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Popular science summary

R. Priemer, in his book Introductory Signal Processing, says that a signal is a function that
conveys information about a phenomenon. A physical phenomenon is usually modelled
using the mathematical language in one of its instances (i. e. branches), but oftentimes
a signal is not directly accessible to human beings, i. e. it cannot be directly measured;
this might be seen as a limitation of the model used, or as an intrinsic feature of the phe-
nomenon. The simplest models are the linear ones where the measurements are assumed
to be linear combinations of the underlying (discretized) ground truth. With an example:
suppose that the signal x0 =

(
1 0 0 −2 0 0

)t is “emitted” by some phenomenon,
but not directly accessible for measurements; accessible are however the measurements

b =

−13
23
−28

 =

 7 9 −5 10 10 −8
9 3 1 −7 0 −2
−8 −8 10 10 6 9


︸ ︷︷ ︸

=A



1
0
0
−2
0
0


with A a known matrix sometimes called sensing matrix. Thus, having b and A, we would
like to retrieve x0. This is of course not possible in our example: the matrix A has a 3-
dimensional kernel and thus x0 is not the only solution to the linear system of equations
Ax = b. Things change and become possible when we look for an x0 with a lot of zeros
(which is actually the case in our toy example) and when A is assumed to have some struc-
tural property called Restricted Isometry Property. This is essentially what this thesis is about:
looking for solutions with a lot of zeros to under-determined linear systems of equations.
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Preface





THESIS STRUCTURE

This thesis contains 5 scientific papers. Papers I, II, III and IV pertain to a subfield of
signal processing known as compressed sensing, compressive sensing or compressive sampling.
Throughout this entire work we will use the first terminology. Paper V deals with an (in-
stance of an) inverse problem called the Fourier phase retrieval problem arising (for example)
in X-ray cristallography and coherent diffractive imaging; in this paper the phase retrieval
problem is considered from a “low-rank perspective” and thus, ultimately, from a com-
pressed sensing perspective.

A Miscellaneous section will come after the five papers; we will present there few un-
published observations. The structure of this preface is the following: there will be two
main sections, one dedicated to compressed sensing and one to the phase retrieval prob-
lem. In each section classical theory and glimpses of state of the art will be outlined; our
results, together with their relation with the state of the art, will then be discussed.

The papers, in their latest versions, will come after this preface.
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COMPRESSED SENSING

The Nyquist-Shannon theorem states that a 1-dimensional absolutely integrable signal f
with Fourier transform f̂ supported in some interval [−M,M ] ⊆ R can be completely
reconstructed via equispaced samples of f of length 1/2M . This well-known signal pro-
cessing result somehow suggests the idea that a sufficiently large number of measurements is
needed in order to retrieve an unknown signal. In some sense this was already pretty clear
in basic Linear Algebra: in the simplest possible scenario, when measurements b ∈ Cm

are obtained as linear combinations of an underlying signal (to be reconstructed) x0 =
(x1, . . . , xn) ∈ Cn so that b = Ax0 for a sensing matrix A ∈ Mm×n(C), there is
no chance of recovering x0 if A has a non-trivial kernel (so, the measurements b are not
enough). However things dramatically changes if more hypothesis are added on A,m and
on the number of non-zero entries of x0 (this property is called sparsity). Compressed
sensing bases its power on some sort of paradigmatic assumption, that signals can often be
represented using a basis that make them sparse, i. e. with a lot of zeros; compressed sensing
can thus be seen as the mathematical theory that clarifies under which circumstances the
underdetermined linear system of equations

Ax = b (1)

has a unique solution, given a sparsity constraint on x.
From a merely mathematical standpoint this does not really come as a surprise: para-

phrasing Ennio De Giorgi, the more hypothesis are added the stronger the theoretical con-
clusions will be; nonetheless from a more engineering point of view the idea of an unde-
termined linear system with a unique solution is thrilling, simply because the paradigm

less measurements = more resources saved

holds in the real world.

CLASSICAL VECTOR THEORY. The possibly most intuitive approach to find a sparse so-
lution to (1) would be to solve the problem

min
x∈Cn

‖x‖ℓ0 subject to Ax = b (2)

where ‖x‖ℓ0 := card(x) = card({xj : xj 6= 0}); however the map x 7→ ‖x‖ℓ0 is
discontinuous and thus any optimization-based approach is deemed to fail. One could also
attack (2) using combinatorial techniques, but Natarajan showed in [48] that the problem is
NP-hard. For p ∈ (0, 1) the non-convex ℓp quasi-norms have been proposed as alternatives
to the cardinality with various degree of success, motivating the approach with the simple
observation that ‖x‖pℓp → ‖x‖ℓ0 as p→ 0+ for all x.
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The notorious turning point was the ℓ1 norm: its convexity and almost everywhere
differentiability made it an appealing candidate and ultimately it became widely used in
the whole signal processing community. From an intuitive/geometric point of view it is
rather clear why the solution to

min
x∈Cn

‖x‖ℓ1 subject to Ax = b (3)

should be, roughly speaking, sparse: Figure 1 illustrates pretty well this property of the ℓ1

diamond-shaped balls. The ℓ1 ball of minimal radius (bold blue) intersects the linear sub-
space Ax−b = 0 (bold red) at one of its vertices (black dot), which is sparse. The dashed
blue diamonds are ℓ1 balls of bigger radii.

Figure 1: 2-D geometric idea explaining
why a solution to (3) is likely sparse.

This simple observation led mathematicians to
develop a rather strong and juicy theory revolv-
ing around the ℓ1 norm; we will try here to out-
line it. We begin by recalling the (definition of )
null-space property:

Definition. A matrix A ∈ Mm×n(C) is said
to satisfy the null-space property relative to a set
S ⊂ {1, . . . , n} if

‖xS‖ℓ1 < ‖xSc‖ℓ1 ∀x ∈ ker(A) \ {0}.
(4)

(Here the vector xS is obtained from x by
means of setting xj = 0 if j ∈ Sc, being Sc the
set-theoretic complement of S.) Consequently
we say that A satisfies the null-space property of
order s if the condition (4) holds for all sets S

with card(S) ≤ s. We also say thatA satisfies the robust null-space property if the inequal-
ity in (4) holds in the form ‖xS‖ℓ1 ≤ ρ‖xSc‖ℓ1 + τ‖Ax‖ ∀x ∈ Cn, for a ρ ∈ (0, 1) and
τ ≥ 0.

The null-space property is fundamental to establish uniqueness of the solution to (3)
and to its non-convex relative with the ℓp quasi-norms instead. The following results follow
closely the formulation of [28], Chapter 4:

Theorem. For a matrixA ∈ Mm×n(C), every s-sparse vector x0 ∈ Cn is the unique solution
to (3) with b = Ax0 if and only if A satisfies the null-space property of order s.

The above theorem is quite interesting because, under the null-space property, it builds
a bridge between (3) and (2): in particular it is easy to see that if x is s-sparse and it solves
(3), then it solves (2) too (assume that z solves (2); then ‖z‖ℓ0 ≤ ‖x‖ℓ0 , thus also z is s-
sparse and b = Az. But the solution to (3) is unique, thus x = z). There are ℓp versions of

5



the null-space property and of the theorem above, see Theorem 4.9 in [28]; for redundancy
reasons we omit them here.

