LUND UNIVERSITY

Applications of Diversity and the Self-Attention Mechanism in Neural Networks

Berg, Axel

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Berg, A. (2022). Applications of Diversity and the Self-Attention Mechanism in Neural Networks. [Licentiate
Thesis, Mathematics (Faculty of Engineering)]. Lund University, Faculty of Science, Centre for Mathematical
Sciences, Mathematics.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 27. Apr. 2024

https://portal.research.lu.se/en/publications/81b7e624-4031-41ad-b03f-3cca05002ec8

Applications of Diversity and

the Self-Attention Mechanism in
Neural Networks

by Axel Berg

LLUND

UNIVERSITY

Centre for Mathematical Sciences
Lund University

Box 118

SE-221 oo Lund

Sweden

www.maths.lth.se

Licentiate Thesis in Mathematical Sciences 2022:1
ISSN: 1404-0034

ISBN: 978-91-8039-152-8 (print)

ISBN: 978-91-8039-151-1 (electronic)
LUTFMA-2045-2022

© Axel Berg, 2022

Printed in Sweden by Media-Tryck, Lund University, Lund 2022

AR \“" “%

(1 1)

(},'5) ////
=~ 4

Intertek 241903

Abstract iii

Abstract

This thesis covers three contributions in applications of neural networks. The first is related
to diversity and ensemble learning, while the other two cover novel applications of the
self-attention mechanism.

An important aspect of training a neural network is the choice of objective function. Re-
gression via Classification (RvC) is often used to tackle problems in deep learning where
the target variable is continuous, but standard regression objectives fail to capture the un-
derlying distance metric of the domain. This can result in better performance of the trained
model, but the optimal choice of discrete classes used in RvC is not well understood. In
Paper 1, we introduce the concept of label diversity by generalizing the RvC method. By
exploiting the fact that labels can be generated in arbitrary ways for continuous and ordinal
target variables, we show that using multiple labels can improve the prediction accuracy
of a neural network compared to using a single label and provide theoretical justification
from ensemble theory. We apply our method to several tasks in computer vision and show
increased performance compared to regression and RvC baselines.

The performance of a neural network is also influenced by the choice of network architec-
ture, and in the design process it is important to consider the domain of the inputs and
its symmetries. Graph neural networks (GNNG) is the family of networks that operates
on graphs, where information is propagated between the graph nodes using for example
self-attention. However, self-attention can be used for other data domains as well if the
inputs can be converted into graphs, which is not always trivial. In Paper 11 , we do this
for audio by using a complete graph over audio features extracted from different time slots.
We apply this technique to the task of keyword spotting and show that a neural network
solely based on self-attention is more accurate than previously considered architectures.

Finally, in Paper 111 we apply attention-based learning to point cloud processing, where the
permutation symmetry must be preserved. In order to make the self-attention mechanism
both more efficient and more expressive, we propose a hierarchical approach that allows
individual points to interact on both a local and global scale. By extensive experiments
on several benchmarks, we show that this approach improves the descriptiveness of the
learned features, while simultaneously reducing the computational complexity compared
to an architecture that applies self-attention naively on all input points.

iv

List of Publications

The contents of this thesis is based on the following publications:

1

1I

IIT

Deep Ordinal Regression with Label Diversity

Axel Berg, Magnus Oskarsson, Mark O’Connor
2020 2s5th International Conference on Pattern Recognition (ICPR), 2021, pp.
2740-2747, doi: 10.1109/ICPR48806.2021.9412608.

Keyword Transformer: A Self-Attention Model for Keyword Spotting

Axel Berg, Mark O’Connor, Miguel Tairum Cruz
Proc. Interspeech 2021, 4249-4253, doi: 10.21437/Interspeech.2021-1286

Points to Patches: Enabling the Use of Self-Attention for 3D Shape Recognition

Axel Berg, Magnus Oskarsson, Mark O’Connor
Manuscript, Lund University, 2022

Authors Contributions

Author’s Contributions

1

1I

IIT

I came up with the idea after some help from the other authors, developed the
theory and implemented the experiments. The paper was written by me, with
input from the other authors.

Mark came up with the idea of applying Transformers to keyword spotting and
I implemented the model. I implemented most of the experiments, except for
knowledge distillation, which was done by Mark, and latency measurements, which
was done by Miguel. The paper was written jointly by the three authors.

I came up with the idea after some discussions with the other authors. The imple-
mentation and all experiments were done by me. The paper was written by me,
with input from the other authors.

vi

Acknowledgements

I would like to express my gratitude towards my main supervisors Magnus Oskarsson and
Mark O’Connor for guiding me through the research process. It has been a very rewarding
experience so far and your advice has been invaluable throughout the process.

I would also like to thank my co-supervisor Kalle Astrom, the Arm ML Research team, as
well as my colleagues at Matematikcentrum and the WASP community for interesting dis-
cussions. Finally, I would like to thank my wife Anna for her support and encouragement.

Funding

This work was financially supported by Arm and by the Wallenberg Al, Autonomous Sys-
tems and Software Program (WASP), funded by the Knut and Alice Wallenberg Founda-

tion.

Acknowledgements vii

List of Abbreviations

E-NN k-nearest neighbour

ADAM Adaptive moment estimation

ASR Automatic speech recognition

BN Batch normalization

CE Cross entropy

CNN Convolutional neural network

DCT Discrete cosine transform

FLOPS Floating point operations per second
FMR Feature matching recall

GNN Graph neural network

LN Layer normalization

MAE Mean average error

MAP Maximum a posteriori probability
MFCC Mel-frequency cepstrum coefficients
mloU mean intersection-over-union

ML Maximum likelihood

MLP Multi-layer perceptron

MSA Multi-head self-attention

MSE Mean squared error

RANSAC Random sample consensus

RNN Recurrent neural network

viii

RvC Regression via classification
SA Self-attention
SGD Stochastic gradient descent

SLAM Simultaneous localization and mapping

Contents

Abstract L iii
List of Publications iv
Author’s Contributions v
Acknowledgements. L Lo o vi
List of Abbreviations vii
Introduction I
I Background I
2 Artificial Neural Networks and Deep Learning 2
2.1 Supervised Learningo oL 4

2.2 Training a Neural Network 6

3 Diversity and Ordinal Regression 8
3.1 Regression Ensembles 0o 000 9

3.2 Regression via Classification 10

3.3 Ordinal Regression 12

3.4 Label Diversity oo 13

4 Permutation Symmetry and the Self-Attention Mechanism 15
4.1 LearningonSets.o 17

4.2 Learningon Graphs 18

4.3 Self-Attention and The Transformer 20

4.4 Applications of Self-Attention L. 22

5 Conclusions 26

References e 27

Introduction

1 Background

Feature extraction is an important step in pattern recognition that deals with finding useful
representations of data, for example images or audio, which can be used for downstream
tasks. Sometimes it is possible to design hand-crafted feature extractors based on human
intuition, but in recent years they have fallen out of favor and been replaced by machine
learning models that learn to extract features based on patterns in large data collections.
In recent years, the use of neural networks as feature extractors has accelerated progress
in many fields, perhaps most notably in computer vision [24]. In section 2, we provide
a brief introduction to some important concepts in deep learning that are necessary for
understanding the rest of the material in this thesis.

When using a neural network for a specific task, there are several factors that influence the
final performance of the network, including the size and quality of the data set used for
training the network, the optimization procedure and choice of objective function, and the
architecture of the neural network. In general, these factors cannot be disentangled, because
changing one of them can influence how one ought to decide on the others. Although
perhaps unrealistic, research in this area therefore often builds upon the assumption that
all but one factor are fixed. Furthermore, the data set, which is perhaps the most important
factor, cannot be altered or extended in many scenarios. Also, neural networks generally
converge when optimized using simple methods based on gradient descent, which makes
the choice of optimization procedure less relevant for the final network performance [9].
This leaves the researcher with two important design choices: the objective function and
the network architecture.

