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CONVERGENCE ANALYSIS OF THE NONOVERLAPPING
ROBIN--ROBIN METHOD FOR NONLINEAR ELLIPTIC

EQUATIONS\ast 

EMIL ENGSTR\"OM\dagger AND ESKIL HANSEN\dagger 

Abstract. We prove convergence for the nonoverlapping Robin--Robin method applied to non-
linear elliptic equations with a p-structure, including degenerate diffusion equations governed by the
p-Laplacian. This nonoverlapping domain decomposition is commonly encountered when discretiz-
ing elliptic equations, as it enables the usage of parallel and distributed hardware. Convergence has
been derived in various linear contexts, but little has been proven for nonlinear equations. Hence,
we develop a new theory for nonlinear Steklov--Poincar\'e operators based on the p-structure and
the Lp-generalization of the Lions--Magenes spaces. This framework allows the reformulation of
the Robin--Robin method into a Peaceman--Rachford splitting on the interfaces of the subdomains,
and the convergence analysis then follows by employing elements of the abstract theory for mono-
tone operators. The analysis is performed on Lipschitz domains and without restrictive regularity
assumptions on the solutions.

Key words. Robin--Robin method, nonoverlapping domain decomposition, nonlinear elliptic
equation, convergence, Steklov--Poincar\'e operator
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1. Introduction. Approximating the solution of an elliptic partial differential
equation (PDE) typically demands large-scale computations requiring the usage of
parallel and distributed hardware. In this context, a nonoverlapping domain decom-
position method is a suitable choice, as it can be implemented in parallel with local
communication. After decomposing the equation's spatial domain into nonoverlapping
subdomains, the method consists of an iterative procedure that solves the equation
on each subdomain and thereafter communicates the results via the boundaries to the
adjacent subdomains. For a general introduction, we refer the reader to [32, 37].

There is a vast amount of methods in the literature, employing different trans-
mission conditions between the subdomains. The standard examples are based on the
alternate use of Dirichlet and Neumann boundary conditions, but a competitive alter-
native is the Robin--Robin method, where the same type of Robin boundary condition
is used for all subdomains. The Robin--Robin method was introduced in [26] together
with a convergence proof when applied to linear elliptic equations. After applying
a finite element discretization, convergence rates of the form 1  - \scrO (

\surd 
h), with h de-

noting the mesh width, have been derived in various linear contexts [21, 28, 38]; also
see [17, 18]. For generalizations and further applications of the Robin--Robin method
applied to linear PDEs, we refer the reader to [3, 7, 8, 9, 21] and references therein.

When considering nonlinear elliptic PDEs, the literature is more limited. Con-
vergence studies relating to overlapping Schwarz methods are given in [14, 25, 35,
36]. However, there are hardly any results dealing with nonoverlapping domain
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decomposition schemes. One exception is [5], where the convergence of the Dirichlet--
Neumann and Robin--Robin methods is analyzed for a family of one-dimensional el-
liptic equations. A related study is [34], where the equivalence between a class of
nonlinear elliptic equations and the corresponding transmission problems is proven
for nonoverlapping decompositions with cross points, but no numerical scheme is con-
sidered. Apart from [36], all these nonlinear studies rely on frameworks similar to the
linear case, e.g., assuming that the diffusion is uniformly positive. Hence, the aim of
this paper is to derive a genuinely nonlinear extension of the linear convergence result
given in [26] for the nonoverlapping Robin--Robin method.

We will focus on nonlinear elliptic equations of the form

(1.1)

\Biggl\{ 
 - \nabla \cdot \alpha (\nabla u) + g(u) = f in \Omega ,

u = 0 on \partial \Omega ,

where \Omega is a bounded domain in \BbbR d, d = 1, 2, . . . , with boundary \partial \Omega . The functions \alpha 
and g are assumed to have a p-structure, defined in section 2. This structure enables a
clear-cut convergence analysis for a broad family of degenerate elliptic equations; i.e.,
\alpha (\nabla u) may vanish for nonzero values of u. The latter typically prevents the existence
of a strong solution in W 2,p(\Omega ). Examples of other numerical studies concerning
nonlinear equations with a p-structure include [2, 12, 15, 16].

The archetypical examples of nonlinear elliptic equations with a p-structure are
those governed by the p-Laplacian, where \alpha (z) = | z| p - 2z. Examples include the
computation of the nonlinear resolvent

(1.2)  - \nabla \cdot (| \nabla u| p - 2\nabla u) + \lambda u = f,

arising in the context of an implicit Euler discretization of the parabolic p-Laplace
equation, and the nonlinear reaction-diffusion problem

(1.3)  - \nabla \cdot (| \nabla u| p - 2\nabla u) + \lambda | u| p - 2u = f.

For sake of simplicity, we decompose the original domain \Omega into two nonoverlap-
ping subdomains \Omega i, i = 1, 2, with boundaries denoted by \partial \Omega i and separated by the
interface \Gamma , i.e.,

\Omega = \Omega 1 \cup \Omega 2, \Omega 1 \cap \Omega 2 = \emptyset , and \Gamma = (\partial \Omega 1 \cap \partial \Omega 2) \setminus \partial \Omega .

Two examples of such decompositions are illustrated in Figure 1a and 1b, respectively.
The analysis presented here can also, in a trivial fashion, be extended to the case when
\Omega i is a union of nonadjacent subdomains, i.e., \Omega i = \cup N

\ell =1\Omega i\ell such that \Omega i\ell \cap \Omega ik = \emptyset 
for \ell \not = k. An example of this is the stripewise domain decomposition illustrated
in Figure 1c.

For a given domain decomposition, we can then restate the nonlinear elliptic
equation (1.1) as two equations on \Omega i connected via \Gamma ; i.e., we consider the nonlinear
transmission problem

(1.4)

\left\{           
 - \nabla \cdot \alpha (\nabla ui) + g(ui) = f in \Omega i,

ui = 0 on \partial \Omega i \setminus \Gamma for i = 1, 2,

u1 = u2 on \Gamma ,

\alpha (\nabla u1) \cdot \nu 1 =  - \alpha (\nabla u2) \cdot \nu 2 on \Gamma ,
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(a) (b)

(c) (d)

Fig. 1. Examples of different domain decompositions: (a) a domain decomposition with two
intersection points between \partial \Omega and \Gamma ; (b) a decomposition without intersection points between \partial \Omega 
and \Gamma ; (c) a stripewise decomposition without cross points; (d) a full decomposition with cross points.

where \nu i denotes the unit outward normal vector of \partial \Omega i. As \nu 1 =  - \nu 2 on \Gamma , the last
two equations of (1.4) are equivalent to the Robin conditions

\alpha (\nabla u1) \cdot \nu i + su1 = \alpha (\nabla u2) \cdot \nu i + su2 on \Gamma for i = 1, 2,

where s is nonzero. Alternating between the subdomains then leads to the Robin--
Robin method, which is given by finding (un1 , u

n
2 ) for n = 1, 2, . . . such that

(1.5)

\left\{                       

 - \nabla \cdot \alpha (\nabla un+1
1 ) + g(un+1

1 ) = f in \Omega 1,

un+1
1 = 0 on \partial \Omega 1 \setminus \Gamma ,

\alpha (\nabla un+1
1 ) \cdot \nu 1 + sun+1

1 = \alpha (\nabla un2 ) \cdot \nu 1 + sun2 on \Gamma ,

 - \nabla \cdot \alpha (\nabla un+1
2 ) + g(un+1

2 ) = f in \Omega 2,

un+1
2 = 0 on \partial \Omega 2 \setminus \Gamma ,

\alpha (\nabla un+1
2 ) \cdot \nu 2 + sun+1

2 = \alpha (\nabla un+1
1 ) \cdot \nu 2 + sun+1

1 on \Gamma ,

where u02 is a given initial guess and s > 0 is referred to as the method parameter.
Here, uni and uni | \Gamma approximate ui = u| \Omega i

and ui| \Gamma = u| \Gamma , respectively. Note that the
method in itself is sequential, but the computation of each uni can be implemented in
a parallel fashion if \Omega i is a union of nonadjacent subdomains.

The convergence analysis is organized as follows. For linear elliptic equations, i.e.,
equations with a 2-structure, the analysis relies on the trace operator from H1(\Omega i)

onto H1/2(\partial \Omega i) and the Lions--Magenes spaces H
1/2
00 (\Gamma ). We therefore start by intro-

ducing the generalized p-version of the trace operator, now given from W 1,p(\Omega i) onto
W 1 - 1/p,p(\partial \Omega i), and the corresponding Lions--Magenes spaces \Lambda i; see sections 3 and 4.
Results related to these spaces are, e.g., discussed in [4, 20]. There is, however, a sur-
prising lack of proofs in the literature dealing with this generalized p-setting. Hence,
we will make an effort to give precise definitions and proof references.

With the correct function spaces in place, we prove that the weak forms of the
elliptic equation and the transmission problem are equivalent in Theorem 5.2 and
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introduce the new nonlinear Steklov--Poincar\'e operators, as maps from \Lambda i to \Lambda 
\ast 
i in sec-

tion 6. The latter yields that the transmission problem can be stated as a problem on
\Gamma , and the Robin--Robin method reduces to the Peaceman--Rachford splitting. The
main challenge is then to derive the fundamental properties of the nonlinear Steklov--
Poincar\'e operators from the p-structure, which is achieved in section 7. By interpret-
ing the nonlinear Steklov--Poincar\'e operators as unbounded, monotone maps on L2(\Gamma ),
We finally prove that the Robin--Robin method is well defined onW 1,p(\Omega 1)\times W 1,p(\Omega 2)
(see Corollary 8.6) and convergent in the same space; see Theorem 8.9. The latter
relies on the abstract theory of the Peaceman--Rachford splittings [27].

