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Populärvetenskaplig sammanfattning 

Kroppens immunsystem är ett mycket effektivt maskineri med många olika delar 
som arbetar tillsammans för att skydda oss mot sjukdomsframkallande mikrober, så 
som bakterier och virus. Antimikrobiella peptider är små proteiner som har många 
betydelsefulla funktioner i vårt immunförsvar, där LL-37 är en av de allra viktigaste. 
Peptiden bildas naturligt i kroppen av olika vita blodkroppar som rör sig i vårt 
blodsystem, men också av barriärceller, så kallade epitelceller, som beklär huden 
och olika slemhinnor. LL-37 verkar direkt på bakterier genom att borra hål i 
bakteriecellen, vilket orsakar läckage och celldöd, men peptiden fungerar även som 
en kommunikationslänk mellan immunförsvarets olika delar. I denna avhandling 
har jag studerat en rad olika effekter av LL-37 på olika humana värdceller, där jag 
har fokuserat på LL-37s skadliga egenskaper, hur LL-37 kan göra hål i våra egna 
celler, samt hur LL-37 kan öka immunförsvarets aktivitet. 

I flera typer av inflammationssjukdomar har man kunnat uppmäta ovanligt höga 
nivåer av LL-37. Då ett område i kroppen blir inflammerat ökar blodflödet och fler 
vita blodkroppar kommer att ansamlas i området. Vid kroniska 
inflammationssjukdomar som till exempel hudsjukdomen psoriasis, 
tandlossningssjukdomen parodontit och luftrörsinflammationen astma bevaras 
inflammationen i lokala områden under en längre period, och där finns även höga 
halter LL-37 peptid. Det har rapporterats att höga nivåer LL-37 inte bara dödar 
mikrober utan även orsakar celldöd i humana celler. Då LL-37 också har visat sig 
vara drivande vid inflammation misstänker man att peptiden spelar en aktiv roll i 
dessa sjukdomar. Likväl, mer forskning behövs för att fastställa hur dessa höga 
nivåer av LL-37 påverkar våra egna celler.  

Det är allmänt känt att LL-37 kan ta sig in i humana celler och kan därmed utföra 
många olika funktioner. Det har dock visat sig att peptiden tar sig in i cellerna med 
hjälp av olika mekanismer. Vi har därför undersökt hur olika typer av import av 
peptiden hänger ihop med LL-37s toxiska egenskaper och LL-37s förmåga att borra 
hål i värdceller. Vi har också demonstrerat att dessa hål i cellens yttre vägg, så kallad 
perforering, gör så att joner, proteiner och andra beståndsdelar läcker ut/in i cellen. 
Intressant nog har vi sett att denna perforering inte nödvändigtvis innebär att 
cellerna dör. Det har visat sig att olika typer av humana celler är olika känsliga för 
LL-37s skadliga effekter.  
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Fortsättningsvis har vi undersökt hur LL-37 tillsammans med RNA från virus kan 
öka immunförsvarets signalering och bidra till inflammation. Bakterier och virus 
innehåller många delar som vårt immunförsvar känner igen som främmande. Toll-
lika receptorer, ofta förkortade till TLR, är proteiner som känner igen olika 
bakteriella och virala beståndsdelar och signalerar till andra delar av 
immunförsvaret att skadliga mikroorganismer finns i närheten. Vi har visat att LL-
37 förstärker signaleringen mellan RNA från virus och receptorn TLR3. Mer 
specifikt så har vi sett att LL-37 gör så att mer RNA från virus tar sig in i cellerna. 
Detta tror vi är en viktig del i mekanismen, då mer tillgängligt RNA i cellerna gör 
så att mer RNA kan bind till sin TLR3 receptor och därmed öka immunsystemets 
svar. Tillsammans visar detta på en ny cellulär mekanism för hur LL-37 kan öka 
immunförsvarets aktivitet och bidra till inflammation i humana celler.  

Sammanfattningsvis, så presenterar den här avhandlingen flera nya upptäckter om 
LL-37s effekter på humana celler. Dessa studier bidrar till ökad förståelse och
kunskap om hur antimikrobiella peptider som LL-37 kan bidra till vävnadsdöd och
kronisk inflammation i många inflammatoriska/autoimmuna sjukdomar.
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Background 

Host defense peptides 

Host defense peptides (HDPs) are small cationic peptides that have an essential role 
in innate immunity [1]. They are produced in all complex organisms, including 
animals, plants, and insects and display a broad activity against a variety of 
microorganisms, which is why they are also known as antimicrobial peptides 
(AMPs) [2]. However, due to their involvement in host defense and 
immunomodulation they are nowadays generally called HDPs instead of AMPs. 
HDPs are around 12-100 amino acids in length and are usually amphipathic, which 
means that they have both hydrophilic and hydrophobic properties. 

In mammals, two different groups of HDPs have been identified, defensins and 
cathelicidins [3]. Defensins are a large family of HDPs with a small compact 
structure, containing a β-sheet core [4]. They are expressed from multiple genes and 
generates a various number of peptides. In humans, at least seventeen defensins have 
been identified, and based on their chemical properties they are subdivided into α- 
and β-defensins. Cathelicidins, in contrast to defensins, are expressed from a single 
gene and form an α-helical shape in physiological conditions [5]. They have been 
well studied in mammals, such as rabbits [6], mice [7], rats [8], and guinea pigs [9], 
but also in chickens [10] and several types of fish [11] (Table. 1). They contain the 
cathelin-like domain (CLD), which is a highly conserved structure both within a 
single species but also among different species [12]. This has made it easier to 
establish the genetic origin and phylogenetic relationships of cathelicidins. 

In humans only one cathelicidin have been identified, the human Cathelicidin 
Antimicrobial Protein 18 (hCAP18), which is extracellularly processed into the 
active LL-37. In humans, LL-37 represents the first line of defense against invading 
pathogens and is upregulated upon infection and disease. In addition, LL-37 can 
modulate immune responses and has an essential role in inflammation. However, 
the mechanisms behind how LL-37 interacts with host cells and what signaling 
events are involved is still largely unknown. High levels of LL-37 are found locally 
in lesions of inflammatory diseases, and more research is needed to know how these 
high concentrations affect surrounding tissues and influence the inflammatory 
environment. 
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Table 1. Selected cathelicidin-derived peptides. The peptides are listed in order according to the closest 
resemblance to the human LL-37. The amino acid sequence is listed as one-letter abbreviations where all peptides 
listed form an α-helix structure. “AA” stands for the number of amino acids. This table is modified from Dürr et al [12]. 

hCAP18/LL-37 

The human cathelicidin hCAP18 was initially identified and sequenced in 1995 [15-
17]. The name of the peptide originates from similarities to the rabbit cathelicidin 
CAP18. The peptide can be found at low concentrations in various cell types and 
tissues in the body and is usually upregulated upon inflammation and various 
disease processes [12]. hCAP18 is mainly expressed in neutrophils [17], but also in 
other leukocytes such as mast cells [18], lymphocytes [19] and monocytes [20]. It 
is also produced in epithelial cells in various parts of the body, such as the skin [21], 
the gastrointestinal [22-25], respiratory [24, 26], and genitourinary tracts [24]. 
Furthermore, hCAP18 has been found to be expressed in salivary glands, the gingiva 
and detected in human saliva [27, 28]. 

hCAP18 processing 

hCAP18 is expressed from the Cathelicidin Antimicrobial Protein (CAMP) gene 
located on chromosome 3 [29]. The gene contains four exons, where exon 1-3 
encode the pre-pro-regions and exon 4 encodes the active LL-37 peptide (Fig. 1). 
The mRNA is translated into a pre-pro-LL-37 peptide, which is transferred into 
granular compartments (granulocytes) or lamellar bodies (keratinocytes) with the 
help of a signal peptide (~ 30 residues) [12]. The pro-LL-37/hCAP18, containing 
the CLD, is also referred to as the N-terminal domain (101 residues), whereas the 
LL-37 sequence is known as the C-terminal domain (37 residues). The pro-peptide
is excreted via exocytosis and the CLD is extracellularly cleaved off to release the

Peptide Origin Amino acid sequence AA Ref 

LL-37 Human  LLGDFFRKSK-EKIGKEFKRI-VQRIKDFLRN-LVPRTES 37 [13] 

RL-37 Monkey  RLGNFFRKVK-EKIGGGLKKV-GQKIKDFLGN-LVPRTAS 37 [14] 

CAP18 Rabbit  GLRKRLRKFR-NKIKEKLKKI-GQKIQGLLPK-LAPRTDY 37 [6] 

CRAMP Mice  GLLRKGGEKI-GEKLKKIGQK-IKNFFQKLVP-QPE 33 [7] 

rCRAMP Rat 
RFKKISRLAG-LLRKGGEKFG-EKLRKIGQKI-KDFFGKLAPE-  

 IEQ 43 [8] 

CAP11 Guineapig 
(GLRKKFRKTR-KRIQKLGRKI-GKTGRKVWKA-WREYGQIPYY- 
 CRY)2 43 [9] 

Fowlicidin-1 Chicken  RVKRVWPLVI-RTVIAGYNLY-RAIKKK 26 [10] 

rtCATH_1 Rainbow trout 
 RRSKVRICSR-GKNCVSRPGV-GSIIGRPGGG-SLIGRPGGGS- 
 VIGRPGGGSP-PGGGSFNDEF-IRDHSDGNRF-A 71 [11]
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active LL-37. Depending on cell type, the enzymes proteinase 3 or kallikrein 5 are 
responsible for the catalytic extracellular cleavage [30, 31] (Fig. 1). hCAP18 is not 
considered to have antimicrobial activity, though this has been under debate [32, 
33]. The same applies to the CLD which functions remains to be concluded. 

