
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Attack Resilient Cloud-based Industrial Control Systems

Akbarian, Fatemeh

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Akbarian, F. (2022). Attack Resilient Cloud-based Industrial Control Systems. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/fa9e39d4-3dd7-4a85-a3c3-bd1eb7fb3899


Attack Resilient Cloud-based
Industrial Control Systems

Licentiate Thesis

Fatemeh Akbarian

Department of Electrical and
Information Technology

Lund, April 2022



Fatemeh Akbarian
Department of Electrical and Information Technology
Lund University
Ole Römers Väg 3, 223 63 Lund, Sweden

Series of Licentiate and Doctoral Theses
ISSN 1654-790X, No. 145
ISBN 978-91-8039-219-8 (printed)
ISBN 978-91-8039-220-4 (digital)

© 2022 Fatemeh Akbarian
This thesis is typeset using LATEX 2ε.

Printed by Tryckeriet i E-huset, Lund University, Lund, Sweden, 2022.



Dedicated to my family

iii





Abstract

Industrial control systems (ICSs) are a significant part of industry and they
play an important role in monitoring and controlling industrial processes.
Traditionally, ICSs have been isolated from the Internet, and thereby secured
from various Internet-based security threats. In recent years, since the cloud
can provide huge advantages regarding storage and computing resources,
industry has been motivated to move industrial control systems to the cloud.
However, when ICSs are moved to the cloud, they are inevitably exposed
to increasing security threats, which can lead to severe degradation of the
system performance or system failures. Moving control systems to the cloud
can enable attackers to infiltrate the system and establish an attack that can
lead to damages and disruptions with potentially catastrophic consequences.
Therefore, some security measures are necessary to detect these attacks in a
timely manner and mitigate the impact of them.

In the work presented in this thesis, we mainly explore the security chal-
lenges of cloud-based industrial control systems and we propose a security
framework for these systems that can make them resilient against attacks. Our
proposed framework includes attack detection methods that can detect attacks
in a timely manner. Also, the framework includes mitigation methods that
can mitigate the impact of the attack on the system when an attack has been
detected. So, by using this framework, an industrial plant can be maintained
operational with an acceptable performance during an attack.

Our solutions are validated on a real testbed, where the capabilities are
evaluated by subjecting the system to a set of attacks.
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1
Introduction

Nowadays, computers have penetrated every aspect of our society, and
constitute main parts of our daily life. The integration of the physical
world with digital devices like computers has led to the emergence of a
new generation of engineered systems: Cyber-Physical System (CPS). In
these systems, embedded computers allow us to add capabilities to physical
systems that we could not feasibly add in any other way [1].

An important example of CPS is Industrial Control System (ICS)s. ICSs are
significant parts of the manufacturing industry and they play an important
role in monitoring and controlling industrial processes [2]. We have had
several revolutions in industry but in the middle of the twentieth century,
computers and Programmable Logic Controllers (PLC) allowed us to have
a higher level of automation. By combining computers and PLCs with the
physical world, the existing industrial systems started becoming digitalized.
This change with the digitalization of industry has been called Industry
3.0. First, the PLC replaced electric switches. Later, the PLCs gained
increased sophistication with network capability. By merging computing and
communication with physical processes and mediating the way we interact
with the physical world, cyber-physical systems bring many benefits: they
make systems safer and more efficient; they reduce the cost of building and
operating these systems; and they allow individual machines to work together
to form complex systems that provide new capabilities.

Today, the forth revolution, Industry 4.0, is happening, and will introduce
intelligent manufacturing. Industry 4.0 constitutes a smart world of intercon-
nected machines and intelligent robots that can talk to each other to share
information, allowing for advanced analytics and visualizations of real-time
data from multiple sources. Industry 4.0 is a step towards more automated
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systems coupled with computing devices, and will enable optimization of pro-
duction flows and more efficient production [3]. Much of this is achieved with
increased connectivity between different parts of the system. The increased
connectivity in industrial control systems, together with the proliferation of
connected cyber-physical systems, has led to more systems being connected
to the Internet. While connectivity provides many advantages, it also opens
systems to cyber attacks, and ICSs that have been traditionally isolated from
the Internet, and thereby secured from various Internet-based security threats,
will be vulnerable to remote attacks.

The connectivity will produce huge volumes of data that increases the
communication and computational load, and it is not feasible to perform
the processing on embedded devices. Therefore, one important underlying
technologies in Industry 4.0 is the cloud. The cloud will provide enough
computing power and resource storage, and the cloud is able to process big
data, using Artificial Intelligence (AI) and machine learning methods. Also,
the cloud makes it feasible to move the core processing of industrial control
systems, i.e the controller, to the cloud and introduce Cloud Control System
(CCS).

In CCSs, the core processing unit is shifted to a cloud server, which enables
the control system to have massive parallel computation, and smaller size [4].
Moreover, this will lead to saved energy, by reducing the processing energy
used in ICSs to enhance the system’s lifetime. However, the connectivity in
CCSs will also introduce new cyber security challenges. In these system,
massages have to be sent from the physical systems to the controller in
the cloud using a communication network, and this communication can be
exposed to different types of security attacks. Recent attacks in different parts
of the industry also demonstrate the necessity for an appropriate security
measure to protect these systems.

In this thesis, we will address some security aspects of cloud-based indus-
trial control systems, and our aim is to make these system attack resilient.
This means that if the attacker infiltrates the system and establishes an attack,
the system is able to detect this attack in a timely manner and mitigate its
impacts on the system. So, the system will be resilient to the attack and can
stay stable with an acceptable performance during the attack. Hence, we will
suggest attack detection methods that continuously monitor the system for
anomalies caused by adversary actions. Also, we propose some mitigation
actions, which once an attack has been detected, reduce the impacts of the
attack on the system.

4



1 Introduction

1.1 OUTLINE

This thesis is structured as follows; Chapter 2 describes the general concepts
related to the research in this thesis. Section 2.1 and 2.2 present an overview
on Industry 4.0 and the cyber security challenges that are defined for these
systems. Section 2.3 describes CCSs and how they will be the next version
of networked control systems in Industry 4.0. Section 2.4 provides our vision
on the different security aspects of control systems and studies how an attack
can occur on these systems. Section 2.5 gives an overview of the experimental
testbed, which is used as a proof-of-concept for evaluating our proposed
solutions in our research. Chapter 4 provides a conclusion on how the work
in each paper continued from the previous one, as well as our planned work
following the research scope presented in this thesis. The second part of the
thesis contains the publications.
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2
Background

In this chapter, we introduce the general concepts related to the research
including cloud control systems, cyber attacks, and different actions to protect
these systems from cyber attacks. Also, we present a high level description on
the experimental testbed, which we use as a proof-of-concept for evaluating
our proposed solutions.

2.1 INDUSTRY 4.0

We have had several industrial revolutions. Figure 2.1 depicts these rev-
olutions in a timeline. For many years and centuries, the production of
goods and services such as food, clothing, etc., were manually performed
by humans. However, with the beginning of the eighteenth century, these
processes changed with the introduction of the first industrial revolution, and
this period became a turning point in the industry. Steam and water power
and mechanization in the early eighteenth century led to the beginning of
Industry 1.0. During this period, mechanization led to an eightfold increase
in production in the spinning industry. Steam as the main feature of this
revolution in large industries led to the development and improvement of
productivity. In this revolution, steam power replaced human muscular force
in the spinning industry. Following the use of steam power, improvements
were made in steam ships and steam locomotives and caused another great
change in this period, since this technology reduced time for people and
goods to travel long distances [5].

In the 19th century, electricity was discovered, and introduced as the main
source of power. One of the advantages of electricity compared to steam and
water was its ease of use, which enabled businesses to concentrate power
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Figure 2.1: From Industry 1.0 to Industry 4.0.

sources to individual machines. Eventually, machines were designed with
their own power sources, making them more portable. This period also
saw the development of a number of management programs that made it
possible to increase the efficiency and effectiveness of manufacturing facilities.
Division of labor, where each worker does a part of the total job, increased
productivity. Mass production of goods using assembly lines became com-
monplace. Finally, at the beginning of the 20th century the inventions of
the automobile and the plane completed the second industrial revolution, or
Industry 2.0 [6]. By the advent of electronics and computer technology in
the middle of the twentieth century, Industry 3.0 was created. Two major
inventions, Programmable Logic Controllers (PLC)s and Robots, helped give
rise to an era of high-level automation.

Now, at the dawn of the 21st century, the world is witnessing the fourth
industrial revolution, Industry 4.0, which is revolutionizing the way com-
panies manufacture, improve and distribute their products. As Figure 2.2
shows, manufacturers are integrating new technologies, including Internet of
Things (IoT), cloud computing, data analytics, and Artificial Intelligence (AI)
and machine learning into their production facilities and throughout their
operations [7]. These smart factories are equipped with advanced sensors,
embedded software and robotics that collect and analyze data, and thereby
allow for better decision making. Even higher business values are created

8



2 Background

Figure 2.2: Main technologies of Industry 4.0.

when data from production operations is combined with operational data
from supply chains, customer service and other enterprise systems, in order
to create whole new levels of visibility and insights from previously siloed
information systems.

These digital technologies lead to increased automation, predictive main-
tenance, self-optimization of process improvements and, above all, a new
level of efficiencies and responsiveness to customers not previously possible.
Developing smart factories provide an incredible opportunity for the manu-
facturing industry to enter the Industry 4.0. Analyzing large amounts of big
data collected from sensors on the factory floor ensure real-time visibility
of manufacturing assets, and can provide tools for performing predictive
maintenance in order to minimize equipment downtime. Using high-tech
IoT devices in smart factories lead to higher productivity and improved
quality. Replacing manual inspection business models with AI-powered
visual insights reduce manufacturing errors and saves money and time. With
minimal investments, quality control personnel can set up a smartphone
connected to the cloud to monitor manufacturing processes from virtually
anywhere. By applying machine learning algorithms, manufacturers can
detect errors immediately, rather than at later stages when repair work is more
expensive. Industry 4.0 concepts and technologies can be applied across all
types of industrial companies, including discrete and process manufacturing,
as well as oil and gas, mining and other industrial segments [8].
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2.2 CYBER SECURITY CHALLENGES IN INDUSTRY 4.0

The increased connectivity of smart machines in Industry 4.0, raises the
stakes. Industry 4.0 heralds a new age of connected, smart manufacturing,
responsive supply networks, and tailored products and services. Through
its use of smart, autonomous technologies, Industry 4.0 strives to combine
the digital world with physical actions, to drive smart factories and enable
advanced manufacturing. But while it plans to enhance digital capabilities
throughout the manufacturing and supply chain processes, and drive rev-
olutionary changes to connected devices, it also brings with it new cyber
risks for which the industry is unprepared [9]. Developing a fully integrated
strategic approach to cyber risks is fundamental for smart manufacturing. As
threats radically increase with the advent of Industry 4.0, new risks should
be considered and addressed. Put simply, the challenge of implementing
a secure, vigilant, and resilient cyber risk strategy is different in the age
of Industry 4.0. When supply chains, factories, customers, and operations
are connected, the risks posed by cyber threats become all the greater and
potentially farther reaching [10].

2.3 CLOUD CONTROL SYSTEMS

Along with industrial revolutions, there has been many advances in network
technologies, and these technologies have been combined with control sys-
tems and created Networked Control Systems (NCS). In this type of control
systems, the control loop is closed via a communication channel, which makes
it feasible to monitor and adjust the plant remotely. This integration of control
systems and networks have increased the efficiency and agility of process
control, and enabled more complex systems, such as Supervisory Control and
Data Acquisition (SCADA).

NCSs have incorporated several functionalities, including reduced size,
speed, and the ability to work for a long time. In turn, these functionalities
demand that NCSs possess huge flexible computational resources of smaller
size, which are difficult to achieve with the conventional design of these
systems. Furthermore, control systems usually have to deal with big data,
and this increases the communication and computational load of the network,
which require high quality and real-time control to go beyond the traditional
network control topology capability. Hence, by combining the benefits of
network control and cloud computing technology, a new concept called Cloud
Control System (CCS) has been developed, which can solve the issues of
resource constrained NCSs. In CCSs, the core processing unit is shifted to
a cloud server, which enables the control system to have massive parallel
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2 Background

Figure 2.3: Cloud Control Systems overview.

computation, and also smaller size [11]. Moreover, using CCSs will lead to
saved energy by reducing the processing energy used in NCSs, in order to
enhance the system’s lifetime.

Although there are many benefits of combining the cloud with control
systems, this also leads to many security challenges. Figure 2.3 shows the
general structure of a CCS. A CCS is composed of two layers: the cyber layer
and the physical layer. The cyber layer consists of a communication network
and a cloud, while the physical layer contains the plant, actuators and sensors
[12]. Measurement signals y are sent from sensors in the physical domain
to the controller in the cloud. The controller uses these measurement signals
to generate the control signal u, which is sent back to the actuators in the
physical domain. So, the controller in the cloud server, and the sensors in the
physical domain are supposed to send packets through the communication
channel. The communication channel can be exposed to different types of
security attacks including passive and active attacks.

In recent years, there have been a number of attacks that targeted networked
control systems and caused damage such as the Stuxnet attacks on Iran’s
nuclear installation in 2010 [13], the BlackEnergy malware attack on the
Ukrainian power grid in 2015 [14], the HatMan malware attack on critical
infrastructure using Schneider Electrics Safety Instrumented Systems in 2017
[15], the malware attack on 40 percent of all Industrial Control System (ICS) in
energy organizations protected by Kaspersky Lab solutions in 2017 [16], and
the cyber attacks on three U.S. natural gas pipeline companies in 2018 [17].
This indicates the possibility of such attacks on CCSs and highlights the need
for appropriate security measures to protect these systems.
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2.4 SECURITY ASPECTS OF CLOUD CONTROL SYSTEMS

In this section, different security aspects of control systems are investigated.
Also, we describe how an attack can occur on theses system.

2.4.1 A CLOUD CONTROL SYSTEM UNDER ATTACK

Figure 2.4 shows a CCS under attack. The plant operation is supported by
the communication network, through which the sensor measurements and
actuator data are transmitted. On the plant side, the measurement data
corresponds to yk ∈ Rny , while ũk ∈ Rnx represents the actuator data. On
the controller side, the sensor and actuator data are denoted by ỹk ∈ Rny and
uk ∈ Rnn , respectively. The dynamical model of the plant is given by

{
xk+1 = fx (xk, ũk,dk)

yk = gx (xk, ũkr dk)
(2.1)

where xk ∈ Rnx denotes the plant’s state, and the unknown input dk ∈ Rnd

models possible disturbances or faults affecting the system.
In normal condition we have: ũk = uk, ỹk = yk, so mismatches between

the transmitted signals and the received ones can be caused by the adversary’s
actions. For instance, an attacker that manipulates the measurement signals
that are received by the controller can deceives the controller into generating
the wrong control signal, which can make the plant unstable and cause
damages. In real systems, due to the uncertainties and noise, transmitted

Figure 2.4: Cloud Control Systems under attack.
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and received signals are not exactly the same, but they are close. Hence, for
comparing these signals, a threshold is usually considered.

2.4.2 SAFE SET

In order to determine how an attack can affect a physical system and jeop-
ardize it, we need to characterize the safety constraints of the system. For
this, we use the safe sets concept based on [18]. Usually, physical systems
have tight operating constraints that, if not satisfied, might result in physical
damage to the system. For example, in power systems, cables cannot sustain
an arbitrarily large instantaneous power. The system is said to be safe over

the time interval [0, N] if the state trajectory x ≜
[
x⊤0 . . . x⊤N

]⊤ ∈ Rnx(N+1) is
contained in the safe set Sx. So based on these limitations by appropriate
scaling of the output of the system yk using λ, a safe set can be defined for
this system as follows:

Sx =

{
x : max

k
{∥Cxxk∥∞} ≤ λ

}
(2.2)

The system is said to be safe if the state trajectory xk remains in Sx. Therefore,
the attacker that wants to damage the system tries to drive the state of the
system out of its safe set.

2.4.3 CYBER ATTACKS ON CLOUD CONTROL SYSTEMS

To model and understand how a cyber adversary may affect the cloud
control system’s operation requires knowing how IT systems are vulnerable
to adversaries. The computer security literature identifies three fundamental
properties of information and services in IT systems, namely confidentiality,
integrity, and availability, often denoted as CIA [19], and they can be violated
by disclosure, deception, and denial-of-service attacks, respectively.

Confidentiality concerns the concealment of data, ensuring it remains
known only to the authorized parties. However, in a disclosure attack, as can
be seen in Figure 2.5a, the attacker intrudes the telecommunication network
and eavesdrops on a transmitted message. Although this kind of attack does
not have a devastating effect on the system, the attacker may use it to get some
knowledge about the system and launch more complicated attacks [20].

Integrity relates to the trustworthiness of data, meaning there is no unau-
thorized change to the information between the source and destination. In a
deception attack, the attacker manipulates the data that is sent through the
network, as is seen in Figure 2.5b. For example, by injecting false data to the
measurement signal that is sent to the controller, the data integrity is violated
and the controller is deceived to generate the wrong control signal.

13
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(a) Disclosure attack.

(b) Deception attack.

(c) DoS attack.