The continuous convergence analysis presented here also holds in the finite-
dimensional case obtained after a suitable spatial discretization, e.g., by employing
finite elements. However, we will limit ourselves to the continuous case in this paper.
Hence, important issues including convergence rates for the finite-dimensional case
and the influence of the mesh width on the optimal choice of the method parameter
s will be explored elsewhere.

Finally, (c, ci, C, Ci) will denote generic positive constants that assume different
values at different occurrences.

2. Nonlinear elliptic equations with \bfitp -structure. Throughout the paper,
we will consider the nonlinear elliptic equation (1.1) with f \in L2(\Omega ) and \Omega being
a bounded Lipschitz domain. The equation is assumed to have a p-structure of the
following form.

Assumption 2.1. The parameters (p, r) and the functions \alpha : \BbbR d \rightarrow \BbbR d, g : \BbbR \rightarrow \BbbR 
satisfy the following properties:

\bullet Let p \in [2,\infty ) and r \in (1,\infty ). If p < d, then r \leq dp/
\bigl( 
2(d - p)

\bigr) 
+ 1.

\bullet The functions \alpha and g are continuous and satisfy the growth conditions

| \alpha (z)| \leq C| z| p - 1 and | g(x)| \leq C| x| r - 1 for all z \in \BbbR d, x \in \BbbR .

\bullet The function \alpha is strictly monotone with the bound\bigl( 
\alpha (z) - \alpha (\~z)

\bigr) 
\cdot (z  - \~z) \geq c| z  - \~z| p for all z, \~z \in \BbbR d.

\bullet The function \alpha is coercive with the bound

\alpha (z) \cdot z \geq c| z| p for all z \in \BbbR d.

\bullet The function g is strictly monotone and coercive with the bounds\bigl( 
g(x) - g(\~x)

\bigr) 
(x - \~x) \geq c| x - \~x| r and g(x)x \geq c| x| r for all x, \~x \in \BbbR .

Let V =W 1,p
0 (\Omega ), and define the form a : V \times V \rightarrow \BbbR by

a(u, v) =

\int 
\Omega 

\alpha (\nabla u) \cdot \nabla v + g(u)v dx.

The weak form of (1.1) is to find u \in V such that

(2.1) a(u, v) = (f, v)L2(\Omega ) for all v \in V.

The p-structure implies that there exists a unique weak solution of (2.1); see, e.g., [33,
Theorem 2.36]. A central part of the existence proof and of our convergence analysis
as well is to observe that the p-structure directly implies that the form a is bounded,
strictly monotone, and coercive.
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Lemma 2.2. If Assumption 2.1 holds, then a : V \times V \rightarrow \BbbR is well defined and
satisfies the upper bound

| a(u, v)| \leq C1

\bigl( 
\| \nabla u\| p - 1

Lp(\Omega )d
\| \nabla v\| 

Lp(\Omega )d
+ \| u\| r - 1

Lr(\Omega )\| v\| Lr(\Omega )

\bigr) 
,

the strict monotonicity bound

a(u, u - v) - a(v, u - v) \geq c1
\bigl( 
\| \nabla (u - v)\| p

Lp(\Omega )d
+ \| u - v\| rLr(\Omega )

\bigr) 
,

and the coercivity bound

a(u, u) \geq c2
\bigl( 
\| \nabla u\| p

Lp(\Omega )d
+ \| u\| rLr(\Omega )

\bigr) 
for all u, v \in V .

Example 2.3. The equation (1.2) satisfies Assumption 2.1 with \alpha (z) = | z| p - 2z,
\lambda > 0, g(x) = \lambda x, and r = 2. The same holds for equation (1.3) with g(x) = \lambda | x| p - 2x
and r = p.

Remark 2.4. The last assertion of Assumption 2.1 is made in order to ensure that
the convergence analysis of the domain decomposition is valid without employing the
Poincar\'e inequality, which allows decompositions where \partial \Omega \setminus \partial \Omega i = \emptyset ; see Figure 1b. If
the latter setting is excluded, then the analysis is valid for a broader class of functions
g, especially g = 0.

Remark 2.5. Possible generalizations of Assumption 2.1, which we omit for sake
of notational simplicity, include dependence on the spatial variable and first-order
terms, e.g., \alpha (\nabla u) = \alpha (x, u,\nabla u), and the parameter choice p \in (2d/(d + 1), 2),
which requires an additional set of embedding results for trace spaces. One can also
extend the analysis to other continuous functions \alpha that give rise to bounded, strictly
monotone, and coercive forms a on V \times V , e.g.,

\alpha (z) = (1 + | z| 2)(p - 2)/2z and \alpha (z) = (| z1| p - 2z1, . . . , | zd| p - 2zd);

see [10, section 4] and [39, section 26.5], respectively, for proofs and further details.

In order to conduct the convergence analysis, we also make the following addi-
tional regularity assumption on the weak solution.

Assumption 2.6. The weak solution u \in V of (2.1) satisfies \alpha (\nabla u) \in C(\Omega )d.

Note that the above regularity assumption does not imply that u is a strong
solution in W 2,p(\Omega ). A possible generalization of Assumption 2.6 is discussed in
Remark 8.3.

Example 2.7. Consider the equations given by the p-Laplacian in Example 2.3. If
p \geq d, then the weak solution u \in V is also in C(\Omega ). If in addition f \in L\infty (\Omega ) and
the boundary \partial \Omega is C1,\beta , then [24, Theorem 1] yields that u \in C1,\beta (\Omega ). The latter
implies that Assumption 2.6 is valid in this context.

Finally, we will make frequent use of the fact that, under Assumption 2.1, the
standard W 1,p(\Omega )-norm is equivalent to the norm

(2.2) u \mapsto \rightarrow \| \nabla u\| Lp(\Omega )d + \| u\| Lr(\Omega ).

For r \geq p, this follows directly by the Sobolev embedding theorem together with
the assumed restrictions on (p, r). For r < p, the equivalence can, e.g., be proven

by Ehrling's lemma and the observation that W 1,p(\Omega )
c
\lhook \rightarrow Lp(\Omega ) \lhook \rightarrow Lr(\Omega ); see [33,

Theorem 1.21 and Lemma 7.6].
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3. Function spaces and trace operators on \Omega \bfiti . We start by considering a
manifold \scrM in \BbbR d, which will play the role of \partial \Omega i or \Gamma . The manifold \scrM is said to
be Lipschitz if there exist finitely many open, overlapping sets \Theta m such that

\scrM =

M\bigcup 
m=1

\Theta m,

where each \Theta m can be described as the graph of a Lipschitz continuous function bm.
More precisely, there exists (d - 1)-dimensional cubes \theta m and local charts \psi m : \Theta m \rightarrow 
\theta m that are bijective and Lipschitz continuous. The charts have the structure \psi  - 1

m =
A - 1

m \circ Qm, where Am : \BbbR d \rightarrow \BbbR d is a coordinate transformation, i.e., Amx = \~Amx+vm,
where \~Am is an orthonormal matrix with det \~Am = 1 and

Qm : \theta m \rightarrow \BbbR d : xm \mapsto \rightarrow 
\bigl( 
xm, bm(xm)

\bigr) 
for the Lipschitz continuous map bm : \theta m \rightarrow \BbbR . A function \mu : \scrM \rightarrow \BbbR now has the
local components \mu \circ \psi  - 1

m . We refer the reader to [22, section 6.2] for further details.
On a Lipschitz manifold, we may introduce a measure [29, Chapter 3] and thus

define the integral and the space Lp(\scrM ); see, e.g., [11]. From [11, Chapters 3.4--3.5],
it follows that Lp(\scrM ) is a Banach space and that L2(\scrM ) is a Hilbert space with the
inner product

(\eta , \mu )L2(\scrM ) =

\int 
\scrM 
\eta \mu dS.

Let \{ \varphi m\} be a partition of unity of \scrM subordinate to \{ \Theta m\} . The integral then
satisfies

(3.1)

\int 
\scrM 
\mu dS =

M\sum 
m=1

\int 
\theta m

(\mu \varphi m) \circ \psi  - 1
m | nm| dx,

where nm = (\partial 1bm, \partial 2bm, . . . , \partial d - 1bm, - 1); see [29, Theorem 3.9]. Seemingly obvious
properties of the integral, including\int 

\scrM 
\mu dS =

\int 
\scrM 0

\mu dS +

\int 
\scrM \setminus \scrM 0

\mu dS,

rely heavily on the observation that the integral is independent of the representation
(\Theta m, Am, bm) and the choice of partition of unity \{ \varphi m\} ; see [29, Theorems 3.5 and
3.7] and the comments thereafter.

The equality (3.1) also shows that our integral and Lp-spaces are equivalent to
the ones used in [22]. Moreover, by [22, Lemma 6.3.5], the Lp-norm used here is
equivalent to the norm

\mu \mapsto \rightarrow 

\Biggl( 
M\sum 

m=1

\| \mu \circ \psi  - 1
m \| pLp(\theta m)

\Biggr) 1/p

.

Finally, recall that for a Lipschitz manifold \scrM , the unit outward normal vector \nu =
(\nu 1, . . . , \nu d) is defined almost everywhere; see [22, section 6.10.1]. The normal vector
is given locally by \nu \circ \psi  - 1

m = nm/| nm| , and the Lipschitz continuity of bm yields that
\nu \ell \in L\infty (\scrM ) for all \ell = 1, . . . , d.

