic system architectures while several defining features of microservices such as
componentization, decentralized governance, and infrastructure automation, are
foundations of the SoS main properties, including operational independence, geo-
graphical distribution, and evolutionary development [12].

In this paper, we specifically focus on infrastructure automation for building,
deploying, and operating microservices, known as Continuous Integration/Contin-
uous Deployment (CI/CD) pipeline [63]. The overall popularity of microservices
has increased with the availability of various cloud platforms and solutions that
enable flexible and frequent releases. Developing microservices is even more em-
powered in DevOps environments where collaboration, automation, measurement,
and monitoring [44] are the main principles for eliminating the barriers between
development and operations teams. The DevOps concept of continuous monitor-
ing in operations assists in revealing unexpected and unwanted system’s behavior.

We perform the study under the design science paradigm [56], as a continu-
ation of our previous work [26] which conceptualized the problem and proposed
a solution, expressed as technological rules, i.e. grounded recommendations for
practice [56]. More precisely, we dig deeper into vulnerabilities of a microservice
system and how they may be discovered early by raising alerts before they turn
into a problem with severe consequences, which we refer to as alert management.
Monitoring in operations provides direct insights into the status of the running
microservice system while all monitoring data is continuously saved for poten-
tial further analysis. Many software companies rely only on visualization tools
for tracking the current health of their system. However, the visual representation
may not be enough for timely identification of possible anomalies and transferring
the alert notifications to development. In our previous study [26], we addressed
this issue by exploring how utilization of the operations data may tighten the feed-
back from operations to development and help the development teams to identify
and communicate alerts with less pressure and overload. In this study, we fur-
ther advance the design of the proposed solution and its evaluation, to meet the
complexity of the studied system and unavailability of annotated anomalous data.

The services in our microservice system are independently managed, thus their
monitoring component and data storage are also self-contained. However, the en-

1 Introduction 47

tire software system is based on the interaction between the services, which may
not only be dependent on each other but even on another external service, hosted
on a different cloud platform. Accordingly, the health status of the entire system
not only depends on the health of individual services but their relation and coex-
istence in a software system as a whole. To address this complexity, we treat the
data from different services as multivariate time series (MTS) data represented by
an ordered set of multidimensional vectors, recorded at a specific timestamp [8].

There have been several attempts at dealing with multivariate time series data
with the aim of identifying anomalous system’s behavior [28, 36, 46]. However,
only a minority discuss the evaluation of the proposed methods in contexts with-
out known ground truth data. Evaluation of the learning model is a required step
to achieve a reliable AI solution [34]. Thus, we aim to fill this gap and explore
approaches for evaluation of deep learning solutions for anomaly detection in un-
labeled multivariate time series. The novelty of the conducted research is in the
adaptation to the real industrial context. More specifically, we defined guide-
lines for selecting and evaluating DL solutions in the aforementioned context. Ex-
pressed as a technological rule:

To improve alert management in DevOps environments, integrate a smart
filter based on DL for anomaly detection in operations and optimize it utiliz-
ing generated labeled data through feedback from development.

The technological rule above is a refinement of the one identified in our initial
exploratory study [26]. The advanced solution design builds on the problem con-
ceptualization in that study and is instantiated in the same DevOps environment
(see Section 4). In this paper, we investigate the DL methods for anomaly detec-
tion in multivariate time series and how to utilize feedback from development to
simultaneously evaluate and optimize the DL model by iteratively learning when
to raise alerts. The contributions of our paper are threefold:

• C0: A conceptualization of the problem of applying and evaluating deep
learning methods in a challenging industrial context that includes multidi-
mensional time series data with unknown ground truth anomalies.

• C1: A brief overview of unsupervised deep learning methods for anomaly
detection in multivariate time series representing performance metrics of a
microservice system as well as guidelines for selecting minimum feasible
DL methods for anomaly detection in the same or similar contexts.

• C2: A cloud solution plan for deployment of the DL method for anomaly
detection in multivariate time series and its in-context evaluation and opti-
mization through continuous feedback from development.

48 OPTIMIZATION OF ANOMALY DETECTION IN A MICROSERVICE SYSTEM

The rest of the paper is structured as follows. In Section 2 we present back-
ground and related work in the field of monitoring large-scale cloud applications
and anomaly detection. Next, in Section 3 we give an overview of the research
approach while in Section 4 we describe the case company and the system under
study. We present an overview of unsupervised deep learning methods for multi-
variate time series in Section 5 and give guidance on selection minimum feasible
DL methods in Section 6. A detailed plan for integration of the improved solution
proposal into the feedback loop is given in Section 7. Finally, we conclude and
briefly discuss future work in Section 8.

2 Background and Related Work

The general background on monitoring microservice systems may be found in pub-
lications that explicitly treat this type of systems [9, 30] as well as in papers that
rather focus on cloud monitoring while implicitly introducing challenges on mon-
itoring microservice architectures [23, 53], due to their very strong synergy. Ying
et al. [30] claim that monitoring has an important role in a microservice system and
that it can be conducted on several levels: hardware, network, system, application,
and service access level. They propose a monitoring scheme that consists of the
following platforms: 1) Logstash for data collection and filtering; 2) Elasticsearch
for storage analysis; 3) Kibana for visualization. In a broader overview on moni-
toring of microservices, Waseem et al. [65] introduce monitoring practices such as
exception tracking, health check API, and log management instead of monitoring
levels. Moreover, they bring reasons for having a monitoring infrastructure for mi-
croservices, including diagnosing and reporting errors, failures, and performance
issues, which is also the aim of our study.

From a slightly different perspective, focusing on monitoring cloud systems,
Pourmazhangjidi et al. [53] present a similar monitoring framework as Ying et
al. [30] with an additional suggestion that includes a stack of InfluxDB and Grafana,
open-source time series database, and analytics and interactive visualization web
application, respectively. Moreover, one of the challenges they are concerned with
is that the monitoring frameworks provide the health status of individual com-
ponents instead of the overall system [53], which is a concern we are partially
addressing in this study.

Further, there is a need for a unified monitoring framework to replace a stack of
different tools as in the aforementioned examples. Larger companies providing the
cloud services such as Microsoft and IBM [26,28] have already started offering a
unified platform that enables version control, building, deploying, and monitoring
of applications.