Figure 2.5: Cyber attacks on a communication network

Availability considers the timely access to information or system function-
alities. In a Denial-of-Service (DoS) attack, the attacker occupies the network
bandwidth, and thereby prevents the message from arriving at the destination
[21]. As can be seen in Figure 2.5c, the message sent by the plant is actually
blocked and does not reach the controller.

In this research, we consider deception attacks where the attacker ma-
nipulates the real value of one or several signals, similar to the Stuxnet
attack where malware manipulated the speed of centrifuges in a nuclear
enrichment plant, and caused them to spin out of control. So, we consider
deception attacks where the attacker tries to manipulate the data integrity for
the transmitted packets between different components of the cyber physical
system. So, in the CCS case, the attacker may manipulate the measurement
signal y or the control signal u in Figure 2.4. For instance, the attacker may
add an attack vector fa = [a1 a2 ... ap]T to the measurement signal y =
[y1 y2 ... yp], and this attack vector has nonzero entries for measurements
under attack and zero values for all other measurements. This means that we
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can model a deception attack as follows:

ỹk = yk + fa (2.3)

The controller will receive the manipulated measurement signal(s) instead
of the real one(s), and based on these manipulated signals generate a control
signal that can damage the system. In the next section, we describe the general
solutions for this deception attacks.

2.4.4 DIFFERENT ACTIONS TO PROTECT ICS FROM CYBER ATTACKS

The different actions to protect ICSs from cyber attacks can be classified as
• Prevention
• Detection
• Mitigation

Prevention aims at decreasing the likelihood of attacks by reducing the
vulnerability of the system components, for instance by encrypting the com-
munication channels, using firewalls, and security protocols [22]. On the other
hand, detection is an approach in which the system is continuously monitored
for anomalies caused by adversary actions, and once an attack is detected,
mitigation actions try to reduce the impacts of the attack on the system [18].

There are two important reasons for why detection and mitigation actions
are necessary, and why only prevention actions like encryption is not enough.
First of all, there can come a powerful attacker who can break the prevention
actions and intrude into the system to establish a malicious attack. In recent
years, there have been several attacks in different parts of industry, which
show that there have some attackers who could break the prevention layer
and infiltrate the system. So, detection and mitigation actions are needed
to make the system able to tolerate attacks and remain stable. Second, in
some systems for example power grids, most parts of the equipment are
old, and implementing prevention measures like encryption will be costly,
because of the required updates of the equipment. Therefore, in this case
detection and mitigation actions can be used that are completely adaptable
to already implemented industrial control systems. Also, given limited
protection resources (the number of devices for data encryption), prevention
methods can be combined with detection and mitigation actions, in order to
find which signals that should be encrypted in order to maximize the benefits
of the protection resources. The main aim in our research is to design methods
related to detection and mitigation actions.
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2.4.5 DIFFERENCE BETWEEN FAULT AND ATTACK

There have been many studies on fault-tolerant control, for example [23–25],
which can provide tools for attack-resilient control systems as well. However,
there are substantial differences between the fault-tolerant and attack-resilient
control when it comes to attack detection and mitigation, which motivate
the need for specific methodologies to address security issues in ICSs. For
example, faults are considered as physical events that affect the system
behavior, where the events do not act in a coordinated way, while cyber attacks
may be performed over a significant number of attack points in a coordinated
fashion [18,26]. In addition, faults do not have an intent or objective to fulfill,
while cyber attacks have a malicious intent.

2.5 TESTBED DESCRIPTION

As a proof-of-concept for evaluating the proposed solutions in our research,
we have evaluated them on an experimental testbed, as shown in Figure 2.6.
This section describes the testbeds different parts.

Figure 2.6: testbed overview.
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2.5.1 PLANT

In the testbed, the ball and beam process is used as plant. The ball and beam
system includes a long beam, where the ball is rolling back and forth. This
system is open-loop unstable and the ball can swing and fall off the end of
the beam. So, the controller tries to hold the ball on the setpoint on top of the
beam by tilting the beam using an electrical motor. We define a safe set, as
described in Section 2.4.2, for the ball and beam system based on the length
of the beam. Since the length of the beam is 1.1 m, the allowed range for the
position of the ball is [−0.55m, 0.55m]. The attacker’s goal is to drive the ball
out of this range, and thereby cause the ball to fall off the end of the beam.
Also, if the attacker moves the ball from its predefined setpoint but hold it on
the beam, it may not damage the system, but can cause extra cost and decrease
the efficiency. Hence, the aim of the proposed methods in this thesis is to hold
the ball not only on the beam, but also on the exact setpoint. We have chosen
the ball and beam system as a plant, since it has fast dynamics and it is a
time critical system. Also, even in the absent of an attack, controlling the
system over the cloud is tricky. Hence, by applying our proposed methods
for this process, and keeping it stable in the presence of attacks, will prove the
effectiveness of our methods very well.

The ball and beam system has three measurement signals: the position of
the ball y1, the speed of the ball y2, and the angle of the beam y3. The process
can be modeled in continuous time as follows:

ẋ(t) =


0 1 0

0 0 − 5g
7

0 0 0

 x(t) +


0

0

0.44

 u(t)

y(t) =


a1 0 0

0 b2 0

0 0 c3

 x(t)

(2.4)

where g = 9.80665 is the gravity of Earth. We discretize this continuous
time model with a sampling time 0.05 s for designing the controller and our
security framework.

2.5.2 KUBERNETES CLUSTER

The testbed includes a seven-node Kubernetes cluster, used as an edge cloud.
Kubernetes (K8S) is a portable, extensible, open-source platform for man-
aging containerized workloads and services, that facilitates both declarative
configuration and automation [27]. The cluster has been equipped with an
nginx ingress [28] and Prometheus operator [29]. The nginx ingress is exposed
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using the K8S NodePort paradigm. We use this K8S cluster to implement our
main controller and attack detection algorithm.

2.5.3 MAIN CONTROLLER

To stabilize the ball, we need a feedback controller that uses measurement
signals to adjust the beam accordingly. An Model Predictive Control (MPC)-
based controller was designed based on [30] as the main controller in Figure
2.6. MPC is an advanced method of process control, which is used to control a
process while satisfying a set of constraints. MPC relies on a dynamic model
of the process and uses this model to forecast the system behaviour. Hence,
the main advantage of this controller is the fact that it allows the current
time slot to be optimized, while taking future time slots into account. The
current control action is obtained by solving, at each sampling instant k, a
finite horizon (N) open-loop optimal control problem, using the current state
of the plant as the initial state as follows:

minimize
u

J =
k+N−1

∑
i=k

xT
i Qxi + uT

i Rui + xT
k+N Pxk+N

subjectto xi+1 = Axi + Bui

G

[
xi

ui

]
≤ g, H

[
xi

ui

]
= h , xn+k ∈ T

(2.5)

where Q, R and P are cost matrices, A and B define the model of the system, x
is the state vector, u is the control signal, and the constraints of the system are
defined by the matrices and vectors G, g, H and h. This optimization yields an
optimal control sequence u(k), u(k + 1), ..., u(k + N − 1) and the first control
in this sequence u(k) is applied to the plant.

As is explained in Section 2.5.1, controlling the ball and beam system over
the cloud may fail due to its fast dynamics and the delay between the cloud
and the plant. Since MPC is implemented in the cloud, in this research, in
order to compensate the possible network delay between the plant and the
controller in the K8S cluster, we apply the future control sequence u(k + m)
instead of the first control value in this sequence u(k). Actually, at each
sampling instant k, we measure the Round-Trip Time (RTT), i.e. the time
it takes to send the measurement signal and receive the control signal. By
dividing the RTT with the sampling time, we can calculate m, and decide
which step of the control sequence u(k + m) to use instead of the first step
u(k). For example, in Figure 2.7, the RTT is more than one sampling time (h),
which means that, for instance, the control signal related to y0 that should be
received by plant between 0 and 1, instead is received between 1 and 2. So, in
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Figure 2.7: Delay compensation using MPC.

order to compensate for this delay, we apply the second control signal in the
control sequence U0 = {u00, u01, ..., u0N−1} that is related to the next sampling
time.

In this test-bed, MPC is implemented using Python and container technol-
ogy, and it is deployed to the K8S cluster as a pod.

2.5.4 ANCILLARY CONTROLLER

In some parts of our research, we need to implement a local controller in
the physical domain. Hence, this testbed has been equipped with a local
controller that is implemented as an Linear–quadratic regulator (LQR). The
control signal of the LQR is generated as follows:

uk = −Kxk (2.6)

where K is the gain vector and x is the state vector. LQR is a simpler
controller than MPC and requires less computational capacity, allowing it to
be implemented in the physical domain. This controller is implemented close
to the plant. This means that there is no network between the LQR and the
plant, which means that the controller is secure. This means that an attacker
does not have any access to the measurement signals that are sent to the LQR.
The controller receives the measurement signal and works in parallel with the
MPC controller, but the priority is to use the control signal of the MPC. Only
in some special conditions, the system can switch to the local controller.
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3
Summary and Contributions

3.1 RESEARCH CONTRIBUTIONS

The four papers included in this thesis are summarized below, which illus-
trates the path of our investigation on security of industrial cloud control
systems. This chapter gives an overview on the content of each paper, and
detail my main contributions in each work.

In this research, we have investigated the security challenges for cloud-
based industrial control systems, Cloud Control System (CCS)s. We started
by proposing methods for detecting attacks in CCSs, and evaluated these
methods in simulations in Matlab (paper I). Then we proposed a security
framework by equipping the detection method with a mitigation method,
in order to keep the plant stable with an acceptable performance during an
attack. We showed the performance of this framework by implementing it
on a real testbed (paper II and III). Finally, we improved the mitigation part
of the proposed security framework in our previous papers, and instead of
using an ancillary controller during the attack, we proposed reconfiguration
of the main controller, such that it can tolerate an attack. We also showed the
performance of this solution by implementing it on a real testbed (paper IV).

3.1.1 PAPER I: INTRUSION DETECTION IN DIGITAL TWINS FOR INDUSTRIAL
CONTROL SYSTEMS

In this paper, we propose implementing a digital twin for CCSs, which can
be equipped with an intrusion detection algorithm. Our proposed intrusion
algorithm is able to detect attacks in a timely manner and also diagnose the
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type of attack by classification of different types of attacks. With a digital twin,
which is a new concept in Industrial Control System (ICS)s, there is a virtual
replica of the physical systems, which can precisely mirror the internal
behavior of the physical systems. So by placing the intrusion detection
algorithm in the digital twin, security tests can be done remotely without
risking negative impacts on the live system. In this paper, we assume that
the attacker intrudes into the system through the communication network
and manipulates the measurement signals that are sent from the plant to the
controller, in order to deceive the controller into generating a wrong control
signal, which can make the system unstable and cause damages. For this,
we propose two different knowledge-based and data-driven attack detection
methods. In the knowledge-based attack detection method, by designing
a Kalman filter, the measurement signals are estimated, and by comparing
this estimated signal with the real measurement signals, the attack can be
detected. In the data-driven attack detection method, a Support Vector
Machine (SVM), which is a machine learning approach, is used for both
attack detection and classification. The SVM method is able to diagnose if
there is an attack in the system or not, and if an attack is detected, diagnose
the type of this attack. We evaluate our proposed approach in Matlab.

Contribution: I was the primary researcher in this work and my contribution
is in system definition and modelling, solution design, simulation
development, performance evaluation and analysis.

3.1.2 PAPER II: A SECURITY FRAMEWORK IN DIGITAL TWINS FOR CLOUD-
BASED INDUSTRIAL CONTROL SYSTEMS: INTRUSION DETECTION AND MITI-
GATION

In this paper, we propose a digital twin-based security framework for cloud-
based industrial control systems, which consists of two parts: attack detection
and attack mitigation. In order to detect attacks, a residual signal is generated,
which in the absence of any attack has a nominal value close to zero and
may deviate a little bit from zero only due to modelling uncertainties and
noise. However, if an attack occurs, the residual deviates from zero with a
magnitude such that the new condition can be distinguished from the attack-
free mode. For this, we employ a Kalman filter to estimate the behaviour
of the system and then by comparing it with the real measurement signals,
the residual signal is generated and used for detecting if the system is in a
normal condition or if there is an attack in the system. As mitigation part, we
employ a local controller in addition to the cloud-based controller. The local
controller is in the physical domain close to the plant, such that there is no

22



3 Summary and Contributions

public network between this controller and the plant. Consequently, the local
controller is secure, and there is no possibility of intrusion into the system by
attackers. Measurement signals are sent from the sensors to both controllers
and they both generate control signals, but the priority is to use the control
signal generated by the controller in the cloud, since this is a more advanced
controller. Once an attack has been detected, an alarm signal is triggered
and makes the system able to switch to the local controller, and instead
use the control signal generated by this controller, since the cloud domain
of the system is not secure and signals from the cloud cannot be trusted.
We implement our framework on the experimental testbed and evaluate its
capability by subjecting it to a set of attacks. We show that our proposed
framework can detect attacks in a timely manner and keep the system stable
with acceptable performance during the attack.

Contribution: I was the primary researcher in this work and my contribution
is in system definition and modelling, solution design, simulation
development, experiment setup, performance evaluation and analysis.

3.1.3 PAPER III: A CLOUD-CONTROL SYSTEM EQUIPPED WITH INTRUSION
DETECTION AND MITIGATION

In this paper, we present a demo of the security framework that we proposed
in paper II for cloud-based industrial control system, and demonstrate how
it can detect attacks on this system quickly and mitigate them. Also, in this
paper we explain different parts of our experimental testbed in detail, and we
show how our algorithm is applied on this testbed.

Contribution: I was the primary researcher in this work and my contribution
is in system definition and modelling, solution design, simulation
development, experiment setup, performance evaluation and analysis.

3.1.4 PAPER IV: ATTACK RESILIENT CLOUD CONTROL SYSTEMS

In this paper, we propose a security framework for cloud-based industrial
control systems to make them resilient against attacks. This framework
includes three steps: attack detection, attack isolation,and attack mitigation.
In the attack detection part, a residual signal is generated such that it is close
to zero and less than a predefined threshold in normal condition during which
there is no attack, but will exceed the threshold once the attack has occurred.
We investigate two different observer-based and Analytical Redundancy
Relations (ARR) methods to generate residual signals and compare their
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efficiency to detect attacks. In the mitigation part, once the attack has been
detected, the controller is reconfigured such that it can tolerate the attack.
This reconfiguration is done by developing a virtual sensor concept, which
is a method used to deal with sensor failures. In this mitigation method,
isolation is the necessary and main part that is used to know exactly on which
sensor(s) there is an attack. So, we propose a novel isolation method that can
exactly diagnose on which sensor(s) an attack has occurred, and then we use
this information in mitigation part. We also compare our proposed isolation
method with the common available method for isolation, the ARR method.
We show defects of the ARR method, and we show how our method is more
powerful than ARR to diagnose accurate locations of attacks. We validate our
proposed framework on the experimental testbed, and evaluate its capability
by subjecting it to a set of attacks. We show that our proposed solution can
detect the attack in a timely manner, and that it can keep the plant stable with
an acceptable performance during the attack.

Contribution: I was the primary researcher in this work and my contribution
is in system definition and modelling, solution design, simulation
development, experiment setup, performance evaluation and analysis.

3.2 CONCLUSIONS AND FUTURE WORK

In the introduction of this thesis, we have walked through the develop-
ment of the industrial control systems, which by combining the benefits
of network control and cloud computing technology, a new concept called
cloud control system has been developed that can almost solve issues of
resource constrained Networked Control Systems (NCS)s. Also by shifting
core processing units to cloud servers, control system is able to have massive
parallel computation, and also smaller size. Moreover, this will lead to saved
energy by reducing the processing energy used in NCSs to enhance the
system’s lifetime.

However, the cloud introduces major security challenges, since moving
control systems to the cloud can enable attackers to infiltrate the system
and establish an attack, which can lead to damages and disruptions with
potentially catastrophic consequences. Various measures to protect these
systems against cyber attacks can be classified as prevention, detection and
mitigation. In our research, we investigated and designed methods related
to detection and mitigation actions, in order to detect and mitigate deception
attacks on cloud-based industrial control system.
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With the growth of advances in technologies, attacks are also becoming
more complex and attackers, by earning some knowledge about the systems,
are becoming able to design optimal deception attacks that can cause biggest
damage with lower possibilities of detection. Hence, as future work, we will
expand our proposed framework for such attacks.

Also, except the deception attack that we considered in our research, there
are other kinds of attacks that should be considered. In our ongoing work,
we are designing some methods for detecting replay attacks on cloud control
systems. In this kind of attack, the attacker can, by performing a disclosure
attack, gather a sequence of measurement signals, and can then begin to
replace true measurement of the systems by replaying the previously recorded
data in order to remain stealthy. In this scenario, the attacker is also able to
perform a physical attack while replaying the recorded data.