Assumption 3.1. The boundaries \partial \Omega i and the interface \Gamma are all (d - 1)-dimensional
Lipschitz manifolds.
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We use the notation (\Theta i
m, \theta 

i
m,Mi, \psi 

i
m, b

i
m, \phi 

i
m, \nu i) for the quantities related to the

local representations of \partial \Omega i. Next, we define the fractional Sobolev spaces on the
(d  - 1)-dimensional cubes \theta m. Let 0 < s < 1. Then W s,p(\theta m) is defined as all
u \in Lp(\theta m) such that

| u| s,\theta m =

\biggl( \int 
\theta m

\int 
\theta m

| u(x) - u(y)| p

| x - y| d - 1+sp
dx dy

\biggr) 1/p

<\infty .

The corresponding norm is given by

\| u\| W s,p(\theta m) = \| u\| Lp(\theta m) + | u| s,\theta m .

Having defined the fractional Sobolev spaces on \theta im, we can also define them on \partial \Omega i.
For 0 < s < 1, introduce

W s,p(\partial \Omega i) = \{ \mu \in Lp(\partial \Omega i) : \mu \circ (\psi i
m) - 1 \in W s,p(\theta im) for m = 1, . . . ,Mi\} ,

equipped with the norm

\| \mu \| W s,p(\partial \Omega i) =

\Biggl( 
Mi\sum 
m=1

\| \mu \circ (\psi i
m) - 1\| pW s,p(\theta i

m)

\Biggr) 1/p

.

By the definitions of the norms, it follows directly that

\| \mu \| Lp(\partial \Omega i) \leq C\| \mu \| W s,p(\partial \Omega i).

Furthermore, the space W s,p(\partial \Omega i) is complete and for p > 1 reflexive; see [22, Defini-
tion 6.8.6] and the comment thereafter. Next, we recapitulate the trace theorem for
W 1,p-functions on Lipschitz domains; see, e.g., [22, Theorems 6.8.13 and 6.9.2].

Lemma 3.2. If p > 1 and the Assumption 3.1 is valid, then there exists a surjec-
tive bounded linear operator T\partial \Omega i

: W 1,p(\Omega i) \rightarrow W 1 - 1/p,p(\partial \Omega i) such that T\partial \Omega i
u =

u| \partial \Omega i
when u \in C\infty (\Omega i). The operator T\partial \Omega i

has a bounded linear right inverse
R\partial \Omega i

:W 1 - 1/p,p(\partial \Omega i) \rightarrow W 1,p(\Omega i).

We can then define the Sobolev spaces on \Omega i required for the domain decompo-
sition, namely,

V 0
i =W 1,p

0 (\Omega i) and Vi = \{ v \in W 1,p(\Omega i) : (T\partial \Omega i
v)| \partial \Omega i\setminus \Gamma = 0\} .

The spaces are equipped with the norm

\| v\| Vi
= \| \nabla v\| Lp(\Omega i)d + \| v\| Lr(\Omega i).

As for (2.2), this norm is equivalent to the standard W 1,p(\Omega i)-norm under Assump-
tion 2.1. Furthermore, the spaces V 0

i and Vi are reflexive Banach spaces.

4. Function spaces and trace operators on \Gamma . The Lp-form of the Lions--
Magenes space can be defined as

\Lambda i = \{ \mu \in Lp(\Gamma ) : Ei\mu \in W 1 - 1/p,p(\partial \Omega i)\} , with \| \mu \| \Lambda i = \| Ei\mu \| W 1 - 1/p,p(\partial \Omega i).

Here, Ei\mu denotes the extension by zero of \mu to \partial \Omega i. We also define the trace space

\Lambda = \{ \mu \in Lp(\Gamma ) : \mu \in \Lambda i, for i = 1, 2\} , with \| \mu \| \Lambda = \| \mu \| \Lambda 1
+ \| \mu \| \Lambda 2

.
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Lemma 4.1. If p > 1 and Assumption 3.1 holds, then \Lambda i and \Lambda are reflexive
Banach spaces.

Proof. Observe that Ei is a linear isometry from \Lambda i onto

(4.1) R(Ei) = \{ \mu \in W 1 - 1/p,p(\partial \Omega i) : \mu | \partial \Omega \setminus \Gamma = 0\} .

Next, consider a sequence \{ \mu k\} \subset R(Ei) such that \mu k \rightarrow \mu in W 1 - 1/p,p(\partial \Omega i). Then
\mu k| \Omega i\setminus \Gamma = 0 and \mu k \rightarrow \mu in Lp(\partial \Omega i), which implies that

(4.2)

\int 
\partial \Omega i\setminus \Gamma 

| \mu | p dS =

\int 
\partial \Omega i\setminus \Gamma 

| \mu k  - \mu | p dS \leq 
\int 
\partial \Omega i

| \mu k  - \mu | p dS \rightarrow 0 as k \rightarrow \infty .

Hence, \mu \in R(Ei), and consequently R(Ei) is a closed subset of W 1 - 1/p,p(\partial \Omega i). The
space \Lambda i is therefore isomorphic to a closed subset of the reflexive Banach space
W 1 - 1/p,p(\partial \Omega i); i.e., \Lambda i is complete and reflexive [23, Chapter 8, Theorem 15].

To prove that the same holds true for \Lambda , introduce the reflexive Banach space
X =W 1 - 1/p,p(\partial \Omega 1)\times W 1 - 1/p,p(\partial \Omega 2), with the norm

\| (\mu 1, \mu 2)\| X = \| \mu 1\| W 1 - 1/p,p(\partial \Omega 1) + \| \mu 2\| W 1 - 1/p,p(\partial \Omega 2)

and the operator E : \Lambda \rightarrow X defined by E\mu = (E1\mu ,E2\mu ). As E is a linear isometry
from \Lambda onto

R(E) = \{ (\mu 1, \mu 2) \in X : \mu 1| \partial \Omega 1\setminus \Gamma = 0, \mu 2| \partial \Omega 2\setminus \Gamma = 0, \mu 1| \Gamma = \mu 2| \Gamma \} ,

it is again sufficient to prove that R(E) is a closed subset of X. Let \{ (\mu k
1 , \mu 

k
2)\} \subset R(E)

be a convergent sequence in X with the limit (\mu 1, \mu 2). By the same argument as (4.2),
we obtain that \mu i| \Omega i\setminus \Gamma = 0. As \mu k

1 | \Gamma = \mu k
2 | \Gamma , we also have the limit\int 

\Gamma 

| \mu 1  - \mu 2| p dS \leq 2p - 1

\biggl( \int 
\Gamma 

| \mu k
1  - \mu 1| p dS +

\int 
\Gamma 

| \mu k
2  - \mu 2| p dS

\biggr) 
\rightarrow 0 as k \rightarrow \infty ,

i.e., \mu 1| \Gamma = \mu 2| \Gamma in Lp(\Gamma ), and we obtain that (\mu 1, \mu 2) \in R(E). Thus, R(E) is closed,
and \Lambda is therefore a reflexive Banach space.

Lemma 4.2. If p \geq 2 and Assumption 3.1 holds, then \Lambda i and \Lambda are dense in
L2(\Gamma ).

The proof of the lemma is almost identical to the proof of [22, Theorem 6.6.3]
and is therefore left out.

Remark 4.3. We conjecture that \Lambda 1 = \Lambda 2. The difficulty in proving this conjec-
ture lies in the fact that the norms \| \cdot \| \Lambda i are dependent on the whole of \partial \Omega i instead of
just being localized to \Gamma . However, we will move on to a L2(\Gamma )-framework for which
it is not necessary to make this identification.

Together, Lemmas 4.1 and 4.2 yield the Gelfand triplets

\Lambda i \lhook \rightarrow L2(\Gamma ) \sim = L2(\Gamma )\ast \lhook \rightarrow \Lambda \ast 
i and \Lambda \lhook \rightarrow L2(\Gamma ) \sim = L2(\Gamma )\ast \lhook \rightarrow \Lambda \ast .

For future use, we introduce the Riesz isomorphism on L2(\Gamma ) given by

J : L2(\Gamma ) \rightarrow L2(\Gamma )\ast : \mu \mapsto \rightarrow (\mu , \cdot )L2(\Gamma ),
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which satisfies the relations

\langle J\eta , \mu i\rangle \Lambda \ast 
i \times \Lambda i

= (\eta , \mu i)L2(\Gamma ) and \langle J\eta , \mu \rangle \Lambda \ast \times \Lambda = (\eta , \mu )L2(\Gamma )

for all \eta \in L2(\Gamma ), \mu i \in \Lambda i, and \mu \in \Lambda . Here, \langle \cdot , \cdot \rangle X\ast \times X denotes the dual pairing
between a Banach space X and its dual X\ast . In the following, we will drop the
subscripts on the dual parings.

In order to relate the spaces Vi and \Lambda i, we observe that for v \in Vi, one has
T\partial \Omega i

v \in R(Ei); see (4.1). Hence, the trace operator

Ti : Vi \rightarrow \Lambda i : v \mapsto \rightarrow 
\bigl( 
T\partial \Omega i

v
\bigr) 
| \Gamma 

is well defined. We also introduce the linear operator

Ri : \Lambda i \rightarrow Vi : \mu \mapsto \rightarrow R\partial \Omega i
Ei\mu .

Lemma 4.4. If p > 1 and Assumption 3.1 holds, then Ti and Ri are bounded, and
Ri is a right inverse of Ti.