Data collected through the monitoring system may take different forms, but
we specifically focus on multivariate time series, mainly denoting various appli-
cations’ and systems’ performance metrics. Mining the time series data aims at

3 Research Approach 49

extracting meaningful knowledge using the tasks such as classification, cluster-
ing, forecasting, and anomaly detection [8]. Anomaly detection is the process
of identifying unusual and unexpected events across time [3]. Hagemann and
Katsarou [23] summarize anomaly detection methods for cloud computing en-
vironments into three categories: machine learning, deep learning, and statistical
approaches. Recent studies [28, 46] show that the researchers were mainly inter-
ested in deep learning methods due to their ability to learn highly complex and
non-linear correlations with no prior assumptions about the data. For instance,
Islam et al. [28] argued that Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) autoencoders have the strongest predictive power. Among
other researchers, there is the same tendency when selecting anomaly detection
methods for multivariate time series [1, 28, 46]. Another method attracting grow-
ing attention is Generative Adversarial Networks (GANs) [2, 36] that belongs to
reconstruction-based methods like the aforementioned autoencoders. Similar to
autoencoders, GANs aim at reconstructing the normal behavior of time series and
detecting anomalies based on how much the reconstructed data points deviate from
the normal behavior. In Section 3, we provide an in-depth review of deep learning
methods for the studied context.

3 Research Approach
As stated in Section 1, we aim to further investigate one of the technological rules
from the previous study [26] that maps the problem of alert flooding with a so-
lution that optimizes alert to noise ratio by adding a smart filter to the feedback
loop from operations to development. Hence, as the starting point of this study,
we revisited the current version of the smart filter by discussing its limitations
with practitioners and surveying relevant literature. In a design science cycle [56],
this step corresponds to the problem conceptualization and it is directly related to
contribution C0 in Section 1. In other words, we reduced our challenging indus-
trial context to a problem of learning from multidimensional time series data with
unknown ground truth anomalies.

Next, we investigate solutions for an upgrade since the current implementation
of the smart filter relied on a supervised anomaly detection method and manually
labeled data, which was insufficient to fully characterize all notions of anomalous-
ness [55]. Hence, we wanted to explore unsupervised deep learning approaches
that are capable of learning the complex dynamics with no prior assumptions about
the anomalous and non-anomalous data distribution. Thus, in this step we design
an upgraded solution of the smart filter inspired by available solutions in the lit-
erature, which is stated in contribution C1 in Section 1. Hence, we approach the
literature with the following research questions:

• RQ1: What unsupervised deep learning methods are mostly used for anomaly
detection in multivariate time series?

50 OPTIMIZATION OF ANOMALY DETECTION IN A MICROSERVICE SYSTEM

• RQ2: What unsupervised deep learning methods for anomaly detection in
MTS may be used in the studied context?

Eighteen techniques were compared through a 3D lens proposed by Choi et al. [8].
The details of this analysis are reported in Section 5 and summarized as generic
guidelines in Section 6.

Further, we plan how to integrate the upgraded deep learning version of the
smart filter in the feedback loop from operations to development and evaluate it,
without having any known anomalies to compare it with. This step was mainly
empowered by the first author’s practical experience and through the support of
the practitioners in the case company. This step is a preparation for actual solu-
tion implementation and evaluation and intend to answer the following research
question related to contribution C2 in Section 1:

• RQ3: What cloud infrastructure is required to implement the proposed solu-
tion design for optimization of anomaly detection in a microservice system?

In Section 7 we present the proposed solution design in its evaluation context.
While completing the mentioned design steps provides us with a solution de-

sign and a plan for its in-context implementation and optimization, the full-scale
execution of the empirical evaluation will be carried out in future work.

4 Problem Context
This study is conducted in a collaboration with a Swedish company, developing
and operating the backend system of an application for ticket and payment man-
agement in public transportation. It is an example of a system that utilized benefits
from both a cloud platform and a microservice architecture. The entire system
is developed using Microsoft tools and cloud solutions, following the aforemen-
tioned DevOps principles. The health status of each of the 20 microservices is
monitored using Microsoft Azure Monitor that collects data, including perfor-
mance metrics and logs from various sources, such as applications and Azure re-
sources. Collected data is mainly used for analysis, visualization, and alerting.
For further analysis of anomaly detection, we consider only metrics – numerical
representations of specific systems’ observations taken within a predefined times-
tamp. Logs are disregarded in this study due to their complexity and due to a
fact that logs’ attributes such as target resources, types of resources, various op-
erations’ IDs could only enable more detailed explainability of potential failures,
rather than detection of anomalous behavior.

As stated in Section 1, it is important to take into account performance metrics
of all monitored microservices and analyze dependencies over a time axis but even
more importantly dependencies on other variables’ observations from other mi-
croservices. Hence, we consider application metrics (dependency failures, excep-
tions, failed requests) and system metrics (errors Http 2xx, errors Http 4xx, errors

5 Review of DL Methods for Anomaly Detection in MTS 51

Http 5xx, number of requests, response time) across 14 and 13 different services,
respectively. We selected those services based on their vulnerability and signifi-
cance identified during the initial study [26]. In total, we get a 120-dimensional
vector consisting of 120 real-valued observations denoting specific performance
metrics, which is an instance of a multivariate times series. The training data set
is composed of samples recorded at a specific time during a period of 6 months.
Moreover, the training data set is contaminated with approximately 1% of unde-
tected anomalies which makes the two classes of anomalous and non-anomalous
data highly imbalanced.

We have already attempted at analyzing smaller data set consisting of the afore-
mentioned performance metrics in order to address reported challenges in manag-
ing alerts, that notify the developer team about strange and unusual system’s be-
havior. However, creating new advanced decision rules [26] that combine metrics
across different services is a prototype solution used for exploring the limits of this
very complex industrial context. Therefore, we aim to explore deep learning meth-
ods, since they can learn highly complex dynamics with no assumptions about the
data distributions and underlying patterns. A detailed analysis of deep learning
methods applicable for the multivariate time series is presented in the following
section.