Moreover, we will also expand our work to other challenges of cloud-based
industrial control systems, for example delay compensation. Moving core
processing unit to a cloud server will lead to some delay in reaching the
control signal to the plant, which can make the system unstable. Hence, we
will design methods that can make the system able to work well in presence
of this delay.
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I
Intrusion Detection in Digital Twins

for Industrial Control Systems

Nowadays, the growth of advanced technologies is paving the way for
Industrial Control System (ICS) and making them more efficient and smarter.
However, this makes ICS more connected to communication networks that
provide a potential platform for attackers to intrude into the systems and
cause damage and catastrophic consequences. In this paper, we propose im-
plementing digital twins that have been equipped with an intrusion detection
algorithm. Our novel algorithm is able to detect attacks in a timely manner
and also diagnose the type of attack by classification of different types of
attacks. With digital twins, which are a new concept in ICS, we have virtual
replicas of physical systems so that they precisely mirror the internal behavior
of the physical systems. So by placing the intrusion detection algorithm in
digital twins, security tests can be done remotely without risking negative
impacts on live systems.
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1 INTRODUCTION

Today, smart manufacturing has attracted much attention [1], and the growth
of Internet of Things (IoT) and cloud computing are paving the way for the
smart factories that will realize Industry 4.0. As part of Industry 4.0, Industrial
Control Systems (ICS), which consists of combinations of control components
that act together to achieve an industrial objective, are becoming connected
and part of the networked systems in the factory. Although, networked
ICSs increase the efficiency of the systems, they may jeopardize the system’s
security at the same time, since they can provide a critical platform through
which attackers may be able to intrude into the system.

Some examples of recent cyber attacks that targeted ICSs are the Stuxnet
computer worm attacks on Iran’s nuclear installation in 2010 [2], BlackEnergy
malware attack on the Ukrainian power grid in 2015 [3], HatMan malware
attack on critical infrastructure using Schneider Electrics Safety Instrumented
Systems in 2017 [4], malware attack on 40 percent of all ICS in energy
organizations protected by Kaspersky Lab solutions in 2017 [5], and the cyber
attacks on three U.S. natural gas pipeline companies in 2018 [6]. These attacks
demonstrate security weaknesses and the necessity for appropriate security
measures to protect ICS infrastructure.

According to this significant increase in cyber attacks, much attention has
been paid to intrusion detection in ICS over the recent years.

Digital twin is a rather new concept in industry. With digital twins, we have
virtual replicas of physical systems so that they precisely mirror the internal
behavior of the physical systems [7]. So using this virtual environment for
security tests instead of the real system prevents any interference with the
live systems.

Hence, in this paper, we propose a digital twin based intrusion detection
technique due to a couple of reasons. First, applying security tests may have
some negative effects on the live systems and cause to reduce the efficiency of
the systems. Also, an intrusion detection system in the digital domain can in-
clude methods that require much more computing resources than if deployed
in the real system. For instance, machine learning techniques usually are hard
to realise in the physical domain, where there often are embedded devices
with limited computing power and more restrictive programming models.

There are a few papers that have suggested intrusion detection as a use
case for digital twins. To the best of our knowledge, so far, only two
papers have been published that show how the concept of digital twins can
be used to implement intrusion detection systems. Authors in [8], defined
two rules, namely, safety and security rules, that specific digital twins must
adhere to. However, this research missed the synchronization between digital
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twins and the real systems. So real systems’ data is not incorporated into
the implemented intrusion detection. Moreover, the proposed rules are
very limited as an intrusion detection method for detecting cyber attacks.
Regarding these issues, authors in [9] proposed a passive state replication to
create synchronization between physical systems and digital twins that is a
fundamental requirement for realizing the intrusion detection using digital
twins. However, this synchronization method only copy some limited data
of physical system to digital twin and it does not make the digital twin
able to follow the physical system continuously for instance, when there are
unexpected changes in the physical system. Further, the authors proposed
a behavior-specification-based intrusion detection to determine whether the
system’s behavior during runtime diverges from the predefined correct be-
havior due to an intrusion. However, creating the specification of the system’s
correct behavior typically requires processing effort, whereas in this paper the
authors sidestep this issue by making the assumption that the specification of
the system is readily available.

Motivated by synchronization challenges in digital twins, in our prior work
[10] we proposed an architecture to implement a digital twin that makes it
able to follow its physical counterpart’s behavior continuously and guarantees
synchronization between digital twins and physical systems. In this paper,
we equip this architecture with a novel intrusion detection algorithm that
unlike [9] does not need a specification of the system’s correct behavior. We
demonstrate how the digital twin concept can be used for intrusion detection.
Further, we develop a novel algorithm in the digital twin for timely detection
of attacks on ICS. Also, we propose an approach to diagnose the type of attack
after detecting it by classification of different types of attacks. Finally, we
evaluate the capability of the proposed anomaly detection algorithm through
simulation studies.

2 TARGETED SYSTEM

The targeted system, which concerns industrial control systems, is illustrated
in Figure 1. In this figure, the physical domain shows an industrial system,
which is composed of several different control systems. These control systems
can represent a factory where there are different kinds of machines and
robots. A digital twin for the system is deployed in the cloud using the
architecture in our prior work [10]. There will always be a network between
the physical domain and the cloud, and also there can be a network between
the components of a control system inside the physical domain. These
networks create the possibility of cyber attacks on the signals that are sent
through them.
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Figure 1: Targeted system overview.

In this paper, as Figure 1 shows, an intrusion detection system is deployed
in the digital twin in order to detect cyber attacks on the real system. Also,
we consider attacks that intrude into the network and try to manipulate the
measurement signal y in order to drive the system to an unsafe state.

We consider two Scaling and Ramp attacks in which the attacker inject false
data into the signal and modify it. According to [11], [12] and [13], we can
model these attacks as follows:

• Scaling attack: In this type of attack, the measurement signal is manipu-
lated and its value depending on the amount of scaling attack parameter
λs, is converted to a value greater or less than the actual value:

y∗(t) =

{
y(t) for t /∈ τa

(1 + λs) · y(t) for t ∈ τa
(1)

where τa indicates the attack period.
• Ramp attack: In this type of attack, since the beginning of the attack,

λr.t is added to the actual signal and depending on the amount of λr,
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increases or decreases the value of the signal:

y∗(t) =

{
y(t) for t /∈ τa

y(t) + λr.t for t ∈ τa
(2)

Since different attacks can have different effects on the system, different
mitigation methods may be needed to deal with them. Therefore, after
detecting the attack, it is also important to classify the attack in order to
choose the best mitigation method for it. Hence, in next section, we explain
our proposed method to detect these attacks in a timely manner and classify
them.

3 PROPOSED SOLUTION

In this paper, we propose a novel intrusion detection, and we also propose
to apply this intrusion detection to digital twins instead of the real system.
Our proposed solution consists of two parts: attack detection and attack
classification.

3.1 ATTACK DETECTION

In order to detect an attack on the system, we propose to use a Kalman filter
[14] to estimate the correct signals in the system. The Kalman filter uses input
and output signals of the system to estimate the correct output of the system.
This means that the Kalman filter optimally removes the destructive effects
of the attack and noises from the manipulated signal and can estimate the
correct behavior of the system. This estimated signal can then be used to
detect the occurrence of the attack. In order to design a Kalman filter, first, an
observable state-space model of the system is needed. The Kalman filter will
be placed in the digital twin, and as the digital twin is created based on [10],
we can assume that there exists a simulated model of the real system that
has been obtained easily by system identification algorithms. Therefore, it is
only necessary to create an observable realization of this model to generate an
observable state-space model.

After designing the Kalman filter, input and output signals of the system,
which, the Kalman filter has been designed for, should be sent to the Kalman
filter to estimate the correct output signal.

By considering process noise and measurement noise in the system, our
targeted system can be modelled as follows:

xk+1 = Axk + Buk + Gwk w → N(0, Q)

yk = Cxk + Fvk v → N(0, R)
(3)
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In this model x is the state vector, y is the output signal which is measured
by sensors, u is the input signal which is generated by the controller, w is
process noise, v is measurement noise and subscript k shows time instance.
Here, we consider process noise and measurement noise to be white noise
with covariances Q and R respectively. Also, A, B, C, G, and F are coefficient
matrices.

A Kalman filter for this system will be designed using the following recur-
sive algorithm, which consists of two parts: time update and measurement
update [14]. The time update part consists of the following steps:

1) x̂k|k−1 = Ak x̂k−1k−1 + Bkuk (4)

2) Pk|k−1 = Gk−1Qk−1GT
k−1 + Ak−1Pk−1|k−1 AT

k−1 (5)

and the measurement update part consists of following steps:

3) Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + FkRkFT
k

)−1
(6)

4) x̂k|k = x̂k|k−1 + Kk

(
yk − Ck x̂k|k−1

)
(7)

5) Pk|k = (I − KkCk) Pk|k−1 (8)

where x̂ is the estimated state vector, P is the estimating covariance matrix
and K is the Kalman gain.

However, one problem of a Kalman filter is that it requires some char-
acteristics of the noise. Q and R are the covariance matrices of process
and measurement noises, respectively, and these are usually not known. To
overcome this problem, inspired by the proposed method in [15], we propose
a particle swarm optimization (PSO) and combine this with the Kalman filter.
In this method, first, in offline mode using a combination of PSO and the
Kalman filter, the optimal values of Q and R can be found. Then, these
obtained values are injected into the Kalman filter for estimation in online
mode.

Using this Kalman filter, state variables of the system are estimated. The
system’s output can also be estimated based on these state variables and using
the system model as follows:

ŷk = Cx̂k (9)

Now by comparing the estimated signal ŷk with the output signal ỹk, which
is virtual version of the measurement signal y and regenerated by the digital
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twin and exactly follows y, the residual signal is generated:

rk = ỹk − ŷk (10)

In order to distinguish attacks from noises and detect the occurrence of
an attack, it is necessary to use a detector. Actually, the detector helps to
make the effects of attacks and noises on the signal more prominent and filter
impacts of noises and prevent false alarms. Our detector uses residual signal
r and generates h so as to detect attacks as follows:

hk = sup
k−k0<i<k

|ri|,
{

H0 : if hk ≤ threshold

H1 : if hk > threshold
(11)

where the hypothesis H0 indicates the normal operation of the system and H1
indicates the abnormal mode of the system.

Since the Kalman filter cannot distinguish the changes caused by the attack
from the changes due to the presence of the noise, a threshold for filtering
the effects of noise and preventing false alarms should be considered. Based
on 68- 95-99.7 rule, in a Gaussian distribution, 68.27%, 95.45%, and 99.73%
of the values lie within one, two, and three standard deviations of the mean,
respectively. Since the noise in this paper is assumed to be Gaussian noise
with zero mean, by considering a threshold equal to 3σ, where σ, is the
standard deviation of the measurement noise, 99.73% false alarms that may
occur due to this noise can be filtered out.

3.2 ATTACK CLASSIFICATION

The goal of the classification is to categorize data into distinct classes. Support
Vector Machine (SVM) is a machine learning approach used for classification,
and in this approach, a model is generated based on training data and then
it can be used to predict the class of new data. SVM supports both binary
classification and multi classification. In this paper, we want to classify the
state of the system as Normal, Scaling attack or Ramp attack. Therefore, a
multi classification must be used. There are several methods for multi-class
SVM, but we apply the one-against-one method which is the most efficient
one based on [16]. In the one-against-one method, k(k − 1)/2 classifiers are

created:
(
w1)T

ϕ(x) + b1 , ... ,
(

wk(k−1)/2
)T

ϕ(x) + bk(k−1)/2 where k is the
number of classes. Each of these classifiers is trained on data from two
classes. For training data from the ith and the jth classes, the following binary
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classification problem is solved:

min
wij ,bij ,ξ ij

1
2
(
wij)T wij + C∑

t
ξ

ij
t(

wij)T
ϕ (xt) + bij ≥ 1 − ξ

ij
t , if yt = i(

wij)T
ϕ (xt) + bij ≤ −1 + ξ

ij
t , if yt = j

ξ
ij
t ≥ 0

(12)

where ϕ is the function that maps training data xt to a higher dimensional
space to make data more separable and C is the penalty parameter. By
minimizing 1

2 (w
ij)Twij we maximize 2

∥wij∥ , which is the margin between two
groups of data. When data are not linear separable, there is a penalty term
C∑

t
ξ

ij
t which can reduce the number of training errors. Actually SVM searches

for a balance between the regularization term 1
2 (w

ij)Twij and the training er-
rors. After all k(k − 1)/2 classifiers are constructed, if sign

((
wij)Tϕ(x) + bij))

says x is in the ith class, then the vote for the ith class is added by one.
Otherwise, the jth is increased by one. Then, x is predicted as the class with
the largest vote, and in case that two classes have identical votes we select the
one with the smaller index.

In this paper, we propose using the residual signal as xt for classification.
Our motivation behind this decision is that the residual signal is the result
from the comparison between the virtual version of the real output signal
and the estimated output. Hence, it shows abnormal behavior of the system
caused by the attacks, and based on how this abnormal behavior is for each
class, we can train a model for attack classification. By applying Ramp attacks
and Scaling attacks and also considering the condition where there is no
attack, we can generate training data. Then, by labeling these data as class
0 for Normal condition, class 1 for when there is Scaling attack, and class 2
for when there is Ramp attack, and using one-against-one method, we train a
model for classification.

4 EXPERIMENTS

We evaluate our proposed approach in Matlab Simulink [17], and in this
section we describe our simulation model and our experiments.

4.1 PROCESS

In this paper, we use a ball and beam process. The ball and beam system
consists of a long beam which can be tilted by an electric motor together with
a ball rolling back and forth on top of the beam. This system is open-loop
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unstable and without a controller, it will swing to one side or the other, and
the ball will fall off the end of the beam.

To stabilize the ball, a control system that measures the position of the ball
and adjusts the beam accordingly must be used. Our motivation for choosing
the ball and beam system is that it is an intrinsically unstable and time-critical
system, and any attack on this system can make it unstable quickly. So,
evaluating our proposed method on this system can prove the effectiveness
of it.

We simulate the ball and beam process using the standard Lagrangian
equations of motion for the ball based on [18]. In our ball and beam system,
the length of the beam is 1 meter. Therefore, the allowable position for the
ball is between 0 and 1, and if it goes outside this range, it will fall.

4.2 DIGITAL TWIN

Based on our prior work [10], we create a digital twin for the ball and
beam process in Matlab Simulink, which follows its physical counterpart
continuously. The network between the physical domain and digital part
(cloud), is simulated with TrueTime [19]. We consider the network to be an
Ethernet with 2.5% packet loss probability and a 40 ms network delay.

4.3 GENERATING ATTACK SIGNALS

An attack should have two main features. First, it should cause the system to
go to an unsafe state, and second, it should not be easily detectable. Ramp
attacks add a ramp signal to the measurement signal and causes a change of
the position of the ball. If the slope of this ramp signal is high, it changes the
ball’s position quickly. However, such an attack will be detected easily. So, the
slope should be low and change the ball’s position gradually in which case it
is difficult to detect.

Therefore, we chose 0.5 meters, which is in the middle of the beam, as a
setpoint for the ball’s position in the controller, and based on this, choosing
0 < λr ≤ 0.1 in (2) for the Ramp attack is reasonable, since it will cause the
ball to fall off and it will be difficult to detect.

Scaling attacks are not so different in terms of how they gradually can
change the ball’s position. The only main difference between Scaling attacks
with different parameters λs, see (1), is the consequence. If λs ≥ 15, it will
cause the ball to fall. However, choosing λs out of this range, only causes
the ball’s position to change on the beam, but it does not cause it to fall and
damage the system. So λs ≥ 15 is a reasonable range for this type of attacks.
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4.4 EVALUATION OF ATTACK DETECTION METHOD

The performance of the detection algorithm is evaluated by measuring the
time it takes to detect an attack and comparing it with the time it takes the
attack to drive the system to an unsafe state. Here, for the ball and beam
system, we compare the time it takes our detection method to detect an attack
with the time that the attack takes to cause the ball to fall off.

For this evaluation, we apply Ramp attacks and Scaling attacks with differ-
ent parameters chosen from the selected range to the measurement signal in
the physical domain y. Then, we record the time it takes to detect the attack
and the time it takes for the attack to cause the ball to fall, which is the time
it takes for the position of the ball to increase more than 1 meter or decrease
less than 0 meters, and then we compare these two time.

4.5 EVALUATION OF ATTACK CLASSIFICATION METHOD

To classify attacks and diagnose the type of an attack, as it said before, we use
residual signal r as training data for obtaining a model using SVM, and this
model will classify new residual data as Normal, Scaling attack and Ramp
attack.

To generate the training data, first, we run the simulation in normal
conditions when there are no attacks several times for 60 s and record the
residual signal. Using this signal we create a vector containing residual data
related to a normal condition that we label as class 0.

In the next step, we apply Scaling attacks with different λs to the measure-
ment signal y for 60 s, and for each λs, we record the residual signal. In this
way, we create a vector containing residual data related to Scaling attacks that
are labelled as class 1.

The reason for applying attacks for 60 s is that we want to diagnose the type
of attack as soon as it occurs. So, we need to cover different data related to the
beginning of the attack, and therefore 60 s is well enough for this purpose.

In the third step, we apply Ramp attacks with different λr to the measure-
ment signal y for 60 s and for each λr, we record the residual signal. In this
way, we create a vector containing residual data related to Ramp attacks that
are labelled as class 2. By using this training data with the SVM algorithm,
we obtain a model that should be able to determine the class of new data.

The next step is to test this model using testing data. To generate testing
data for normal conditions, we run the simulation without applying any
attacks for 50 s and record the residual signal as testing data. Testing data
for Scaling attacks are generated by applying Scaling attacks at time 30 s for
20 s with different λs that are chosen from the range λs ≥ 15. Testing data
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for Ramp attacks are generated by applying Ramp attacks at time 30 s for 20
s with different λr that are selected from the range 0 < λr ≤ 0.1.

