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POPULARVETENSKAPLIG SAMMANFATTNING

Inom kvantfysiken modelleras fysikaliska storheter som uppfyller superpositionsprincipen
av linjira operatorer pd Hilbertrum, dir spektrala egenskaper hos operatorerna har tolk-
ningar i termer av mitvirden hos storheterna. Ett klassiskt exempel ar Schrédinger opera-
torn, som beskriver dynamiken hos ett kvantmekaniske tillstind, exempelvis tillstandet hos
elektroner innanfor atomer. Matematiskt 4r det ofta fordelaktigt att studera linjira ope-
ratorer genom att lata de verka pd Hilbertrum av funktioner, som ofta besitter sirskilda
egenskaper forknippade till operatorn i friga. En viktig och viletablerad operatorteoretisk
modell hirrér frin Sz-Nagy & Foais teorin utvecklad omkring so-talet, och hirleder hur
skiftoperatorer pi underrum i det klassiska Hardyrummet beskriver spektrala egenskaper
hos en generell klass av kontrakeiva linjira operatorer pd Hilbertrum, med tillimpning-
ar inom bland annat signal behandling och kontrollteori. Férstaelse for skiftoperatorer pa
Hardyrummen anses idag vara god och beror till stor del pa en viktig insats av Arne Beur-
ling ar 1949, ddr en funktionsteoretisk beskrivning av de underrum till Hardyrummet som
dr invarianta under skiftoperatorerna tillkinnagavs. Detta resultat 4r i modern tid ar att
betraktas som en utav de viktigaste milstolparna inom operatorteorin. Sirskilda funktions-
rum som upptrider i dessa sammanhang ir modellrummen och mer generellt, de Branges-
Rovnyak rummen, som béda erhiller mycket subtila funktionsteoretiska egenskaper. En
annan viktig klass av operatorer som introducerades av Paul Halmos ar 1952, 4r klassen
av subnormala operator, som i manga intressanta fall kan modelleras av skiftoperator pa
polynomitillslutningar av Lebesguerum med matt som har kompake stéd i det komplexa
talplanet.

I denna avhandling behandlas olika frigestillningar som berér tillndrmningsproblem i sir-
skilda funktionsrum pa enhetsskivan i det komplexa talplanet, som naturligt upptrider in-
om spekeralteorin for klassiska linjira operatorer, sisom skiftoperatorer och paraprodukter.
Exempel pa funktionsrum som betraktas ir de klassiska Hardyrummen och Bergmanrum-
men, samt sdrskilda rum diri, sisom modellrummen. Exempelvis sd handlar ett utav pro-
jekten om att studera spekerala egenskaper av analytiska paraprodukter, som visar sig ha att
gora med tillnirmningsproblem i symbolklassen som inducerar begrinsade paraprodukter
pa diverse funktionsrum. En betydande del utav avhandlingen tillignas at att studera re-
guljira tillndrmningsproblem i extrema de Branges-Rovnyak rum, sisom modellrummen.
Det visar sig att dessa frigestillningar har intima kopplingar tll osidkerhetsprinciper re-
laterat till irreducibilitet inom teorin for subnormala operatorer, som ir av fundamental
betydelse inom béade operatorteorin och funktionsteorin i komplex och harmonisk analys.
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Preface

I Summary

The main part of my PhD thesis revolves around investigating specific approxi-
mation problems in different spaces of analytic functions, which often and natu-
rally appear in connection to spectral problems of certain bounded linear operators
therein. The subjects treated here are best captured within the realms of complex
analysis, harmonic analysis and operator theory. In this thesis, we are concerned
with the treatment of 4 different, but somewhat related research projects, summa-
rized in 7 research articles.

The first project is concerned with studying spectral properties of so-called ana-
lytic paraproducts, also known as Cesar6 operarors, through the theory of weights,
which turns out to be connected to certain approximation problems in the spaces
of symbols that induce bounded analytic paraproducts. These results are contained
in the following two articles, where the first one is in collaboration with my col-
laborator Dr. Bartosz Malman, afhiliated with the Royal Institute of Technology
in Stockholm, while the second article is a collaborative work together with Prof.
Artur Nicolau from Universitet Auténoma de Barcelona.

[Paper I ] A. Limani, B. Malman, GENERALIZED CESARO OPERATORS: GEOMETRY
OF SPECTRA AND QUASI-NILPOTENCY, published in International Mathematics
Research Notices (2020).

[Paper II ] A. Limani, A. Nicolau, BLocH FUNCTIONS AND BEKOLLE-BONAMI WEIGHTS,
accepted for publication in Indiana University Mathematics Journal (2021).

The second project concerns approximation problems in the classical model
spaces in the Hardy space H? and their HP-counterparts, usually referred to as the
spaces of pseudocontinuable functions. Here, the central questions are to inves-
tigate when certain classes of functions with sufficiently regular boundary values
form a dense subset in a model space or in a space of pseudocontinuable functions.
This work is contained in the following two papers, both in collaboration with Dr.
Bartosz Malman.



[Paper III ] A. Limani, B. Malman, ON MODEL SPACES AND DENSITY OF FUNCTIONS
SMOOTH ON THE BOUNDARY, pre-print 2021 (submitted).

[Paper IV ] A. Limani, B. Malman, AN ABSTRACT APPROACH TO APPROXIMATIONS
IN SPACES OF PSEUDOCONTINUABLE FUNCTIONS, published in Proceedings of
the American Mathematical Society (2021).

The next project in line was initially intended as an extension of the previ-
ous research project on smooth approximations in model spaces, to the setting
of de Branges-Rovnyak spaces. However, our investigations revealed that these
questions were significantly more involved, as they closely tie to the theory of
cyclic subnormal operators, which can be modeled by the multiplication opera-
tor M, (f)(2) = zf(z) on some P?(p)-space, the closure of analytic polynomials
in the usual Lebesgue space L?(yt), where p is a compactly supported Borel mea-
sure in the complex plane. This work was carried in collaboration with Dr. Bartosz
Malman and is contained in the following articles.

[Paper V ] A. Limani, B. Malman, INNER FUNCTIONS, INVARIANT SUBSPACES AND
cycricrty IN P!(11)-SPACES, pre-print 2021 (submitted).

[Paper VI ] A. Limani, B. Malman, ON THE PROBLEM OF SMOOTH APPROXIMA-
TIONS IN DE BRANGES-ROVNYAK SPACES AND CONNECTIONS TO SUBNORMAL
OPERATORS, pre-print 2021 (submitted).