This thesis covers different aspects of both of these problems. In particular, we discuss how
different representations of the inputs and outputs of the network leads to different design
choices. For example, consider the problem of age estimation, where the input x is an
image of a human face and the output y is the age of the person in the image. Firstly, the
choice of objective function will depend on how the age represented. Perhaps the most

2 Introduction

natural choice is to let y € R, i.e. the age is a positive real number. However, in some
scenarios the labeled examples in the training data only contains the year of birth of each
person. Therefore, another natural choice would be to use a set of positive integers, e.g.
y € {0,1,...,100}. The difference between the choice of output representation is subtle,
but it has consequences for both the objective function and the network design. In terms of
the objective function, the first choice leads to a regression problem where the network has
a single output that directly predicts the age of the person in the image. The second choice
leads to a classification problem, where the network needs to produce 101 outputs, and the
E:th output predicts a probability that the age of the person is equal to k. Is it possible
to say which of these two choices is better in terms of the final predictive performance
of the network? In this Section 3 we explore the pros and cons of the different output
representations, which leads us to presenting a novel objective function that exploits the
ambiguity in how the outputs are represented.

Likewise, the network architecture will depend on how the image is represented. Typically,
a digital image x with resolution h - w is represented as a set of pixels on a 2D grid, where
each pixels contains three color channels: red, green and blue (RGB). Therefore, a natural
image representation is x € R"*®*3_ This allows for the use of grid-based operations, such
as two dimensional convolutions, when extracting image features. However, this is not the
only possible representation, and recent works [11, 22] suggest that splitting the image into
a set of small patches and processing it using graph-based learning methods can be more
effective in terms of extracting descriptive features. The same reasoning can be applied to
other types of data, for example audio, which is often processed using convolutions on a
2D spectrogram.

The use of graphs to represent data is closely related to permutation symmetry, since a graph
has no intrinsic ordering of its nodes. Another type of data which is commonly modeled
using graphs is unordered 3D point clouds from scans of real-world environments. Fast
and accurate processing of point clouds is an important step in many navigation appli-
cations, such as advanced driver-assistance systems (ADAS) and simultaneous localization
and mapping (SLAM). In Section 4 we outline the concept of permutation symmetry, how
it relates to modern graph neural network architectures and discuss some of its applications.
Finally, in section 5, we conclude the introduction by outlining the contents of the included
publications.

2 Artificial Neural Networks and Deep Learning

An artificial neural network consists of a set of neurons, with corresponding weights and
activation functions, that form a computational graph. A network fg : X —), parame-
terized by a set of parameters 6, defines a mapping from the input space & to the output

2. ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING 3

¢S]

Figure 1: An MLP with a single hidden layer. The inputs z(1), ..., z(¢=) are first propagated to the hidden layer, where activa-
tions (Y, ..., h{?n) are computed. These are then propagated to the final layer, where the output y*) ..., y(%v)
of the neural network is obtained.

space). The simplest form of neural network is the perceptron [20], which was originally
inspired by neurons in the brain, that maps an input vector x = [z, ..., 2®]T 0 an
output ¥, using a weighed sum

y=o(xTw+b). ()

Here o is a non-linearity, also known as the activation function. The perceptron is param-
eterized by the weight vector w = [w™), ..., w(®]7 and the bias b, which can be modified
in order for the perceptron to compute different linear functions.

By combining multiple layers of perceptrons, we get a directed computational graph which
is referred to as a multi-layer perceptron (MLP), as shown in Figure 1. The neurons in-
between the input and the output layer are “hidden” layers and their outputs store inter-
mediate values that are propagated forward through the network. By increasing the number
of hidden layers in the network, we arrive at what is commonly referred to as deep neural
networks, although there is no strict definition on where the line between shallow and deep
networks goes.

Under certain conditions, MLPs are universal function approximators, in the sense that
they can approximate any continuous function with arbitrary precision. In theory, a single
hidden layer with sufficient width is enough to achieve this property [3], but in practice
deeper networks have shown to generalize better to unseen data [8].

4 Introduction

2.1 Supervised Learning

When performing function approximation using a neural network, a learning rule is neces-
sary to update the parameters of the network. In the context of supervised learning, this is
done by minimizing a loss function, which depends on the problem type. More specifically,
given a set of input and output pairs S = {(xy, t,,) }_, we want to update the parameters
of our network such that we minimize some objective function L : Y x Y — R, which
often is referred to as the loss function. Under the assumption that the data samples are
independent and identically distributed (i.i.d.), we seek to optimize the parameters 8 such
that the likelihood log pg (%, |xy,) of the observed data is maximized. This is equivalent to
minimizing the negative log-likelihood:

N N
O = arg;nax H Pe (tn’Xn) = argemin - Z log pe (tn|Xn)~ (2)
n=1 n=1

This is known as the maximum likelihood (ML) estimate and it will take various forms
depending on how we choose to model the data distribution. For example, assume that
the underlying process generating the data can be modeled as t,, = fg(x,,) + €5, where
en ~ N(0,0?) are i.i.d. random variables sampled from a Gaussian distribution and fg is
our neural network model. Our ML estimate in (2) then simplifies to

N
. 1 (tn - f@(Xn))2
Oy, = arg min — lo exp(———F—— (3)
Mt = arg! ; B s O Sz) 3
N Yo
= argemin 5 log 2mo? + nz:l ﬁ(tn — fo(xn))?. (4)

Ignoring constants, we find that maximizing the likelihood corresponds to minimizing the
squared error between the network predictions and the ground truth data labels. In this
case it is therefore natural to use the mean squared error as loss function:

N
1

Lyse(x,1,0) = + Z:l(tn — fo(xn))?. (5)

n—=
When choosing the neural network architecture for this problem, which is a form of non-
linear regression, the last layer of the network has a single output neuron such that the
predictions y,, = fo(x;) € R. Furthermore, the regression problem can easily be extended

to higher dimensions.

In other scenarios, networks are used for multi-way classification problems where the targets
tn € {1,..., K'} belong to a set of discrete categories. The network architecture then has to

2. ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING 5

be modified to use K output neurons, where each neuron models the probability pg (k|x,)
of x,, being an instance of class k. In order to generate a probability distribution over classes,
the output of the last hidden layer is typically normalized using a softmax function

N 6h(k)
Softmax(h)() = W (6)

j=1

This guarantees that the predicted probabilities are non-negative and sum to 1. While there
are other functions with these properties, the softmax is most commonly used because it has
several desirable properties, such as invariance to additive scalars. Furthermore, the softmax
can be interpreted as a smooth differentiable approximation of the arg max function [8].

Although the performance of a classification model is usually evaluated using its accuracy,
i.e. the fraction of correctly classified data samples, this objective is difficult to optimize in
practice. Therefore it is more common to use a loss function that measures the similarity
between the predicted distribution and the ground truth distribution ¢(k|x5,), such as the
cross-entropy (CE), which for an individual data sample is defined as

=

H(q,po) = — > _ q(k|xn) log p(k|xn).)
k=1

Since the data points belong to a set of discrete classes, we can use a one-hot encoding to
model the ground truth distribution:

1, th,=k
Elx,)=¢ " " 8
a(klxn) {0, otherwise. ®

Note that the choice of ¢(k|x;) need not be a one-hot distribution. For example, label
smoothing [21], which is a form of network regularization, uses a smoothing parameter «
that penalizes over-confident predictions

1-— tn, =k
g(k|xn) = { o (9)

%, otherwise.

For ordinal regression problems, where the classes can be ranked on an ordinal scale, there
are other several other possible label encodings, which are further discussed in Section 3.