The robust null-space property is the key condition on A to solve a relaxed version of
(3), where noisy measurements are allowed:

min
x∈Cn

‖x‖ℓ1 subject to ‖Ax− b‖ℓ2 ≤ ϵ (5)

for some positive tolerance ϵ and b = Ax0 + e. Problem (5) is often called quadratically
constrained basis pursuit. The following result holds (Theorem 4.19 in [28]):

Theorem. Suppose that a matrix A ∈ Mm×n(C) satisfies the robust null-space property of
order s with constants ρ ∈ (0, 1) and τ > 0. Then, for any x0 ∈ Cn, a solution x̃ to (5) with
b = Ax0 + e and ‖e‖ℓ2 ≤ ϵ satisfies the following inequality:

‖x0 − x̃‖ℓ1 ≤ 2(1 + ρ)

1− ρ
σs(x0)1 +

4τ

1− ρ
ϵ, (6)

where σs(x0)1 := inf∥x∥ℓ0≤s ‖x0 − x‖ℓ1 .

Thus, while the solution to (5) is not necessarily x0, the ℓ1-mismatch between the two
can be controlled from above.

The issue with the null-space property is that it seems somehow artificial and rather
elusive, often difficult to check. The paper by Candès and Tao [17], where the notion of
Restricted Isometry Property (RIP) was introduced for the first time, tried to overcome to
this issue:

Definition. The restricted isometry constant δk of order k of a matrixA ∈ Mm×n(C) is the
smallest number δ ∈ (0, 1) such that

(1− δ)‖x‖2ℓ2 ≤ ‖Ax‖2ℓ2 ≤ (1 + δ)‖x‖2ℓ2

for all vectors x ∈ Cn with card(x) ≤ k.

The subtle interconnections between the restricted isometry property and the null-space
property have been investigated for instance in [12], but in some sense RIP is stronger than
the null-space property, as the following lemma proved by Candès in [14] states:

Lemma. Suppose that a matrixA ∈ Mm×n(R) satisfies the RIP of order 2swith constant δ2s.
Then it satisfies the robust null-space property with constants τ = 0 and ρ =

√
2δ2s/(1−δ2s).

The cornerstone of this compressed sensing theory is most likely the theorem proved
by Candès, Romberg and Tao in [16] (Theorem 1), where they show that, if the sensing
matrix obeys some RIP condition, then (5) has solution “very close to” x0, and the ℓ2 error
can be bounded by a quantity linear in the noise magnitude:

6



Theorem. Let A and S ⊂ {1, . . . , n} with |S| ≤ s be such that δ3s + 3δ4s < 2. Then for
any signal x0 ∈ Rn with supp(x0) ⊂ S and any noise e with ‖e‖ℓ2 ≤ ϵ the solution x̃ to (5)
obeys

‖x0 − x̃‖ℓ2 ≤ 4/
√
3

√
1− δ4s −

√
1/3

√
1 + δ3s

ϵ. (7)

The above estimate and condition on the RIP constant were subsequently improved
in [14] where δ2s <

√
2 − 1 was enough to obtain ‖x0 − x̃‖ℓ2 ≤ 4

√
1+δ2s

1−(1+
√
2)δ2s

ϵ. In
[13] similar and possibly improved results were proved, which however are more intricate
since they depend on another structural constant of the matrixA, i. e. the so called (s, s′)-
restricted orthogonality constant θs,s′ ; they proved that if x0 is s-sparse and δs+

√
sθs,1 < 1

then

‖x0 − x̃‖ℓ2 ≤ 2
√
1 + δs

√
1 + s

1− δs −
√
sθs,1

ϵ. (8)

Before concluding this subsection we want to recall that the quadratically constrained
basis pursuit (5) is strongly connected to the basis pursuit denoising problem, that means
solving

min
x∈Cn

λ‖x‖ℓ1 + ‖Ax− b‖2ℓ2 (9)

for some λ > 0; in particular if, for a fixed λ > 0, x̃ is a minimizer of (9), then there exists a
ϵ = ϵx̃ such that x̃ solves (5) with ϵx̃. This fact, together with the rather strong theoretical
properties listed above and the broad variety of algorithmic tools developed to compute
the solution¹, made the ℓ1 method a popular approach to tackle compressed sensing or low
rank problems (see next section).

Figure 2: Soft-thresholding for dif-
ferent values of λ.

SHRINKING BIAS AND NON-CONVEX ALTERNA-
TIVES. As explained in the previous section, the ℓ1

norm method enjoys appealing theoretical proper-
ties as well as a wide range of powerful optimization
routines developed to solve the minimization prob-
lem associated to it. However this method comes
with a shrinking bias, since small values are set to zero
but bigger ones are shrunk by a factor depending on
λ, generating a certain degree of distortion in the
reconstruction. This phenomenon was described in
[24] via numerical evidences and a simple inspection
of the 1-D case: if we indeed consider the simple
minimization problem miny∈R(y − x)2/2 + λ|y|

¹(9) can indeed be solved for example using the Chambolle-Pock algorithm [21], the Forward-Backward
Splitting algorithm [41], the adaptive inverse scale space method [11] and the homotopy method [22] (where
the last two seem to work only in the real-valued case, though).
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we see that the solution (called soft-thresholding - see
Figure 2) is 0 for small values of x and it is pushed down (with respect to the line y = x) for
“bigger” values of x; here is where the bias is introduced. This weakness of the ℓ1 method
opened the gate to several non-convex alternatives where the functional in (9) is replaced
with

p(x) + ‖Ax− b‖2ℓ2 ,
being now p a possibly non-convex function (that in jargon is called penalty).

In [24] the authors claim that “a good penalty function should result in an estimator
with three properties: (nearly) unbiasedness², [...] sparsity, [...] continuity”. The hard-
thresholding [8] is sparsity-inducing and unbiased, but it is discontinuous; the ℓp quasi-
norms, p ∈ (0, 1), are continuous and sparsity-inducing, but they still suffer from a
(weaker) form of shrinking bias. Their ([24]) proposed non-convex penality - called Smoothly
Clipped Absolute Deviation (SCAD) - enjoys all the three properties; moreover it is proved
that SCAD has the oracle property, i.e. it generates a sequence of sparse local minimizers
(of some penalized likelihood function) that is

√
n-consistent (this means that the distance

between the estimation and the ground truth decays, in probability, as 1/
√
n, being n the

dimension of the model). The authors also conjecture that the oracle property does not
hold for the ℓ1 penalty.

Several other non-convex alternatives were proposed to tackle the sparsity problem:
the Adaptive LASSO [64], further studied in [18], the Exponential-Type Penalty (ETP)
[29], the Non-negative Garrote (that first appeared as thresholding rule only in [10]), the
Minimax Concave Penalty (MCP) introduced by Zhang in [63] (which was presented as
nearly unbiased, but it is actually unbiased), the Huber loss [37]. Most of them come with
some sort of statistical justification - asymptotic oracle property or consistency - but there
seems to be no clear winner, also because these penalties are separable, i. e. they are of the
type

p(x) =
n∑

i=1

pi(xi);

this is a limitation, because they impose a choice between a bias for large values or a 0
gradient for large values, which possibly implies the existence of many stationary points
and stagnation of gradient-based algorithms. To understand this better, we inspect a 1−D
case: consider indeed the problem

min
x
r(|x|) + (x− b)2

for some unknown penalty r. The solution is either 0 or x = b − sign(x)r′(|x|)/2 and
thus the derivative r′ needs to be 0 to recover x = b when b is large. Applied to each pi,
this simple observation explains why separability is a rather undesirable property.