The final project in this thesis deviates from the previous theme of works and
is strictly contained within the area of Harmonic Analysis. In this joint work to-
gether with my supervisor Prof. Sandra Pott, we explored sharp bounds for sparse
Lerner operators in the infinite dimensional setting of operator-valued weights and
investigated sparse domination models for the Bergman projection. The content of
our work is contained in the following paper.

[Paper VII | A. Limani, S. Pott, SPARSE LERNER OPERATORS IN INFINITE DIMEN-
SIONS, pre-print 202I.

2 Spectral properties of analytic paraproducts from
the perspective of weight theory

2.1 Background

In [Paper I], B. Malman and [ investigated spectral properties of a certain class
of analytic paraproducts on the Hardy spaces and on the Bergman spaces, both



defined on the unit disc D in the complex plane C. Among experts, the analytic
paraproducts of our consideration are sometimes referred to as generalized Cesdro
operators or generalized Volterra operators. Given an analytic function g on D, the
analytic paraproduct T, with symbol g is defined as the linear operator acting on
analytic functions f on D via the integral formula

(N = [T HQg(Qde, 2D,

Here the analyticity of f and ¢ on a simply connected domain ensures that the
integral is independent of the simple path that joins 0 and z. The label paraprod-
uct should be understood in a conceptual manner, as suggested by S. Janson and J.
Petree in [23], which is justified by the property fg = T,(f)+1(g). In this frame-
work, we considered the spectral properties of analytic paraproducts on the classical
Hardy spaces H? and on the standard weighted Bergman spaces L, where we re-
call that H? for p > 0, is the space of analytic functions f on D satisfying

sup [ |f(rQ)"dm(C) < oo,

0<r<1 J oD

while L™ for p > 0 and o > -1, consists of analytic functions f on D with

LIFGPQ-R)dAe) <o

As in the equations above, we shall denote by dm the normalized arc-length mea-
sure on the unit circle 9D, and denote by dA the area measure on D. In the setting
of the Hardy spaces H?, it is well-known that T, : H? — HP? defines a bounded
linear operator, if and only if g belongs to BMOA, that is, g belongs to some Hardy
space HP with p > 0, and its boundary extension (also denoted by ¢) satisfies the
BM O-condition on the unit circle JID:

1 1
= 1g(0 —f ——f dml|d ,
l9ll 5aso = la( )|+§ga%m(J) 19 e 19 m‘ m < 0o

In the setting of Bergman spaces L7, the right condition for T, : Ly™ — L7 to
define a bounded linear operator is that g belongs to the Bloch space B, that is, the
Banach space of analytic functions on D equipped with the norm

l9ls = 1g(0)] + Suml)ﬁ(l = [2)lg' ()] < oo.

Spectral properties of Tj, operators have previously been studied for particular sub-
classes of symbols, such as for rational functions ¢ in [1] by Albrecht, E., T. L.



Miller, and M. M. Neumann, and in [42] [41] by S. W. Young, in [32] by A-M.
Persson, and by others (see references therein). However, the first characterization
of the spectrum for general symbols g was only obtained by A. Aleman and O.
Constantin in the Bergman space setting [4], and later by A. Aleman and J. A.
Peldez in the Hardy space setting [8]. The resolvent set of Tj; on these spaces are
described in terms a weight condition related to the symbol g. More precisely, it
was proved that A # 0 does not belong the spectrum of T, on HP, denoted by
o(T,|H?), ifand only if the weight w) , := [exp(pg/\)| satisfies the Muckenhoupt
A -condition (see Theorem 1.1 in [Paper I]). In the Bergman space setting, the role
of Muckenhoupt weights is replaced by the class of Békollé-Bonami weights and
the result is phrased as follows: A\ ¢ o(T,|LL®) if and only if the adjusted weight
w(z) := (1 —|z|)*wn,(z) satisfies a Boo-type condition (see Theorem 1.2 in [Pa-
per 1]). A particularly striking consequence of these descriptions of the spectrum
is that, in conjunction with the basis fact that the spectrum of continuous linear
operators are compact subsets of C, one can derive deep Gehring-type results on
self-improvement properties for a large class of weights, see Corollary D in [8].
In [Paper I] our intention was to reverse this perspective and instead utilize the
rich and well-developed theory of weights in Harmonic Analysis, in order to derive
geometric properties of the spectrum of T} operators.

2.2 Geometry of spectra and quasi-nilpotency

To highlight some of our results, we shall in this section let X denote either H?
or Ly®, where p > 0 and @ > -1 should be regarded as arbitrary but fixed. An
important result in our work illustrates that the fact that Muckenhoupt weights
and Bekollé-Bonami weights are closed under the formations of log-convex combi-
nations and satisfy self-improving properties, naturally corresponds to certain geo-
metric properties of the spectrum of analytic paraproducts.

Theorem 2.1 (Theorem 2.5 in [Paper 1). [ Let T, : X — X with the property that
there exists a non-zero \ € 0 (T,|X). Then for any 0 < r < 1, there exists a circular arc
Jen € {z 1|2 = 7|A|}, centered at the point v\, such that the circular sector created by
taking the convex hull of 0 and J,.  is contained in o(T,|X).

We refer the reader to the figure 1 in [Paper 1] for a clarifying illustration of
the theorem above. We denote by 7'(.X') the induced Banach spaces of symbols g,
equipped with the norm

l9lrexy = 1Tyl x - x-



As briefly indicated in the previous paragraphs, one can show that T'( H?) = BMOA
and T'(LE™) = B, thus the above induces equivalent norms on the spaces of sym-
bols giving rise to continuous T -operators. We denote by M (X') the algebra of
multipliers on X, which for our spaces X is just the algebra H*° of bounded an-
alytic functions, and thus we always have the containment M (X) c T(X). In
fact, it turns out that the containment remains true for yet another wide range of
interesting Banach spaces of analytic functions X, such as the family of weighted
sequence spaces (see [12]), where the corresponding multiplier algebras M (X) are
known to be strictly smaller than H* and complicated to describe. Our next re-
sult reveals a connection between quasi-nilpotency of analytic paraproducts and
approximation problems in the spaces associated to the symbol classes.

Theorem 2.2 (Theorem 2.1 and Theorem 2.2 in [Paper 1). [ Let Ty, T, + X — X
be bounded. If o(T,|X') = {0}, then the spectrum of T, is stable under perturbation
with Ty, that is

0 (Tyen|X) = 0 (T, X).

