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Populirvetenskaplig sammanfattning pa svenska

Nistan allt du kan tinka dig dr uppbyggt utav atomer. Tillsammans bygger dessa
atomer olika imnen och material, inte helt olikt legobitar. Om vi vill f6rsta den virld vi
lever i, dr det ddrfor viktigt att vi forstar hur dessa atomer beter sig i olika omgivningar.

Det finns olika typer av forskning for att studera atomers och molekylers beteenden.
Den mest kinda 4r kanske genom experiment i ett laboratorium. Ofta kan det dock
vara svart att pa en atomistisk niva se exakt vad som hiander nir man till exempel
blandar tva kemikalier. Detta for att atomer dr bade vildigt smé och ror sig otroligt
snabbt. Det dr ocksa svart att kontrollera vissa parametrar i ett verkligt experiment, till
exempel antalet atomer, eller en exakt temperatur. Det 4r av dessa anledningar som
vi gor datorsimuleringar. I en datorsimulering kan vi, pa en atomistisk niva, se exakt
hur atomer beteer sig under de exakta betingelser vi ir intresserade utav. Sa hur gor
man dé en datorsimulering av si smé partiklar? Forst maste vi veta vad som far dem
att rora pé sig, dvs, hur de interagerar.

Precis som planeter (som ju faktiskt bestar av atomer) sa interagerar atomer och mo-
lekyler med varandra. Det dr dessa interaktioner som bestimmer hur en atom rér sig,
precis som att det ir interaktionen mellan jorden och solen som bestimmer hur jor-
den rér sig. Det finns olika typer av interaktioner, men den starkaste interaktionen (i
ett klassiskt ramverk) kallas for elektrostatisk interaktion. Det dr ocksd denna typ av
interaktion som i huvudsak diskuteras i denna avhandling. Elektrostatisk interaktion
finns mellan tvé elektriske laddade partiklar. Denna interaktion ir lingviga. Ordet
langviga betyder i denna kontext att den har en stor utbredning i rummet, dvs tva
partiklar lingt ifrin varandra kommer i huvudsak att interagera via elektrostatiska
krafter.

S& om vi nu vet hur partiklar interagerar med varandra, da 4r det bara att kora pa,

024 vattenmolekyler (en etta med 24 nol-

eller? I ett glas vatten finns det ungefir 1
lor efterat!), det 4r ungefir lika manga stjirnor som finns i universum. Att simulera
ett sd tillsynes enkelt fall som ett glas vatten skulle dirfor ta otroligt ling tid (minga
ar, dven for den snabbaste datorn i virlden). Den storsta boven i dramat ér just in-
teraktionen mellan atomer. For att simulera det tidigare nimnda glas vatten beho-

ver vi rikna ut interaktionen mellan alla atomer. Det betyder att vi maste rikna ut

(10224) = (10%407?42!)!2! ~ 5 % 10*7 interaktioner, en enorm siffra! Nir vi gor datorsi-
muleringar méaste vi dirfor gora antaganden som forenklar de kemiska system vi 4r
intresserade utav. Den forsta delen av denna avhandling syftar till att hitta nya sitt
att ta hinsyn till elektrostatiska interaktioner under olika betingelser. I den andra de-
len kommer vi att fokusera pd en speciell kategori av kemiska system; nimligen hur
laddade partiklar beter sig nira ytor. Denna typ av system finns 6verallt, i allt ifrin

kondensatorer i elektriska kretsar, till cellerna i vara kroppar. Speciellt s& kommer vi



i denna del att anvinda de nya metoder vi utvecklat for att studera dessa typer av
system.

vi
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Chapter 1

Introduction

Theoretical Chemistry may seem as a counterintuitive term, as Chemistry has a strong
archetype of a person in a white lab coat mixing chemicals together. At least that was
my belief when i started to study chemistry. So what is theoretical chemistry, and why
does it exist?