²The notion of near unbiasedness does not seem to have a universal characterization. Some papers call
nearly unbiased an estimator that keeps sufficiently large values unchanged; in other papers if the estimator’s
bias decays when the problem dimension increases.
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Separable non-convex penalties that preserve the convexity of the objective functional
were constructed for instance in [44][49], where however the focus seems to be concentrated
more on algorithm development rather than on the theoretical understanding of which type
of sparse minimum the functional has, or what is its relation to the ground truth or to the
oracle solution.

Interesting results about non-separable penalties were proved in the noise-free scenario
by Wipf and co-authors in [61], where some conditions for the uniqueness of the sparse
global minimizer are given (Theorem 8); remarkable are also the results by Selesnick and
co-workers [53][54][38], who constructed different non-convex non-separable penalties that
preserve the convexity of the objective functional, nevertheless under rather strong struc-
tural assumptions on the sensing matrix A and with again little said about the nature of
the sparse minimizer.

It is worth to mention here the ratio between ℓ1 and ℓ2 norms ‖x‖ℓ1/‖x‖ℓ2 , that
has gained a significant attention in the recent years. The rationale is heuristic; there are
evidences that the method might outperform the classic ℓ1 in some problem instances [51]
and it is also parameter independent. In [62] it is shown that the solution to (2) is a local
minimizer of ‖x‖ℓ1/‖x‖ℓ2 constrained to Ax = b under some null-space property of
A. In [56] the proximal operator of (‖x‖ℓ1/‖x‖ℓ2)+ is computed, and an ADMM-based
algorithm to solve the problem

min
x≥0

‖x‖ℓ1
‖x‖ℓ2

+ ‖Ax− b‖2

is proposed. This penalty function is however neither convex nor concave, and it is actually
not even globally continuous; moreover the theory backing this method still seems rather
modest.

In the previous pages we tried to outline theory and challenges of the modern com-
pressed sensing. On one side we have the convex “world”, mainly represented by the ℓ1

penalty: a very rich theory with its limitations, sometimes even severe. On the other side
the non-convex one, which is more a constellation of fairly disjoint objects. Our journey
began here, with an attempt to create a synthesis of these two sides.

LOW-RANK MATRICES. There are several problem instances / applications where a low-
rank matrix belonging to a prescribed linear, convex or non-convex set is sought. Examples
are the Rigid Structure from Motion problem [57], the Non-Rigid Structure from Motion
problem [9], Clustering and Classification [42], Computer Algebra [58], Compressive Hy-
perspectral Imaging [30][59] to mention a few. Typically the problem can be casted as

min
X∈Mm×n(C)

rank(X) subject to X ∈ C.

Very often C = {X ∈ Mm×n(C) : A(X) = M}, where A is a linear operator and M
are measurements, often corrupted by noise or incomplete due to missing data. Sometimes
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additional information on the rank of the sought matrix is available, either an estimate
thereof or its exact value (as in the lifted phase retrieval problem, see [19]); in that case the
low-rank problem can be recasted as

find X ∈ Mm×n(C) subject to X ∈ C and rank(X) ≤ r.

As in the vector case, the operator X 7→ rank(X) is discontinuous and thus convex and
non-convex relaxations have been proposed to replace it. The first (heuristic) penalty pro-
posed was the trace norm Tr(X) [46] that however works only with square symmetric
matrices; the nuclear norm ‖X‖∗ =

∑min{m,n}
i=1 σi(X) [25], being σi(X) the singular

values ofX , pretty much imposed itself as standard approach, playing a role similar to the
one played by the ℓ1 norm in the vector case. The rationale behind using the nuclear norm
is that ‖X‖∗ is the convex envelope of rank(X) over the set {X : σ1(X) ≤ 1} [25];
moreover it is possible to show that the two problems

min
X∈Mm×n

‖X‖∗ subject to A(X) =M

and

min
X∈Mm×n, Y ∈Hm×m, Z∈Hn×n

tr(Y ) + tr(Z) subject to


A(X) =M(
Y X

X∗ Z

)
≽ 0

are equivalent, and thus the nuclear norm minimization problem enjoys all the numerical
benefits of semidefinite programs. In a similar fashion to the vector case, uniqueness and
robustness results are proved under the restricted isometry property (for matrices) [50] or
rank null-space property [52].

Mirroring again the vector theory, the nuclear norm suffers from a shrinking bias;
moreover, as noted in [32], there is usually no µ for which the solution to

min
X

µ‖X‖∗ + ‖X −M‖2F subject to rank(X) ≤ r

is the projection ofM onto the manifold of rank ≤ r matrices (that would be the solution
tominrank(X)≤r ‖X−M‖2F , cfr. Eckart-Young theorem), which is an undesirable property.
For these very reasons several non-convex alternatives were proposed [39][47][36][32].

10



OUR CONTRIBUTIONS

This thesis deals with functionals of the type

Qγ(f)(x) + ‖Ax− b‖2

where Qγ is a general transform called quadratic envelope and studied in depth in [20],
f : V → R ∪ {∞} is a functional (virtually any) on a separable Hilbert space V and
A : V → W is a linear operator. The quadratic envelope of f is defined as

Qγ(f)(x) = sup
α∈R,y∈V

{
α− γ

2
‖x− y‖ : α− γ

2
‖ · −y‖2 ≤ f

}
and it is possible to prove (Theorem 3.1 in [20]) that

Qγ(f)(x) =
(
f +

γ

2
‖ · −d‖2

)∗∗
(x)− γ

2
‖x− d‖2

where ∗ is the Fenchel conjugate. Even though Qγ(f)(x) might not be necessarily convex,
it enjoys a remarkable set of good properties: it is continuous in the interior of its domain
(if f is lower semi-continuous) and if f is semi-algebraic and V is finite-dimensional, then
Qγ(f) is semi-algebraic too. Moreover Qγ(f)(x) + ‖Ax− b‖2 has possibly fewer local
minimizers than f(x)+ ‖Ax−b‖2 and the global minimizers of the latter are not moved
by regularizing f . This construction was already more concretely studied in [40] with
f = µ rank(X), in the context of low-rank matrices.

We detail now the contributions of each single manuscript:

UNBIASEDNESS. In Paper I we study the functionals

Kµ,reg(x) = Q2(µcard)(x) + ‖Ax− b‖2ℓ2 (10)

and

Kk,reg(x) = Q2(ιPk
)(x) + ‖Ax− b‖2ℓ2 (11)

where ιPk
(x) =

{
0 if card(x) ≤ k

∞ else.
Both penalties have an explicit formula [20] [1]

and while Q2(µcard)(x) is separable (and coincides with the MCP introduced in [63]),
Q2(ιPk

)(x) is non-separable and a completely new mathematical object. If the measure-
ments b are noisy, i. e. are of the type b = Ax0 + e for some ground truth x0 and noise
e, it is impossible to retrieve x0 and the best that one could hope for is the so-called oracle
solution, i. e. the solution to ASx = b in the least square sense, being S = supp(x0) and
AS the matrix obtained by removing (or setting to zero) the columns of indices in Sc from
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A; essentially it is the solution to Ax = b as if the support of x0 was a priori known. Our
main results essentially state that, under some conditions on the noise and on the sensing
matrix A, the oracle solution is the unique global minimizer of both (10) and (11). Be-
fore stating the two main theorems we recall that the Lower Restricted Isometry Property
(LRIP) constant δ−k of order k of a matrix A [7] is defined as

δ−k = 1− inf

{‖Ax‖2ℓ2
‖x‖2

ℓ2
: x 6= 0, card(x) ≤ k

}
;

we moreover introduce the notation, for a matrix A, ‖A‖∞,col = maxi ‖ai‖2, being ai
the i-th column of A.