Figure 1. Expression and processing of human cathelicidin LL-37. The CAMP gene is transcribed into a pre-mRNA 
consisting of 4 exons and 3 introns. The mRNA is spliced and translated into a pre-pro-LL-37 peptide, which is 
transferred into cellular granules/lamellar bodies with the help of a signal peptide. The hCAP18 protein is exported via 
exocytosis and extracellularly cleaved into the active LL-37. This image was created with BioRender.com. 
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Structure of LL-37 

The LL-37 peptide owes its name to the fact that it has 37 amino acids and that the 
sequence starts with two leucine residues. 16 out of 37 residues are charged, 
providing an overall net charge of +6 (Fig. 2). This positive charge is an important 
feature since it provides LL-37 with a high affinity for negatively charged elements, 
such as bacterial membranes, nucleotides and other negatively charged molecules 
[34]. The peptide forms an α-helix in physiological conditions by enabling 
hydrogens bonds between the hydrogen in the amino group and the oxygen in the 
carboxyl group, thereby generating a more energetically favorable conformation 
[13]. In pure water, the peptide forms a more coil-like shape. The secondary 
structure of the peptide can be divided into three parts, the N-terminal α-helix, the 
C-terminal α-helix, and the C-terminal tail [35] (Fig. 2). The two helices are divided
by a break, creating a helix-bend-helix formation. The α-helix formation provides
the peptide with an amphipathic structure, featuring both a hydrophobic and a
hydrophilic surface (Fig. 2). Here, the majority of hydrophobic residues (green) are
localized on the concave side, whereas the majority of charged residues (yellow and
blue) are located on the opposite side. The hydrophobic surface can protect itself in
a water-based environment by binding to the hydrophobic part of other molecules
present, or to other LL-37 molecules, so called oligomerization [36]. The
confirmational state of LL-37 is thought to affect LL-37 function and its interactions
with biological membranes. For example, the oligomeric peptide has been shown to
have a reduced antimicrobial activity compared to the monomeric structure [37]. On
the other hand, oligomeric LL-37 has also been shown to promote host cell effects
[38]. It is believed that both LL-37 structures are present under physiological
conditions [39].

Regulation of LL-37 expression 

The transcriptional mechanisms of hCAP18/LL-37 are complex, and it is assumed 
that both expression and regulatory mechanisms are cell type dependent and 
stimulus specific. The peptide is often constitutively expressed, where hCAP18 
remains stored in intracellular compartments such as granules or lamellar bodies 
[40, 41]. External stimuli like infection or tissue damage activates toll-like receptors 
(TLRs) and other inflammatory mediators, leading to extracellular release of the 
pro-peptide [42]. LL-37 gene expression can also be directly induced, where vitamin 
D is one of the most studied transcriptional regulators of CAMP. Here, the gene 
expression is upregulated by the binding of vitamin D to the vitamin D receptor 
(VDR), and this complex in turn binds to the vitamin D response element (VDRE) 
located in the CAMP promoter region [43, 44]. Even though vitamin D upregulates 
LL-37 expression at a non-inflammatory state it can also downregulate the
expression during inflammation [42], suggesting that the effects of vitamin D on
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LL-37 expression may depend on the inflammatory conditions and environment.
Interestingly, the VDRE is present in primate CAMP, but not in other mammalian
cathelicidin genes, showing that this is not an evolutionary conserved regulatory
element [39]. Furthermore, there are numerous additional molecules and
inflammatory pathways affecting LL-37 production. To mention a few, LL-37
expression is stimulated by endoplasmic reticulum stress in epithelial cells [45].
This pathway involves nuclear factor kappa-light chain-enhancer of activated B
cells (NF-κB) signaling, but not VDR, advocating an VDR-independent pathway.
Also, fatty acids such as butyrate, lactose and other sugars, and a various range of
cytokines all upregulate the expression of CAMP [46-51].

Figure 2. LL-37 structure. The amino acid sequence presented in order in one-letter abbreviations. The peptide forms 
an α-helix in a helix-bend-helix structure, which is coupled to a tail in the C-terminal. The helical wheel illustrates the 
peptide’s amphipathic properties. The amino acid coloring represents their chemical properties, with non-polar (white 
and green), hydrophobic (green), polar (pink), potentially positively charged (blue) and potentially negatively charged 
(yellow) amino acids. This image was created with BioRender.com. 

The effects of LL-37 on pathogens 

LL-37 shows activity against a wide range of pathogenic microorganisms (Fig. 3).
This activity has been shown to be dependent on the secondary structure and the
positive net charge of the peptide, but also on environmental composition such as
ions, pH and other media components [13]. In this section the most common
pathogenic effects are discussed in more detail.
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Figure 3. An overview of selected LL-37 functions. LL-37 displays a variety of functions, here divided into 
antimicrobial and host cell effects. The image was created with BioRender.com.  

Antibacterial 

Membrane permeabilization 
LL-37 induces toxicity in bacterial cells by permeabilizing their cytoplasmic
membranes. The peptide is attracted to the negatively charged phospholipids of the
bacterial cell wall and orients itself in a parallel position along the membrane surface
[52]. Permeabilization leads to loss of membrane potential, thus also leakage of
cytoplasmic components, leading to cell lysis and death of the bacteria. There are
several theories on how LL-37 permeabilizes biological membranes (Fig. 4). In the
“carpet” model the peptide coats the membrane surface until a threshold
concentration is reached [53]. Here, the peptide either disrupts the membrane in a
detergent-like manner by the formation of micelles or inserts itself into the lipid
bilayer by forming so called “toroidal pores”. In this last model, the peptide does
not bind to each other but instead affects the curvature of the membrane, inducing a
wormhole-like pore [54]. The third theory is the “barrel-stave” model where the
peptide instead accumulate together to form a specific structure resembling an ion
channel, which is then inserted into the bilayer [55]. The peptide seems to bind to
bacterial membranes both as an unstructured coil and as an α-helix, though the helix
conformation is further stabilized when bound to membranes [56]. Oligomerization
of LL-37 is thought to favor the “toroidal pore” formation, whereas the primate
cathelicidin RL-37 (see Table 1) that mainly forms monomers in salt solutions
favors the “carpet” model [57]. Hence, it seems that polymeric and monomeric LL-
37 differentially affect pore formation.
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Bacterial endotoxins and biofilms 
LL-37 also displays antibacterial activity by binding to bacterial endotoxins and
neutralize their effects [58]. The peptide can bind to lipopolysaccharides (LPS)
present in the cell wall of Gram-negative bacteria and to lipoteichoic acid (LTA) in
the peptidoglycan layer in Gram-positive bacteria with high affinity due to their
negative charge. Furthermore, LL-37 has been shown to have activity against
bacterial aggregates, so called biofilms [59, 60]. Bacteria found in biofilms are less
susceptive to immunological responses and the aggregates have been shown to
inhibit wound healing. LL-37 has been shown to inhibit the formation of biofilms
by preventing the attachment of bacteria to each other and to other surfaces.

Figure 4. Proposed models of cell membrane permeabilization induced by LL-37. In the ”carpet” model cells are 
permeabilized in a detergent-like manner, inducing the formation of micelles. In the ”toroidal pore” model the peptide is 
inserted between the lipids, thereby forming a mixed pore, whereas in the ”barrel-stave” model the peptide is inserted 
into the bilayer, clustered in a barrel-like shape with the hydrophilic face facing the pore lumen. This image was created 
with BioRender.com. 