To evaluate the performance of the classification algorithm, the class (label)
of the testing data using the obtained SVM model is determined. The accuracy
is then calculated as follows:

Accuracy =
The number of correctly predicted data

Total number of testing data
× 100% (13)

For each of λs and λr value and normal condition, the generation and
evaluation of testing data is repeated 15 times and finally, the average accuracy
for each of λs and λr value and normal condition are calculated. Since the
variability of accuracy for each of these conditions is really low and we have
a quite narrow confidence interval, 15-time repetition is well enough.

5 RESULTS

In this section, the results of the evaluation of attack detection and classifica-
tion algorithms are presented.

Figure 2 shows the signal h and the ball’s position in the presence of Ramp
attack with λr = 0.04 which is started at 30 s. In this attack, the attacker
gradually changes the ball’s position and as it can be seen in Figure 2, the
attack causes the ball to fall off at 42.52 s. However, our attack detection
algorithm can detect this attack at 31.29 s, which is well before the ball falls
off.

Figure 3 shows the results for a Ramp attack which is started at 30 s with
different values of λr. All chosen λr are small enough to make the attack
difficult to detect. For each λr, the blue line shows the time it takes for the
ball to fall off, and the red line shows the time it takes for our detection
algorithm to detect the attack. As can be seen in the figure, all attacks can be
detected before the attack can drive the system to an unsafe state and cause
the ball to fall.

Figure 4 shows a similar evaluation for the Scaling attack with different
λs. As can be seen in the figure, although these attacks can quickly affect the
system and move the ball off the beam, our proposed detection technique can
detect them in a timely manner and before the ball falls off.

To evaluate the classification method, as is said in the previous section,
we apply a Ramp attack at time 30 s for 20 s. So, before 30 s, there are
no attacks and the condition should be classified as Normal. After 30 s, the
condition should be classified as a Ramp attack. By calculating the accuracy,
the algorithm can be evaluated.
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Figure 2: Detecting Ramp attack with λr = 0.04.

Figure 3: Detecting Ramp attacks.

Table I shows the average accuracy for the Ramp attack with different λr.
As can be seen, the accuracy for λr = 0.03, 0.04, 0.05 decreases. The reason
for this result is that, in this interval, there is an overlap with other classes.
However, for other λr the accuracy is more than 91%. Also the total average
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Figure 4: Detecting Scaling attacks.

accuracy of all cases is 91.27%, which is a high accuracy that shows that our
classification method can recognize a Ramp attack.

Similar to the Ramp attack, we apply a Scaling attack to the system at time
30 s for 20 s and calculate the accuracy. Table II shows the average accuracy
for the Scaling attack with different λs. The accuracy is more than 98% for
all cases, and the total average accuracy is 98.96%, which proves that our
classification method can recognize a Scaling attack.

Finally, we evaluate the accuracy when there are no attacks. In this case, all
data should be classified as Normal. The average accuracy for this condition
equals 99.94% that shows that our classification method can recognize Normal
conditions excellently.

6 CONCLUSIONS

Industrial control systems are increasingly being connected to communica-
tions networks, which make them more vulnerable to cyber attacks. Re-
garding this issue, in this paper, we propose a digital twin based intrusion
detection technique. By deploying the intrusion detection system in the digital
domain, more advanced methods that require more computing resources can
be developed. Therefore, we have developed and evaluated an intrusion
detection mechanism for the digital twin, which can both detect attacks and
also classify the type of attack. The intrusion detection mechanism uses a
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Table I: Accuracy of Ramp Attack Classification

Parameter λr Accuracy

0.01 91.42%

0.02 94.77%

0.03 83.97%

0.04 87.48%

0.05 89.88%

0.06 91.37%

0.07 92.44%

0.08 93.10%

0.09 93.85%

0.1 94.42%

Table II: Accuracy of Scaling Attack Classification

Parameter λs Accuracy

20 98.97%

55 99.01%

100 99.03%

200 98.94%

300 98.95%

400 98.94%

500 98.93%

600 98.96%

700 98.93%

800 99.10%

900 98.92%

1000 98.95%

combination of a Kalman filter to detect the attack, a particle swarm optimiza-
tion algorithm to estimate the noise, and a support vector machine algorithm
to classify the attack. Through simulation studies in Matlab Simuling, we
show that our detection method is highly effective to detect an attack before
the attack can drive the system to an unsafe state. Also, we show that our
classification approach can provide a high accuracy when determining the
types of attacks. Therefore, our proposed approach can assist industrial
control systems with detecting cyber attacks before they cause damage and
also classify the type of attack, which will be of great benefit when it comes
to choosing the proper mitigation method for each type of attack.

49





Bibliography

[1] J. Cheng, W. Chen, F. Tao, and C.-L. Lin, “Industrial IoT in 5G envi-
ronment towards smart manufacturing,” Journal of Industrial Information
Integration, vol. 10, pp. 10–19, 2018.

[2] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
& Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[3] D. Alert, “Cyber-attack against ukrainian critical infrastructure,” Cyberse-
curity Infrastruct. Secur. Agency, Washington, DC, USA, Tech. Rep. ICS Alert
(IR-ALERT-H-16-056-01), 2016.

[4] ICS-CERT, “Hatman—safety system targeted malware,” Mar. 2017.
[Online]. Available: https://ics-cert.us-cert.gov/MAR-17-352-01-
HatManTargeted-Malware.

[5] Kaspersky Lab ICS-CERT, “Threat landscape for industrial
automation systems in h2 2017,” Mar. 2018. [Online]. Available:
https://icscert.kaspersky.com/reports/2018/03/26/threat-landscape-
for-industrial-automation-systems-in-h2-2017/.

[6] N. S. Malik, R. Collins, and M. Vamburkar, “Cyber-attack, pings
data systems of at least four gas networks,” Apr. 2018. [On-
line]. Available: https://www.bloomberg.com/news/articles/2018-04-
03/day-after-cyberatta ck-a-third-gas-pipeline-data-system-shuts.

[7] M. Farsi, A. Daneshkhah, A. Hosseinian-Far, and H. Jahankhani, Digital
Twin Technologies and Smart Cities. Springer, 2020.

[8] M. Eckhart and A. Ekelhart, “Towards security-aware virtual environ-
ments for digital twins,” in Proceedings of the 4th ACM workshop on cyber-
physical system security, 2018, pp. 61–72.

51



[9] ——, “A specification-based state replication approach for digital twins,”
in Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and
Privacy, 2018, pp. 36–47.

[10] F. Akbarian, E. Fitzgerald, and M. Kihl, “Synchronization in digital twins
for industrial control systems,” arXiv e-prints, p. arXiv: 2006.03447, June
2020.

[11] Y.-L. Huang, A. A. Cárdenas, S. Amin, Z.-S. Lin, H.-Y. Tsai, and S. Sastry,
“Understanding the physical and economic consequences of attacks on
control systems,” International Journal of Critical Infrastructure Protection,
vol. 2, no. 3, pp. 73–83, 2009.

[12] S. Sridhar and M. Govindarasu, “Model-based attack detection and
mitigation for automatic generation control,” IEEE Transactions on Smart
Grid, vol. 5, no. 2, pp. 580–591, 2014.

[13] F. Akbarian, A. Ramezani, M.-T. Hamidi-Beheshti, and V. Haghighat,
“Intrusion detection on critical smart grid infrastructure,” in 2018 Smart
Grid Conference (SGC). IEEE, 2018, pp. 1–6.

[14] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.

[15] Y. Laamari, K. Chafaa, and B. Athamena, “Particle swarm optimization
of an extended kalman filter for speed and rotor flux estimation of an
induction motor drive,” Electrical Engineering, vol. 97, no. 2, pp. 129–138,
2015.

[16] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE transactions on Neural Networks, vol. 13,
no. 2, pp. 415–425, 2002.

[17] MATLAB, 9.7.0.1190202 (R2019b). Natick, Massachusetts: The Math-
Works Inc., 2018.

[18] Ball and Beam: Simulink Modeling. [Online]. Avail-
able: http://ctms.engin.umich.edu/CTMS/index.php?example=
BallBeam&section\=SimulinkModeling.

[19] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen, “How
does control timing affect performance? analysis and simulation of
timing using jitterbug and TrueTime,” IEEE control systems magazine,
vol. 23, no. 3, pp. 16–30, 2003.

52

http://ctms.engin.umich.edu/CTMS/index.php?example=BallBeam&section \=SimulinkModeling.
http://ctms.engin.umich.edu/CTMS/index.php?example=BallBeam&section \=SimulinkModeling.


Paper lI

53



Paper II

Reproduced, with permission, from

Fatemeh Akbarian, William Tärneberg, Emma Fitzgerald, Maria Kihl,
“A Security Framework in Digital Twins for Cloud-based Industrial Control
Systems: Intrusion Detection and Mitigation,” The 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Västerås,
Sweden, Sep. 2021.



II
A Security Framework in Digital

Twins for Cloud-based Industrial
Control Systems: Intrusion

Detection and Mitigation

With the help of modern technologies and advances in communication sys-
tems, the functionality of Industrial Control System (ICS) has been enhanced
leading toward to have more efficient and smarter ICS. However, this makes
these systems more and more connected and part of a networked system.
This can provide an entry point for attackers to infiltrate the system and cause
damage with potentially catastrophic consequences. Therefore, in this paper,
we propose a digital twin-based security framework for ICS that consists
of two parts: attack detection and attack mitigation. In this framework
we deploy an intrusion detection system in digital domain that can detect
attacks in a timely manner. Then, using our mitigation method, we keep the
system stable with acceptable performance during the attack. Additionally,
we implement our framework on a real testbed and evaluate its capability by
subjecting it to a set of attacks.
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1 INTRODUCTION

Control systems form a significant part of industrial systems and they play
an important role in monitoring and controlling, for example, physical and
chemical processes. With the advent of new technology and the expansion of
telecommunication networks, Industrial Control Systems (ICS) are becoming
more connected and part of networked systems. Hence, components of ICS
can be distributed over a large area, and communicate with each other via
wired or wireless links. This can enable remote monitoring and control of
the system. Along with their numerous benefits, there are growing concerns
about the safety and security of ICS, since they can provide a critical platform
through which attackers may be able to infiltrate the system. In recent years,
there have been a number of attacks that targeted ICS such as the Stuxnet
attacks on Iran’s nuclear installation in 2010 [1], the BlackEnergy malware
attack on the Ukrainian power grid in 2015 [2], the HatMan malware attack on
critical infrastructure using Schneider Electrics Safety Instrumented Systems
in 2017 [3], the malware attack on 40 percent of all ICS in energy organizations
protected by Kaspersky Lab solutions in 2017 [4], and the Cyber attacks on
three U.S. natural gas pipeline companies in 2018 [5]. This demonstrates that
ICS infrastructure is prone to cyber attacks and it highlights the necessity for
appropriate security measures to protect them.

Consequently, some studies have been done in this respect. For example,
some methods for anomaly detection in power grid system as networked
control systems have been proposed in [6], [7], [8]. The authors in [9]
have introduced different attack scenarios for networked control systems and
evaluated the effects of these attacks on a real process. Besides knowledge-
based attack detection techniques, some data-driven anomaly detection using
machine learning approaches have also been proposed in [10], [11], [12].

Developments in cloud computing are paving the way for control of indus-
trial control systems over the cloud. The cloud provides seemingly endless
computing and storage resources that can be used to execute more advanced
control strategies, allowing the controller to evaluate complex problems that
are too computationally demanding to perform locally. However, connecting
these systems to the cloud through the network will provide an access point
for attackers to intrude into the system. Hence, in this paper, we propose a
digital twin-based security framework to detect and mitigate attacks on ICS
in a timely manner.

Digital twin is a rather new concept associated with ICS, and it opens
up new possibilities in terms of monitoring, simulating, optimizing and
predicting the state of the systems. With digital twins, we have virtual replicas
of physical systems so that they precisely mirror the internal behavior of the
physical systems [13]. Digital twin based intrusion detection and mitigation

57



Attack Resilient Cloud-based Industrial Control Systems

has some advantages. As the digital twin is deployed in the cloud, an
intrusion detection system in the digital domain (cloud) can include methods
that require much more computing resources than if deployed in the real
system. Also, our intrusion detection is implemented close to the controller
when we control the system over the cloud and the controller is deployed in
the cloud. Hence, the intrusion detection has access to the signals that are
sent to the cloud for the controller and can evaluate whether they are healthy
or manipulated.

A few papers have suggested intrusion detection as a use case for digital
twins. The authors in [14] defined two rules, namely, safety and security rules,
that specific digital twins must adhere to. The safety rule defines a threshold
for a variable, for example, the maximum velocity of a motor that the PLC
controls, and the security rule specifies a consistency check between a tag of
the PLC and a tag of the machine interface (HMI). For instance, when the
velocity of a motor is set using an HMI and sent to a PLC, the value of the
velocity on these two devices should match. So, during the operation of the
systems, the digital twins are checked continuously for any rule violations.
However, this research missed the synchronization between digital twins and
the real systems, and regarding this issue, the authors in [15] proposed a
passive state replication to create synchronization between physical systems
and digital twins, which is a fundamental requirement for realizing intrusion
detection using digital twins. In this method, only the inputs of the physical
system that constitutes a stimulus should be fed to the digital twin. For
example, a set-point that a user chooses for the system through the HMI is a
kind of data that should be replicated in the digital twin. The authors have
also proposed a behavior-specification-based intrusion detection to determine
whether the system’s behavior during runtime diverges from the predefined
correct behavior due to an intrusion. However, creating the specification of
the system’s correct behavior typically requires processing effort, whereas in
this paper the authors sidestep this issue by making the assumption that the
specification of the system is readily available.

In our prior work [16], we proposed an architecture to implement a digital
twin and we equipped this architecture with a novel intrusion detection
algorithm that unlike [15] does not need a specification of the system’s correct
behaviour. Then, we evaluated the capability of our proposed anomaly
detection algorithm through simulation studies. In this paper, we propose
a digital twin-based security framework for industrial control systems. In
this security framework, we develop a novel algorithm that is deployed
in the digital twin for timely detection of attacks. Also, we propose an
approach to mitigate the attack after detection. Finally, as a proof of concept,
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Figure 1: Cloud Control Systems overview.

we implement our proposed security framework on a real testbed and we
demonstrate its effectiveness for timely detection and mitigation of attacks.

2 CLOUD CONTROL SYSTEMS

Our targeted system in this paper is Cloud Control System (CCS) that is
illustrated in Figure 1. The system consists of a plant controlled by a controller
implemented in the cloud. The plant is modeled as follows:

xk+1 = Axk + Buk + Gwk w → N(0, Q)

yk = Cxk + Fvk v → N(0, R)
(1)

In this model x is the state vector, y is the measurement signal, u is the control
signal, w is process noise, v is measurement noise and subscript k shows the
time instance. Here, we consider process noise and measurement noise to be
white noise with covariances Q and R respectively. Also, A, B, C, G, and F
are coefficient matrices.

The measurement signal y is measured by sensors and sent to the controller
in the cloud. Then, the controller, using the measurement signal, generates
control signal u and sends it back to the plant. Since these signals are sent
through the telecommunication link between the plant and the controller,
there is the possibility of attacks occurring in which the signals are manipu-
lated by the attacker. In this paper, we assume the attacker tries to manipulate
measurement signal y and we will investigate occurring attack on control
signal u in our future work.

We consider a “man in the middle” attack in this work, and in this type
of attack, the attacker can secretly listen to the values transmitted between
processes and controllers in the lower layer and has the ability to manipulate
or corrupt them. So, the attacker adds an attack vector a = [a1a2...aN ]

T to the
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measurement signal that has nonzero entries for measurements under attack
and zero values for all other measurements. Consequently, the controller will
receive ỹ instead of y that is defined as follows:

ỹ = y + a (2)

where ỹ is the manipulated measurement signal that is received by the
controller and makes it generate the wrong control signal such that it can
cause a critical condition for the plant.

3 PROPOSED SECURITY FRAMEWORK

The different actions to protect ICS from cyber attacks can be classified as
prevention, detection, and mitigation. Prevention aims at decreasing the
likelihood of attacks by reducing the vulnerability of the system components,
for instance by encrypting the communication channels, using firewalls, and
security protocols. On the other hand, detection is an approach in which the
system is continuously monitored for anomalies caused by adversary actions
and once an attack is detected, mitigation actions try to reduce impacts of
attack on the system [17]. Our aim in this paper is designing methods related
to detection and mitigation actions.

In this section, we propose a framework to ensure the stability of the
plant and having acceptable performance under attacks. Actually, using this
framework, we detect attacks in a timely manner and then mitigate them to
diminish the effects of the attack on the plant.

Figure 2 demonstrates an overview of our proposed security framework. As
shown in this Figure, we have a plant that is controlled over the cloud using
the main controller. We assume an attacker intrude into the system through
the network and manipulate measurement signal y sent to the main controller.
In order to detect this attack, we design an intrusion detection system in the
cloud that consists of a residual generator and a decision system. Decision
system receives the residual signal that is generated using ỹ and u, and it
triggers an alarm signal if it detects an attack. After detecting the attack, the
alarm signal is sent to the switch and causes it to use signal u

′
generated by

the ancillary controller that we have employed in physical domain, close to
the plant, instead of signal u generated by the main controller.