There exists an intimate connection between the CE loss and the ML estimation technique.
Using the one-hot encoding in 8, we can calculate the average cross-entropy across the entire

6 Introduction

data set as

N K
1
Lee(x,t,0) NZ}; q(k|xn)log pg(klxn) = Zlogpo (tn[xp), (10)

n=1

where pg(t5,|Xp) here should be interpreted as the likelihood of the parameters 6 given the
observations (Xy, t,). By comparing this with equation (2), we can conclude that under
these assumptions, minimizing the average cross entropy is in fact equivalent to minimizing
the average negative log-likelihood.

2.2 Training a Neural Network

Training a neural network is an optimization problem where the goal is to minimize the
expected loss L(x,t,) for the entire data set. Ideally, if the network is able to recognize
patterns in the training data, and consequently minimize the loss function, it will be able to
infer the same patterns on data not seen during training. An assumption is that the unseen
data is drawn from the same underlying distribution as the training data. For example,
if a neural network has been trained to classify images of cats and dogs, it will hopefully
generalize to unseen examples of cats and dogs. However, if the training set only contains
dogs of specific races, e.g. Labrador Retrievers, the classification performance might not
generalize well to images of Chihuahuas.

Another common problem in neural network training is poor generalization due to mem-
orization of training examples, also referred to as overfitting. This can occur when the
parameter space is too large, which in practice often means that the network is too deep
(has too many layers) or too wide (each layer has too many parameters). Therefore, an
obvious way to regularize a network is to make it smaller, but in practice it has been shown
that over-parameterized networks perform better even on simpler tasks [30, 16]. Instead,
different regularization strategies are thus applied during training, which can be done for
example by modifying the loss function to penalize memorization of training examples. For
instance, weight decay (WD) can be applied by adding an extra term to the loss function
which penalizes the [2-norm of the parameters:

Lwp(x,t,0) = L(x,t,0) + %aTe. (11)

Here, A > 0 is a hyperparameter that determines the regularization strength. The intuition
behind weight decay is that it encourages the optimizer to find an “simple” solution where
the weights are close to 0. Furthermore, it can be shown that adding weight decay in the
loss function is equivalent to setting a Gaussian prior on 6 [s].

2. ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING 7

Another common technique is to use data augmentation in order to artificially expand the
training set by feeding the network multiple augmented copies of the same data samples.
For example, when learning to classify images of dogs and cats, we can use random scaling,
rotations and cropping of the images. This also forces the network to be approximately
invariant to those transformations, since the labels are not being changed (a rotated cat is
still a cat). In some cases, it may also be desirable to make the network exactly invariant by
restricting the architecture of the network itself. This topic is further explored in Section 4.

In practice, neural networks are optimized using various forms of gradient descent. The
optimization procedure consists of 1) estimating the gradient VgL of the loss function
with respect to the network parameters and 2) updating the parameters in the negative
direction of the gradient. In its simplest form, the learning rule is given by

0+ 60— nVel, (12)

where 7 is the learning rate. The update is applied repeatedly until convergence is reached,
which usually requires iterating over the training data multiple times. Since the neural
network is essentially a computational graph, the gradient with respect to individual scalar
parameter of the network can be found using backpropagation, which involves applying
the chain rule recursively.

In practice, it is not computationally efhicient to compute the expected gradient using all
training samples, since only a subset is needed to get an estimate of the gradient. The
most common learning rule is stochastic gradient descent (SGD), where for each update
the gradient is estimated using a randomly sampled subset of the training data. More
specifically, each update uses minibatch B C S of training data and then estimates the
gradient as

1

|B]

In recent years, more advanced learning rules that use gradient momentum in order to

Vo = > VoL(%n,yn,0). (13)

Xn,Yn eB

adaptively adjust the learning rate, such as Adam [10], have been proposed in order to reach
faster convergence. Together with the fast evolution of modern computer hardware, such
as graphics (GPUs) and neural (NPUs) processing units, that allow for efficient acceleration
of both training and inference on computational graphs, have made deep neural networks
both a ubiquitous tool in the research community, but also feasible to deploy in many
commercial applications. In this section we have only made a brief introduction to this
topic and the reader is referred to [8] for a more rigorous treatment of basic deep learning
concepts.

8 Introduction

3 Diversity and Ordinal Regression

In this section, we will cover the notion of diversity in the context of statistical learning
theory. Here, diversity refers to differences of properties within a collection of models, data
sets or predictions. Hence, a diverse set of models can mean either models with different
architectures or different values of their parameters. Likewise, a diverse data set contains
a wide variety of samples that are not biased towards a particular setting. For example, a
non-diverse data set with images of cats and dogs might only contain instances of particular
breeds, or only images captured indoors, whereas a diverse data set should capture enough
variety in both of these aspects. Obviously, it is not trivial to quantify diversity in this
aspect, since the notion is inherently subjective and depends on the context. However,
a diversity in predictions is easier to quantify, since we can measure the variance of the
predictions. Hence a set of predictions can be considered diverse if they have a variance
larger than zero.

An analogy for diverse predictions can be made with juries used for grading in sport compe-
titions, for example gymnastics and figure skating, where the final score is assigned to each
competitor by averaging the scores of the individual jurors. This mitigates the influence
of biased jurors and is therefore considered more fair than a single juror, a phenomenon
sometimes referred to as the wisdom of the crowd. Likewise, in countries where juries are
used in judicial courts, a convicting verdict can only be reached if a large majority of jurors
are in agreement. Furthermore, during the jury selection process, it is often considered de-
sirable to have diversity within the jury with respect to e.g. income, gender and occupation,
which is similar to the notion of model diversity.

In communication science, diversity can be exploited in order to mitigate the influence
of random processes. For example, when a mobile phone has poor signal reception, the
cell tower may transmit a repeated version of the signal, which can then be averaged in
the receiver. The white noise generated in the receiver antenna will then tend to zero as the
number of repetitions increase. In some applications, multiple receiver or (and) transmitter
antennas are used as well, which increases the probability of at least one antenna pair having
good reception [28].

Diversity in machine learning is closely related to ensemble learning, in which a set of model
predictions are combined in order to improve predictive performance compared to a single
model on a given task. An old saying goes “two heads are always better than one”, and as we
shall prove in this section, the error of an ensemble average is always smaller than the average
error of the individual ensemble members, as long as there is enough diversity among the
ensemble members. This makes it possible to combine a set of weak models, with predictive
performance only slightly better than random guessing, into a strong ensemble model with
good predictive performance, a method known as boosting [7].

3. DIVERSITY AND ORDINAL REGRESSION 9

3.1 Regression Ensembles

For a given problem, we might have several models fg*, m = 1,..., M, that we wish to
combine in order create an ensemble model. For a regression problem with predictions
Ym = fg'(x), the simplest form of combination is to use a linear combination of the
individual predictions

M
Yens = Z WmYm, (14)
m=1

where set of weights {w, }_, are typically restricted to be non-negative and sum to 1,
which is also referred to as a convex linear combination. The simplest form of linear com-
bination is to assign equal weight to each individual predictor, i.e. wy, = 1/M,Vm, but
it is also possible to optimize them to minimize the prediction error on a validation data

set [17].

Given that we have calculated an ensemble average of our predictions, we would like to
understand the benefit from this operation. Fortunately, there exists an easy way to de-
compose the ensemble error, which allows us to quantify the error directly in terms of the
errors of the individual predictors.