Antibiotic resistance and drug use 
The increasing problems of bacterial antibiotic resistance has generated an interest 
in using LL-37 as an antibacterial drug. Since HDPs are evolutionary evolved 
alongside bacteria it has been suggested that they are less likely to induce resistance, 
though recent studies suggest otherwise [61]. Even if LL-37 displays a broad range 
of antimicrobial activity against a variety of bacterial strains, the peptide has not yet 
been approved for therapeutic use. There are many challenges remaining to be 
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solved, such as induced host cell toxicity, decreasing antimicrobial activity over 
time and the fact that the peptide is easily degraded. Therefore, more research is 
needed to be able to use HDPs, such as LL-37, as an antibiotic drug. 

Antiviral, antifungal and antiparasitic 

LL-37 have direct antiviral activity against a variety of enveloped viruses, including
influenza virus, adenovirus and HIV [62-64]. The peptide interacts and
permeabilizes the membrane envelope, leading to viral disruption and exposure of
its nucleic acids, which enables other immune cells to continue the immunological
process. LL-37 can also indirectly induce antiviral activity by binding and
delivering viral double stranded (ds) RNA to TLRs in host cells, resulting in an
increased expression of type I interferons and other pro-inflammatory mediators
[65]. This is an example of LL-37’s immunomodulatory properties, and its
interactions with host cells will be more elaborately discussed in the next section.
Furthermore, LL-37 has been shown to have direct activity against fungi, including
Candida albicans, which is one of the most common fungal pathogens in humans,
but also against single cell parasites, such as protozoa [66, 67].

Extracellular trap formation 

Extracellular traps (ETs) are web-like structures composed of DNA, histones, HDPs 
and cellular proteins that trap, neutralize, and kill different types of pathogens [68]. 
They were initially discovered to be produced in neutrophils but has later been found 
to also be generated in mast cells, macrophages and eosinophils [69-72]. The overall 
process, generally called ETosis, involves nuclear membrane disruption, 
decondensation of chromatin, followed by mixing of the nuclear, cytosolic, and 
granular components in the cytosol [73]. The disruption of the cell membrane results 
in cell death and release of the web into the extracellular space. An alternative more 
explosive mechanism has also been observed in neutrophils that does not result in 
cell death [74, 75]. ETosis has been characterized as an alternative programmed cell 
death mechanism that is separated from apoptosis and necrosis [73]. LL-37 is 
abundantly present in ETs and has also been shown to in itself be able to induce the 
formation of ETs in neutrophils [76]. Since the majority of research has been 
conducted in neutrophils, more research on the role of LL-37 in other ETosis-
forming cells is needed. Overall, the underlying mechanism behind the formation of 
ETs is still largely unknown. 
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The effects of LL-37 on host cells 

LL-37 is multifunctional and displays a range of different effects on host cells. The
peptide acts as an immune system modulator by recruiting and activating immune
cell responses. It can also activate a number of cellular receptors, leading to various
pro- and anti-inflammatory downstream signaling. At high concentrations, LL-37
displays cytotoxicity and has been shown to induce cell death and apoptosis to a
number of human cells. On the other hand, LL-37 can promote wound healing,
angiogenesis and has an evident role in cancer development. All of these properties
combined demonstrates the complexity and pleiotropic actions of the peptide. An
overview of selected LL-37 host cell functions is presented in figure 3, and the most
relevant features are discussed in more detail in this section.

Membrane permeabilization 

The cell membranes of eukaryotes contain high levels of cholesterol and has a 
different phospholipid composition compared to those of the procaryotic cell, 
making eukaryotic membranes less electrostatically attractive to HDPs. 
Interestingly enough, LL-37 does not show a higher selectivity for bacterial 
membranes, and permeabilizes host cell membranes to a similar extent [77]. Instead, 
differences in LL-37-induced permeabilization seems more likely to be cell type 
specific/dependent on type of bacteria. The mechanistic models purposed for LL-
37-induced permeabilization in host cells are considered to be similar to those
previously described for the bacterial cell (Fig. 4) [39]. It has been demonstrated
that permeabilization of host cells stimulates release of lactate dehydrogenase
(LDH), which is a cytosolic enzyme responsible for converting lactate to pyruvate
[78, 79]. LL-37 increases the extracellular LDH levels in several human cell types
and LDH has been shown to be released in a dose dependent manner [80]. The fact
that LDH is a relatively large cytosolic protein (144 kDa) provides an indication on
the size of the LL-37-induced pores. Interestingly, it has been suggested that these
pores are reversable, though this it likely dependent on LL-37 concentration [80].

The release of cellular components and/or influx of extracellular elements is likely 
to be an unspecific mechanism rather than a controlled one. For example, LL-37-
induced permeabilization generates a cellular influx of Ca2+ ions from the 
extracellular space due to its gradient, thereby increasing the cells’ intracellular Ca2+ 
concentration [78, 79]. It has been suggested that this mobilization of Ca2+ can 
activate different receptors, leading to downstream effects, though this has not been 
fully established [38, 81, 82]. In general, it is not clear exactly what downstream 
effects are generated by LL-37-induced cell membrane permeabilization.  
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Cellular internalization 

LL-37 has been shown to be internalized into several types of host cells [83-86],
though the overall mechanism and how this relates to intracellular signaling is not
entirely clear. The majority of LL-37 is considered to be imported through
endocytosis, but the peptide can probably also enter cells via its self-made pores in
the cell membrane. The endocytic pathways are made up by a complex protein
machinery that transport a variety of molecules and receptors into internal
membrane compartments, such as endosomes or the Golgi apparatus. LL-37 has
been shown to be imported in macrophages via clathrin-mediated endocytosis,
which is a well-characterized endocytic mechanism [81]. Here, cellular uptake is
initiated by cargo assembly in the plasma membrane, which usually includes
transmembrane receptors and their ligands (Fig. 5) [87]. A variety of cytosolic
adaptor proteins, including clathrin, are recruited and bind to the inner leaflet of the
specific area. The coating of the inner surface together with actin filaments promote
bending of the membrane and initiates the formation of so called clathrin-coated
pits. To separate the vesicle from the membrane, proteins such as dynamin assists
in the scission process. The vesicle is then uncoated and fused together with
endosomes or other cellular compartments.

LL-37 is also thought to be imported via caveolae/lipid raft-dependent endocytosis,
though this pathway has not been as well-characterized [81]. Caveolae, which are
invaginations of the plasma membrane, are mainly made up by integral membrane
proteins called caveolins, which are directly bound to membrane cholesterol [88].
In caveolae-mediated endocytosis, caveolae vesicles are budded off from the cell
membrane and further directed to membrane compartments of the cell. On the
whole, more research on LL-37 internalization is needed to better understand how
different mechanisms of import may affect cellular functions.

Cytotoxicity 

LL-37 has been shown to induce toxicity and apoptosis in several human cell types,
though the precise apoptotic mechanisms involved are not fully understood. The
apoptotic pathways are highly regulated and often involves the activation of
proteolytic enzymes called caspases, which mediate a complex cascade of events
that leads to cell death [89]. LL-37-induced apoptosis has been shown to involve
caspase activation in a number of cell types, inducing cleavage of caspase 3 and 9
[78, 90, 91]. Interestingly, LL-37 has also been shown to induce apoptosis in a
caspase-independent manner [92-94]. This mechanism is suggested to involve the
release of apoptosis-inducing factor from the mitochondria, indicating that LL-37
also permeabilizes mitochondrial membranes [95]. It is likely that LL-37-induced
membrane permeability have a role in LL-37-induced cytotoxicity, but this remains
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to be concluded. On the other hand, reports show that LL-37 can display both pro- 
and anti-apoptotic effects, which indicates that apoptotic events specifically depend 
on cell type and environmental stimuli [93, 96-98]. For example, neutrophils have 
been shown to express the globular C1q receptor p33 which can bind to LL-37 and 
reduce its toxic effects, making these cells less sensitive to peptide toxicity [79, 99]. 
A similar mechanism has been reported in endothelial cells for the plasma protein 
apolipoprotein A-I that bind to LL-37 and attenuates its effects [100]. Overall, LL-
37-induced cytotoxicity in host cells needs further investigation to determine how it
implements different types of cells and tissues upon inflammation and disease.

Figure 5. Schematic illustration of clathrin-mediated endocytosis. (1) Cargo proteins are recruited to the outer 
membrane (e.g., receptor and their ligand), with cytosolic coat proteins (adaptor proteins and clathrin) assembling on 
the inner leaflet. (2) Coating promotes membrane bending, initiating transformation into clathrin-coated pits. (3, 4) 
Dynamin assists in the scission process to separate the clathrin coated vesicle from the cell membrane. (5) Uncoating 
releases the cargo vesicle, (6, 7) enabling endosome fusion. This image was created with BioRender.com. 
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Immunomodulation 

LL-37 can modulate both innate and adaptive immune responses by functioning as
a chemoattractant, inducing the production of inflammatory agents in surrounding
cells and manipulate microbial components. LL-37 has also been shown to activate
a number of surface bound and intracellular receptors, leading to both pro- and anti-
inflammatory responses.

