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Abstract

This thesis investigated the modeling and control problems in the context of
the flex-fuel compression-ignition (CI) engine and fuel cell, which shows great
potential in the transition from fossil fuel to renewable energy sources.

The modeling parts included the flex-fuel engine combustion process and
intake system, and the system scale fuel cell model. The flex-fuel engine
gas system models describing the intake pressure, temperature, oxygen
concentration dynamics were established and validated with experimental
data. The ignition delay was one key indicator of the combustion process
and fuel properties and was modeled with a physical model and data-based
models. A fuel cell physical model was built to illuminate the electrochemical
behavior, and Gaussian process (GP) models were used to predict the voltage
and hydrogen pressure with the collected data.

Model predictive control (MPC) approaches based on physical models were
applied to the flex-fuel CI engine and the fuel cell. An adaptive MPC method
was proposed to control the combustion process of the flex-fuel CI engine. The
control targets were combustion phasing and ignition delay. The adaptivity
was done by estimating the physical ignition delay model parameters with
real-time data online by Kalman filter. The proposed adaptive MPC approach
showed the successful application in the fuel transition scenario with diesel,
gasoline/n-heptane mixture, and ethanol/n-heptane mixture. An MPC with
control constraints was developed to keep the fuel cell voltage at a reference
value under current disturbance while satisfying the hydrogen pressure safety
requirements. The state-space model was built by the simplification and
linearization of the detailed system model. The proposed MPC controller
fulfilled the control task and was compared with a PI controller.

Learning-based MPC (LBMPC) integrated the learning models to the state-
space model to improve the controller performance. One learning-based MPC
method that decoupled the robustness and performance by maintaining two
system models was proposed and applied to the control of combustion phasing
when running with diesel. The comparison of LBMPC and MPC showed
the improvement of performance by LBMPC. A GP MPC was developed to
solve the fuel cell voltage control task with current disturbance and hydrogen
pressure limit. Two GP predicting voltage and hydrogen pressure were
integrated into the state-space model. The GP MPC showed comparable
performance with MPC based on a detailed system physical model while
requires less system information during operation.
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Popular science

Transportation plays an important role in our modern society. The food
inventory would be empty in the supermarkets if transportation failed for
weeks or days. Meanwhile, the need for transportation, especially commercial
transportation, is increasing with the development of population, living
standards, and economic activity.

The transportation energy source relies heavily on traditional fossil fuel with
the usage of the internal combustion engine (ICE). To reduce carbon emissions
and protect the environment from harmful pollutants, a transition from a
fossil energy-centered supply to more dependence on renewable energy sources
is necessary. Meanwhile, the internal combustion engine is still the main
propellant of modern society, especially for commercial transportation like
long-haul trucks. The use of alternative fuels like bio-diesel, bio-alcohol for
ICE as energy sources is an interesting idea to mitigate the environmental
impact. But along with the alternative fuels, the fuel property diversity is a
challenge. This situation makes the flex-fuel engines an attractive solution,
which is able to run with different fuel species instead of one specific fuel.
Besides, the flex-fuel engine could also run with traditional fossil fuels, which
contributes to a smooth energy source transformation. For long-distance
commercial transportation, the compression-ignition (CI) engine, one type
of ICE, is the main power source. The flex-fuel CI engine is a promising
concept in this context. The engine controller is a key pivot in realizing this
concept. The complexity of the flex-fuel CI engine requires advanced control
algorithms.

In the long run, the fuel cell together with hydrogen energy shows great
potential. If hydrogen were produced from renewable energy, the operation of
the fuel cell system would have low or zero carbon emission and environmental
impact. The fuel cell also has higher efficiency as compared to other renewable
energy conversion technology and the lack of moving parts reduces some
requirements of maintenance. However, its commercialization is still limited
by some technical issues, among which reliable operation poses a big challenge.
Control algorithms play a significant role in fuel cell system reliability.

Both the flex-fuel CI engine and the fuel cell put high demands on the control
algorithms. Model predictive control (MPC) stands out from other controllers
because of its ability to handle the multi-input multi-output problem and the
constraints explicitly. MPC utilizes models to predict the system behavior
and calculate the inputs. The models adopted in this work includes physical

xi



models and data-based models, like the Gaussian process (GP) and neural
network (NN).

A physical model was developed to describe the ignition delay behavior.
Based on the physical model, an adaptive MPC approach was proposed. The
proposed adaptive MPC method showed successful application in the fuel
transition scenario with diesel, gasoline/n-heptane mixture, and ethanol/n-
heptane mixture. Besides, a learning-based MPC method was proposed and
applied to the control of combustion phasing when running with diesel.

A system scale fuel cell physical model focusing on the macro behavior was
built. Two Gaussian processes were trained to predict the fuel cell voltage
and hydrogen pressure. The voltage was the control target and the hydrogen
pressure should be under a certain constraint value to ensure safe operation.
An MPC based on the physical models was developed. The Gaussian process
model required less system information during operation than the physical
model when used in MPC design. An MPC based on the Gaussian process was
developed, and the Gaussian process MPC showed comparable performance
with MPC based on the detailed system physical model.

Based on the traditional truck engine, the flex-fuel CI engine expands the
fuel choice beyond fossil fuels. Its adaptivity to renewable fuels makes it a
promising concept in the transition to a carbon-neutral society. Besides, the
flexibility empowers the commercial vehicle’s high tolerance to fuel differences
in a wide transportation area. The proposed control method was applied in
the flex-fuel engine concept to ensure the engine gives the desired performance.
The fuel cell is a high-potential clean energy source to achieve zero-carbon
emission transportation. The MPC method developed was used to ensure
that the fuel cell operates as expected while satisfying the safety requirements.
Overall, this thesis researched the advanced control method to regulate the
flex-fuel CI engine and fuel cell under complicated dynamic scenarios with
safety constraints. The control methods actuate the flex-fuel CI engine and
fuel cell towards carbon-neutral transportation.
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CHAPTER 1

INTRODUCTION

1.1 Background

Under the pressure of global warming, major countries have released long-term
outlooks and published mandatory regulations for greenhouse gases (GHGs),
of which the carbon dioxide (CO2) accounts for three-quarters of the total
amount [69]. Figure 1.1 shows the European Union’s vision for reducing
GHGs by 2050 [7], [16], [17]. The total reduction is 80% in 2050 compared to
1990 levels, of which the transportation sector has a reduction of 60%.

To reduce carbon emissions and protect the environment from harmful
pollutants, a transition from fossil energy-centered supply to more dependence
on renewable energy sources is necessary. Many countries and companies
have invested in renewable and alternative energy sources to facilitate the
transformation sustainably.

However, the internal combustion engine (ICE) is still the main propellant
of modern society, especially for commercial transportation. As shown in
Figs. 1.2 and 1.3, heavy-duty transportation keeps increasing due to the
economic activity expansion, and the transportation energy source relies
heavily on traditional fossil fuel [132]. In the short term, the elimination
of ICE and fossil fuel is undesirable. In this case, the flex-fuel engine,
which can operate with different fuels including traditional fossil fuels and
renewable fuels like ethanol, is a promising choice for the smooth energy
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Figure 1.1: The European Union’s vision for reducing GHGs (100%=1990) [7], [16],
[17].

source transformation. The fuel flexibility can also provide the ICE adaptivity
to local fuels in a vast area during long-distance transportation.

Figure 1.2: Transportation energy demand growth driven by commerce [132].

In the long run, the fuel cell together with hydrogen energy, which has
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Figure 1.3: Commercial transportation energy demand by fuel [132].

low or zero carbon emission and environmental impact if the hydrogen is
produced from renewable energy, shows great potential. Meanwhile, its also
possible to use carbon-based fuel such as methanol, gasoline, and natural
gas as a hydrogen source, which contributes to a smooth transition. The
fuel cell also has higher efficiency as compared to other renewable energy
conversion technology and the lack of moving parts reduces some requirements
of maintenance.

The main target of this work is to develop efficient and reliable control
methods for the flex-fuel CI engine and fuel cell.

The following part of this chapter provides an introduction to flex-fuel CI
engines, fuel cells, and modeling and control methods.

1.2 Flex-fuel CI engine

ICE basics

The internal combustion engine is used to produce mechanical power from
the chemical energy contained in the fuel by burning or oxidizing the fuel
inside the engine [78]. Traditionally, the main kinds of ICE are spark-ignition
engines (also called Otto engines) and compression-ignition engines. The
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spark-ignition engine generally operates with gasoline, where the combustion
of the air-fuel mixture is ignited by a spark plug. Different from SI engines,
the CI engine combustion process is ignited by the heat of compression
and normally operating with diesel. These two kinds of engines have wide
applications in transportation and power generation due to their simplicity,
ruggedness, high power-to-weight ratio [78].

The reciprocating internal combustion engine adopts a cylinder-piston-crank
arrangement. The structure of the arrangement is shown in Fig. 1.4. The
four-stroke cycles of ICE start with airflow inducted through the intake valves
due to the vacuum generated by piston downward motion. Then the air is
compressed by upward moving piston to high-pressure and high-temperature
conditions. The fuel is injected when the piston moves close to the top-dead
center (TDC) position. For CI engines, the temperature and pressure are high
enough shortly after injection, such that autoignition happens. Combustion
increases the in-cylinder pressure, pushing the piston downward and the
linear motion of the piston is converted to rotation of the crankshaft during
expansion. Finally, the combustion products are expelled out of the cylinder
after the exhaust valve opening. The full cycle process is shown in Fig. 1.5.

Connecting rod

Piston

Combustion 
chamber 

Intake
valve

Exhaust 
valve

Injector

TDC

BDC

Crank shaft

Figure 1.4: The mechanical arrangement of an engine cylinder.
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CompressionIntake Expansion Exhaust

Figure 1.5: Four-stoke process of a CI engine.

Flex-fuel engine

Nowadays, the flex-fuel engine concept commonly refers to the spark-ignition
(SI) engine. The flex-fuel SI engine operates on gasoline and ethanol up to
85% volumetric percentage. However, the compression-ignition engine is also
promising to serve as a flex-fuel engine. It provides more flexible fuel choices
and combustion modes. At the same time, it brings new control challenges
comparing with single-fuel engines due to the unknown fuel species which
demands advanced control methods.

The flex-fuel engine can operate on different fuels and their mixtures.
Nowadays, flex-fuel engine mainly refers to spark-ignition engine operating
on a blend of ethanol and gasoline in any volumetric concentration of up to
85% ethanol (93% in Brazil) [13]. The Brazilian market started to offer flex-
fuel vehicles equipped with flex-fuel SI engines since 2003, and a total of 30.5
million flex-fuel vehicles were registered by March 2018 [39]. The applications
of flex-fuel engines achieve fruitful results. However, the definition of flex-fuel
engines can be broadened for wider applications. The CI engine, normally
running with diesel, can also serve as flex-fuel engines.

CI engines can have more flexible fuel choices and combustion modes.
Extensive studies have been carried out on the combustion mode of CI engine
with gasoline. Well-known modes include homogeneous charge compression
ignition (HCCI) [157], partially premixed combustion (PPC) [116], and
reactivity controlled compression ignition (RCCI) [142]. Ethanol also has
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been proven to be a possible fuel for the CI engine. Mack et al. showed the
use of wet ethanol in HCCI mode [114]. The flex-fuel CI engine concept in
this thesis is the first time being proposed to the author’s knowledge.

1.3 Fuel cell

The fuel cell is electrochemical equipment that converts chemical energy inside
fuels like hydrogen to direct current electricity with oxygen in the air [47].

Normally, the fuel cell has higher efficiency and less operation noise than
the thermal generator with the same power since there is no combustion in
the process. The fuel cell is also clean in the way that its byproducts are
only water and heat when using pure hydrogen, which makes the fuel cell an
attractive way to reduce carbon emission.

Figure 1.6 gives an illustration of the fuel cell reaction [137].
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Figure 1.6: Fuel cell reaction.

The fuel cell type investigated in this work is the polymer electrolyte fuel
cell (PEFC). The PEFC is one promising fuel cell technology because of its
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high efficiency, fast start-up, low operating temperature, and environmental
friendliness. It has been increasingly employed in portable stationary and
transport units to replace traditional power sources [65], [102], [148], [186].
According to the E4tech Fuel Cell Industry Review [155], the fuel cell (FC)
sector showed a remarkable increase in the supply chain of more than a
gigawatt of shipments with PEFC dominating the shipments both in number
and capacity.

The core part of the PEFC stack is the membrane electrode assembly (MEA).
The MEA consists of proton exchange membranes sandwiched by electrodes,
anode, and cathode on either side. The electric power is produced by the
electrochemical redox reactions when hydrogen and air are supplied [47].
The membrane is an electrical insulator but allows hydrogen ions to move
freely. The electrodes are normally made from highly conducting materials
like porous graphite [137].

1.4 The control problem

Automatic control involves the automatic operation and regulation of systems.
In most cases, the system states x is influenced by system inputs u. The
control target x can be obtained by the measured system outputs y. The
controller design process finds the suitable inputs u to achieve the specific
system performance demands.

Closed-loop control is more resilient to disturbances and variations in the
system by incorporating measured system outputs. Figure 1.7 shows the
diagram of the closed-loop control system. System dynamic instability and

Controller System 
Reference Error System

input
System
output

+

Disturbance

-1

Figure 1.7: Negative feedback control system block diagram. The system input is
determined by the deviation between reference and system output.
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sensor noises are the possible drawbacks of closed-loop control. This gives the
trade-off between reachable system performance and robustness in controller
design [22].

The control framework employed in this thesis is optimal control, which
represents the control target as a mathematical optimization objective subject
to constraints, as shown in Eq. (1.1):

min
u

J(u,x)

subject to g(u,x,y) = 0

f(u,x) ≤ 0

(1.1)

The cost function J is the mathematical formulation of control objectives like
reference tracking. The equality represents the model of the system being
controlled, expressing the relation between inputs u, states x, and outputs
y. The inequality constraint is the constraint that needs to be fulfilled by u
and x. This formulation of the control problem is suitable for engine control
where the common purposes are minimizing fuel consumption and reference
deviation while satisfying the constraints imposed by actuator characteristics,
noise, and emission limitations. Typically, the solution near the constraint
boundary gives better performance.

The optimization problem of Eq. (1.1) is solved repeatedly cycle by cycle with
respect to certain predictive and control horizon and measured outputs. This
technique is known as model predictive control (MPC) when the optimization
objective includes the prediction horizon and the equality constraints include
the state-space equations. MPC has gained academic attention and shown
successful applications in many areas including process control, automotive
control, and advanced engine concept control. More details about the control
approach can be found in Chapter 3.

Intuitively, an adaptive or learning controller is a controller that can adjust
its behavior in response to changes in the dynamics of the process and the
character of the disturbances [20].

Learning control concepts have gained attention from multiple research areas
including control and computer science disciplines under different names.
Reinforcement learning, a learning optimal control approach which originated
from the control society, has been a vigorous topic nowadays in artificial
intelligence research. Combining optimal control and statistical learning
methods also shows successful applications in recent years [23], [64], [152].
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Those methods normally require much higher computational resources than
traditional control methods, however, the rapidly growing computing power
gives space and possibility for them.

For the optimal control problem of Eq. (1.1), the adaptivity means the cost
function J , the system model g, and the constraints f are changing according
to varying system dynamics.

In this thesis, the main focus is the learning ability of the system model g,
whose ability to describe the system is vital for the controller performance.

The modeling methods conventionally contain the white-box model, grey-box
model, and black-box model. A white-box model is a purely theoretical and
normally physical-based model which commonly lacks the learning ability.
A grey-box model, which is partially theory-based and partially data-based,
collects information from data to complete the theoretical structure and has
the adaptivity to the environment changes. Furthermore, the pure data-based
model, the black-box model, concerns the system inputs and outputs relations
without consideration of its internal working mechanisms. Black-box models
encapsulate the as of now hot machine learning methods, such as support
vector machines (SVM), Gaussian processes (GP), and neural networks (NN).
Statistical modeling is another way of black-box modeling. Black-box models
usually have more parameters than grey-box models, requiring more data
for parameter estimation and more careful regulation to ensure controller
stability. A comparison of grey-box modeling and black-box modeling for the
flex-fuel engine is detailed Sec. 2.3.3.

Flex-fuel engine control

For the engine control process, the system performance includes combustion
efficiency, noise, and emission levels while satisfying certain system
constraints.

Traditionally, CI engine control uses the open-loop form. The fuel injection
amounts are decided by a calibrated map of engine speed, accelerator pedal
position, and air-fuel ratio concerning the output work. The injection times
are normally determined by predefined maps [66]. The open-loop control
is simple and effective for diesel CI engines due to the stability of the
conventional diesel combustion mode. When various fuels and combustion
modes are used, the open-loop control fails to handle the various combustion
situations and noises introduced to the system.
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The work in this thesis concerns the decision of fuel injection timings and
duration and gas system valve opening to control the engine combustion
process using the measured in-cylinder pressure signal as the feedback. The
solenoid injector connected to the common-rail fuel system is the actuator
for injection. The injection timing is controlled by the solenoid injector
opening timing and the fuel injection quantity is controlled by the injector
nozzle opening duration and common-rail pressure. The solenoid injector is
driven by current pulses. A detailed description can be found in [36]. The
gas system includes the variable geometry turbocharger (VGT) system, low-
pressure exhaust gas recirculation (EGR) system, and a thermal management
system. The gas system actuators are the EGR valve, the VGT valve, and a
hot and cool valve controlling the intake oxygen concentration, pressure, and
temperature.

Flex-fuel engine CI operating with more than two different fuels and
the fuel transition can happen any time during engine operation. The
combustion process is sensitive to the inlet conditions and the cylinder
mixture composition. This puts high demands on the engine controller
design. In this case, the feedback in-cylinder pressure signal is necessary to
collect information about current running fuel and to reduce the combustion
sensitivity. The main goals of the controller are to maintain the combustion
phases like ignition delay and combustion timing following set-points which
should be properly controlled and shaped to achieve clean and efficient
combustion.

When operating with a gasoline mixture in CI engines, the high pressure rise
rate as a result of the high combustion rate is an identified issue. Introducing
a pilot injection is a solution to this problem, which is adopted for all fuel
cases.

The unknown fuel composition changes during flex-fuel CI engine operation
bring up the main control challenge. When operating only on gasoline and
ethanol, the flex-fuel SI engine primitive task is the detection of ethanol
concentration in the fuel. This can be done by using an ethanol sensor,
or by exploiting the difference in stoichiometric air-to-fuel ratio or the latent
heat of vaporization between ethanol and gasoline [13]. Once the volumetric
ethanol concentration is determined, the fuel properties can be assumed all
known, and further control algorithms are applied. However, the flex-fuel
CI engine is expected to operate on more than two specific fuels. Unlike
the flex-fuel SI engine, the flex-fuel CI engine doesn’t know the fuel species
in advance. Consequently, the control method based on detecting specific
fuel concentrations, and thus getting the exact fuel-property information will
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not work. In this case, a predefined system model is insufficient to fulfill
the control task under unknown dynamically changing circumstances. In
the worst cases, it could cause a system failure or, at least, interruption of
operation. Thus, the adaptivity of the controller is required to deal with the
flex-fuel scenario.

Fuel cell control

The target of fuel cell control in this work is to ensure continuous operation at
steady voltage under the workload disturbance by manipulating the hydrogen
and air flow rate. This is an important demand in electrical equipment usage
[95], [165]. The workload of the fuel cell is categorized by its current. Efficient
and robust control strategies are considered as one of the key solutions to
ensure the fuel cell system’s high reliability [97].

1.5 Motivations and contributions

There were some unique challenges in the flex-fuel CI engine and fuel cell
control. For the flex-fuel CI engine, this work was the first application of
the flex-fuel concept on a CI engine. What modeling and control method
should be used in this concept? The research of the flex-fuel SI engine and
the PPC engine gave some knowledge [13], [81], [179], but fuel species choices
of SI engine and CI engine were different. The flex-fuel SI engine only needed
to know the ratio between ethanol and gasoline, while the fuel species is
unknown for a flex-fuel CI engine. What modeling and control method should
be adopted to deal with the variation and uncertainty in a flex-fuel CI engine?
There was no other literature on this specific question yet. For the fuel cell
control, what was the systematic way to integrate machine learning modeling
methods and control approach under safety requirements? The black-box
nature of the data-based modeling method brought a challenge to constraint
handling. There was some work regarding the machine learning modeling
methods for fuel cell [68], [120], [184], [188] and also some work regarding
the control methods with data-based models [60], [149], [187], but the way to
handle data-based models and constraints was not well studied.