In an experimental setup it can be hard to control certain parameters, for instance
temperature, pressure or the number of particles, or to get insight at a molecular level.
However, in a simulation setup we have complete control over all parameters and a
very detailed view of what is happening at the molecular/atomic level. Sometimes we
can even predict the result of an experiment. The only thing we have to worry about
is that our model is good enough to realistically reproduce the property or behaviour
that we wish to investigate. This is actually a very complex problem and as of now,
there is no "complete unified model”, but there are many different models which are
good at different things and (sometimes very) bad at others. A good example of this
is the simulation of water, of which there exist many different models. Some water
models are able to accurately reproduce some property A, but fail to reproduce an-
other property B. Then of course there are models which reproduce property B but
fail to predict A>3, Nevertheless, not to discourage the reader too much, molecular
simulation is an increasingly important field of science, and has helped us, and con-
tinues to help us, understand and predict important outcomes in chemistry, physics
and biology.

So how do we run a simulation? First of all we need to define a simulation box (or
sphere or any other geometry, I write box here because cubic simulation boxes are
common), containing the particles we wish to simulate. If we were to not confine the
particles in our simulation, they would simply spread out indefinitely. This would
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Figure 1.1: Illustration of 2-dimensional periodic boundary conditions (PBC). The leftmost orange box repre-
sents the simulation box and the blue and red circles represent particles. In the right figure the
simulation box is replicated in space.

correspond to infinite dilution and we would never be able to accurately compute
properties in such a system. Further, in real experiments the number of particles is
huge, on the order 10?3, this is way too much for a computer to handle. Hence we
need to limit the size of our system while still trying capture the main characteristics.
A side effect of this confinement is that we get unwanted boundaries or "walls” in our
simulation. We can remove the boundaries by using periodic boundary conditions
(PBC). When using PBC, a particle that travels outside a boundary gets reflected back
into the box on the opposite side. This way, there are no ”physical” boundaries in our
simulation. Still we have the problem that our system is much smaller than a real
system. This effectively means that there are no long range interactions, which in
turn affects the behaviour of the particles and gives rise to size effects. Size effects can
be mitigated by extending interactions to an infinite system in which the simulation
box is replicated in space. This procedure forms (in theory) an infinite lattice with
our simulation box as the unit cell, see fig. 1.1. Calculating the energy between the
particles in such a system results in an infinite sum (because there are an infinite
number of particles), and one has to, in practice, use a cutoff value. A fairly common
approach to implement such a cutof}, is to use the minimum image convention, where
each particle interacts with the nearest copies of the surrounding particles.

This thesis will focus on how charged particles (ions) interact and behave in a system
where hard surfaces are present. The charged particles encountered here are rough
models of real ions.

To better understand the approximations involved, and the theory behind simulations



we will in the next few chapter present the basis of molecular simulation in more
detail. The next chapter will present basic theory of thermodynamics, which lays the
foundation for relations that we use to calculate the properties that we are interested
in. We will also look into one of the two main driving forces that we are interested
in, entropy. In Chapter 3, the second driving force is presented, energy, and how we
can reduce size effects. Chapter 4 presents the details on how to perform a simulation,
and the theory behind it, with a focus on Markov Chain Monte Carlo simulations.
In Chapter 5 we will look into a different way to calculate molecular properties, called
classical Density Functional Theory. In Chapter 6 we get a bit more practical and
present the actual molecular systems of interest, and why they are important.






Chapter 2

Thermodynamics

Even considering the approximations mentioned in the last section, molecular simula-
tion is a time demanding task. Often we are interested in an average of some property
A which is a function of the coordinates and momenta of all particles I' = (rN ., pY),
where IV is the number of particles. The collection of variables I' is often referred to as
a microstate. Each microstate is a point in a multidimensional phase space S, in which
the dimensions represent all the components of the coordinates and momenta of all
particles. Hence, for a 3-dimensional system, phase space contains 6N dimensions.
Using these definitions we can construct an average, of a mechanical variable, as a
function of the microstates

(A()) :/SA(F)P(F)dF, (2.1)

where P(I") is some appropriate probability distribution describing the probability
of observing the microstate I'. In most practical cases the integration in eq. 2.1 has
to be performed in many hundreds, thousands or even more dimensions, since I has
6N degrees of freedom. Therefore analytical solutions to eq. 2.1 is not feasible, but
has to be approximated. In practice this amounts to sampling A from the system of
interest using the probability distribution P(I"). As it turns out, in many cases it is
enough to sample around the points where P(I") is the largest, since (A(I")) will be
dominated by the values at these points. To achieve this, we will in this thesis focus
on a method called Metropolis Monte-Carlo, which is presented in Chapter 4. In this
chapter and the next, we will present, what we in this thesis will refer to as the two
main thermodynamic properties” which are important when determining P(I'), the
energy and the entropy. How these two properties relate to the observables we are
interested in is derived in the theory of thermodynamics.