Immune cells recruitment and activation 
LL-37 is a chemoattractant and recruits granulocytes and other immune cells,
including neutrophils [101], eosinophils [102], monocytes [103], mast cells [104],
and T-cells [105] to infected sites. LL-37 has been shown to directly attract
neutrophils and eosinophils by activating formyl-peptide receptors, which leads to
additional LL-37 release since neutrophils are a stable source of the peptide [102].
LL-37 can also stimulate the production of pro-inflammatory cytokines in various
immune and epithelial cells [106, 107]. For example, LL-37 induces release of
interleukin 8 (IL-8) in monocytes and epithelia, which further initiates immune cell
recruitment by promoting pro-inflammatory responses, demonstrating that LL-37-
induced chemotaxis can be both directly and indirectly activated [58]. Also, several
reports show that LL-37 triggers release of IL-6, a cytokine known to be expressed
in the initial stages of inflammation, in immune cells such as mast cells and dendritic
cells (DCs), but also in airway epithelia, gingiva fibroblasts and keratinocytes [108-
112]. On the other hand, LL-37 has been shown to inhibit pro-inflammatory
mediators such as tumor necrosis factor α in monocytes and interferon γ in immune
cells, leading to reduced activation of lymphocytes [113, 114]. Together, these
selected reports provide evidence of the peptide’s pro- and anti-inflammatory
activities.

TLR receptor modulation 
TLRs are transmembrane sensor receptors of innate immunity that are expressed on 
a variety of cell types [115]. The family consists of around 10 receptors located 
intracellularly or on the cell surface. They recognize conserved microbial 
components known as pathogen-associated molecular patterns (PAMPs) (Fig. 6). 
Some TLRs like TLR2/TLR1 and TLR2/TLR6 heterodimers recognize a diverse 
range of PAMPs, such as lipoproteins, LPS, and peptidoglycans [116]. Both LPS 
and LTA can bind to TLR4 [117], whereas TLR5 is considered to be specific for 
bacterial flagellin [118]. TLRs that are intracellularly located has been shown to 
bind viral and/or bacterial RNA/DNA (TLR3, 7, 8 and 9) [119-121]. 

LL-37 has been shown to modulate multiple TLR-mediated responses [122, 123].
The peptide can synergize with flagellin to regulate TLR5 [124] and bind to single
stranded RNA and DNA to enhance pro-inflammatory signaling by TLR7, 8 and 9
[125-127]. Interestingly, LL-37 inhibits the activation of TLR4 by binding to LPS,
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which represents an anti-inflammatory effect [128]. Furthermore, it has been shown 
that LL-37 enhances TLR3 signaling by enabling viral dsRNA to serve as a TLR3 
agonist, initiating downstream expression of IL-6 and other pro-inflammatory 
mediators [65]. The synthetic dsRNA polyinosine-polycytidylic acid (poly I:C) is 
often used as a TLR3 ligand to mimic viral infections in vitro [129]. It has been 
suggested by Singh et al that LL-37 binds to poly I:C at normal pH and upon 
endosomal acidification releases the dsRNA, thereby increasing its bioavailability 
[130]. However, the mechanisms of how LL-37 enhances poly I:C-induced TLR3 
signaling still needs to be further elucidated.  

Figure 6. TLRs and their selected ligands. TLRs mainly expressed on the cell surface recognizes a variety of PAMPs 
such as tricylated or diacylated lipoproteins (TLR2/TLR1, TLR2/TLR4), LPS (TLR4) and flagellin (TLR5), whereas 
intracellularly expressed TLRs recognize viral RNA (TLR3, 7 and 8), or bacterial/viral DNA (TLR9). This image was 
created with BioRender.com. 

Other receptors and downstream pro-inflammatory signaling 
Apart from TLRs, LL-37 has been shown to activate a number of cellular receptors 
located on the cell surface [131]. G protein coupled receptors (GPCRs) mediate a 
multitude of cellular functions in a wide range of cell types [132]. LL-37 in known 
to activate several GPCRs, including the N-formyl peptide receptor 2, inducing cell 
specific responses such as immune cell recruitment and neutrophil ETosis [103, 
133]. Apart from GPCRs, LL-37 activates several receptor tyrosine kinases, 
including the subfamily of epidermal growth factor receptors (EGFR) which are 
enzymes involved in cell growth and homeostasis [131]. Also, LL-37 has been 
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shown to activate P2X7 in macrophages, a ligand-gated ion channel, initiating LL-
37 internalization by endocytosis [81].  

Figure 7. Schematic illustration of transcription factor NF-κB signaling. LL-37 can activate a range of cell surface 
receptors initiating downstream signaling that involves MAPK cascade signaling and the NF-κB pathway. In the classic 
NF-κB pathway the inhibitory IκBα protein is degraded after being phosphorylated and released from the NF-κB 
complex. NF-κB p105 is processed into p50, and the activated p50/p65 dimer is translocated into the nucleus where it 
can initiate gene transcription.  

The fact that LL-37 activates receptors from different receptor families is surprising 
since ligand/receptor bindings are considered to be quite specific. How LL-37 do 
interact with different receptors is poorly understood. One theory is that LL-37 can 
accumulate around membrane receptors and initiate activation, which in turn 
triggers a wide range of signaling cascades [134]. It has been shown that LL-
37/receptor signaling often involves mitogen-activated protein kinases (MAPKs) 
that leads to the activation of transcription factors (TFs) and transcription of immune 
response genes (Fig. 7) [106, 135, 136]. One of the most important TFs involved in 
pro-inflammatory signaling is NF-κB, which consists of DNA binding proteins of 
the Rel family, usually formed into homo or heterodimers [137]. The inhibitory 
protein IκBα controls NF-κB activity and is initially bound to the NF-κB complex. 
It is released after phosphorylation by the IκB kinase complex (IKKα-γ), followed 
by its degradation. This results in the activation of NF-κB p65 (also called RelA) 
and p105, where p105 is processed into p50. The p50/p65 complex is translocated 
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to the nucleus and can there bind to DNA and activate gene transcription. Overall, 
the majority of LL-37-induced functions are considered to be mediated by activation 
of multiple receptors, both cell surface and intracellularly expressed, though the 
underlying mechanisms need further investigation.  

LL-37 in disease

In several types of autoimmune disorders and other types of diseases abnormal 
levels of LL-37 have been detected. However, in most cases the relationship 
between LL-37 and disease is not fully known, although inflammation seems to be 
a common factor. In this section, a selected number of diseases where LL-37 has 
been suggested to be involved will be more elaboratively discussed (shown in Fig. 
8). LL-37 involvement in cancer has been widely studied and is considered quite 
complex since LL-37 enhances tumor progression in some types of cancer, but also 
displays anti-cancer effects in other types [138]. Due to this, LL-37’s involvement 
in cancer will not be more elaborated on in this chapter.  

Figure 8. Abnormally high LL-37 levels are found in several autoimmune disorders and other inflammatory diseases. 
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Skin conditions 

LL-37 has many important functions in healthy skin. It is produced by keratinocytes
and other epithelial cells but is also provided by parading immune cells. It protects
the skin barrier by fighting pathogens and modulates the immune responses. The
peptide has been found at high concentrations in lesions of several types of
inflammatory skin diseases [139]. Psoriasis is a chronic inflammatory skin condition
that is characterized by red itchy skin patches that can be located all over the body.
To date, no cure has been found, though treatments are available to manage and
relieve symptoms. Abnormally high levels of LL-37 has been found in psoriatic
lesions with concentrations ranging from ~100 µM to over 1 mM [140, 141]. Due
to these high peptide levels the lesions appear to be less susceptive to infections.
LL-37 has been shown to have a critical role in mediating inflammatory cascades in
psoriasis [127]. In fact, LL-37 can bind to self-DNA and this complex induces T
cell activation by TLR9 in DCs. On the other hand, LL-37 neutralizes cytosolic
DNA and blocks inflammatory signaling in keratinocytes [142]. Hence, whether
LL-37 mainly influences pro- or anti-inflammatory responses in psoriasis is still to
be determined.

Rosacea is another though fairly common chronic skin disorder that mainly affects 
the face, resulting in flushing, redness, and swelling. The disease primarily affects 
people with lighter skin and is predominant in women [143]. LL-37 has been found 
at high levels in lesions of rosacea [144]. The enzyme kallikrein 5, known to process 
hCAP18 to LL-37 in keratinocytes, is also found to be upregulated in rosacea. 
Though, the mechanisms behind enhanced LL-37 production in rosacea and if this 
contributes to the inflammatory state is not known. 