5 Review of DL Methods for Anomaly Detec-
tion in MTS

We reviewed eighteen recent studies proposing deep learning methods for anomaly
detection in time series. Inspired by a review by Choi et al. [8], we analyze and
present a condensed overview of unsupervised DL methods across three dimen-
sions: 1) inter-correlation between variables, 2) temporal context modeling, and
3) anomaly score criteria. The first dimension covers the various methods that may
be employed for calculating the correlation between multiple variables, such as di-
mensional reduction, 2D matrix, or graphs [32, 37, 69]. Thus, high-dimensional
monitoring data may be represented with fewer feature representations in order to
reduce the problem dimensionality and the number of computing resources needed
for the analysis of the raw data. The second dimension considers the temporal
context of the time series and it is defined by the selection of the neural network
architectures, such as Recurrent Neural Networks (RNN) [33], Long Short Term
Memory (LSTM) [69], Gated Recurrent Unit (GRU) [70], or Convolutional Neu-
ral Networks (CNN) [29]. The third dimension relates to the calculation of the
anomaly score that indicates the levels of anomalousness. The greater the score
is, the more likely it is that the observed time series sequence is abnormal. The
anomaly score can be calculated based on the reconstruction error [28], prediction
error [69] or dissimilarity [29]. The mapping of DL methods for anomaly detec-

52 OPTIMIZATION OF ANOMALY DETECTION IN A MICROSERVICE SYSTEM

tion in multivariate time series across the aforementioned dimensions is shown in
Table 1.

The first column in Table 1 classifies DL methods based on the reconstruction
error along the inter-correlation between variables and different neural networks
for modeling temporal context. The reconstruction-based anomaly detection meth-
ods leverage the encoder-decoder architecture, namely autoencoders (AE), to re-
construct input time series and measure how much the reconstructed time series
deviate from the original samples. An encoder is a fully connected neural network
that encodes a time series sequence into a lower dimension to obtain the most rep-
resentative features. A decoder uses the output from the encoder to reconstruct
the encoded time series into the original dimensions. An autoencoder aims to re-
produce the input time series with noise and anomalies removed, since the hidden
layers learn to generalize the distribution of the normal data [33]. This architecture
has been used as a single solution for addressing anomaly detection problems [27]
as well as in combination with Generative Adversarial Networks (GANs) [22] or
anomaly likelihood functions, as introduced by Ahmad et al. [1].

Autoencoders have been widely used in various setups. Kieu et al. [33] pro-
posed autoencoder ensembles by building a set of RNN autoencoders that may be
trained in an independent framework or in a shared framework, where all autoen-
coders in an ensemble interact through a shared layer. In this example, the anomaly
score is calculated as the median of all reconstruction errors obtained by applying
the Euclidean norm to the original and reconstructed time series. This approach
successfully deals with the problem of overfitting to the original time series [33].
Zhang et al. [68] and Zhao et al. [73] presented similar solutions that include con-
structing 2D feature matrices needed for representing the inter-correlations be-
tween the pairs of time series before applying convolutional encoders and decoders
for reconstructing the input time series. Benefits of combining CNN and LSTM
layers in autoecoders for learning spatial and temporal features have inspired many
researchers [31, 67]. Unlike the aforementioned solutions, Chevrot et al. [7] ex-
plored using several decoders, one per mini batch. The mini batches were created
by separating the original batch of data based on the discrimination feature, which
simplifies the solution but provides better accuracy and timely anomaly detection.

As previously mentioned, the encoder-decoder structure has been used in GANs
solutions, mainly to model a Generator. Hence, the generator also aims at recon-
structing time series data and generating samples that possibly could have been
drawn from the original data set. In addition to the Generator, GANs consist of
another sub-model, a Discriminator. The Discriminator learns to distinguish the
real samples from the original data set and fake samples obtained from the Gen-
erator. The two GAN sub-models are trained together with the objective of mini-
mizing the adversarial loss to match the distribution of the generated time series to
the data distribution of original samples [22]. Geiger et al. [22] applied the GAN
approach on normalized raw data while calculating the anomaly score as a linear
combination of reconstruction errors and outputs from the Discriminator.

5 Review of DL Methods for Anomaly Detection in MTS 53

Ta
bl

e
1:

R
ev

ie
w

of
un

su
pe

rv
is

ed
de

ep
le

ar
ni

ng
m

et
ho

ds
fo

rm
ul

tiv
ar

ia
te

tim
e

se
ri

es
ac

ro
ss

th
re

e
di

m
en

si
on

s:
1)

A
no

m
al

y
cr

ite
ri

a
(r

ec
on

st
ru

ct
io

n
er

ro
r,

pr
ed

ic
tio

n
er

ro
r,

di
ss

im
ila

ri
ty

);
2)

In
te

r-
co

rr
el

at
io

n
(d

im
en

si
on

al
re

du
ct

io
n,

2D
m

at
ri

x,
gr

ap
h)

;3
)

M
od

el
in

g
te

m
po

ra
lc

on
te

xt
(L

ST
M

,G
R

U
,C

N
N

,R
N

N
)

A
N

O
M

A
LY

C
R

IT
E

R
IA

R
ec

on
st

ru
ct

io
n

er
ro

r
Pr

ed
ic

tio
n

er
ro

r
D

is
si

m
ila

ri
ty

IN
T

E
R

-C
O

R
R

E
L

A
T

IO
N

L
ST

M
G

R
U

C
N

N
R

N
N

C
N

N
+L

ST
M

L
ST

M
G

R
U

C
N

N
R

N
N

C
N

N

D
im

en
si

on
al

re
du

ct
io

n
[3

7]
,[

7]
[6

9]
[6

9]
[5

9]
[4

2]

2D
m

at
ri

x
[3

2]
[2

9]
[6

8]
,[

73
]

G
ra

ph
[7

0]
[7

0]

O
th

er
[2

2]
,[

27
]

[2
8]

[3
3]

[3
1]

,[
67

]
[1

4]
[4

8]

54 OPTIMIZATION OF ANOMALY DETECTION IN A MICROSERVICE SYSTEM

Differently from the aforementioned approach, Khoshnevisan et al. [32] and
Wenqian et al. [29] used a 2D correlation matrix to capture inter-correlation be-
tween multiple time series and explore the most representative features before
applying the GAN method. Both approaches use the same Generator structure,
encoder-decoder-encoder, to optimize the input reconstruction in original and la-
tent space. The approaches differ in modeling the temporal context and calculating
the anomaly score. Khoshnevisan et al. [32] built the corresponding neural net-
works out of the convolutional-LSTM layer in order to learn spatial and temporal
dependencies while Wenqian et al. [29] relied only on the convolutional layers.
In the testing phase, Wenqian et al. [29] used both the apparent and latent loss,
a L1 distance between the real and generated time series, and Euclidean distance
between latent representations of the original samples and encoded generated sam-
ples, respectively. Differently, Khoshnevisan et al. [32] determined the anomalous
samples based on the reconstruction errors as a measure of differentiation between
the original and reconstructed time series. Although the results of the GAN ap-
proaches seem remarkable as in previous and similar examples [37], simultaneous
training of two competing sub-models may lead to a failure mode. Thus, a very
unstable training process may cause a collapsing mode in which the Generator will
always output the same value for any input time series.