In this paper, we assume control signal u and alarm signal are protected
using some prevention actions and they are not accessible by the attacker,
but the attacker has access to measurement signals y. Protecting all data
including measurement signals can be costly to implement especially in large-
scale control systems that we have a lot of sensors and we may need update
the old equipment.
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Figure 2: Security framework overview.

In the rest of this section, we explain different parts of our proposed security
framework in detail.

3.1 ATTACK DETECTION

Attack detection part of our security framework consists of two parts: residual
generator and decision system.

A. Residual Generator

In order to detect attacks, we try to generate a residual signal that in the
absence of any attack has a nominal value close to zero and may deviate a
little bit from zero only due to modelling uncertainties and noise. However, if
an attack occurs, the residual deviates from zero with a magnitude such that
the new condition can be distinguished from the attack-free mode.

To generate such a residual signal, we can use an observer to estimate the
output of the system ŷ and then compare it with the real output of the system
y. For this purpose, we choose a Kalman filter, which is an optimal observer
for stochastic processes and can estimate the behaviour of the system by using
input u and output y signals of the plant. A Kalman filter for the system in (1)
will be designed using the following recursive algorithm, which consists of
two parts: time update and measurement update [18]. The time update part

61



Attack Resilient Cloud-based Industrial Control Systems

consists of the following steps:

1) x̂k|k−1 = Ak x̂k−1k−1 + Bkuk (3)

2) Pk|k−1 = Gk−1Qk−1GT
k−1 + Ak−1Pk−1|k−1 AT

k−1 (4)

and the measurement update part consists of the following steps:

3) Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + FkRkFT
k

)−1
(5)

4) x̂k|k = x̂k|k−1 + Kk

(
yk − Ck x̂k|k−1

)
(6)

5) Pk|k = (I − KkCk) Pk|k−1 (7)

where P is the estimating covariance matrix, K is the Kalman gain and x̂ is
the estimated state vector. The system’s output can also be estimated based
on these estimated states and using the system model as follows:

ŷk = Cx̂k (8)

After a transient time, the signal estimated by the kalman filter converges
to the real output signal, but if an attack occurs, it will cause a difference
between these two signals. Although this difference can be temporary and
in steady state, the estimated signal converges to the signal manipulated by
the attacker, this temporary difference can be used as a sign for an abnormal
condition. Hence, by comparing this estimated signal ŷ with the real signal y
we can generate a residual signal as follows:

rk = yk − ŷk (9)

Hence, we have as many residual signals as measurement signals.

B. Decision System

Model uncertainties, disturbances and measurement noise are not exactly
annihilated in the residual, and they could drive the residual away from zero.
Hence, we need a decision function for residual evaluation that will determine
whether an attack is present. The decision function consists of two elements:
a test function and a threshold function.
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• Test Function: a test function φ(rk) provides a measure of the residual’s
deviation from zero. Some common test functions have been introduced
in [19] and based on that, we consider the absolute value as a test
function, is defined as follows:

φ(rk) = |rk| (10)

In Section 6 we show this simple test function works well for our
objective.

• Threshold Function: a threshold function Φ(k) that we need for eval-
uation of the test function φ(k) should have the following properties:{

H0 : φ(rk) ≤ Φ(k)

H1 : φ(rk) > Φ(k)
(11)

where the hypothesis H0 indicates normal operation of the system and
H1 indicates the abnormal mode of the system that triggers an alarm
signal.
A set of healthy data of residual signals, during which no attacks occur,
is used to calculate appropriate thresholds for each residual signal. For
this purpose, we determine the threshold based on the maximum value
of the residual signal during healthy conditions such that it satisfies
the conditions in (11). Then, a given sample of measurement signals
is classified as an anomaly if one of the residual signals exceeds the
corresponding threshold.

3.2 ATTACK MITIGATION

Once the attack has been detected, attack mitigation should guarantee that the
plant remains stable and has acceptable performance under abnormal states.
As mentioned in Section 2, in our targeted system we have the controller in the
cloud and the communication link between the plant and the cloud enables
attackers to intrude into the system. Regarding control over the cloud, [20] has
proposed to use basic local control as an ancillary controller. This ancillary
controller is switched in to recover when networked control fails due to the
loss of real-time execution and network degradation. Hence, we can use the
same idea for mitigating attacks, and employ a local controller that we can
switch to upon detecting an attack. Thus, we design a controller and place it
in the physical domain close to the plant such that there is no public network
between the controller and the plant and consequently it is secure and there is
no possibility of intrusion into the system by attackers. Measurement signals
are sent from the sensors to both controllers and the both generate control
signals but the priority is to use the control signal generated by the controller
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in the cloud, since it is a more advanced controller. Once an attack has been
detected, as shown in Figure 2, an alarm signal is triggered and sent by the
decision system to the switch, causing it to use the control signal generated
by local controller.

4 TESTBED DESCRIPTION

As a proof of concept for our proposed security framework, we implement it
on a real test-bed based on [21].

4.1 PLANT

We use a ball and beam process as our plant. The ball and beam system
consists of a long beam which can be tilted by an electric motor together with
a ball rolling back and forth on top of the beam. This system is open-loop
unstable and without a controller, it will swing to one side or the other, and
the ball will fall off the end of the beam. Our motivation for choosing the
ball and beam system is that it is an intrinsically unstable and time-critical
system such that any attack on this system can make it unstable quickly.
So, evaluating our proposed security framework on this system can prove
its effectiveness.

For designing controllers and Kalman filter we need the discrete model
of the plant. The ball and beam process is modeled in continuous time as
follows:

ẋ(t) =


0 1 0

0 0 −7.00475

0 0 0

 x(t) +


0

0

0.44

 u(t)

y(t) =

[
10.18182 0 0

0 0 12.73239

]
x(t)

(12)

and we discretize it with sampling time 0.05 s.

4.2 KUBERNETES CLUSTER

The testbed has been equipped with a seven-node Kubernetes cluster as
the edge cloud. Kubernetes (K8S) is a portable, extensible, open-source
platform for managing containerized workloads and services, that facilitates
both declarative configuration and automation [22]. The cluster has been
equipped with an nginx ingress [23] and prometheus operator [24]. The nginx
ingress is exposed using the K8S NodePort paradigm. We use this K8S cluster
to implement our main controller and attack detection algorithm.
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4.3 MAIN CONTROLLER

To stabilize the ball, we need a feedback controller that uses measurement
signals to adjust the beam accordingly. A Model Predictive Control (MPC)-
based controller is designed based on [20] as the main controller in Figure
2. MPC is an advanced method of process control that is used to control
a process while satisfying a set of constraints. MPC relies on a dynamic
model of the process and uses this model to forecast system behaviour. Hence,
the main advantage of this controller is the fact that it allows the current
time-slot to be optimized, while taking future time-slots into account. The
current control action is obtained by solving, at each sampling instant k, a
finite horizon (N) open-loop optimal control problem, using the current state
of the plant as the initial state as follows:

minimize
u

J =
k+N−1

∑
i=k

xT
i Qxi + uT

i Rui + xT
k+N Pxk+N

subjectto xi+1 = Axi + Bui

G

[
xi

ui

]
≤ g, H

[
xi

ui

]
= h , xn+k ∈ T

(13)

where Q, R and P are cost matrixes, A and B define the model of the system,
x is the state vector, u is the control signal, and the constraints of the system
are defined by the matrices and vectors G, g, H and h. This optimization
yields an optimal control sequence u(k), u(k + 1), ..., u(k + N − 1) and the first
control in this sequence u(k) is applied to the plant.

Since MPC is implemented in the cloud, in this paper, in order to com-
pensate the possible network delay between the plant and the controller in
the K8S cluster, we apply the future control sequence u(k + m) instead of
the first control value in this sequence u(k). Actually, at each sampling
instant k, we measure the Round-Trip Time (RTT) the time it takes to send
the measurement signal and receive the control signal, and then by dividing
this time by the sampling time we calculate m, and we decide which step of
the control sequence u(k + m) to use instead of the first step u(k).

In this test-bed, MPC is implemented using Python and container technol-
ogy and is deployed to the K8S cluster as a pod.

4.4 ANCILLARY CONTROLLER

The test-bed has been equipped with a local controller that is implemented
as a Linear–quadratic regulator (LQR). The control signal of the LQR is
generated as follows:

uk = −Kxk (14)
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where K is the gain vector and x is the state vector. LQR is a simpler controller
than MPC and it requires little computational capacity, allowing it to be
implemented in the physical domain. This controller is implemented close to
the plant and there is no network between it and the plant which means that
it is secure and the attacker does not have access to the measurement signals
that are sent to this controller. This controller receives the measurement signal
and works in parallel with the MPC controller, but we use its control signal
to keep the system stable only when an anomaly is detected at the MPC
controller.

5 EXPERIMENTS

We evaluate our proposed security framework in the test-bed that was ex-
plained in Section 4, and in this section we describe our experiments.

5.1 GENERATING ATTACK SIGNALS

An attack should have two main features. First, it should cause the system to
go to an unsafe state, and second, it should not be easily detectable. In this
paper, we consider ramp attacks based on [6] and [8] and we assume they
occur on the measured position signal that is sent to the MPC controller in
the K8S cluster, and cause a change in the position signal.

In this type of attack, from the beginning of the attack, a value λr.t is added
to the actual signal, which depending on the magnitude of the slope of the
ramp signal λr, increases or decreases the value of the signal:

ỹ(t) =

{
y(t) for t /∈ τa

y(t) + λr.t for t ∈ τa
(15)

If λr is high, it changes the ball’s position quickly. However, such an attack
will be detected easily. So, the slope should be low and change the ball’s
position gradually, in which case it is difficult to detect. The length of the
beam equals 1.1 meters and the allowed range for the position of the ball is
[-0.55 m, 0.55 m]. We chose -0.3 meters as a set-point for the ball’s position
in the controller. Based on this, choosing 0 < λr ≤ 0.05 in (15) for the ramp
attack is reasonable, since it will cause the ball to fall off but it will be difficult
to detect. So, if we can detect these attacks, we will be able to detect ramp
attacks with larger λr as well.

5.2 EVALUATION OF SECURITY FRAMEWORK

For evaluation, we performed experiments by applying ramp attacks with
each λr ∈ S that S = {0.001, 0.0013, 0.0015, 0.0017, 0.01, 0.013, 0.015, 0.017, 0.02,
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0.023, 0.025, 0.027, 0.03, 0.033, 0.035, 0.037, 0.04, 0.043, 0.045, 0.047, 0.05}. Mea-
surement signal y that is sent to the MPC controller in the cloud contain
measured position of the ball, and measured angel of the beam, and in our
experiment we assume the attack occurs on the measured position signal. We
run each experiment for 15000 samples and we applied the ramp attack at
sample k=14500 on the the measured position signal. To evaluate our attack
detection method, we measured how much time it took to detect the attack
and trigger the alarm signal. Also, to evaluate mitigation part of our security
framework, we recorded position of the ball, and measured the maximum
deviation of the ball from its set-point due to the attack. We measured the
maximum deviation to know whether we can mitigate the attack and turn the
ball back to its set-point or not, and also to know before turning the ball back
how far it could get away from its set-point.

6 RESULTS AND DISCUSSION

In this section, the results of the evaluation of our security framework are
presented. We start with ramp attack with λr = 0.001 that is the slowest and
the most difficult one to detect and go into detail about it. Then results are
given for a series of attacks varying the parameters.

Figure 3 shows the results for a ramp attack with λr = 0.001. Figure 3(a)
shows the attack signal: a ramp signal with slope 0.001. We assume the
attacker starts to add this signal to the position signal that is sent to the cloud
at the 14500th sample, and tries to increase the value of the ball’s position with
very low speed such that the attack cannot be detected easily. The blue curve
in Figure 3(b) shows the manipulated position signal that is received by the
MPC controller and deceives it into generating the wrong control signal. The
black curve in Figure 3(b) shows the real position signal in the presence of this
attack and as can be seen this attack drives the system to an unsafe state and
causes the ball to fall off the end of the beam at the 14759th sample. Figure
3(c) and (d) show the residual signals generated using our attack detection
method in the presence of this ramp attack, and the red lines in these two
figures indicate the threshold. As can be seen, residual 1 at the 14531th sample
and residual 2 at the 14503th sample exceed their thresholds. Residual 2 can
detect the attack faster and triggers the alarm signal at the 14503th sample,
as shown in Figure 3(e). After triggering the alarm, in order to mitigate the
attack and recover, the system switches to the local controller. Figure 3(f)
demonstrates the effectiveness of our proposed security framework. As can
be seen, the set-point for the position of the ball on the beam is -0.3 m. At the
14500th sample, the attack starts to cause the ball to deviate from its set-point
in order to make it off the beam. However, at the 14510th sample, when the
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(a) Ramp Attack with slope=0.001 (b) Position signals

(c) Residual I signal (d) Residual II signal

(e) Alarm signal (f) System with security framework

Figure 3: Results for ramp attack with slope=0.001.

ball is just 0.3 mm away from its set-point, our mitigation method starts to
move the ball back to the set-point. Otherwise, in the absence of our security
framework, the ball continues to deviate from the set-point following the red
curve in Figure 3(f), and at the end it will fall off from the end of the beam as
shown by the black curve in Figure 3(b).

We also evaluated our security framework by applying ramp attacks with
different λr, and Figure 4 shows the time it takes to detect these attacks. As we
can see, an attack with λr = 0.001 can be detected at the third sample instance
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Figure 4: Detecting ramp attacks

after the start of the attack, 0.15 s after the attack starts as we use a sampling
time of 0.05 s. Attacks with 0.0013 ≤ λr ≤ 0.03 are detected at the second
sample instance after the beginning of the attack and ramp attacks with 0.03 <
λr are detected at the first sample instance after the beginning of the attack.
The steeper the attack signal is, the greater change it makes in the position of
the ball and the faster it is detected. Hence, we performed experiments, shown
in Figure 4, for ramp attacks with very small slope (0.001 ≤ λr ≤ 0.05) that
are very difficult to detect. We showed that these attacks can be detected very
quickly using our attack detection method. Also, based on these experiments,
it is clear that attacks with slope more that 0.05 are detected easily at the first
step after the start of the attack.

The attacker tries to drive the ball off the beam, but in the presence of
our security framework, we can detect these attacks quickly, as shown in
Figure 4, and then by using our mitigation method, we turn the ball back to
its set-point. Figure 5 shows the maximum deviation of the ball from its set-
point caused by ramp attacks with different λr. When the ball reaches these
maximum deviation, the mitigation part of the security framework prevents
it from continuing to move in that direction and turns it back to the set-point.
The maximum deviation the ball reaches depends on both the time it takes
to detect the attack and the slope of the attack, which determines how fast
the attack affects the system. For example, for attacks with λr = 0.03 and
λr = 0.04, based on Figure 4, it takes 0.1 s and 0.05 s respectively to detect
the attack. Hence, although an attack with λr = 0.04 is more powerful than
one with λr = 0.03 and moves the ball faster, it is detected faster and so has a
shorter time to affect the system. This means that it causes a smaller deviation
than an attack with λr = 0.03.

69



Attack Resilient Cloud-based Industrial Control Systems

Figure 5: Maximum deviation of the ball from its set-point due to ramp attacks
in the presence of the security framework

7 CONCLUSIONS

Considering the vulnerability of industrial control systems to cyber attacks
especially when they are controlled over the cloud, in this paper we proposed
a security framework using the concept of digital twins. In this framework, we
designed a residual generator in the digital domain that can detect attacks so
quickly with the help of a decision system. To mitigate the effects of attacks,
we added a local controller on the factory floor close to the plant, which
is switched in to recover the system when an anomaly is detected on the
main controller in the cloud. We evaluated our proposed security framework
using a real testbed, showing that it can detect attacks on a real system in
a timely manner and keep this system stable with good performance even
during attacks.
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III
A cloud-control system equipped

with intrusion detection and
mitigation

The Cloud Control System (CCS) are inseparable parts of industry 4.0. The
cloud, by providing storage and computing resources, allows the controllers
to evaluate complex problems that are too computationally demanding to
perform locally. However, connecting physical systems to the cloud through
the network can provide an entry point for attackers to infiltrate the system
and cause damage with potentially catastrophic consequences. Hence, in this
paper, we present a demo of our proposed security framework for CCS and
demonstrate how it can detect attacks on this system quickly and mitigate
them.
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1 INTRODUCTION

By adoption of new technologies, we have had several revolutions in industry
and now some modern technologies like Internet of Things (IoT), cloud
computing, etc are paving the way for smart factory that will realise industry
4.0. Industrial Control System (ICS) as part of industry 4.0 are becoming more
efficient and smarter. However, these systems are also becoming more and
more connected and part of a network systems and this communication link
between different components of ICS can provide an access point for attackers
to intrude into the system and manipulate the signals that are sent through
the network. For example, the attacker by manipulating measurement signals
can deceive the controller to generate a wrong control signal that can make
our system unstable and lead to catastrophic consequences like what we had
in recent years. In recent years, we have had several attacks in different parts
of industry that demonstrate ICS are still prone to cyber attacks and highlight
the necessity for an appropriate security measure to protect these systems.

The cloud provides seemingly endless computing and storage resources
that can be used to execute more advanced control strategies in ICS. However,
in cloud control systems (CCS), there is a network between the plant and the
cloud that the measurement and control signals are sent through this network
and this can make these systems vulnerable to cyber attacks.