The main motivation of this work was to develop the control framework for
flex-fuel CI engines and fuel cells. This work mainly answered two categories
of research questions: the modeling part and the control approach. For the
modeling, how to model the variation in the combustion process caused by
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variable fuel properties in a flex-fuel CI engine? This work used ignition
delay to reflect the fuel properties, where the adaptivity to changing fuel
properties was done by parameter estimation with Kalman filter. Which
data-based modeling method is suitable for fuel cell control usage under
safety requirements? This work investigated the Gaussian process, where
the prediction variance was used for constraints handling under uncertainty.
What were the advantages and disadvantages of the different modeling
methods in the flex-fuel CI engine and fuel cell applications? The physical
models had good interpretability while needing expert knowledge, and the
data-based model gave a good performance with enough data but was a
black-box. They can both be successfully adopted in an MPC framework.
For the control approach, how did MPC behave in the flex-fuel CI engine
and fuel cell control task, did it able to achieve the control performance while
handling the constraints with different models? This work showed that MPC
was a flexible framework that worked in both scenarios. It could incorporate
both the physical models and data-based models. The constraint handling
ability of MPC made it desirable when facing safety requirements. What
modifications should be made in MPC to deal with the black-box nature
of data-based modeling? For the Gaussian process model, the prediction
variance was included in the constraints under a statistic MPC style. This
helped give a comparative performance of MPC controller with the knowledge
of underlying system dynamics.

The contribution of this work was that it made a step from the flex-fuel SI
engine to the flex-fuel CI engine, and broaden the fuel choices. Besides, it
provided an MPC framework to handle the fuel cell control problem with
safety requirements, even with black-box data-based models. In this work,
models describing the engine gas system dynamic, ignition delay, and fuel
cell characteristics were designed and explored. Investigated models included
physical models and data-based models. The MPC approach was proposed
for the flex-fuel CI engine and fuel cell based on the models. This study was
limited to CI engines and PEFC fuel cells. Only cycle-to-cycle engine control
was studied. Only macro performances of fuel cells with the length scale being
above centimeters were considered.

1.6 Thesis outline

The thesis outline is as follows. Chapter 2 describes the detailed models and
their validation, including a flex-fuel engine in-cylinder model, gas system
model, and ignition delay model, and fuel cell system scale model. Chapter 3
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includes a review of the control and estimation methods. Chapter 4 shows the
experimental setup in this work. Chapter 5 gives the MPC approaches for the
flex-fuel engine and the fuel cell. An adaptive MPC approach for flex-fuel CI
engine based on the physical ignition delay model was proposed and tested in
fuel transitions including diesel, gasoline/n-heptane, and ethanol/n-heptane.
An MPC approach with constraints control was developed to keep the fuel cell
voltage at a reference value under current disturbances while satisfying the
hydrogen pressure safety constraints. Chapter 6 presents learning-based MPC
approaches. Learning-based MPC combining the physical-based model and
the data-based learning model is shown and applied to CI engine combustion
process control. A Gaussian-process MPC controller is detailed and used for
fuel-cell voltage control. Chapter 7 contains the summary and conclusions.
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CHAPTER 2

MODELING

2.1 Introduction

Efforts for modeling have been made in different levels of complexity and
detail.

The modeling process for the engine includes multiple areas such as
thermodynamics, fluid mechanics, and chemical kinetics. Of those models,
computational fluid dynamics (CFD) provides the most detailed and
complicated model. CFD solves partial differential equations by numerical
computing methods to describe the dynamic engine working process in
high temporal and spatial resolution with consideration of detailed chemical
reactions. CFD has been applied to investigate advanced combustion concepts
such as fuel spray and flame characteristics [8], [96], [141], [180]. CFD models
are also applied to study fuel-cell characteristics. It is used to simulate the
fluid flow, heat transfer, electrochemical reaction, and species transport in
different PEFC settings [71], [112], [144]. It helps the understanding and
explanation of physical phenomena due to the in-depth description. However,
the CFD model simulation can take a lot of time ranging from hours to months
even with the help of supercomputers, making it impractical for real-time
control applications.

Zero-dimensional (0D) models utilize mean variables over space, such as mean
temperature and pressure inside the cylinder, to represent the engine. This
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approach has a much lower complexity as compared to CFD models, making
it possible to be used in real-time control applications. Normally zero-
dimensional models are obtained from first principles along with empirical
parameters. Despite the low spatial resolution, zero-dimensional models may
have a satisfactory temporal resolution in engine behavior prediction. The
engine zero-dimensional models are widely used. Examples can be found in
[29], [50], [51], [93], [127].

For gas system modeling, the dynamics are slower than the cycle-based
combustion process. The characteristic is utilized by averaging over certain
engine cycles, assuming faster processes to be static [52]. This method results
in a low spatial resolution mean-value model, which is also called control-
oriented models for its application in the control context. Although still
complicated, the system scale model goes further towards the control-oriented
model as compared to other more fine-grained models.

Instead of deriving physical-based models from first principles, data-based
modeling exploits the observed input-output data to obtain the prediction
model. It focuses on the model representation capability instead of the inner
physical laws [77]. This approach has a wide branch of methods, from linear
regression to statistical models, and artificial neural networks with hundreds
or thousands of parameters. Although originated from system identification
in the control area [109], it develops actively beyond the control discipline and
has been vigorous in multiple areas under various new names. One advantage
of data-based modeling is its universality [123]. Using the same methodology
with minor modifications, one modeling method can be applied to different
plants. For example, the Gaussian process is built for both engine and fuel
cell in this work.

Some data-based models, characterized by large numbers of parameters,
have a strong ability to represent nonlinearities. This kind of model has
gained success in areas where the system nonlinearity is too complicated
to be built as an explicit model by human experts. For example, a
convolutional neural network (CNN) can achieve or exceed the human
average level in the image recognition task [58]. Though normally more
complicated than zero-dimensional models and requiring a longer time for
training, the data-based model prediction time is relatively short and useful
in real-time control with contemporary hardware. In the engine control
area, the data-based model applications include emission system modeling,
cylinder pressure information extraction, engine performance modeling and
optimization, misfire detection, etc. [25], [74], [75], [156], [169]. For fuel-cell
control, applications include neural networks and support vector machines for
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polymer electrolyte membrane fuel cell modeling, diagnosis, and prediction
[103], [111], [128].

In this work, the in-cylinder processes were modeled using a zero-dimensional
model on a crank angle resolved base. The gas systems were modeled by
mean value models with suitable simplification for control purposes. The
ignition delay, one key indicator for variable fuel properties, was modeled by
empirical chemical reaction expressions and data-based models. The fuel cell
was modeled with detailed system scale physical models as well as data-based
methods.

2.2 Data-based modeling

There exist many approaches designed for linear dynamic system
identification [86]. However, for the non-linear system identification, such
as the flex-fuel CI engine and fuel cell considered here, more sophisticated
methods are needed. Standard choices include fuzzy models, neural networks,
and some other machine learning models. The Gaussian process is also one
frequently used method [135].

Gaussian process

The Gaussian process is a probabilistic black-box model. It searches the
relationship between measured data instead of optimizing the parameters
of the chosen functions to fit data. A Gaussian process is defined as a
collection of random variables, any finite number of variables which have
a joint Gaussian distribution [139]. A Gaussian process can be fully defined
by a mean function f̄(x) and covariance function k(x,x′):

f(x) ∼ GP
(
f̄(x), k(x,x′)

)
(2.1)

where x is one data point with dimension d; the same is true for x′. The
k(x,x′) is also called the kernel function. The mean function f̄(x) is assumed
to be zero to simplify the analysis.

The observations y are represented by the variable:

y = f(x) + e, e ∼ N (0, σ2
n) (2.2)

where e is the additive independent identically distributed Gaussian noise
with variance σ2

n.
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Assuming there are n training points and n∗ test points, when making
inferences, the prior is:

[
y

f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
(2.3)

where (X,y) are the training data with dimension n×d and n×1, respectively;
X∗ contains the test data points with dimension n∗×d on which the prediction
is made; f∗ are the n∗ dimension predicted value; K(X,X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and
test points, and similarly for K(X,X), K(X∗,X∗) and K(X∗,X). Those
matrices constitute the covariance matrix of size (n+ n∗)× (n+ n∗).

The posterior is:

f∗|X∗,X,y ∼ N (E{f∗}, cov{f∗}) (2.4)

where

E{f∗} = K(X∗,X)
[
K(X,X) + σ2

nI
]−1

y

cov{f∗} = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗)
(2.5)

General GP regression is equivalent to Bayesian linear regression with an
infinite number of basis functions.

The kernel functions adopted in this work include the squared exponential
kernel (Gaussian kernel) and the Matérn kernel [59]. The squared exponential
kernel is defined as:

kSE(x,x′) = σ2 exp(
−‖x− x′‖2

2l2
) (2.6)

where the l is the length scale and σ is the signal standard deviation; the
‖x− x′‖ is the Euclidean norm of x−x′, and represents the distance between
x and x′.

The Matérn kernel with a specification of 5/2 [10] is:

k5/2(x,x′) = σ2(1 +

√
5 ‖x− x′‖

l
+

5 ‖x− x′‖2
3l2

) exp(−
√

5 ‖x− x′‖
l

) (2.7)

The length scale l can be interpreted as the reflection of how close the points
x and x′ have to be to influence each other significantly. When the length
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scale l is a scalar, the kernel is isotropic. In contrast, when the length scale is
different for each dimension of data points, the kernel is called an automatic
relevance determination (ARD) kernel [139]. The ARD kernel allows the
model to determine the separate relevance for every dimension, providing a
feature selection ability. In this case, the length scale related expressions in
Eq. (2.6) and Eq. (2.7) are changed to a summation form. The addition of
kernels is also possible and extends the model flexibility.

The optimal parameters of the GP are found by maximizing the log marginal
likelihood:

log p(y|X,θ) = −1

2
yTK−1

y y −
1

2
log ‖Ky‖ −

n

2
log 2π (2.8)

where Ky = K(X,X) + σ2
nI is the covariance matrix for the noisy targets

y; n is the number of training points; θ are the hyperparameters, including
the length scale of each dimension and signal and noise variance.

For more details about Gaussian processes, see [139].

Neural network

A neural network is a connectionist system inspired by a biological neural
network in the animal brain [15]. It makes great success in several topics
and has been a hot research area in recent years due to the massive data
available and cheap computational power. Normally, it is constituted by the
input layer, hidden layers, and output layer. An illustration diagram of its
structure can be found in Fig. 2.1. There can be more than one hidden layer
in the network. A neural network with multiple hidden layers is also called
a deep neural network. Each circle in Fig. 2.1 is a node, or a neuron, with
an activation function defining the output with respect to the inputs after an
affine transformation. Many kinds of activation functions are available. Each
arrow shows a data flow.

For each hidden node, the output is:

h(x) = g(wTx+ b)

g(z) = max(0, z)
(2.9)

where h and x are the unit outputs and inputs; w and b are the parameters
to be optimized on; g(z) is the activation function adopted in this work, which
is called the rectified linear unit (ReLU).
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Figure 2.1: Neural network structure

2.3 Flex-fuel engine model

2.3.1 In-cylinder model

The objective of the in-cylinder model is to investigate the combustion process
and obtain the feedback signals from the measured in-cylinder pressure data.

Heat release rate

The assumption for the model is that the in-cylinder gas is a closed
thermodynamic system when in the closed part of the cycle whose boundary
is the combustion chamber. An illustration of the thermodynamic system is
shown in Fig. 2.2.

From the first law of thermodynamics, the system fulfills the following energy
balance equation:

dU = dQ− dW (2.10)

where the dU is the system internal energy change; dW is the work; dQ is
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Figure 2.2: Closed thermodynamic system with the combustion chamber as the
boundary. The combustion release heat dQc into the system; the cylinder
gas performs work dW on the piston; dQht is the heat transferred through

cylinder walls.

the absorbed energy; dQ includes the dQc, the energy from combustion, and
the dQht, the heat transferred to outside.

For simplicity, the heat loss dQht is assumed to be 0. Then the dQ equals the
dQc, the heat released from combustion. It is a simplification to regard the
dQc as heat addition [57].

For the isochoric process, the internal energy change is proportional to
temperature change:

dU = nCvdT (2.11)

where n is the number of moles of the gas substance; Cv is the constant-volume
molar specific heat; T is the cylinder temperature.

The ideal gas law shows:
pV = nRT (2.12)

where p is the cylinder pressure, measured by the piezoelectric cylinder-
pressure sensor; V is the volume; R is the gas constant.

Combining Eqs. (2.10), (2.11), and (2.12), the heat release rate dQ is
expressed as:

dQ = dU + dW

=
Cv
R

d(pV ) + pdV

=
Cv +R

R
pdV +

Cv
R
V dp

(2.13)
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The constant volume molar specific heat Cv and constant pressure molar
specific heat Cp has:

Cp − Cv = R (2.14)

which then gives:

dQ =
Cp

Cp − Cv
pdV +

Cv
Cp − Cv

V dp (2.15)

The exponent ratio γ is the ratio of specific heats:

γ =
Cp
Cv

(2.16)

Then Eq. (2.15) is:

dQ =
γ

γ − 1
pdV +

1

γ − 1
V dp (2.17)

Cylinder geometry

The cylinder volume is calculated as a function of crank angle degrees (CAD,
θ):

V (θ) = Vc + Vd
2

(
Rv + 1− cos( πθ180)−

√
R2
v − sin( πθ180)

)

Vc =
πd2

4

s

rc − 1

Vd =
πd2

4
s

Rv =
2l

s

(2.18)

where Vc is the clearance volume; Vd is the displacement volume; rc is the
effective compression ratio; d is the piston diameter; s is the crankshaft
diameter, which equals to the stroke length; l is the connecting rod length.

Temperature

Viewing the in-cylinder condition at intake valve closing (IVC) as the initial
condition, the in-cylinder temperature is given by the ideal gas law:

pV

T
=
pIVCVIVC

TIVC

(2.19)
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where pIVC, VIVC, and TIVC are the pressure, volume, and temperature at intake
valve closing. The TIVC is assumed equal to the inlet temperature at IVC.

Ratio of specific heats

The exponent ratio γ changes with both temperature T and gas composition
[94]. Nevertheless, a simplified approach is adopted in this work. The effect
of gas composition is ignored, and γ is expressed as:

γ = γ0 − 0.0813 · T − 300

1000
(2.20)

where γ0 can be determined according to Heywood [78], which is 1.3736 in
this work.

Combustion phases

The accumulated heat-release Qc is computed by calculating the integral of
Eq. (2.17). The variables θCA10, θCA50 and θCA90 are defined as the crank angle
after top dead center (CAD ATDC) where 10%, 50% and 90% of the total heat
are released. They are calculated by finding the crank angle degree location
where the corresponding ratio of total heat Qc is released, θCA10 being defined
as the start of combustion, θCA50 being the combustion timing and θCA90−θCA10

being the combustion duration.

Load and efficiencies

The gross-indicated and net-indicated mean effective pressure are the
normalized work on the piston done by cylinder gas in the closed part of
the cycle and the complete cycle, denoted as pIMEPg and pIMEPn, respectively.
The closed part is the duration between the intake valve closing and exhaust
valve opening (EVO). They are calculated by taking integral using measured
cylinder pressure and calculated cylinder volume:

pIMEPg =
1

Vd

∫
EVO

IVC
pdV

pIMEPn =
1

Vd

∮
pdV

(2.21)
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The fuel-conversion efficiencies then calculated by:

ηg =
pIMEPgVd
mfQLHV

ηn =
pIMEPnVd
mfQLHV

(2.22)

where ηg and ηn are the gross efficiency and net efficiency; mf is the fuel
amount injected into the cylinder; QLHV is the fuel lower heating value. ηn
considers the pumping loss.

Together with combustion phasing, load and efficiencies are the standard
choices of the control targets and feedback variables.

2.3.2 Gas system models

The gas system layout used in the experiment is shown in Fig. 2.3.

turbine
compressor

back pressure valve

EGR valve

cool valve

hot valve

VGT valve

intercooler

EGR cooler

air in

intake pressure
intake temperature

control targets

intake oxygen concentration
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t 

m
an

ifo
ld

in
ta

ke
 m

an
ifo

ld
VGT valve
EGR valve
Hot and cool valve

Actuators

Figure 2.3: Engine gas system layout. The engine is boosted by a variable-geometry
turbocharger (VGT). Low pressure exhaust gas recirculation (EGR) is

supplied.

The air came from the atmosphere compressed by the VGT. Then the air
went partly through the intercooler and partly the direct path, with path
opening determined by the cool and hot valves. After combustion, the exhaust
expanded through the turbine controlled by the VGT valve, which drove the
compressor to compress intake air. Part of the exhaust entered the low-
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pressure EGR path, whose mass flow was related to the position of the EGR
valve.

The target of this section is to build models suitable for control purposes
describing the relationship between actuators EGR, VGT, hot and cool
valves to inlet conditions including intake temperature, pressure, and oxygen
concentration.

Intake oxygen concentration

The intake oxygen concentration was measured by a wideband zirconia
sensor mounted in the intake manifold. The wideband sensor, also
called the universal exhaust gas oxygen (UEGO) sensor, utilized a planar
zirconia element and an electrochemical gas pump to eliminate the lean–rich
cycling characteristics of narrow-band sensors [175]. The measured oxygen
concentration value was not the actual oxygen concentration in the gas, but a
function depending on the oxygen partial pressure which influences the pump
current.

A simplified relationship of the measured oxygen concentration is:

O2 in = KO2
pO2

+ offset (2.23)

where O2 in is the measured intake oxygen concentration in percentage; KO2

is the coefficient needed to be determined; offset is a constant value; pO2
is

the oxygen partial pressure in the gas, which can be expressed as:

pO2
=
pin

Tin

(
wair

wair + wEGR

)
O2 air (2.24)

where pin, Tin are the intake pressure and temperature; O2 air is the oxygen
percentage at atmosphere; wair and wEGR are the air and EGR mass flow.
Here the mass is used instead of moles, between which a constant proportional
conversion relation exists. The conversion coefficient is viewed as part of the
KO2

coefficient. The reason for using this expression is that mass flow is
consistent with the following process models.

By differentiation, we get:

dO2 in = KO2

1

Tin

(
wair

wair + wEGR

)
O2 airdpin

+KO2

pin

Tin

( −wair

(wair + wEGR)2

)
O2 airdwEGR

(2.25)
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which is used for oxygen concentration variation prediction and suitable for
control purposes.

The variable dpin is detailed in the next subsection. For the mass flow
modeling, the methods in this work are inspired by [163], and wEGR is modeled
as compressible flow through changing area:

dwEGR =
AemptΦEGR√

TtRe
duEGR (2.26)

where pt and Tt are the pressure and temperature of the exhaust gas after the
turbine; Aem is the maximum nominal EGR flow area; ΦEGR is the coefficient
related to the pressure ratio between the pressure after and before the EGR
valve; uEGR is the normalized EGR valve opening; Re is the exhaust gas
constant.

The variable uEGR is defined by:

uEGR = 1− e−KEGRθEGR (2.27)

where KEGR is the calibrated coefficient; θEGR is the actual EGR valve opening.

The variable ΦEGR is:

ΦEGR = 1−
(

1− φEGR

1− φopt
− 1

)2

φopt =

(
2

γe + 1

) γe
γe−1

φEGR =





φopt,
pEGR
pt

< φopt

pEGR
pt

, φopt ≤ pEGR
pt
≤ 1

1, 1 < pEGR
pt

(2.28)

where φEGR is the pressure ratio; φopt is the optimal pressure ratio; γe is the
exhaust gas heat capacity; pEGR is the pressure after the EGR valve and pt is
the pressure after VGT, before the EGR valve.

