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1. INTRODUCTION

Linear matrix equations of the type

T(s)K(s) = H(s) (1.1)

where T(s), K(s) and H(s) are matrices with elements in R(s),
the field of rational functions in s with real coefficients,
arise in several important control problems. In (l.1l), it is
assumed that T(s) and H(s) are given and that K(s) is unknown.
In fact, (l.1l) represents the transfer matrix formulation of
such problems as the general noninteraction problem, the model
matching problem and the disturbance localization problem.
Equations of the type (l.l) also appear in observer problems.
This fact is demonstrated in detail in Section 6, where we
show that these problems can be posed and solved as a problem
of the type (l1.1). Therefore, if we are able to characterize
the admissible solution set (defined below) for (1.1) we also
have a common characterization of the set of all solutions to
these control problems. This type of gquestion is of specific
importance in synthesis, where possible non-uniqueness of the
solution can be exploited to satisfy various additional design

criteria which may be awkward to formalize in advance.

In control applications T(s), K(s) and H(s) represent the ex-
ternal descriptions of the open-loop system, the controller
and the closed-loop system respectively. Since we are only
dealing with causal systems we assume that T(s) and H(s) are
strictly proper and insist that K(s) be proper. We see from
(1.1) that this is no restriction with regard to T(s) and H(s)
since (l.1l) can be divided by sk, with k large enough to make

both T(s) and H(s) strictly proper.

Moreover, K(s) is the external (feedforward) description of

the control and should be implementable as an internally stable
feedback control. It is shown in [1l] that this restriction is
essentially the same as requiring that K(s) be a stable ratio-

nal matrix, i.e. having all its poles within a specified region



of the complex plane. The causality and stability restrictions
on K(s) make the problem unconventional from a mathematical
point of view. Some partial results for this type of problem

have been given in [4] and [10].

In this paper we are concerned with the existence, construction
and characterization of solutions to (1.1) of this restricted
type. Besides being able to give general answers to these ques-
tions, we will also relate the solvability of (1.1) to basic
state space concepts such as supremal invariant and controll-
ability subspaces [l1l] and the associated state feedback trans-
formations. In this way we obtain new insight into these con-

cepts in a frequency domain setting.

Our results will be stated in terms of a version of (1.1) of
the form

c(s-a) "1 (BK(s) + E) = 0 (1.2)
where A, B, C and E are real matrices. That (1.2) is equivalent
to (1.1) is easily seen in the following way: rewrite (1.1) as
[T(s) ~-H(s)][K(s)
I

= 0 (1.3)

and let (C,A,B) be a state realization of T(s) = [T(s) -H(s)].
Partition B = [B E] compatibly with the blocks in T(s). Sub-
stitution of

T(s) = C(s—A)—l[B E]
into (1.3) yields the equivalence.

The paper is organized as follows. Technical preliminaries are

given in Sec. 2. The solvability question is resolved in Sec.3.
A characterization of the entire stable and proper solution

set is given in Sec. 4. Some control applications are presented

in Sec. 5.



Notations.

R, €, R(s) denote the fields of real numbers, complex numbers
and rational functions with real coefficients respectively.
Script letters X, Y, 7 are used for real vector spaces of fi-
nite dimensions and capital Roman letters A, B, C denote li-
near maps (real matrices). The image of A is written Im A or

sometimes A. The kernel of A is written Ker A.

Let A:X » X and B:U > X be a pair of linear maps. The controll-
able subspace for (A,B) is <AlB> = B + ... + An—lB. A subspace

V is said to be (A,B)-invariant if there is a linear map F such
that (A+BF)V < V. A subspace R is said to be an (A,B)-controll-

ability subspace if R = <A+BF|BNR> for some linear map F. The
family of all maps F such that (A+BF)V < ! is written F(V). The
families of subspaces I(A,B,D) ={VIV c U and (A+4BF)V < V some
F} and C(a,B,D) = {RIR =« D and R = <A+BF|B N R> some F} have

unique supremal elements denoted sup I(A,B,?) and sup C(A,B,D)

respectively [11].