Theorem 3.1. The Ambiguity Decomposition (Krogh and Vedelsby [12]) Consider an en-
semble of m = 1, ..., M models and the convex linear ensemble average computed as in
(14). The quadratic error between the ensemble average yens and the target ¢ then satisfies

M M
(yens - t)2 = Z wm(ym - t)2 - Z wm(ym - yens)2' (15)
m=1 m=1

Proof: The result can easily be shown by manipulation of terms:

Wm (ym - t)z Wm (ym — Yens + Yens — t)z (16)

M=
Il
NE

3
Il

W [(ym - yens)2 + (yens - t)Q + Z(ym - yens)(yens - t)]

-

3
Il

(17)

= (yens - t)Q + Z wm(ym - yens)Qa (18)

10 Introduction

where we have used the fact that yens = >, Wm¥ym and), wp, = 1. The final result is
obtained by rearranging the terms. [J

The ambiguity decomposition states that the error of the ensemble average is less than or
equal to the average error of the individual predictions of the ensemble members. In order
for the ensemble error to be small, the first term in (15) should be minimized, which requires
that the individual predictions are accurate. However, the second term, which grows with
increased variance within the ensemble predictions, should be large. Therefore there is a
trade-off to be made between accurate and diverse ensemble members.

3.2 Regression via Classification

For specific problems, using direct regression might be undesirable for several reasons. Con-
sider for example the problem of pose estimation, where the target variable ¢ € [0, 27) is
an angle of rotation. If we use the standard MSE loss function as in (5), it will suffer from
discontinuity at t = k27, k € Z. For example, if the target is t = 27 — € for some small
value of €, and the model predicts y = €, the error modulo 27 is 2e. However, the squared
error is (2 — 2¢)2, so using the MSE loss will not be suitable for this problem.

We could try to use another loss function, for example L = cos(y — t), but since this loss
has several local minima, it would not be suitable for optimization. This could be solved
for example by letting the model predict a pair of coordinates on the unit circle, instead of
directly predicting the pose angle, but this would require a normalization of the outputs
that makes optimization difficult. Here we will instead focus another method known as
regression via classification (RvC).

The main idea of RvC is to consider the target as a categorical variable, which makes it
possible to use classification methods for predictions. However, it is not always obvious
how the categorical classes ought to be defined for a given problem. The simplest solution
is to create bins of equal width that span the entire domain of the target. In the case of pose
estimation where the target variable is an angle, we can for instance divide it into K equally
wide bins, forming a set of categorical variables {c }5_, where each class corresponds to
an interval, such that ¢, = [%127, £27). Now, we can define a mapping from the
continuous targets to the K classes by simply assigning class & to all targets that belong to
the interval ¢y, as shown in Figure 2.

When selecting the number of intervals K that spans the target domain, there is a trade-off
to be made between the discretization error and the number of training examples in each
class. For example, if we assume that our training data consists of N data points we can
let K = N and have one training example per class. This will make it difficult for the
model to generalize to unseen data points, since it will not learn to group nearby angles in

3. DIVERSITY AND ORDINAL REGRESSION 11

C12 &1

C11 C2

C10 C3
fo

Cy Cy

Cg Cs

Cr Co

Figure 2: An example of how to perform RvC for image rotation prediction. Here, each continuous angle ¢ € [0, 27) is mapped
to one of K = 12 categorical labels using intervals of equal width on the unit circle. The model then tries to classify
each image in the correct bin, instead of predicting the angle directly.

the same category. On the other extreme end, we could let K = 2, such that ¢; = [0, 7)
and ¢y = [, 27), which corresponds to a binary classification problem where the pose
is classified into two segments of the unit circle. Obviously, this is not a good choice,
because even if the classifier can achieve high accuracy, we want to be able to infer poses
with higher precision than this. Therefore we can conclude that the optimal number of
bins lies somewhere in between these extremes, although there is no general rule that can
be inferred on what the optimal value for K ought to be.

When training the model, we assign each training data point to one of the classes and create
labels using e.g. a one-hot distribution

1, tec

q(ck) = (19)

0, otherwise.
The model is trained to match the labels by predicting a probability distribution p(t, €
Ck|Xn) that matches the labels. For brevity, we will from here forth denote the predicted
probability simply as p(cg|x).

Model optimization can be done using the same procedure as for an ordinary classification
problem, using e.g. the cross-entropy loss function

K
L=- Z q(cx) log p(cx|x). (20)
k=1

2 Introduction

The RvC approach might seem counter intuitive at first, but it effectively solves the problem
of discontinuous loss functions, since predictions on either side of the cutoff angle t = 27
will be penalized equally. However, the price that we pay for using a categorical label
representation is that the loss function is now agnostic to the magnitude of the error, because
it does not take into account which classes are nearby. For example, using the categorical
labels in Figure 2, if the true angle lies in ¢1, the loss will be the same if the model predicts
c2 or ¢y, although ¢y is clearly a better prediction.

From this it becomes obvious that the RvC method has thrown away useful information
about the labels, namely 1) the ordinal relationship between the classes and 2) the distance
metric used to compute the prediction errors, which in this case is the shortest path along
the unit circle. However, there are ways to exploit this information even in the context of
RvC. One solution, proposed by Diaz et al. [4], is to use a soft label representation

€_¢(7(Ck)7t)

p(ck|x) = Zfil e—d(v(cr)t)’

where ¢ is a distance metric and y(cy) is the midpoint of the interval. In other words, the

(21)

probability assigned to each class is inversely proportional to the distance between the class
and the true class. In practice, this will penalize nearby class predictions less than far away
predictions according to the chosen distance metric.

3.3 Ordinal Regression

Now let us consider a problem domain where there doesn't exist a natural distance metric.
Consider for example the problem of ranking, where the objective is to classify objects into
ordinal categories t € {1, .., K} and the classes can be ordered, but there doesn’t exist a
well-defined distance between classes. An example of such a problem would be to predict
survey responses on a Likert scale, i.e. from “strongly disagree” to “strongly agree”, based on
some features of the respondent. This setting is referred to as ordinal regression and several
methods have been proposed for solving it.

Frank et al. [6] proposed to treat K -class ranking problem as K — 1 separate binary clas-
sification problems by noting that instead of predicting “what is the rank of 22", asking “is
the rank of x greater than k”, for k = 1, ..., K — 1. In a machine learning setting, a model
can then be trained to predict p(t > k|z) for all relevant values of k, and the ranking

3. DIVERSITY AND ORDINAL REGRESSION 13

. d%l d}) d%o d%l d%2
dig dy £~
1
dy dy d di3 d
d} dy d2 3 ap d
L d &2 &
di - dl & & d2 " dy?

Figure 3: An example of how to create diverse sets of intervals by combining nearby classes. In this example, there are M = 12
different sets of labels, each containing L = 11 intervals that span the unit circle.

probabilities can then be recovered by noting that

p(t =1jx) =1 —p(t > 1[x),
p(t =klx) =p(t>klx)—pt>k—-1x), k=2,.,.K—1 (22)
p(t = K|x) =p(t > K — 1]x).

Although this method is simple, it does not automatically guarantee that the predictions
are rank-consistent, i.e. that p(t > 1|x) > p(t > 2|x) > ... > p(t > K — 1|x), but
methods have later been developed to enforce rank-consistency [14]. Nevertheless, training
a model by summing the individual losses of each binary classifier will result in an overall
loss that penalizes errors based on their magnitude on the ordinal scale.

3.4 Label Diversity

In Paper 1, we consider an alternative approach to RvC and ordinal regression that exploits
diversity, but in the labels rather than in the data. This approach is inspired by the fact that
there are many possible ways to create categorical labels from continuous targets and that
there is no general method for knowing a priori which categorical representation will be
most suitable for a particular task. Going back to the example of pose estimation in Figure
2, we note that there are several arbitrary design choices that have to be made dividing
the unit circle into intervals. For instance, how do we choose the number of intervals K?
Should the intervals have equal length and should there be overlap between them?

From ensemble theory we know that combining different model predictions, where each
model has been trained on a different label representation, will yield a smaller prediction
error that the average error from the individual models. Therefore, without knowing which
representation is most suitable, we can create a diverse set of representations and use an

14 Introduction

ensemble of models to combine the predictions on the different representations into a final
predictions. For example, we could train M different models using different values of K,
and combine the the model predictions using an ensemble average.