The foundation of molecular simulation is thermodynamics. It is from thermodynam-



ics that equations describing properties of the systems that we simulate, are derived.
Thermodynamics was first developed to describe the efficiency of steam engines. This
included the relation between work, heat and energy. It also defines the important
property of entropy, which will be introduced in the next section. Thermodynamics
is now used in almost all fields of science, and allows descriptions and predictions of
many different reactions and systems.

Before diving too deep into thermodynamics, we take a step back and look at the
physical properties that we use to describe our systems. Since thermodynamics (and
many other areas of science) is centered around describing different systems of differ-
ent sizes and compositions, it is important that we can compare these systems and
their properties. To compare systems of different size, or describe processes, it is con-
venient to have properties that scale with system size, and properties that do not, i.e
that are only dependent on composition. This is the reason that we in mechanics and
thermodynamics (and actually the majority of the physical sciences) mainly deal with
two types of properties, extensive and intensive. Intensive properties do not scale
with system size, but only depend on composition. Extensive properties, however,
scale with the system size, such that A(AP) = AA(P). Here A is a scaling parameter,
and P is the collection of all properties that determines the size of the system (hence
all properties P are also extensive). As we shall see later, the intensive properties are
not unlike forces, while the extensive properties are coordinates, able to react to those
forces. It is, though, important to remember that not all properties are intensive or
extensive. Most of the observables discussed in this thesis can be categorized as either
intensive or extensive. For a more thorough discussion about extensive and intensive
properties, see the paper by Redlich?, and references therein.

In the next section we introduce the first main thermodynamic property, entropy.
This will be our starting point for thermodynamics.

2.1 Entropy

Entropy is an eluding concept, even though we use it to describe one of the most
fundamental properties in the universe. At its heart, entropy is something tangible
and we can observe its effects with a simple example.

Consider a collection of two types of particles, A and B, occupying a room. The two
different types of particles can be distinguished from one another by some observable
property. The particles do not interact with each other, and also does not occupy
any volume (they are so-called ideal). The room has a constant size and is closed so
that no particles can leave or enter the room. The particles collide elastically with the
boundaries of the room, and there is no energy transfer in such collisions. Hence the
number of particles, volume of the room and total internal energy (i.e the sum of



the kinetic energies of all particles) are constant. Since the particles do not interact
with each other, there are no correlations and their movement can be considered as
random. This in turn means that all microstates are equally likely, since there is no
preference for any single microstate or subset of microstates.

Now imagine partitioning phase space into two subspaces. The first subspace con-
tains all microstates where all molecules A occupy the left half of the room, and all
molecules B occupy the right. In the second subspace all particles are equally mixed.
The second subspace obviously contains more microstates than the first. Hence the
second subspace has a higher probability of being observed, since all microstates have
the same probability of being occupied. This turns out to be true for all system where
N,V and U are constant, even if the particles are not ideal, see note. 2.1. The collec-
tion of all available microstates in a system where N, V and U are constant is called
a microcanonical ensemble.

NOTE 2.1. EQUAL A PRIORI PROBABILITIES

It is a basic assumption in thermodynamics that all microstates in the micro-
canonical ensemble have the same probability of being observed. We can mo-
tivate this with an example (albeit a very theoretical one).

Consider a Molecular Dynamics® (MD) simulation (with not necessarily ideal
particles) with an infinitely small time step, performed on a computer that
has infinite precision. The simulation is propagated with Newtons equations
of motion, which are deterministic and preserves energy. As the system is
propagated all accessible microstates will be visited ”in order” to finally end
up in the starting state again. Each cycle every microstate is visited exactly
once. If it did not, the system would not be in equilibrium. The same cycle
through the microstates will be repeated until the simulation is stopped, due
to the deterministic nature of MD. This means that all microstates will be
visited equally often, and thus have the same probability of begin observed.
From a theoretical point of view, this would mean that, in all simulations
which are exactly deterministic, the probability of observing a microstate is
the same for all microstates. In practice, however, it is not possible to per-
form a simulation which is exactly deterministic due to the finite precision of
computers.