Let A:X -» X be a linear map, a(s) its minimal polynomial
and
c=¢" ve (1.4)

an arbitrary disjoint partition of the complex plane such that

¢ is symmetric with respect to the real axis and contains at

least one real point. Then we define

X*(a) = Ker o (a)

+

where a = a*a” is a factorization of a corresponding to the

partition (l1.4). A rational function r(s) is said to be proper

if r(w) <o and strictly proper if r(e) = 0. It is stable if
r(s) = q(s)/p(s), where g(s) and p(s) are relatively prime,
and p(s) has all its zeros within € . A rational matrix R(s)

is said to be proper, strictly proper or stable respectively,
if each element of R(s) has the stated property.
A more detailed description of concepts and basic results in

the geometric state space theory can be found e.g. in [11].



2, PRELIMINARIES

2.1. Feedback Realizations.

In (1.2), K(s) is regarded as the external feedforward descrip-
tion of a feedback control. To define the feedback control in-

ternally, let the system Z be

X Ax + Bu + Ew

(2.1)

Yy Cx

where x € X(~ Rn) is the state vector, u € U(~ Rr) is the vec-
tor of control inputs, y € Y(~ 39) the output vector, and

w € W(~ B") is the vector of external inputs. Here, A, B, C
and E are linear maps (matrices) between the appropriate vec-
tor spaces. We assume that B is of full column rank and that
(A,B) is stabilizable. For this system, we define a dynamic

feedback control in the following way. Let
x_ € X u. €U ' (2.2)

be a set of integrators adjoined to (2.1), with Ba an isomor-
phism. Introducing the extended state vector xe:=(x,xa) and
the extended input vector ue:=(u,ua), we may write (2.1) and
(2.2) together as

ke = Aexe + Beue + Eew

(2.3a)
Yo 7 Cexe
Here

(2.3b)
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By a dynamic feedback control for (2.1) we then mean a state

feedback control
u =F x + Gw (2.4)
e e

for the extended system (2.2). This is a standard dynamic ex-
tension technique used e.g. in the geometric state space theo-
ry [11]. The input/output transfer matrix relating u to w is

readily computed from (2.3) - (2.4) as
- o -1
K(s) = QFe(s A BeFe) (BeGe+Ee) + QG (2.5)

where Q:Ue -» U is the projection on U along ua. Conversely, if
(2.1) and K(s) are given, any triple (Fe,Ge,na), related to
(2.1) as in (2.3b) and (2.4) and satisfying (2.5), is said to
be a feedback realization of (Z,K(s)). We see that different

feedback realizations merely correspond to state coordinati-

zations of
u({s) = K(s)w(s) (2.6)

as a feedback control to (2.1). The internal stability of the
closed loop system is determined by the spectrum of the map

A¥ = A + BF . A feedback realization (F_,G_,n_) which is such
e e e e e'"e’'"a _

that A; has its spectrum within the specified region ¢ of the

complex plane, cf. (l1.1l), is said to be internally stable w.r.t.

€ . The relationship between K(s) and the corresponding feed-
back realizations (Fe,Ge,na) is explained in [1], from which
we take the following result.

Theorem 2.1l. There exists an internally stable feedback reali-
zation of (ZX,K(s)) iff

(1) K(s) is proper
(1ii) P (s) v=(s—A)_l(BK(s) + E) is stable w.r.t. ¢ . o




If we insist on feedback realizations of the form (Fe,O,na),
which are appropriate if w(-) is assumed not accessible to mea-
surement, Th. 2.1 still holds if "proper" is replaced by "strict-
ly proper". Also, if only output feedback is allowed from, say,

Z = Hx with (H,A) an observable pair, Th. 2.1 holds unchanged.
Moreover, the stability of P(s) is related to the closed-loop

transfer matrix in the following way [1].

Theorem 2.2. Assume (C,A) is observable. Then P(s) is stable
w.r.t. ¢ iffK(s) and T,(s) are both stable w.r.t. ¢ , where
Ty« (s) is the closed loop transfer matrix T,(s) := C(s—A)_l .