The second column in Table 1 lists the DL methods for anomaly detection
based on prediction error. These methods predict the values of the time series
for the next time steps and calculate residuals between the predicted values and
the actual observations. Examples of such methods were reported by Munir et
al. [48] and Ding et al. [14] with a slightly different choice of neural networks,
CNN and LSTM respectively, and different selection of the metrics for calculating
the anomaly score. In addition to the prediction models, Zhao et al [70] and Zhang
et al. [69] consider prediction and reconstruction errors mutually in their model
architectures. Zhang et al. [69] proposed a Convolutional Autoencoding Memory
(CAE-M) built of a convolutional encoder whose feature representations were fed
into the predictive network. Zhao et al [70] used the feature-oriented and time-
oriented graph attention layer to model the relationship between the features and
time steps, respectively, before simultaneous optimization of the reconstruction
and predictive model. By combining reconstruction and predictive models, the
aforementioned solutions bypass the shortcomings of the individual models [70].

Dissimilarity-based methods have been less appealing to the researchers, thus,
the third column in Table 1 contains fewer DL methods in comparison to the
other columns. However, the examples of dissimilarity-based methods have shown
promising results in tackling anomaly detection in multivariate time series [42,59].
The core idea behind these methods is to measure the distance between the value
obtained by the DL model and the distribution or cluster of the original data set [8].
In particular, Liu et al. [42] proposed an architecture that consists of a feature ex-
tractor and anomaly detector. The feature extractor is a stack of CNN layers used
for extracting a low-dimensional feature vector while the anomaly detector uses

6 Guidance for a Minimum Feasible DL Method 55

Mahalanobis distance to calculate how far the current observation exists from the
distribution of normal and abnormal data. Similarly, Shen et al. [59] used feature
extractor in their temporal hierarchical one-class (THOC) model but differently,
cosine similarity to measure the distance between the features and the cluster ob-
tained by deep support vector data description.

As previously mentioned, this is a brief overview of the DL methods for anomaly
detection in multivariate time series. It encompasses state-of-the-art DL methods
that one may consider when tackling anomaly detection problems. In Section 6 we
discuss the selection of the minimum feasible DL method in terms of simplicity
and applicability for our and similar problem contexts, while mainly reflecting on
the methods and classification presented in this section.

6 Guidance for a Minimum Feasible DL Method

Most of the currently available deep learning approaches for anomaly detection in
multivariate time series are context-specific and their implementation may seem
overwhelming for researchers or practitioners that are novices in the field. More-
over, there is no single solution that fits all use cases. Thus, in this section, we
aim to give basic guidelines for the selection of a minimum feasible deep learning
method for anomaly detection, specifically applicable for multivariate time series.
This means that the suggested method may be used as the starting point when ex-
ploring the specific context and limitations of the available data set. Further, the
method may be adjusted or optimized to be used for larger and more complex data
sets.

Type of anomaly. The anomaly in time series data may be represented by one
or more data points that significantly deviate from previous time steps. We con-
sider a point and subsequent anomaly [3], as two types of anomalies relevant for
our problem context. The point anomaly is a data point that significantly deviates
from either its neighboring data points (local anomaly) or other points in the time
series (global anomaly). The subsequent anomaly refers to a set of data points
whose mutual behavior diverges from the rest of the time series [3]. Both types
of anomalies may affect one or more time-dependent variables in time series. To
detect either of these two anomaly types, the DL methods listed in Table 1 may be
applied with an additional modification for detecting subsequent anomalies since
the history of detected anomalies must be maintained. Thus, the methods including
sliding windows may be explored when detecting subsequent anomalies [28, 68].

Dimension of the data set. Dimensionality in time series refers to a num-
ber of attributes measured in each time step. A multivariate time series is an or-
dered set of n-dimensional vectors recorded at a specific time, where n denotes the
number of attributes, which can be equal or greater than two [8]. As presented
in Section 5, various methods for dimensional reduction, including autoencoders
(AE) [69] and convolutional feature extractor [42], may be employed for extracting

56 OPTIMIZATION OF ANOMALY DETECTION IN A MICROSERVICE SYSTEM

features based on the relationship among attributes and reducing the dimensional-
ity of the problem context.

Temporality. A time series is a collection of data points measured and in-
dexed in time order. The observations are recorded at equal time intervals and
each data point is dependent on its prior values. Based on the review in Section 5,
LSTM layers are mostly used for modeling the temporal context since they have
ability of keeping the information about previous states for long periods of time.
This enables learning of the long-term dependencies. Further, CNN layers were
a favoured selection for extracting spatio-temporal dependencies in multivariate
time series with a spatial dimension as in [68, 73], which is usually not the case
with the performance monitoring data.

Selection of the DL method. For the selection of the minimum feasible meth-
ods, we exclude solutions based on GANs since they may require more develop-
ment time and computing resources for their implementation but still do not guar-
antee satisfactory results due to their unstable training process. Thus, we rather
focus on reconstruction- and prediction-based methods to be the first methods to
explore when tackling the anomaly detection problems in time series. Further, we
present three variations of the DL methods that could be explored as the starting
point when addressing anomaly detection tasks.

• Method 1: A pure reconstruction-based method utilizing the encoder-decoder
architecture for obtaining a reconstruction of the input data. For modeling
the temporal context, LSTM layers are preferred while anomaly scores may
be calculated as the Euclidean distance between original and reconstructed
data points. Moreover, one could use fixed window size to capture subse-
quent anomalies while keeping track of the previously detected anomalous
data points as suggested by Hsieh et al. [27].

• Method 2: A combination of reconstruction- and prediction-based meth-
ods as proposed by Zhao et al. [70]. Inter-correlation may be applied in the
case of high dimensionality [32] with previous data normalization. The sug-
gestion is still to stick with the LSTM layers and use the Euclidean norm
to calculate the difference between reconstructed and predicted values, and
actual observations at the corresponding time steps.