We are now ready to state the main theorems of Paper I:

Theorem (4.9). Suppose that b = Ax0+e whereA is anm×nmatrix with ‖A‖∞,col ≤ 1
and set card(x0) = k. Let N ≥ 2k, assume that ‖e‖ℓ2 ≤ (1− δ−k )

√
µ and

|x0,j | >
(

1

1− δ−k
+ 1

)
√
µ, j ∈ supp(x0).

Then the oracle solution x′ = xor is the unique global minimum of (10) as well as µcard(µ)+
‖Ax− b‖2ℓ2 , with the property that supp(x′) = supp(x0), that

‖x′ − x0‖ℓ2 ≤ ‖e‖ℓ2√
1− δ−k

(12)

and that card(x′′) > N − k for any other stationary point x′′ of (10).

A similar result holds for (11):

Theorem (5.5). Suppose that n ≥ m+ k+ 2 (or n ≥ 2m+ k+ 2 in the complex case) and
that ‖A‖∞,col < 1. If e 6= 0 and

|x0,j | >

 ‖e‖ℓ2√
1− δ−k

+
2‖e‖ℓ2√
1− δ−2k

 , j ∈ supp(x0).

Then the oracle solution is a global minimum of (11) and

‖x′ − x0‖ℓ2 ≤ ‖e‖ℓ2√
1− δ−k

.

We summarize here the main points of strength of our approach:
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) both penalties / methods are unbiased because

E(xor)− x0 = E((A∗
SAS)

†A∗
Sb)− x0 = x0 − E(e)− x0 = 0

as long as the noise has zero mean (with † we indicate the Moore-Penrose inverse).
For the sake of completeness we must underline that ours is not the first proof of
unbiasedness of MCP appearing in literature; Corollary 1 in [43] is for instance very
similar in its conclusions to our Theorem 4.9, even though it is very hard to compare
the premises: the assumptions on the sensing matrix A made in [43] are similar and
/ or comparable to LRIP (a property called restricted strong convexity is used instead),
but there are further hypothesis on the covariance matrix of A that, together with a
plethora of constants the magnitude of which is not clearly stated, seem rather hard to
check in practice. Moreover Corollary 1 in [43] states that, under the aforementioned
hypothesis the MCP has a unique stationary point while it was numerically observed
both in Paper I and in [55] that, under the assumptions of Theorem 4.9, MCP has a
lot of stationary points. We thus believe that our framework is more general, cleaner
and somehow simpler (it does not involve asymptotic / probabilistic tools, but only
machinery borrowed from classical convex analysis theory).

) the penalty Q2(ιPk
) is unbiased, non-separable, parameter independent and a com-

pletely new mathematical object; to the best of our knowledge no other non-separable
penalty was shown to have such strong properties;

) we use LRIP instead of RIP, which is weaker; moreover there are no restrictions on δ−k
other than< 1. In addition the estimate (12) is sharper than its convex counterparts
(7) and (8), as the following picture shows:

Figure 3: Noise coefficients comparison. δk on the x-axis and C(δk) on the y-axis.

The estimates (12), (7) and (8) are of the type ‖x′ − x0‖ℓ2 ≤ C‖e‖ℓ2 where C
depends on δk or higher order RIP constants. In (8) we set s = 1 and θs,1 = 0; our
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method is vastly better, even considering that the constants in (7) and improved (7)
are functions of δ2k, δ3k and δ4k, and δk ≤ δ2k ≤ δ3k ≤ δ4k holds.

ESCAPE ROUTES AND STATIONARY POINTS SUPPRESSION. In Papers III and IV we
tried to mitigate the effect that non-convexity might have (for instance on the optimization
routines). Specifically, in Paper III we consider the functional

rµ,λ(x) + ‖Ax− b‖2ℓ2 = Q2(µcard + λ‖ · ‖ℓ1)(x) + ‖Ax− b‖2ℓ2 ; (13)

the idea behind adding the (small) perturbation λ‖x‖ℓ1 is that it might help to mitigate
the non-convexity of the original functional, by the price of introducing a small bias. This
might be considered as a crossover method between those introduced in Paper I and the
classical LASSO. We show there that actuallyQ2(f+λ‖·‖ℓ1)(x) = Q2(f)(x)+λ‖x‖ℓ1 ,
and moreover

proxQ2(f+λ∥·∥ℓ1 )/ρ
(y) = proxQ2(f)/ρ

(proxλ∥·∥ℓ1 (y)), y ∈ Rn

for any lower semi-continuous sign-invariant function f : Rn → R such that f(0) = 0
and f(x+ y) ≥ f(x) for every x,y ∈ Rn

+.
In addition we prove that the λ-oracle solution, i. e. the solution to

xλ = argminλ‖x‖ℓ1 + ‖ASx− b‖2ℓ2

with supp(x0) = S, is a stationary point of (13) (Theorem 3.1) and that, under some as-
sumptions on A, µ, λ and xλ, the other stationary points of (13) are non-sparse (Theorem
4.2). In conclusion, Figure 4 heuristically shows the correctness of our intuition: a very
ill-posed problem was (randomly) generated and a cloud of starting points for the mini-
mization routine was drawn. The small ℓ1 term introduced in (13) dramatically enlarges the
convergence basin, i. e. the set of starting points that lead to a “satisfactory” reconstruction.
This means that either (13) suppresses some stationary points of (10) or that at least it allows
the optimization algorithm (in our case, the Forward-Backward Splitting) to escape them.
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Figure 4: Converge basin of (13) (left) and (10) (right). A small λ helps with the conver-
gence.

In Paper I we observed that the separability of Q2(µcard)(x) makes (10) prone to have
many dense local minima; this fact was not supposed to come as a surprise, but it actually
came as such when we observed that the minimization routines tended to get stuck when the
point (A∗A)†A∗b was used as starting point. With the aim of circumventing this issue, in
Paper IV we thus investigated a further generalization of Q2(µcard)(x). Specifically, given
the weights function

G(k) =
k∑

i=0

gi

where 0 = g0 ≤ g1 ≤ · · · ≤ gk ≤ ∞, we considered the functional

Q2(G(card))(x) + ‖Ax− b‖2ℓ2 . (14)

The functions card(x) and ιPk
(x) are particular cases of G(card)(x), for when gi = 1

for all i and gi = 0 for i ≤ k and gi = ∞ for i > k respectively, and this is already a
natural reason to study (14). We show that those dense local minima can be suppressed by
choosing for instance gi = i2 for i ≤ kmax and gi = ∞ else, being kmax a certain index
“tolerance” (that might depend on the available information on the problem); when the gi
are different the penalty G(card)(x) is non-separable and this makes it effectively capable
to penalize the cardinality. The paper is complemented with strong theoretical evidences
on existence and uniqueness of sparse stationary points of the functional (14). Numerical
experiments, both synthetic and from real world applications (Non-Rigid Structure from
Motion problem) demonstrate robustness and superior (with respect to the competitor
methods) performances of the proposed approach.