(BK(s) + E).

The usefulness of these results resides in the fact that inter-
nal stability can be viewed as a property of K(s). For more re-
sults in this direction, and on constructions of feedback rea-

lizations, see [1].

2.2. Restatement of the Problem.

In view of the discussion above we accept solutions K(s) to
(1.2) which have an internally stable feedback implementation,
i.e. we require

(a)  P(s) = (s=B) T
matrix w.r.t. ¢ . (2.7)

BK(s) + E) is a stable rational

If in addition (C,A) is observable (a) is equivalent to
(a') K(s) is a stable rational matrix w.r.t. ¢ (2.8)

since T, (s) introduced in Theorem 2.2 is zero in this case

(1.2). Let us call a solution K(s) satisfying (a) or (a')



internally stable.

To summarize, our problem is: to find a proper (strictly pro-

per) and internally stable solution K(s) to (1.2).

In view of the discussion on feedback realizations, we may
view a solution either as a rational matrix K(s) or as a
triple (Fe,Ge,na) which is a feedback realization of K(s).
The problem can easily be restated in terms of feedback rea-

lizations using the following lemma.

Lemma 2.1. Let (C,A,B) denote a system with transfer matrix

T(s) := C(s—A)—lB. Then

(1) T(s) = 01iff <al18> < Ker C

(ii) T(s) is stable w.r.t. ¢ iff <alB> n XT(a) < Ker C.

Proof. Follows from Kalman's structure theorem [5]. u]

The properties of K(s) can now be expressed as properties of

an arbitrary feedback realization. For convenience, introduce

A; 1=Ae + BeFe
(2.9)
B*¥ :=B G_ + E
e e e e

which are obtained as the closed loop system matrices when
is
(2.4)/éubstituted in (2.3a).

Proposition 2.1. Let K(s) be a proper rational matrix and

(F,/Gy/n,) an arbitrary feedback realization of (Z,x(s)).

Then



(1) K(s) solves (1.2) iff
R :=<a*|B*> < Ker C (2.10)
e e e e

(ii) K(s) is stable iff

Y :=r_n xT(a*) < Rer C (2.11)
e e e e e

(iii) K(s) is strictly proper iff

QG =0 (2.12)

where Q is as in (2.5).

Proof. Here, (i) follows from Lemma 2.1(i) since

1ax
e

- _ay 1 - —n¥y "
0 = C(s-A) ~(BK(s) + E) = C_(s-Af)
where the second equality follows from (2.3-5). The statement

(ii) follows from Lemma 2.1(ii) since

P(s) = (s-A) 1(BK(s) + E) = P_(s-A¥) B

where PX:Xe -» X is the projection on X along Xa. Finally, (iii)

is immediate from (2.5). o



3. GENERAL SOLVABILITY

In the statements of the theorems below, we need just a few

algebraic concepts associated with £. Introduce the following

subspaces
n i-1
W*:= n Ker CA (= sup I(A,0,Ker C))

i=1

V* := sup I(A,B,Ker C)

(3.1)

R* := sup C(A,B,Ker C)

B:=Im B; £ = Im E

These subspaces have the following systematic interpretation.
The subspace W* is the unobservable subspace for ¥. The sub-
space V* is the supremal unobservable subspace obtained by
the transformation (C,A) E (C,A+BF). The subspace R* is the
reachable set of states in ¥ for inputs u(+) which keep the
output zero, [9]. Note that V* and R* are easily constructed,

cf. e.g. [11].

3.1. Nondynamic Solutions.

Let us first treat the case with nondynamic or constant K(s),
i.e. K(s) = K where K is a real matrix. In view of Proposition
2.1, an equivalent problem is to find a triple (Fe,Ge,na) with
Fe =0, Ge = K and n, = 0 so that (2.10) and (2.11) hold.

Theorem 3.l1. There is a constant, internally stable solution K
to (1.2) iff

W + B> E
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where

W = X (A)n Wwx

The following lemma is needed.