• Method 3: A dissimilarity-based method with prior feature extraction using
one of the approaches for discovering inter-correlations between attributes,
such as LSTM autoencoders [8] or CNN feature extractor as in a solution
proposed by Liu et al. [42]. The next step is to determine how far actual
observed values are from the clusters or distribution of anomalous and non-
anomalous samples using any clustering method, such as K-Means [55] or
Gaussian Mixture Models [42].

We suggest exploring the methods in the order they are presented. The three
presented methods will be considered for advancing the smart filter. Since only one

7 Towards Reliable DL Solutions: Evaluation and Maintenance 57

of the methods can be deployed to production, we will start with the first method.
When the labeled data is obtained based on the feedback from the development
team, we aim to explore the feasibility and accuracy of the second and the third
methods with no or minor adjustments. The details of the in-context implemen-
tation and optimization of the proposed solution design for anomaly detection in
multivariate time series are presented in Section 7.

7 Towards Reliable DL Solutions: Evaluation
and Maintenance

As previously mentioned in Section 1, we aim to address a shortage of approaches
for evaluating DL methods in the DevOps context where ground truth data on
anomalous system’s behavior is unknown. Hence, in this section, we present an
example of cloud infrastructure for implementation and optimization of the DL
model, shown in Figure 1. When investigating examples of cloud infrastructure,
we were mainly inspired by Microsoft tools and services since the system under
study is implemented and deployed using the same platform. A detailed explana-
tion of each of the numbered parts in Figure 1 is given below.

Fetch new
data every 2

min
Logic App

Alert notifications in Slack channel

Function App

Feature vector

Stored
operations

6month-data

Training ML
models

Training data
consists of 120
performance

metrics/features

- Load ML model
- Detect alerts
- Trigger alert

notifications

Trigger sending alert notifications

Blob shared
storage

Updating ML models

New models

Latest ML model

Save trained model

Forward feedback from Slack

Runs once a month

- ML models
- Feedback

from
developers

- Fetch one-month
data

- Retrain existing
models and/or train
new models

- Model M1

Developers' feedback

1

3
2

4

6

5

7

SMART FILTER

Function App

Figure 1: Overview of the proposed solution design for optimization of anomaly
detection

1. This part relates to the training process of the selected model within Method
1, introduced in the previous section. Depending on the size of the training
data set and the model complexity, the training process can be performed

58 OPTIMIZATION OF ANOMALY DETECTION IN A MICROSERVICE SYSTEM

either on the local machines or the cloud computing resources, such as Mi-
crosoft Azure ML Studio. The trained model will be saved into shared stor-
age to be ready for deployment.

2. The overall solution is implemented using the Azure Logic Apps, a cloud-
based platform for developing and running automated workflows. With this
service, we aim to automate fetching of monitoring data in near-real-time,
predicting anomalies, sending an alert notification to the Slack channel, and
saving the feedback from the development team to a shared storage.

3. The automated workflow is triggered every two minutes since the fetching
data may take up around one minute. The data is collected through sequen-
tial loops iterating over performance metrics and services, thus the data is
received in the same order every time. The output of this action is a fea-
ture vector consisting of 120 performance metrics forwarded to the Function
App.

4. The logic of the smart filter is implemented within the Function App, a cloud
solution for running even the smallest code snippets in the cloud on-demand.
The implementation includes loading the saved DL models and declaring
the multidimensional feature vector as non-anomalous or anomalous based
on the calculated anomaly score. In case that there is an observation that
significantly deviates from a normal learned pattern, an alert notification
with all needed details will be sent to the development team.

5. Sending notifications to the development team is implemented within an-
other Function App and will be triggered if an anomaly has been discovered
within the previous Function App. For each reported alert, the developer is
required to provide feedback by selecting one of the available options: 1)
alert; 2) alert but no impact 3) warning; 4) not sure. The feedback on the
reported alerts will be continuously collected and saved in a shared storage.

6. This is a shared storage mainly used for storing the trained DL models and
feedback from developers. We utilize benefits of the Azure Blob storage, a
Microsoft’s object storage solution that is optimized for storing unstructured
data in the cloud.

7. This is a separate Logic App specifically used for the maintenance of the DL
models. It uses the labeled data, generated through the feedback process,
and performance one-month data to update the existing DL model since the
Azure Monitoring platform keeps the metrics in the memory for up to one
month.

The core idea of this cloud solution is to utilize feedback from the develop-
ment team to evaluate and update the DL model based on generated labeled data
denoting true positive alerts, true negative alerts, warnings, and unspecified alerts.

8 Conclusion and Future Work 59

The first selected method, Method 1, will be evaluated after one month of usage in
the production environment against the feedback from the development. Further,
collected labeled data will be used for exploring and evaluating other DL methods,
e.g. a Method 2 or Method 3 as suggested in the previous section. The method that
gives the best accuracy will be selected as a new best choice and will be deployed
and periodically updated based on the feedback that is continuously collected and
saved. In every iteration, more and more labeled anomalous data will be collected
and used for optimizing the unsupervised DL model and possibly learning new
supervised models that will be optimized separately or in an ensemble with unsu-
pervised DL models.

8 Conclusion and Future Work
In this paper, we address the importance of a DevOps concept, continuous moni-
toring, in revealing unexpected and unwanted failures in a microservices system.
Thus, we present an overview of the unsupervised deep learning approaches for
anomaly detection in order to identify potential discrepancies in multivariate mon-
itoring data. Furthermore, we provide generic guidelines for the selection of the
three minimum feasible methods for anomaly detection in time series based on
the review in Section 5. Therefore, in Section 5 and Section 6 we answered on
research questions RQ1 and RQ2.

The last RQ3 is addressed in Section 7 where we explore the cloud infrastruc-
ture that could be used for deploying and evaluating the DL model. Moreover,
we investigate how to evaluate and keep the DL model updated by utilizing the
aforementioned cloud infrastructure for the identification of false-negative alerts
and obtaining labeled data. In this way, multivariate data keeping the informa-
tion about the health of microservices can be processed in real-time and declared
as anomalous or non-anomalous while the team of practitioners will be continu-
ously evaluating the reported anomalous events and providing the feedback. The
feedback will be afterward used for continuous maintenance and optimization of
unsupervised or newly created supervised DL models.