MATRIX THEORY. Paper II mirrors Paper I and it shows the flexibility of the theory in-
troduced, which creates a unitary theoretical framework for these type of problems.
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We here consider the functionals

Q2(µrank)(X) + ‖A(X)− b‖2ℓ2 (15)

and

Q2(ιRk
)(X) + ‖A(X)− b‖2ℓ2 (16)

and we study their properties. Section 4 provides the mathematical tools and observations
to re-use the vector theory developed in Paper I: the idea is that rank(X) = card(σ(X))
and ιRk

(X) = ιk(σ(X)) where σ(X) is the vector of the singular values of X ; this hints
how vector and matrix theory are connected.

Since the vector oracle solution does not have a matrix counterpart, we consider the
best rank k solutionXB to A(X) = b and we show that under some assumptions on the
ground truthX0, the noise level and the RIP constant of the operatorA, results resembling
those in Paper I hold:

Theorem. Suppose that b = A(X0)+ e where ‖A‖ < 1 and rank(X0) = K. Assume that
‖e‖ℓ2 ≤ (1− δ−2K)3/2

√
µ/3 and

σK(X0) >

[
1

1− δ−2K
+ (1− δ−2K)

]
√
µ.

Then the best rank K solution XB is unique and equals the (also unique) global minimum of
(15). Moreover

‖X0 −XB‖F ≤ 2e/
√
1− δ−2K

and any other stationary point X of (15) has rank(X) > K.

The following theorem holds for (16):

Theorem. Suppose that b = A(X0) + e where ‖A‖ < 1 and that δ−2K < 1/2 and
rank(X0) = K. Assume that

σK(X0) >

[
5

(1− δ−2K)3/2

]
‖e‖ℓ2 .

Then the best rankK solutionXB is the global minimum of (16), and there are no other local
minima. Moreover

‖X0 −XB‖F ≤ 2e/
√
1− δ−2K

holds.
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THE FOURIER PHASE RETRIEVAL PROBLEM

PROBLEM AND UNIQUENESS. The (noiseless) Fourier phase retrieval problem is a fa-
mous inverse problem that arises in X-ray crystallography and Coherent Diffractive Imag-
ing (CDI) [26]. It consists in reconstructing a function g : X → R given the modulus of
its Fourier transform

|F(g)(ξ)| =
∣∣∣∣∫ ∞

−∞
g(ξ)e−2πiξ·x dx

∣∣∣∣
together with some additional constraints on its support.

Figure 5: Lena (left) and the modulus of its 2-D Fourier transform (right, in logarithmic
scale)

In applications the phase retrieval problem is usually stated as discretized : introducing
the pure oscillatory exponential functions fk(n) = e2πi

k·n
m with k ∈ {0, . . . ,m − 1}d

and n ∈ {0, . . . , n − 1}d, the discretized phase retrieval problem amounts to finding
x ∈ ⊗d

j=1Cn given
bk = |〈x, fk〉|2 (17)

plus possible geometrical constraints on x. Typically the measurements b are not “pure”,
but corrupted by Gaussian and Poisson noise. When d = 2 the latter can be written in a
better known form:

b(k1,k2) =

∣∣∣∣∣
m−1∑
n1=0

m−1∑
n2=0

x(k1,k2)e
−−2πi(k1n1+k2n2)

m

∣∣∣∣∣
which is, indeed, the modulus of the 2-D discrete Fourier transform (DFT).

The uniqueness of the solution to the Fourier phase retrieval problem roughly depends
on the dimension d. First of all one needs to consider the so-called trivial ambiguities:
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indeed given a signal x ∈ ⊗d
j=1Cn, the signals x(n + n0) (spatial shift), xeiθ0 (global

phase shift) and x(−n) (conjugate inversion) with θ0 ∈ R and n0 ∈ {0, . . . , n − 1}d
fixed have the same Fourier transform magnitude of x. Therefore uniqueness has to be
intended as modulo these ambiguities. The uniqueness problem for d = 1 was investigated
in [35], where it was shown that, given a one-dimensional compactly supported complex
signal x, it is possible to construct non-trivial signals y with the same autocorrelation of x
(and therefore with the same Fourier transform magnitude). In [5] it was showed that not
even the assumption that x ∈ Rd

+ is enough to ensure uniqueness.
When d ≥ 2 Hayes showed in [33] (Theorem 7) that two signals x and y in ⊗d

j=1Cn

with the same Fourier magnitudes and the same support are essentially the same (i.e. the
same up to trivial ambiguities) if mi ≥ 2ni − 1 for all i = 1, . . . , d and the z-transform∑

n x(n)z
−n has at most one irreducible non-symmetric factor. Hayes and McClellan

showed in [34] that if d ≥ 2 then the set of complex coefficients of irreducible polynomials
in d variables is isomorphic to a subset of R2α(k,d) of Lebesgue zero-measure, and thus the
set of compactly supported signals that cannot be uniquely identified (modulo the afore-
mentioned trivial ambiguities) by the magnitude of their Fourier transform is in some sense
negligible. This gives some sort of well-posedness of the Fourier phase retrieval problem
when d ≥ 2.

ALGORITHMS. The very first family of algorithms, based on the idea of alternatingly ad-
just the support and the Fourier modulus, was proposed and developed by Fienup (one
intensity measurement), Gerchberg and Saxton (two intensity measurements) respectively
in [26] and [31].

The idea of projecting back and forth is old (for affine spaces it goes back at least to von
Neumann [60]) and rather elementary: given two non-empty closed convex sets C,D ⊆
Rn one would like to find a point x ∈ C ∩D. It is possible to show [3] that the sequence
{xn}n≥1 ⊆ Rn defined recursively by

xn+1 = PC(PD(xn)) (18)

converges to a point x ∈ C ∩D (if the intersection is nonempty); PC(x) is the projection
of x on C.

Fienup applied this principle to the Fourier phase retrieval problem with C = {g :
supp(g) ⊆ S} (S ⊆ R2 prescribed support) and D = {g : |F(g)(x)|2 = b(x)} (b(x)
given as measurement); however in this case D is not convex and the convergence is not
guaranteed anymore. Also, the convergence of this Error Reduction (ER) scheme tends
to be slow. Fienup subsequently refined and analysed a new method called Hybrid Input-
Output (HIO) [26][27] where he introduced an additional step as an attempt to overcome
the speed limitations of Error Reduction. The Hybrid Input-Output can be written [26] as

xn+1 =

{
PD(xn)(r) if r ∈ S

(I − βPD)(xn)(r) otherwise
(19)
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being S the support (or an estimate thereof ) of the sought ground truth signal. Other
proposed schemes are the Hybrid Projection-Reflection (HPR) [4]

xn+1 =
1

2
[RC(RD + (1− β)PD) + I + (1− β)PD](xn)

where RC = 2PC − I and RD = 2PD − I are the reflections and β is a parameter,
usually belonging to [0.5, 1], the Difference Map (DM) [23]

xn+1 = {I + βPC [(1 + γ)PD − γI]− βPD[(1 + γ)PC − γI]} (xn)

and so forth; see [45] for a more comprehensive overview.
Despite the significant number of algorithms developed throughout the years to tackle

the Fourier phase retrieval reconstruction in dimension > 1, the problem remains rather
elusive and a robust universal approach with convergence guarantees is, to the best of our
knowledge, still lacking [6]. Input-Output schemes remain the most popular approach,
even though they turn out to be (empirically) successful only when coupled with more ad-
vanced min-max / saddle points techniques [45] (for example for the steplength selection).