Moreover, the symbol g induces a quasi-nilpotent operator Ty : X — X, if

hek?fX)Hf’ = hf7x) =0

A natural question that appears in this context is if the converse of the latter state-
ment holds true. More precisely, if T}, is quasi-nilpotent on X, does that necessar-
ily imply that g belongs to the closure of M (X') = H* in T'(X)? For the sake of
brevity, we shall denote the later condition by g € Clos(M (X))7(x). We remark
that in the context of analytic paraproducts on Bergman spaces X = L“, this
question suggests a plausible conjecture for the description of Clos( H **) g, which
was initially raised in 1974 by J. Anderson, J. Clunie and C. Pommerenke in [35].
In [Paper I], we answered the above question in the affirmative for the Hardy spaces
X = HP, while together with Prof. Artur Nicolau in [Paper II], we answered the
above question in the negative in the context of the Bergman spaces X = Ly®. Our
findings are summarized in the following theorems.

Theorem 2.3 (Theorem 2.4 in [PaperI). [Letp > 0 and g € BMOA. Theno(T,|HP) =
{0} ifand only if g € Clos(H®®) prroa-

Theorem 2.4 ( Theorem 1.4 in [Paper II). / There exists an analytic function g € B
with the property that o (T,|LE*) = {0}, forallp > 0 and o > -1, but g ¢ Clos(Hn
B)p, for any 0 < q < oo.



The proof of the first theorem relies on the classical Helson-Szegd theorem for
Muckenhoupt Ay-weights, which is an absent tool in the setting of Békollé-Bonami
weights. Meanwhile, the construction of the counterexample proving the second
assertion relies on the previous work by A. Nicolau and N. Galdn on the charac-
terization of Clos(HY% n B)g, for 0 < ¢ < oo, using Lusin square-area functions
[16]. Our result above shows that quasi-nilpotency of analytic paraproducts on the
Bergman spaces L are far from capturing the closure of H* in B. However, the
question of describing the symbols g that induce quasi-nilpotent T}, operators on
Bergman spaces still remains relevant.

2.3 Control of spectral radius and distance formulas

We introduce the space BMO(D) as the set of complex-valued functions on D,
satisfying

1
If| Brmow) = Sup A(DAD) oo |f(2) = forp|ldA(2) < o0

where fg := ﬁ [ fdA denotes the average of f over a Borel set S ¢ D and
the supremum is taken over disks D centered at points inside ID. An important
observation by R. Coifman, R. Rochberg and G. Weiss in [14] was that the closed
subspace of BMO(D) consisting of analytic functions on D coincides with B,
and their respective semi-norms are equivalent. Denoting the standard hyperbolic
metric on D by 5 (See [Paper II] for a precise definition) and the spectral radius of
T, on L§ by |0,(g)|, our main result in this direction can be phrased as follows.

Theorem 2.5 (Theorem 1.1 and Corollary 4.1 in [Paper I1). | There exists a universal
constant C' > 0, such that for any g € B, we have

I P

cilo@l
p heL*> (D)

Moreover, let (g) denotes the infimum of € > 0 for which g satisfies the following
property: there exists a constant C(€) > 0, such that

9(2) —g(N)[<C(e) +eB(z,A) 2z, eD. (1)
Then we have that 2p-e(g) < |op(9)] <4p-<(g).

The first statement of the above theorem implies that 7 is quasi-nilpotent on
some (any) Bergman space, if and only if g belongs to the closure of L>(D) in



BMO(D), thus in light of Theorem 1.4 in [Paper II], such bounded approximates
to g may generally fail to be analytic on ID. The second part of the statement
asserts that quasi-nilpotency of T} is also equivalent to ¢ having arbitrary small
hyperbolic Lipschitz characteristic, which essentially says that g behaves like a lit-
tle Bloch function at points of large hyperbolic distance. In fact, results of similar
kind that extend beyond the framework of analytic functions were also obtained
(see Theorem 1.1 in [Paper II]). We also mention that appropriate adaptations in
conjunction with Theorem 1.3 from [Paper I] also gives a spectral radius formula for
T, on the Hardy spaces H?, but instead in terms of the distance to /7> in BMOA.

2.4 Directions for further work
2.4.1 Imposing better boundary conditions

In Theorem 1.4 of [Paper II], we constructed a super lacunary power series g € B,
which does not belong to the closure of H? n 3 in B, for any p > 0, but belongs to
the closure of L>*(ID) in BMO(D). As lacunary series are notorious for their lack
of boundary values on 9D, it is natural to ask whether such obscure constructions
could be prohibited by initially imposing some better boundary behavior on g. For
instance, one can phrase the following question:

Problem 2.6. Suppose g belongs to U,.o H? or perhaps even BMOA, with the
additional property that 7}, is quasi-nilpotent on some Bergman space. Does that
imply that g € Clos( H*)z?

Besides the fact that the above assumptions imposed on ¢ exclude any counterex-
ample of the type provided by Theorem 1.4 of [Paper II] and makes the tools of
Hardy-space factorization available, it is not clear how any of these assumptions
should be implemented in order to answer the phrased question.

2.4.2 Connection to the theory of conformal maps

Another interesting direction of work would be to consider spectral properties of
analytic paraproducts on Bergman spaces in relation to the corresponding confor-
mal maps that induce the symbols. For instance, which univalent maps ¢ : D - C
with normalizations ¢(0) = 0 and ¢'(0) = 1, induce a Bloch function log ¢’ to be
the symbol of a quasi-nilpotent analytic paraproduct Tjogy on a Bergman space?
Assuming that log 1)’ satisfies condition (1) of Theorem 1.4 for all € > 0, we can
find constants C'(¢) > 0 such that

. s e
|¢/()\)|SC( )(1 |¢>\( )l) A zeD.



Here ¢ (2) = 1’\_1; denotes the standard conformal self-map on D. If we set A =
0, then the estimate above reduces to a growth condition of ¥" on D, which is
equivalent to ¢ being (1-¢)-Hélder continuous on D), forany 0 < £ < 1. Roughly
speaking, this suggests that quasi-nilpotency of Tiog 4 on a Bergman space is related
to regularity properties on 0D of some family of normalized hyperbolic translates
of the conformal map ). Perhaps the problem of characterizing the closure of H>
in the Bloch space also has a plausible interpretation in terms of conformal maps.
For the moment, we can unfortunately neither offer any plausible conjectures nor

phrase any concrete questions in order to further pursue any of these problems.