The actual implementation and empirical evaluation of the proposed solution
design for optimization of anomaly detection will be carried out in future work.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsu-
pervised real-time anomaly detection for streaming data. Neurocomputing,
262:134–147, November 2017.

[2] Md Abul Bashar and Richi Nayak. TAnoGAN: Time Series Anomaly De-
tection with Generative Adversarial Networks. In 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1778–1785, Canberra,
ACT, Australia, December 2020. IEEE.

[3] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A. Lozano. A
Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing
Surveys, 54(3):1–33, June 2021.

[4] Jeanderson Cândido, Maurício Finavaro Aniche, and Arie van Deursen.
Contemporary software monitoring: A systematic literature review. CoRR,
abs/1912.05878, 2019.

[5] Antonio Capizzi, Salvatore Distefano, Luiz J. P. Araújo, Manuel Mazzara,
Muhammad Ahmad, and Evgeny Bobrov. Anomaly detection in DevOps
Toolchain. In Jean-Michel Bruel, Manuel Mazzara, and Bertrand Meyer,
editors, Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment, pages 37–51. Springer
International Publishing, 2020.

[6] Antonio Capizzi, Salvatore Distefano, and Manuel Mazzara. From DevOps
to DevDataOps: Data management in devops processes. In Jean-Michel
Bruel, Manuel Mazzara, and Bertrand Meyer, editors, Software Engineering
Aspects of Continuous Development and New Paradigms of Software Produc-
tion and Deployment, pages 52–62. Springer International Publishing, 2020.

[7] Antoine Chevrot, Alexandre Vernotte, and Bruno Legeard. DAE : Discrim-
inatory Auto-Encoder for multivariate time-series anomaly detection in air
transportation. arXiv:2109.04247 [cs], September 2021.

64 Bibliography

[8] Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep Learning
for Anomaly Detection in Time-Series Data: Review, Analysis, and Guide-
lines. IEEE Access, 9:120043–120065, 2021.

[9] Marcello Cinque, Raffaele Della Corte, and Antonio Pecchia. Advancing
monitoring in microservices systems. In 2019 IEEE International Sympo-
sium on Software Reliability Engineering Workshops (ISSREW), pages 122–
123, Berlin, Germany, 2019. IEEE.

[10] Jürgen Cito, Philipp Leitner, Harald C. Gall, Aryan Dadashi, Anne Keller,
and Andreas Roth. Runtime metric meets developer: Building better cloud
applications using feedback. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (On-
ward!) - Onward! 2015, pages 14–27, Pittsburgh, PA, USA, 2015. ACM
Press.

[11] Jürgen Cito, Johannes Wettinger, Lucy Ellen Lwakatare, Markus Borg, and
Fei Li. Feedback from Operations to Software Development—A DevOps
Perspective on Runtime Metrics and Logs. In Jean-Michel Bruel, Manuel
Mazzara, and Bertrand Meyer, editors, Software Engineering Aspects of Con-
tinuous Development and New Paradigms of Software Production and De-
ployment, volume 11350, pages 184–195. Springer International Publishing,
Cham, 2019.

[12] Carlos E. Cuesta, Elena Navarro, and Uwe Zdun. Synergies of system-of-
systems and microservices architectures. In Proceedings of the Interna-
tional Colloquium on Software-Intensive Systems-of-Systems at 10th Euro-
pean Conference on Software Architecture - SiSoS@ECSA ’16, pages 1–7,
Copenhagen, Denmark, 2016. ACM Press.

[13] Yingnong Dang, Qingwei Lin, and Peng Huang. AIOps: Real-World
Challenges and Research Innovations. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 4–5, Montreal, QC, Canada, May 2019. IEEE.

[14] Nan Ding, HaoXuan Ma, Huanbo Gao, YanHua Ma, and GuoZhen Tan. Real-
time anomaly detection based on long short-term memory and gaussian mix-
ture model. Computers & Electrical Engineering, 79:106458, 2019.

[15] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1285–1298, Dallas Texas USA, October 2017. ACM.

[16] Tolga Ergen and Suleyman Serdar Kozat. Unsupervised Anomaly Detection
With LSTM Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 31(8):3127–3141, August 2020.

BIBLIOGRAPHY 65

[17] Michael Felderer, Barbara Russo, and Florian Auer. On testing data-intensive
software systems. In Stefan Biffl, Matthias Eckhart, Arndt Lüder, and
Edgar R. Weippl, editors, Security and Quality in Cyber-Physical Systems
Engineering, With Forewords by Robert M. Lee and Tom Gilb, pages 129–
148. Springer, 2019.

[18] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software, 123:176–189, Jan-
uary 2017.

[19] Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule
ensembles. The Annals of Applied Statistics, 2(3):916 – 954, 2008.

[20] Xiaoyu Fu, Rui Ren, Sally A. McKee, Jianfeng Zhan, and Ninghui Sun. Dig-
ging deeper into cluster system logs for failure prediction and root cause
diagnosis. In 2014 IEEE International Conference on Cluster Computing
(CLUSTER), pages 103–112, Madrid, Spain, September 2014. IEEE.

[21] Florian Gardin, Ronan Gautier, Nicolas Goix, Bibi Ndiaye, and Jean-
Matthieu Schertzer. Machine learning with logical rules in Python. https:
//github.com/scikit-learn-contrib/skope-rules, 2020.

[22] Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-
Infante, and Kalyan Veeramachaneni. TadGAN: Time Series Anomaly De-
tection Using Generative Adversarial Networks. In 2020 IEEE International
Conference on Big Data (Big Data), pages 33–43, Atlanta, GA, USA, De-
cember 2020. IEEE.

[23] Tanja Hagemann and Katerina Katsarou. A systematic review on anomaly
detection for cloud computing environments. In 2020 3rd Artificial Intelli-
gence and Cloud Computing Conference, AICCC 2020, page 83–96, New
York, NY, USA, 2020. Association for Computing Machinery.

[24] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu,
and Dongmei Zhang. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2018, pages 60–70, Lake Buena Vista,
FL, USA, 2018. ACM Press.

[25] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. Experience Re-
port: System Log Analysis for Anomaly Detection. In 2016 IEEE 27th In-
ternational Symposium on Software Reliability Engineering (ISSRE), pages
207–218, Ottawa, ON, Canada, October 2016. IEEE.