PHASELIFT APPROACH. The PhaseLift approach was introduced and popularized by
Candès and co-workers in [19][15]. They observed that |〈x, fk〉|2 = 〈x ⊗ x, fk ⊗ fk〉
where fk(n) = e−2πik·n/m and therefore the Fourier phase retrieval problem as stated in
(17) boils down to find a rank 1 positive semidefinite linear operator X on ⊗d

j=1Cn such
that

〈X, fk ⊗ fk〉 = bk, k ∈ {0, . . . ,m− 1}d. (20)

The problem becomes then linear, but the price to be paid is that the dimension is squared.
If we denote with T the space of positive semidefinite operators on ⊗d

j=1Cn we can define
the linear operator A : T → ⊗d

j=1Cm by

X 7→ (〈X, fk ⊗ fk〉)k (21)

and solve the lifted Fourier phase retrieval problem (20) using an optimization-based ap-
proach, i.e.

min ‖A(X)− b‖2 subject to rank(X) = 1,X ≽ 0. (22)

Due to the non-convexity of the constraint rank(X) = 1, Candès and co-workers proposed
to minimize the (convex) functional

λ‖X‖∗ + ‖A(X)− b‖2

where ‖ · ‖∗ is the nuclear norm, known for being sparsity inducing (cfr. previous section)
and λ is a parameter that trades between sparsity and data fit.

We note that the PhaseLift approach is computationally heavy and rather unfeasible for
large scale problems; the reason is intrinsic: an image of 512× 512 pixels, when “lifted”, is
represented by a 5122× 5122 = 262144× 262144 matrix, which would require, if dense,
approximatively 150 GigaBytes of RAM.
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OUR CONTRIBUTIONS

The (Fourier) phase retrieval problem in its PhaseLift form is a good example of a problem
where the rank of the sought ground truth is known to be exactly equal to 1.

There are (at least) two operations that are used in practice with the aim of stabilizing
this problem: the first is oversampling (that is some sense is a mere mathematical trickery),
the other is masking (that would need a concrete physical counterpart). Oversampling
consists in using intermediate frequencies in the Discrete Fourier transform calculation;
in practice this simply means that mi > ni for all i and it is usually achieved by simply
considering the underlying ground truth as zero-padded along each dimension. Masking is
mostly achieved on situ by means of partially covering the sample from the sensing beam,
so that the actual specimen becomes x0χCi(n), being χCi the indicator function of some
set Ci. Multiple masks might be used for improved performances.

In Paper V we firstly establish a result on oversampling: we show that the rank of the
operator (21) equalsmin{|S|, (2n−1)d}, being S the support of the ground truthX0 and
|S| its cardinality; this essentially says that oversampling does not necessarily add linearly
independent conditions. We then propose an algorithm to tackle the 1-D and 2-D Fourier
phase retrieval problem (with random masks), heavily relying on the tools developed in
Paper I and Paper II. We consider and minimize the functional

Q2(ιR+
1
)(X) + ‖A(X)− b‖2

with

ιR+
1
(X) =

{
0 if rank(X) ≤ 1 and X ≽ 0

∞ else

and b as in (20). The minimization is done by means of the Forward-Backward Splitting
algorithm; we provide an explicit formula for the proximal operator of the penalty function
involved, together with a fast and optimized procedure to calculate the gradient step using
the Fast Fourier Transform. Our experiments with the 1-D problem show that our method
outperforms the standard approach based on the nuclear norm in a noisy scenario, and
it has comparable performances to the re-weighted nuclear norm, with the advantage of
being able to retrieve matrices of exactly rank 1. Additional experiments are conducted to
investigate the role of oversampling, and they ultimately confirm our theoretical analysis.

POSSIBLE FUTURE DIRECTIONS

In this thesis we propose a rather rich theory that somehow spontaneously developed itself,
especially after the foundations in Paper I were laid. We tried to address and answer to
most of the natural questions we came across, but few of them remain open. We outline
here few possible future research directions / problems:
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) If f : Rn → R ∪ {∞} is lower semicontinuous and semialgebraic, then so is
Qγ(f) [20]; and thus the latter has the local Kurdyka-Łojasiewicz property under
which the Forward-Backward Splitting algorithm is proved to be convergent to a
stationary point [2]. Nonetheless it might be interesting to develop a tailor-made
algorithm that fully uses the topological advantages of the transform Q, in the same
fashion as [8].

) In Paper IV we proved that oracle-type solutions are stationary points of (14) under
some conditions (both in the vector and the matrix case). In the vector case they are
also local minima under essentially the same conditions (cfr. Miscellaneous section).
It’s unclear to us if this is also true in the matrix scenario.

21



REFERENCES

[1] F. Andersson, M. Carlsson, and C. Olsson. Convex envelopes for fixed rank approxi-
mation. Optimization Letters, 11(8):1783–1795, 2017.

[2] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting, and
regularized Gauss-Seidel methods. Mathematical Programming, 137:91–129, 2013.

[3] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. CMS Books in Mathematics. Springer, 2010.

[4] H. H. Bauschke, P. L. Combettes, and R. Luke. Hybrid projection-reflection method
for phase retrieval. Journal of the Optical Society of America A, 20(6):1025–1034, 2003.

[5] R. Beinert. Non-negativity constraints in the one-dimensional discrete-time phase
retrieval problem. Information and Inference: A Journal of the IMA, 6(2):213–224,
2017.

[6] T. Bendory, R. Beinert, and Y. C. Eldar. Fourier Phase Retrieval: Uniqueness and
Algorithms. Compressed Sensing and its Applications. Applied and Numerical Harmonic
Analysis, pages 55–91, 2018.

[7] J. D. Blanchard, C. Cartis, and J. Tanner. Compressed Sensing: How Sharp Is the
Restricted Isometry Property? SIAM Review, 53(1):105–125, 2011.

[8] T. Blumensath and M. E. Davis. Iterative Thresholding for Sparse Approximations.
Journal of Fourier Analysis and Applications, 14:629–654, 2008.

[9] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3d shape from
image streams. Proceedings of IEEE Conference in Computer Vision and Pattern Recog-
nition, 2000.

[10] L. Breiman. Better subset regression using the nonnegative garrote. Technometrics,
37(4):373–384, 1995.

[11] M. Burger, M. Moeller, M. Benning, and S. Osher. AN ADAPTIVE INVERSE
SCALE SPACE METHOD FOR COMPRESSED SENSING. Mathematics of Com-
putation, 82(281):269–299, 2013.

[12] J. Cahill, X. Chen, and R. Wang. The gap between the null space property and the
restricted isometry property. Linear Algebra and its Applications, 501:363–375, 2016.

[13] T. T. Cai, L. Wang, and G. Xu. Shifting Inequality and Recovery of Sparse Signals.
IEEE Transactions on Signal Processing, 58(3):1300–1308, 2009.

22



[14] E. Candès. The restricted isometry property and its implications for compressed sens-
ing. Comptes Rendus Mathematique, 346(9–10):589–592, 2008.

[15] E. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase Retrieval via Matrix
Completion. SIAM Review, 6(1):225–251, 2015.

[16] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inac-
curate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–
1223, 2006.

[17] E. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on In-
formation Theory, 51(12):4203–4215, 2005.

[18] E. Candès, M. Wakin, and S. Boyd. Enhancing Sparsity by Reweighted ℓ1 Minimiza-
tion. Journal of Fourier Analysis and Applications, 14:877–905, 2008.

[19] E. J. Candès, T. Strohmer, and V. Voroninski. PhaseLift: Exact and Stable Signal
Recovery from Magnitude Measurements via Convex Programming. Communications
on Pure and Applied Mathematics, 66(8):1241–1274, 2013.