Lemma 3.1. There is a linear map K such that Im(BK+E)c y iff
V+ B > E.

Proof. (If) Let Wi ied:=(1, 2, ..., d), be a basis for W.
There are vy € V and uy € U such that Ewi =v, * Bui. Define
K such that Kwi = - ui. K exists since Wy is a basis. Then,
(BK+E)Wi = v, and therefore Im(BK+E) < V.

(Only if) Let Wi i € 4, be the same basis as above. There are

i
€ VV + B. o

Proof of Theorem 3.1l. (If) By Lemma 3.1 there is K such that

Im(BK+E) < W . Then K solves the problem since, with the same
notation as in Proposition 2.1, Re = <A|Im(BK+E)> < <Alw_> =
< Ker C. Also, R_ N X' (&) = &~ n x'(a) = 0, i.e. both (2.10)

and (2.11) are satisfied.

(Only if) Assume K is a solution. Then Re = <A|Im(BK+E)> and
hence Re > Im(BK+E) and therefore B + R, 2 E by Lemma 3.1.
Moreover, ARe c Re and Re < Ker C, so Re c W*; we also have
R_ 0 x"(a) =0, i.e. R, = X (). Hence, R, = X  (B) NW* and
there follows W + B > Re + B> E. o

If we do not insist on stability with respect to ¢_, we may
simply replace € by €. From Theorem 3.1 there follows immediate-

ly (since W = W* in this case):

v, € UV such that (BK+E)wi = vy, 1 € d; hence, Ewi = - BKwi + viE
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Corollary 3.1. There is a constant solution to (1.2) iff
W* + B o E.

3.2. Dynamic Solutions.

The dynamic problem is to find a solution K(s) which is proper
(or strictly proper) and internally stable. An equivalent state-
ment is, by Prop. 2.1, to find a triple (Fe,Ge,na) such that (2.10)
and (2.11) hold. If K(s) is restricted to be strictly proper,

in addition (2.12) must hold with Q defined as in (2.5). The

solvability gquestion is resolved in

Theorem 3.2. There is a solution K(s) to (l1.2) which is inter-
nally stable w.r.t. ¢ iff

(i) V" + B o> E if K(s) is restricted to be proper,
(1) V o E if K(s) is restricted to be strictly proper,

where V := V* n X (A+BF) + R*, Here the choice of F € F(VU*) is

arbitrary.

Proof. (If) Take F € F(V*) such that the spectrum of (A+BF) |R*
is assigned to ¢ . This is always possible (see [11], Thm. 5.1).
Then R* < X (A+BF), and therefore

V- = X (A+BF) N y*
_ N (3.2)
(A+BF)V < V

We treat separately the case when K(s) is strictly proper or

merely proper.

(K(s) strictly proper): We claim that (F,0,0) is a solution,
i.e. satisfies (2.10-12). Certainly, (2.12) is satisfied.
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Since V 2 E, we also have Ry = <A+BF lg> < <A+BFIV > =y <
< Ker Ce’ and therefore (2.10) holds; also, Re N X+(A+BF) c

c V- n XT(a+BF) = 0, so (2.11) holds.

(K (s) proper): Since V* = sup I(A+BF,0,Ker C), there follows
from Thm. 3.1 by the substitution A - A+BF that there is a G,
such that (2.10) and (2.11) hold. We have now constructed a
solution (F,G,0). K(s) is then obtained from (2.5).

(Only if) Let (Fe,Ge,na) be a solution and let R, be as in

£ % .
Prop. 2.1; also let Re "'Xe(Ae+BeFe)' Moreover, let P-Xé > X
be the projection on X along Xa' By inspection of (2.2) it

follows that P has the property
PA_ = AP; PB, = BQ; PE_ = E; CP = C (3.3)

where Q is defined as in (2.5). Let V;:= X;(Ae+Be§e) N V; + R;
with ﬁe € E(V;); the subscript indicates that (3.1) is computed
for (Ae,Be,Ce). Then

PVe =V (3.4)

which follows from [11], Lemma 10.6. Moreover, for any subspace
S = Ve n Xe(Ae+BeFe) with F_ € E(Ve), we have § < Ve,(see [11]

Lemma 5.8). The remainder of the proof is now straightforward.