66 Bibliography

[26] Adha Hrusto, Per Runeson, and Emelie Engström. Closing the Feedback
Loop in DevOps Through Autonomous Monitors in Operations. SN Com-
puter Science, 2(6):447, August 2021.

[27] Ruei-Jie Hsieh, Jerry Chou, and Chih-Hsiang Ho. Unsupervised Online
Anomaly Detection on Multivariate Sensing Time Series Data for Smart
Manufacturing. In 2019 IEEE 12th SOCA Conference, pages 90–97, Kaoh-
siung, Taiwan, November 2019. IEEE.

[28] Mohammad S. Islam, William Pourmajidi, Lei Zhang, John Steinbacher,
Tony Erwin, and Andriy Miranskyy. Anomaly detection in a large-scale
cloud platform. In 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), pages
150–159, Madrid, ES, 2021. IEEE.

[29] Wenqian Jiang, Yang Hong, Beitong Zhou, Xin He, and Cheng Cheng. A
gan-based anomaly detection approach for imbalanced industrial time series.
IEEE Access, 7:143608–143619, 2019.

[30] Ying Jiang, Na Zhang, and Zheng Ren. Research on intelligent monitoring
scheme for microservice application systems. In 2020 International Con-
ference on Intelligent Transportation, Big Data Smart City (ICITBS), pages
791–794, Vientiane, Laos, 2020. IEEE.

[31] Yıldız Karadayı, Mehmet N. Aydin, and A. Selçuk Öğrenci. A Hybrid Deep
Learning Framework for Unsupervised Anomaly Detection in Multivariate
Spatio-Temporal Data. Applied Sciences, 10(15):5191, July 2020.

[32] Farzaneh Khoshnevisan, Zhewen Fan, and Vitor R. Carvalho. Improving
robustness on seasonality-heavy multivariate time series anomaly detection.
CoRR, abs/2007.14254, 2020.

[33] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. Outlier De-
tection for Time Series with Recurrent Autoencoder Ensembles. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, pages 2725–2732, Macao, China, August 2019. International Joint
Conferences on Artificial Intelligence Organization.

[34] Abhishek Kumar, Tristan Braud, Sasu Tarkoma, and Pan Hui. Trustworthy
ai in the age of pervasive computing and big data. In 2020 IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), pages 1–6, Austin, TX, USA, 2020. IEEE.

[35] Eero Laukkanen, Juha Itkonen, and Casper Lassenius. Problems, causes
and solutions when adopting continuous delivery—A systematic literature
review. Information and Software Technology, 82:55–79, February 2017.

BIBLIOGRAPHY 67

[36] Chang-Ki Lee, Yu-Jeong Cheon, and Wook-Yeon Hwang. Studies on the
GAN-Based Anomaly Detection Methods for the Time Series Data. IEEE
Access, 9:73201–73215, 2021.

[37] Dan Li, Dacheng Chen, Lei Shi, Baihong Jin, Jonathan Goh, and See-Kiong
Ng. MAD-GAN: multivariate anomaly detection for time series data with
generative adversarial networks. CoRR, abs/1901.04997, 2019.

[38] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod:
Copula-based outlier detection. In 2020 IEEE International Conference on
Data Mining (ICDM), pages 1118–1123. IEEE, 09 2020.

[39] Derek Lin, Rashmi Raghu, Vivek Ramamurthy, Jin Yu, Regunathan Rad-
hakrishnan, and Joseph Fernandez. Unveiling clusters of events for alert and
incident management in large-scale enterprise it. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining - KDD ’14, pages 1630–1639, New York, New York, USA, 2014.
ACM Press.

[40] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
Log clustering based problem identification for online service systems. In
Proceedings of the 38th International Conference on Software Engineering
Companion - ICSE ’16, pages 102–111, Austin, Texas, 2016. ACM Press.

[41] Ying Lin, Zhengzhang Chen, Cheng Cao, Lu-An Tang, Kai Zhang, Wei
Cheng, and Zhichun Li. Collaborative Alert Ranking for Anomaly Detec-
tion. In Proceedings of the 27th ACM International Conference on Informa-
tion and Knowledge Management, pages 1987–1995, Torino Italy, October
2018. ACM.

[42] Jianwei Liu, Hongwei Zhu, Yongxia Liu, Haobo Wu, Yunsheng Lan, and
Xinyu Zhang. Anomaly detection for time series using temporal convolu-
tional networks and Gaussian mixture model. Journal of Physics: Confer-
ence Series, 1187(4):042111, April 2019.

[43] Matthieu Lucke, Moncef Chioua, Chriss Grimholt, Martin Hollender, and
Nina F. Thornhill. Integration of alarm design in fault detection and di-
agnosis through alarm-range normalization. Control Engineering Practice,
98:104388, May 2020.

[44] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Dimensions of dev-
ops. In Casper Lassenius, Torgeir Dingsøyr, and Maria Paasivaara, editors,
Agile Processes in Software Engineering and Extreme Programming, pages
212–217, Cham, 2015. Springer International Publishing.

68 Bibliography

[45] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. An exploratory
study of devops: Extending the dimensions of devops with practices. In
The Eleventh International Conference on Software Engineering Advances
(ICSEA), Rome, Italy, 08 2016.

[46] Sepehr Maleki, Sasan Maleki, and Nicholas R. Jennings. Unsupervised
anomaly detection with LSTM autoencoders using statistical data-filtering.
Applied Soft Computing, 108:107443, September 2021.

[47] Alok Mishra and Ziadoon Otaiwi. Devops and software quality: A systematic
mapping. Comput. Sci. Rev., 38:100308, 2020.

[48] Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz
Ahmed. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly
Detection in Time Series. IEEE Access, 7:1991–2005, 2019.

[49] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H. Chin, and Sumayah Alrwais.
Detection of early-stage enterprise infection by mining large-scale log data.
In 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 45–56, 2015.

[50] Alessandro Orso, Donglin Liang, Mary Jean Harrold, and Richard Lipton.
Gamma system: Continuous evolution of software after deployment. SIG-
SOFT Softw. Eng. Notes, 27(4):65–69, July 2002.

[51] Roberto Pietrantuono, Antonia Bertolino, Guglielmo De Angelis, Breno Mi-
randa, and Stefano Russo. Towards Continuous Software Reliability Testing
in DevOps. In 2019 IEEE/ACM 14th International Workshop on Automa-
tion of Software Test (AST), pages 21–27, Montreal, QC, Canada, May 2019.
IEEE.