[20] M. Carlsson. On Convex Envelopes and Regularization of Non-convex Functionals
Without Moving Global Minima. Journal of Optimization Theory and Applications,
183:66–84, 2019.

[21] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Prob-
lems with Applications to Imaging. Journal of Mathematical Imaging and Vision,
40:120–145, 2011.

[22] D. L. Donoho and Y. Tsaig. Fast Solution of ℓ1-Norm Minimization Problems When
the Solution May Be Sparse. IEEE Transactions on Information Theory, 54(11):4789–
4812, 2008.

[23] V. Elser. Phase retrieval by iterated projections. Journal of the Optical Society of America
A, 20(1):40–55, 2003.

[24] J. Fan and R. Li. Variable Selection via Nonconcave Penalized Likelihood and its
Oracle Properties. Journal of the American Statistical Association, 96(456):1348–1360,
2001.

[25] M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to
minimum order system approximation. Proceedings of the American Control Confer-
ence, 2001.

[26] J. R. Fienup. Reconstruction of an object from the modulus of its fourier transform.
Applied Optics, 3(1):27–29, 1978.

23



[27] J. R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):2758–
2769, 1982.

[28] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Ap-
plied and Numerical Harmonic Analysis. Birkhäuser, 2013.

[29] C. Gao, N. Wang, Q. Yu, and Z. Zhang. A Feasible Nonconvex Relaxation Approach
to Feature Selection. Twenty-Fifth AAAI Conference on Artificial Intelligence, 25(1),
2011.

[30] T. Gelvez, H. Rueda, and H. Arguello. Joint sparse and low rank recovery algorithm
for compressive hyperspectral imaging. Applied Optics, 56(24):6785–6795, 2017.

[31] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of
the phase from image and diffraction plane pictures. Optik, 35:237–246, 1972.

[32] C. Grussler, A. Rantzer, and P. Giselsson. Low-Rank Optimization With Convex
Constraints. IEEE Transactions on Automatic Control, 63(11):4000–4007, 2018.

[33] M. H. Hayes. The reconstruction of a multidimensional sequence from the phase or
magnitude of its Fourier transform. IEEE Transactions on Acoustics, Speech and Signal
Processing, 30(2):140–154, 1982.

[34] M. H. Hayes and J. H. McLellan. Reducible polynomials in more than one variable.
Proceeding of the IEEE, 70(2):197–198, 1982.

[35] E. Hofstetter. Construction of time-limited functions with specified autocorrelation
functions. IEEE Transactions on Information Theory, 10(2):119–126, 1964.

[36] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He. Fast and Accurate Matrix Completion via
Truncated Nuclear Norm Regularization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(9):2117–2130, 2012.

[37] Peter J. Huber. Robust Estimation of a Location Parameter. Annals of Statistics,
53(1):73–101, 1964.

[38] A. Lanza, S. Morigi, I. Selesnick, and F. Sgallari. Nonconvex nonsmooth optimization
via convex-nonconvex majorization-minimization. Numerische Mathematik, 136:343–
381, 2017.

[39] V. Larsson and C. Olsson. Convex Low-Rank Approximation. International Journal
of Computer Vision, 120:194–214, 2016.

[40] V. Larsson, C. Olsson, E. Bylow, and E. Kahl. Rank Minimization with Structured
Data Patterns. European Conference on Computer Vision, pages 250–265, 2014.

24



[41] P. L. Lions and B. Mercier. Splitting Algorithms for the Sum of Two Nonlinear Op-
erators. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

[42] G. Liu, Z. Lin, and Y. Yu. Robust Subspace Segmentation by Low-Rank Represen-
tation. IEEE Transactions on Cybernetics, 44(8):1432–1445, 2013.

[43] P.-L. Loh and M. J. Wainwright. Support recovery without incoherence: A case for
nonconvex regularization. Annals of Statistics, 45(6):2455–2482, 2017.

[44] M. Malek-Mohammadi, C. R. Rojas, and B. Wahlberg. A Class of Nonconvex Penal-
ties Preserving Overall Convexity in Optimization-Based Mean Filtering. IEEE Trans-
actions on Signal Processing, 64(24):6650–6664, 2016.

[45] S. Marchesini. Invited article: A unified evaluation of iterative projection algorithms
for phase retrieval. Review of Scientific Instruments, 78, 2007.

[46] M. Mesbahi. On the semi-definite programming solution of the least order dynamic
output feedback synthesis. Proceedings of the 38th IEEE Conference on Decision and
Control, 1999.

[47] K. Mohan and M. Fazel. Iterative reweighted algorithms for matrix rank minimiza-
tion. The Journal of Machine Learning Research, 13(1):3441–3473, 2012.

[48] B. K. Natarajan. Sparse Approximate Solutions to Linear Systems. SIAM Journal on
Computing, 24(2):227–234, 1995.

[49] M. Nikolova. Estimation of binary images by minimizing convex criteria. Proceedings
1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998.

[50] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi. A simplified approach to recovery
conditions for low rank matrices. 2011 IEEE International Symposium on Information
Theory Proceedings, 2011.

[51] Y. Rahimi, C. Wang, H. Dong, and Y. Lou. A scale-invariant approach for sparse
signal recovery. SIAM Journal on Scientific Computing, 41(6):3649–3672, 2019.

[52] B. Recht, M. Fazel, and P. P. Parrilo. Guaranteed Minimum-Rank Solutions of Lin-
ear Matrix Equations via Nuclear Norm Minimization. SIAM Review, 52(3):471–501,
2010.

[53] I. Selesnick. Sparse Regularization via Convex Analysis. IEEE Transactions in Signal
Processing, 65(17):4481–4494, 2017.

[54] I. Selesnick and İ Bayram. Enhanced sparsity by non-separable regularization. IEEE
Transactions on Signal Processing, 64(9):2298–2313, 2016.

25



[55] E. Soubies, L. LeBlanc-Féraud, and G. Aubert. A Continuous Exact ℓ0 Penalty
(CEL0) for Least Squares Regularized Problem. SIAM Journal on Imaging Sciences,
8(3):1607–1639, 2015.

[56] M. Tao and X.-P. Zhang. A unified study on ℓ1 over ℓ2 minimization. ArXiv preprint:
2108.01269v1, 2021.

[57] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
a factorization method. International Journal of Computer Vision, 9(2):137–154, 1992.

[58] K. Usevich and I. Markovsky. Variable projection methods for approximate (greatest)
common divisor computations. Theoretical Computer Science, 681:176–198, 2013.

[59] H. Vargas and H. Arguello. A Low-Rank Model for Compressive Spectral Image
Classification. IEEE Transactions on Geoscience and Remote Sensing, 57(12):9888–9899,
2019.

[60] J. von Neumann. On rings of operators. reduction theory. Annals of Mathematics,
50:401–485, 1949.

[61] D. P. Wipf, B. D. Rao, and S. Nagarajan. Latent Variable Bayesian Models for Pro-
moting Sparsity. IEEE Transactions on Information Theory, 57(9):6236–6255, 2011.

[62] Y. Xu, A. Narayan, T. Hoang, and C. G. Webster. Analysis of the ratio of ℓ1 and ℓ2

norms in compressed sensing. Applied and Computational Harmonic Analysis, 55:486–
511, 2021.

[63] C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

[64] H. Zou. The Adaptive Lasso and Its Oracle Properties. Journal of the American Sta-
tistical Association, 100(476):1418–1429, 2006.