Intake pressure

From the ideal gas law, the differential of intake pressure satisfies:

dpin =
Ra
Vin

Tindm+
Ra
Vin

mdTin (2.29)
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where pin, Vin and Tin are the intake pressure, intake manifold volume and
intake temperature; Ra is the intake gas constant; m is the gas mass in intake
manifold.

The variable dTin is described in the next subsection. For dm, the following
relation holds:

dm = (wc − wei)dt (2.30)

where wc is the compressor mass flow and wei is the mass flow into the cylinder;
dt is the time step length chosen according to the application scenario. For
simplicity, assuming at the start of the time step that wc = wei and that wei

is constant during one time step, then the intake mass changes is only caused
by the compressor mass flow changes dwc, which gives:

dm = dwcdt (2.31)

The variable dwc is modeled as:

dwc = Kcdnt (2.32)

Kc =
pambπR

3
cφc

RaTamb
(2.33)

where pamb and Tamb are ambient pressure and temperature; Rc is the
compressor blade radius; φc is the volumetric flow coefficient which is
simplified as a constant in this work; nt is the turbocharger speed.

The variable dnt can be modeled as:

dnt =
Ptηm − Pc

ntJt
dt (2.34)

where Pt and Pc are the turbocharger and compressor power; ηm is the
mechanical efficiency, a constant; Jt is the rotating inertia of the turbocharger.

Similar to the simplification of Eq. (2.30), assuming Ptηm = Pc at the start
and Pc constant during the time step, Eq. (2.34) becomes:

dnt =
ηm
ntJt

dPtdt (2.35)

The variable dPt is:
dPt = cpe(Tex − Tt)dwt (2.36)

where Tex is the exhaust manifold temperature and cpe is the heat capacity
of the exhaust gas; wt is the turbine mass flow.
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According to Eq. (2.26), dwt is given by:

dwt =
Avmpexφt√
TexRe

duVGT (2.37)

uVGT = 1− e−KVGTθVGT (2.38)

where pex and Tex are the pressure and temperature of the exhaust manifold
gas; Avm is the maximum nominal VGT flow area; uVGT is the normalized
VGT valve opening with KVGT as coefficient need to be calibrated; θVGT is the
actual VGT valve opening; φt is the turbocharger volumetric flow coefficient:

φt =

√
1−

(
pt
pex

)kt
(2.39)

where kt is a constant.

Intake temperature

The air enters both the direct path and the path with an intercooler. The
gas leaving the intercooler is assumed to have the same temperature as the
intercooler coolant. The intake gas temperature is the mix of two paths:

Tin =
uhot

uhot + ucool
Thot +

ucool

uhot + ucool
Tcool (2.40)

where Thot is the gas temperature after compressor and Tcool is the gas
temperature after intercooler; uhot is the normalized effective area:

uhot = 1− cos
(
θhot

π

180

)
(2.41)

The same is true for ucool.

To keep the total effective area constant, we enforce:

uhot + ucool = 1 (2.42)

Then take the differential of (2.40), we get:

dTin = (Thot − Tcool)duhot (2.43)
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Validation

The proposed models were validated with the engine running data. Figure 2.4
shows the model prediction performance in the VGT valve θVGT changing
scenario, where the EGR, hot, and cool valve were kept constant from which
we can see that increasing VGT opening would increase not only the intake
pressure but also the measured oxygen concentration. This was because of
the characteristic of the wideband oxygen sensor, whose pump current was
proportional to partial oxygen pressure. The twenty-steps-ahead prediction
of the model showed an agreement with the true value and outperforms the
null prediction, which simply used the current value as the prediction. The
VGT opening increase also raised the intake temperature, which was the
unmodelled dynamics. In this case, the model prediction was the same as the
null prediction.

Figure 2.4: Model performance in VGT opening transient

Figure 2.5 shows the twenty-steps-ahead prediction when the hot valve θhot

and cool valve θcool were changing while EGR and VGT valves were set
constant. The change of intake temperature affected the intake temperature,
measured oxygen concentration, and intake pressure at the same time. This
relation was reflected in the model through the dependency between dO2 in,
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dpin and dTin. The model showed good consistency to the true value as
compared to the null prediction.

Figure 2.5: Model performance in hot and cool valve transient

Figure 2.6 is the ten-steps-ahead prediction with EGR valve θEGR and VGT
valve θVGT changing at the same time. Although unmatched dynamics and
noises decreased the conformity around cycles 120, 280, and 520 for oxygen
concentration, the model made an overall good prediction. Besides, at the
cost of model accuracy, the proposed models generated simple linear forms
that were desirable for control applications.

Discussion

This work built a gas system model to describe the intake pressure,
temperature, and oxygen concentration with the consideration of the EGR
and VGT. The performance was validated on a Scania D13 heavy-duty
engine. Wahlström and Eriksson gave a thorough gas system model [163]
and this work made several simplifications to have a more concise model
which is suitable for control application. This avoids the unmeasured state
and additional filter in MPC formulation in [178]. Previous work about EGR
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Figure 2.6: Model performance in VGT and EGR opening transient

modeling normally ignored the oxygen sensor characteristic [181], while this
work captured the UEGO sensor features and elaborated its relationship to
pressure. One drawback of this work was that the transportation delay was
not considered. The gas system dynamics were much slower than that of
the combustion process, thus the transportation delay should be taken into
account when the model was integrated for combustion control.

2.3.3 Ignition delay model

Introduction

This section includes the physical-based model and data-based model for
ignition delay and their comparison. The data-based model adopted here
is the neural network and Gaussian processes with different structures.

Arrhenius-like expressions are widely adopted in the physical-based ignition
delay modeling [82]. It gives the dependence of the chemical reaction rate
on temperature, pressure, and reactants concentration. Applications of these
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kinds of modeling can be found in [55], [76], [82].

For data-based modeling, a neural network, which has drawn great attention
nowadays, is a standard choice. Choi and Chen adopted neural networks
to model the ignition delay for fast prediction of the start of combustion
in an HCCI engine [43]. Wang et al. applied radial basis function (RBF)
network to model the nonlinearities in the SI engine [166]. Zhai et al. utilized
a diagonal recurrent neural network for engine modeling in the air-fuel ratio
control application [182].

The Gaussian process is another choice that is able to give a measure of
uncertainty of the prediction when predicting. Berger et al. analyzed the
GP for stationary black-box engine modeling versus other machine learning
models [31]. Tietze used GP for model-based calibration of engine control
units [158].

Other commonly chosen machine learning methods include support vector
machine (SVM) and tree-based models like decision tree under the C4.5
algorithm, whose applications can be found in engine modeling and diagnosis
areas [150], [160], [161].

Physical-based model

The ignition delay τ in milliseconds is defined as the time between the start
of injection θSOI and the start of combustion θCA10. The start of injection θSOI

is the crank angle where the solenoid injector opens. Pilot injections were
adopted in this work for promoting combustion and noise reduction. The
start of injection θSOI refers to the main injection timing.

The variable τ being calculated by:

τ =
θCA10 − θSOI

0.006Ns
(2.44)

where Ns is the engine speed, with the unit of revolutions per minute, rpm.

The ignition delay τ was estimated using an Arrhenius-type model:

τ = c1 exp(
c2

T̄
)Ōc32 p̄

c4 (2.45)

where c1, c3, and c4 are fuel dependent empirical parameters; c2 = Ea/R
where Ea is the apparent activation energy andR is the universal gas constant.
For simplicity, the Ea/R in general Arrhenius-type model was represented
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by c2. The variables T̄ , Ō2, p̄ are the mean cylinder temperature, oxygen
concentration and pressure between θSOI and θCA10.

The adiabatic relation is assumed to hold during this period:

pV γ = C (2.46)

The in-cylinder pressure p during θSOI to θCA10 was estimated as:

p = pIVC

(
VIVC

V

)γ
(2.47)

where pIVC is the measured intake pressure at IVC, and VIVC is the cylinder
volume at IVC.

The in-cylinder temperature T was computed using the intake manifold
temperature at IVC, which gives:

T = TIVC

pV

pIVCVIVC

= TIVC

(
VIVC

V

)γ−1

(2.48)

where TIVC is the measured intake manifold temperature and at IVC.

The oxygen concentration in cylinder was calculated as follows:

O2 = O2 IVC

VIVC

V
(2.49)

where O2 IVC is the measured intake manifold oxygen concentration in
percentage at IVC.

This gives the expression for τ :

τ = c1 exp

(
c2

TIVCTco

)
(O2 IVCO2 co)c3 (pIVCpco)c4 (2.50)

where the co in subscripts is short for coefficient; the variables Tco, O2 co, and
pco are:

Tco =

∫ θSOI+τ
θSOI

(
VIVC
V (θ)

)γ−1
dθ

∫ θSOI+τ
θSOI

dθ

O2 co =

∫ θSOI+τ
θSOI

VIVC
V (θ) dθ

∫ θSOI+τ
θSOI

dθ

pco =

∫ θSOI+τ
θSOI

(
VIVC
V (θ)

)γ
dθ

∫ θSOI+τ
θSOI

dθ

(2.51)

The τ in the integration limit was set to the last cycle value when calculating.
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Data-based models

The data-based models used for ignition delay modeling are the Gaussian
process and neural network described in Sec. 2.2.

Model validation

The data set for model validation was composed of different operation
condition data. The fuel choices range from diesel, gasoline/n-heptane
mixture to ethanol/n-heptane mixture fuel; the engine speed varied from
1200 rpm to 1500 rpm and the pIMEPg changed from 5 to 8 bar. The detailed
experiment set-up can be found in Chapter 4. There were total 14000 data
points. The data set was shuffled and divided into five folds. Cross-validation,
which takes one fold each round as the test set and other folds as train set
and repeats for all sets, was applied to measure the model performance. The
results are shown in Table 2.1.

The specifications of GP are the kernel function choice. The specifications of
NN refer to the network structure. For example, (3, 64, 256, 64, 1) means
that the NN input layer has three nodes and the output layer has one node,
and NN has three hidden layers with 64, 256, and 64 nodes, respectively.

The physical model had the worst performance due to a limited number
of parameters and model imperfection. Besides, adding new inputs to the

Table 2.1: Model performance comparison

Model Specifications Inputs (Features) RMSE (Error)

Physical None pin, Tin, O2 in 0.429 (24.44%)

Matérn 5/2 pin, Tin, O2 in 0.192 (10.95%)

GP Matérn 5/2 pin, Tin, O2 in, pIMEPg, Ns 0.027 (9.31%)

Matérn 5/2 pin, Tin, O2 in, pIMEPg, Ns, θSOI 0.089 (5.06%)

(3, 10, 1) pin, Tin, O2 in 0.343 (19.58%)

(3, 10, 20, 10, 1) pin, Tin, O2 in 0.227 (12.92%)

(3, 64, 256, 64, 1) pin, Tin, O2 in 0.178 (10.17%)

NN (5, 64, 256, 64, 1) pin, Tin, O2 in, pIMEPg, Ns 0.144 (8.19%)

(6, 64, 256, 64, 1) pin, Tin, O2 in, pIMEPg, Ns, θSOI 0.093 (5.28%)

(6, 64, 128, 256, 512,

512, 256, 128, 64, 1)
pin, Tin, O2 in, pIMEPg, Ns, θSOI 0.090 (5.13%)
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physical model required modeling efforts by human experts, whereas the data-
based models were more flexible to include relevant inputs as features that
won’t change the basic structure much. For GP models, adding more features
would increase the performance effectively. The same improvement could be
seen in NN from network structure (3, 64, 256, 64, 1), (5, 64, 256, 64, 1) to
(6, 64, 256, 64, 1). On the other hand, a more complicated network structure
would improve the performance, as shown in the three features case with
NN structure from (3, 10, 1), (3, 10, 20, 10, 1) to (3, 64, 256, 64, 1) since
a complicated structure had a stronger representation ability. But after a
certain NN complexity limit, the accuracy improvement was negligible. With
the same features, GP behaved competitively to NN.

Discussion

This section only concerned modeling with collected offline data. A more
meaningful approach should be the online adaptation performance in real-
time.

Although data-based modeling often had higher accuracy in prediction, it
encountered some difficulties in the control application. The extrapolation
ability of data-based methods might be worse than that of physical models,
which was one key drawback. Besides, the nonlinearity of the data-
based model required nonlinear optimization techniques which put more
computational burden on the controller. However, its powerful representation
ability and flexible modeling approach made it an interesting idea for
applications.

2.4 Fuel cell model

2.4.1 Physical-based PEFC model

It can be time-consuming and rather difficult to conduct experimental
measurements within a PEFC system since the phenomena and reactions
inside fuel cells are quite complicated. Thus, a reliable and qualified model
can be used as an efficient tool to study specific aspects of a PEFC system
for different applications [122], [172]. A PEFC system model is developed in
this section.

The PEFC model adopted here was based on previously proposed semi-
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empirical models, which have the capabilities to illuminate the electrochemical
behavior of a fuel cell without offering deep apprehension of the underlying
phenomena [53]. Besides, the PEFC model was on the system level with the
length scale being above centimeters. The main consideration was the macro
performances of the PEFC system. The details of fluid flow in the porous
area, the temperature distribution on the nanometer scale, and the reaction
area distribution were not investigated. The water generated in the cathode
may involve a two-phase flow pattern, which was beyond the scope of this
work. The water can be drained from the system and was not considered.
Here we assumed the ideal gas law held for the reactant gases.

Through a pair of redox reactions, the PEFC converted the chemical energy
from hydrogen fuel and oxygen into electricity with only heat and water as
byproducts. It was typical that output voltage was usually less than the ideal
value because of some losses that occurred inside the fuel cells [44], [185]. To
get a higher voltage, a number of cells were usually combined in series, and
the net output voltage of a PEFC was given as follows [90]:

VFC = ncell(En − Va − Vo − Vc) (2.52)

where VFC, ncell, En, Va, Vo and Vc denote output voltage of the fuel
cell system, cell numbers, reversible voltage, activation voltage drop, ohmic
voltage drop and mass transport voltage drop.

The reversible voltage En was calculated based on the Nernst equation [90]:

En = 1.229− 0.85 · 10−3(Ts − 298.15)

+ 4.3085 · 10−5Ts
(
ln(PH2

) + ln(0.5PO2
)
) (2.53)

where Ts, PH2
and PO2

are stack temperature, hydrogen pressure and oxygen
pressure.

The activation voltage drop Va occurred due to the conversion of products
into reactants on both anode and cathode, and it was defined as in [90]:

Va = −
(
ξ1 + ξ2Ts + ξ3Tsln(CO2

) + ξ4Tsln (I)
)

(2.54)

CO2
=

PO2

5.08 · 106 exp(−498
Ts

)
(2.55)

where ξ is the parametric coefficient [117], CO2
is the oxygen concentration

at the cathode catalytic interface and I is the current.
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The ohmic voltage drop Vo came from the resistance of the electrons transfer
and protons transfer. It was given as [90]:

Vo = I(Rm +RC) (2.56)

Rm =
ρml

A
(2.57)

ρm =
181.6

(
1 + 0.03i+ 0.062i2.5

(
Ts
303

)2)

(λ− 0.643− 3i) exp
(

4.18
(
Ts−303
Ts

)) (2.58)

where Rm, RC , ρm, l, A, i, λ represent membrane resistance, electronic
resistance, membrane resistivity, membrane thickness, membrane active area,
actual current density and adjustable parameter dependent on membrane
water content.

The mass transport voltage drop Vc was because of the mass transfer which
affects the reactant and product concentrations within the catalyst layer and
it was determined as [90]:

Vc = −βln(1− i/Jmax) (2.59)

where β is the system parameter related to the fuel cell operating condition,
Jmax denotes the maximum current density.

The dynamic behavior of a PEFC was largely affected by a charge double
layer phenomenon. The charge layer on the interface electrode/electrolyte
acted as an electrical capacitor. There was always a delay for the charge
layer to follow the voltage changes. This delay only affected the activation
and mass transport voltage drop, which can be described as the following
equations [44]:

dVac

dt
=

I

C
− Vac

RaC
(2.60)

Ra =
Va + Vc

I
(2.61)

where Vac, C and Ra denote the voltage drop combing the activation drop and
concentration drop, the electrical capacitance and the equivalent resistance.
Thus, the output voltage of the PEFC can be rewritten as:

VFC = ncell(En − Vac − Vo) (2.62)

Figure 2.7 gives an illustration of the equivalent circuit model of the PEFC.
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Figure 2.7: Equivalent circuit model of the PEFC [85].

All the reactant gases in this study were considered as ideal gases. The inputs
to the fuel cell were the hydrogen volumetric flow rate QH2

and air volumetric
flow rate Qair. In the anode volume, hydrogen was delivered as fuel to the
channel. Its mass-flow rate can be calculated as follows based on the mass
conservation principle [146]:

mH2,in
=

1

60000
ρH2

QH2
(2.63)

dmH2

dt
= ṁH2,in

− ṁH2,rea
− ṁH2,out (2.64)

ṁH2,rea
=
NI

2F
MH2

(2.65)

ṁH2,out = ka
(
PH2
− Pamb

)
MH2

(2.66)

where ρH2
, mH2

, ṁH2,in
, ṁH2,rea

, ṁH2,out MH2
, ka and Pamb are hydrogen

density, hydrogen mass in the anode volume, inlet hydrogen mass-flow rate,
hydrogen reaction mass-flow rate, outlet hydrogen mass-flow rate, hydrogen
molar mass, anode flow constant and ambient pressure.

In the cathode volume, the air was delivered to the channel. Similar to the
anode volume, the oxygen and nitrogen mass-flow rate can be calculated as
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follows [146]:

mO2,in
=

0.21

60000
ρO2

Qair (2.67)

mN2,in
=

0.79

60000
ρN2Qair (2.68)

dmO2

dt
= ṁO2,in

− ṁO2,rea
− ṁO2,out

(2.69)

ṁO2,rea
=
NI

4F
MO2

(2.70)

ṁO2,out
= kc

mO2

mO2
+mN2

(Pca − Pamb)MO2
(2.71)

dmN2

dt
= ṁN2,in

− ṁN2,out
(2.72)

ṁN2,out
= kc

mN2

mO2
+mN2

(Pca − Pamb)MN2
(2.73)

where ρO2
, ρN2 , mO2

, ṁO2,in
, ṁO2,rea

, ṁO2,out
, MO2

, mN2
, ṁN2,in

, ṁN2,out
, kc and

Pca are oxygen density, nitrogen density, oxygen mass in the cathode volume,
inlet oxygen mass-flow rate, reacted oxygen mass-flow rate, outlet oxygen
mass-flow rate, oxygen molar mass, nitrogen mass in the cathode channel,
inlet nitrogen mass-flow rate, outlet nitrogen mass-flow rate, cathode flow
constant and cathode pressure.

PEFC system performances under different operating conditions

The PEFC system model developed in this study was based on the commercial
stacked PEFC-NedStackPS6 [90]. All operating parameters needed for the
PEFC system are shown in Table 2.2. The performances of the PEFC system
under various different operating conditions were investigated. Figure 2.8(a)
gives the changes of the PEFC system behavior with the hydrogen flow rate
varied from 100 and 400 lpm (liters per minute). Figure 2.8(b) presents the
changes of the PEFC system performance with the air flow rates increased
from 300 to 700 lpm. The changes of the reactant gas flow rates were made the
same as in the Monem model [9] for later comparison. From Fig. 2.8, it can
be clearly seen that the increase of hydrogen and air flow rate both slightly
improved the PEFC system’s voltage. Moreover, the model here showed good
agreement with the Monem model when the current was in the range between
0 and 180 A. Above 180 A, the output voltage of the model dropped more
than the Monem model [9], which agreed more with the fuel cell polarization
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Table 2.2: Parameters used in the PEFC system model.