The method of label diversity extends ordinary multi-class classification and ordinal re-
gression problems, since different labels can be grouped in arbitrary ways. For example, a
K -way classification problem can be expanded to M = K different L-way classification
problems, where L = K — R + 1 by grouping R consecutive classes

1 1 1
di=cUcU..Ucg,dy =CRr+1,...,d1, = CK,

2 2 2
di =coUcsU...Ucgry1,d5 = cRrya, ..., d] = C1,

(23)

K K K
di =cxgUcgU...Ucp_1,dy =cR,...,d;, = Ck_1.

For example, by combining R = 2 nearby classes in our discretization of the unit circle, we
can create M = 12 different 11-way classification problems, as shown in Figure 3. Each
individual predictor can then be trained to output a probability p,, (d]"|x), using labels
q(d]"|x) obtained as in (19). Note that the way labels are combined in (23) is simply an
illustrative example, since in general we don't need to restrict L to be the same for each of
the M classifiers. In other words, each circle in Figure 3 could be divided into a different
number of intervals.

Before combining the individual predictions, we first need marginalize over dj"* to recover
distributions py, (¢ |x) over the original class intervals ¢y, for each individual predictor m.
We note that p(ci|d}™, x) only depends on the overlap between ¢, and d}*. For example,
using our sets of labels in Figure 2 and 3, we can infer that p1 (c1|x) = % - p1(d}[x). More
generally we have that

m [ldi"™ N el g A" Ner #0
cldt, x) = ————— = 2
Pl) |dL, || 0, otherwise. (24)
This allows us to calculate the posterior likelihoods as
L
pm(celx) = Y plerldi", 0)pm(d"|x), m=1,...M. (25)

=1

4. PERMUTATION SYMMETRY AND THE SELF-ATTENTION MECHANISM 15

Now we combine the predicted likelihoods of the ensemble using a convex combination:

plekx) = Z Wi Prm (ke [).- (26)

If each classifier is trained by minimizing the cross-entropy loss, then the sum of the indi-
vidual losses will incorporate the ordinal ranking of the targets. This can be seen by noting
that nearby angles will fall into the same intervals for some classifiers, and different intervals
for others. For example, a pair very small angles ¢ and —e will be mapped to d3; and d%,
respectively, but they will both be mapped to di2. Hence the total loss will incorporate the
fact that these angles are close, but not equal, and therefore method of label diversity can
be regarded as a form of ordinal regression.

For regression problems where the target is continuous, the method of label diversity can
be generalized even more. For example, we can consider generating M sets of intervals
{DMIM_| where D™ = {d}"}[1 are arbitrary discretizations of the unit circle, with the
restriction that the intervals in each set are non-overlapping. For any particular angle, we
can then directly map it to an interval in each set D™. Since this mapping will obviously
not be injective, we will still have to deal with the discretization error.

There are several ways that the predicted likelihoods can be used to form an estimate y,,
of the angle. One possibility is to use the midpoint y(d}") of the interval with the highest
likelihood, i.e. 4, = y(dj?), where [* = arg max; p(d;"*|x). Another option is to use
the expected value as Y, = Y, 7(d]")p(d]"*|x). The predictions of the ensemble members
can the be combined using a convex combination as in (14). From the ambiguity decompo-
sition, we can then establish that the ensemble error will be smaller than the average error
of the ensemble members, since a non-zero variance is induced by the different discretiza-
tions. If the discretization errors are small, but independent, then the ensemble average
will mitigate the effects of discretization. Likewise, there will be a trade-off between the
discretization error of each member and the number of members required in the ensemble
for good accuracy.

There remains several questions on how to implement label diversity in practice, as well as
the extent to which this is useful. We refer to Paper1 for examples of applying label diversity
on real problems and performance comparisons with standard regression and RvC.

4 DPermutation Symmetry and the Self-Attention Mechanism

An important aspect of neural network architecture design is to incorporate geometric pri-
ors by making the networks either invariant (or equivariant) to certain transformations. As

16 Introduction

was briefly mentioned in Section 2.2, this can be regarded as a form of regularization, since
it restricts the search space of the optimization to be limited to a smaller set of functions that
obey the imposed restrictions. In practice, this can be done by designing the computational
graph of the network such that the invariance is satisfied. For example, for a particular prob-
lem, such as classifying cats and dogs, where we have two augmented versions of the same
image x and X, we can strive to design our network such that fg(x) = fo(X), regardless of
the particular value of 8. In general, we say that a transformation that does not change the
underlying property of the object is a symmetry of that object. For example, in the context
of image classification, a rotated and translated cat, is still a cat.

In order to formalize the notion of invariant neural networks, it is useful to borrow some
concepts from group theory. Here we will briefly state some useful definitions and we
refer to [1] for a more in-depth treatment of the relationship between group theory and
deep learning. Given a symmetry group & with group actions g € &, we define the
corresponding group representations as p : & — GL(X), where GL(X) is the general
linear group consisting of invertible matrices of a particular degree. We can now make the
following definition:

Definition 4.1. A function f : X —) is invariant with respect to & if f(p(g)x) = f(x)
forall z € X and g € &. Similarly, if ¥ =), f is said to be equivariant with respect to

& if f(p(g)z) = p(g)f ().

For example, consider the simple case where X = R and & is the group of linear scaling.
The group actions g are then different scalings of the input vector, and the group represen-
tations p(g) are scalar matrices cI, where ¢ € R and I is the N x N identity matrix. A
scale-invariant function should then satisfy f(cx) = f(x) for all x € R, This can be
achieved, for example, by letting f(x) = g(x/||x||) for some function g.

A common method used for designing neural networks that are invariant with respect to
symmetry groups is to use compositions of invariant and equivariant layers, which can be
realized by modifying the computational graph. For example, if a neural network can be
fgiv o gguiv, where fé“l" is ®-invariant and f;guiv is &-
equivariant, then obviously fg is going to be &-invariant. In general, if we can decompose

decomposed into two layers as fg =

a deep neural network containing D layers as fg = fODD 0...0 f(g,ll , where layers 1,..., D —1
are equivariant, then the entire network will be invariant (equivariant) if layer D is invariant
(equivariant).

Going back to the MLP in Figure 1, we note that the function computed by this network
will in general not exhibit any type of invariance, which has inspired the development of
more advanced network architecture. In particular, convolutional neural networks (CNNs)
have become popular in computer vision due to their inherent translation equivariance. In
the next section we will take a closer look on graph neural networks and their relation to
permutation symmetry.

4. PERMUTATION SYMMETRY AND THE SELF-ATTENTION MECHANISM 17

4.1 Learning on Sets

We will now investigate how group invariances can be applied to design network operating
on unordered sets and graphs. Let us first consider the problem of function approximation
on sets consisting of vector-valued elements {x, }_,. (Here, the subscript u denotes a
vector-valued set element of a single data point, not the u:th member of the data set as in
the previous sections). Without loss of generality, we can stack the set elements in a feature
matrix X = [x1,...,Xx]’ where each row corresponds to an element of the set, but the
ordering of the rows is arbitrary. The task of the network is then to output either a global
feature of the entire set or element-wise features, or both. Learning on sets has several in-
teresting applications, including 3D shape recognition from point clouds and text retrieval
[29]. In contrast to pixels on a grid, the set elements need not have a well-defined order-
ing, and therefore our function approximator should yield the same prediction regardless
of how the rows of X are arranged. More precisely, we can define permutation invariance
in the following way:

Definition 4.2. A function f : RV*4 — Y is invariant with respect to the permutation
group Y if f(PX) = f(X) forall X € RV*? and permutation matrices P € RV*¥,
Similarly, if ¥ = RV*%, f is said to be equivariant with respect to Xy if f(PX) =
P f(X).