Proof. For v \in Vi and \mu \in \Lambda i we have, by Lemma 3.2, that

\| Tiv\| \Lambda i = \| Ei

\bigl( 
(T\partial \Omega iv)| \Gamma 

\bigr) 
\| W 1 - 1/p,p(\partial \Omega i) = \| T\partial \Omega iv\| W 1 - 1/p,p(\partial \Omega i) \leq Ci\| v\| Vi

and \| Ri\mu \| Vi = \| R\partial \Omega iEi\mu \| Vi \leq Ci\| Ei\mu \| W 1 - 1/p,p(\partial \Omega i) = Ci\| \mu \| \Lambda i .

Hence, the linear operators Ti and Ri are bounded. Furthermore, for every \mu \in \Lambda i,
we have

TiRi\mu =
\bigl( 
T\partial \Omega i

R\partial \Omega i
Ei\mu 

\bigr) 
| \Gamma = (Ei\mu )| \Gamma = \mu ;

i.e., Ri is a right inverse of Ti.

We continue by deriving a few useful properties related to the operator Ti.

Lemma 4.5. If p > 1, Assumption 3.1 holds, and v \in V , then \mu = T1v| \Omega 1
=

T2v| \Omega 2
is an element in \Lambda .

Proof. Let v \in V . As C\infty 
0 (\Omega ) is dense in V , there exists a sequence \{ vk\} \subset C\infty 

0 (\Omega )
such that vk \rightarrow v in V . Set vi = v| \Omega i

and vki = vk| \Omega i
. Clearly, T1v

k
1 = T2v

k
2 . Since

vk \rightarrow v in V , we also have that vki \rightarrow vi in Vi. The continuity of Ti then implies that
Tiv

k
i \rightarrow Tivi in \Lambda i. Putting this together gives us

\Lambda 1 \ni T1v1 = lim
k\rightarrow \infty 

T1v
k
1 = lim

k\rightarrow \infty 
T2v

k
2 = T2v2 \in \Lambda 2 in Lp(\Gamma ).

If we now define \mu = T1v1 = T2v2, then \mu is an element in \Lambda = \Lambda 1 \cap \Lambda 2.

Lemma 4.6. Let p > 1 and Assumption 3.1 hold. If two elements v1 \in V1 and
v2 \in V2 satisfy T1v1 = T2v2, then v = \{ v1 on \Omega 1; v2 on \Omega 2\} is an element in V .

Proof. It is clear that v \in Lp(\Omega ). For each component 1 \leq \ell \leq d, there exists a
weak derivative \partial \ell vi \in Lp(\Omega i) of vi \in Vi \subset W 1,p(\Omega i). If we define

z\ell = \{ \partial \ell v1 on \Omega 1; \partial \ell v2 on \Omega 2\} ,

then z\ell \in Lp(\Omega ). Let w \in C\infty 
0 (\Omega ), and set wi = w| \Omega i

\in C\infty (\Omega i). The W 1,p(\Omega i)-
version of Green's formula [30, section 3.1.2] yields that\int 

\Omega 

z\ell w dx =

2\sum 
i=1

\int 
\Omega i

\partial \ell vi wi dx =

2\sum 
i=1

 - 
\int 
\Omega i

vi \partial \ell wi dx+

\int 
\partial \Omega i

(T\partial \Omega i
vi)wi\nu 

\ell 
i dS

=  - 
\int 
\Omega 

v\partial \ell w dx+

2\sum 
i=1

\int 
\Gamma 

(Tivi)w\nu 
\ell 
i dS =  - 

\int 
\Omega 

v\partial \ell w dx;
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i.e., z\ell is the \ell th weak partial derivative of v. By construction, T\partial \Omega v = 0, and v is
therefore an element in V .

5. Transmission problem and the Robin--Robin method. The framework
given in section 4 enables us to introduce the weak forms of the nonlinear transmission
problem and the Robin--Robin method. It also allows us to prove equivalence between
the nonlinear elliptic equation and the transmission problem along the same lines as
done for linear equations [32, Lemma 1.2.1]. To this end, on each Vi, we define
ai : Vi \times Vi \rightarrow \BbbR by

ai(ui, vi) =

\int 
\Omega i

\alpha (\nabla ui) \cdot \nabla vi + g(ui)vi dx.

We also define fi = f | \Omega i \in L2(\Omega i).

Lemma 5.1. If Assumptions 2.1 and 3.1 hold, then ai : Vi \times Vi \rightarrow \BbbR is well
defined and satisfies the growth, strict monotonicity, and coercivity bounds stated in
Lemma 2.2, with the terms (a, V,\Omega ) replaced by (ai, Vi,\Omega i).

The weak form of the nonlinear transmission problem (1.4) is then to find (u1, u2) \in 
V1 \times V2 such that

(5.1)

\left\{     
ai(ui, vi) = (fi, vi)L2(\Omega i) for all vi \in V 0

i , i = 1, 2,

T1u1 = T2u2,\sum 2
i=1 ai(ui, Ri\mu ) - (fi, Ri\mu )L2(\Omega i) = 0 for all \mu \in \Lambda .

Theorem 5.2. Let Assumptions 2.1 and 3.1 hold. If u \in V solves (2.1), then
(u1, u2) = (u| \Omega 1 , u| \Omega 2) solves (5.1). Conversely, if (u1, u2) solves (5.1), then u =
\{ u1 on \Omega 1; u2 on \Omega 2\} solves (2.1).

Proof. Assume that u \in V solves (2.1), and define (u1, u2) = (u| \Omega 1 , u| \Omega 2) \in 
V1 \times V2. For vi \in V 0

i , we can extend by zero to wi \in V by using Lemma 4.6. Then

ai(ui, vi) = a(u,wi) = (f, wi)L2(\Omega ) = (fi, vi)L2(\Omega i).

Moreover, T1u1 = T2u2 follows immediately from Lemma 4.5. For an arbitrary \mu \in \Lambda ,
let vi = Ri\mu . Then, by Lemma 4.6, v = \{ v1 on \Omega 1; v2 on \Omega 2\} is an element in V , and

a1(u1, R1\mu ) + a2(u2, R2\mu ) = a(u, v) = (f, v)L2(\Omega ) = (f1, R1\mu )L2(\Omega 1) + (f2, R2\mu )L2(\Omega 2).

This proves that (u1, u2) solves (5.1). Conversely, let (u1, u2) \in V1 \times V2 be a solution
to (5.1), and define u = \{ u1 on \Omega 1; u2 on \Omega 2\} . By Lemma 4.6, we have that u \in V .
Next, consider v \in V , and let vi = v| \Omega i

\in Vi. From Lemma 4.5, we have that \mu = Tivi
is well defined and \mu \in \Lambda . The observation that vi - Ri\mu \in V 0

i for i = 1, 2 implies the
equality

a(u, v) =

2\sum 
i=1

ai(ui, vi  - Ri\mu ) + ai(ui, Ri\mu ) =

2\sum 
i=1

(fi, vi  - Ri\mu )L2(\Omega i) + ai(ui, Ri\mu )

=

2\sum 
i=1

(fi, vi)L2(\Omega i) + ai(ui, Ri\mu ) - (fi, Ri\mu )L2(\Omega i) = (f, v)L2(\Omega ).

As v can be chosen arbitrarily, u solves (2.1).
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Remark 5.3. As the nonlinear elliptic equation (2.1) has a unique weak solution,
Theorem 5.2 implies that the same holds true for the nonlinear transmission prob-
lem (5.1).

In order to approximate the weak solution (un1 , u
n
2 ) \in V1 \times V2 of the transmission

problem by the Robin--Robin method, we require the method's weak form. Multiply-
ing by test functions and formally applying Green's formula to the equations (1.5)
yields that the weak form of the method is given by finding (un1 , u

n
2 ) \in V1 \times V2 for

n = 1, 2, . . . such that

(5.2)

\left\{                       

a1(u
n+1
1 , v1) = (f1, v1)L2(\Omega 1) for all v1 \in V 0

1 ,

a1(u
n+1
1 , R1\mu ) - (f1, R1\mu )L2(\Omega 1) + a2(u

n
2 , R2\mu )

 - (f2, R2\mu )L2(\Omega 2) = s(T2u
n
2  - T1u

n+1
1 , \mu )L2(\Gamma ) for all \mu \in \Lambda ,

a2(u
n+1
2 , v2) = (f2, v2)L2(\Omega 2) for all v2 \in V 0

2 ,

a2(u
n+1
2 , R2\mu ) - (f2, R2\mu )L2(\Omega 2) + a1(u

n+1
1 , R1\mu )

 - (f1, R1\mu )L2(\Omega 1) = s(T1u
n+1
1  - T2u

n+1
2 , \mu )L2(\Gamma ) for all \mu \in \Lambda ,

where u02 \in V2 is an initial guess and s > 0 is the given method parameter.

6. Interface formulations. The ambition is now to reformulate the nonlin-
ear transmission problem and the Robin--Robin method, which are all given on the
domains \Omega i, into problems and methods only stated on the interface \Gamma . As a prepara-
tion, we observe that nonlinear elliptic equations on \Omega i with inhomogeneous Dirichlet
conditions have unique weak solutions.

Lemma 6.1. If Assumptions 2.1 and 3.1 hold, then for each \eta \in \Lambda i there exists a
unique ui \in W 1,p(\Omega i) such that

(6.1) ai(ui, vi) = (fi, vi)L2(\Omega i) for all vi \in V 0
i

and T\partial \Omega iui = Ei\eta in W 1 - 1/p,p(\partial \Omega i).

The proof can be found in, e.g., [33, Theorem 2.36]. With the notation of
Lemma 6.1, consider the operator

Fi : \eta \mapsto \rightarrow ui,

i.e., the map from a given boundary value on \Gamma to the corresponding weak solution
of the nonlinear elliptic problem (6.1) on \Omega i. From the statement of Lemma 6.1, we
see that

Fi : \Lambda i \rightarrow Vi and TiFi\eta = \eta for \eta \in \Lambda i.