Parameter Value

ncell 65

ξ1 -1.023071

ξ2 3.4760e-3

ξ3 7.7883354e-5

ξ4 -9.54e-5

RC [Ω] 1.62e-4

λ 15.03229

β [V] 0.0136

l [µm] 178

A [cm2] 240

Jmax [A/cm2] 0.918

MH2
[g/mol] 2

MO2 [g/mol] 32

kc [mol s−1atm−1] 0.065

ka [mol s−1atm−1] 0.065

T [K] 332-342

QH2
[lpm] 100-400

Qair [lpm] 300-700

ρH2
[kg/m3] 0.0706

ρO2 [kg/m3] 1.121

ρN2 [kg/m3] 0.988

behavior. At a high current range, the voltage declined faster to the limiting
current because the output voltage of the fuel-cell system was mainly affected
by the mass transport polarization [54]. The performance difference of the
PEFC system between the model here and the Monem model was mainly
because of the adoption of different equations of concentration over potential.
To clarify, in the Monem model, the voltage increase under the air flow rate
from 300 to 700 lpm was very small, which almost overlapped, making it
difficult to capture. Thus, in Fig. 2.8(b), only one line is showed for his
model.

2.4.2 Gaussian process model

In the last section, a detailed physical fuel cell system model was elaborated,
which was assumed to be the true system dynamics. In order to model errors
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Figure 2.8: Dynamic behavior of PEFC system.

in measurement, Gaussian measurement noises were added to voltage VFC and
hydrogen pressure PH2

. The task was to build a suitable Gaussian process
model to describe the fuel cell dynamics with collected system data from the
detailed physical model.

The Gaussian process model predicts two system states based on three system
inputs. The inputs are the control actions, hydrogen volumetric flow rate QH2

,
air volumetric flow rate Qair, and the current I; the states are the values to
be predicted, the fuel cell output voltage VFC and the hydrogen pressure
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PH2
. It should be noticed that the current I is the workload and can not

be manipulated by the controller. The fuel cell voltage is the control target
which should be kept at a constant reference value. The hydrogen pressure
needs to be kept below a certain limit, such as 2.5 atm, to ensure safety.

The target of GP modeling was to build a function f that describes the fuel
cell dynamics in the time update:

xk+1 = f(uk,xk) (2.74)

where
uk = [QkH2

Qkair I
k]T

xk = [V k
FC P kH2

]T
(2.75)

the variable uk is the model inputs at time step k; xk+1 is the system states
at time step k + 1 and xk is the measured system states at time step k.

However, the Gaussian process doesn’t support multi-dimensional regression
natively. One simple solution is to assume the multi-dimensional states are
independent of each other and build a Gaussian process for each state with
the same inputs. Equation (2.74) then becomes two Gaussian processes fV
and fP :

V k+1
FC = fV (uk, V k

FC)

P k+1
H2

= fP (uk, P kH2
)

(2.76)

To collect the training data points for the Gaussian process, Latin hypercube
sampling (LHS) was applied to the inputs QH2

, Qair and the current I. The
interval between time steps was 0.5 s. In total, 1000 training data points were
collected.

The kernel type for the two Gaussian processes was the addition
of an isotropic squared exponential kernel (Gaussian kernel) and an
automatic relevance determination (ARD) squared exponential kernel. The
parameters of the GP model were chosen by maximizing the log-likelihood
function described by Eq. (2.8). This optimization problem is normally
nonlinear and nonconvex. Here it was solved using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [105].

After training, the GP model was validated with testing data points. The
testing data points were collected by applying another set of LHS sampling
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inputs to the fuel cell Simulink model. A total of 300 test points were collected.
The prediction result is shown in Fig. 2.9. The blue line is the true value,
and the orange line the one-step prediction by the GP model. The orange
shaded area is the one σ confidence interval, the prediction value plus/minus
one prediction standard deviation (one σ).

Figure 2.9: Gaussian process test results.

It can be seen that the GP model was able to predict the VFC and PH2
behavior

of the fuel cell correctly. The variance calculated by GP was a reflection of
the model prediction confidence. The prediction band was wider in the region
where the test point was distant from the training points and the GP had a
lower prediction accuracy. In most cases, the prediction band could cover the
true value.
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CHAPTER 3

CONTROL SYNTHESIS

This chapter is a brief introduction to the control methods and estimation
methods used in this thesis.

3.1 Control methods

3.1.1 PI control

The proportional-integral (PI) controller is the most commonly used control
method in industry applications [21]. The discrete form of PI controller is
given by

uk+1 = KP e
k +KI

k−1∑

i=0

ei (3.1)

where u is the controller output; e is the control error, the difference between
the actual and desired value of the target variable; k indicates the time steps;
KP and KI are the corresponding gains. The PI controller is a special case
of the PID controller when turning off the derivative term. This is fairly
common in industrial practice where the derivative part would be sensitive to
noise. The discrete form in Eq. (3.1) is a forward-Euler approximation of the
continuous PI controller.
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The PI controller is widely used because of its simplicity in implementing and
tuning. In this work, the PI controller was adopted for many tasks in engine
control, such as the control of the gross indicated mean effective pressure
(IMEPg) by adjusting main injection duration and common rail pressure
control with an inlet-metering valve. The PI controller was also used for
fuel cell voltage control by manipulating the intake hydrogen and air flow
rate.

3.1.2 Model predictive control

Model predictive control (MPC) is an advanced optimal control method that
is suitable for multi-input multi-output problems while satisfying a set of
constraints [113]. It solves an optimization problem each time step concerning
a prediction horizon Hp and control horizon Hu, getting a sequence of inputs
for tracking the control references. Only the inputs corresponding to the
first time step in the sequence are applied to the system and this process is
repeated for the next step.

In this thesis, the system being considered is modeled as a discrete-time
system with states x ∈ Rn, inputs u ∈ Rm and outputs y ∈ Rp satisfying:

xk+1 = Axk +Buk

yk = Cxk
(3.2)

where k indicates the sample index; A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n
are system matrices. This state-space model is a special case of the function
g in (1.1) in Sec. 1.4.

The control target is to have the system output y follow the references
r, which is incorporated into the cost function. One example of an MPC
optimization problem is the minimization:

min
u0,u1,...,uHu−1

J(uk) =

Hp∑

k=1

∥∥∥yk − r
∥∥∥
Q2

+

Hu−1∑

k=0

∥∥∥uk
∥∥∥
R2

(3.3)
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subject to:

xk+1 = Axk +Buk

yk = Cxk

ulb ≤ uk ≤ uub

xlb ≤ xk ≤ xub

x0 = xinit

k = 0, 1, . . . ,Hp

(3.4)

where Hp and Hu are prediction and control horizon lengths; k in the
superscript refers to the time step; Q and R are weight tuning parameters
for reference tracking and control inputs; ulb, uub, xlb, and xub are the lower
bounds and upper bounds of inputs u and states x; xinit is the latest measured
or estimated value, the state feedback.

This quadratic programming (QP) problem will be solved each time step to
get the control inputs, and only the first solved control inputs u0 is applied
to the system. The QP problem is a well-researched optimization problem
[38] and several mature solvers and software are available. Due to its convex
nature, the solution time is short enough for real-time control applications. In
this thesis, the QP problem was solved by Interior-Point Optimizer (IPOPT)
[162].

3.2 Estimation method

The state estimation is to estimate the states x according to measured outputs
y. For our case where the system is considered linear, a Kalman filter (KF)
was used, which is the optimal linear filter under the assumptions of perfect
modeling, Gaussian noises, and known noise covariances [89]. For a nonlinear
system model situation, the extended Kalman filter (EKF) [87] or particle
filter [107] is commonly chosen.

The state-space model (3.2) with Gaussian noises:

xk+1 = Akxk +Bkuk + vk

yk = Ckxk + ek
(3.5)
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is considered for filtering. The noise vk and ek are zero-mean white noise
with known covariances:

vk ∼ N(0,Q)

ek ∼ N(0,R)
(3.6)

where Q and R are the covariance matrices. In absence of covariance
information, the covariance matrices are often substituted with diagonal
positive definite matrices, meaning that noise components are assumed to
be independent.

With the noting of x̂k|k−1 as the prediction of x̂k with the knowledge of xk−1,
the detailed steps of the Kalman filter are:

Algorithm 1: Kalman filter

1 Initialize x̂0|0, P 0|0, and k = 1;
2 repeat
3 Predict:

4 x̂k|k−1 = Akx̂k−1|k−1 +Bkuk−1

5 P k|k−1 = AkP k−1|k−1(Ak)T +Q
6 Update:

7 Sk = CkP k|k−1(Ck)T +R

8 Kk = P k|k−1(Ck)T (Sk)−1

9 x̂k|k = x̂k|k−1 +Kk(yk −Ckx̂k|k−1)

10 P k|k = (I −KkCk)P k|k−1

11 k = k + 1

12 until stop;
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CHAPTER 4

EXPERIMENTAL SET-UP

4.1 Flex-fuel CI engine

The engine related experiments in this thesis were conducted on a Scania
D13 heavy-duty compression-ignition engine. The experiment apparatus also
included the measurement system and control system.

4.1.1 Engine

The engine shown in Fig. 4.1 has the specifications exhibited in Table 4.1.

The engine gas system was modified to meet the experimental requirements.
A long-route low-pressure EGR system was added and used in the
experiments. The engine also had an original short-route EGR, but it was not
used, thus not described in Fig. 2.3 and Fig. 4.2. The turbocharger hardware
was provided by BorgWarner and was matched for the long-route EGR. A
fast thermal management system was installed in the inlet path to control
the inlet temperature which consists of two paths, one of which is cooled by
the intercooler. Figure 4.2 shows a schematic diagram of the overall test-cell
structure.
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Figure 4.1: Scania D13 heavy-duty compression-ignition engine.

Table 4.1: Engine specifications.

Name Value

Displaced volume 12.74 dm3

Cylinder number 6

Stroke 160 mm

Bore 130 mm

Connecting Rod 235 mm

Compression ratio 18:1

Number of Valves 4

Maximum power 360 kW

4.1.2 Measurement system

Figure 4.2 presents most sensor locations.
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Figure 4.2: Schematic drawing of the test-cell structure. Valves, sensor types and
locations are marked in the diagram.

Sampling

A Leine & Linde encoder [1] enabled the crank-angle based sampling which
emits 5 pulses per CAD. The measurement of cylinder pressure, engine torque,
and injector current were triggered by the crank-angle signal, while other
sensors were triggered cycle by cycle.

In-cylinder pressure sensor

Water-cooled Kistler 7061B piezoelectric pressure transducers [2] were
mounted in each cylinder for the measurement of in-cylinder pressure,
triggered every 0.2 CAD.
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Gas system pressure and temperature sensors

The pressure sensors were Keller PAA-23S absolute pressure sensors [3] with
a response time of milliseconds. The temperature was measured by K-type
thermocouples with response time in seconds. The various locations of the
pressure and temperature sensors are detailed in Figure 4.2, which covers
almost every pipe in the gas system.

Oxygen sensors

Two Bosch LSU 4.9 wideband zirconia oxygen sensors [4] were mounted in the
exhaust manifold after the turbine and in the intake manifold before cylinders.

Common-rail pressure sensor

The common-rail pressure was measured by a pressure sensor in the common-
rail volume.

Air and fuel flow

A Bronkhorst hot-film air-mass flow meter installed before the compressor was
used to measure the air-mass flow, while a Bronkhorst mini CORI-FLOW
M15 mass-flow meter [5] installed before the fuel system was used for the
measurement of the fuel-mass flow.

Engine speed and torque

The electric motor dynamometer integrated with a force sensor was used for
the detection of engine speed and torque.

4.1.3 Fuel

The fuels for the experiments included diesel, the mixture of 80 volume
% Swedish 95 octane pump gasoline and 20 volume % n-heptane, and the
mixture of 80 volume % pure ethanol and 20 volume % n-heptane. The three
fuel species are shown in Table 4.2.
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Table 4.2: Fuel species.

Fuel number Diesel Gasoline Ethanol n-Heptane

1 100% - - -

2 - 80% - 20%

3 - - 80% 20%

4.1.4 Control system

Hardware

The control hardware was mainly from National Instruments (NI). An
embedded controller PXIe-8135 [6] was installed in a PXIe-1078 chassis, whose
central processing unit (CPU) frequency is 2.3 GHz. Two field programmable
gate array (FPGA) cards, I/O cards, and a sub-chassis with Drivven hardware
drivers managing injectors and valves were also available. A user interface and
part of the control logic were running on a separate PC communicating over
TCP and UDP.

Software

The control system was programmed by LabVIEW, a graphical language by
NI and Julia, an open-source high-level dynamic language designed for high
performance [33]. The real-time heat release analysis and most basic control
logic were programmed by LabVIEW and executed in an embedded controller.
A graphical LabVIEW user interface was operated on a separate host PC with
Windows 7 operating system. Advanced control logic including the MPC
formation and solving was written by Julia and running on the host PC.
This functionality gives more flexibility for developing, testing, and deploying
control algorithms offline than using LabVIEW in the embedded controller.

4.2 Fuel cell

The fuel-cell experiments were conducted on the physical model detailed in
Sec. 2.4.1 established with Simulink. Figure 4.3 shows the illustration of the
Simulink model.
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Figure 4.3: Simulink model diagram.

The Simulink model was developed with MATLAB & Simulink R2020a. The
controllers were implemented using both MATLAB and Julia.
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CHAPTER 5

ADAPTIVE MPC

5.1 Introduction

Four decades have passed since the seminal paper on Dynamic Matrix Control
(DMC) appeared [45], which was the first Model Predictive Control (MPC)
algorithm. In the pre-MPC era, Propoi applied linear programming to
control linear systems with hard constraints [136], showing the idea of MPC.
Åström and Wittenmark used self-tuning regulators to control a system
with constant and unknown parameters [19]. The appearance of MPC gives
systematic methods to handle hard constraints and was welcomed by the
industry immediately. Along with the commercial practices, the theoretical
foundation of MPC is built, with strict closed-loop stability requirements and
performance guarantees [118], [125]. The rapid development of computational
power and availability of cheap microprocessors further encourage the usage
of MPC in extensive and complicated tasks. Nowadays, MPC is regarded
by many as one important control method which has a great impact on
industrial control practice, especially in the process control area. MPC is
adopted almost in every refinery and petrochemical plant control tasks [98],
and also penetrated into a wide variety of industries such as automotive [79]
and energy systems [108], [190].

In this chapter, the design and evaluation of MPC based on physical models
applied to flex-fuel CI engine and fuel cell control tasks is described. When
the state-space model is changing according to current system states during
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operation, it could be termed as an adaptive MPC. This is a practical method
to deal with system nonlinearity and disturbances like variable fuels.

5.2 Flex-fuel CI engine control

5.2.1 Introduction

Control approaches based on physical models have been applied in many areas
of engine control, especially for various combustion modes useful in the flex-
fuel CI engine. Bengtsson et al. showed that MPC is a promising control
method for a homogeneous charge compression ignition (HCCI) engine [30].
Blom et al. developed a low-complexity physical model aiming at describing
the major thermodynamic and chemical interactions in the course of an engine
stroke, and the model was used to synthesize a controller for the combustion
phasing control in an HCCI engine [35]. Albin et al., Ingesson et al., Yin et
al. applied MPC to partially premixed combustion (PPC) combustion control
[14], [81], [179]. Raut et al. utilized MPC for combustion phasing and load
control of a reactivity controlled compression ignition (RCCI) engine [140].

Adaptive MPC has been adopted to compensate for the model error,
unmodeled dynamics, noise, and system variation in engine control
applications. McKinley and Alleyne used adaptive MPC as a solution to
rapid and unpredictable changes of selective catalytic reduction (SCR) in
broad operating conditions [119]. Optimal adaptive predictive control has
been applied by Nenchev and Hans to an SI engine to track the error dynamics
[130]. Yildiz et al. developed an adaptive control approach for the SI engine
idle speed control problem to improve performance [177].

This section illustrates an adaptive model predictive control approach to
control the flex-fuel CI engine combustion process with mutable, unknown
fuel contents. Due to the dynamically changing environment, the learning
ability, also called adaptivity, of the model is necessary to track the time-
varying fuel properties and its influence on the engine. The high variations
of renewable fuel characteristics also put demands on controller adaptivity.
The learning ability is achieved by estimating the time-varying parameters in
the grey box model of ignition delay in a real-time manner by the Kalman
filter detailed in Chapter 3. The ignition delay model is the physical model in
Sec. 2.3.3 with parameters c1, c2, c3 and c4. The parameters are the reflection
of the fuel features. The control targets are the combustion phasing θCA50 and
the ignition delay τ . The combustion phasing and ignition delay influence
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engine efficiency, emission, noise, etc. [78]. Since combustion phasing and
ignition delay are intimately coupled, the fuel injection system and air system
need to be combined. The actuators are injection timings, the exhaust gas
recirculation (EGR) system, and the variable-geometry turbocharger (VGT),
EGR and VGT being used to manipulate the intake oxygen concentration
and intake pressure. Model predictive control (MPC) is a suitable design for
the multiple input/output system with actuator constraints [113].

5.2.2 System modeling

Ignition delay model

The ignition delay model is the physical-based model from Sec. 2.3.3. The
ignition delay τ in milliseconds is the time between the start of injection θSOI

and the start of combustion θCA10. One pilot injection was adopted in this
scenario for promoting combustion and noise reduction. The start of injection
θSOI refers to the main injection timing; τ is calculated by:

τ =
θCA10 − θSOI

0.006Ns
(5.1)

where θSOI is the crank angle at the start of the injector current impulse and
Ns is the engine speed, with the unit of revolutions per minute, rpm.

For control applications, it is necessary to model the θCA50 and τ . The variable
θCA50 can be computed using:

θCA50 = θSOI + 0.006Nsτ + θCA10−50 (5.2)

where θCA10−50 is the crank angle difference between θCA10 and θCA50. Here
it was assumed that the chosen actuators, injection timing, EGR, and VGT
valve opening did not influence θCA10−50. This assumption will not degrade the
controller performance much since the main contribution of θCA50 was from
the injection timing θSOI and ignition delay τ .

The ignition delay τ was estimated using an Arrhenius-type model [178]:

τ = c1 exp(
c2

T̄
)Ōc32 p̄

c4 (5.3)

where c1, c3, and c4 are fuel dependent empirical parameters. c2 = Ea/R
where Ea is the apparent activation energy andR is the universal gas constant.
For simplicity, the Ea/R in the general Arrhenius-type model was represented
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by c2. T̄ , Ō2, p̄ are the mean cylinder temperature, oxygen concentration and
pressure between θSOI and θCA10.

Assuming the adiabatic relation holds during this period, the ignition delay
τ is finally expressed as:

τ = c1 exp

(
c2

TIVCTco

)
(O2 IVCO2 co)c3 (pIVCpco)c4 (5.4)

where the co in subscripts is short for coefficient; the variables Tco, O2 co, and
pco are:

Tco =

∫ θSOI+τ
θSOI

(
VIVC
V (θ)

)γ−1
dθ

∫ θSOI+τ
θSOI

dθ

O2 co =

∫ θSOI+τ
θSOI

VIVC
V (θ) dθ

∫ θSOI+τ
θSOI

dθ

pco =

∫ θSOI+τ
θSOI

(
VIVC
V (θ)

)γ
dθ

∫ θSOI+τ
θSOI

dθ

(5.5)

The τ in the integration limit was set to the last cycle value when calculating.
The detailed steps are in Sec. 2.3.3.

Gas system model

In this chapter, the relationships between the intake oxygen concentration,
pressure at IVC and EGR, VGT valve opening were determined by
experiments, as shown in Fig. 5.1.

The EGR valve opening was assumed to have no effect on intake pressure. In
the intake manifold, one oxygen sensor was mounted before all cylinders and
six pressure sensors for each cylinder were installed. The pressure variations
between cylinders were neglected here, i.e., all cylinders used the same intake
pressure to VGT valve opening relationship in Fig. 5.1.

5.2.3 Adaptive MPC design

Real-time parameter estimation

In our control application, the ignition delay was most prone to be influenced
by mutable fuel contents. The variable θCA50 was then affected according to
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Figure 5.1: Intake oxygen O2 IVC and pressure pIVC as a function EGR and VGT valve
positions

Eq. (5.2). To fulfill the control task, the ignition delay model parameters of
Eq. (5.4) need to be estimated and updated online with real-time data.