26



Miscellaneous





In this short section we collect an handful of unpublished observations that we believe
significant enough to appear in this thesis. We prove a generalization of Theorem 3.1 in
Paper IV, i. e. that oracle-type solutions are local minimizer (and not only stationary points)
for the functional Q(G(card))(x)+∥Ax−b∥2 under some conditions on the coefficients
gi (Theorem C); in order to do that, a more detailed study of the Frechét subdifferential
∂̂Q(G(card))(x) (Theorem B) structure is carried out.

THE ORACLE SOLUTION IS A LOCAL MINIMIZER OF
Q(G(CARD))(x) + ∥Ax − b∥2.

This note generalizes Theorem 3.1 in Paper IV. Recall thatG : N → R∪{∞} is a function
defined by

G(k) =
k∑

i=1

gi

with 0 ≤ g1 ≤ g2 ≤ · · · ≤ gn ≤ ∞ integers. We set f(x) := G(card(x)), k := #S and
p := #Sc so that n = k+ p. With ∥ · ∥ we mean the ℓ2-norm. The operator ·̃ is such that
|x̃| is ordered decreasingly.

Lemma A. There exists a non-empty set V ⊆ Cn where

f(y) = Q(f)(y) ∀y ∈ V.

Proof. By definition of the quadratic envelope Q we have that

f(y)− ∥x− y∥2
(∗)
≤ f(x) ∀x ∈ Rn =⇒ f(y) = Q(f)(y).

If we define

j̄ :=

{
max{j : gj <∞} if gn <∞
gn if gn = ∞

then we need to assume l := card(y) ≤ j̄. Now (∗) means
∑l

j=1 gj − ∥x − y∥2 ≤∑card(x)
j=1 gj which is trivially satisfied if card(x) ≥ l. If 0 ≤ card(x) < l we get∑l
j=card(x)+1 gj ≤ ∥x − y∥2 and in order for this to be true for all cardinalities of x

we need conditions on y of the type
∥y∥2 ≥

∑l
j=1 gj

∥y∥2 − |ỹ|21 ≥
∑l

j=2 gj
...

|ỹ|2l ≥ gl;
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since the gj are increasing, the last condition is enough to define the set

V := {y ∈ Cn, card(y) = l : |ỹ|l ≥
√
gl}.

Theorem B (Subdifferential structure). Assume |x̃or|k >
√
gk. Then{

zj = 0 if j ∈ S

|zj | ≤ 2min{√gk+1, |x̃|k} if j ∈ Sc
=⇒ z ∈ ∂̂Q(f)(xor).

Proof. We want to show that

L = lim inf
∥y∥→0

Q(f)(xor + y)−Q(f)(xor)− ⟨z,y⟩
∥y∥

≥ 0.

According to [1] we have that

Q(f)(y) = sup
x,α

{α− ∥x− y∥2 : α− ∥x− v∥2 ≤ f(v) ∀v};

the idea is thus to carefully select a quadratic lower bound for Q(f) for estimating the
fraction in L from below. For brevity we introduce q(α,x,v) := α− ∥x− v∥2.

We claim now that q(ᾱ,w,v) ≤ f(v) for all v ∈ Rn, where ᾱ =
∑k

j=1 gj + γ
and w ∈ Rn is such that wS = xor, |wj | ≤ min{√gk+1, |x̃|k} for j ∈ Sc and
∥wSc∥2 = γ ≤ pmin{√gk+1, |x̃|k}2. We prove this claim:

• First of all notice that

q(ᾱ,w,xor) =

k∑
j=1

gj + γ − ∥w − xor∥2 =
k∑

j=1

gj + γ − ∥wSc∥2 = f(xor)

and q(ᾱ,w,0) =
∑k

j=1 gj − ∥wS∥2 ≤ 0.

• For any 0 < v := card(v) < k the claim amounts to show that
∑k

j=v+1 gj + γ ≤
∥w − v∥2, and this is clearly true because minv,card(v)=v ∥w − v∥2 = ∥wSc∥2 +
∥uv∥2 where uv is equal to xor without its v biggest (in modulus) components.

• For v with card(v) = k it’s clear.

• For any v := card(v) > k the claim amounts to show that −
∑v

j=k+1 gj + γ ≤
∥w− v∥2 and this is again true because minv,card(v)=v ∥w− v∥2 = ∥uv∥2 where

208



uv is now a vector obtained from w by removing/subtracting xor and the biggest
v − k components of wSc . Now

v∑
j=k+1

gj + ∥u∥2 ≥ (v − k)gk+1 + ∥u∥2 ≥ ∥wSc∥2 = γ

and this concludes the proof of the claim.

From the claim it follows that q(ᾱ,w,xor + y) ≤ Q(f)(xor + y); also notice that
Q(f)(xor) = f(xor). Therefore

Q(f)(xor + y)−Q(f)(xor)− ⟨z,y⟩
∥y∥

≥ q(ᾱ,w,xor + y)− f(xor)− ⟨z,y⟩
∥y∥

:= A.

But

A =
γ − ∥y −wSc∥2 − ⟨z,y⟩

∥y∥
=
γ − ∥y∥2 − ∥wSc∥2 + ⟨2wSc − z,y⟩

∥y∥

and if 2wSc − z = 0 we simply have A = −∥y∥; in this case L ≥ 0. The structure of z
follows from the arbitrariness of wSc .

We can prove now that the oracle solutionxor is a local minimum forG under moderate
noise. As usual measured data b are of the typeAx0+e for some underlying ground truth
x0 and some noise e. We assume here thatA has some restricted isometry property. Define
M := 2min{√gk+1, |x̃|k}.

Theorem C. Assume that |x̃or|k >
√
gk and that ∥e∥ ≤M/2. Then the oracle solution xor

is a local minimizer for G.

Proof. In the computations of the proof of Theorem B we constructed a quadratic lower
bound for Q(f); consider now a perturbation y = yS + ySc with yS “fixed” such that
minj |xor,j + yS,j | >

√
gk. Now we redefine w in the following way: wS = xor + yS

and wj = A∗(Axor − b)j + βeiϕj for j ∈ Sc; if yS is small enough in norm and, say,
|wj | ≤ M/2 (j ∈ Sc), then for all ϕj ∈ (0, 2π] we have q(α,w,v) ≤ f(v) for all
v ∈ Cn with α =

∑k
j=1 gj + ∥wSc∥2.

We need to prove now that G(xor + y) ≥ G(xor) for small y. Notice that

∥A(xor + y)− b∥2 = ∥Axor − b∥2 + ∥Ay∥2 + 2⟨Ay, Axor − b⟩
= ∥Axor − b∥2 + ∥Ay∥2 + 2⟨y, A∗(Axor − b)⟩;
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moreover ⟨y, A∗(Axor−b)⟩j = 0 if j ∈ S, so we have ⟨y, A∗(Axor−b)⟩ = ⟨ySc , A∗(Axor−
b)⟩. Therefore if we now set ϕj = arg(ySc,j), we do get

Q(f)(xor + yS + ySc) ≥ q(α,w,xor + y)

=

k∑
j=1

gj − ∥ySc −wSc∥2

=

k∑
j=1

gj − ∥ySc∥2 + 2⟨ySc , A∗(Axor − b)⟩+ β∥ySc∥ℓ1 ;

using Q(f)(xor + yS) =
∑k

j=1 gj we get that

G(xor + y)− G(xor) ≥ −∥ySc∥2 + β∥ySc∥ℓ1 + ∥Ay∥2

and the RHS is strictly positive if y is small enough.
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