In other words, the operator Fi is a nonlinear right inverse of Ti. This property will
be frequently used, as it, together with the boundedness and linearity of Ti, gives rise
to bounds of the forms

\| \eta \| \Lambda i
\leq Ci\| Fi\eta \| Vi

and \| \eta  - \mu \| \Lambda i
\leq Ci\| Fi\eta  - Fi\mu \| Vi

.

We can now define the nonlinear Steklov--Poincar\'e operators Si and S as

\langle Si\eta , \mu \rangle = ai(Fi\eta ,Ri\mu ) - (fi, Ri\mu )L2(\Omega i) for all \eta , \mu \in \Lambda i and

\langle S\eta , \mu \rangle =
2\sum 

i=1

\langle Si\eta , \mu \rangle =
2\sum 

i=1

ai(Fi\eta ,Ri\mu ) - (fi, Ri\mu )L2(\Omega i) for all \eta , \mu \in \Lambda .
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Thus, we may restate the nonlinear transmission problem (5.1) as the Steklov--Poincar\'e
equation, i.e., finding \eta \in \Lambda such that

(6.2) \langle S\eta , \mu \rangle = 0 for all \mu \in \Lambda .

That the reformulation is possible follows directly from the definitions of the operators
Fi and S, but we state this as a lemma for future reference.

Lemma 6.2. Let Assumptions 2.1 and 3.1 hold. If (u1, u2) solves (5.1), then
\eta = T1u1 = T2u2 solves (6.2). Conversely, if \eta solves (6.2), then (u1, u2) = (F1\eta , F2\eta )
solves (5.1).

Before turning to the Robin--Robin method, consider either the stationary prob-
lem (A1+A2)v = 0 or the initial value problem dv/dt+(A1+A2)v = 0, with v(0) = v0.
In both settings, the Peaceman--Rachford splitting

vn+1 = (sI +A2)
 - 1(sI  - A1)(sI +A1)

 - 1(sI  - A2)v
n

has been proposed as an efficient approximation scheme; see [27, 31]. In the current
context of nonlinear Steklov--Poincar\'e operators, the weak form of the Robin--Robin
method is in fact equivalent to the Peaceman--Rachford splitting on the interface \Gamma .
This observation was made for linear elliptic equations in [1]. The equivalence was
also utilized in [13, section 4.4.1] for the linear setting of the Stokes--Darcy coupling.

The weak form of the Peaceman--Rachford splitting is given by finding (\eta n1 , \eta 
n
2 ) \in 

\Lambda 1 \times \Lambda 2 for n = 1, 2, . . . such that

(6.3)

\Biggl\{ 
\langle (sJ + S1)\eta 

n+1
1 , \mu \rangle = \langle (sJ  - S2)\eta 

n
2 , \mu \rangle ,

\langle (sJ + S2)\eta 
n+1
2 , \mu \rangle = \langle (sJ  - S1)\eta 

n+1
1 , \mu \rangle 

for all \mu \in \Lambda , where \eta 02 \in \Lambda 2 is an initial guess.

Lemma 6.3. Let Assumptions 2.1 and 3.1 be valid. If (un1 , u
n
2 )n\geq 1 is a weak

Robin--Robin approximation given by (5.2), then (\eta n1 , \eta 
n
2 )n\geq 1 = (T1u

n
1 , T2u

n
2 )n\geq 1 is a

weak Peaceman--Rachford approximation given by (6.3), with \eta 02 = T2u
0
2. Conversely,

if (\eta n1 , \eta 
n
2 )n\geq 1 is given by (6.3), then (un1 , u

n
2 )n\geq 1 = (F1\eta 

n
1 , F2\eta 

n
2 )n\geq 1 fulfills (5.2), with

u02 = F2\eta 
0
2.

Proof. First, assume that (un1 , u
n
2 )n\geq 1 \subset V1 \times V2 is a weak Robin--Robin approxi-

mation, and define \eta ni = Tiu
n
i \in \Lambda i. This definition, the existence of a unique solution

of (6.1), and the first and third assertions of (5.2) yield the identification uni = Fi\eta 
n
i .

Inserting this into the second and fourth assertion of (5.2) gives us

s(T1F1\eta 
n+1
1 , \mu )L2(\Gamma ) + a1(F1\eta 

n+1
1 , R1\mu ) - (f,R1\mu )L2(\Omega 1)

= s(T2F2\eta 
n
2 , \mu )L2(\Gamma )  - a2(F2\eta 

n
2 , R2\mu ) + (f,R2\mu )L2(\Omega 2) and

s(T2F2\eta 
n+1
2 , \mu )L2(\Gamma ) + a2(F2\eta 

n+1
2 , R2\mu ) - (f,R2\mu )L2(\Omega 2)

= s(T1F1\eta 
n+1
1 , \mu )L2(\Gamma )  - a1(F1\eta 

n+1
1 , R1\mu ) + (f,R1\mu )L2(\Omega 1)

for all \mu \in \Lambda , which is precisely the weak form of the Peaceman--Rachford split-
ting (6.3), with \eta 02 = T2u

0
2. Conversely, suppose that (\eta n1 , \eta 

n
2 )n\geq 1 \subset \Lambda 1 \times \Lambda 2 is a

weak Peaceman--Rachford approximation, and define uni = Fi\eta 
n
i \in Vi. Inserting this

into (6.3) directly gives that (un1 , u
n
2 )n\geq 1, with u02 = F2\eta 

0
2 , is a weak Robin--Robin

approximation (5.2).
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Remark 6.4. For now, we do not know if the weak Robin--Robin and Peaceman--
Rachford approximations actually exist in the sense that there exists a solution to
(6.3) at each iteration. We will return to this issue in section 8.

Remark 6.5. The interface formulations of the transmission problem and the
Robin--Robin method can easily be generalized to more than two subdomains, without
cross points as in Figure 1c. However, for domain decompositions with cross points,
such as in Figure 1d, or overlapping subdomains, the situation becomes more delicate.
For example, consider a decomposition into disjoint subdomains \Omega i, i = 1, . . . , N , and
let \Gamma i\ell denote the interface between two adjacent subdomains \Omega i and \Omega \ell . If cross
points are present, one can still prove equivalence between the elliptic equation (2.1)
and a transmission problem when p = 2. The result is due to [34], and the proof can
most likely be generalized to our setting with p \geq 2. One then obtains a Steklov--
Poincar\'e equation for each interface \Gamma i\ell , and the corresponding operators have the
form \langle Si\ell \eta , \mu \rangle = ai(Fi\ell \eta ,Ri\ell \mu )  - (fi, Ri\ell \mu )L2(\Omega i), where \eta and \mu are elements in the
trial and test spaces

\{ \eta \in Lp(\cup \ell \Gamma i\ell ) : Ei\eta \in W 1 - 1/p,p(\partial \Omega i)\} and \{ \mu \in Lp(\Gamma i\ell ) : Ei\mu \in W 1 - 1/p,p(\partial \Omega i)\} ,

respectively. This possible mismatch between trial and test spaces requires a further
extension of our framework, which we will address elsewhere.

Finally, note that an alternative numerical scheme to the Robin--Robin method
is proposed in [6]. The method enables the usage of domain decompositions with
cross points in the context of the Richards equation, but no convergence analysis is
presented.

7. Properties of the nonlinear Steklov--Poincar\'e operators. We proceed
by deriving the central properties of the Steklov--Poincar\'e operators Si, S when inter-
preted as maps from \Lambda i,\Lambda into the corresponding dual spaces.

Lemma 7.1. If Assumptions 2.1 and 3.1 hold, then Si : \Lambda i \rightarrow \Lambda \ast 
i and S : \Lambda \rightarrow \Lambda \ast 

are well defined.

Proof. Let \eta i \in \Lambda i and \eta \in \Lambda . The linearity of the functionals Si\eta i and S\eta follows
by definition. As Fi\eta i \in Vi, we have, by Lemma 5.1, that

| \langle Si\eta i, \mu \rangle | \leq | ai(Fi\eta i, Ri\mu )| + | (fi, Ri\mu )L2(\Omega i)| 
\leq ci(\| \nabla Fi\eta i\| p - 1

Lp(\Omega i)d
\| \nabla Ri\mu \| Lp(\Omega i)d

+ \| Fi\eta i\| r - 1
Lr(\Omega i)

\| Ri\mu \| Lr(\Omega i)
)

+ \| fi\| L2(\Omega i)\| Ri\mu \| L2(\Omega i)

\leq Ci(\| \nabla Fi\eta i\| Vi
, \| fi\| L2(\Omega i))\| Ri\mu \| Vi

\leq Ci\| \mu \| \Lambda i

for all \mu \in \Lambda i. Thus, Si\eta i is a bounded functional on \Lambda i. The boundedness of S\eta 
follows directly by summing up the bounds for Si\eta .

Lemma 7.2. If Assumptions 2.1 and 3.1 hold, then the operators Si : \Lambda i \rightarrow \Lambda \ast 
i

and S : \Lambda \rightarrow \Lambda \ast are strictly monotone with

\langle Si\eta  - Si\mu , \eta  - \mu \rangle \geq ci
\bigl( 
\| \nabla (Fi\eta  - Fi\mu )\| pLp(\Omega i)d

+ \| Fi\eta  - Fi\mu \| rLr(\Omega i)

\bigr) 
for all \eta , \mu \in \Lambda i and

\langle S\eta  - S\mu , \eta  - \mu \rangle \geq c

2\sum 
i=1

\bigl( 
\| \nabla (Fi\eta  - Fi\mu )\| pLp(\Omega i)d

+ \| Fi\eta  - Fi\mu \| rLr(\Omega i)

\bigr) 
for all \eta , \mu \in \Lambda , respectively.
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Proof. Since, wi = Ri(\eta  - \mu )  - (Fi\eta  - Fi\mu ) \in V 0
i for all \eta , \mu \in \Lambda i, we have,

according to the definition of Fi, that

(7.1) ai(Fi\eta , wi) - ai(Fi\mu ,wi) = 0.