Taking natural logarithm of both sides in Eq. (5.4), we get:

ln(τ) = ln(c1) +
c2

TIVCTco
+ c3 ln(O2 IVCO2 co) + c4 ln(pIVCpco) (5.6)

which can be described by the state-space equation:



ln(ck+1
1 )

ck+1
2

ck+1
3

ck+1
4




=




ln(ck1)

ck2

ck3

ck4




+ vk

ln(τk) =




1

1/T kIVCT
k
co

ln(Ok2 IVCO
k
2 co)

ln(pkIVCp
k
co)




T 


ln(ck1)

ck2

ck3

ck4




+ ek

(5.7)
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where the k in superscript represents the cycle number; vk and ek are the
process noise and the observation noise.

The classic Kalman filter is then used to estimate the state vector:



ln(c1)

c2

c3

c4




(5.8)

For more details about the Kalman filter and its application in real-time
identification, please see [89] and [86].

Since the fuel contents were varying during this process, the estimated
parameters would not converge to certain constant values. Whereas there
were no theoretical proofs for the stability of the interconnected MPC,
state estimation, and parameter estimation, no significant stability problem
appeared in our experiments.

State-space model

The cycle-to-cycle dynamics for each cylinder between control targets θCA50

and τ and control inputs the start of injection θSOI, the EGR valve position
θEGR and the VGT valve position θVGT can be written as:

θk+1
CA50i

= θkCA50i
+

[
∂θCA50i

∂θSOIi

∂θCA50i

∂θEGR

∂θCA50i

∂θVGT

]



dθkSOIi

dθkEGR

dθkVGT




τk+1
i = τki +

[
∂τi
∂θSOIi

∂τi
∂θEGR

∂τi
∂θVGT

]



dθkSOIi

dθkEGR

dθkVGT




(5.9)

where the i in subscript represents the cylinder number, and the k in
superscript represents the cycle number. It should be noticed that the
injection timing θSOI was adjusted per cylinder, while the θEGR and θVGT were
the same for all cylinders.

The linearized, discrete-time, state-space model of each cylinder used for
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control is written as:
xk+1 = Axk +Buk

yk = Cxk
(5.10)

where the state vector xk at sample index k is:

xk =




θkCA50

τk

θkSOI

θkEGR

θkVGT




(5.11)

with input:

uk =




dθkSOI

dθkEGR

dθkVGT


 (5.12)

and output:

yk =

[
θkCA50

τk

]
(5.13)

and state-space matrices:

A = I5×5

B =




∂θCA50
∂θSOI

∂θCA50
∂θEGR

∂θCA50
∂θVGT

∂τ
∂θSOI

∂τ
∂θEGR

∂τ
∂θVGT

1 0 0

0 1 0

0 0 1




C =

[
1 0 0 0 0

0 1 0 0 0

]

(5.14)

The actuator increments were selected as the system inputs. Consequently,
θkSOI, θ

k
EGR, and θkVGT were added into the state vector to help set constraints

on them.
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According to Eq. (5.2), we get:

∂θCA50

∂θSOI

= 1

∂θCA50

∂θEGR

= 0.006Ns
∂τ

∂θSOI

∂θCA50

∂θVGT

= 0.006Ns
∂τ

∂θVGT

(5.15)

The partial derivatives of τ with respect to θSOI, O2 IVC, and pIVC are obtained
from Eq. (5.4). Although the θSOI is in the integration limit, its influence on
the ignition delay τ is neglected for simplicity. We have:

∂τ

∂θSOI

= 0

∂τ

∂θEGR

=
∂τ

∂O2 IVC

∂O2 IVC

∂θEGR

∂τ

∂θVGT

=
∂τ

∂O2 IVC

∂O2 IVC

∂θVGT

+
∂τ

∂pIVC

∂pIVC

∂θVGT

(5.16)

As stated in Sec. 5.2.2, EGR had no influence on intake pressure, which
means ∂pIVC/∂θEGR = 0. The value of ∂O2 IVC/∂θEGR, ∂O2 IVC/∂θVGT, and
∂pIVC/∂θVGT are estimated from the slopes in Fig. 5.1.

MPC design

At each time step, the parameters ln(c1), c2, c3, and c4 are estimated first by
Kalman filter with state-space model represented by Eq. (5.7). Then, based
on the state-space model (5.10), a quadratic programming (QP) problem will
be solved to obtain optimal control inputs:

min
u0,u1,...,uHu−1

J(uk) =

Hp∑

k=1

∥∥∥yk − r
∥∥∥

2

Q
+

Hu−1∑

k=0

∥∥∥uk
∥∥∥

2

R
+

∥∥∥∥∥

[
θ1
EGR

θ1
VGT

]∥∥∥∥∥

2

S

(5.17)

subject to:

xk+1 = Axk +Buk

yk = Cxk

ulb ≤ uk ≤ uub

xlb ≤ xk ≤ xub

x0 = xinit

k = 0, 1, . . . ,Hp

(5.18)
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where Hp and Hu are prediction and control horizon; k in the superscript
represents the time step, and k = 0 refers to the current time step; r is the
control reference; Q, R and S are weight tuning parameters for reference
tracking, control inputs and valve positions; ulb, uub, xlb, and xub are the
lower bounds and upper bounds of inputs u and states x; xinit is the latest
measured value, the state feedback.

For current time step, MPC will only apply the first solved control inputs
u0 to the system. Then it will estimate parameters ln(c1), c2, c3, and c4

again, and reformulate the QP problem and get a new solution in next time
step. This procedure will be repeated for every time step. This process is also
known as receding horizon control.

For each cylinder, this MPC problem was formulated and solved
independently. The solution θSOI was applied per cylinder, and the average of
solved θEGR and θVGT was applied to the EGR and VGT valves. The variation
magnitude of the calculated θEGR and θVGT in cylinders are shown in Fig. 5.4.
Both controls agreed well between the different cylinders which made the
approach suitable.

An illustration of the overall adaptive MPC design is shown in Fig. 5.2.

MPC

Update Model Parameter Estimation

reference
Measured

outputs

Control inputs

𝜏 = 𝑐1 exp(
𝑐2

𝑇IVC𝑇co
) (𝑂2 IVC𝑂2 co)

𝑐3(𝑝IVC𝑝co)
𝑐4 𝑐1, 𝑐2, 𝑐3, 𝑐4

𝜃CA50, 𝜏

𝜃SOI, 𝜃EGR, 𝜃VGT

Figure 5.2: Adaptive MPC design.
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5.2.4 Experimental set-up

The control plant was a six-cylinder heavy-duty Scania D13 engine. The
engine specifications and control system are detailed in Chapter 4. However,
due to the sixth cylinder was malfunctioning during this chapter work,
only cylinders one to five were used in the experiments. The fuel for the
experiments was diesel, the mixture of 80 volume % Swedish 95 octane pump
gasoline and 20 volume % n-heptane, and the mixture of 80 volume % pure
ethanol and 20 volume % n-heptane. The n-heptane was added to avoid
misfire since the cetane numbers of gasoline and ethanol are significantly
lower than the diesel fuel. Another potential solution was the use of an intake
air heater [100].

5.2.5 Experimental results

Two fuel transition scenarios were conducted: the transition from diesel
to the gasoline/n-heptane mixture and the transition from the gasoline/n-
heptane mixture to the ethanol/n-heptane mixture. Each transition took
approximately 30 to 40 minutes. The transition was done by turning off one
fuel pipe and turning on the other fuel pipe. This procedure was applied to
simulate the situation that after running for some distance with one fuel, the
user stops the car and fills the tank with another kind of fuel. The focus was
on the gradual transition in the engine from one fuel to the newly added fuel
since many studies have investigated the steady fuel situation.

Diesel to gasoline/n-heptane mixture

During this transition, the gross indicated mean effective pressure (IMEPg)
was kept at 5 bar controlled by a proportional-integral (PI) controller. The
engine speed was 1200 rpm.

Figure 5.3 shows the controller behavior at the beginning of the diesel to
gasoline/n-heptane transition. When the combustion timing θCA50 target
increased, the injection timing θSOI was retarded to track the reference. The
ignition delay τ was mainly manipulated by valve position θEGR and θVGT.
When the τ target increased, the VGT valve position θVGT was increased
to raise the intake oxygen concentration and pressure, and the EGR valve
position θEGR were decreased since the lower the EGR, the higher the intake
oxygen concentration. The gas system dynamics were slower compared with
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Figure 5.3: Controller behavior at the start of diesel to gasoline/n-heptane transition.
θCA50 is the combustion timing, the CAD where 50% total heat are

released; τ is the ignition delay; θSOI is the CAD of start of main injection;
θEGR and θVGT are EGR and VGT valves opening. The same applies to the

rest figures of this chapter.

the injection system, and the tracking speed of ignition delay τ was slower
than that of combustion timing θCA50. Figure 5.4 shows the calculated θEGR

and θVGT in five cylinders, and their mean values were applied to EGR and
VGT valves.

When considering ignition delay τ , the control inputs (θEGR, θVGT) number
were less than the control outputs (5 cylinder τ) number. This resulted in
higher variance in τ than θCA50. In Fig. 5.3, the high cylinder-to-cylinder τ
variation of cylinder 5 further degraded the τ control performance.
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Figure 5.4: Calculated θEGR and θVGT in five cylinders.

At cycles 100 to 300 in Fig. 5.3, the τ didn’t achieve the set point. Notice that
the θEGR was already 0 and θVGT was in a high position, which means current
τ was the highest τ the controller could reach. The punishment term in cost
function (5.17) stopped the θEGR from increasing further. This is because at
this moment the engine fuel system was still the easy-ignited diesel.

The τ range calculated from estimated c1, c2, c3, c4 and Eq. (5.4) can reflect
the change of fuel characteristics. The τ range was composed of the possible
τ minimum, the τ of Eq. (5.4) in O2 IVC = 24.00% and pIVC = 1.73 bar which
corresponded to θEGR = 0% and θVGT = 80%, and the possible τ maximum,
the τ of Eq. (5.4) in O2 IVC = 16.12% and pIVC = 1.06 bar which corresponded
to θEGR = 90% and θVGT = 0%. As we can see next, during the fuel transition,
the possible τ range also varied in the same trend which served as an indicator
for fuel properties.

Figure 5.5 shows the controller behavior in the middle of the transition,
approximately 15 minutes after the fuel pipe switch. Here the possible τ
maximum was around 2.6 ms, bigger than that in Fig. 5.3, which was around
1.9 ms.

Figure 5.6 shows the controller behavior in the end of the transition,
approximately 40 minutes after the fuel pipe switch. At that moment the
possible τ maximum was around 5 ms. There was a clear difference in the τ
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Figure 5.5: Controller behavior in the middle of diesel to gasoline/n-heptane transition

range, especially the possible τ maximum. The more gasoline there was in
the engine fuel system, the higher the possible τ maximum.

Figures 5.5 and 5.6 also show the adaptive MPC performance at different fuel
transition stages. The performance was comparable with that in Fig. 5.3.
But to keep the similar τ value, such as at the cycle 100 in Fig. 5.5 and the
cycle 100 in Fig. 5.6, the actuator values θEGR and θVGT were totally different
due to the fuel properties change.
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Figure 5.6: Controller behavior in the end of diesel to gasoline/n-heptane transition

Gasoline/n-heptane mixture to ethanol/n-heptane mixture

During this transition, the IMEPg was still kept at 5 bar. Figures 5.7(a)
and 5.7(b) show the τ reference transient and θCA50 reference transient
performance respectively at engine speed 1200 rpm. Figure 5.8 shows the
performance in the engine speed Ns transient scenario.

In the transition from gasoline/n-heptane mixture to the ethanol/n-heptane
mixture, the τ didn’t change much. This is because gasoline and ethanol have
similar cetane number and ignition properties. In this case, the τ range failed
to be an indicator of the fuel transition process.

Observing from Figs. 5.3 and 5.5-5.8, the cylinder-to-cylinder ignition delay
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(a) Ignition delay τ transient, 6 minutes after
the fuel pipe switch

(b) θCA50 transient, 16 minutes after the fuel
pipe switch

Figure 5.7: Controller behavior in gasoline/n-heptane to ethanol/n-heptane transition

τ variations varied for different scenarios. This might be another problem
introduced by mutable fuel contents.

5.2.6 Discussion

This section proposed an adaptive MPC to control the transient combustion
process of the flex-fuel engine under the changing fuel situation.

The ignition delay was a key indicator of the fuel properties inside the engine.
Since the ignition delay was also changing with mutable fuels, an adaptive
model was used to describe the ignition delay. An Arrhenius-type model with
four parameters was built, where the parameters are estimated online with the
Kalman filter. This gave MPC the ability to adapt to the time-varying fuel
properties. Based on the estimated parameters, the possible ignition delay
range could be calculated and was a good reflection of the fuel characteristic.
The constant model used in [81], [82] was not suitable for the flex-fuel engine
application. Besides, this ignition delay model got rid of the ad-hoc term
which lacked interpretability in the combustion model in [178].

The adaptive MPC performance was validated in the fuel transition scenarios,
from diesel to gasoline mixture, and then to ethanol mixture. The adaptivity
was because of the mutable fuel properties. Other adaptive MPC shown in
[130], [166] used the adaptivity to adjust to the unchanged engine nonlinearity
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Figure 5.8: Ns transient, 25 minutes after the fuel pipe switch during
gasoline/n-heptane to ethanol/n-heptane transition

online. The integration of the gas system and combustion process gave a
more concise and less computationally demanding structure as compared to
the MPC formulation in [178]. However, instead of the static relation between
valve positions and intake manifold gas states in a small operating range, a
dynamic gas system model could possibly improve the performance. It also
gave the possibility of including gas exchange efficiency in the cost function.

This was the first work about the flex-fuel CI engine control to the author’s
knowledge. The flex-fuel CI engine was a new concept suitable for commercial
vehicles like trucks, and it could run with broader fuel choices and combustion
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modes than the flex-fuel SI engine. Widely used in Brazil [39], the flex-
fuel SI engine operated with two fuel species, gasoline and ethanol. Thus
the controller might just need to detect ethanol concentration and apply
corresponding control strategy as shown in [12], [92], whereas the fuel in
flex-fuel CI engine could be a mixture of more than three different fuels, and
the control strategy needed to deal with the mutable fuel property directly.

The MPC framework gave a simple way to prioritize the system output
behavior. It considered interaction effects. The input constraints and the cost
of using EGR and VGT were incorporated. The mean of the calculated θEGR

and θVGT of five cylinders were applied to EGR and VGT valves. Whereas it
will be better if all cylinders required the same EGR and VGT opening, the
variation was acceptable to take an average as shown in Fig. 5.4.

The experimental engine used in this work was initially designed for diesel
usage. Though some modifications had been made, the engine was still not
able to run with pure gasoline or ethanol, thus the addition of n-heptane
was necessary for a successful ignition. Potential hardware solutions to this
problem included the usage of intake air heater [100] and ethanol compatible
injectors. Besides, the pollution level was not investigated, which was another
limitation. This was an important practical concern regarding the strict
regulations on emissions.

5.2.7 Conclusion

An adaptive MPC approach was proposed to control the flex-fuel multi-
cylinder heavy-duty CI engine. The controller was validated in the diesel
to gasoline mixture transition and gasoline mixture to ethanol mixture
transition. The innovations in this work include:

1. Control of flex-fuel CI engine instead of the SI engine.

2. The fuel choice is not limited to two specific fuel species.

3. Fuel species is unknown in advance for the controller, which is not the
case for contemporary flex-fuel controllers.
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5.3 Fuel cell control

5.3.1 Introduction

To ensure reliable operation as a power source, a polymer electrolyte fuel cell
(PEFC) system should be able to supply steady voltage in its applications
despite any disturbance to the working load, which is an important demand
in electrical equipment use [95], [165]. Efficient and robust control strategies
are considered as one of the key solutions to ensure the fuel cell system’s
high-reliability [97]. Significant numbers of research contributions have been
conducted to develop solid and powerful control algorithms for PEFC systems
to provide a steady output voltage. Yang et al. designed an adaptive controller
to stabilize the fuel cell system’s voltage by changing the air flow rate under
system variations [176]. It was found that the adaptive controller effectively
can achieve the desired reference values subject to external disturbances.
Wang et al. employed H∞ solid control strategy to improve the PEFC
system’s stability, finding that the controller was found effective to control
the output voltage at the desired value under different loading conditions
by adjusting the air flow rate [165]. In another paper, also by Wang et
al., multivariable H∞ controllers were proposed to provide steady output
response by controlling both the air and hydrogen flow rates [164]. Chen
increased the relative stability of a PEFC system by controlling the hydrogen
and oxygen input flow rates using the designed state feedback controller [42].
Woo and Benziger incorporated a standard PID feedback controller in a PEFC
system to achieve desired power output by limiting the hydrogen feed [171].
Fragiacomo and Piraino kept the PEFC system working in a steady-state
using a hybrid control algorithm which combined a fuzzy logic controller and
an error minimization control method [56]. Narjiss et al. proposed a digital
signal process controller to regulate the PEFC system’s voltage and current,
making it more suitable for transport application [129]. The above-mentioned
studies have developed various well-qualified control methods to stabilize the
PEFC system’s performance. However, there are still some limitations that
can be improved in future studies. For one thing, most previous control
systems were only limited to one single input, the effects of other factors
in the fuel cell system were neglected; for another, there is still some time
delays and oscillation regarding the control performance. Reliable and highly
efficient control algorithms are still much in need.

Due to its high complexity, strong nonlinearity, and especially series of
constraints on the operation parameters [147], the PEFC system requires
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much more advanced and robust control algorithms to ensure its reliable and
safe operation. As an advanced process control method, model predictive
control (MPC) controller usually excels in solving control schemes with
multi-input variables and a set of constraints [27], [61], [145], which makes
it especially suitable for the PEFC system’s control application. MPC
controllers have been widely used in PEFC systems. Vahidi et al. formulated
distribution of current demand between the fuel cell and the auxiliary source
using a constrained optimization MPC framework to avoid stack starvation
and damage [159]. The results showed that the reactant deficit during sudden
increases in stack power was reduced from 50% in stand-alone architecture
to less than 1% in the hybrid configuration. Wang and Kim studied the
modeling and air flow control for a PEFC using MPC [167]. It was found
that the proposed MPC presents superior performance compared with the
proportional-integral control result. Chatrattanawet et al. proposed both
a traditional MPC and a novel robust linear time-varying MPC for PEFC
control and found out the novel MPC can ensure the PEFC system’s
stable operation [40]. Mengi designed three different MPC-based hybrid
controllers to investigate the elimination of reactive power in a medium-
scale PEFC system and found out PIλ-MPC controller presented the best
performance [121]. He et al. proposed an MPC controller to enhance a
PEFC system’s operation by regulating its hydrogen circulation [72]. Zhang
et al. implemented an MPC controller in an open cathode PEFC system to
manipulate its stack temperature at the desired value despite the changes on
the working load [183]. Goshtasbi and Ersal developed a linear time-varying
MPC framework for an automotive PEFC system to resist its degradation
[61]. Hahn et al. proposed an MPC-based operation strategy to control an
automotive fuel cell air system [67]. It proved that the MPC approach had the
potential of reducing the hydrogen consumption by 3% while decreasing the
risk of harmful operation conditions compared with a validated map-based
operation strategy.

The problem here is to regulate the fuel cell output voltage by controlling its
hydrogen flow rate and air flow rates simultaneously while under the safety
requirements and the workload disturbance. The safety constraints include
the hydrogen pressure limits and input change rates limit. The workload is
current. An MPC controller was designed to fulfill this multi-input single-
output (MISO) task. The model used in MPC is a physical model simplified
from the detailed system model.
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5.3.2 System modeling

The system modeling for control purposes was a simplification and
linearization of the model elaborated in Sec. 2.4.1. Differentiating both sides
of Eq. (2.62):

V̇FC = ncell(Ėn − V̇ac − V̇o) (5.19)

where VFC, ncell, En, Vac, and Vo denote output voltage of the fuel cell system,
cell numbers, reversible voltage, voltage drop combing the activation drop and
concentration drop, and ohmic voltage drop.