This can be illustrated by plotting the number of microstates against the fraction of A
molecules in the right side of the box, , which is shown in fig. 2.1. From this figure
it is clear that the number of states increases as the particles become more equally
distributed, and reaches a maximum at y = 0.5, where each side consists of 50% A
molecules and 50% B molecules. Hence we say that the system has a driving force
which (on average) drives the system towards a more mixed state. This driving force is
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Figure 2.1: Number of states plotted against the fraction of particles in the second subspace.

due to a difference in entropy of the two subspaces and points in the direction towards
maximum entropy. When the entropy is at maximum, the system has maximized its
available number of microstates, hence in a way, maximized its freedom. Note that
the entropy of the combined system in this example is constant. This entropy will
however be dominated by the mixed state.

It is also useful to quantify the entropy. Lets denote the total number of accessible
microstates as €2, the probability is then 1/€. The entropy is then defined as the
logarithm of the total number of accessible microstates (which is proportional to the
phase space volume).

S = kpln () (2.2)

where kp is the Boltzmann constant. The entropy measure above is usually called the
Boltzmann entropy.

Eq. 2.2, however, presents a problem. From a classical point of view, space (and en-
ergy) is continuous, and hence there is an infinite number of possible configurations.
This would be true regardless of system size, as long as the size of the system is larger
than zero in any dimension. This means that the entropy would be infinite for prac-
tically any system, which would render the entropy a pretty useless concept. Due to
this reason, phase space has historically been discretized, which in turn rendered the
entropy finite. This discretization can now be motivated by quantum mechanics and
the Heisenberg uncertainty principle, which states that there is a finite precision to
which we can determine position and momenta simultaneously:

ApAzx ~ h.

where h is Planck’s constant. This means that the smallest area that one can define

I0



in phase space is h (or a (hyper)volume h? in the case of a particle which has three
degrees of freedom)”. Hence when integrating over the phase space, the final value is
divided by h”, where D is the dimensionality.

To get a more detailed view on entropy, lets take a more concrete example. Consider
avolume V/, divided into £ available lattice points, and N particles of the same type.
The particles are allowed to occupy the same lattice point, and they do not interact.
The number of microstates, €2, of such a system is

Q=L
since each particle can be placed in £ different locations.

From a purely observational point of view, entropy is an extensive quantity, hence
if one double the system size one also doubles the entropy. This is trivially true for
non interacting systems. Consider for instance doubling the example above. The total
number of microstates is then 2 which gives the total entropy Sp = k1In (Q?) = 2S.
If we instead double the size of the system, according to eq. 2.2 one should have:

2In ([,N) equal to In ((2,C)2N)

This is obviously not true since 2In (£Y) = In (£2"). Hence we also gain entropy
from the increased number of states due to the mixing (or rather the left hand side
of the above equation only includes the perfectly mixed state of the larger system).
This contribution is here 22V, or 2N In (2) to the entropy. This is known as Gibbs
paradox.

To solve this, we include something called the indistinguishability of similar particles.
When we double the system, the second system contains the same type particles as the
first, and there is no way for us to tell them apart. If we have no way of determining
any difference between two particles, swapping these two particles yields the same
microtate.

To account for indistinguishable particles, we need to divide by the number of per-
mutations, which is N!. This is however only true if the particles are not allowed to
occupy the same state (position in this case). So what if we from the beginning tried
to remove all the permutations which we cannot tell apart

(N+L-1)! (2N +2L£-1)!
2In (N!(ﬁ— ) ) equal to ln((2N)!<2£ — 1)!> (2.3)

This is obviously not true either. So what is going on here? Well it turns out that
the entropy is only extensive in the thermodynamic limit, i.e in the limit of infinite
system size. In fig. 2.2 a similar plot as in fig. 2.1 is shown, but for different system

II
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Figure 2.2: Histogram of the number of states calculated for different system sizes.

sizes. This figure illustrates that as the system size increases, the perfectly mixed state
becomes more probable, i.e the standard deviation (or width) of the histograms de-
creases. Hence as the system size increases the total entropy is going to be increasingly
dominated by the perfectly mixed state. This can be illustrated by plotting the ratio
of the actual entropy and the entropy of the perfectly mixed state:

1 ((2N+2£—1)!)

@N)I(2C-1)!