(K(s) proper): We have R_ = R e R > Im(B G _+E ) and there-

- e, e e e e _e +
fore by Lemma 3.1, Re + Re + Be o Ee. Hence, Ve++ Re + Be =) Ee'
Applying P to both sides and noting that Ker Re < Xa = Ker P
by (2.11l), gives V" + B © E. The strictly proper case can be

treated similarly. o

We note that if stability is not an issue we simply replace
¢ by ¢ in Theorem 3.2 and the result holds with V™ replaced
by V*. We also see from the proof above that, if a solution
exists, it can always be taken to be of the form (F,G,0) or

(F,0,0). Hence, we have
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Corollary 3.2. If an internally stable solution of (1.2) (in

the sense of Theorem 3.2) exists, it can always be taken to

be of the form

(i)  (F,G,0), i.e. K(s) = F(s-A-BF) L(BG+E) + G, with real

matrices F and G, if K(s) is restricted to be proper

-1

(i1i) (F,0,0), i.e. K(s) = F(s=-A-BF) "E, with a real matrix

F,if K(s) is restricted to be strictly proper.

By Corollary 3.2 we conclude that there exists an internally
stable and proper solution to (1.2) (or (l.l)) iff there are

real matrices F and G such that

C(s-A-BF) L (BG+E) = 0 (3.5)
and such that the controllable spectrum of (A+BF,BG+E)+) is
stable. Similarly, there exists an internally stable and strict-
ly proper solution to (1.2) (or (1.1)) iff there is a real mat-
rix F such that

C(s-A-BF) 1E = 0 (3.6)
and such that the controllable spectrum of (A+BF,E) is stable.
The corresponding K(s) is given by (2.5). Solving a matrix
equation of the form (1.2) (or (1.1)) is essentially the same
problem as constructing a supremal (A,B)-invariant subspace
with the associated feedback matrix. If in addition, stable
solutions are desired we are also faced with a pole assignment
problem, i.e. finding F € F(V*) such that (A+BF)|V* is stable.

There are easy constructions for these purposes, see e.g. [1l1l].

*) i.e. the spectrum of (A+BF) |<A+BF|Im(BG+E)>.
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4, CHARACTERIZATION OF THE SOLUTION SET.

If T(s) is a q *x r rational matrix, the set of all rational

vectors t(s) such that
T(s)t(s) =0 (4.1)

is a subspace of Rr(s). In other words, the set of vectors
t(s) satisfying (4.1) is generated by a basis ni(s), ie d,
where d = r - rank T(s) and r is the number of columns in
T(s). Let

T(s) = C(s-A) 1B (4.2)

with A, B and C as in (1.2). Also let u(s) = [my(s) ... my(s)].

An arbitrary solution K(s) to (l1.2) can then be written as
K(s) = Ky(s) + m(s)Q(s) (4.3)

where Ko(s) is a specific solution and Q(s) an arbitrary ra-
tional matrix. The characterization (4.3) is valid for arbit-
rary solutions. In our case, we are interested only in proper
(or strictly proper) and stable solutions. It does not follow
directly from standard algebra that this type of solution can
be characterized in the form (4.3). However, by appropriate
choices of mw(s) and Q(s) we will in fact show that this is the

case.

Let us first describe an appropriate basis u(s).

Theorem 4.1. Let V* be as in (3.1l) and take any real matrices

e}
F and N, where N is/full column rank, such that

F € F(U*) ; Im(BN) = B N V* (4.4)

Then the columns of
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n(s) F=F(s—A—BF)_lBN + N (4.5)

form a basis for the solution set to (4.1), i.e. for Ker T(s)

with T(s) regarded as a mapping ®E(s) - Ri(s).