Here Ėn is a differentiation of Eq. (2.53) assuming the stack temperature
Tstack is a constant value of 343K during one prediction horizon:

Ėn = k1
1

PH2

ṖH2 +
k1

2

1

PO2

ṖO2 (5.20)

k1 = 4.308 · 10−5 · 343 (5.21)

where PH2 and PO2 are the hydrogen pressure and oxygen pressure; k1 is a
coefficient.

Combining Eqs. (2.63) to (2.73), ṖH2 , ṖO2 , and ṖN2 are expressed as:

ṖH2 =
k2

0.005

(
k3QH2 − 0.065PH2 + 0.065− 65I

2 · 96485

)
(5.22)

ṖO2
=

k2
0.01

(
k4Qair −

0.065mO2

mO2
+mN2

PN2
+

0.065mO2

mO2
+mN2

− 65I

4 · 96485

)
(5.23)

ṖN2
=

k2
0.01

(
k5Qair −

0.065mN2

mO2
+mN2

PO2
− 0.065mN2

mO2
+mN2

PN2
+

0.065mN2

mO2
+mN2

)
(5.24)

with coefficients:

k2 = 0.0821 · 10−3 · 343 (5.25)

k3 =
0.0706

2 · 60
(5.26)

k4 = 0.21 · 1.121

2 · 60
(5.27)

k5 = 0.79 · 0.988

28 · 60
(5.28)

where I is the current; PN2 is the nitrogen pressure; QH2 and Qair are the
inlet hydrogen volumetric flow rate and inlet air volumetric flow rate; mO2

and mN2 are the oxygen mass in the cathode volume and nitrogen mass in
the cathode channel; k2, k3, k4, and k5 are constant coefficients.
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The derivative V̇o is simplified as:

V̇o = I · Ṙm = 0 (5.29)

where Rm is the membrane resistance. The current I and Rm were assumed
to be constant during the prediction horizon. Combining the Eqs. (5.19) to
(5.29) gives the state-space model detailed in the next section.

5.3.3 Adaptive MPC design

State-space model

The linearized continuous-time state-space model is written as:

ẋ = Ax+Bu

y = Cx
(5.30)

The state vector x is:

x =




VFC

Vac

PH2

PO2

PN2

1




(5.31)

The physical unit for VFC and Vac is Volt, V; the unit for PH2 , PO2 and PN2

is atm. The constant 1 in the state vector is to enforce integral action, taking
into account the constant terms in Eqs. (5.22) to (5.24). The mO2 , mN2 and
I are viewed as constant value during prediction horizon.

The input u is:

u =

[
QH2

Qair

]
(5.32)

The physical unit for inputs is liters per minute, lpm.

The output y is:

y =
[
VFC

]
(5.33)
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the state-space matrices are:

A =




0 65
2Rd

A13 A14 A15 A16

0 − 1
2Rd

0 0 0 I
2

0 0 −0.065k2

0.005 0 0 A36

0 0 0 k2

0.01 (− 0.065mO2

mO2
+mN2

) k2

0.01 (− 0.065mO2

mO2
+mN2

) A46

0 0 0 k2

0.01 (− 0.065mN2

mO2+mN2
) k2

0.01 (− 0.065mN2

mO2+mN2
) A56

0 0 0 0 0 0




(5.34)

B =




65k1k2k3
0.005PH2

k1k2k4
0.002PO2

)

0 0
k2k3
0.005 0

0 k2k4
0.01

0 k2k5
0.01

0 0




(5.35)

C =
[
1 0 0 0 0 0

]
(5.36)

here

A13 = 65k1
PH2
· −0.065k2

0.005

A14 = A15 = 65k1
2PO2

· k2
0.01(− 0.065mO2

mO2
+mN2

)

A16 = 65k1k2
0.005PH2

(0.065− 65I
2·96485) + 65k1k2

0.02PO2
(

0.065mO2
mO2

+mN2
− 65I

4·96485)− 65I
2

A36 = k2
0.005(0.065− 65I

2·96485)

A46 = k2
0.01(

0.065mO2
mO2

+mN2
− 65I

4·96485)

A56 = k2
0.01(

0.065mN2
mO2

+mN2
)

(5.37)

For the variables in matrix A like mO2 and mN2 , their value were assumed
to be constant during the prediction horizon. In other words, the matrix A
didn’t change when solving the optimization problem.
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MPC design

A Quadratic Programming (QP) problem will be solved at each time step to
obtain the optimal control inputs:

min
u0,u1,...,uHu−1

J(uk) =

Hp∑

k=1

∥∥∥yk − r
∥∥∥

2

Q
+

Hu−1∑

k=0

∥∥∥uk
∥∥∥

2

R
+ ρ

Hp∑

k=1

∥∥∥εk
∥∥∥

2
(5.38)

subject to:

xk+1 = Adxk +Bduk

yk = Cdxk

ulb ≤ uk ≤ uub

dulb ≤ uk − uk−1 ≤ duub

xlb ≤ xk ≤ xub + εk

0 ≤ εk

u−1 = uinit

x0 = xinit

k = 0, 1, . . . ,Hp

(5.39)

where Ad, Bd, and Cd are state-space matrices in discrete-time; Hp and Hu

are prediction and control horizon; k in the superscript represents the time
step, and k = 0 refers to the initial time step; r is the control reference;
Q and R are weight tuning parameters for reference tracking and control
inputs; ulb, uub, xlb, and xub are the lower bounds and upper bounds of
inputs u and states x; dulb and duub are the lower bounds and upper bounds
of inputs change rate; uinit is latest applied control inputs and xinit is the
latest measured value, the state feedback; ε is the slack variable introduced
to soft constraints and ρ is a nonnegative scalar to control the magnitude of
penalizing soft constraint violations. To remove the constraints, it is straight
forward to remove corresponding inequality clauses in Eq. (5.39) and the slack
variable punishment term in Eq. (5.38).

The slack variable ε is to deal with the possibility of infeasibility by hard
constraints and model imperfection. It is defined that their value is non-zero
only if the constraints are violated. Then the violations are highly penalized in
cost function by a large enough ρ to let the optimizer have a strong incentive
to keep ε at zero. Besides the quadratic penalty for the constraint violations,
the 1-norm (sum of violations) or the ∞-norm (maximum violation) are also
possible choices [113].
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In the fuel cell problem, the state constraint was the limitation of the hydrogen
pressure PH2 . The hydrogen pressure in the pipe should be under a certain
value to ensure safety, which was 2.5 atm here. Only slack variables for state
upper bounds were introduced. The input QH2 was limited between 100 and
400 lpm and Qair was limited within 300 to 700 lpm. The change rate of the
inputs was constrained within -40 to 20 lpm.

The time step for the MPC controller was 0.5 s. The QP problem mentioned
above was solved every 0.5 s and the first of the solved input sequences was
applied to the fuel cell plant.

5.3.4 Experimental set-up

The experiment was conducted on the established Simulink model detailed
in Sec. 2.4.1. Gaussian measurement noises were added to voltage VFC and
hydrogen pressure PH2 . Two test scenarios were chosen, one was the typical
step disturbance applied on the working load, the current; the other was a
mixture of slope and step working load changes. Two kinds of controllers, the
classical PID and MPC were applied to the fuel cell voltage control problem.
Figure 5.9 shows the diagram of the PID control process.

PID
Fuel cell

+
+

QH2

Qair

VFCVoltage reference

PID

+

-1

Figure 5.9: PID control process

Two separate PID controllers were built to regulate two inputs, the hydrogen
volumetric flow rate QH2 and air volumetric flow rate Qair.

Figure 5.10 gives the illustration of the MPC control process.

During the experiment, the PID controller acted continuously during the
process and the MPC acted every 0.5 s.
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Figure 5.10: MPC control process

5.3.5 Experimental results

Firstly, the PID controller was compared with the MPC controller without the
input change rate and PH2 constraints. Since PID control can not handle the
constraints explicitly as MPC, this gave an equitable comparison. Secondly,
input change rate and state constraints were activated in MPC and the results
were shown.

In the MPC parameter settings, the weight for the control target was 400;
the weight for the manipulated variables (inputs) was 0.001; the weight for
the input change rate was 0.3; the prediction horizon was 20 and the control
horizon was 10. In the PID control settings, the proportional gain KP and
integral gain KI for hydrogen flow rate control were 210 and 80; the KP and
KI for air flow rate control were 210 and 30. The derivative gain was 0. The
parameters were chosen that the controllers reacted fast while keeping the
system stable. The input change rate was limited by added constraints in one
of the test scenarios.

PID and MPC

Figure 5.11 shows the control performance of PID and MPC with the current
load being interrupted by one sudden increase and one sudden decrease step.
Figure 5.12 shows the corresponding hydrogen pressure PH2 and control inputs
QH2 and Qair behavior. Figure 5.13 presents the instantaneous fuel cell power
during the process.

When the system started, the output voltage increased from 0 V to 48 V. In
this period, the deviation between measured voltage and reference was large,
thus the PID and MPC controller both took big moves. After around 5 s, an
overshoot occurred, but MPC had a smaller overshoot as compared to the PID
controller. The overshoot was 0.41 V for MPC and 0.70 V for PID controller
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Figure 5.11: Output voltage under the current disturbance for PID and MPC without
constraints.

Figure 5.12: Hydrogen pressure and system inputs for PID and MPC without
constraints. The PH2

is hydrogen pressure; Inputs QH2
and Qair are

hydrogen volumetric flow rate and air volumetric flow rate.
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Figure 5.13: Instantaneous fuel cell power.

in terms of true system voltage. At 40 s, the current load jumped from 110
A to 120 A. According to the polarization theory, the output voltage of the
PEFC system will drop with this increased current load. To resist the voltage
drop, controllers adjusted the hydrogen and air flow rates to a higher level to
increase the hydrogen and oxygen pressure at the anode and cathode volume
and increased the voltage. In this process, the MPC responded quicker than
the PID controller. To arrive at 47.9 V again, the MPC took 2.5 s and the
PID controller took 5.0 s. Similarly, when the current dropped to 115 A at
70 s, the controllers decreased QH2 and Qair to reduce the voltage. The MPC
still had a faster response than the PID controller. Both the PID controller
and the MPC can keep the PEFC system’s output voltage at the desired 48
V, but the MPC showed superior performance with faster response and lower
overshoot.

Both the PID controller and the MPC did not consider PH2 and input change
rate constraints. Thus in the period around 5 - 15 s and 40 - 70 s, the PH2 went
above 2.5 atm. Meanwhile, since the input change rate was not limited and
both controllers adopted aggressive settings, the inputs QH2 and Qair acted
swiftly and more sensitively to noise. The input change rate was limited in
the next section.

The performance of the controllers when adopting less aggressive parameter
settings is shown in Fig 5.14. The weight for the control target in MPC was
reduced to 100; the KP and KI for hydrogen flow rate control were 100 and
40 and for air flow rate control were 100 and 15 in the PI control settings. In
this case, the MPC controller had a similar overshot with the PID controller,
but the MPC still had a faster response. The maximum overshoot for MPC
was 0.46 V and for PID controller was 0.55 V. To arrive at 47.9 V again after
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step disturbance at 40 s, the MPC took 3.4 s and the PID controller took
10.1 s.

(a) Output voltage and current disturbance. (b) Hydrogen pressure and system inputs.

Figure 5.14: The MPC and PI controllers behavior with less aggressive parameter
settings

Figures 5.15 and 5.16 show the PID controller and the MPC performance
under slope and step current changes. The result was similar as before.
Figure 5.17 exhibits the instantaneous fuel cell power.

Figure 5.15: Output voltage under the current disturbance for PID and MPC without
constraints.
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Figure 5.16: Hydrogen pressure and system inputs for PID and MPC without
constraints.

Figure 5.17: Instantaneous fuel cell power.

It can be seen from these two studies that both the PID and MPC controllers
can stabilize the output voltage at the reference value despite the working
load disturbance and measurement noise, and the MPC outperformed the
PID control with faster response and lower overshoot. However, the MPC
required more system information as the state measurement for feedback
control, whereas the PID control only needed the measured control target
value. The PID control had a simpler structure and fewer parameters thus
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was easy to design and tune.

MPC with constraints

One major advantage of MPC over PID control is its ability to handle
constraints explicitly. The hydrogen pressure PH2 and input QH2 and Qair

change rate limits, the safety consideration, were added to MPC in this
section. The results were compared with that of MPC without constraints,
as shown in Figs. 5.18 to 5.21.

Figures 5.18 and 5.19 show the MPC with constraints and MPC without
constraints performance under working load step changes. Controlled voltage
by the MPC with constraints increased slower than that of the MPC without
constraints when the system started because the input change rate limits
suppressed the rapid inputs rise. The overshoot for the MPC with constraints
and the MPC without constraints was 0.42 V and 0.41 V in terms of the true
system voltage. Meanwhile, the PH2 of MPC without constraints exceeded
2.5 atm and MPC with constraints successfully kept the PH2 under 2.5 atm.
When the current load increased to 120 A at 40 s, both inputs increased, but
the change rate limits still acted, thus the MPC with constraints responded
slower. It took 5.2 s for MPC with constraints instead of 2.5 s to arrive at
47.9 V in this case. When the PH2 was about to hit the limit at around 45 s,
the input QH2 decreased quickly to ensure safety, while the input Qair did not
drop to ensure the voltage following the reference. When current dropped to
115 A at 70 s, the MPC with constraints still acted slower.

Figures 5.20 and 5.21 show the MPC with constraints and MPC without
constraints performance under slope and step current changes. The controlled
voltage of the MPC with constraints was able to satisfy the PH2 limit all the
time and responded slower due to the change rate limit.

5.3.6 Discussion

This section proposed an MPC controller for voltage regulation under safety
requirements and current disturbance by adjusting the hydrogen and air
volumetric flow rate. The proposed MPC was superior to the PI controller in
response time and overshoot in two different parameter settings. The model-
based controller accounted for the system future behavior which gave a more
precise inputs solution. The controller manipulated the hydrogen and air
flow rate at the same time. The simultaneous control of the inputs gave a
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Figure 5.18: Output voltage under the current disturbance for MPC without
constraints and MPC with constraints.

Figure 5.19: Constraint handling and system inputs for MPC without constraints and
MPC with constraints.
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Figure 5.20: Output voltage under the current disturbance for MPC without
constraints and MPC with constraints.

Figure 5.21: Constraint handling and system inputs for MPC without constraints and
MPC with constraints.
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more practical and broader application scenario. In contrast, the controller
designs in [18], [63], [167] only adopted the air flow rate as input. The
controller here also considered the safety requirements which included the
hydrogen pressure and actuator limits. The hydrogen pressure limit ensured
safe operation inside the fuel cell and the inputs change limits was a result
of actuator characteristic as well as a safety consideration. The simulation
result showed that it successfully fulfilled the voltage regulation task and
can handle safety requirements well. Many other MPC designs for fuel cells
didn’t take those requirements into account, like [62], [133]. It is possible to
add constraints to the PI controller. However, the MPC framework provided
a systematic way of handling input and output constraints. All constraints
were accounted for simultaneously, and it was straightforward to remove and
add constraints. The MPC was also flexible when modifying inputs or outputs
and adjusting the size of the optimization problems accordingly. The models
used for MPC were linear models simplified from detailed system models.
The linear property contributed an efficient and fast solver which was easy
to implement. The MPC designs in [62], [110], [133], [189] adopted nonlinear
models which were undesired in computational power limited cases especially
for an embedded controller.

Although the MPC framework had its potential advantages, it required careful
tuning to get the desired controller behavior. An accurate model was also
needed to achieve superior performance. The modeling process could be
tedious and required expert knowledge. Meanwhile, the MPC design in this
section required a lot of system information, which could be hard to implement
in practice. Though MPC had a better performance, the effectiveness and
simple of PID control made it attractive in many cases without constraints.
It is also limited that the method was only validated on a Simulink model,
while a test on real fuel cell stacks would be much more desirable. The target
of the controller was to keep a constant output voltage, and didn’t consider
the efficiency interval.

The controller here didn’t use the hydrogen and air excess ratio to their
minimum required flow rates for maintaining current density as the control
inputs. However it could be an interesting idea since it was also important to
keep excess ratio above a certain value for safe operation [46]. The investigated
target was mainly the reaction subsystem of the fuel cell, while there were
other subsystems like the thermal, water management, and power electronics
subsystems that arose interesting control tasks. For example, the temperature
and moisture level maintenance task, which was important to a stable and
efficient operation.
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5.3.7 Conclusion

A PID controller and an MPC controller were designed to regulate the fuel
cell output voltage by controlling the hydrogen and air flow rates at the
same time. MPC designs with and without constraints were explored. The
controller performances were validated and compared on two different current
disturbance situations. The results showed that MPC gave a quicker response
and less overshoot than PID control with the help of the system model, and
MPC with constraints can handle the safety requirements well.
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CHAPTER 6

LEARNING-BASED MPC

6.1 Introduction

Besides the adaptive physical-based model control method, the learning and
data-based control methods draw more and more attention in recent years
with the availability of increasing sensing and computational power as well
as the achievements in the machine learning field. MPC gives a reliable way
to exploit the data abundance while satisfying the safety constraints, which
makes learning-based MPC a preferable approach.

Most of the research address learning for automatic prediction model
improvement from recorded data during operation [77]. Kabzan et al.
presented a learning-based control approach for autonomous racing, where
the vehicle model was improved online based on selected data points [88].
Desaraju et al. applied parametric learning-based MPC methods to improve
a quadrotor model over time for robotic systems while considering the
approximate prediction uncertainty [48].

Meanwhile, direct usage of machine learning methods based on pre-collected
data utilizes its strong representation ability for complicated system modeling.
Afram et al. showed the application of neural networks (NN) based MPC
on a complicated nonlinear heating, ventilation, and air-conditioning system
[11]. Kazemi et al. designed a learning-based stochastic MPC for cooperative
adaptive cruise control to handle interfering vehicles with neural networks [91].
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Aswani et al. proposed a learning-based MPC framework that combines
a physical-based base model and a data-based learning model, trying to
combine the robustness of physical models and the prediction performance
of data-based models [23]. This approach was adopted by Bouffard et al.
in a quadrotor control task to catch a ball thrown with a priori unknown
trajectory [37]. Another conceptually learning-based control leverages MPC
for constraint fulfillment and safety requirements, and the performance is
optimized with a reinforcement learning algorithm [77].

Gaussian process (GP) is a popular nonparametric approach as the learning
model due to its ability to provide an assessment of prediction uncertainty.
Likar and Kocijan used Gaussian process MPC for the control of a gas-liquid
separation plant [104]. A stochastic MPC based on Gaussian processes was
applied to the Barcelona drinking water network taking real demand data
into account by Wang et al. [168]. Chen et al. utilized Gaussian process
model-based control for underactuated balance robot control [41].

In this chapter, the learning-based MPC framework combining a base model
and a learning model is adopted for the engine combustion process control,
and the Gaussian process MPC is applied to the fuel-cell control task.

6.2 Compression-ignition engine control

6.2.1 Introduction

Learning models and learning control methods are interesting ideas for
combustion engine applications which is a highly nonlinear and complicated
system. Various works have been done in this area for decades, and this field
has become more active recently with encouragement from successes in the
machine learning field and hardware developments.

Malikopoulos et al. took the reinforcement learning approach to learn the
optimal engine calibration perceiving the driver’s driving style in real-time
while running a vehicle for fuel economy [115]. Stochastic gradient based
extreme learning machines was adopted for stable online learning of a
homogeneous charge compression ignition (HCCI) engine by Janakiraman
et al. [83]. Liu et al. applied random forest models on the prediction of
combustion feedback information for a natural gas spark ignition engine
[106]. Badra et al. proposed machine learning grid gradient ascent methods
for heavy-duty gasoline compression ignition engine modeling and validated
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with engine computational fluid dynamics simulations [26]. In-cylinder flow
fields were analyzed with a multilayer perceptron and boosted decision trees
to predict a direct injection spark-ignition gasoline engine performance by
Hanuschkin et al. [70].