By this equality and Lemma 5.1, it follows that

\langle Si\eta  - Si\mu , \eta  - \mu \rangle = ai
\bigl( 
Fi\eta ,Ri(\eta  - \mu )

\bigr) 
 - ai

\bigl( 
Fi\mu ,Ri(\eta  - \mu )

\bigr) 
= ai(Fi\eta , wi) + ai(Fi\eta , Fi\eta  - Fi\mu ) - ai(Fi\mu ,wi) - ai(Fi\mu , Fi\eta  - Fi\mu )

\geq ci
\bigl( 
\| \nabla (Fi\eta  - Fi\mu )\| pLp(\Omega i)d

+ \| Fi\eta  - Fi\mu \| rLr(\Omega i)

\bigr) 
for all \eta , \mu \in \Lambda i, which proves the monotonicity bound for Si. The bound for S follows
directly by summing up the bounds for Si.

Lemma 7.3. If Assumptions 2.1 and 3.1 hold, then the operators Si : \Lambda i \rightarrow \Lambda \ast 
i

and S : \Lambda \rightarrow \Lambda \ast are coercive, i.e.,

lim
\| \eta \| \Lambda i

\rightarrow \infty 

\langle Si\eta , \eta \rangle 
\| \eta \| \Lambda i

= \infty and lim
\| \eta \| \Lambda \rightarrow \infty 

\langle S\eta , \eta \rangle 
\| \eta \| \Lambda 

= \infty .

Proof. As \| Fi\eta \| Vi
= \| \nabla Fi\eta \| Lp(\Omega i)d + \| Fi\eta \| Lr(\Omega i) \geq ci\| \eta \| \Lambda i

, we have that

P (\| \nabla Fi\eta \| Lp(\Omega i)d , \| Fi\eta \| Lr(\Omega i)) \rightarrow \infty as \| \eta \| \Lambda i \rightarrow \infty ,

where P (x, y) = (xp + yr)/(x+ y). In particular, we assume from now on that

P (\| \nabla Fi\eta \| Lp(\Omega i)d , \| Fi\eta \| Lr(\Omega i)) \geq \| fi\| L2(\Omega i).

By observing that Ri\eta  - Fi\eta \in V 0
i , Lemma 5.1 yields the lower bound

\langle Si\eta , \eta \rangle = ai(Fi\eta , Fi\eta ) + ai(Fi\eta ,Ri\eta  - Fi\eta ) - (fi, Ri\eta )L2(\Omega i)

= ai(Fi\eta , Fi\eta ) + (fi, Ri\eta  - Fi\eta )L2(\Omega i)  - (fi, Ri\eta )L2(\Omega i)

\geq ci(\| \nabla Fi\eta \| pLp(\Omega i)d
+ \| Fi\eta \| rLr(\Omega i)

) - (fi, Fi\eta )L2(\Omega i)

\geq ciP (\| \nabla Fi\eta \| Lp(\Omega i)d , \| Fi\eta \| Lr(\Omega i))\| Fi\eta \| Vi
 - \| fi\| L2(\Omega i)\| Fi\eta \| Vi

\geq ci
\bigl( 
P (\| \nabla Fi\eta \| Lp(\Omega i)d , \| Fi\eta \| Lr(\Omega i)) - \| fi\| L2(\Omega i)

\bigr) 
\| \eta \| \Lambda i

,

which implies that Si is coercive. For S, we obtain that

\langle S\eta , \eta \rangle 
\| \eta \| \Lambda 

\geq 
\sum 2

i=1

\bigl( 
ci P (\| \nabla Fi\eta \| Lp(\Omega i)d , \| Fi\eta \| Lr(\Omega i)) - \| fi\| L2

\bigr) 
\| \eta \| \Lambda i

\| \eta \| \Lambda 1
+ \| \eta \| \Lambda 2

,

which tends to infinity as \| \eta \| \Lambda tends to infinity. Thus, S is also coercive.

In order to prove that the operators Si, S are demicontinuous, i.e., if \eta ki \rightarrow \eta i in
\Lambda i and \eta 

k \rightarrow \eta in \Lambda , then

\langle Si\eta 
k
i  - Si\eta i, \mu i\rangle \rightarrow 0 and \langle S\eta k  - S\eta , \mu \rangle \rightarrow 0,

for all \mu i \in \Lambda i and \mu \in \Lambda , we first consider the continuity of the operators Fi.

Lemma 7.4. If Assumptions 2.1 and 3.1 hold, then the nonlinear operators Fi :
\Lambda i \rightarrow Vi are continuous.
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Proof. Let \eta , \mu be elements in \Lambda i. Using the equality (7.1), together with Lemma 5.1
gives us the bound

(7.2)

ci(\| \nabla (Fi\eta  - Fi\mu )\| pLp(\Omega i)d
+ \| Fi\eta  - Fi\mu \| rLr(\Omega i)

)

\leq ai(Fi\eta , Fi\eta  - Fi\mu ) - ai(Fi\mu , Fi\eta  - Fi\mu )

= ai
\bigl( 
Fi\eta ,Ri(\eta  - \mu )

\bigr) 
 - ai(Fi\eta , wi) - ai

\bigl( 
Fi\mu ,Ri(\eta  - \mu )

\bigr) 
+ ai(Fi\mu ,wi)

\leq Ci

\bigl( 
\| \nabla Fi\eta \| p - 1

Lp(\Omega i)d
\| \nabla Ri(\eta  - \mu )\| 

Lp(\Omega i)d
+ \| Fi\eta \| r - 1

Lr(\Omega i)
\| Ri(\eta  - \mu )\| Lr(\Omega i)

+ \| \nabla Fi\mu \| p - 1
Lp(\Omega i)d

\| \nabla Ri(\eta  - \mu )\| 
Lp(\Omega i)d

+ \| Fi\mu \| r - 1
Lr(\Omega i)

\| Ri(\eta  - \mu )\| Lr(\Omega i)

\bigr) 
\leq Ci

\bigl( 
\| \nabla Fi\eta \| p - 1

Lp(\Omega i)d
+ \| Fi\eta \| r - 1

Lr(\Omega i)

+ \| \nabla Fi\mu \| p - 1
Lp(\Omega i)d

+ \| Fi\mu \| r - 1
Lr(\Omega i)

\bigr) 
\| \eta  - \mu \| \Lambda i

.

Letting \mu = 0 in (7.2) and employing the inequality | x| p  - 2p - 1| y| p \leq 2p - 1| x  - y| p
twice yields that

ci(\| \nabla Fi\eta \| pLp(\Omega i)d
+ \| Fi\eta \| rLr(\Omega i)

 - 2p - 1\| \nabla Fi0\| pLp(\Omega i)d
 - 2r - 1\| Fi0\| rLr(\Omega i)

)

\leq ci(2
p - 1\| \nabla (Fi\eta  - Fi0)\| pLp(\Omega i)d

+ 2r - 1\| Fi\eta  - Fi0\| rLr(\Omega i)
)

\leq Ci

\bigl( 
\| \nabla Fi\eta \| p - 1

Lp(\Omega i)d
+ \| Fi\eta \| r - 1

Lr(\Omega i)
+ \| \nabla Fi0\| p - 1

Lp(\Omega i)d
+ \| Fi0\| r - 1

Lr(\Omega i)

\bigr) 
\| \eta \| \Lambda i

.

Thus, we have a bound of the form

(7.3)
\| \nabla Fi\eta \| pLp(\Omega i)d

+ \| Fi\eta \| rLr(\Omega i)
 - c1

\| \nabla Fi\eta \| p - 1
Lp(\Omega i)d

+ \| Fi\eta \| r - 1
Lr(\Omega i)

+ c2
\leq Ci\| \eta \| \Lambda i

for every \eta \in \Lambda i, where c\ell = c\ell (\| \nabla Fi0\| Lp(\Omega i)d , \| Fi0\| Lr(\Omega i)) \geq 0.

Assume that \eta k \rightarrow \eta in \Lambda i. As \eta k is bounded in \Lambda i, the bound (7.3) implies that
\nabla Fi\eta 

k and Fi\eta 
k are bounded in Lp(\Omega i)

d and Lr(\Omega i), respectively. By setting \mu = \eta k

in (7.2), we finally obtain that \nabla Fi\eta 
k \rightarrow \nabla Fi\eta in Lp(\Omega i)

d and Fi\eta 
k \rightarrow Fi\eta in Lr(\Omega i),

i.e., Fi\eta 
k \rightarrow Fi\eta in Vi.

Lemma 7.5. If Assumptions 2.1 and 3.1 hold, then the operators Si : \Lambda i \rightarrow \Lambda \ast 
i

and S : \Lambda \rightarrow \Lambda \ast are demicontinuous.