On the other hand, LL-37 has been shown to promote wound healing in both skin 
and other epithelia, making it suitable as a treatment of persistent wounds [145-147]. 
Reports have shown increased LL-37 expression at wound sites and lower levels of 
LL-37 was found in chronic wounds [148, 149]. The mechanism of LL-37-enhanced
wound healing is not fully understood but may involve LL-37s’ chemoattractive
properties [146]. It is also possible that LL-37-evoked antibacterial effects indirectly
may promote proliferation of epithelial cells and thereby stimulate wound healing.

Periodontitis 

LL-37 has an essential role in the oral immune system and has been shown to be
crucial in preventing periodontal infections [150]. In the healthy periodontium the
peptide is produced by neutrophils and epithelia of the mouth and is found in saliva.
Periodontitis is a chronic infectious and inflammatory disease that involves
inflammation of the gingiva as a response of microbe infection [151]. If progressed,
it eventually leads to tissue destruction and tooth loss. The disease is classified into
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chronic periodontitis (CP) and aggressive periodontitis (AP) [152]. CP is prevalent 
in a large percentage of the adult population and is characterized by a slow 
progression compared to AP, which instead has a fast more sever progression, and 
mainly affects adolescents. High levels of LL-37 have been found in the gingiva, 
the gingival crevicular fluid, and in saliva of patients with CP [153-157]. The 
mechanisms of LL-37-upregulation in oral tissues and its role in periodontitis is not 
entirely clear.    

Interestingly, in some cases of AP LL-37 levels have instead been found to be 
downregulated [157]. AP has been linked to patients suffering from congenital 
recessive disorders involving LL-37 deficiency such as Kostmann and Papillon-
Lefèvre syndrome [158, 159]. In Kostmann’s syndrome patients are born with a 
neutrophil deficiency [160]. Though, even if regular treatments with granulocyte 
colony growth factors can enhance the neutrophil count these neutrophils are still 
deficient in hCAP18/LL-37 [158]. In contrast, neutrophils in patients with Papillon-
Lefèvre syndrome do express the hCAP18 protein, but cannot process the precursor 
into LL-37 due to the lack of serine protease activity [161]. Also, a missense CAMP 
mutation has been reported to be prevalent in patients with AP, but not in CP patients 
[162]. Together these reports suggests that LL-37 may have different roles in 
different forms of periodontitis [163].  

Respiratory disorders 

Asthma is a common inflammatory condition of the airways characterized by 
airflow obstruction and is often triggered by allergens. The role of LL-37 in asthma 
is suggested to be pro-inflammatory. LL-37 has been found to be upregulated in 
eosinophils in asthmatics and can activate eosinophil signaling, which induces the 
production of inflammatory mediators known to contribute to asthma [164, 165]. 
Also, LL-37 is known to induce chemotaxis of asthma-related immune cells [102, 
166]. Though, the role of LL-37 in asthma progression still needs to be further 
studied.  

LL-37, including many other types of HDPs, have been shown to be elevated in
chronic obstructive pulmonary disease (COPD) [167, 168]. COPD is another type
of chronic lung disorder, usually caused by heavy smoking, that results in obstructed
airflow. COPD is in contrast to asthma a progressive disease, whereas asthma can
be more daily regulated with medications. Reports have suggested that LL-37 is
involved in the pathogenesis of COPD by inducing inflammation, apoptosis and
mucus production in the airways [169, 170].
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Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease where atherosclerotic plaques are 
formed in the arteries [171]. It is the most prevalent cause of cardiovascular disease 
in the world and can in worst cases cause stroke and heart attacks that result in death. 
The plaques are made up by different cells such as macrophages, other immune 
cells, and smooth muscle cells (SMCs), together with connective tissues, lipids, and 
proteins. LL-37 has been shown to be expressed in atherosclerotic plaques, and its 
activity has mainly been linked to macrophages [91, 172]. It has been suggested that 
LL-37 assists in the recruitment of inflammatory cells to the plaque and hence also
modulates the cytokine environment [173]. LL-37 has been shown to stimulate
atherosclerotic development by complex binding to self-DNA in DCs [174]. Also,
LL-37 in complex with mitochondrial DNA has been shown to have an important
role in immune cell activation and progression of atherosclerosis [175]. Though,
more research is needed to fully establish the role of LL-37 in atherosclerosis.
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Aims 

The general aim of this thesis was to further gain understanding in LL-37-mediated 
host cell effects, more specifically regarding LL-37-induced cell membrane 
permeability, cytotoxicity, and immunomodulatory effects. 

The specific aims for each paper were to: 

I. Investigate LL-37 internalization in human MG63 osteoblast-like cells and
assess how LL-37 import influences cell viability and cell membrane
permeability.

II. Examine the effects of LL-37 on cell viability, nucleic acid release and
extracellular trap formation in human LAD2 mast cells.

III. Assess LL-37 and dsRNA-induced upregulation of inflammatory signaling
in human coronary artery vascular smooth muscle cells.

IV. Study the mechanism behind how LL-37 elevates dsRNA-induced
upregulation of TLR3 expression in human bronchial epithelial cells.
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Material and Methods 

In this chapter I briefly describe and reflect upon the methods and techniques I have 
used in this thesis. Detailed descriptions can be found in the method section of each 
paper.  

Cell culture 

The advantage of using cell culture is that it allows you to investigate molecular 
mechanisms in a controlled environment. In my case, working with a human peptide 
favors the use of human cells and tissues. In this thesis I have used four different 
types of human cells, all with different properties and culture requirements (see 
Table 2). I mainly chose to work with cell lines, more specifically in paper I, II and 
IV, since they provide an easy, inexpensive, and stable model to perform 
experiments in. Though, it is important to reflect on the limitations of cell lines and 
to consider how they compare to the original cell type. In paper III, I worked with 
the commercially available primary human coronary artery SMCs (hCASMCs), 
which have been directly isolated from tissue using enzymatic digestion. The main 
advantage of working with primary cells is the fact that they more closely resemble 
the original tissue, though you can only work with them for a limited period and 
their expression pattern might change over time. All cells were cultured in a water-
jacked incubator at 37 °C with 5 % CO2 and seeded one day prior to each 
experiment. The LAD2 cells, which are grown in suspension, were attached to a 
surface using poly-L-lysine. All cells were treated in their regular growth medium 
if nothing else was stated. Exceptions were made when the cells were transfected, 
or the assay required specific buffers or transparent media without phenol-red. 
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Tabel 2. Human cells used in the different studies. 

Cell Growth Origin Type Culture media Source Paper 

MG63 Adherent Osteoblast-like cell Cell line DMEM F12 
+10% FBS A.T.C.C. I 

LAD2 Suspension Mast cell Cell line 

StemPro-34 
+StemPro-34
supplement 
+RHSF

Gift from Dr. 
Kirchenbaum II 

hCASMC Adherent Coronary artery SMC Primary M231 
+5% SMGS

ThermoFisher 
Scientific III 

BEAS-2B Adherent Bronchial epithelial cell Cell line RPMI Glutamax 
+10 FBS A.T.C.C. IV 

Assessing cell viability, cell number and cell 
morphology 

In all studies it was important to examine the cytotoxic effects of LL-37 since this 
varies depending on cell type. I used the tetrazolium dye MTT to assess the cell 
viability in paper I-IV. This assay is based on measuring the cells metabolic activity, 
meaning that the number of viable cells correlates with the amount of MTT substrate 
being reduced into a formazan product. This product is then dissolved, and the 
absorbance spectrophotometrically analyzed. However, the results from this assay 
may also reflect the number of cells present in each culture well, which is an 
important factor to consider. I also complemented the cell viability assay with 
counting the number of cells per well in paper III, using an automated cell counter, 
and with morphology assessments in paper II and III, using a phase contrast 
microscope. 

Extraction of RNA and real-time RT-qPCR 

Reverse transcriptase quantitative polymerase chain reaction (RT qPCR), also 
known as real-time RT-qPCR, was used to assess mRNA expression of specific 
target genes in paper I, III and IV. For all targets RNA was extracted from cell 
lysates and concentration and purity evaluated using NanoDrop measurements. I 
used a one-step reaction, which means that the conversion from RNA to 
complementary DNA and the qPCR reaction occurs in the same well/tube. The 
advantages of a one-step reaction are that the contamination risks are reduced due 
to fewer laboratory steps, that it saves reagents and is less time consuming compared 
to a two-step reaction, though it can be less sensitive and problematic when there is 
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a need to troubleshoot. I used a fluorescence-based assay to detect the real-time 
amplifications, more specifically a SYBR green based assay. SYBR green is a 
sensitive dye that only emits fluorescence when bound to dsDNA. However, the 
SYBR green dye is not sequence specific, so to ensure specificity a melt curve 
analysis was necessary. For all experiments, the target gene expression was 
normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a protein 
which gene expression was not expected to change after treatment. 