Lenz and Schroeder made use of neural networks for multidimensional
nonlinearities identification in closed-loop control of air-to-fuel ratio on a
spark-ignition Engine [99]. Recurrent neural network was used by Müller
and Schneider for the approximation and control of the engine torque [126].
Javaherian et al. presented an adaptive critic design, one model-free action-
dependent heuristic dynamic programming method, for engine torque and
air-fuel ratio control [84]. A similar approach was adopted by Shih et al. for
engine emission control [153] and by Xue et al. for engine idle speed control
[174].

The combination of learning models and MPC is also an active research area.
Egan et al. gave usage of the neural network along with physical models in
nonlinear model predictive engine control for the spark-ignition engine [49].
Both Moriyasu et al. and Hu et al. adopted the neural network in the MPC
design for engine air path system control task [80], [124]. Bergmann et al.
showed the nonlinear MPC with Gaussian process regression for heavy-duty
turbocharged diesel engine control [32].

However, the lack of extrapolation ability limits the pure data-based black-
box model usage in safety-critical control applications and requires careful
calibrations and regulations. To resolve this problem, Aswani et al.
proposed a learning-based model predictive control (LBMPC) method. In
this framework, two models, the physical-based base model and the data-
based learning model, are used. It makes use of the base model for
constraints handling to ensure safety, and the learning model for prediction
to get better performance. Aswani et al. showed that LBMPC can utilize
statistical learning to identify richer models of the system in order to improve
performance while providing deterministic guarantees on robustness [23].

LBMPC has been widely applied for control challenges with dynamic
environments. Aswani et al. adopted the LBMPC to reduce the transient
and steady-state electricity consumption in a heating, ventilation, and air
conditioning system [24]. Ostafew et al. applied learning-based nonlinear
MPC to improve vision-based robot path-tracking in challenging outdoor
environments [131]. Rosolia et al. applied LBMPC to autonomous racing,
exploiting information from the previous racing laps to improve the control
performance [143].
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In this chapter, a learning-based MPC is proposed for combustion timing
control. Since it was the first application of LBMPC on engine control, a
relatively simple control scenario with only diesel fuel was chosen instead of
multiple fuel transitions. The control target was only the combustion timing
CA50 instead of the CA50 and ignition delay.

6.2.2 System modeling

Learning-based MPC requires two different model parts: the base model
and the learning model. The base model is a constant model, usually with
clear physical meaning, and used to handle state and input constraints. The
learning model is learned and updated online from sensor data by statistical
learning and can be used to capture system variations, unmodeled dynamics,
and noises. The model definitions here are in the context of one cylinder.

Base model

The process from the injection spray to the end of combustion is intertwined
and complicated, including liquid atomization, break-up, mixing, low
temperature reaction and high temperature reaction [78]. It was influenced by
the fuel-gas mixing and inlet charge conditions. Normally a nonlinear physical
ignition-delay model and an empirical combustion model were used to capture
this process, but it required time and experiments to calibrate the coefficients
in those models for different operating points. This time-consuming process
was taken over by the learning model in LBMPC. A constant base model
was firstly used to describe the combustion process. The injection strategy
was triple injections with two pilot injections and one main injection. It can
reduce the pressure-rise rate and give a better fuel economy in comparison to
a double injection strategy. The base model:

θCA50 = θSOI + θD (6.1)

where θCA50 is the crank angle relative to top dead center (TDC) for 50% heat
released, the combustion timing; θSOI is the crank angle of the main injection
timing; θD is the crank angle dwell between them; θD includes the ignition
delay and half of the combustion duration and was influenced by load, inlet
condition, and so forth. For the base model, θD was set to a constant.
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Learning model

To capture the trend of θD, linear model for θD was proposed:

θD = wTµ (6.2)

where µ are variables chosen to model the θD behavior; w are the
corresponding coefficients, wT meaning the transpose of w. Here the µ is:

µ =




dinj

pIVC

O2 IVC


 (6.3)

where dinj is the sum of three injection durations; pIVC and O2 IVC are inlet
pressure and inlet oxygen concentration at intake valve closing respectively.
When the engine is running, the controller updates parameters w using
stochastic gradient descent (SGD):

wk+1 = wk + α(θkD − (wk)Tµk)µk (6.4)

where θkD and µk are the measurements of θD and µ at cycle k; wk+1 and
wk are coefficients at cycle k + 1 and k; α is the learning rate. For different
operating intervals, different sets of w were adopted and updated separately.

6.2.3 Learning-based MPC design

State-space model

A linearized, discrete-time, state-space model of the plant:

xk+1
B = AxkB +Buk

yk = CxkB

(6.5)

where k indicates the time step; xB are the system states; u are system
inputs; y are the system outputs; A, B, and C are constant state-space
model parameters. Assuming θD is constant, and take differential of Eq. (6.1)
respect to engine cycles, yielding the difference equation:

dθCA50 = dθSOI (6.6)

where the dθSOI is set to the plant input, constituting u in the state-space
model, and dθCA50 constitutes xB. The MPC using only the base model will
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be used as a baseline controller for comparison, which will be referred to as
MPC in the following part of this section. LBMPC adds learning terms to
base state-space model:

xk+1
L = (A+ F )xkL + (B +H)uk (6.7)

where xL are states of the learning-based state-space model. The added
parameters F , H are learned and updated online while the controller is
running. The θD can be modeled by the learning model of Eq. (6.2) online.
Taking differential of Eq. (6.1) in consideration of learning model, yields:

dθCA50 = dθSOI + dθD (6.8)

Integrating the learned dθD into F gives the learning-based state-space model.

Adopt the following learning-based state-space model:

xk+1
L = (A+ F )xkL + (B +H)uk

yk = CxkL
(6.9)

where

u =




dθSOI 1
dθSOI 2
dθSOI 3
dθSOI 4
dθSOI 5
dθSOI 6


 ,x0

B = x0
L =




θSOI 1
θSOI 2
θSOI 3
θSOI 4
θSOI 5
θSOI 6

1


 ,y =




θCA50 1
θCA50 2
θCA50 3
θCA50 4
θCA50 5
θCA50 6


 (6.10)

The variable θSOI i refers to the main injection timing in cylinder i; θCA50 i is
the combustion timing of cylinder i. x0

B and x0
L are the initial states of the

state-space models.

A7×7 =




1 0
. . .

...

1

0 · · · 0



, B7×6 =




1
. . .

1

0 · · · 0




F 7×6 = β ·




0 ··· 0 dθD1

...
...

dθD2
dθD3
dθD4
dθD5
dθD6

0 ··· 0 0


 , C6×7 =




1 0
. . .

...

1 0




(6.11)

where subscript of matrices indicates the matrix dimension. θD i is the i-th
cylinder θD, calculated by Eq. (6.2); H is a 7×6 zero matrix; β adjusts the
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strength of the learning process; β = 0 means that the learning model takes
no effect in LBMPC. By setting β to 0 or not, one can switch between the
base state-space model and the learning-based state-space model.

LBMPC design

At each time step, a quadratic programming (QP) problem will be solved to
obtain optimal control inputs:

min
u0,u1,...,uHu−1

J(uk) =

Hp∑

k=1

∥∥∥yk − r
∥∥∥

2

Q
+

Hu−1∑

k=0

∥∥∥uk
∥∥∥

2

R
(6.12)

subject to:

xk+1
B = AxkB +Buk

xk+1
L = (A+ F )xkL + (B +H)uk

yk = Cxk

ulb ≤ uk ≤ uub

xlb ≤ xkB ≤ xub

x0
L = x0

B = xinit

k = 0, 1, . . . ,Hp

(6.13)

where r are the references; Q, R are weight-tuning-parameters for reference
tracking and control inputs; xinit are the initial states at present time step;
ulb, uub, xlb, and xub are the lower bounds and upper bounds of inputs u
and states xB; Hp and Hu are the predictive horizon and control horizon; k
in the superscript represents the time step, and k = 0 refers to the current
time step.

It should be noticed that the base model was used to satisfy constraints, while
the learned model was utilized for prediction to get better performance. This
is the main insight of LBMPC, where safety and performance are decoupled
in an optimization framework by maintaining two models of the system. The
LBMPC probabilistically converges to an MPC computed using true system
dynamics if the system is sufficiently excited [23].

95



6.2.4 Experimental results

The experimental set-up is detailed in Chapter 4. In this experiment, only
diesel fuel was used.

To evaluate the learning-based MPC controller performance, tests were
carried out in the following scenarios: MPC and LBMPC comparison in load
transient, load and θCA50 reference transient, LBMPC in load, θCA50 and
speed transient. A triple injection strategy with two pilot injections and one
main injection was applied in those tests. The two pilot injections timing and
duration were set constant in experiments. For each running, all coefficients
w were set to 0 in the beginning. Then MPC with the base model ran for
one sequence. During this process, coefficients w were updated continuously.
The coefficients w can converge within 50 cycles for one operating interval,
as shown in Fig. 6.1. After running one sequence with MPC, LBMPC was
applied.

In load transient, the engine speed was 1200 rpm, and load transient is
generated by changing main injection duration, varied from 0.6 ms to 0.9
ms. The result is shown in Fig. 6.2. As load increases or decreases, the
combustion timing will retard or advance respectively without system inputs,
causing an impact on combustion timing. The controller will advance or retard
the injection timing to keep combustion timing constant. As compared to the
MPC controller, LBMPC can respond more agile, keeping the impact lower
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Figure 6.1: Coefficient update.
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Figure 6.2: Controller performance in load transient.

Figure 6.3: Controller performance in load and θCA50 reference transient.

and achieving reference tracking faster.

In load and θCA50 reference transient, combustion timing reference varied
from 4 CAD ATDC to 7 CAD ATDC, and the main injection duration varied
from 0.6 ms to 0.9 ms. The engine speed was kept constant at 1200 rpm. The
result is shown in Fig. 6.3. Both MPC and LBMPC can track the reference
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Figure 6.4: Controller performance in load, θCA50 reference and speed transient.

signal quickly, within 2 cycles. But LBMPC can better handle the transient
situations by using the learned transient information. This resulted in a
significant reduction in overshoot and gave a faster response. Meanwhile,
LBMPC had lower variances in steady-state conditions.

In Fig. 6.4, the engine speed varied from 1100 rpm to 1400 rpm, and load
and θCA50 reference settings were the same as the previous scenario. LBMPC
controller can track the reference combustion timing signal well in this case.

6.2.5 Discussion

The proposed LBMPC method utilized a base model and a learning
model to decouple the safety and performance requirements. The LBMPC
was successfully applied to the engine combustion phasing control. The
performance was validated on a heavy-duty engine running with diesel. It
showed superior performance over MPC in terms of faster response and
lower overshoot. The separation of safety and performance by two models
gave a flexible framework, where many different learning models could be
incorporated as needed [23]. There were also other learning-based approaches
for engine control as shown in [32], [80], [170], but it was the first application
of the adopted LBMPC framework in the engine control field. Previous work
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on the same experimental engine applied MPC to the combustion control
problem [81], [179], while this method added a new learning model which
can improve the performance online. The novel structure of LBMPC also
provided possibilities of application on more complicated cases such as the
fuel transition scenario in a flex-fuel engine.

The limitation of this work is the validation scenario was relatively simple
and didn’t show its behavior in a fuel transition situation. Though simpler
methods can be found in this specific scenario, this application showed the
potential of the LBMPC method.

6.2.6 Conclusion

This chapter introduced a learning-based model predictive control method
applied to multi-cylinder engine combustion timing control. The base
model and learning model were introduced to satisfy constraints and
improve performance accordingly. A quadratic programming problem with
constraints was formed to control the combustion timing. MPC and LBMPC
were detailed, and their performances are compared. The experimental
results confirmed that LBMPC responded faster and had a lower overshoot
comparing with MPC.
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6.3 Fuel cell control

6.3.1 Introduction

The learning methods and learning control methods are also attractive to
fuel cell applications due to its nonlinearity and complexity. Mehrpooya
et al. trained a two-hidden-layer neural network to predict fuel cell steady-
state performance with experimentally collected data with different inlet
humidity, temperature, and oxygen and hydrogen flow rates [120]. Han
and Chung adopted both neural network and SVM to describe the fuel
cell polarization curve and compared their performances [68]. Bicer et al.
utilized neural network for fuel cell dynamics prediction trained on data
collected from MATLAB simulation [34]. A nonparametric Gaussian process
regression model was used by He and Ma to capture the nonlinear relationship
between operating conditions and output voltage in the microbial fuel cell.
A simple online learning strategy was also proposed to recursively update
the model hyper-parameters [73]. Zhu and Chen applied Gaussian process
state-space models to analyze the degradation of fuel cells, and incorporated
prediction confidence interval to improve the inference accuracy [188]. Zhang
et al. constructed Gaussian process regression model to predict the methane
conversion rate in a solid oxide fuel cell [184].

There are also some research efforts focusing on learning control methods
for fuel cell applications. El-Sharkh et al. applied neural networks based
active and reactive power controller to a stand-alone PEFC output power
management problem [149]. Gheisarnejad et al. adopted a deep deterministic
policy gradient method to adjust the coefficients of baseline PI controller
adaptively by online learning for oxygen excess ratio regulation of PEFC [60].
This work used model-free features of reinforcement learning. Zhou et al.
devised a predictive energy management policy for fuel-cell/battery-based
PHEVs with MPC control framework, where speed prediction is enhanced by
online learning Markov predictor [187].

The problem here is to control the fuel cell voltage under safety constraints
and workload disturbance. Different from Sec. 5.3, the detailed system model
is unknown to the controller and only collected system data is available.
Gaussian processes are used to build a system model from collected data. An
MPC controller based on the linearized Gaussian process model is proposed
to fulfill the control task.
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6.3.2 System modeling

The procedures and specifications of building Gaussian processes are detailed
in Sec. 2.4.2. Two Gaussian processes fV and fP were obtained to describe
the fuel cell dynamics:

V k+1
FC = fV (uk, V k

FC)

P k+1
H2

= fP (uk, P kH2
)

(6.14)

where
uk = [QkH2

Qkair I
k]T (6.15)

the k in superscript represents the time step; VFC is the fuel cell voltage, the
control target; PH2 is the hydrogen pressure which needs to be kept below a
certain limit to ensure safety; the variable u is the model inputs; QH2 and Qair

are the hydrogen volumetric flow rate and air volumetric flow rate, the inputs
to the system; I is the current, the workload which treated as a disturbance.

6.3.3 Gaussian process MPC design

State-space model

The state-space model for MPC was obtained by linearizing the Gaussian
process models. The Gaussian process fV shown in Eq. (6.14) then becomes:

dVFC =

[
∂fV
∂QH2

∂fV
∂Qair

∂fV
∂I

]



dQH2

dQair

dI


 (6.16)

where the partial derivative is applied to the latest system states, which will
update each time step. The partial derivative of the GP with Gaussian kernel
can be solved explicitly, but the forward mode automatic differentiation (AD)
method [28] was used here for simplicity and flexibility. The same expression
is true for the Gaussian process fP .

The discrete-time state-space model of the fuel cell used for control is written
as:

xk+1 = Axk +Buk

yk = Cxk
(6.17)
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where the state vector xk at sample index k is:

xk =




V k
FC

P kH2

dIk

QkH2

Qkair




(6.18)

with input:

uk =

[
dQkH2

dQkair

]
(6.19)

and output:

yk =
[
V k

FC

]
(6.20)

and state-space matrices:

A =




1 0 ∂fV
∂I 0 0

0 1 ∂fP
∂I 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1




B =




∂fV
∂QH2

∂fV
∂Qair

∂fP
∂QH2

∂fP
∂Qair

0 0

1 0

0 1




C =
[
1 0 0 0 0

]

(6.21)

The actuator increments were selected as the system inputs. Consequently,
QkH2

and Qkair were added into the state vector to help impose appropriate
constraints.

102



MPC design

A Quadratic Programming (QP) problem will be solved at each time step to
obtain the optimal control inputs in this MPC problem formulation:

min
u0,u1,...,uHu−1

J(uk) =

Hp∑

k=1

∥∥∥yk − r
∥∥∥

2

Q
+

Hu−1∑

k=0

∥∥∥uk
∥∥∥

2

R
+ ρ

Hp∑

k=1

∥∥∥εk
∥∥∥

2
(6.22)

subject to:

xk+1 = Adxk +Bduk

yk = Cdxk

ulb ≤ uk ≤ uub

dulb ≤ uk − uk−1 ≤ duub

xlb ≤ xk ≤ xub + εk

0 ≤ εk

P kH2
≤ P limH2

+ εk

P kH2
≤ P limH2

+ εk − ασp∆PH2

u−1 = uinit

x0 = xinit

k = 0, 1, . . . ,Hp

(6.23)

where Hp and Hu are prediction and control horizon; k in the superscript
represents the time step, and k = 0 refers to the current time step; r is
the control reference; Q and R are weight tuning parameters for reference
tracking and control inputs; Ad, Bd, and Cd are state-space matrices A,
B and C in discrete-time; ulb, uub, xlb, and xub are the lower bounds and
upper bounds of inputs u and states x; dulb and duub are the lower bounds
and upper bounds of inputs change rate; uinit is latest applied control inputs
and xinit is the latest measured value, the state feedback; P limH2

is the upper
bound of PH2 ; ε is the slack variable introduced to soft constraints and ρ is
a nonnegative scalar to control the magnitude of penalizing soft constraint
violations.

The additional inequality for PH2 as a compensation for model errors is:

P kH2
≤ P limH2

+ εk − ασp∆PH2 (6.24)

where σp is the prediction variance when making inference with Gaussian
process fP on the data point in the current time step; ∆PH2 is the possible
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PH2 move with respect to the possible calculated inputs:

∆PH2 =
k−1∑

i=0

(dQiH2

∂fP
∂QH2

+ dQiair

∂fP
∂Qair

) (6.25)

α is a tuning parameter. This ασp∆PH2 term can be understood from an
intuitive point of view. Typically, a bigger possible move will lead to a bigger
uncertainty. Thus, a redundancy proportional to the possible movement size
and prediction uncertainty in the constraint is desirable to compensate for the
model imperfections. Since the PH2 limit is from above, the added constraint
in Eq. (6.24) is only meaningful when the possible move is positive.

To be precise, this constraint on P kH2
is simplified from the stochastic MPC

constraint formation. In stochastic MPC, a probabilistic constraint is

p(xk ≤ xub) ≥ η (6.26)

where η denotes the confidence level. When η is 0.95, it is:

xk ≤ xub − 2Σk (6.27)

where Σk is the covariance matrix of xk. Here xk actually represents its mean
value. The Σk is estimated from the uncertainty propagation. The specific
form for PH2 of Eq. (6.27) is:

P kH2
≤ P limH2

− 2σkp (6.28)

For every step in the prediction horizon, the P kH2
variance is propagated along

with the uncertainty in B matrix.

The linearized form:

P k+1
H2

= P kH2
+ dQkH2

∂fP
∂QH2

+ dQkair

∂fP
∂Qair

(6.29)

The variance estimate update is:

(σk+1
p )2 = (σkp)2 + (dQkH2

)2var(
∂fP
∂QH2

) + (dQkair)
2var(

∂fP
∂Qair

) (6.30)

The variance of the partial derivative taken at the initial step is approximated
by:

var(
∂fP
∂QH2

) = var(
fP (QH2 + δQH2)− fP (QH2)

δQH2

)

=
2

(δQH2)2
(σp)

2

= α1E2{ ∂fP
∂QH2

}(σp)2

(6.31)
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where 2/(δQH2)2 is assumed to be proportional to E2{∂fP /∂QH2} value with
a constant value α1. The E{∂fP /∂QH2} is actually the ∂fP /∂QH2 value
calculated at the initial time step. Thus, at each time step in the prediction
horizon, the variance increases with a magnitude of:

α1(σp)
2(dQkH2

)2E2{ ∂fP
∂QH2

}+ α2(σp)
2(dQkair)

2E2{ ∂fP
∂Qair

} (6.32)

Summing over the steps until time step k, and viewing all constant coefficient
as the same, gives the total standard error of time step k:

σkp = ασp

k−1∑

i=0

√
(dQkH2

)2E2{ ∂fP
∂QH2

}+ (dQkair)
2E2{ ∂fP

∂Qair
} (6.33)

All constants are written together as α. But this form is too conservative for
constraint handling and requires high computational effort. The root part is
approximated as:

dQkH2
E{ ∂fP
∂QH2

}+ dQkairE{
∂fP
∂Qair

} (6.34)

Then the Eq. (6.33) becomes

σkp = ασp∆PH2 (6.35)

where ∆PH2 is shown in the Eq. (6.25). This also gives an intuitive
interpretation of the constraint redundancy. Meanwhile, the constant 2 and α
are integrated to the coefficient α in the constraints described by Eq. (6.23).
This does not necessarily give a 95% confidence level, and α should be tuned
according to the performance and safety requirements.