Designing a permutation-invariant neural network puts severe restrictions on what types
of layers can be used, but fortunately we can use our recipe of combining equivariant and
invariant layers in order to achieve this. In general, we can describe the set of permutation
invariant functions using a decomposition of two functions. Let ¢ : R? — RM be a
function that acts on individual set elements x,,, u € {1, ..., N}, i.e. the rows of X, and
let ¢ : RM — Y. A permutation equivariant function can then be realized as:

fX)=¢ ([v |, (27)

where [J is any permutation-invariant aggregation operation, for example summation, in
which case we say that this is a sum-decomposition of f via the latent space RM. This
suggests that we could design an invariant neural network in this way by equipping 1) and
¢ with their own set of layers and learnable parameters, a method which is known as Deep
Sets [29] and is illustrated in Figure 4. A similar method, using the max-decomposition as
aggregation function, has also been proposed [18].

A natural question to ask is then if this design will satisfy universal approximation and, if
so, are there any restrictions on the dimension of the latent space M? Although, there is
no definitive answer under general conditions, some important results exist if we restrict
ourselves to scalar sets (d = 1) and continuous functions with codomain) = R.

18 Introduction

x| —>| ¢

X N=———>| w

Figure 4: An illustration of the Deep Sets [29] architecture. Each set element is processed by the same neural network ¢ and
the outputs are aggregated using summation. The aggregated output is then fed into another neural network ¢
that predicts a global property of the set. Note that summation can be replaced by any other permutation-invariant
aggregation.

Theorem 4.3. Wagstaft et al. (2019) [25]. Let M > N. Then there exist permutation
invariant continuous functions f : R™ — R which are not sum-decomposable via RV,

The theorem gives us a necessary condition on the latent space in order to make sure thatall
functions can be represented, although clearly some functions exist that can be represented
with a smaller latent space. In particular, the minimum size of the latent space depends
on the number of elements in the set, such that larger input sets require a larger latent
space. Furthermore, the following theorem proves that a latent space of size IV is not only
necessary, but also sufficient:

Theorem 4.4. Wagstaff et al. (2019) [25]. Let f : RM — R be continuous. Then f is
permutation-invariant if and only if it is continuously sum-decomposable via RM,

The reader is referred to [25] for proofs of theorems 4.3 and 4.4, which together have the
following important implication: the Deep Sets architecture is guaranteed to have universal
continuous function representation on sets of size N if and only if the dimension of the
latent space is at least IV. Although these theorems deal with universal representation, they
have also been adapted for universal approximation with the same conclusions [26]. It
should also be noted that this does not imply that the function approximation can always
be practically implemented using a neural network, since the choice ¢ and ¢ together with
the optimization procedure might result in a network that in practice does not converge
to the true function. Nevertheless, it gives a strong suggestion that the latent space of the
network should grow with the number of elements in the input set.

4.2 Learning on Graphs

Learning on sets can be viewed as a special case of learning on graphs. Consider the graph

G = (V,€&), with vertices V = {u})_, and directed edges & C V x V. Each vertex

4. PERMUTATION SYMMETRY AND THE SELF-ATTENTION MECHANISM 19

u of the graph can then be assigned certain features using row-vectors x,, and the edges
model interaction between the vertices. A graph neural network (GNN) can then learn to
extract features from the graph and predict properties of the vertices and edges, as well as the
entire-graph. Applications of GNNs include modelling of social networks, where vertices
are members of the network with their associated features and edges represent interactions
between members, and drug discovery, where graphs are used to model interactions between
atoms in a molecule [1].

In this context, learning on sets is a special case of learning on graphs, where the set of edges
is empty, i.e. £ = (). However, if the set of edges is non-empty, we can use the adjacency
matrix A, which has elements of the form

1, (i,j) €&

Ay = (28)
o {0, otherwise.

For sake of brevity, we only consider undirected graphs where A = AT Using this nota-
tion, a GNN can in general be described by a function that takes both the vertex features
X and the adjacency matrix A as input. Similarly as for sets, we require permutation in-
variance for GNN, since in general it is not possible to order the vertices of the graph in
a well-defined manner. Since a permutation of the rows of X implies a permutation of
both the rows and columns of A, we can define the notion of permutation invariance for
functions on graphs as follows:

Definition 4.5. Let A be the set of adjacency matrices of all the corresponding graphs
of cardinality N = |V|. A function f : RN*4 x A —) is invariant with respect
to the permutation group Xy if f(PX,PAPT) = f(X,A) forall X € R¥*? and
permutation matrices P € RV*N. Similarly, if Y = RV*?, f is said to be equivariant
with respect to Xy if f(PX, PAPT) = Pf(X, A).

GNNs are often realized using various forms of message-passing. This means that, in each
layer [of the network, the features h'(z,,) of each vertex u are updated with messages from
their neighbouring vertices Vi, = {v : (u,v) € £}. Letting h°(x,) = Xy, this can be
written as

A (xy) = ¢ (hl—l(xu), [] w(hl_l(xu),hl_l(xv))> , l=1,.,L. (29)
vEN,

Note that we require permutation invariance with respect to the ordering of the vertices in
N.,. The message passing is then repeated for multiple layers and if the graph is connected,

20 Introduction

i.e. there exists a path between every pair of vertices, then information can propagate be-
tween all vertices, given that there are sufficiently many layers in the network. If the goal
is to predict a global feature of the graph, we can of course aggregate over all vertices in the

graph in the last layer L as

fX) =9 (D hL(Xu)> : (30)

Here we can make the observation that Deep Sets is a special form of GNN, because if
& = () then each layer (29) simplifies to an update for each individual set element, without
any interaction between different elements of the set.

4.3 Self-Attention and The Transformer

Self-attention is a special form of message-passing where the messages passed from v to u
only depend on the features of v, but each message is weighted using a scalar attention
weight

W (xa) = ¢ (h”(xu), [] a(hl1(Xu),hl1(Xv))¢(h”(xv))> - G

veEN,

The attention weight a((h!~!(x,), h!~1(x,)) can be interpreted as a form of “soft” adja-
cency, indicating the strength of the connection between vertices © and v. Although there
are many ways to implement self-attention, the most popular method is to calculate the
attention weights using the scaled dot product of linear projections of the features. Let
qu = X, Wy and k, = x, W}, denote the queries and keys, where W, W}, € Ré*dn
are learnable parameters of the model. The raw attention scores are calculated as

T
quk;
Sup = ——=, 2
and the scaled dot-product attention weights are then given by
esuv
Xy, Xy) = (33)

4. PERMUTATION SYMMETRY AND THE SELF-ATTENTION MECHANISM 21

Note that due to the softmax normalization, we have that o(x, X,) > 0 and
> ven, ¢(Xu,Xy) = 1. The message generating function in (31) is here simply defined as
another linear projection 9(x,) = x, W, where W, € Réxdn

The scaled-dot product attention was originally proposed in [23] in order to improve natural
language processing (NLP) models. In the context of NLP, self-attention is applied to
sequences of words, which allows the model to exploit complex word-to-word interactions
when processing the text. The connection between self-attention and GNNis here is subtle,
but when self-attention is applied to the entire sequence, this can be regarded as modelling
the sequence as a complete graph, i.e. N, = V), Vu. Using the complete graph allows us

write the self-attention weights in matrix form as

- QK"
A(X) = softmax (NG >) (34)
where Q = XW,, K = XW, and the softmax function is applied on each row in-
dividually. With this notation it follows that A,, = a(xy,X,), and we can define the
self-attention (SA) operator as

SAX) = A(X)V, (35)

where V.= XW,, W, € R%%_ In order to make the operation even more expressive,
it can be performed several times in parallel to for the multi-headed self-attention (MSA)
operator

MSA(X) = [SA1(X); SA2(X); ...; SAR (X)W p, (36)

where ; denotes column-wise concatenation and W p € R"¥»*4 GNNs based on multi-
headed self-attention are known as Transformers, and they have become the key component
in NLP models, most notably the 175-billion parameter generative pre-trained Transformer
(GPT) [2]. However, since the MSA operation is permutation invariant by design, it would
not be able to distinguish between sequences of words where words have been re-ordered.
Therefore, various forms of positional encodings that contain information about the relative
position of the word in the sequence have been proposed. These encodings are then added
to each word embedding before being processed by the Transformer.