[52] Roberto Pietrantuono, Antonia Bertolino, Guglielmo De Angelis, Breno Mi-
randa, and Stefano Russo. Towards continuous software reliability testing in
devops. In AST, pages 21–27. IEEE/ACM, May 2019.

[53] William Pourmajidi, John Steinbacher, Tony Erwin, and Andriy Miranskyy.
On challenges of cloud monitoring. In Proceedings of the 27th Annual Inter-
national Conference on Computer Science and Software Engineering, CAS-
CON ’17, page 259–265, USA, 2017. IBM Corp.

[54] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna
Teppola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja,
June M. Verner, and Markku Oivo. Continuous deployment of software in-
tensive products and services: A systematic mapping study. Journal of Sys-
tems and Software, 123:263–291, January 2017.

BIBLIOGRAPHY 69

[55] Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Mon-
tavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, and Klaus-
Robert Müller. A Unifying Review of Deep and Shallow Anomaly Detection.
Proceedings of the IEEE, 109(5):756–795, May 2021.

[56] Per Runeson, Emelie Engström, and Margaret-Anne Storey. The design sci-
ence paradigm as a frame for empirical software engineering. In Michael
Felderer and Guilherme Horta Travassos, editors, Contemporary Empirical
Methods in Software Engineering, pages 127–147. Springer, 2020.

[57] Carla Sauvanaud, Mohamed Kaâniche, Karama Kanoun, Kahina Lazri, and
Guthemberg Da Silva Silvestre. Anomaly detection and diagnosis for cloud
services: Practical experiments and lessons learned. Journal of Systems and
Software, 139:84–106, May 2018.

[58] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous In-
tegration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access, 5:3909–3943, 2017.

[59] Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection
using temporal hierarchical one-class network. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 13016–13026. Curran Associates,
Inc., 2020.

[60] Daniel Ståhl, Torvald Mårtensson, and Jan Bosch. Continuous practices and
devops: Beyond the buzz, what does it all mean? In 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 440–448, Vienna, September 2017. IEEE.

[61] Sampo Suonsyrja, Laura Hokkanen, Henri Terho, Kari Systa, and Tommi
Mikkonen. Post-Deployment Data: A Recipe for Satisfying Knowledge
Needs in Software Development? In 2016 Joint Conference of the Interna-
tional Workshop on Software Measurement and the International Conference
on Software Process and Product Measurement (IWSM-MENSURA), pages
139–147, Berlin, Germany, October 2016. IEEE.

[62] Sampo Suonsyrjä, Laura Hokkanen, Henri Terho, Kari Systä, and Tommi
Mikkonen. Post-deployment data: A recipe for satisfying knowledge needs
in software development? In IWSM-MENSURA, pages 139–147. IEEE,
2016.

[63] Stefan Throner, Heiko Hutter, Niklas Sanger, Michael Schneider, Simon
Hanselmann, Patrick Petrovic, and Sebastian Abeck. An Advanced DevOps
Environment for Microservice-based Applications. In 2021 IEEE Interna-
tional Conference on Service-Oriented System Engineering (SOSE), pages
134–143, Oxford, United Kingdom, August 2021. IEEE.

70 Bibliography

[64] Deepika Tiwari, Long Zhang, Martin Monperrus, and Benoit Baudry. Pro-
duction monitoring to improve test suites. IEEE Transactions on Reliability,
pages 1–17, 2021.

[65] Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and
Gastón Márquez. Design, monitoring, and testing of microservices sys-
tems: The practitioners’ perspective. Journal of Systems and Software,
182:111061, 2021.

[66] Xiwei Xu, Liming Zhu, Min Fu, Daniel Sun, An Binh Tran, Paul Rimba,
Srini Dwarakanathan, and Len Bass. Crying wolf and meaning it: Reduc-
ing false alarms in monitoring of sporadic operations through pod-monitor.
2015 IEEE/ACM 1st International Workshop on Complex Faults & Failures
in Large Software Systems (COUFLESS), pages 69 – 75, 2015.

[67] Ang Zhang, Xiaoyong Zhao, and Lei Wang. CNN and LSTM based Encoder-
Decoder for Anomaly Detection in Multivariate Time Series. In 2021 IEEE
5th Information Technology,Networking,Electronic and Automation Control
Conference (ITNEC), pages 571–575, Xi’an, China, October 2021. IEEE.

[68] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian
Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V.
Chawla. A Deep Neural Network for Unsupervised Anomaly Detection and
Diagnosis in Multivariate Time Series Data. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 33:1409–1416, July 2019.

[69] Yuxin Zhang, Yiqiang Chen, Jindong Wang, and Zhiwen Pan. Unsuper-
vised Deep Anomaly Detection for Multi-Sensor Time-Series Signals. IEEE
Transactions on Knowledge and Data Engineering, pages 1–1, 2021.

[70] Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao,
Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. Multi-
variate time-series anomaly detection via graph attention network. CoRR,
abs/2009.02040, 2020.

[71] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuan-
zong Zhang, Zikai Chen, Xiangzhong Zheng, Xiaohui Nie, Gang Wang,
Yong Wu, Fang Zhou, Wenchi Zhang, Kaixin Sui, and Dan Pei. Understand-
ing and handling alert storm for online service systems. In 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP), pages 162–171, 2020.

[72] Nengwen Zhao, Panshi Jin, Lixin Wang, Xiaoqin Yang, Rong Liu, Wenchi
Zhang, Kaixin Sui, and Dan Pei. Automatically and Adaptively Identifying
Severe Alerts for Online Service Systems. In IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications, pages 2420–2429, Toronto, ON,
Canada, July 2020. IEEE.

BIBLIOGRAPHY 71

[73] Peihai Zhao, Xiaoyan Chang, and Mimi Wang. A Novel Multivariate Time-
Series Anomaly Detection Approach Using an Unsupervised Deep Neural
Network. IEEE Access, 9:109025–109041, 2021.

[74] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A Python toolbox for scal-
able outlier detection. Journal of Machine Learning Research, 20(96):1–7,
2019.

[75] Chong Zhou and Randy C. Paffenroth. Anomaly Detection with Robust Deep
Autoencoders. In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 665–674, Halifax
NS Canada, August 2017. ACM.