3 Regular approximations in model spaces

3.1 Background

The contents of [Paper III] and [Paper IV] revolve around approximation prob-
lems in the classical model spaces, which are the only invariant subspaces for the
backward shift operator

(- 110y

on the Hardy space H2. An immediate consequence of Beurling’s theorem is that
any model space is the orthogonal complement of ©H? in H? for some inner
function ©, hence these spaces all take the form K¢ = H? © ©H?. The label
model space stems from the operator model theory developed by Sz.-Nagy and
Foias, which implies that any completely non-unitary bounded linear operator on
a separable Hilbert space is unitary equivalent to the backward shift restricted to
some model space (possibly vector-valued). Consequently, any such operator on
a separable Hilbert space can be modeled by the shift operator on a model space.
The model spaces in the setting of the upper-half plane also appear in connection
to completeness problems of solutions to certain classes of symmetric Schrédinger
operators, see [30]. Besides their intrinsic operator theoretical nature, these spaces
also have very subtle function theoretical properties. A classical theorem that il-
lustrates this phenomena is due to A. B. Aleksandrov, which asserts that the set
of functions in a model space which extend continuously to the boundary always
form a dense subset therein, despite the fact that in many model spaces, it is very
difficult to construct even a single such function [3]. In light of this magnificent
result, the following questions naturally arise in this context.
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For which model spaces can one find a dense subset of functions with better regularity
properties on the boundary than mere continuity? If possible, how can one explicitly
construct such functions?

3.2 Smooth approximations in the model spaces

Inspired by the classical theory of partial differential equations, a natural way of
measuring the order of regularity is to introduce the analytic Dirichlet-Sobolev
spaces of order o > 0, denoted by H® and consisting of analytic functions f on D
with Fourier coefficients { f,, } 0, satisfying

iﬂ(n+1)"‘|fn|2 < oo,

As the parameter o > 0 increases, so does the smoothness properties on JID of
functions f in H?*, thus A := N,soH®* consists of analytic functions on D with
C'**-smooth extensions to . A striking result by K. Dyakonov and D. Khavin-
son in [15] asserts that some model spaces may not even contain a single non-trivial
function belonging to H¢, for any o > 0. In fact, they proved that a model space
K¢ contains a non-trivial function from H¢, precisely when either © has a zero in-
side D or when the associated singular measure vg assigns mass to some set £ ¢ JID
of finite Beurling-Carleson entropy (see the Theorem below). In a similar fashion,
our main result in [Paper III] provides a complete characterization of the model
spaces K¢ for which the linear manifolds H* n Kg are dense in Kg.

Theorem 3.1 (Theorem 1.1 of [Paper IlI). / Ler © = BS,, be an inner function with
Blaschke factor B, and singular inner factor S, with associated singular measure v.
Then the following conditions are equivalent:

(i) H* N Kg is dense in Ke, for some o > 0
(i1)) Aocon Kg is dense in Kg.

(iii) The singular measure v is concentrated on a countable union of closed sets E with
[finite Beurling-Carleson entropy:

Y m(1,)logm(I,) > -0

where {1,,} denote the connected components of OD \ E.
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The necessity of condition (i77) follows from a duality argument involving the
Korenblum-Roberts theorem on cyclicity of inner functions on the Bergman spaces
(see [26], [37]). Conversely, if the associated singular measure v satisfies condition
(ii7), then we can actually provide a constructive approximation scheme of func-
tions in A® N Kg, using Toeplitz operators to smooth out singularities on sets of
finite Beurling-Carleson entropy.

3.3 An abstract approach to approximation in spaces of pseudo-
continauble functions

The content of [Paper IV] is essentially concerned with generalizing the results in
[Paper III] to spaces of pseudocontinuable functions K§, which can be regarded
as appropriate HP-versions of the classical model spaces, for p > 0. This time, we
actually approach these problems from a more abstract point of view and with the
following central question in mind:

For which linear spaces X, consisting of bounded analytic functions in D with cer-
tain degree of regular extensions to OD, and inner functions ©, are the linear manifolds
X n K dense in K§, for some p > 0?

If X is invariant under the backward shift, as practically any reasonable class X
containing functions with regular extensions to I is, then our first important ob-
servation is the following extrapolation principle: if X n Kg is dense in K§ for
some p > 0, then automatically X n K g ia dense in K g, for all p > 0 (see Theorem
LI in [Paper IV]). This result is attributed to A. B. Aleksandrov, as it generalizes
some fundamental ideas of his in [2]. As a consequently, it suffices to investigate
the above question in the setting of model spaces K¢ := K3 . To this end, we shall
denote the Cauchy dual of X by X" (see section 2.1 in [Paper IV] for a detailed
definition) and for an inner function ©, we set [O], to be the weak-star closure
of analytic polynomial multiples of © in X’. Our main result is that density with
a wide range of regularity classes X in Kg is equivalent to the preservation of the
inner factor © in the weak-star topology on the Cauchy dual X’ of X.

Theorem 3.2 (Theorem 1.3 in [Paper IV). | The linear manifold X n Ke forms a
dense subset of Ko if and only if the following (P)-property of the pair (X, ©) holds:

(0], nH*c OH>.

In other words, the inner-factor © is preserved under weak-star convergence in X'.
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Observe that if X is a reflexive Banach space, then the weak and weak-star
topologies on X" are equivalent, thus since [O] - is a convex set, one can rephrase
the (P)-property in terms of the norm-closure of analytic polynomial multiples of
© in X'. Furthermore, if the Cauchy dual X’ can be identified with a Bergman
space, then Theorem 1 in [37] actually provides a complete description of the inner
functions © for which the pair (X, ©) satisfies the (P)-property. Consequently,
this line of reasoning also provides a different proof of Theorem 1.1 in [Paper III].
In our next result, we provide a fairly practical condition for checking when a the
linear manifolds X n K¢ are dense in K g, for all inner functions ©.

Theorem 3.3 (Theorem 1.4 in [Paper IV). [ Let X ¢ H* be a Banach spaces con-
taining the polynomials as a dense subser. If X' — HP for some p > 0, then the linear
manifold X 0 Ko forms a dense subset of Ko, for any inner function ©.

Note that the theorem above, in conjunction with the well-known fact that the
Cauchy dual of the disk algebra A is contained in MNy,<; H?, provides a new proof
of Aleksandrov’s density theorem. In fact, using a deep result by S. Vinogradov
[39], one can slightly improve Aleksandrov’s density theorem by extending it to the
finer class U,, which consists of analytic functions on I with uniformly convergent
Taylor series on D.

Corollary 3.4 (Corollary 1.5 in [Paper IV). ] The linear manifold U, N K¢, is dense
in Kg,for any inner function © and any 0 < p < oo.

Here, the case p = oo should be understood in the sense of the weak-star topology
on K&, inherited from L (0D, m). In light of this Corollary, it is remarkable
that if we substitute "uniform” convergent by “absolutely” convergent, then the
result above fails drastically. In fact, there exists an inner function ©, such that
W, n Kg = {0}, where W, denotes the Wiener algebra consisting of analytic
functions on I with absolutely summable Taylor coefhicients (see Corollary 1.5 in
[Paper IV]). With additional efforts, it should not come as a surprise if the Corollary
above extends to the framework of de Branges-Rovnyak spaces, and perhaps even to
certain spaces of analytic functions that are contractive with respect to the backward
shift, appearing in [7].