In order to prove this, we need

Lemma 4.1. With T(s) as in (4.2), we have rank T(s) > r -
- dim(B n V*).

Proof. It is known that T(s) is left invertible, i.e. has full
column rank, iff V* n B = 0 and Ker B = 0, see [9]. The latter
condition is satisfied by hypothesis. Let d := dim(B n V*) and
let Bl be a complement such that B = B, @ B N V*¥. Then dim Bl N

1
= r - d. Take an r x (r-d) matrix K such that Im(BK) = Bl and
set Bl:= BK. It follows that Bl has full column rank.

Also, it is easily verified that

V* = sup I(A,B,,Ker C)

ll
* =

V¥ n B, =0

and therefore T(s)K has full column rank. Hence, rank T(s) >

> rank T(s)K = r -~ d as desired. o

Proof of Theorem 4.1. First, Im(BN) = ¢* N B and therefore
<A+BF | Im(BN)> = R* < Ker C (see [11]] Thm. 5.5). Hence,

1

lgn(s) = c(s-a-BF) lBN

I
o

C(s-n)
and therefore the columns of mw(s) belong to Ker T(s). Now,
rank T(s) = r - dim(Ker T(s))

and using Lemma 4.1, there follows



16.

dim (Ker T(s)) < dim (B n V*)

Since mw(s) has dim(B N V*) columns by construction, it suf-
fices to show that they are linearly independent. Let afs)
be a rational vector such that mn(s)a(s) = 0, i.e.

I1B)Na(s) = 0

(I + F(s-A-BF)
Since F(s—A—BF)_lB is strictly proper, it follows that
(I + F(s—A-BF)_lB) is of full column rank. Hence, Noa(s) = 0,
and since N is of full column rank, a«(s) = 0, i.e. we have

shown that the columns of m(s) are linearly independent. g

The basis n(s) constructed in the theorem has a very special
form which can be used to find a simple characterization of
our solution set. Since F € F(V*) can be chosen arbitrarily,

we can always take F such that

(A+BF) |R* (4.6)
has its spectrum within ¢ . Since in addition

R* = <A+BF |Im(BN) > (4.7)
with N as in Thm. 4.1, it follows that with this choice of

F, m(s) is a stable rational matrix. Let us call a basis con-

structed in this way a stable basis for Ker T(s). From (4.7)

we see that there is a direct correspondence between R* and
the kernel of T(s). In fact, nw(s) represents the input/output

map of the control u = Fx + Nw.

In the following theorem we will give a characterization of
the set of proper (strictly proper) and stable solutions of
(1.2) (or (1.1)).



17.

Theorem 4.2. Let Ko(s) be any (strictly) proper and internally
stable solution to (1.2). Also let m(s) be a stable basis for
Ker T(s) of the form (4.5). The set of all (strictly) proper

and internally stable solutions to (1.2) is then all K(s) such
that

K(s) = KO(S) + w(s)Q(s) (4.8)

for some (strictly) proper and stable rational matrix Q(s).

Proof. An arbitrary solution to (1.2) is given by (4.3) for

some rational matrix Q(s). In our case, we are interested only

in (strictly) proper and internally stable solutions. Since

KO(S) is (strictly) proper, the set of all (strictly) proper
solutions is generated by all Q(s) such that n(s)Q(s) is (strict-
ly) proper in (4.3). In this case

n(s)Q(s) = (F(s-A-BF) '

B + I)NQ(s)

Since N is of full column rank, it follows that w(s)Q(s) is
(strictly) proper iff Q(s) is (strictly) proper. Hence, the
set of all (strictly) proper solutions is generated by (4.8)
with Q(s) being (strictly) proper. It then remains to impose
stability. Internal stability holds by definition iff

1

P (s) (s-A)

]

B(K,(s) + m(s)Q(s)) + E| =

(s-a) "1

]

BK,(s) + E) + (s-A) Tm(s)Q(s) (4.9)

is a stable rational matrix. Since Ko(s) is internally stable
by assumption, the first term in (4.9) is stable. The second
term can also be written