The constraint settings are the same as the settings in Sec. 5.3. The hydrogen
pressure in the pipe should be under 2.5 atm to ensure safety. Only slack
variable of states upper bounds was added. The input QH2 was limited
between 100 and 400 lpm and Qair was limited within 300 to 700 lpm. The
change rate of the inputs was constrained within -40 to 20 lpm.

The time step for the MPC controller was 0.5 s. The QP problem was solved
at each step, then the solved QH2 + dQH2 and Qair + dQair were applied to
the fuel cell.
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6.3.4 Experimental set-up

The experiment was conducted on the Simulink model detailed in Sec. 2.4.1.
This model is viewed as the true system dynamics. Gaussian measurement
noises were added to voltage VFC and hydrogen pressure PH2 .

The illustration of the GP MPC control process is:

GP MPC Fuel cell

QH2

Qair

+
+Voltage reference

PH2

VFC

+
+

Current

-1

-1

Figure 6.5: GP MPC control process

As compared to the MPC controller shown in Fig. 5.10, the GP MPC only
needs the system information of VFC and PH2 , whereas MPC requires other
information such as oxygen and nitrogen pressure. This is a desirable aspect
in practice.

6.3.5 Experimental results

In the experiments, two test scenarios were chosen, one was the typical step
disturbance applied on the working load, the current; the other was a mixture
of slope and step working load changes. The performance of GP MPC and
MPC with physical models explained in Sec. 5.3 were compared first, then
the performance of GP MPC and neural network MPC were compared.

Gaussian process MPC vs MPC

Figure 6.6 shows the GP MPC voltage tracking performance compared
with MPC under step workload disturbance, and Fig. 6.7 presents the
corresponding PH2 behavior and system inputs. At the beginning of the
experiment, the MPC and GP MPC had similar rise-up traces, which were
limited by the input change rate constraint. The MPC had a lower overshoot
than GP MPC benefiting from the accurate system model. The overshoot
for GP MPC was 0.60 V and for MPC was 0.42 V. Both controllers can
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successfully satisfy the PH2 safety requirements. When the current increased
suddenly, the MPC and GP MPC drove the voltage back to the reference at a
similar pace, but MPC responded faster. To arrive at 47.9 V again, MPC took
5.2 s and GP MPC took 6.5 s. It can be clearly seen that the inputs increased
following a straight line, indicating the activation of the change rate limits.
However, similar to the start of the system, the GP MPC calculated QH2

increment was rather conservative in comparison with MPC. This is because
the added constraint in Eq. (6.24) enforced the controller to take a more
cautious action when increasing QH2 which directly increased the PH2 . In
contrast, Qair was adjusted aggressively. When the current suddenly dropped
at time 75 s, the MPC and GP MPC had a similar performance in pulling back
the voltage. The steady-state tracking behaviors of the two controllers were
comparable and the safety constraint was satisfied throughout the process.

Figure 6.6: Output voltage under the current disturbance.

Figures 6.8 and 6.9 exhibit the GP MPC and MPC behavior under slope and
step current changes. The behavior was similar to the step change scenario,
and GP MPC and MPC had equivalent performance most of the time. The
PH2 constraint was satisfied in all cases.
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Figure 6.7: Constraint handling and system inputs.

Figure 6.8: Output voltage under the current disturbance.

Gaussian process MPC vs neural network MPC

The neural network MPC was built with a similar procedure to GP MPC.
The neural network was trained with the collected data to predict the output
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Figure 6.9: Constraint handling and system inputs.

voltage and hydrogen pressure behavior. The difference was that only one
neural network was used instead of two Gaussian processes, so it directly
worked as the function f in Eq. (2.74). Besides, there were 2000 training
points for neural network training instead of 1000 points for the Gaussian
process. The network structure was (5, 16, 32, 8, 2), which means that the
NN input layer had five nodes and the output layer has two nodes, and NN
had three hidden layers with 16, 32, and 8 nodes respectively. After getting
the neural network, it was linearized using automatic differentiation to get the
state-space model for NN MPC. Since the NN here can not give the prediction
variance, the additional inequality of Eq. (6.24) was removed.

The performance of the NN MPC and GP MPC under step disturbance is
shown in Fig. 6.10, and Fig. 6.11 gives the corresponding hydrogen pressure
PH2 behavior and system inputs. It can be seen that GP MPC drove the
voltage back to the reference faster than NN MPC after system start-up,
around 10-30 s. The overshoot for NN MPC and GP MPC were close. In
terms of the voltage without noise, the overshoot for NN MPC was 0.57 V and
for GP MPC it was 0.60 V. After a sudden current increase at 40 s, GP MPC
responded slower than NN MPC. To arrive at 47.9 V again, GP MPC took 6.5
s and NN MPC took 5.5 s. The slower response was due to the conservative
increment of hydrogen flow rate QH2 as the result of the additional inequality
of Eq. (6.24), although it contributed to the constraint satisfaction of GP
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MPC. In contrast, the NN MPC violated the hydrogen pressure constraint
with a small peak. When the current suddenly dropped at time 75 s, the NN
MPC and GP MPC had a similar performance in pulling back the voltage.
The steady-state tracking behaviors of the two controllers were comparable
and the safety constraint was satisfied throughout the remaining process.

Figure 6.10: Output voltage under the current disturbance.

Figures 6.12 and 6.13 exhibit the GP MPC and NN MPC behavior under a
mixture of slope and step current changes. The behavior was similar to the
step change scenario. The overshoots after the system start-up were close for
the NN MPC and GP MPC. The NN MPC violated the hydrogen pressure
constraint with a small peak in this step current increase scenario at 140 s,
whereas the GP MPC satisfied the constraint well by taking a conservative
hydrogen flow rate QH2 increment. In the period around 65 - 85 s, the NN
MPC kept the hydrogen pressure under the 2.5 atm limit with the effort
of adjusting the input hydrogen flow rate, while the GP MPC had better
handling by applying a lower hydrogen flow rate and higher air flow rate in
advance.

6.3.6 Discussion

In this section, a novel GP MPC was proposed for the fuel cell control task. Its
performance was validated on the Simulink model. Although the Gaussian
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Figure 6.11: Constraint handling and system inputs.

Figure 6.12: Output voltage under the current disturbance.

process had been used to build fuel cell related models [73], [173], it was
the first time application of GP MPC on fuel cell control to the author’s
knowledge. This work extends the knowledge body of the learning control
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Figure 6.13: Constraint handling and system inputs.

method application on fuel cell control practice.

Even though the MPC based on the physical model had a better performance
in terms of the overshoot during system start-up, the GP MPC required less
system information, which needed fewer sensors and was more economical.
The modeling process of GP MPC relied on collected data, whereas physics-
based MPC required a deeper understanding of the system inner principles.
The GP MPC considered the safety requirements regarding pressure and
actuators as well, which was missed in [62], [133]. Though based on
nonlinear GP models, the MPC framework took linearized models and
reduced the computational burden, whereas the nonlinear MPC in [190]
made it difficult to implement and solve. To compensate for the model
imperfection, one constraint taking prediction variance and possible moves
into account was added. This gave a satisfactory constraint handling result
under model error and linearization error. Other learning-based predictive
control approaches shown in [134], [154] used the neural network as the
learning model. As compared to the neural network, the Gaussian process
had better interpretability and the prediction variance was available, which
contributed to the constraints handling in MPC settings. Stochastic MPC was
commonly adopted for new energy vehicle energy management [101], [138],
[151], and this work referred to the constraint handling method of stochastic
MPC.
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The Gaussian process is a data-based method that requires sufficient system
data. Meanwhile, in this work, each independent GP was built for each
variable to be predicted. This was acceptable when the system data was
cheap to obtain and limited states were needed. For plants where the data
were expensive and more variable predictions were needed, this framework
was limited and unsuitable. Another limitation is that the method was only
validated in the Simulink model. Validation on real fuel cell stacks is much
more desirable.

6.3.7 Conclusion

In this section, a Gaussian process MPC was developed to control the fuel
cell voltage. Two Gaussian processes were used to predict the voltage and
hydrogen pressure, and the state-space models were formed based on the
linearized Gaussian process. A special inequality utilizing GP prediction
variance was added to compensate for the model imperfections in satisfying
constraints. The experiment results showed that the GP MPC method had a
comparative performance of MPC controller with the knowledge of underlying
system dynamics. The constraint handling of GP MPC gave a conservative
action, but the safety requirements were satisfied well.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

Conclusion

The flex-fuel CI engine is a promising concept in terms of alternative fuels,
various combustion modes, and fuel choices during the transition from fossil
fuel to renewable energy sources. Meanwhile, in the long run, the fuel
cell together with hydrogen energy which has low or zero carbon emission
and environmental impact shows great potential. The modeling and control
methods of flex-fuel CI engine and fuel cell are investigated in this thesis.

The modeling parts included the flex-fuel engine combustion process and
intake system, and the system scale fuel cell model. The flex-fuel engine is
highly sensitive to inlet conditions. The gas system models were established
to describe the relationship between actuators EGR, VGT, hot and cool
valves to inlet conditions including intake temperature, pressure, and oxygen
concentration. Ignition delay was a key indicator of the combustion process
and fuel properties of flex-fuel CI engines. The physical model and data-based
modeling approach of ignition delay were studied. The results showed that
the physical model had a better extrapolation ability which was desirable in
control applications and data-based models had higher prediction accuracy
but needed more computational power and careful regulation. A fuel-cell
physical model was built to illuminate the electrochemical behavior which
focused on the macro performances of the fuel-cell system. Gaussian process
models to predict the fuel cell voltage and hydrogen pressure were established
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with collected simulated data.

Model predictive control approaches based on physical models were applied
to the flex-fuel CI engine and the fuel cell.

An adaptive MPC method was proposed to control the combustion process of
the flex-fuel CI engine. The control targets were the combustion phasing
and ignition delay, and the actuators were the EGR, VGT valves, and
main injection timings. MPC was used for multi-input multi-output control
problems and the adaptivity was done by estimating the physical ignition
delay model parameters with real-time data online by Kalman filter. The
proposed adaptive MPC approach showed the successful application in the fuel
transition scenario with diesel, gasoline/n-heptane mixture, and ethanol/n-
heptane mixture. The possible ignition delay range calculated from the
physical model could work as an indicator of the engine fuel properties.

An MPC with control constraints was developed to keep the fuel cell voltage
at a reference value under current disturbance while satisfying the hydrogen
pressure safety requirements. The inputs were the hydrogen volumetric
flow rate and air volumetric flow rate. The state-space model was built
by the simplification and linearization of the detailed system scale model.
The proposed MPC controller fulfilled the control task successfully and its
performance was compared with that of a PI controller.

Learning-based MPC integrated the learning models trained from system data
to the state-space model to improve the controller performance.

One learning-based MPC method that decoupled the robustness and
performance in an optimization framework was proposed and applied to the
control of combustion phasing when running with diesel. This approach
maintained two models of the system, the base model and the learning model.
The learning model was a linear model used to capture the influence on
combustion duration. The comparison of LBMPC and MPC showed the
improvement of performance by LBMPC.

A Gaussian process MPC was developed for the fuel cell voltage control
task with current disturbance and hydrogen pressure limit. Two Gaussian
processes trained with fuel-cell data collected from the simulation to predict
voltage and hydrogen pressure were utilized in the state-space model. The
Gaussian process MPC showed comparable performance with MPC based on
the detailed system physical model. A benefit of GP MPC over MPC was
that the GP MPC required less system information during operation, while
MPC demanded more measurements.
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Future work

Flex-fuel CI engine

Future work includes implementing the gas system controller based on the gas
system models in Sec. 2.3.2 and using the gas system controller as a subsystem
of the whole combustion process controller instead of using one stationary
point MAP for better decoupling. For the learning-based MPC application
on the engine, only diesel was used. This scenario is not as interesting as the
fuel transition scenario. Learning-based MPC utilizing data-based models
proposed in Sec. 2.3.3 for flex-fuel CI engine control in a broad fuel choice
scenario is valuable work. This thesis didn’t consider emissions. Further work
should investigate the emission characteristics and set constraints on pollution
levels regarding the strict emission demands.

Fuel cell

This thesis only investigated one specific control task of PEFC and did not
consider other subsystems in the fuel cell. Apart from the desired constant
voltage, the fuel cell control should also consider the efficient operation
interval, which is a desired aspect in practice. Along with the reaction
subsystem explored in this work, the thermal, water management, and power
electronics subsystems also arose control tasks like temperature and moisture
level maintenance that is important to ensure a stable and efficient fuel-cell
operation. Possible future work could include efficiency considerations and
focus on the overall system management. The controllers were only validated
in simulation. Experiments with fuel-cell equipment are much appreciated.

Model predictive control

The MPC methods used in this work are based on linearized models, both for
physical-based models and data-based models. With the fast development
of computing power, the direct use of nonlinear models within the MPC
framework may be possible in the near future. The complexity of the control
system also puts higher demands on the system hardware and software
implementation. By the optimization of software architecture, the system
could support more time-consuming computations like nonlinear optimization
and support a wider operating range with higher engine RPM. In the
experiment settings of both the flex-fuel engine and the fuel cell, many sensors
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are assumed to be available in the controller design. It is convenient in a
laboratory environment but is not common in practice. The design of related
observers is an interesting supplementary approach.
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Paper I

Learning Based Model Predictive Control of Combustion Timing
in Multi-Cylinder Partially Premixed Combustion Engine

Xiufei Li, Lianhao Yin, Per Tunest̊al, Rolf Johansson

SAE Technical Paper 2019-24-0016, 2019

This paper applied learning-based model predictive control (LBMPC) to
combustion phasing control. Learning-based model predictive control
decouples the robustness and performance in an optimization framework by
maintaining two models of the system, the base model and the learning
model. The learning model is a linear model used to capture the influence
on combustion duration. The comparison of LBMPC and MPC shows the
improvement of performance by LBMPC.

I designed the controller, performed the experiments, processed the data, and
wrote the paper with the support from my supervisors. Lianhao Yin assisted
with the idea and experiment design.
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Paper II

Adaptive Model Predictive Control of Combustion in Flex-Fuel
Heavy Duty Compression-Ignition Engine

Xiufei Li, Per Tunest̊al, Rolf Johansson

21st IFAC World Congress (virtual), July, 2020

This paper proposed an adaptive model predictive control approach to control
the combustion process of the flex-fuel CI engine. The control targets are the
combustion phasing and ignition delay, and the actuators are the EGR, VGT
valves, and main injection timings. MPC is used for the multi-input multi-
output control problem with constraints and adaptivity is done by estimating
the physical ignition delay model parameters with real-time data online by
Kalman filter. The adaptive MPC approach shows the successful application
in the fuel transition scenario with diesel, gasoline/n-heptane mixture, and
ethanol/n-heptane mixture. The possible ignition delay range calculated from
the physical model can work as an indicator of the engine fuel properties.

I designed the controller, performed the experiments, processed the data, and
wrote the paper with the support from my supervisors.

Paper III

A Multi-Input and Single-Output Voltage Control for a Polymer
Electrolyte Fuel Cell System using Model Predictive Control
Method

Xiufei Li, Yuanxin Qi, Shian Li, Per Tunest̊al, Martin Andersson

International Journal of Energy Research, 2021

This paper developed a polymer electrolyte fuel cell (PEFC) system model
and studied its performances under different operating conditions. Then
two different controllers, a proportional-integral (PI) controller, and a model
predictive control (MPC) controller are proposed and applied in the PEFC
system to control its output voltage at the desired value by regulating the
hydrogen and air flow rates at the same time. Simulation results demonstrate
that the developed PEFC system model is qualified to capture the system’s
behavior. And both the developed PI and MPC controllers are effective
at controlling the PEFC system’s output voltage, while the MPC controller
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presents superior performance with faster response and smaller overshoot.

I designed the controller and performed the experiments with the support from
my supervisors. Yuanxin Qi built the fuel cell system model and wrote the
introduction, model, discussion, and conclusion parts under the supervision
of Martin Andersson.

Paper IV

Voltage Control for a Polymer Electrolyte Fuel Cell System by
Gaussian Process Model Predictive Control

Xiufei Li, Yuanxin Qi, Martin Andersson, Rolf Johansson, Per Tunest̊al

Submitted to International Journal of Hydrogen Energy, 2022

This paper proposed a Gaussian process model predictive control approach
to stabilize the polymer electrolyte fuel cell system’s output voltage by
controlling its hydrogen and air flow rates at the same time. Two Gaussian
process models are built to describe the system dynamics. The hydrogen
pressure and input change rate limits are considered. The Gaussian process
prediction variance is incorporated in the constraint handling to compensate
model errors. Simulation results show that the Gaussian process MPC can
control the voltage at the desired 48 V while satisfying the safety constraints
all the time under a workload disturbance ranging from 110-120 A. The
Gaussian process MPC eliminates the requirement of the underlying true
system model and needs less system information as compared to the MPC
based on system physical model.

I designed the controller, performed the simulations, processed the data, and
wrote the paper with the support from my supervisors.

Paper V

Neural Network Based Model Predictive Control of Voltage for a
Polymer Electrolyte Fuel Cell System with Constraints

Xiufei Li, Yuanxin Qi, Martin Andersson, Rolf Johansson, Per Tunest̊al

Submitted to eTransportation, 2022
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This paper developed a neural network (NN) based model predictive control
algorithm to control the fuel cell output voltage with safety constraints. The
developed NN MPC controller regulates the polymer electrolyte fuel cell
system’s output voltage by controlling the hydrogen and air flow rates at
the same time. The safety constraints regarding the hydrogen pressure limit
and input change rate limit are considered. The neural network model is built
to describe the system voltage and hydrogen pressure behavior. Simulation
results show that the NN MPC can control the voltage at the desired value
while satisfying the safety constraints under workload disturbance. The NN
MPC shows a comparable performance of the MPC based on the detailed
underlying system physical model.

I designed the controller, performed the simulations, processed the data, and
wrote the paper with the support from my supervisors.

148





Faculty of Engineering
Department of Energy Sciences

ISBN 978-91-8039-181-8 
ISRN LUTMDN/TMHP-22/1167-SE 

ISSN 0282-1990

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

22


	321192_1_G5_Xiufei L.pdf
	List of publications
	Acknowledgements
	Abstract
	Popular science
	Nomenclature
	Introduction
	Background
	Flex-fuel CI engine
	Fuel cell
	The control problem
	Motivations and contributions
	Thesis outline

	Modeling
	Introduction
	Data-based modeling
	Flex-fuel engine model
	In-cylinder model
	Gas system models
	Ignition delay model

	Fuel cell model
	Physical-based PEFC model
	Gaussian process model


	Control synthesis
	Control methods
	PI control
	Model predictive control

	Estimation method

	Experimental set-up
	Flex-fuel CI engine
	Engine
	Measurement system
	Fuel
	Control system

	Fuel cell

	Adaptive MPC
	Introduction
	Flex-fuel CI engine control
	Introduction
	System modeling
	Adaptive MPC design
	Experimental set-up
	Experimental results
	Discussion
	Conclusion

	Fuel cell control
	Introduction
	System modeling
	Adaptive MPC design
	Experimental set-up
	Experimental results
	Discussion
	Conclusion


	Learning-based MPC
	Introduction
	Compression-ignition engine control
	Introduction
	System modeling
	Learning-based MPC design
	Experimental results
	Discussion
	Conclusion

	Fuel cell control
	Introduction
	System modeling
	Gaussian process MPC design
	Experimental set-up
	Experimental results
	Discussion
	Conclusion


	Conclusions and future research
	Bibliography
	Summary of papers
	Tom sida
	Tom sida
	Tom sida

	Tom sida