3.4 Direction for further work
3.4.1 Connection to boundary zero sets of Banach algebras

A closed set EZ c D of Lebesgue measure zero is said to be a boundary zero set for
a Banach algebra X ¢ A, if there exists a non-trivial function f € X with f =0 on
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E. In our work, we have gathered some heuristic evidence suggesting that there is
an intimate relationship between density of such Banach algebras X in the model
spaces and the support of the associated singular inner functions on boundary zero
sets of X. More precisely, given an inner function © = BS, and a Banach algebra
X ¢ A equipped with pointwise multiplication, our examples suggests that the
following phenomena occurs.

Conjecture 1. Let X c A be a Banach algebra and © = BS,, be an inner function.
Then the linear manifold X n Kg forms a dense subset of K¢ if and only if the
singular measure v is concentrated on a countable union of boundary zero sets of

X.

Recall that the boundary zero sets for a wide collection of Banach algebras X
of analytic functions on D, ranging from the analytic Holder spaces to A%, are in
fact geometrically characterized in terms of having finite Beurling-Carleson entropy
[11], [38]. This result in conjunction with our main Theorem in [Paper III] settles
the above statement for all such Banach algebras X. In a similar way, one can
also view Aleksandrov’s density theorem from this perspective, as any closed set
E c 0D is a boundary zero set for a function in A. The claim stipulated above
also provides a plausible hint to why we have not been able to resolve the question
as to which model spaces Ko contain functions from the Wiener algebra W, as a
dense subset. Indeed, R. Kaufman proved that boundary zero sets of such functions
are not even invariant under simple disk automorphisms, which suggests that they
can be extremely complicated [24]. In light of Theorem 1.3 of [Paper IV], we also

suspect the following connection to shift-invariant subspaces generated by inner
functions on the Cauchy-duals X’ of X.

Conjecture 2. Let X C A be a Banach algebra and © = BS,, be an inner function.
Then there exists a unique decomposition v = vx + Vxe consisting of non-negative
Borel measures vy, Vy«, where vy is concentrated on a countable union of bound-
ary zero sets of X and vxe vanishes on all such sets. Moreover, the decomposition
of v gives rise to a unique factorization of © = BS,,S,,., with the following
properties

(i) (Preserving part): [BS,, |y, nH*c BS, H>.
(ii) (Cyclic part): S

Uye is weak-star cyclic in X',

Note that this statement is precisely the Korenblum-Roberts theorem (see [26],
[37]) when the boundary zero sets of X are characterized by the Beurling-Carleson
entropy and X" can be identified with a standard Bergman space. Indeed, we recall
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that for reflexive Banach spaces X, we can equivalently reformulate all the above
conditions in terms of norm-convergence in X’. We remark that only the second
part of the statement is of genuine interest here, while the first part follows from
a simple measure theory argument in conjunction with the algebra assumption of
X. With the previous statements taken into account, we suggest that there is a
deep connection between approximation with Banach algebras X in model spaces,
boundary zero sets of X, and Beurling-type theorems on their Cauchy-duals X".

3.4.2 Smooth normalized Cauchy transforms of singular measures

Given a positive finite singular Borel measure ;1 on 0D, we define the normalized
Cauchy transform C,, with respect to pt on L?(dyt) by the formula

Jon 15
Jon T2

Here KC denotes the usual Cauchy transform on OID. Recall that for any singular
probability measure 1 on Borel sets of JID, there exists a uniquely associated inner

function ©,, on D with ©,,(0) = 0, such that the following Herglotz representation
formula holds

Q) K(fdp)(2)

K

Cu(£)(2) =

1+0,(2) C+z
1-6,(2) Jon(-=

Conversely, one can also show that for any inner function © with ©(0) = 0 there

du(¢),  zeD. (2)

exists a uniquely associated singular probability measure j1g, which is related to
© via (2). Consequently, the Herglotz representation formula provides a one-to-
one correspondence between the set of singular probability Borel measures on 0D
and the set of inner functions ©, normalized by ©(0) = 1. The measure pg is
usually referred to as the Aleksandrov-Clark measure associated to ©. A compelling
consequence of this correspondence between © < g was initially established
by D. Clark in [13], and says that the normalized Cauchy transform C),, maps
L?(dpe) unitarily onto the model space Kg. In particular, for any f € Kg, we
can find a unique h € L?(due), such that

h(C)

()= Cho(m)()=(1-0()) [ FZduo(). =D,

This expression is sometimes referred to as the Aleksandrov-Clark measure repre-
sentation for the model space K¢, and a classical theorem by A. Poltoratski in [34]
asserts that f = C),, (h) has non-tangential limit equal to h € L?(due), at pe-a.c
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every point on OID. Now a natural problem that arises in this context, is how the
construction of smooth functions in a certain model space Ko, for which the inner
function © satisfies the hypothesis of Theorem 1.1 in [Paper III], can be carried out
through the Aleksandrov-Clark measure representation. To this end, we shall let ©
be an inner function, for which the singular measure vg associated to the singular
inner factor of © is concentrated on a set of finite Beurling-Carleson entropy (per-
haps even a countable union of such sets), and denote by 1o the corresponding
Aleksandrov-Clark measure. In this context, the following questions would be of
considerable interest:

Can we find a reasonable description for the set of functions h € L?(ue), for which
Cho(h) € A>?

A modest initial approach to question (i) would be to understand the classical toy-

model case when O(z) = exp (—%), in which vg is just the Dirac measure with
charge at 2 = 1, and the carrier set of the associated Aleksandrov-Clark measure p1g

can be explicitly computed.

4 Models for cyclic subnormal operators and smooth
approximation in de Branges-Rovnyak spaces

4.1 Background

A subnormal T is the restriction of a normal operator 7" on a Hilbert space H to
an invariant subspace I, thus 7 = T'|xc. This class of operators was introduced by
P. Halmos in the early 1950’s, with the intent that the considerable success that has
characterized the history of normal operators could be extended to these more gen-
eral objects [18]. The essential difference between these and that of normal operators
is that the theory of normal operators hinges on measure theory, while the theory
of subnormal operators calls for greater reliance on the theory of analytic functions.
Particularly interesting is the class of cyclic subnormal operators, as their spectral
properties can be modelled by the multiplication operator M, f(z) = zf(2) on
some P?(j1)-space, where P2(11) denotes the closure of the analytic polynomials
in the standard Lebesgue space L?(C, 1), and y is a compactly supported measure
in the complex plane C. If the spectrum of the minimal normal extension of the
subnormal operator is the closure of a (bounded) simply connected domain €2 in C,
then the measure 1 in the corresponding spectral model (M, P?(11)) is supported
on the closure of €2, see [40]. For this subclass of cyclic subnormal operators, the
corresponding spectral theory roughly branches out in two fundamentally differ-
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ent directions. In the former case, the measure 1 induces a genuine Hilbert space
of analytic functions P?(p), that is, the restriction map f ~ f|q is injective on
P2(u) and f|q is holomorphic, thus we are within the realm of analytic function
theory (see [9] and references therein) and we say that P2 () is irreducible. In the
second case, P2 (1) contains non-analytic functions and consequently, these spaces
contain objects that are better understood within the framework of measure theory,
similar to the theory of normal operators. These sorts of questions are commonly
referred to as problems of irreducibility or reducibility/splitting, as we shall discuss
later.