So far, we have shown that the self-attention mechanism is one of many possible message-
passing functions that can be derived from permutation invariance on sets or graphs, even
though it was not originally proposed in this context. We shall now move on to discuss
some problems where it is not obvious that self-attention is better than alternative methods,
nor trivial to adapt to the particular setting.

22 Introduction

4.4 Applications of Self-Attention

When designing deep networks, the family of architectures considered usually depends on
the input domain X'. For example, the problem of image classification has the input domain
of RGB images of a particular resolution, i.e. X' = R"™>wx3Gince the domain is a three-
dimensional grid of pixels, we can use convolutions and pooling with local receptive fields in
order to design networks that are either invariant or equivariant with respect to the location
of objects in the picture. The representation of an image on a two-dimensional grid is
intuitive, in the sense that it corresponds well with the way that we as humans perceive them
with our eyes. However, this does not necessarily imply that this particular representation is
optimal for neural network learning. For example, the image can just as well be represented

on the one-dimensional grid R®" by stacking the pixel values in a vector. Furthermore,

hw

ww, > where each element x,, =

an image can also be represented as an unordered set {x,, }

[g(w) p(w) p&“) , pggu) | stores information about the color intensity and coordinates of
the pixels. From a human perspective, they appear to be counter intuitive representations,
but from a deep learning perspective, it is not obvious if they are better or worse suited for
learning.

More generally, we can describe images, and many other types of data, as graphs. If we
extract square patches from an image with resolution (P, P), then we can represent each
patch x,, on the domain R¢” : yielding a total of N = haw/P? patches. We can then
construct a graph G = ({x,}_;,

ways to do this, and the edges of the graph will be redundant if we also use positional

€) by defining the set of edges £. There are several

encodings for each patch. One possibility is to define edges between neighbouring patches
in the image. Another possibility is to assign edges based on the semantic contents of
the patches, i.e. let patches with similar objects be connected, but it is not clear how the
semantic similarity would be defined. Finally, it is also possible to let the graph be complete
and let all patches have edges between them, and then learn the strength of the connections,
which is exactly what a Transformer does.

Recent work in computer vision [11, 22] suggests that the patch-based representation of
images might be better suited for deep learning than a grid. By treating an image like a
complete graph of small patches, and applying self-attention to infer the strength of the
connections, Transformer-based networks can achieve equal or stronger performance in
image classification tasks compared to convolutional networks. This is in many ways re-
markable, since the Transformer-based network is not inherently translation invariant, and
was not originally designed for solving problems in computer vision.

4. PERMUTATION SYMMETRY AND THE SELF-ATTENTION MECHANISM 23

Figure 5: An example of a sparse k-NN graph created from a point cloud. Each anchor point (shown in blue), is connected with
a directed edge from itself to its neighbours.

Point Cloud Feature Extraction and SLAM

An important application of GNNs is point cloud processing. Point clouds are frequently
occurring in computer graphics, but also from measurements collected by 3D scanners, such
as radar or LIDAR. Common applications include simultaneous localization and mapping
(SLAM), which can be used for indoor navigation, and driver assistants in vehicles. In both
of these scenarios, point clouds are used for creating maps of the environment. In order
to create global maps, point clouds from different measurements need to be registered in a
common frame of reference. This requires local point features that are resilient to outliers,
since the measured data often contain noise and artifacts. The features can be based on
purely geometrical properties, but with the advent of deep learning it is also possible to
extract semantic features that describe the contents of the observations. Furthermore, such
features can also be used for scene segmentation and object detection, which is used in
self-driving cars for detecting e.g. lanes, signs and other vehicles.

A point cloud is an unordered set {x,, }.*_; of 3D Cartesian coordinates, X,, = [pg(cu) , pz(,,u) , p,(zu]
Deep networks for point cloud processing can be designed to extract global features that
can be used for downstream tasks such as classification and retrieval, but also point-wise
features that can be used for segmentation. Pioneering works in the field include Point-
Net [18] and Deep Sets [29], which used permutation invariant aggregation over the entire
point cloud. It was also shown that the network satisfies universal approximation for a
large enough dimension of the latent space, a result which is closely related to Theorems
4.3 and 4.4. Nevertheless, networks that treat the point cloud as an unordered set come with

24 Introduction

some limitations, namely that they do not allow interactions of neighbouring points. This
motivates the introduction of GNN, which can capture local interaction more effectively.

In order to model the point cloud as a graph, we can use the k-nearest neighbours (k-NN)
of z,. Specifically, the k-NN graph of the point cloud is defined by edges between x,, and
X, if X, is one of x,,:s k-nearest neighbours in terms of Euclidean distance. We can then
use GNNss with message-passing from all the neighbours of each point to the point itself.
Other forms of local connectivity is also possible, for example by allowing edges from x,, to
all points within a certain distance. These ideas were first explored in [19] and [27], where
the latter also considered dynamic graphs that are updated in various stages of the network.

We may also choose to model point clouds using complete graphs with message passing
between all points using self-attention, which was first proposed in [13]. However, the
self-attention matrix A in (34) for N points will have size N x N, which implies that
the computational and memory requirements of the network will grow as O(N?). For
large inputs (point clouds often have thousands of points), using the complete graph will
therefore not be computationally efficient.

Furthermore, it is not obvious that self-attention is useful when applied on individual point
features, since a single point contains no semantic information. A natural extension is
therefore to consider attention between patches of points, since a collection of neighbouring
points can describe objects or parts of objects. One way to do this is to sample a sparse
set of anchor points and create patches by aggregating over their neighbours, as shown in
Figure 5. Applying attention between these patches would both decrease the computational
complexity and capture more semantically meaningful connections between, compared to
using the complete graph. These ideas are explored in more detail in Paper 111, where they
are also verified by extensive experiments on both real and synthetic data.

Audio Classification

Another important application of deep learning, which we have not dealt with so far, is
audio processing, which encompasses a wide set of tasks related to feature extraction from
audio waveforms. In particular, deep learning is well suited for tackling problems related
to automatic speech recognition (ASR), where it is difficult to derive hand-crafted features
that describe the contents of the speech signal. By leveraging large amounts of training data
together with deep neural networks, ASR has now become a standard feature of our daily
lives, for example in smart voice assistants.

An example of a smart assistant pipeline is shown in Figure 6. The first step in the process is
wake-word detection, which is often done in an always on manner, that triggers the device
to analyze the audio further. The second step is keyword spotting, where the goal is to

4. PERMUTATION SYMMETRY AND THE SELF-ATTENTION MECHANISM 25

No

"Hey google ..” Wake-word detection Keyword spotting [Keyword? [——

f

Yes

I On-device processing Take action

Figure 6: An example speech processing pipeline for smart assistants. Wake-word detection and keyword spotting are per-
formed on-device. If no keyword is detected, the audio data is sent to a server where ASR is performed.

detect the presence of keywords from a small dictionary. Examples of keywords could be
commands like “play” or ”pause” in the context of listening to music. If no keyword is
detected, then ASR is triggered, which is sometimes done on a remote server if on-device
computational resources are limited. There are several advantages of performing each step
locally on-device, the most obvious one being reduced latency. Data privacy can also be
of concern and local audio processing reduces the amount of potentially sensitive data that
needs to be transmitted to the server.