Proof. Assume that \eta ki \rightarrow \eta i in \Lambda i. Lemma 7.4 then implies that \nabla Fi\eta 
k \rightarrow \nabla Fi\eta 

in Lp(\Omega i)
d and Fi\eta 

k \rightarrow Fi\eta in Lr(\Omega i). By the assumed continuity and boundedness of
the functions \alpha : z \mapsto \rightarrow 

\bigl( 
\alpha 1(z), . . . , \alpha d(z)

\bigr) 
and g, we also have that the corresponding

Nemyckii operators \alpha \ell : Lp(\Omega i)
d \rightarrow Lp/(p - 1)(\Omega i) and g : Lr(\Omega i) \rightarrow Lr/(r - 1)(\Omega i) are

continuous [39, Proposition 26.6]. The demicontinuity of Si then holds, as

| \langle Si\eta 
k
i  - Si\eta i, \mu i\rangle | \leq 

\Biggl( 
d\sum 

\ell =1

\| \alpha \ell (\nabla Fi\eta 
k
i ) - \alpha \ell (\nabla Fi\eta i)\| Lp/(p - 1)(\Omega i)

+ \| g(Fi\eta 
k
i ) - g(Fi\eta i)\| Lr/(r - 1)(\Omega i)

\Biggr) 
\| Ri\mu i\| Vi

for every \mu i \in \Lambda i. To prove demicontinuity of S, assume that \eta k \rightarrow \eta in \Lambda . Then
\eta k \rightarrow \eta in \Lambda i, and we have the inequality

| \langle S\eta k  - S\eta , \mu \rangle | \leq 
2\sum 

i=1

| \langle Si\eta 
k  - Si\eta , \mu \rangle | 
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for every \mu \in \Lambda . The demicontinuity of Si now implies the same property for S.

Theorem 7.6. If Assumptions 2.1 and 3.1 hold, then the nonlinear Steklov--
Poincar\'e operators Si : \Lambda i \rightarrow \Lambda \ast 

i and S : \Lambda \rightarrow \Lambda \ast are bijective.

Proof. The spaces \Lambda i and \Lambda are real, reflexive Banach spaces, and, by Lemmas 7.2,
7.3, and 7.5, the operators Si : \Lambda i \rightarrow \Lambda \ast 

i and S : \Lambda \rightarrow \Lambda \ast are all strictly monotone,
coercive, and demicontinuous. With these properties, the Browder--Minty theorem
(see, e.g., [39, Theorem 26.A(a,c,f)]) implies that the operators are bijective.

The next corollary follows by the same argumentation as for the bijectivity of Si.

Corollary 7.7. If Assumptions 2.1 and 3.1 hold, then the operators sJ + Si :
\Lambda i \rightarrow \Lambda \ast 

i are bijective for every s > 0.

8. Existence and convergence of the Robin--Robin method. There does
not seem to be a general convergence analysis in the literature for the weak form of
the Peaceman--Rachford splitting (6.3), i.e., with operators mapping reflexive Banach
spaces into their duals. However, there are such results for unbounded monotone
operators on Hilbert spaces, e.g., in the study [27]. Hence, we will restrict the do-
mains of the operators Si, S such that the Steklov--Poincar\'e equation (6.2) and the
Peaceman--Rachford splitting can be interpreted on L2(\Gamma ) instead of on the dual spa-
ces \Lambda \ast 

i ,\Lambda 
\ast . This comes at the cost of requiring more regularity of the weak solution

(see Assumption 2.6 and Remark 8.3) and of the initial guess \eta 02 . See Remark 8.7 for
how the latter can be handled in practice.

More precisely, we define the operators \scrS i : D(\scrS i) \subseteq L2(\Gamma ) \rightarrow L2(\Gamma ) as

D(\scrS i) = \{ \mu \in \Lambda i : Si\mu \in L2(\Gamma )\ast \} and \scrS i\mu = J - 1Si\mu for \mu \in D(\scrS i).

Analogously, we introduce \scrS : D(\scrS ) \subseteq L2(\Gamma ) \rightarrow L2(\Gamma ) given by

D(\scrS ) = \{ \mu \in \Lambda : S\mu \in L2(\Gamma )\ast \} and \scrS \mu = J - 1S\mu for \mu \in D(\scrS ).

As the zero functional obviously is an element in L2(\Gamma )\ast , the unique solution \eta \in \Lambda 
of the Steklov--Poincar\'e equation is in D(\scrS ) and

\scrS \eta = 0.

Remark 8.1. By the above construction, one obtains that D(\scrS 1)\cap D(\scrS 2) \subseteq D(\scrS )
and

\scrS \mu = \scrS 1\mu + \scrS 2\mu for all \mu \in D(\scrS 1) \cap D(\scrS 2).

However, the definition of the domains does not ensure that D(\scrS ) is equal to D(\scrS 1)\cap 
D(\scrS 2), as (S1 + S2)\mu \in L2(\Gamma )\ast does not necessarily imply that Si\mu \in L2(\Gamma )\ast .

If the weak solution of the nonlinear elliptic equation (2.1) satisfies the additional
regularity property stated in Assumption 2.6, then the corresponding solution of \scrS \eta =
0 is in fact an element in D(\scrS 1)\cap D(\scrS 2). This propagation of regularity will be crucial
when proving convergence of the Peaceman--Rachford splitting.

Lemma 8.2. If Assumptions 2.1, 2.6, and 3.1 hold and \scrS \eta = 0, then \eta \in D(\scrS 1)\cap 
D(\scrS 2).

Proof. As u = \{ F1\eta on \Omega 1;F2\eta on \Omega 2\} is the weak solution of (2.1), we have that\int 
\Omega 

\alpha (\nabla u) \cdot \nabla v dx =  - 
\int 
\Omega 

\bigl( 
g(u) - f

\bigr) 
v dx for all v \in C\infty 

0 (\Omega ).
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The restrictions on r in Assumption 2.1 yield that u \in W 1,p(\Omega ) \lhook \rightarrow L2(r - 1)(\Omega ). This
together with the observation | g(u)| 2 \leq C| u| 2(r - 1) implies that g(u)  - f \in L2(\Omega );
i.e., the distributional divergence of \alpha (\nabla u) is in L2(\Omega )d. By Assumption 2.6 and
restricting to \Omega i, we arrive at

\alpha (\nabla Fi\eta ) \in H(div,\Omega i) \cap C(\Omega i)
d, \alpha (\nabla Fi\eta ) \cdot \nu i \in L\infty (\partial \Omega i), and

\nabla \cdot \alpha (\nabla Fi\eta ) = g(Fi\eta ) - fi \in L2(\Omega i).

The H(div,\Omega i)-version of Green's formula [19, Chapter 1, Corollary 2.1] then gives
us \int 

\Omega i

\alpha (\nabla Fi\eta ) \cdot \nabla v dx =  - 
\int 
\Omega i

\nabla \cdot \alpha (\nabla Fi\eta )v dx+

\int 
\partial \Omega i

\alpha (\nabla Fi\eta ) \cdot \nu i T\partial \Omega i
v dS

for all v \in H1(\Omega i). Hence,

\langle Si\eta , \mu \rangle =
\int 
\Omega i

\alpha (\nabla Fi\eta ) \cdot \nabla Ri\mu dx+

\int 
\Omega i

\bigl( 
g(Fi\eta ) - fi

\bigr) 
Ri\mu dx

=

\int 
\partial \Omega i

\alpha (\nabla Fi\eta ) \cdot \nu i T\partial \Omega i
Ri\mu dS =

\bigl( 
\alpha (\nabla Fi\eta ) \cdot \nu i, \mu 

\bigr) 
L2(\Gamma )

for all \mu \in \Lambda i,

which implies that \eta \in D(\scrS i) for i = 1, 2.

Remark 8.3. From the proof, it is clear that the regularity assumption \alpha (\nabla u) \in 
C(\Omega )d is stricter than necessary and could be replaced by assuming that the normal
component of \alpha (\nabla u) on \Gamma can be interpreted as an element in L2(\Gamma )\ast . However,
characterizing the spatial regularity of u required to satisfy this weaker assumption
demands a more elaborate trace theory than the one considered in section 3.

Lemma 8.4. If Assumptions 2.1 and 3.1 hold, then the operators \scrS i are monotone,
i.e.,

(\scrS i\eta  - \scrS i\mu , \eta  - \mu )L2(\Gamma ) \geq 0 for all \eta , \mu \in D(\scrS i),

and the operators sI + \scrS i : D(\scrS i) \rightarrow L2(\Gamma ) are bijective for any s > 0.

Proof. The monotonicity follows by Lemma 7.2, as

(\scrS i\eta  - \scrS i\mu , \eta  - \mu )L2(\Gamma ) = (J - 1Si\eta  - J - 1Si\mu , \eta  - \mu )L2(\Gamma )

= \langle Si\eta  - Si\mu , \eta  - \mu \rangle \geq 0 for all \eta , \mu \in D(\scrS i) \subseteq \Lambda i.

For a fixed s > 0 and an arbitrary \mu \in L2(\Gamma ), we have, due to Corollary 7.7, that
there exists a unique \eta \in \Lambda i such that (sJ + Si)\eta = J\mu in \Lambda \ast 

i , i.e.,

Si\eta = J(\mu  - s\eta ) \in L2(\Gamma )\ast .

Hence, \eta \in D(\scrS i) and (sI+\scrS i)\eta = \mu in L2(\Gamma ). The operators sI+\scrS i : D(\scrS i) \rightarrow L2(\Gamma )
are therefore bijective.

The Peaceman--Rachford splitting on L2(\Gamma ) is now given by finding (\eta n1 , \eta 
n
2 ) \in 

D(\scrS 1)\times D(\scrS 2) for n = 1, 2, . . . such that

(8.1)

\Biggl\{ 
(sI + \scrS 1)\eta 

n+1
1 = (sI  - \scrS 2)\eta 

n
2 ,

(sI + \scrS 2)\eta 
n+1
2 = (sI  - \scrS 1)\eta 

n+1
1 ,

where \eta 02 \in D(\scrS 2) is an initial guess. Lemma 8.4 then directly yields the existence of
the approximation; i.e., each iteration of the Peaceman--Rachford approximation has
a unique solution \eta n+1

i .
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Corollary 8.5. If Assumptions 2.1 and 3.1 hold and \eta 02 \in D(\scrS 2), then there
exists a unique Peaceman--Rachford approximation (\eta n1 , \eta 

n
2 )n\geq 1 \subset D(\scrS 1)\times D(\scrS 2) given

by (8.1) in L2(\Gamma ).