The content of [Paper V] is devoted to investigating invariant subspaces for
the multiplication operator M, (f)(z) = 2 f(z) are generated by bounded analytic
functions on a certain class of P!()-spaces, which are genuine spaces of analytic
functions, for ¢t > 1. A classical framework occurs when the measure y is assumed
to be supported inside the closed unit disc D. To provide examples, if y1 is the
Lebesgue measure m on JD, then P?(yu) coincides with the usual Hardy spaces
H? and Beurling’s theorem provides a complete characterization of the invariant
subspaces of M: outer functions are cyclic, while inner functions generate proper
invariant subspaces. If dA,(z) = (1 - |z|?)*dA(z) with a > —1 and dA denotes
the area measure on D, then P*(dA,,) is a standard weighted Bergman space and
the invariant subspaces generated by inner functions were completely described in
the work of B. Korenblum [26] and ]. Roberts [37], independently of each other.
Denote by [O]pt(,) the closure in P?(u) of analytic polynomial multiples of ©.
The Korenblum-Roberts theorem can be phrased as follows:

Theorem 4.1 (Korenblum-Roberts ([26], [37])). Let © = BS,, be an inner function
and decompose v = V¢ + Ve, where V¢ is concentrated on a countable union of sets if
finite Beurling-Carleson entropy and vy assigns no mass to such sets. Then for anyt > 0
and o > =1, the following statements hold:

(i) BS,, generates a proper M ,-invariant subspace on the Bergman space P*(dA,)
with the property: [BSVC]’Pf(dAa) nH?c BS,.H?.

(ii) Sy, is a cyclic vector for M, on the Bergman space P*(dA,).

4.2 A Beurling-type theorem on P*(p)

The purpose of our work in [Paper V] was to carry out similar investigations for
spaces of analytic functions which are within the realm of the classical Bergman
spaces, but considerably larger than the Hardy spaces. More precisely, we consid-
ered the class of P*(11)-spaces for which the measures y1 are supported in I, and of
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the form

dji = (1= |2P)°dA(2) + wdm 6

where w is a weight on O and a > —1. At this point, it may happen that P!(u)
is not a genuine space of analytic functions. In other word, the mapping of f in
P!( 1) onto its analytic restriction f|p on ID, may not be injective. Thus, there may
exist a function f € P!(u) which entirely lives on some subset of 9D. Indeed,
this happens if either the geometry of the carrier set £ of w is too “weird”, or the
size of w is too small on £ (see [Paper V] and [Paper VI] for indicatory examples).
A complete description of this phenomenon is far from being understood and is
related to notoriously difficult problems on irreducibility and splitting, see [27]
and references therein. Nevertheless, we found some appropriate conditions on
the geometry of the carrier set £ of w, and conditions on the size of w on E, which
guarantee that P!(11) is a genuine space of analytic functions. In order to phrase
these conditions, we shall first recall that a closed set F' c D of positive Lebesgue
measure is said to have finite Beurling-Carleson entropy, if

Y m(1,)logm(I,) > o0,
where {I,,},, denotes the collection of connected components of OD \ F'. Now the
conditions we impose are the following:

(Geometry) The carrier set £ of w can be expressed as a countable union of closed
sets { E } nv, where each set Ey has finite Beurling-Carleson entropy.

(Size) The weight w satisfies on each Ey:

log wdm > —oo0.
En

Under these conditions on w, P?(11) is a genuine space of analytic functions (see
Theorem 1.1 of [Paper V]). Moreover, we have the following complete description
of M-invariant subspaces generated by inner functions.

Theorem 4.2 (Corollary 1.4 of [Paper V). [ Lett € [1,00) and i be defined by (3),
and w satisfy the above conditions on geometry and size. Let © = BS,, be an inner
Sfunction and decompose v according to

V=V + VKE + VK|Ee

where ¢ := 0D \ E, and ve,vic are as in the statement of the Korenblum-Roberts
Theorem. Then the following statements hold:

18



(i) ©q = BS,, Sy, generates a proper M, -invariant subspace of P* (1) with the
property: [Oolpi(,y 0 H? € OgH?.

(i1) Sl/;ch is a cyclic vector for M, on Pt(p).

In light of the Korenblum-Roberts theorem, our result above has a flavor which
demonstrates the following interplay between classical inner functions on the Hardy
spaces and cyclic inner functions on the Bergman spaces. The part of vk that lives
inside the carrier set E of w behaves like an inner function in the Hardy space,
while the part of vk outside E acquires the behavior of a cyclic singular inner
function a Bergman space. The proof of part (i) of the theorem above essentially
relies on the construction of smooth Cauchy transforms of functions supported on
Beurling-Carleson sets, which closely relates to the work of S. Khrushchev in [25].
On the other hand, the proof of (i) intrinsically relies on techniques developed by
J. Roberts in [37], but requires noticeable adaptions to our setting, which is mainly
attributed to the fact that the measure ;1 now also lives on 9.

4.3 Smooth approximations in de Branges-Rovnyak spaces

The results of [Paper V] have some important applications to smooth approxima-
tions in de Branges-Rovnyak spaces on the unit disc. Given a bounded analytic
function b in the unit-ball of H*, a de Branges-Rovnyak space H(b) can be real-
ized as a reproducing kernel Hilbert space of analytic functions on the unit disc D,
determined by the reproducing kernels

1-b(N\)b(2)

/{b(zv)\) = 1- )\

z,AeD.