Transfection using siRNA 

To downregulate the protein expression of a certain target, I transfected cells using 
short interfering RNA (siRNA). This is a type of transfection where the siRNA binds 
to the target mRNA and initiates its degradation, thereby preventing translation. 
This method was used in paper I and III, and in both cases oligofectamine 
transfection reagent was used to transfer the siRNA more efficiently into the cells. 
To ensure specificity of the target siRNA, a scrambled negative control siRNA was 
used, where the target siRNA nucleotide sequence had been randomly rearranged. 
For both paper I and III, cells were transfected for a total of 72 h. Regular growth 
medium was added 1:1 after 24 h, followed by another 48 h of transfection. The 
knockdown was confirmed by using real-time qPCR. 

Determination of protein expression 

Immunoblotting 

Western blot, also called immunoblotting, is a technique used to separate and detect 
proteins in a sample using specific antibodies. In this thesis we used Western blot 
analysis in paper I, III and IV. Initially, cells were lysed, and proteins purified in a 
buffer containing sodium dodecyl sulfate (SDS), which denatures and binds the 
protein, giving it a negative charge. Total protein concentration in each sample was 
determined in a colorimetric assay, using a bovine serum albumin protein standard. 
The proteins were separated according to size, using SDS-polyacrylamide gel 
electrophoresis, and then transferred to a nitrocellulose membrane. The efficiency 
of the transfer was confirmed by staining the gel with Coomassie stain. The 
membrane was blocked for unspecific antibody-binding with casein solution, and 
then incubated with a primary antibody, specific for the target protein. Next, the 
membrane was incubated with a secondary antibody conjugated with the enzyme 
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horse-radish peroxidase, which generates a chemiluminescent signal after 
incubation with the substrate West Femto, enabling detection of the target protein. 
For all blots, the immunoreactive band for the target was normalized to the band 
intensity of GAPDH, which was used as a reference protein to ensure equal loading. 
Even though the western blot method is considered specific it can provide false-
positive results, and it is therefore important to include the right type of controls and 
to use validated antibodies. It is also important to consider that the membrane can 
get saturated with protein when using highly expressed targets, which will provide 
incorrect results.  

ELISA 

Enzyme-linked immunosorbent assay (ELISA) is used to quantify the amount of a 
specific protein in a sample. Specifically, I used a sandwich ELISA to determine the 
target of interest protein levels in paper I and III. The word sandwich refers to the 
process in which the target protein is bound between two antibodies, one bound to 
the surface of the well and one conjugated with an enzyme. Since ELISA kits have 
ready-made solutions and protocols, I followed the protocol according to the 
manufacturer’s instructions. In general, cells were lysed in phosphate buffered 
saline by sonication and the total protein concentration in each sample was 
determined. The samples and a protein standard were loaded to a microplate that 
had previously been pre-coated with antibodies against the specific target. After 
protein binding, the plate was incubated with an enzyme-linked antibody, and after 
adding a substrate, this led to color development. The reaction was then stopped and 
analyzed in a microplate spectrophotometer. To eliminate incorrect results, samples 
and standard was always analyzed in duplicates. The advantage of using ELISA is 
the use of a protein standard, in that the amount of target protein in each sample can 
be specifically determined, compared to relative measurements. For each sample the 
target protein concentration was normalized to the total protein concentration. 

Immunofluorescence staining 

Immunocytochemistry is a method used to localize specific targets in cells. This 
method was used in paper II and III to visualize the internalization of LL-37. Cells 
were cultured on glass slides and initially fixed and permeabilized before being 
incubated with bovine serum albumin to block for unspecific binding. Here, I used 
indirect immunofluorescent staining, meaning that a primary antibody initially 
binds specifically to the target, followed by the binding of a secondary antibody, 
conjugated with a specific fluorophore. The slides were mounted using a medium 
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containing the nuclear marker DAPI and analyzed in a fluorescence microscope. To 
evaluate import of poly I:C in paper III and IV, I treated cells with poly I:C that was 
directly labeled with the fluorophore rhodamine. After treatment, cells were fixed 
and mounted using DAPI before being analyzed. In paper II, cells were seeded on 
glass-bottom culture dishes and incubated with the plasma membrane fluorescent 
dye SYTOX green during treatment to visualize intracellular and extracellular 
nucleic acids. The fluorescent signal was immediately analyzed in live cells using 
confocal microscopy. 

Measuring permeabilization 

LDH release assay 

It has been shown that LL-37 permeabilizes human cell membranes. To measure 
LL-37-induced plasma membrane permeabilization, I evaluated the release of the
cytoplasmic enzyme LDH in paper I and II. Cells were seeded in a microplate and
treated at 37 °C for 30 min in phenol-red free medium to eliminate optical
interference. Then, supernatants were collected and incubated with sodium pyruvate
and a nicotinamide adenine dinucleotide (NADH)-solution, allowing LDH to
catalyze a redox reaction, thereby converting pyruvate to L-lactate and NADH to
NAD+. The LDH concentration was indirectly quantified by measuring the amount
of NADH remaining in each sample, evaluating the efficacy of the redox reaction.
The amount of LDH was normalized to the maximum LDH release, which was
obtained by sonicating cells.

Measuring intracellular Ca2+

We have previously demonstrated that LL-37 alters the intracellular Ca2+ 
concentration in host cells by permeabilizing the cell membrane. In paper I, the 
intracellular Ca2+ levels were evaluated in MG63 cells cultured on glass-bottom 
culture dished and incubated with the Ca2+ sensitive dye Fluo-4. The binding of 
Fluo-4 to the Ca2+ ions will increase the fluorescence signal. In this case, the dye 
was used in the acetoximethyl ester form, which loads faster and is cleaved inside 
the cells to release the free Fluo-4 dye. The measurements were performed in a 
HEPES-buffered salt solution containing Ca2+ and analyzed immediately after 
treatment in a confocal microscope. The ionophore ionomycin was later added to 
obtain the maximum intracellular Ca2+ concentration. To reset the baseline, cells 
were incubated with a Ca2+- free solution. 
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Measuring nucleic acid release 

In paper II, I investigated nucleic acid release from LAD2 mast cells as a result from 
LL-37-induced membrane permeabilization and extracellular trap formation. Cells
were seeded in a microplate and treated in 37 °C in a HEPES-buffered salt solution.
DNase was added to digest the released nucleic acids, and the reaction stopped using 
EDTA. Supernatants were transferred to a black microplate and incubated with the
nucleic acid dye SYTOX green. The binding between SYTOX green and nucleic
acids results in an enhanced fluorescent emission that can be analyzed in a
microplate reader. The fluorescent signal was normalized to the concentration of
total protein in each sample.



41 

Results and Discussion 

In the following chapter, the results obtained in paper I-IV are presented and the 
main findings are generally discussed. A more elaborated description of the results 
and specific figures can be found in the result section of each paper.  

Paper I 

LL-37 causes cytotoxicity and cell membrane permeabilization in human osteoblast-
like cells independently of LL-37 internalization via clathrin-mediated endocytosis  

It is suggested that LL-37 can be internalized into human cell by both endocytosis 
and self-made pores formed in the cell membrane [35, 78, 81]. However, it is not 
clear if LL-37 imported via these two mechanisms have different or similar cellular 
effects. The aim in paper I was to investigate how cellular import of LL-37 affects 
cell viability and cell membrane permeabilization in MG63 osteoblast-like cells. 
Importantly, these cells do not endogenously express LL-37, which was essential to 
ensure that all internalized LL-37 had been imported from the outside. Clathrin-
mediated endocytosis was prevented both pharmacologically with chlorpromazine 
(CLP), which prevents clathrin lattices to assemble/dissemble, and by 
downregulating clathrin heavy chain like 1 (CLTCL1), a major protein of the 
clathrin-coated pits, using siRNA. 

We show that blocking clathrin-mediated endocytosis reduces LL-37 import by 
around 30% in osteoblast-like cells. Previous reports demonstrate that inhibiting 
clathrin-mediated endocytosis with CLP reduce the LL-37 import in a similar 
manner in macrophages, indicating that LL-37 is similarly imported via clathrin-
mediated endocytosis in both of these cell types [81]. We also pharmacologically 
blocked caveolin-mediated endocytosis using filipin, though this treatment did not 
reduce the LL-37 uptake, suggesting that LL-37 is not imported into osteoblast-like 
cells via caveolin-mediated endocytosis.  