(s-A-BF) T

BNQ(s) (4.10)
Since n(s) is stable, i.e. F is chosen so that (4.6) is stable,

the rational matrix (s—A—BF)_lBN is stable. Hence (4.10) is
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stable, iff BNQ(s) is stable. However, BN is of full column
rank, and therefore (4.10) is stable iff Q(s) is stable. Hence,
P(s) is stable iff Q(s) is stable which proves the result. o

Since ¢ is quite arbitrary, the characterization in the theo-
rem is valid also for proper (or strictly proper) solutions
with no stability imposed (choose ¢ = ¢). It is important to

notice that the internally stable solutions to (1.2) are exact-

ly those which can be implemented as an internally stable dy-
namic feedback control for (2.1). Since, as is demonstrated in
the next section, several control problemscan be formulated as
an algebraic problem of the form (1.2), we have thus characte-
rized the set of all internally stable solutions (feedback con-
trols) for these problems. Such characterizations are of great
importance in control synthesis, since we may be able to select
among all solutions the one which best satisfies supplementa-

ry design criteria.

If the pair (C,A) in (1.2) is observable then, as has been no-
ted before, K(s) is internally stable iff K(s) is a stable ra-

tional matrix. Thus, Theorem 4.2 can also be used to characte-
rize the set of all stable and (strictly proper rational matri-

ces K(s) satisfying (1.1).

The characterization in the theorem is valid only for the spe-
cific choice of m(s) in (4.8), i.e. (4.5). For constructions,

we note that V*, F, N are already computed in the construction
of a gpecific solution (cf. Sec. 3) so no further computations

are necessary to characterize the whole solution set.
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5. CONTROL APPLICATIONS

In this section, we show how certain control problems can be
restated in the form (1.2) (or (1.1)] to which our results

apply.

5.1. Model Matching.

In the model matching problem we are given the system I (2.1)
with E = 0 and a model ot

Mo
Il

A X + B v
m m m

m m

ym = mem

l [ ] e *

T (s) = C_(s-A_) 1B
m m m m

We wish to find a dynamic feedback control which makes the in-
put/output behavior of I equal to Tm(s). In addition, the
controlled system must be internally stable w.r.t. ¢ . This
problem has attracted much interest in the control literature,

see e.g. [6, 7].
Let the control be described by its input/output map
u(s) = K(s)um(s)

Since the transfer matrix for the closed-loop system is to be

Tm(s), K(s) must be chosen such that

ek (s) = Cm(s—Am)_lB (5.1)

C(s-a) 0

For this problem, there exists an internally stable solution iff
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il

(s-A) “BK(s) (5.2)

is stable. Introducing

1
[

=1
1l
(o] o
=
|
Ol
Il
TN
(@)
1
@)
=
—

we see directly that (5.1) is equivalent to

C(s-3) "L (Bk(s) + E) = 0 (5.3)
and (5.2) is equivalent to the requirement

(s-A) "1 (Bk(s) + E) (5.4)
be stable w.r.t. ¢ . Hence, the problem is to find a proper
and internally stable solution to (5.3). The solvability is

given in Theorem 3.2 and the whole (internally stable) solu-

tion set is given in Theorem 4.2.

5.2. Disturbance Localization.

If w in (2.1) is interpreted as a disturbance, the problem

(1.2) becomes the classical feedforward control of disturban-
ces. Solvability for causal and internally stable feedforward
controls is given in Theorem 3.2 and the solution set is cha-
racterized in Theorem 4.2. Results for this problem have ear-

lier been given in [2, 3, 8].



21.