The classical functional model says that any completely non-isometric contraction
T on a separable Hilbert space is unitarily equivalent to the backward shift opera-
tor Lf(2) = (f(2) - f(0)) /2 on some de Branges-Rovnyak space [10] (possibly
vector-valued). Roughly speaking, the theory of de Branges-Rovnyak spaces bifur-
cates into two parts, depending whether or not the symbol b is an extreme point
in the unit ball of H*. A classical result by D. Sarason says that polynomials form
a dense subset in 7 (b) if and only if log(1 — |b]?) is integrable on 0D, where the
integrability condition is equivalent to b not being an extreme point in the unit
ball of H*°. In contrast to this work, A. Aleman and B. Malman proved that in
any H (b)-space, functions with continuous extensions to D) always form a dense
subset (see [6]), thus extending Aleksandrov’s density theorem to the setting of de
Branges-Rovnyak spaces. In [Paper VI], we studied density results for extreme de

19



Branges-Rovnyak spaces with functions of higher order regularity. Again, simi-
larly to [Paper III], the appropriate spaces in this context are the family of analytic
Dirichlet-Sobolev spaces of H* (see previous section). Given a number o > 0 and
an extreme point b in the unit ball of H*, we introduce the associated measure
p = p(a,b), given by du = (1 —|2z])*tdA + (1 - |b])dm, where dA is the area-
measure on . Our main result in [Paper VI] reads as follows.

Theorem 4.3 (Theorem 1.1 from [Paper VI). / Let i = (v, b) denote the measure
defined in the previous paragraph, and let b = by©, where by denotes the outer factor
of b and © denotes the inner factor of b. Then the linear manifold H* 0 H(b) forms a
dense subset in H(b) if and only if the following two conditions hold:

(i) The multiplication operator M, : P%(u) — P?(u) is completely non-isometric,
that is, P%(11) is a genuine space of analytic functions (irreducible).

(ii) Any H?~function f contained in the invariant subspace [©]p2(,y € P?() sat-
isfies O € H?.

Note that condition (7) is equivalent to P?(y) being a genuine space of analytic
functions, that is, irreducible. Since p(a,b) = pu(a,by), condition (7) actually
only depends on the outer factor by of b. As previously mentioned in [Paper V],
a function theoretical description of the outer factors by that give rise to () is far
from being completely understood, and seems to depend on an intricate interplay
between the geometry of the carrier set E := {¢ € ID : |by(¢)| < 1} of the mea-
sure (1 —|bo|?)dm, and the size of the weight (1 — |bo|?)dm, determined by the
integrability of log(1 — |by|?) on E. Meanwhile, condition (i7) is a version of the
(P)-property in the setting of P?(11) (compare with Theorem 1.3 in [Paper IV]),
for which our Corollary 1.4 in [Paper V] provides a complete function theoretical
description in terms of the inner factor © of b.

4.4 Direction for further work
4.4.1 Irreducibility

Aswe briefly mentioned in the previous paragraphs, a function theoretic description
of the functions b for which condition (7) holds is still lacking. For instance, if b is
outer and an extreme point in the unit ball H*°, then condition (7i) is redundant
and the density of H*-functions in H(b) is equivalent to P?(u(cv, b)) being a
genuine space of analytic functions. With this observation in mind, one can phrase
the following general problem:
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Problem 4.4. For dy = dA,+wdm, describe the non-negative weightsw € L (9D, dm)
for which P2(1) is irreducible, that is, a genuine space of analytic functions.

Recall that we proved in [Paper V] that if F = u,, E,, is a countable union of (closed)
sets E,, having finite Beurling-Carleson entropy and |, 5, logwdm > —oo for each
n, then P2(11) is a genuine space of analytic functions. Our impression is that these
conditions are fairly close to being necessary as well, but we are far from being able
to establish such results. At this stage, we have only found some strongly indicative
examples, contained in the work on splitting by T. Kriete and B. MacCluer in [27].
An important example stems from the work of S. Khrushchev in [25], and asserts
that any weight w concentrated on a "bad” set F/, in the sense that /' contains no
closed subset of positive Lebesgue measure with finite Beurling-Carleson entropy,
induces a P?(t)-space which splits, that is

P2(u) = P*(dA,) ® L*(wdm), a>-1.

As a consequence, the Hilbert space P? (1) is certainly not a space of analytic func-
tions, see Theorem 1.2 in [27]. However, even if the carrier set of a weight w is a
very nice set, such as the entire unit circle 9D, splitting may still occur if w is too
small everywhere on the unit circle. An example of such a weight w was provided
by A. Volberg (see p 82 in [19]), satisfying 0 < w < 1 on I, and [ logwdm = —oo
for any arc I c dD. In fact, this example led to the phrasing of general conjectures
on problems of splitting (see Conjecture 1 and 2 in [27]), which still remain open
to this date.

4.4.2  Smooth Cauchy transforms

In [25], S. Khrushchev studied the following problem (among others):

For which Borel sets E2 ¢ OD of positive Lebesgue measure does there exist a non-trivial
integrable function ¢ supported on E, with the property that its Cauchy transform
KC(¢) belongs to H, for some o > 0?

Surprisingly, the answer is independent of @ > 0 and was completely solved by
S. Khrushchev, where the necessary and sufficient condition is that £ contains a
closed set of positive Lebesgue measure with finite Beurling-Carleson entropy. An
interesting observation is that the logical negation of the above problem has the
following dual reformulation in terms of splitting (see Theorem 1.2 and Theorem

7.5 in [25] ):
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There exists no non-trivial function f € L?>(dm) for which K(1gf) belongs to some
H, if and only if the following splitting holds:

Pz(dAa_l + 1Edm) = ,PQ(dAa) ® L2(1Edm)

As a consequence, the problem of splitting in P?(u) for measures of the form
dp = dA,_q + 1gdm has a complete solution, described in terms of the geometry
of the set E. In a similar way, one can also rephrase the problem of irreducibility
of the space P?(dA,-1 + 1gdm), that is, P2(dAs-1 + 1pdm) is a genuine space
of analytic functions if and only if the set {f € L?(1gdm) : K(1gf) € H*} is
a dense subset of L2(1gdm). In fact, similar to S. Khrushchev’s work, one can
carry out such reformulations beyond the setting of measures £ of the specific form
above (see Theorem 1.2 in [25]). Now an interesting problem would be to modify
Khrushchev’s problem, but consider a general weight w on 0D instead of 1.

For which weights w on 0D can we find a non-trivial function f € L*(wdm) with the
property that K(fw) € He, for some o > 0?