In this paper, we present a demo of our proposed security framework
that is applied on CCS and include intrusion detection and mitigation. In
this system, we have a ball and beam process as our plant, a Kubernetes
(K8S)-cluster that hosts an intrusion detection and the main controller, and a
local controller that is part of our mitigation method and implemented using
Python code beside the plant.

2 SECURE CLOUD CONTROL SYSTEMS DEMO

In this section, we present our demo and explain how different parts of the
test-bed are implemented. Figure 1 shows an overview of our demo system.
Figure 1a shows our proposed security framework, and Figure 1b shows the
test-bed implementation. The system’s components are detailed below.

2.1 PLANT

We use a ball and beam process as our plant. The ball and beam system
consists of a long beam which can be tilted by an electric motor together with
a ball rolling back and forth on top of the beam. This system is open-loop
unstable and without a controller, it will swing to one side or the other, and
the ball will fall off the end of the beam. Our motivation for choosing the
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(a) Security framework overview. (b) Test-bed overview.

Figure 1: An overview of the demo system.

ball and beam system is that it is an intrinsically unstable and time-critical
system such that any attack on this system can make it unstable quickly.
So, evaluating our proposed security framework on this system can prove
its effectiveness.

2.2 KUBERNETES CLUSTER

The test-bed has been equipped with a six-node Kubernetes cluster as the
edge cloud. Kubernetes (K8S) * is a portable, extensible, open-source platform
for managing containerized workloads and services, that facilitates both
declarative configuration and automation . The cluster has been equipped
with an nginx ingress † and prometheus operator ‡ . The nginx ingress
is exposed using the K8S NodePort paradigm. We use this K8S cluster to
implement our main controller and intrusion detection algorithm.

2.3 MAIN CONTROLLER

To stabilize the ball, we need a feedback controller that uses measurement
signals to adjust the beam accordingly. A Model Predictive Control (MPC)-
based controller is designed based on [1] as the main controller in Figure 1.

*https://kubernetes.io/
†https://github.com/kubernetes/ingress-nginx/
‡https://github.com/coreos/prometheus-operator/
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This controller for execution needs some computation resources that cloud
can provide it. Thus, we deploy this controller using Python and Container
technology as a pod in the Kubernetes cluster.

2.4 ATTACK AND INTRUSION DETECTION

All communication between the plant and the cloud is over a LAN and uses
a protocol defined in Protobuf § which is realized in gRPC ¶. Measurement
signals includes position of the ball, angle of the beam, and speed of the ball
are sent through this network to the main controller in the cloud. The main
controller using these generates the control signal and send it back to the
plant. This control signal by adjusting the beam’s speed controls the position
of the ball on the beam. We assume the attacker tries to manipulate the
measured position signal, and we implement the attack by adding a ramp
signal with small slope (between 0.001 to 0.05) to the position signal using
python codes.

We deploy our proposed intrusion detection in [2] using python and
container technology as a pod in the Kubernetes cluster. This intrusion
detection consists of two parts: residual generator and decision system.
Residual generator estimates the value of the measurement signal and then
by comparing it with the real one generates a residual signal. In healthy
condition during which there is no attack, the residual signal is close to zero.
Thus, the decision system evaluates the residual signal and by comparing it
with a certain threshold decides if there is any attack in the system or not. If
it detects any attack in the system, it will trigger an alarm signal.

2.5 ATTACK MITIGATION METHOD AND ANCILLARY CONTROLLER

Our objective for mitigation is to keep the plant stable under the attack with
an acceptable performance. As mitigation, we consider an ancillary controller
that is placed close to the plant such that there is no public network between
the plant and this controller so there is no possibility for the attacker to intrude
into the system. Measurement signals from the plant are sent to both main
and local controller, but our priority is to use the control signal generated
by the main controller that is more advanced controller. Once the attack has
been detected, and the alarm signal has beet triggered, we will switch to the
ancillary controller. Ancillary controller is implemented as a Linear–quadratic
regulator (LQR). We refer to [2] for a full detail of the mitigation algorithm.
LQR is a simpler controller than MPC and it requires little computational
capacity, allowing it to be implemented in the physical domain.

§https://developers.google.com/protocol-buffers/
¶https://grpc.io/
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(a) Security framework overview.

(b) Test-bed overview.

Figure 2: Results for ramp attack with slope=0.001.

3 EXPERIMENTS

We design the attack based on section 2.4 and start applying it on the position
signal at the 14500th sample. Figure 2 shows effects of this attack on the
system in the presence and absence of our security framework. As it is seen in
Figure 2a, Our intrusion detection can detect this attack really fast and based
on this detection, our mitigation will be activated quickly. So, as the blue line
in Figure 2b shows, the attack tries to deviate the ball from its setpoint, but
by activating the mitigation part and switching to ancillary controller, we can
move the ball back to its setpoint. Otherwise, in the absence of mitigation
method, as the red line shows, the attack will move the ball to the end of the
beam and finally cause the ball to fall off.
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IV
Attack Resilient Cloud Control

Systems

In recent years, since the cloud can provide huge advantages regarding
storage and computing resources, industry has been motivated to move
industrial control systems to the cloud. However, the cloud also introduces
major security challenges, since moving control systems to the cloud can
enable attackers to infiltrate the system and establish an attack that can
lead to damages and disruptions with potentially catastrophic consequences.
Therefore, some security measures are necessary to detect these attacks in a
timely manner and mitigate their impact. In this paper, we propose a security
framework for cloud control systems that makes them resilient against attacks.
This framework includes three steps: attack detection, attack isolation, and
attack mitigation. We validate our proposed framework on a real testbed and
evaluate its capability by subjecting it to a set of attacks. We show that our
proposed solution can detect an attack in a timely manner and keep the plant
stable, with an acceptable performance during the attack.
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1 INTRODUCTION

In recent years, we have had numerous advances in network technology,
and these technologies have been combined with control systems to create
Networked Control Systems (NCS). In this type of control system, the control
loop is closed through the communication channel and makes it possible
to monitor and adjust the plant remotely. Control systems usually have to
deal with big data and this increases the communication and computational
load of the network, and causes the requirements for high quality and real-
time control to go beyond the traditional network control topology capability.
Hence, by combining the benefits of network control and cloud computing
technology, a new concept called Cloud Control System (CCS) has been
developed that can almost solve issues of resource constrained NCSs. In
CCSs, the core processing unit is shifted to a cloud server and endows the
control system with massive parallel computation [1].

Although there are many benefits of combining the cloud with control
systems, it leads to many security challenges. Controllers in the cloud server,
and sensors in the physical domain are supposed to send packets through the
communication channel, and this communication can be exposed to different
types of security attacks, including passive and active attacks. In recent years,
there have been a number of attacks that targeted control systems and caused
damage [2–6]. This indicates the possibility of such attacks on CCSs and the
need for appropriate security measures to protect these systems.

Computer security literature identifies three fundamental properties of
information and services in IT systems, namely confidentiality, integrity, and
availability, often denoted as CIA [7], and they can be violated by disclo-
sure, deception, and denial-of-service attacks, respectively. Confidentiality
concerns the concealment of data, ensuring it remains known only to the
authorized parties. However, in a disclosure attack, the attacker intrudes
into the telecommunication network and eavesdrops on the sent message.
Although this kind of attack does not have a devastating effect on the system,
the attacker may use it to get some knowledge about the system and launch
more complicated attacks. Integrity relates to the trustworthiness of data,
meaning there is no unauthorized change to the information between the
source and destination. In a deception attack, the attacker manipulates the
data that is sent through the network and, for example by injecting false
data to the measurement signal that is sent to the controller, violates data
integrity and deceives the controller to generate the wrong control signal.
Availability considers the timely access to information or system function-
alities. In a Denial-of-Service (DoS) attack, the attacker, by occupying the
network bandwidth, prevents the message from arriving at the destination.
For instance, the message sent by the plant is actually blocked and does not
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reach the controller. In this paper, we try to find some solutions for deception
attacks.

Various measures to protect cyber-physical systems against cyber attacks
can be classified as prevention, detection and mitigation [8]. In prevention,
the goal is to prevent the possibility of attacks by reducing the vulnerability of
system components, for example by encrypting communication channels, or
using firewalls and security protocols [9]. Detection, on the other hand, is an
approach in which the system is constantly monitored for anomalies caused
by adversary actions, and once an attack is detected, mitigation actions try to
reduce the impact of attacks on the system.

There are two important reasons why having detection and mitigation
actions is necessary and only prevention actions like encryption are not
enough. First of all, there could be a powerful attacker who can break these
prevention actions and intrude into the system to establish a malicious attack
like what we had before. In recent years, we have had a lot of attacks in
different parts of industry, which shows there were some attackers who could
break the prevention layer and infiltrate the system. So in this condition we
need such detection and mitigation actions to make the system able to tolerate
such an attack and remain stable. The second reason to have detection and
mitigation actions is that in some systems like power grids, most parts of the
equipment are old and implementing prevention measures like encryption
will be costly because of the corresponding update of equipment. Therefore,
in this case we can use detection and mitigation actions that are completely
adaptable to already-implemented industrial control systems. Hence, our aim
in this paper is to design methods related to detection and mitigation actions.

In this paper, we propose a novel framework for attack resilient cloud
control systems. The framework consists of three parts: an attack detection
part to detect anomalies in the system, an attack isolation part to diagnose
the location of the attack, and an attack mitigation part to keep the system in
a safe mode during and after an attack. Our main contribution in this paper
is in the isolation part because, based on the virtual sensor method that we
use in the attack mitigation part, we need an isolation method that tells us
exactly on which signal(s) there is an attack. So, first we show that other
available methods for this objective have some defects such that they have
low efficiency and are not applicable to real systems. Then, we propose our
novel isolation method that is based on the combination of the concepts of
digital twins and cloud computing with control theory. Hence, we make the
following novel contributions in this paper:

• Proposing a novel framework for attack resilient cloud control systems.
• Considering having simultaneous attacks on several measurement sig-

nals and not only on one of them
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• An evaluation of two different methods: observer-based attack detec-
tion and an Analytical Redundancy Relations (ARR) method for the
detection of anomalies in data measured from the sensors in cloud-
based industrial control systems

• Proposing a novel isolation method to detect exactly which compo-
nent(s) have been attacked and we show that it has much better effi-
ciency than the other available isolation method (ARR).

• Proposing a mitigation method by developing fault-tolerant control
techniques (virtual sensing) for cloud control systems in which we add
a reconfiguration block that hides the attack from the controller and
makes the controller able to tolerate attack conditions.

• Implementing our proposed security framework on a real testbed as a
proof of concept and demonstrating that the detection part can detect
attacks in a timely manner, the isolation part can accurately diagnose
on which component we have an attack, and the mitigation part can
keep the plant stable with acceptable performance during the attack.

The remainder of this paper is organized as follows. Section 2 investigates
the related studies and explains the research gap. Section 3 provides a
background about CCSs (the real-world system we are studying) and then
introduces the real testbed which is used for implementing our proposed
framework, and at the end, defines our considered attack model. The
proposed solution including attack detection, isolation, and mitigation are
explained in Section 4. Section 5 contains all details about our evaluation of
the proposed solution. The results of the experiments are given in Section 6.
Final remarks and conclusions are discussed in Section 7.

2 RELATED WORKS

Some research has been done regarding detection of deception attacks. Some
works have proposed passive attack detection mechanisms by performing
some statistical tests on the innovation signal from an estimator [10–12].
The authors in [13] proposed adding watermarking signals to the control
inputs and checking received observations by various statistical tests to detect
attacks, but adding these watermarking signals can increase the control cost.
Also, some studies proposed using Machine Learning (ML) algorithms to
detect attacks. These algorithms can be employed to learn normal behavior
from available data and, then, to compare measured samples to the learned
models, to determine if those new samples are anomalous or not. For instance,
the authors in [14] proposed using Support Vector Machine (SVM), and
the authors in [15, 16] proposed a reinforcement learning approach for this
purpose.
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Once the attack has been detected, a mitigation method is needed to reduce
the impact of the attack on the system. Hence, some research has been done
regarding mitigation of deception attacks. For example, in [17], the authors
have proposed an improved adaptive resilient control scheme for mitigating
adversarial attacks such that the controller ensures the asymptotic stability
of the closed-loop system and avoids the violation of the state constraints.
In [18], a novel data-based adaptive integral sliding-mode control strategy was
proposed, which can ensure the stability and a nearly optimal performance of
data-driven cyber-physical systems against a class of actuator attacks.

In our prior work [19], we proposed a security framework including de-
tection and mitigation methods for CCSs. We demonstrated we can detect
attacks in a timely manner using this framework that is deployed in the cloud
and once the attack has been detected, an alarm signal is sent to the physical
side and makes us able to switch to an ancillary controller to mitigate the
attack. In this paper, we have improved our previous work, and instead of
employing the ancillary controller we will reconfigure our main controller
such that it will be able to control the plant in abnormal state and keep it
stable with acceptable performance. Also, in our previous work, we had to
send the alarm signal from the cloud to the physical side through a secure
communication channel to prevent potential attacks on it. However, in this
work, there is no need to send an alarm signal from the cloud to the physical
domain and all detection and mitigation actions will be done in the cloud
domain.

Since cyber attacks also affect the physical behavior of the system, the tools
used for fault-tolerant control can be applied for attack-resilient control. So,
here in order to mitigate the attack we reconfigure our controller in the cloud
by developing the virtual sensor concept, which is a method to deal with
sensor failures. The authors in [14] have also proposed using the virtual
sensor concept to mitigate attacks in industrial control systems, especially
Energy Management System (EMS), but they have skipped the isolation part
in this method. Isolation is the necessary and main part in the virtual sensor
method that gives knowledge of exactly on which sensor(s) there is an attack.
So, in this paper we propose an attack resilient framework for CCSs where
we develop the virtual sensor concept as a mitigation method, and also we
propose a novel isolation method that can exactly diagnose on which sensor(s)
an attack has occurred.

In [20], where the virtual sensor concept was first proposed as a fault-
tolerant control method to deal with sensor failures, Analytical Redundancy
Relations (ARR) have also been proposed for isolation. So, we compare our
proposed isolation method with this ARR method and we show the defects of
the ARR method and how our method is more powerful than it to diagnose
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the location of attacks. Furthermore, as an attack detection method in our
proposed attack resilient framework, we compare two different methods to
detect attacks: observer-based and ARR.

3 CLOUD CONTROL SYSTEMS AND ATTACK MODELS

Our targeted system in this paper is cloud control systems and in this section,
first we provide a description of cloud control systems then we illustrate our
real testbed that we have used to evaluate our proposed security framework.
Finally, we specify the attack model that we have considered in this paper.

3.1 BACKGROUND: CLOUD CONTROL SYSTEMS

Figure 1 shows the general structure of cloud control systems. A cloud control
system is composed of two layers: the cyber layer and the physical layer.
The cyber layer consists of a communication channel and a cloud, while the
physical layer contains a plant, actuators and sensors [21]. The plant can be
modelled as follows:

xk+1 = Axk + Buk + Edk

yk = Ckxk
(1)

where x ∈ Rn is the state vector, y ∈ Rp is the measurement signal, u ∈ Rnu

is the control signal, d ∈ Rnd is disturbance, A, B, C and E are coefficient
matrices, and k is the time instant. In this system the controller is deployed
in the cloud, so there is a communication network between the plant and the
controller through which the control signals u and the measurement y should
be sent. Hence, this communication channel can provide an entry point for
attackers to infiltrate the system and manipulate these signals, which can lead
to damage and catastrophic consequences. However, under normal conditions
in which there is no attack we will have ũ = u and ỹ = y in Figure 1, and we
assume in this normal condition the plant is stable and is controlled well by
the cloud controller.

In order to determine how an attack can affect a physical system and
jeopardize it, we need to characterize the safety constraints of the system. For
this, we use the safe set concept based on [8]. Usually, each physical system
has some physical limits: for example in power systems, cables cannot sustain
an arbitrarily large instantaneous power. So, based on these limitations and
by appropriate scaling of the output of the system yk using λ, a safe set can
be defined for each system as follows:

Sx =

{
x : max

k
{∥Cxxk∥∞} ≤ λ

}
(2)
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Figure 1: Cloud Control Systems overview.

The system is said to be safe if the state trajectory xk remains in Sx. Therefore,
the attacker, in order to damage the system, tries to drive the state of the
system out of its safe set.

3.2 TESTBED DESCRIPTION

As a proof of concept for our proposed security framework, we implemented
it on a real testbed whose details can be found in [22].

A. Plant
In our testbed, we use a ball and beam process as the plant. A ball and

beam includes a long beam on top of which the ball rolls back and forth. This
system is open-loop unstable and the ball swings and falls off the end of the
beam. So the controller tries to hold the ball on the setpoint on top of the
beam by tilting the beam using an electrical motor. We define the safe set
for the ball and beam system with respect to the length of the beam. Since
the length of the beam is 1.1 m, the allowed range for the position of the
ball is [−0.55m, 0.55m] and the attacker’s goal is to drive the ball out of this
range and cause the ball to fall off the end of the beam. Also, if the attacker
moves the ball from its predefined setpoint but holds it on the beam, it may
not damage the system, but can cause extra cost and decrease the efficiency.
Hence, our aim in this paper is to hold the ball not only on the beam, but also
on the exact setpoint.