5.3. Dynamic Decoupling.

Assume we are given the system

X = Ax + Bu
(5.4)
y; = Cix g i€ [1, 2, ..., d]

q.
where Y5 € R are otuput vectors to be controlled indepen-
dently. Take a dynamic feedback control with external inputs
w, € Rmi, i €d. Represent this control by its input/output

map

Ki(s)wi(s) (5.5)

o
Il
Il ~100

i=1

We wish to select Ki(s) such that, when applied to (5.4), the

transfer matrices relating Wy and yj are zero for i + j, and

nonzero (in the sense below) for i = j. Introduce
T.(s):= C, (s-A) 1B
i i
5
= €
i T S ~owE | 1=l
Ti(s)- Ci(s A) "Bj; Ci-
i+l
_Cd B

Then wemay express the noninteraction condition as

(a) Ei(s)Ki(s) = 0; ied

As the output controllability condition we take

(b)  p'T,(s)K,(s) # 0; vi€dand ¥ pe RI, p ¥ o,
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Finally, we require that (5.5) have an internally stable im-
plementation as a dynamic feedback control. By Thm. 2.1,
this is equivalent to the requirement that the matrix

(s—A)—lB[Kl(s) cee Kg(s)]

be stable w.r.t. ¢ . Hence, the internal stability condition

is

1

(c) (s-a) "~ BK, (s) is stable w.r.t. ¢"; i € d.

The decoupling problem with internal stability can thus be

formulated as: find integers my and proper rational m x m,;

matrices Ki(s), i € d, such that (a)-(c) hold. This formu-

lation is in fact the external (transfer matrix) correspondence
to the extended decoupling problem as formulated in [9].
Obviously, (c) can always be satisfied since for any specific
Ki(s) we can multiply (s—A)_lBKi(s) by a scalar rational
function to make it stable. Conditions (a) and (b) are

satisfied iff
pTT, (s)m (s) * 0; i€d; peri, p#o. (5.6)

where ni(s) is a basis for Ker %i(s). Such a basis is described

in Theorem 4.1. Taking Fi and Ni as in this theorem, i.e.

F, € E(VI); Im(BN;) = B N V¥

V¥ = sup I(a,B,Ker C;) M (s) = F(s—A—BF)'l BN, + N,
the condition (5.6) becomes

pTci(s—A—BFi)'lBNi + 0; vied; ¥vperRI, p#o.

It is easily shown that this condition is equivalent to output
pointwise controllability for (Ci, A+BFi, BNi). The controllable

subspace for the pair (A+BFi, BNi) equals R;, where

* _
Ri = sup C(A, Bi’ Ker Ci)
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It follows that the necessary and sufficient condition for
solvability of EDP is

This is the same condition as obtained in [ 9].

5.4. Observers for a Linear Transformation of the State.

Consider the system

% = Ax + Bu x(ty) = x
0 0 (5.7)
y = Cx z = Hx

where y is the measured output and z the output to be recon-
structed. Assume that the reconstructing device is allowed
to be of the form

W =AW + B,y w(0) =0
.t . (5.8)

Z le + Dly

i.e. only y is available (i.e. not u). For the reconstruction
we require that z(t) - z(t) - 0 as t » «» for all X u(+). On
taking Iaplace transforms in (5.7) and (5.8), we get

1 1

z -z = (7 - K(s)C)(s—A)_ Bu + K(s)C(s=A) Xq

where K(s) is the transfer matrix of the reconstruction (5.8)
i.e. K(s) = Hl(s—Al)_lBl + Dy. The requirements on the recon-
structor are satisfied if and only if
(1) (8 - K(s) €)(s=A) 1B = 0

(5.9)

1

(ii) K(s)C(s-A) — is a stable rational matrix



Hence, the reconstruction problem is to find a proper ra-
tional matrix K(s) which satisfies (i) and (ii), namely the
dual of (l1.2) (take transposes). The solvability is given

by Theorem 3.2 (dualized) and the whole solution set by Theo-
rem 4.2. If in (5.7), (A,B) is a controllable pair, the prob-
lem (5.9) is equivalent to

(i) the same as above
(5.10)
(ii') K(s) is a stable rational matrix,
c.f. the reasoning in Section 2.
Similar arguments apply to reconstructors of the form

;(S) = K (s)y(s) + KZ(S)u(S)

i.e. both y and u are accessible for measurement.
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