By Theorem 1, the carrier set of w must necessarily contain a closed set £ of finite
Beurling-Carleson entropy, but the size of the weight w on £ may still interfere with
the "good” set . However, if we additionally assume that logw € L'(1gdm),
then there is a short and beautiful argument by B. Malman, which allows one
to construct for any o > 0, a function f € L=(0D) with K(fw) € H*. To
this end, let W denote the outer function whose modulus is equal to w on F
and equal to 1 on 0D \ E. According to Lemma 4.2 in [Paper V], there ex-
ists for any integer N > 0, an outer function s with the property that the func-
tion t — eits(e®)W(e)lgp.p(e) is N-times continuously differentiable on
0D. Since Cauchy transforms of co-analytic functions in L2(dm) vanish, we have

K((sW) =0, and thus

[T ey [ SOy e,
OD\E 1 _C

Now since e“s(e”)W(e”)laD\ g(e) is sufficiently regular on JD, its Cauchy
transform belongs to H, for some o > 0 depending on IV, which can be chosen
as large as we wish. But this precisely means that the expression on the right hand
side of the equation above belongs to 1, thus so does the left hand side, which is
the Cauchy transform of an L*°(9D)-function supported on FE.

One is tempted to believe that the sufficient condition that the carrier of w
contains a Beurling-Carleson set £ with logw € L!'(1gdm) is also necessary. In
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fact, that particular claim is equivalent to a specific version of the notorious problem
on splitting phrased as Conjecture 2 in [27].

s Sparse operators and dyadic models for the
Bergman projection

s.1  Background

Let D denote the standard grid of dyadic cubes in R and recall that a subcollection
S c D is said to be sparse, if for any dyadic cube ) € D, we have

1
> Q<50

Q'eChs(Q)

where Chs(Q)) denotes the collection of maximal cubes in S that are strictly con-
tained in (). For any sparse collection S of dyadic cubes in R9, we consider the
associated family of sparse Lerner operators L‘; ,»» parametrized by

L5, /() = Y palx) ]{2 o) f(y)dy

QeS

where each pair of g, 1q are complex-valued functions supported on () and be-
long to the unit-ball of L*. Versions of these operators have notably appeared in
the pioneering works on sparse domination models for Calder6n-Zygmund oper-
ators by A. Lerner [28], and more relevant to our purposes, in the vectorial setting
on Convex body domination of Calderén-Zygmund operators and alike in [31].

5.2 Weighted bounds for sparse Lerner operators

Together with my supervisor Sandra Pott, we found a new and simple proof that
sparse Lerner operators are bounded on matrix-weighted L?-spaces. In fact, given
a separable Hilbert space 7{ and an operator-valued weight W : R¢ - B(H),
then the family of canonical extensions {L3 , ® 13}, are uniformly bounded
on L3,(H) if and only if T satisfies the Muckenhoupt As-condition, restricted to
the sparse collection S, given by

AS = sup H 1/2 1/2“

QeS B(H)
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Moreover, there exists a constant C' = C's > 0 only depending on S, such that

1

LV <oup |15, 0 1y < COVIL
In our proof, we do not rely on any self-improving Gehring-type properties of
the weight W, such as the reverse Hélder inequality, thus as a consequence the
theorem also holds in the context of Bekollé-Bonami weights. Moreover, our
techniques extend beyond the setting of finite dimensions, which in light of the
standard identification L?(R? x R®) = L2(R%; L2(R#)), it also has applications
to the multiparameter setting. We remark that the upper bound in terms of the
(W] 4s —constant, which we prove agrees with the sharpest one to this date, even
in the finite-dimensional setting. In contrast to weighted inequalities for other clas-
sical operators, it is well-known that the matrix-weighted L?-norm of the Hilbert
transform grows at least logarithmically with the dimension [17], while the Bergman
projection was proven to have dimensionally independent bounds [s], thus it be-
haves similarly to our family of sparse Lerner operators. Roughly speaking, our ap-
proach relies on decomposing any sparse collection into a union of disjoint family
of decaying stopping times, which means that any sparse operator can be expressed
as a sum of sparse operators of simpler forms. The decaying stopping times allow us
to prove that these simpler operators form an almost orthogonal set, hence making
the principle of almost orthogonality by M. Cotlar and E. Stein applicable.

5.3 Sparse domination for the Bergman projection

Our initial motivation for studying these families of sparse Lerner operators was
to find an appropriate sparse domination model for the Bergman projection, with
the intent to improve the bound obtained in [s]. Using a simple dyadic model
developed by S. Pott and M. C. Reguera in [36], in conjunction with our result on
sparse Lerner operators, we obtained a convex body domination for the Bergman
projection on the upper-half plane C,:

1©

Im(£)>0 (g— 2)2 A(g)

Pf(z) =

As a consequence, an upper bound for the operator norm of Pf on LZ,(H) was
provided in terms of [W]i{f, when dim(?) < oo. In fact, this improves the re-
cent [W]%_-bound for matrix-weights, obtained by Z. Huo and B. Wick in [20].
The improvement is attributed to our abstract approach using Cotlar’s lemma,

which also does not require any self-improving assumptions on our Bekollé-Bonami
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weights. However, the convex body domination still heavily relies on the dimen-
sionally dependent John-Ellipsoid theorem, via Lemma 2.8 in [31]. Since our up-
per bound completely relies on the bound obtained for sparse Lerner operators, an
improvements of the current [W]i{j—bound for the Bergman project would most
likely lead to in substantial progress on the matrix-weighted A;-conjecture for gen-
eral Calder6n-Zygmund operators.

s.4 Direction for further work
5.4.1 The Bergman projection as an average of simpler operators

An astonishing result by S. Petermichl in [33], later refined and simplified by T.
Hytonen in [21], says that the classical Hilbert transform H on R can be approxi-
mated in the strong operator topology by random averages of dyadic shift operators:

T“”Pf::z Z Hy(f hy)re

keZ JepDy

where pD¥ := {pJ = [p(a+w), p(b+w)) : [a,b) € D} for the parameters 1 < p < 2,
w = {w;}jez € {0,1}% and D = Uk Dy, denotes the standard dyadic grid on R,
while {h} are the associated Haar functionsand H; = (h;_—h, ). More precisely,
it was shown that

H@) === [ [ 1@

where P denotes the canonical probability Bernoulli measure on {0,1}%. A sur-
prising result which extends these ideas to general classes of Calderén-Zygmund
operators was announced by T. Hytonen in [22], which ultimately resolved the
famous Aj-conjecture. In a similar fashion, it would be interesting to find an ap-
propriate family of dyadic models, so that when taking averages over certain scales,
converges in the strong operator topology to the Bergman projection on C,. The
main difficulty in this task seems to emerge from the fact that the Bergman pro-
jection is conveniently viewed through the lens of hyperbolic geometry and enjoys
certain intricate symmetries wrt the group of automorphisms on C,, which likely
needs to be accounted for in a random averaging procedure. A result of this kind
is would not only be very interesting in its own right, but in conjunction with our
operator-valued weighted bound of sparse Lerner operators, it would provide an es-
sentially sharp bound for the Bergman projection in the setting of operator-valued
weights.
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