Here we restrict our analysis to keyword spotting, which can be regarded as a classification
task where the goal is to classify the audio as one of the keywords in the dictionary or
“silence” or “unknown”. Current state-of-the-art keyword spotting methods do not operate
on the raw audio input, but on a filtered and pre-processed audio representation as shown
in Figure 7. The most widely used pre-processing technique is to extract speech features
in the form of mel-frequency cepstrum coefficients (MFCCs). These are calculated by first
using a sliding filter with a certain width and stride. The discrete Fourier transform is then
calculated for each filtered output and the frequency amplitude are converted to mel-scale,
which better captures differences in frequencies as perceived by humans compared to a Hz-
scale. The final MFCCs are obtained by taking the discrete cosine transform of the log
mel-scale spectrum.

Let X, € RY be the d output coefficients of the n:th time window. By stacking all time
windows in a matrix as X = [x1,...,x7|T € RT*9, we get something that resembles
an image on a grid, with one grid axes for time and one for mel-scale frequency. There-
fore, it is possible to borrow CNN architectures from computer vision and apply them to
the speech features, which has been done extensively in order to provide state-of-the-art
keyword spotting architectures [15].

However, given the surprising success of Transformers in computer vision, an interesting
questions is whether this architecture also works well audio processing. Naturally, we can
use a graph with a vertex for each time slot to describe the MFCC features. Unlike for the
case of point clouds, the ordering of the time slots matter, so we need to add positional
encoding to make the Transformer exploit this information. The reader is encouraged to
read Paper 11 for a detailed description of this approach, experiments on human voice

26 Introduction

W"" N MECC _ fe . pe(k‘\x)

feature extraction

Figure 7: A keyword spotting pipeline. The raw audio waveform is first processed by extracting the MFCC spectrogram, which
is then fed into a neural network that predicts a probability distribution over the different keywords.

recordings and comparisons of Transformers to CNNGs.

s Conclusions

We have now covered the necessary background theory for both regression ensembles and
diversity, as well as GNNs and Transformers. These are the two main themes for the in-
cluded publications in this thesis.

Paper 1 deals with applying the notion of label diversity to a wide range of problems in
computer vision, where the data labels are both continuous and ordinal. By exploiting the
possibility to combine different discretizations of continuous labels, and combinations of
ordinal labels, we propose several strategies to induce label diversity in practice. Further-
more, we provide a method for implementing label diversity with minimal computational
overhead that can be used in conjunction with standard neural network feature extractors.
The method is based on using multiple prediction heads, one for each label representation.
During the training phase, each head learns to classify the data into a specific set of labels,
and during inference the predictions are combined in an ensemble-like fashion. From the
ambiguity decomposition (15), we know that the prediction error of the ensemble average
is guaranteed to be smaller than the average individual prediction error. By thorough ex-
periments we also show that label diversity can reduce the prediction errors compared to
standard methods like regression and RvC.

In Paper 11 and 11 we deal with the application of Transformer networks to different data
domains. In Paper 11, we propose the first Transformer-based keyword spotting model that
achieves state-of-the-art results on common benchmarks. By ablation studies we highlight
the benefit of using audio time slots as input patches to the model, and we show that the
model learns to attend to the time slots that are most important for classification. In addi-
tion, we measure latency on a mobile phone and show that Transformers are competitive
in this regard as well. However, there remains work to be done with regards to model com-
pression in order to make Transformers a viable alternative in low-footprint edge use cases.
In future work, we wish to study the effects of common compression techniques, such as
pruning and quantization, on Transformer based keyword spotting models.

In Paper 11 , we instead apply Transformers to point cloud processing, where the main

References 27

problem is to reduce the quadratic complexity of the self-attention operator. We do this

by using a hierarchical Transformer that applies self-attention locally and globally in a two-

stage process. Experiments show that this not only reduces computational footprint, but

also makes the features of the Transformer better suited for downstream tasks such as clas-

sification and segmentation. Finally, we also show that the proposed method can be used

to improve feature matching between point clouds, which is commonly used in SLAM and

other applications.

References

1]

(2]

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veli¢kovi¢. Geometric
deep learning: Grids, groups, graphs, geodesics, and gauges, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. E
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, vol-
ume 33, pages 1877-1901. Curran Associates, Inc., 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303—314, 1989.

Raul Diaz and Amit Marathe. Soft labels for ordinal regression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4738—4747, 2019.

Mario AT Figueiredo. Adaptive sparseness using jeffreys prior. In NIPS, pages 697—
704, 200L.

Eibe Frank and Mark Hall. A simple approach to ordinal classification. In European

conference on machine learning, pages 145-156. Springer, 2001.

Yoav Freund and Robert E Schapire. Experiments with a new boosting algorithm.
Citeseer, 1996.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Ian Goodfellow, Oriol Vinyals, and Andrew Saxe. Qualitatively characterizing neural
network optimization problems. In International Conference on Learning Representa-
tions, 2015.

http://www.deeplearningbook.org

28

Introduction

[10]

[18]

[19]

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, 37d International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob
Uszkoreit, Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Syl-
vain Gelly, Thomas Unterthiner, and Xiaohua Zhai. An image is worth 16x16 words:
Transformers for image recognition at scale. 2021.

Anders Krogh, Jesper Vedelsby, et al. Neural network ensembles, cross validation, and
active learning. Advances in neural information processing systems, 7:231-238, 1995.

Juho Lee, Yoonho Lee, Jungtack Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set transformer: A framework for attention-based permutation-invariant neural
networks. In International Conference on Machine Learning, pages 3744—3753. PMLR,
2019.

Ling Li and Hsuan-Tien Lin. Ordinal regression by extended binary classification. In
Advances in neural information processing systems, pages 865—872, 2007.

Ivédn Lépez-Espejo, Zheng-Hua Tan, John Hansen, and Jesper Jensen. Deep spoken
keyword spotting: An overview, 2021.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. In Inzer-
national Conference on Learm'ng Represenmtz'om, 2020.

Michael P Perrone and Leon N Cooper. When networks disagree: Ensemble methods
for hybrid neural networks. Technical report, BROWN UNIV PROVIDENCE RI
INST FOR BRAIN AND NEURAL SYSTEMS, 1992.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas] Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652—660, 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas] Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Advances in Neural Infor-
mation Processing Systems, 30, 2017.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2818—2826, 2016.

References 29

[22]

(23]

[26]

(27]

28]

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Hervé Jégou. Training data-efficient image transformers & distillation
through attention. In International Conference on Machine Learning, pages 10347—
10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
the 315t International Conference on Neural Information Processing Systems, pages 6000—

6010, 2017.

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios
Protopapadakis. Deep learning for computer vision: A brief review. Computational
intelligence and neuroscience, 2018, 2018.

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A
Osborne. On the limitations of representing functions on sets. In International Con-

ference on Machine Learning, pages 6487—6494. PMLR, 2019.

Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Michael A. Osborne, and Ing-
mar Posner. Universal approximation of functions on sets, 2021.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Trans-
actions On Graphics (tog), 38(5):1-12, 2019.

Jack H Winters, Jack Salz, and Richard D Gitlin. The impact of antenna diversity

on the capacity of wireless communication systems. [EEE transactions on Communi-
cations, 42(234):1740-1751, 1994.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabds Péczos, Ruslan
Salakhutdinov, and Alexander] Smola. Deep sets. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, pages 3394—3404, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning (still) requires rethinking generalization. Communica-
tions of the ACM, 64(3):107-115, 2021.

	Abstract
	List of Publications
	Author's Contributions
	Acknowledgements
	List of Abbreviations
	Introduction
	Background
	Artificial Neural Networks and Deep Learning
	Supervised Learning
	Training a Neural Network

	Diversity and Ordinal Regression
	Regression Ensembles
	Regression via Classification
	Ordinal Regression
	Label Diversity

	Permutation Symmetry and the Self-Attention Mechanism
	Learning on Sets
	Learning on Graphs
	Self-Attention and The Transformer
	Applications of Self-Attention

	Conclusions
	References