We have chosen this system as a plant, because it has a fast dynamic and
is time critical and even in the absence of attack, controlling it over the cloud
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is tricky. Hence, applying our proposed method for this process, and keeping
it stable in the presence of attacks can prove the effectiveness of our method
very well. The ball and beam system has three measurement signals: the
position of the ball y1, the speed of the ball y2, and the angle of the beam y3.
This process can be modeled in continuous time as follows:

ẋ(t) =


0 1 0

0 0 − 5g
7

0 0 0

 x(t) +


0

0

0.44

 u(t)

y(t) =


a1 0 0

0 b2 0

0 0 c3

 x(t)

(3)

where g = 9.80665 is the gravity of Earth. We discretize this continuous time
model with sampling time 0.05 s for designing the controller and our security
framework.

B. Controller
We design an Model Predictive Control (MPC) controller to make the ball

and beam system stable and control the position of the ball. The control action
is obtained by solving, at each sampling instant k, a finite horizon (N) open-
loop optimal control problem, using the current state of the plant as the initial
state as follows:

minimize
u

J =
k+N−1

∑
i=k

xT
i Qxi + uT

i Rui + xT
k+N Pxk+N

subject to xi+1 = Axi + Bui

G

[
xi

ui

]
≤ g, H

[
xi

ui

]
= h , xn+k ∈ T

(4)

where Q, R and P are cost matrices, A and B define the model of the system,
x is the state vector, u is the control signal, and the constraints of the system
are defined by the matrices and vectors G, g, H and h. We deployed this
controller in a Kubernetes cluster that will be described in the following.

C. Kubernetes cluster
The test-bed has been equipped with a seven-node Kubernetes cluster as

the edge cloud. Kubernetes (K8S) is a portable, extensible, open-source
platform for managing containerized workloads and services that facilitates
both declarative configuration and automation [23]. The cluster has been
equipped with an nginx ingress [24] and prometheus operator [25]. The nginx
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ingress is exposed using the K8S NodePort paradigm. We use this K8S cluster
to implement our controller and our attack detection, isolation and mitigation
algorithms.

3.3 ATTACK MODEL

In general, cyber-attacks in the literature can be classified into three main
types: Denial of Service (DoS) attacks, deception attacks, and disclosure
attacks [26]. In this paper we consider deception attacks in which the attacker
tries to manipulate the data integrity for the transmitted packets between
different components of the cyber-physical system. So, in the cloud control
systems case, the attacker may manipulate the measurement signal y or
control signal u in Figure 1.

Assumption: We consider there is no attack on control signal u and we only
have deception attacks on the measurement signal y. However, we consider
that is possible to have an attack on several sensor measurements at the same
time and we will examine our security framework for all 2p − 2 conditions
for an attack occurring on y, where p is the number of measurement signals:
y ∈ Rp. We subtract 2 from 2p, because we disregard the case in which there
is no attack on the measurement signals, and also the case in which we have
an attack on all measurement signals, since we assume the attacker is not able
to have access to all measurement signals at the same time.

By considering the above assumption, in our case, we have three measure-
ment signals in our testbed, and we will consider 23 − 2 = 6 different modes
for an attach occurring on the system.

The attacker adds an attack vector fa = [a1 a2 ... ap]T to the measure-
ment signal y = [y1 y2 ... yp] and this attack vector has nonzero entries
for measurements under attack and zero values for all other measurements.
So, we can model this attack using (1) as follows:

ỹk = Ckxk + fa (5)

By applying this attack, the controller will receive the manipulated mea-
surement signal and based on that will generate the wrong control signal.
This wrong control signal can make the plant unstable and drive the state
trajectory of the physical system to an unsafe set that will cause extensive
damage to the system.

4 PROPOSED SOLUTION

In this section, we propose a security framework for cloud control systems to
ensure the stability of the plant and maintain acceptable performance under
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Figure 2: Proposed attack resilient framework overview.

attacks. Actually, using this framework, we detect attacks in a timely manner
and then mitigate them to diminish the effects of the attack on the plant.
Figure 2 demonstrates an overview of our proposed security framework. As
shown in this figure, this framework includes attack detection, isolation, and
mitigation parts that all of them are deployed inside the cloud, hence it is
adaptable to already implemented CCSs’ framework, and we do not need to
change them a lot. In the following we will explain each part of our framework
separately.

4.1 ATTACK DETECTION

In the attack detection part of our proposed security framework, we try to
generate a residual signal such that is close to zero and less than a predefined
threshold in normal condition during which there is no attack, and it will
exceed the threshold once the attack has occurred. In this section we will
investigate two different methods to generate residual signals and detect the
attack: observer-based and Analytical Redundancy Relations (ARR).

A. Observer-based Attack Detection

In this method, we use an observer to estimate the real value of the sensor
measurement that has been manipulated by the attacker. The main require-
ment for using this method is observability of the system. Hence, by assuming
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Figure 3: Observer-based attack detection overview.

that our system is observable, we propose designing a Kalman filter as an
observer for the system based on our previous work [27]. As you can see in
Figure 3, the Kalman filter by using control signals u and measurement signals
y tries to estimate the correct value of the sensor measurements ŷ. Then by
comparing y and ŷ, we can generate a residual signal as follows:

rk = yk − ŷk (6)

In normal condition, the residual signal should equal to zero, but the
measurement noise causes some deviation from zero. Hence,we need a
decision function for evaluation of residual signal, and it will determine
whether an attack is present. For this, based on our previous work [19, 27]
we use a decision function that consists of a test function and a threshold
function. Test function φ(rk) provides a measure of the residual’s deviation
from zero as follows:

φ(rk) = |rk| (7)

and this test function will be evaluated by a threshold function Φ(k) as
follows: {

H0 : φ(rk) ≤ Φ(k)

H1 : φ(rk) > Φ(k)
(8)

where the hypothesis H0 indicates normal operation of the system and H1
indicates the abnormal mode of the system that triggers an alarm signal. In
this paper, we consider the threshold function a constant value that equals to
the absolute value of the maximum deviation of the residual signal from zero
in normal condition during which there is no attack.

B. Analytical Redundancy Relations

As is said in Section 4.1-A, observability of the system is naturally required
for using observer-based attack detection methods. Analytical redundancy
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relations are equations that are deduced from an analytical model, which
solely use measured variables and control signals as input. The main
argument in the ARR method is that there is no need to use observer to
estimate the unknown states by elimination of these states, so observability of
the system is not required in this method. Analytical redundancy relations
must be consistent in the absence of an attack, and can thus be used for
residual generation. Analytical redundancy can be seen as a tool for obtaining
conditions, based on available measurements and control signals, that are
necessarily fulfilled when the supervised system works in a normal mode.
This method will be designed based on a continuous-time model of the
system. Hence, we consider the general continuous-time version of (1) as
follows:

ẋ(t) = g(x(t), u(t), d(t))

y(t) = h(x(t), u(t), d(t))
(9)

We can determine the nominal and attacked case respectively as provided
below:

H0 ⇔ [ẋ(t) = g(x(t), u(t), d(t))]

∧ [y(t) = h(x(t), u(t), d(t))]
(10)

H1 ⇔ [ẋ(t) ̸= g(x(t), u(t), d(t))]

∨ [y(t) ̸= h(x(t), u(t), d(t))]
(11)

where H0 shows the normal condition and H1 shows abnormal condition.
To find ARRs we will differentiate the output equations q times and q is the

minimum natural number that satisfies the following condition:

(q + 1)p > n + (q + 1)nd (12)

Regarding y ∈ Rp, we have p output equations and by differentiating
them q times, we will have (q + 1)p equations. Unknown variables in these
equations are state variables x ∈ Rn , disturbance and its differentiation
d̄(q) ∈ R(q+1)nd . In this paper, z(q) indicate the qth order derivative of
variable z, and we have z̄(q) = [z ż...z(q)]T . Thus, in order to have enough
number of linearly independent equations to calculate the unknown variables
based on known variables and eliminate them, we need to start with q times
differentiation that q meets (12) and then we need to check the independency
of relations, and if there are not n + (q + 1)nd independent equations, we
should increase q and differentiate again. Algorithm 1 shows all steps for
generating ARRs.
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Obtained ARRs from algorithm 1 can be used for detecting attacks as it has
been demonstrated below:

r
(

ȳ(q), ū(q)
)
= 0 ⇔ H0

r
(

ȳ(q), ū(q)
)
̸= 0 ⇔ H1

(13)

Algorithm 1: Algorithm for finding ARRs

1 n, p, nd and system’s model by considering attack vector fa:
ẋ(t) = g(x(t), u(t), d(t))

y(t) = h(x(t), u(t), d(t)), fa(t))
2 ARRs Find the minimum q that satisfies (q + 1)p > n + (q + 1)nd
3 Find matrix Hq that includes output equations and their differentiation

up to qth order of derivative:

4



y

ẏ

ÿ
...

y(q)


=



h(x, u, d, fa)

h1

(
x, ū(1), d̄(1), f̄a

(1)
)

h2

(
x, ū(2), d̄(2), f̄a

(2)
)

...

hq

(
x, ū(q), d̄(q), f̄a

(q)
)


= Hq

5 while rank
([

∂Hq

∂x
∂Hq

∂d̄(q)

])
̸= n + (q + 1)nd do

6 q=q+1
7 Find the new Hq based on step 2 but using the new q

8 if rank
([

∂Hq

∂x
∂Hq

∂d̄(q)

])
= n + (q + 1)nd then

9 Use at least the n + (q + 1)nd first equations in Hq to find unknown
variables x and d̄(q) = [d d(1) ... d(q)] based on known
variables:

10

[
x

d̄(q)

]
=

 ϕx

(
ȳ(q)M , ū(q), f̄a

(q)
)

ϕd

(
ȳ(q)M , ū(q), f̄a

(q)
) 

11 Substitute these obtained variables in the remained equations of Hq

and put fa(t) = 0 to find ARRs:
12 0 = r

(
ȳ(q), ū(q), 0

)
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Using algorithm 1, we can find ARRs for our testbed described in Section
3.2 as shown below:

r(t) =


r1(t)

r2(t)

r3(t)

 =


ẏ1 − a1

b1
y2

ẏ2 +
b2
c3

5g
7 y3

ẏ3 − 0.44cu

 (14)

As can be seen, these residual signals are composed of only the outputs y, the
outputs’ derivatives y(q), and the input u. In normal condition, these residuals
should be close to zero and whenever they deviate from zero and exceed the
threshold, it demonstrates there is something abnormal in the system.

4.2 ATTACK ISOLATION

Attack isolation means finding on which measurement signals an attack has
occurred and determining the location of the attack. We need isolation to
know which measurement signals are reliable and we will use this knowledge
in the mitigation part. In this section, we provide two different approaches
for isolation: ARR and our proposed digital twin-based isolation method.

A. Analytical Redundancy Relations

In Section 4.1-B, it was explained how ARRs can be used for detecting attacks,
and now we want to use them to determine on which measurement signal(s),
an attack has occurred. As it can be seen in (13), obtained residuals from ARR
method are only dependent to measurement signals and its derivatives ȳ(q)

as well as control signal and its derivatives ū(q). In ARR method, isolation
is done based on which residual signal reacts to the attack. Regarding the
reaction of residuals to the attacks, we will create a signature for each attack
condition and determine on which signals we have an attack. If these residuals
react to the attacks on each measurement signal differently, we can diagnose
on which measurement signal the attack has occurred.

For our testbed that was described in Section 3.2, based on the residuals
that we found for it in (14), r1 is dependent on ẏ1 and y2, so changes in y1
and/or y2 can affect r1. In the same way, r2 is dependent on ẏ2 and y3, thus
variation in y2 and y3 can cause changes in r2. Finally, r3 is related to ẏ3 and
u, therefore manipulation of y3 and/or u can be reflected in r3. Based on these
relations, we can assign a signature to each attack and do isolation as shown
in Table I.

For example, when an attack occurs on y2, r1 and r2 react to this attack.
Hence, if we consider (r3r2r1) as a binary code, we have (011)2 = 3 that will
be signature for attack on y2. In Table I, we can see each attack has a unique
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Table I: Attack isolation using ARRs.

Attack on y1 Attack on y2 Attack on y3

r1 1 1 0

r2 0 1 1

r3 0 0 1

signature 1 3 6

signature that makes us able to diagnose on which measurement signal the
attack has occurred.

Although ARRs isolation method seems simple, it is completely dependent
on how the model of the system is and also how ARRs are related to the
measurement signals. Hence, we cannot guarantee that always works. Also,
as it said before, in this paper, we consider it is possible to have simultaneous
attacks on several measurement signals. consequently, we need an isolation
method that can be used for isolation of such simultaneous attacks. However,
ARR method cannot guarantee that. For example, in our tesbed case, if there
are two simultaneous attacks on y1, and y2, based on Table I, there will be
variation in r1 due to the attack on y1, and changes in r1, and r2 due to the
attack on y2. Therefore, for simultaneous attack on y1 and y2, we totally have
changes in r1 and r2 and the signature for this attack will be (011)2 = 3 that is
exactly same as signature of the single attack on y2. Regarding these defects of
ARR isolation method, in next section, we propose a novel isolation method
that is able to isolate both single and simultaneous attacks. All other defects
of ARR isolation method is discussed in Section 6.

B. Proposed digital twin-based isolation method

We need isolation because based on our attack mitigation method that will
be explained in Section 4.3, after detecting the attack, in order to be able to
mitigate that attack, we will ignore the measurement signals that have been
manipulated by the attacker and reconstruct these signals using healthy ones.
Hence, by utilizing cloud capacity and based on digital twins concept, we
propose a novel attack isolation method to determine which measured signals
are under attack.

If we consider we have n sensors, so we will have 2n − 2 different modes that
the attack can occur on the measurement signals. Thus, in our mitigation part
we will design a virtual sensor for each mode to reconstruct the manipulated
measurement signals from healthy measurements. As we said before, all three

102



IV Attack Resilient Cloud Control Systems

steps: detection, isolation and mitigation are implemented in the cloud, so
although virtual sensors do not need complex calculation, we will use the
cloud capacity for deploying these 2n − 2 virtual sensors.

Figure 4 shows the virtual sensors that each of them have designed for each
mode. They use the measurement and control signals and depending on the
fact that each virtual sensor works on which mode, it assumes one or some
measurement signals are under attack and remove them and use the rest for
reconstructing removed signals. Therefore, all 2n − 2 virtual sensors try to
generate the measurement signals y, but the output of only one of them that
has considered the correct mode shows the real value of the measurement
signals before manipulating by the attacker. In order to determine which
virtual sensor generates the real measurements, we get help from digital
twins. Digital twin is a rather new concept in industry. With digital twins,
we have virtual replicas of physical systems so that they precisely mirror the
internal behavior of the physical systems [28]. Hence, in our isolation method,
we will take advantage of digital twins to define a reference operation that
we can use for comparing outputs of virtual sensors with it. The signals
generated by the virtual sensor that has considered the correct mode will have
the minimum difference with the output of the digital twin, and for defining
this difference we integrate the absolute error (IAE) as follows:

Figure 4: Digital twin-based attack isolation + mitigation
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Ej =
kn

∑
i=1

∣∣zi − zDTi

∣∣ , j ∈ {1, 2, ..., 2n − 2} (15)

where kn is a window that we use to calculate Integral Absolute Error (IAE)
from step k − kn to the current step k, and by doing this we try to consider
the history of the differences between out of virtual sensors with output of
the digital twin and this will lead to have a more reliable choice than when
only calculate the difference at current step k. In (15), z is output of a virtual
sensor and zDT is output of the digital twin. So, in each time instant k we
calculate 2n − 2 errors (IAE), and when the alarm signal from the detection
part shows there is an attack in system, we choose the virtual sensor that has
the minimum error between these 2n − 2 calculated error for the mitigation
part. Obviously, from this chosen virtual sensor we can realize which signals
have been removed and determine the mode of the attack.

In isolation part, the mathematical model of the plant is used For creating
digital twin based on [27, 29].

4.3 ATTACK MITIGATION

In our previous work [19], we proposed to employ an ancillary controller in
physical domain to mitigate impacts of the attack such that once the attack
has been detected, we switch from cloud controller to this local controller. We
showed that this method works well and we can keep the plant stable under
attack. In this paper, our idea for mitigating the attack is reconfiguring the
main controller instead of employing a local controller. This idea is adaptable
to already implemented CCSs’ framework, and we do not need to implement
a new controller. Hence, it will be more cost efficient and also it can be
implemented on more complex system effortlessly.

In our mitigation method, we try to hide the attack from the controller and
as you can see in Figure 5, we add a reconfiguration block in the cloud close to
the controller and it gets the measurement signal that has been manipulated
by the attacker and approximately gives the correct measurement signal to the
controller. Therefore, the attacker, whose goal was deceiving the controller
and making the system unstable, cannot be successful because the attack
will be hidden from controller and the controller will generate correct control
signal based on output of reconfiguration block.

In reconfiguration block in Figure 5, in order to reconstruct the measure-
ment signal we utilize the virtual sensor that is also explained in isolation
part. In model of the plant (1), each row of matrix C is relate to each sensor
measurement. Based on isolation part, we can diagnose that the attack has
occurred on which sensors, and, by removing the rows relates to the sensors
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Figure 5: Hiding the attack from the controller using reconfiguration block.

that we have attack on, we can generate matrix Ca. Using this, system with
attacks can be described by the state-space model:

ẋa = Axa + Bu + Ed

ya = Caxa
(16)

where the attacks on sensors is reflected by the matrix Ca. By removing rows
related to the sensors under attack from matrix C, and creating Ca, ya also
will contain only healthy measurement signals. To see if real value of other
sensor measurement signals that have been manipulated by the attacker, can
be reconstructed from ya, we need to check following condition:

Kern (Ca) ⊆ Kern(C) (17)

where Kern() denotes the kernel of a matrix. If condition (17) is satisfied, it
means (A, Ca) is observable, and the entire state vector can be reconstructed.
Regarding this condition we will consider the following assumption.