Corollary 8.6. Let Assumptions 2.1 and 3.1 hold, \eta 02 \in D(\scrS 2), and set u02 =
F2\eta 

0
2. The Peaceman--Rachford approximation (\eta n1 , \eta 

n
2 )n\geq 1 \subset D(\scrS 1) \times D(\scrS 2) also

satisfies the weak formulation (6.3), and (un1 , u
n
2 )n\geq 1 = (F1\eta 

n
1 , F2\eta 

n
2 )n\geq 1 is a weak

Robin--Robin approximation (5.2).

Proof. Assume that (\eta n1 , \eta 
n
2 )n\geq 1 \subset D(\scrS 1) \times D(\scrS 2) is a Peaceman--Rachford ap-

proximation in L2(\Gamma ). Then\bigl( 
(sI + \scrS 1)\eta 

n+1
1 , \mu 

\bigr) 
L2(\Gamma )

=
\bigl( 
(sI  - \scrS 2)\eta 

n
2 , \mu 

\bigr) 
L2(\Gamma )

for all \mu \in L2(\Gamma ),\bigl( 
(sI + \scrS 1)\eta 

n+1
1 , \mu 

\bigr) 
L2(\Gamma )

= \langle (sJ + S1)\eta 
n+1
1 , \mu \rangle for all \mu \in \Lambda 1, and\bigl( 

(sI  - \scrS 2)\eta 
n
2 , \mu 

\bigr) 
L2(\Gamma )

= \langle (sJ  - S2)\eta 
n
2 , \mu \rangle for all \mu \in \Lambda 2.

This implies that

\langle (sJ + S1)\eta 
n+1
1 , \mu \rangle = \langle (sJ  - S2)\eta 

n
2 , \mu \rangle for all \mu \in \Lambda = \Lambda 1 \cap \Lambda 2;

i.e., the first assertion of (6.3) holds. The same argumentation yields that the second
assertion of (6.3) is valid. As (\eta n1 , \eta 

n
2 )n\geq 1 satisfies (6.3), Lemma 6.3 directly implies

that (un1 , u
n
2 )n\geq 1 = (F1\eta 

n
1 , F2\eta 

n
2 )n\geq 1 is a weak Robin--Robin approximation (5.2).

Remark 8.7. At first glance, finding an initial guess satisfying \eta 02 \in D(\scrS 2) might
seem limiting, as D(\scrS 2) is not explicitly given. However, such an initial guess can,
e.g., be found by solving \langle S2\eta 

0
2 , \mu \rangle = 0 for all \mu \in \Lambda 2.

With this L2(\Gamma )-framework, the key part of the convergence proof follows by the
abstract result [27, Proposition 1]. For sake of completeness, we state a simplified
version of the short proof in the current notation.

Lemma 8.8. Consider the solution of \scrS \eta = 0 and the Peaceman--Rachford ap-
proximation (\eta n1 , \eta 

n
2 )n\geq 1. If \eta 02 \in D(\scrS 2) and Assumptions 2.1, 2.6, and 3.1 hold,

then

(8.2) (\scrS i\eta 
n
i  - \scrS i\eta , \eta 

n
i  - \eta )L2(\Gamma ) \rightarrow 0 as n\rightarrow \infty 

for i = 1, 2.

Proof. By the hypotheses and Lemma 8.2, we obtain that \eta \in D(\scrS 1)\cap D(\scrS 2) and
\scrS 1\eta =  - \scrS 2\eta . Furthermore,

\eta n+1
1 = (sI+\scrS 1)

 - 1(sI - \scrS 2)\eta 
n
2 \in D(\scrS 1) and \eta 

n+1
2 = (sI+\scrS 2)

 - 1(sI - \scrS 1)\eta 
n+1
1 \in D(\scrS 2).

Next, we introduce the notation

\mu n = (sI + \scrS 2)\eta 
n
2 , \mu = (sI + \scrS 2)\eta , \lambda n = (sI  - \scrS 2)\eta 

n
2 , and \lambda = (sI  - \scrS 2)\eta ,

which yields the representations

\eta =
\mu + \lambda 

2s
, \scrS 2\eta =

\mu  - \lambda 

2
, \scrS 1\eta =

\lambda  - \mu 

2
,

\eta n2 =
\mu n + \lambda n

2s
, \scrS 2\eta 

n
2 =

\mu n  - \lambda n

2
,

\eta n+1
1 =

\mu n+1 + \lambda n

2s
, \scrS 1\eta 

n+1
1 =

\lambda n  - \mu n+1

2
.
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The monotonicity of \scrS i then gives the bounds

0 \leq (\scrS 2\eta 
n
2  - \scrS 2\eta , \eta 

n
2  - \eta )L2(\Gamma )

=
1

4s

\bigl( 
(\mu n  - \mu ) - (\lambda n  - \lambda ), (\mu n  - \mu ) + (\lambda n  - \lambda )

\bigr) 
L2(\Gamma )

=
1

4s

\bigl( 
\| \mu n  - \mu \| 2L2(\Gamma )  - \| \lambda n  - \lambda \| 2L2(\Gamma )

\bigr) 
and

0 \leq (\scrS 1\eta 
n+1
1  - \scrS 1\eta , \eta 

n+1
1  - \eta )L2(\Gamma )

=
1

4s

\bigl( 
(\lambda n  - \lambda ) - (\mu n+1  - \mu ), (\lambda n  - \lambda ) + (\mu n+1  - \mu )

\bigr) 
L2(\Gamma )

=
1

4s

\bigl( 
\| \lambda n  - \lambda \| 2L2(\Gamma )  - \| \mu n+1  - \mu \| 2L2(\Gamma )

\bigr) 
.

Putting this together yields that

\| \mu n+1  - \mu \| 2L2(\Gamma ) \leq \| \lambda n  - \lambda \| 2L2(\Gamma ) \leq \| \mu n  - \mu \| 2L2(\Gamma ),

and we obtain the telescopic sum

0 \leq 
N\sum 

n=0

\bigl( 
\| \mu n  - \mu \| 2L2(\Gamma )  - \| \mu n+1  - \mu \| 2L2(\Gamma )

\bigr) 
\leq \| \mu 0  - \mu \| 2L2(\Gamma )  - \| \mu N+1  - \mu \| 2L2(\Gamma ),

i.e., \| \mu n  - \mu \| 2L2(\Gamma )  - \| \mu n+1  - \mu \| 2L2(\Gamma ) \rightarrow 0 as n \rightarrow \infty . The latter together with the

bounds above imply the limits (8.2).

Theorem 8.9. Consider the Peaceman--Rachford approximation (\eta n1 , \eta 
n
2 )n\geq 1, given

by (8.1), of the Steklov--Poincar\'e equation \scrS \eta = 0 in L2(\Gamma ) together with the cor-
responding Robin--Robin approximation (un1 , u

n
2 )n\geq 1 = (F1\eta 

n
1 , F2\eta 

n
2 )n\geq 1 of the weak

solution u = \{ F1\eta on \Omega 1;F2\eta on \Omega 2\} to the nonlinear elliptic equation (2.1).
If \eta 02 \in D(\scrS 2) and Assumptions 2.1, 2.6, and 3.1 hold, then

(8.3) \| \eta n1  - \eta \| \Lambda 1
+\| \eta n2  - \eta \| \Lambda 2

\rightarrow 0, and \| un1  - u\| W 1,p(\Omega 1)+\| un2  - u\| W 1,p(\Omega 2) \rightarrow 0

as n tends to infinity.

Proof. By the monotonicity bound in Lemma 7.2, the property that \eta ni , \eta \in D(\scrS i),
and Lemma 8.8, we have the limits

ci
\bigl( 
\| \nabla (Fi\eta 

n
i  - Fi\eta )\| pLp(\Omega i)d

+ \| Fi\eta 
n
i  - Fi\eta \| rLr(\Omega i)

\bigr) 
\leq \langle Si\eta 

n
i  - Si\eta , \eta 

n
i  - \eta \rangle 

= (\scrS i\eta 
n
i  - \scrS i\eta , \eta 

n
i  - \eta )L2(\Gamma ) \rightarrow 0 as n\rightarrow \infty 

for i = 1, 2. Hence, each of the terms \| \nabla (Fi\eta 
n
i  - Fi\eta )\| Lp(\Omega i)d and \| Fi\eta 

n
i  - Fi\eta \| Lr(\Omega i)

tends to zero, which yields that

\| \eta ni  - \eta \| \Lambda i \leq C\| Fi\eta 
n
i  - Fi\eta \| Vi \rightarrow 0 as n\rightarrow \infty 

for i = 1, 2. The desired convergence (8.3) is then proven, as \| \cdot \| Vi
and \| \cdot \| W 1,p(\Omega i)

are equivalent norms.



604 EMIL ENGSTR\"OM AND ESKIL HANSEN

Remark 8.10. As already stated in section 1, the convergence rate of the Robin--
Robin method applied to a spatially discretized linear elliptic equation deteriorates
as the spatial parameter tends to zero [17], i.e., when one considers the continuous
case. It is therefore unlikely that one could derive a stronger result than the W 1,p-
convergence of Theorem 8.9 for the Robin--Robin method applied to general nonlinear
elliptic equations.
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