The sensitivity of human cells to LL-37-induced cytotoxicity has previously been 
shown to be cell specific, though majority of cells seems to be affected in a dose 
dependent manner [80]. LL-37-induced cytotoxicity in MG63 cells have previously 
been reported [78, 99]. We demonstrate that LL-37 reduces the cell viability in a 
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similar manner whether or not LL-37 import via endocytosis is partly prevented 
(Fig. 9A), indicating that the LL-37 internalized via clathrin-mediated endocytosis 
does not have a cytotoxic effect. One might argue that blocking the import by 30% 
would not be enough to visualize changes in cell viability. To address this, we 
performed a dose response curve to ensure system sensitivity. Importantly, neither 
CLP treatment nor CLTCL1 knockdown displayed cytotoxicity on their own.  

Furthermore, we show that LL-37 permeabilizes the cell membrane in a similar 
manner both with and without blockage of clathrin-mediated endocytosis (Fig. 9B). 
We evaluated membrane permeability in two ways, by measuring an immediate 
Ca2+ influx and by assessing the release of LDH protein. It has previously been 
established that measuring influx of cellular Ca2+ is a useful method to determine 
LL-37-induced cell membrane permeabilization [78]. We show that intracellular
Ca2+ increases similarly, both with and without endocytic prevention. Also, we
found that LDH was released in a similar manner in both control cells and in cells
where endocytosis was blocked (Fig. 9B). Together, these data indicate that LL-37-
induced membrane permeability occurs independently of clathrin-mediated
endocytosis.

Summarizing the results from paper I, we show that both pharmacological inhibition 
of clathrin-mediated endocytosis and knockdown of CLTCL1 reduce LL-37 import, 
and that this reduction in uptake do not have an impact on LL-37-induced 
cytotoxicity and cell membrane permeability in MG63 osteoblast-like cells.  

Figure 9. (A, B) MG63 osteoblast-like cells were treated with chlorpromazine (CLP, 10 µM) for 1 h, before treatment 
with LL-37 (4 µM). Cell viability was assessed after 3 h, using the MTT assay (A) and release of LDH after 30 min (B). 
Data are presented as ± SEM. *** p<0.001, ns represents “non-significant”. This data was originally published as part 
of Fig. 2a (A) and Fig. 3c (B) in paper I [176]. 
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Paper II 

LL-37 induces release of nucleic acids and proteins in mast cells 

ETosis has been shown to be an important immunological process, in which 
antimicrobial webs are released from immune cells as a response to infection [73]. 
Apart from DNA and cellular proteins, HDPs such as LL-37 are essential 
components of ETs. ETosis predominantly takes place in neutrophils and LL-37 has 
been shown to in itself be able to initiate the formation of ETs in these cells [76]. 
Mast cells are also ET forming cells, though the ability of LL-37 to directly induce 
ETosis in mast cells have not previously been investigated. In paper II, we assessed 
the ability of LL-37 to induce ETosis in mast cells, but also the effects of LL-37 on 
mast cell toxicity and cell membrane permeability. In this study we used LAD2 mast 
cells, which is a prominent mast cell line commonly used in vitro [177].  

Here, we show that LL-37 increases release of nucleic acids and proteins into the 
extracellular space (Fig. 10A and B). This release is suggested to be a result of cell 
membrane permeabilization, which was confirmed by measuring the release of LDH 
protein. Interestingly, LL-37 also induced release of nucleic acids at concentrations 
where the cell viability remained unaffected, suggesting that LL-37-induced 
permeabilization does not always result in a reduction of cell viability. Treatment 
with phorbol-12-myristate-13-acetate (PMA) was included as a control for ETosis 
since this is a well-known inducer of ETs in both neutrophils and mast cells. PMA 
caused release of nucleic acids, but not proteins (Fig. 10A and B), suggesting that 
LL-37 and PMA stimulates nucleic acid release by different mechanisms. 

Furthermore, confocal microscope images illustrated that nucleic acids were present 
in both the nucleus and the cytosol (Fig. 10C-E). In these experiments we used the 
nucleic acid dye SYTOX green, which is impermeant to intact cells. Also, 
internalized LL-37 was detected in both the nucleus and in the cytosol. Together 
these data suggest that LL-37 permeabilizes both the nuclear and the cellular 
membranes. However, LL-37 did not induce the formation of extracellular trap-like 
structures in contrast to PMA treated cells, though these PMA-induced webs were 
produced at a relatively low percentage. In fact, mast cells are generally considered 
to induce ETosis in 40% of cells, compared to neutrophils where 90% of cells have 
been shown to produce ETs [178]. Overall, this data provides further evidence that 
LL-37 and PMA induce release of cellular components using different mechanisms.  

In summary, we show in paper II that LL-37-induced permeabilization of the 
nuclear envelope and the cellular membrane promotes release of nucleic acids and 
proteins in human mast cells.  
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Figure 10. (A-B) LAD2 mast cells treated with LL-37 (10 µM) or PMA (250 nM) for 4 h release nucleic acids (A) and 
protein (B). Data are presented as ± SEM. ** p<0.01, *** p<0.001. (C-E) Nucleic acids are labeled with SYTOX green 
in control cells (C) and cells treated with LL-37 (10 µM) (D-E) for 4 h. The bar in panel D represents 70 µm and in panel 
E 10 µm. This data was originally published as part of Fig. 3a-b (A,B) and Fig. 5a-c (C-E) in paper II [179].  
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Paper III 

LL-37 potentiates poly I:C-induced signaling and TLR3 expression in human
coronary artery smooth muscle cells

LL-37 has been found to be upregulated in atherosclerotic plaques, though the
precise role of LL-37 in the progression of atherosclerosis needs more investigation
[91, 172]. Macrophages are considered the main producers of LL-37 in the plaques,
and reports suggest that LL-37 mediates a pro-inflammatory role in the
inflammation and progression of atherosclerosis [173-175]. Vascular SMCs have a
prominent role in atherosclerosis, though the effects of LL-37 on vascular immunity
have not been established. In paper III, we investigated the pro-inflammatory effects
of LL-37 and dsRNA signaling in hCASMCs, including the expression of cytokines
IL-6 and monocyte chemoattractant protein 1 (MCP-1), and the innate immune
receptor TLR3. Here, we used the synthetic dsRNA poly I:C since it is known be
effective in activating immunological pathways in vitro.

We found that co-treatment with poly I:C and LL-37 for 24 h increased both mRNA 
and protein expression of IL-6 and MCP-1 compared to treatment with poly I:C 
alone. We used two different concentrations of poly I:C (10 and 30 µg/ml) to 
examine the concentration/response relationship and found that 30 µg/ml poly I:C 
generated a more enhanced IL-6 and MCP-1 protein expression compared to 10 
µg/ml. Though, the co-treatment induced a more pronounced upregulation of IL-6 
and MCP-1 levels compared to poly I:C alone at both poly I:C concentrations used. 

Importantly, the LL-37 concentration used in this study did not display cytotoxicity. 
Even so, LL-37 was shown to be internalized into the SMCs using fluorescent 
imaging, suggesting an intracellular mechanism of action. Moreover, we found that 
the LL-37-induced potentiation of poly I:C signaling was not due to enhanced 
import of poly I:C, but instead a result of increased mRNA (Fig. 11A) and protein 
expression of TLR3. This data showed that LL-37 enhances the poly I:C-induced 
TLR3 expression compared to poly I:C alone (Fig. 11A). Furthermore, knockdown 
of TLR3 reduced both IL-6 and MCP-1 transcripts, thereby confirming loss of 
function (Fig. 11B). Recent new data also reveal that the co-treatment with poly I:C 
and LL-37 is most effective in upregulating TLR3 expression at 15 h and 24 h (Fig. 
12), indicating that LL-37 enhancement of TLR3 expression in hCASMCs increases 
with time. 

Summarizing paper III, we show that poly I:C-induced expression of the 
inflammatory mediators IL-6 and MCP-1 in hCASMCs is a result of enhanced 
TLR3 expression, and that this immunological response induced by dsRNA can be 
enhanced by LL-37. 
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Figure 11. (A) Transcript levels of TLR3 are upregulated in human coronary artery smooth muscle cells after treatment 
with LL-37 (1 µM) and poly I:C (10 or 30 µg/ml) in combination for 24 h. (B) The upregulated IL-6 mRNA expression  
induced by treatment with LL-37 (1 µg/ml) and poly I:C (10 µg/ml) after 24 h was reduced by TLR3 knockdown, using 
siRNA. (A-B) Data are presented as ± SEM. *** p<0.001. This data was originally published as part of Fig. 6a (A) and 
Fig. 7a (B) in paper III [180]. 