Assumption: By checking above observability condition for all modes in
which the attack may occur on one or several sensors, we consider some
redundancy in sensors. We also consider the minimum number of sensors
that we need to meet observability condition for all attack modes as protected
measurement such that attackers have not access to them.

Now we can design a virtual sensor based on [20] as follows:

ẋV = AV xV + BVuc + Lya

yc = CV xV + Pya
(18)

that we have:
AV = A − LCa

BV = B

CV = C − PCa

P = CC+
a

(19)

in (19), L is chosen such that A − LC f is Hurwitz.
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5 EXPERIMENTS

To evaluate our proposed security framework, we deploy it on the real
testbed that was explained in Section 3.2, and in this section we describe our
experiments. In our testbed, we have three sensors for measuring position of
the ball, speed of the ball, and angle of the beam. Hence, we can have 23 = 8
different combination of these measurement signal that by disregarding the
case in which we have attack on all measurement signals (based on our
assumption in Section 3.3 it is not possible), we can define 23 − 1 = 7 different
modes as shown in Table II. In this table, mode 1 is related to normal condition
in which there is no attack on measurement signals.

Based on (5), and regarding the fact that we have three sensors in our test-
bed, fa = [a1 a2 a3]

T is added to measurements signals and depending on
that we have attack on which signal(s), ai can be zero or non zero. In our
experiments, we generate these non zero values as follows:

ai = N
(

µ, σ2
)

, µ = λr(ki − k0) (20)

where σ2 is constant and µ increases with time. In fact, by applying this
attack we will increase real value of the measurement signal gradually with
time, such that detecting the attack become difficult. So, The smaller λr is, the
more difficult it is to detect.

Also, in order to evaluate different parts of our proposed methods in
different condition, we utilize Chaos Mesh [30]. Chaos Mesh is an open
source cloud-native Chaos Engineering platform. It offers various types of
fault simulation and has an enormous capability to orchestrate fault scenarios.
Network Chaos is a fault type in Chaos Mesh that we use that for applying

Table II: Different modes of attack.

Attack on y1 Attack on y2 Attack on y3

mode 1 - - -

mode 2 × - -

mode3 - × -

mode 4 - - ×
mode 5 × × -

mode 6 × - ×
mode 7 - × ×
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different amount of delay in the Round-Trip Time (RTT) between the plant
and the controller in the cloud.

5.1 EVALUATION OF ATTACK DETECTION METHODS

In the first part of the experiment, we evaluate the attack detection part. In
(20), if λr is high, it affects the system and changes the ball’s position quickly.
However, such an attack will be detected easily. So, the slope should be
low and change the ball’s position gradually, in which case it is difficult to
detect. The length of the beam equals 1.1 meters and the allowed range for
the position of the ball is [-0.55 m, 0.55 m]. We chose 0 meters (middle of the
beam) as the set-point for the ball’s position in the controller. Based on this,
choosing 0 < λr ≤ 0.05 in (20) is reasonable, since it will cause the ball to fall
off, and also it will be difficult to detect. So, if we can detect these attacks, we
will be able to detect attacks with larger λr as well. Hence, for evaluating and
comparing two observer-based and ARR-based attack detection methods that
we proposed in Section 4.1, for each mode in Table II, we generate attacks
based on (20) with each λr ∈ S that S = {0.001, 0.01, 0.02, 0.03, 0.04, 0.05}
and apply it based on (5) on corresponding measurement signals. Then, we
compare efficiency of these two different methods for detecting attacks by
measuring the time it takes to detect the attack.

5.2 EVALUATION OF ATTACK ISOLATION METHODS

In Section 4.2, we provided two different isolation methods for determining
the location of the attack. In the second part of our experiment, we evaluate
these isolation method in different modes of attack in which we may have an
attack on a measurement signal or a simultaneous attack on several measure-
ment signals, and we show the defects of ARR method and effectiveness of
our proposed isolation method.

5.3 EVALUATION OF ATTACK MITIGATION METHOD

In the third part of our experiment, we evaluate our mitigation method. For
this, we apply different modes of the attack on our test-bed and then we
investigate how we can mitigate the attack. For this part, we detect attacks
using observer-based attack detection and isolate using our proposed isolation
method. Also, as performance metric we use IAE as follows to compare the
control performance in normal condition, in attack condition when we have
mitigation, and in attack condition when we do not have any mitigation.

IAE =
T

∑
k=0

|yk − sk| , (21)
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where yk here is the position signal, and sk is the set-point for the position of
the ball on the beam.

Since in our control system (ball and beam system) the control objective
is tracking the reference, we have chosen IAE as performance metric for
evaluating our mitigation method.

6 RESULTS AND DISCUSSION

In this section, the results from the experiments detailed in Section 5 are
presented.

6.1 ATTACK DETECTION

Regarding Section 5.1, for evaluating attack detection part, for each mode of
Table II except mode 1 that shows normal condition, we considered attack
with different λr ∈ S. For each mode and each λr we run our experiment for
15000 steps and apply the attack on the 14500th sample and then we measure
how much time it takes to detect this attack. For each mode and each λ, by
applying different delay in RTT using Chaos Mesh, we repeat the experiment
10 times each with different RTT ∈ [20.2 ms, 104.1 ms] and calculate the
average time it takes to detect the attack. Figure 6 shows the average time it
takes to detect the attacks using observer-based and ARR attack detection
methods. As can be seen, by increasing λr the time to detect the attack
is decreasing because the steeper the attack signal is, the greater change it
makes in the position of the ball and the faster it is detected. So, on average,
maximum time for detecting the attack with λr = 0.001 that is the slowest
and the most difficult one to detect, is 172.2 ms using observer-based method,
and it is 305 ms using ARR method. Hence, for other attacks with larger
λr, it takes less than these time to detect the attack that means both of these
attack detection methods can detect attacks really fast. By comparing Figure
6a and Figure 6b it can be seen the time to detect attacks using both methods
are close. However, on average, time to detect the attack in each mode using
observer-based attack detection is shorter than ARR attack detection method.

6.2 ATTACK ISOLATION

In ARR-based isolation method, based on Table I, we define the signatures
for each mode of attack in Table II for our test-bed in Table III. As can be seen
in this table, mode 3 and 5, and also mode 6 and 7 have the same signature.
So, when we get signature as 7 we are not able to diagnose that the attack
has occurred on angle and position signals or it has occurred on angle and
speed signals. Also, when we get signature as 3 we are not able to diagnose
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(a) Observer-based detection method’s effi-
ciency to detect attacks.

(b) ARR detection method’s efficiency to detect
attacks.

Figure 6: The average time to detect attacks using observer-based and ARR
attack detection methods.

Table III: ARR signatures for each mode of attack.

Modes Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Signature 1 3 6 3 7 7
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that the attack has occurred on both position signal and speed signal or only
on speed signal. Figure 7 shows residual signals for ARR_based isolation
method for mode 6 and 7. In this figure, all attack are applied on the system
at the 900th sample. Figure 7a is related to mode 6, and in this mode, we have
simultaneous attacks on position signal and angle signal, and based on Table
I, this attack will have effect on r1 due to the attack on position signal (y1) and
also it will have effect on r2 and r3 due to the attack on angle signal (y3). So,
as can be seen in Figure 7a as we expect all residuals exceed their threshold
and as signature for this attack we will have (r1r2r3) = (111)2 = 7.

Figure 7b is related to mode 7, and in this mode, we have simultaneous
attacks on speed signal and angle signal. based on Table I, this attack will
have effect on r1 and r2 due to the attack on speed signal (y2) and also it will
have effect on r2 and r3 due to the attack on angle signal (y3). So, as can
be seen in Figure 7b as we expect all residuals exceed their threshold and as
signature for this attack we will have (r1r2r3) = (111)2 = 7. So, for both cases
mode 6 and 7 we got same signature 7 and that means that if we get signature
7, we will not be able to distinguish we are in mode 6 or 7.

Therefore, one of the main weak point of ARR-based isolation method is
that this method is completely dependent on model of the plant and based
on that signature for different modes of attack will be defined and we do not
have any control on that. Hence, we may have similar signature for different
modes and not to be able to diagnose the correct mode of attack as we had this
problem for our testbed in Table III. However, we do not have such problem
in our proposed isolation method since we design an observer for each mode
and calculate the error for each mode separately.

In addition to this problem, there are also two critical issues in ARR-based
isolation method. The first one that has big impact on correct isolation, is
defining an appropriate threshold such that if the residual signal exceeds
this threshold we can consider it as one for generating signature, otherwise
it will be considered as zero. The second issue is related to this fact that
residual signals that will generate the signature of the attack do not exceed
their threshold at the same time. Therefore, we need to define a window
that shows the certain amount of time that we should wait after that the first
residual exceeds its threshold to see which other residuals will exceed their
threshold to consider them as one and the rest as zero and decide about the
signature for the attack. Because after a while that the plant is going to be
unstable due to the attack, all residuals will start to increase and they may
exceed their threshold. Hence, we should consider only the residuals that
exceed their threshold inside the window. Red area in Figure 7 and 8 demarks
the window time.
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(a) Applying attacks on both position
and angle signals (Mode6).
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Figure 7: Residual signals for ARR_based isolation method for mode 6 and 7.

Choosing thresholds for residual signals and window time is difficult
because it should work for all conditions. Smaller threshold will lead to the
residual signal exceeds the threshold and we will have faster isolation, but it
will also cause some false alarms and the residuals that should be considered
as zero will be considered as one and consequently we will have wrong
signature and wrong isolation. Longer window time is more conservative
and causes not to miss the residuals that will exceed their thresholds a bit
later. However, longer window time will lead to wait more and consequently
it takes more time to do isolation and this will affect on attack mitigation.
Because, if the attack is powerful, it will make the plant unstable soon and we
need to detect, isolate and mitigate this attack as fast as possible to save the
system.

Figure 8a shows residual signals for the condition in which we have an
attack on position signal at the 900th sample. So, in this condition based on
Table I, we expect only r1 exceed its threshold to create signature (001)2 = 1.
Regarding our chosen thresholds in Figure 8a, during the window time only
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r1 exceeds its threshold as we expected. Figure 8b also shows residual signals
for condition we have an attack on speed signal at the 900th sample. So, it
seems chosen thresholds work well and as we expect based on Table I and
III, during the window time r1 and r2 exceed their threshold. However, in
Figure 8c residual signals for condition we have an attack on position signal
at the 900th sample and in this condition, we have also applied 40 ms delay
using Chaos Mesh such that the average RTT in this condition is about 66 ms.
In this condition, same as Figure 8a, we expect during window time only r1
exceed its threshold, but we can see r2 also has exceeded its threshold that
will lead to have wrong signature and wrong isolation.

For solving such problem we can either increase threshold for r2 or decrease
window time, but both of these changes are so challenging. For example here
if we want to increase the threshold for r2 to solve the problem in Figure 8c
such that r2 that has passed the threshold remains under threshold, it will
cause a problem in Figure 8b since in this figure r2 is supposed to surpass the
threshold, but if we increase the threshold such that r2 in Figure 8c remains
under threshold, r2 in Figure 8b also will be so close to the threshold or lower
than it that will cause misleading and generating wrong signature.

On the other hand, decreasing window time for solving the problem in
Figure 8c, cannot be an option. Since if the window time is decreased such
that the time when r2 exceeds the threshold is out of window time and is not
considered for generating signature, this may cause missing the residuals that
will exceed their thresholds a bit later. For example, r1 in Figure 8b takes more
time to exceed its threshold, so we need to consider not too short window time
for considering such residual as one.

Increasing both threshold and window time together could be a solution
for this problem, but it will lead to wait more and consequently it takes more
time to do isolation and this will affect on attack mitigation. For example,
this can solve the problem of r2 in Figure 8c, but in Figure 8b, we should
wait about 40 sampling steps to consider r2 as one for generating signature
that is too long and does not work for the ball and beam process that has fast
dynamic and makes it unstable.

Therefore, ARR-based isolation method not only does not work for attacks
that cause same signature, but also choosing appropriate threshold and
window time is really challenging and has big impact on the result. Also,
delay can affect the result and cause generating wrong signature and wrong
isolation. So, ARR may work for detection, but it really has low efficiency as
isolation method. Because in attack detection using ARR, we care only about
the first residual signal that exceeds its threshold, but for isolation all residual
signals should be considered.
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Figure 9: Isolation using our proposed method and mitigation based on this
isolation.
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Figure 9 shows performance of our proposed isolation method to determine
on which measurement signals the attack has occurred and specify the mode
of attack. In this figure, we generate the attack based on (20) with λr = 0.04
and apply it on related measurement signals to each mode of Table II at the
14500th sample. For instance, in mode 2 we apply this attack only on position
signal, and in mode 6 we apply it on both position and angle signals. Also,
using Chaos Mesh, we apply network delay 40 ms such that the average RTT
between the plant and the controller in the cloud is about 66.1 ms in these
experiments. As can be seen in Figure 9, in all six modes of attack, even in
the presence of applied delay in RTT, our proposed isolation method works
well and after detecting the attack by observer-based attack detection part, can
exactly specify the mode of the attack and diagnose on which sensor there is
an attack.

6.3 ATTACK MITIGATION

In the following, based on the detection and isolation from previous section,
we activate our mitigation part to mitigate the impact of the attack. In Figure
9, we can also see the position signal for each mode of attack. As can be seen
in the figure, blue curve shows the position of the ball on the beam in the
presence of our mitigation method, and the red curve shows the position of
the ball on the beam in the absence of the mitigation method. For example,
in Figure 9d, the attack applies on position and speed signals simultaneously
at the 14500th sample, and starts to cause the ball to deviate from its set-
point in order to make it off the beam. However, this attack is detected by
the observer-based attack detection at the 14503th sample and activates our
proposed isolation method. Then, our proposed isolation method specify
mode 5 for this attack that based on Table II means that there are attacks on
position and speed signal. Based on this isolation, in our mitigation part, in
reconfiguration block in Figure 5, before feeding measurement signals to the
controller, position and speed signals are removed and regenerated using rest
of measurement signals and then these new signals are fed to the controller.
By doing this, as blue curve in Figure 9d shows, our mitigation method moves
the ball back to the set-point. Otherwise, in the absence of this mitigation, the
ball continues to deviate from the set-point following the red curve in Figure
9d, and at the end it will fall off from the end of the beam.

Regarding Section 5.3, in order to evaluate our mitigation method, and
to see if it can keep the system stable with an acceptable performance, we
measure the performance of the controller using IAE. Figure 10 shows IAE for
normal condition during which there is no attacks, attack condition without
mitigation, and attack condition with our mitigation in each attack mode. In
all cases the IAE is measured up until the point where the ball falls off the
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Figure 10: IAE for each mode of system.

beam. As can be seen in this figure, in all modes of the attack IAE for the
condition that we mitigate the attack using our proposed security framework
is close to IAE in normal condition that this proves that we can keep the plant
stable with an acceptable performance during the attack.

7 CONCLUSIONS

In this work, an attack resilient framework for cloud control systems has
been proposed, and its effectiveness has been proved by implementing it
on a real cloud-based testbed. Two observer-based and ARR methods were
investigated and evaluated as attack detection in this framework. We showed
both of these two methods have acceptable performance, and able to detect
attacks fast, but the observer-base method is able to detect attacks in a shorter
time.

In the isolation part, first we evaluated the available isolation method ARR
and showed that ARR-based isolation method not only does not work for
attacks that cause same signature, but also choosing appropriate threshold
and window time is really challenging and has big impact on the result. Also,
delay can affect the result and cause generating wrong signature and wrong
isolation. So, ARR may work for detection, but it really has low efficiency
as isolation method. Regarding defects of this method, a novel method by
combination of digital twin concept, cloud computing, and control theories.
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We showed that in comparison to ARR, it has a promising performance, and
does not have the flaws that are raised about ARR as an isolation method.
This method is able to diagnose the mode of attack correctly, and delay in
RTT does not affect its performance.

Our novel isolation method uses the concepts of digital twins and cloud
computing, and that is a departure from previous methods, which usually
are very much based in pure control theory, and gives a whole new way to
approach these types of problems, that ties into current hot research trends.

We also proposed a mitigation part in this framework by developing the
virtual sensor concept for cloud control systems from fault-tolerant control
system. By applying different modes of attack on the system we proved that
this mitigation method can keep the system stable with an acceptable perfor-
mance during the attack. So, even if the attacker can break the prevention
scenarios and intrude into the system to establish an attack, we can make the
system able to telerate this attack using our proposed framework.

Future work to investigate other kinds of attacks on CCSs like Replay attack
will be carried out to design some methods to detect and mitigate these kinds
of attacks. Also, we will study some new methods for delay compensation
between the cloud and the plant. In this paper, we used MPC controller for
this objective, and using its predictive features we tried to deal with delay
problem. As a future work, we will design delay compensation methods that
make us able to have even simpler controllers inside the cloud instead of
MPC.
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