 
Figure 12. TLR3 mRNA expression in human coronary artery smooth muscle cells treated with LL-37 (1 µM) and poly 
I:C (10 µg/ml) for 3, 6, 15 and 24 h. Data are presented as ± SEM. * p<0.05, ** p<0.01, *** p<0.001. 
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Paper IV 

LL-37 enhances poly I:C-induced upregulation of TLR3 due to LL-37-stimulated
import of poly I:C in BEAS-2B epithelial cells

LL-37 has been shown to mediate TLR signaling and is able to bind to a wide variety
of TLR ligands, such as bacterial and viral nucleic acids [122-127]. Reports suggest
that LL-37 can bind to the synthetic dsRNA poly I:C and enhance TLR3 signaling
in epithelial cells [130]. We recently found (paper III) that this enhanced TLR3
signaling may be a result from LL-37/poly I:C-stimulated expression of TLR3,
though this study was performed in SMCs and not epithelial cells [180]. Therefore,
in paper IV, we investigated LL-37 and poly I:C co-induction of TLR3 expression
in the human bronchial epithelial BEAS-2B cell line, and if upregulation of TLR3
could be pharmacologically blocked using the glucocorticoid dexamethasone.

Here, we show that LL-37 potentiates poly I:C-induced mRNA and protein 
expression of TLR3 compared to treatment with poly I:C alone. At a short time (6 
h), a lower LL-37 concentration (1 µM) was enough to potentiate the TLR3 
expression (Fig. 13A). However, at a longer treatment time (24 h), a higher LL-37 
concentration (4 µM) was required to obtain similar results. Reports suggest that 
LL-37 have a short half-life in vitro, (around 1 h) [130], which would explain why
a higher concentration of LL-37 was necessary at a longer treatment time. It is
important to mention that neither one of the LL-37 concentrations used displayed
cytotoxicity.

Furthermore, we demonstrate that LL-37 generates an enhanced import of poly I:C 
(Fig. 13B). The immunofluorescent signal was analyzed in cells treated with a 
rhodamine-labelled poly I:C, either alone or in combination with LL-37 for 6 and 
24 h. A higher cellular fluorescence was detected after co-treatment compared to 
poly I:C alone at both 6 and 24 h, suggesting that LL-37 stimulates poly I:C import 
in a rapid process where the internal poly I:C levels remain unchanged after 24 h. 
This LL-37-enhanced import of poly I:C may be a novel mechanism of action to 
explain LL-37/poly I:C-induced upregulation of TLR3 expression in BEAS-2B 
cells.  

In addition, we show that the glucocorticoid dexamethasone reduces the TLR3 
expression generated by LL-37 and poly I:C, demonstrating the importance of 
dexamethasone as an anti-inflammatory treatment. Dexamethasone also enhanced 
the expression of the NF-κB inhibitory protein IκBα, whereas the co-treatment 
induced upregulation of the NF-κB protein p105. Together these data suggest that 
LL-37/poly I:C-induced TLR3 upregulation involves NF-κB signaling. Also, the
endosomal acidification inhibitor chloroquine abolished the induced TLR3 levels,
suggesting that acidification of the endosomes is important for upregulating TLR3
expression.
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In summary, we show that upregulated TLR3 expression induced by LL-37 and poly 
I:C is associated with LL-37-enhanced import of poly I:C. Also, our data 
demonstrates that LL-37/poly I:C-induced TLR3 expression involves downstream 
signaling and elevated NF-κB activity. 

 

Figure 13. (A) TLR3 mRNA expession of human BEAS-2B cells treated with poly I:C (0.2 and 2 µg/ml) and LL-37 (1 
µM) for 6 h. (B-C) The average relative cell fluorescence (red) and DAPI staining (blue) in BEAS-2B cells treated with 
rhodamine-labeled poly I:C (4 µg/ml) for 24 h. The bar in the bottom image represents 40 µm for all panels. (A-B) Data 
are presented as ± SEM. ** p<0.01, *** p<0.001. This data was originally published as part of Fig. 3a (A), Fig. 5d (B) 
and Fig. 5c (C) in paper IV [181]. 
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Summary and Reflection 

The multifunctional role of LL-37 has been widely studied, though there are still 
many aspects of LL-37-mediated functions that remain to be investigated. High 
levels of LL-37 are found locally in tissues of many inflammatory and autoimmune 
disorders. If we are to better understand the progression and maintenance of such 
diseases, the mechanisms of LL-37-induced host cell effects needs to be further 
investigated. In this thesis I have elaborated on various LL-37-mediated effects with 
my main focus on LL-37-induced host cell toxicity, cell permeability and TLR 
mediated pro-inflammatory functions.   

In paper I-IV we observe that LL-37 reduces host cell viability in a dose dependent 
manner in all cell types tested, though the general level of sensitivity seems to be 
cell specific. In paper I and II we intended to induce a medium level of toxicity, 
whereas in paper III and IV we wanted to avoid cytotoxic effects from the peptide. 
However, since these different cell types have dissimilar morphologies and grow in 
different patterns it is challenging to directly compare their sensitivity to LL-37-
induced toxicity. As previously described, the pathways involved in LL-37-induced 
toxicity and apoptosis have been shown to be many and the mechanisms behind this 
diversity are not completely understood. 

In paper I and II we show that the LL-37-induced permeabilization results in influx 
of Ca2+ and release of both nucleic and cytosolic components. The fact that LDH is 
a relatively large protein provides us with information regarding the size of cellular 
components being able to diffuse through the LL-37-induced pores. We hypothesize 
that the release of nucleic acids, caused by LL-37-stimulated membrane 
permeabilization, may be an important mechanism in modulating pro-inflammatory 
signaling in innate immunity. On the other hand, the results from paper I indicate 
that LL-37-induced membrane permeability may be an important factor in 
mediating host cell cytotoxicity. Although, data in paper II demonstrates that LL-37 
can induce cell membrane permeability, but not cytotoxicity. Hence, exactly what 
cellular functions LL-37-induced permeabilization mediates remains to be 
concluded. 

In paper I-III we demonstrate that LL-37 is internalized into several types of human 
cells. It is generally believed that LL-37 import is a necessary process to allow LL-
37 to execute many of its cellular effects. LL-37 has been shown to mediate TLR 
responses by interacting with PAMPs and other TLR ligands. In paper III and IV 
we demonstrate that LL-37 mediates TLR3 signaling and enhance downstream pro-
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inflammatory responses in both hCASMCs and bronchial epithelial cells. We found 
that LL-37 enhanced poly I:C-evoked TLR3 expression in both cell types, though 
poly I:C seemed to generate an overall quicker and larger immunological response 
in the epithelial cells compared to the SMCs. In paper IV we found that LL-37 
enhanced the import of poly I:C in epithelial cells and we propose that this 
mechanism is responsible for the LL-37/poly I:C-induced TLR3 upregulation in 
these cells. We suspect that the increased poly I:C import is a result from both 
enhanced endocytic import and increased diffusion through LL-37-mediated pores. 
Notably, we did not detect a LL-37-enhanced import of poly I:C in hCASMCs in 
paper III, though this might be due to numerous factors, such as different 
experimental conditions and the cells’ responsiveness to dsRNA. Interestingly, LL-
37 modulation of TLR mediated effects has been observed as both pro- and anti-
inflammatory, advocating the opinion that LL-37 can both increase or revoke 
inflammatory signaling depending on cell type and microenvironment. 

In summary, the general conclusions from paper I-IV are as follows: 

• LL-37 reduces the cell viability in a concentration dependent manner in 
human cells, though the level of cytotoxicity varies with cell type.  

• LL-37 permeabilizes host cell membranes, resulting in Ca2+ influx, release of 
nucleic acids and proteins, such as LDH.  

• LL-37-induced cell membrane permeability does not always result in 
cytotoxicity, but permeabilization also occurs at low LL-37 concentrations 
where the cell viability remains unaffected.  

• LL-37 is internalized into human osteoblasts, mast cells and SMCs, indicating 
that LL-37 might trigger intracellular signaling in these cells. 

• LL-37 is imported by clathrin-mediated endocytosis in osteoblast-like cells, 
and this import does not affect LL-37-induced cell cytotoxicity and cell 
membrane permeability.  

• LL-37 potentiates poly I:C-induced TLR3 expression and downstream pro-
inflammatory signaling in hCASMCs and bronchial epithelial cells.   

• LL-37 induces an increased import of poly I:C in bronchial epithelial cells, 
and this effect is associated with downstream TLR3 signaling and increased 
NF-κB activity.  
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