ASN, L) = (N+L-1)!
2In ( NI(Z—1)! )

in the thermodynamic limit, the perfectly mixed state is the only contributor to the
entropy, as illustrated by fig. 2.3. In other words, if we double the size of the sys-
tem, and only consider the perfectly mixed state of the larger system, the entropy is

extensive.

A heavily used mathematical approximation in statistical thermodynamics is the Stir-
ling approximation. It is used to approximate factorials, x!, and is in our case only
relevant when x is an integer.

x! =exp (zln(z) — x) (2.4)

If we go back to eq. 2.3, but this time assume that N >> 1 and £ >> 1 such that
L—1~Land N — 1= N, the equation instead reads:

2t (OO0 o (24220

Since we already assumed that IV and £ are very large, we can safely use the Stirling
approximation, which renders the left and right hand side equal. Hence using the

12
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Figure 2.3: Histogram of the number of states calculated for different system sizes.

Stirling approximation is equivalent to neglecting the fluctuations from the perfectly
mixed state. This is in many cases a fair assumption since at large £ and N, the
perfectly mixed state is dominating.

2.2 Equilibrium: The intensive variables

We now leave entropy and take a look at some other important properties. As stated
in the beginning of this chapter, thermodynamics deals with systems in equilibrium.
But what do we actually mean with equilibrium, and how do we determine if a system
internally is in equilibrium, or that two systems are in equilibrium with each other?
A simple way to define equilibrium would be to say that; in equilibrium there are
no macroscopic flows of matter or energy from one part of the system to another.
While on a microscopic level, instantaneous changes and flows occur all the time. To
further investigate this, consider two systems which lie next to each other. The total
entropy of the two systems is constant, but the individual entropies of the two systems
can fluctuate. Consider also that the systems can exchange particles, while the total
number of particles is held constant. The same goes for the volume, the total volume
of the two systems is constant, but not that of the two systems separately. We can
expand the differential of the total energy(for details, see the next section), dU, as the
sum of the changes in energy of the two systems, dU; and dU»

dU = dU; + dUy =

oU, 8U1> <8U1>
— dS1+ | — dVi + | —— dN71+
(‘951 )Vl,Nl ' <8V1 51,N ' ON1 ) s, v ' (2.5)

U oU. U
(2) dSs+ <2> AV + <2> dN>
882 V2,N2 8V2 327N2 8N2 52"/2

13



Since the total S, V and N are all constant, a change in one system has to be followed
by an opposite change in the other system. Hence we have the following relations:

dS; =—dS,
dViy = —dVa
dN1; = — dNs

Substituting the above relations into eq. 2.5 yields

jouy oU ouL  oU oUL Ol -
U= <651 - asg> ds1 + <av1 - aVQ) a1+ <8N1 - aNQ> N =0

(2.6)

If the combined system is in equilibrium there should be no change in the internal
energy, hence dU = 0. The above expression thus defines constraints for when two
systems are in equilibrium. Since the partial derivatives are important in determining
equilibrium, we give them special names

oy _oUy | oU
051 059 oS
Uy _oUy | oU
oV 0V oV
) oy oU
ON1  ON, ON

= Temperature, T'
= Pressure, P (2.7)
= Chemical potential,

Notice that since we are dividing changes in extensive variables, all these variables
describe intensive properties. From the above equation we can also identify three
different types of equilibrium. Namely a thermal equilibrium due to flow of heat,
which is determined by 7', a mechanical equilibrium due to changes in the volume,
determined by P and a chemical equilibrium due to flow of matter, determined by
ft. ‘This further cements the notion of intensive properties as forces and extensive
properties as coordinates. For instance a difference in temperature gives rise to a force
which drives a change in the entropy. Note that in our derivation we assumed that
the total N, V and U were all constant. For other macroscopic constraints, similar
definitions of the intensive variables are found. Some implications of equilibrium in
simulations are discussed in note 2.2
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NoOTE 2.2. EQUILIBRIUM

According to statistical thermodynamics, a probability can be assigned to each
available microstate in phase space. If we were to follow the evolution of a sys-
tem long enough, this (equilibrium) probability distribution of the microstates
would be recovered. This is independent of the starting configuration, since
if the system started in a low probability region, this region would still be re-
visited with the correct probability. That means, that as soon as we specify a
macrostate, we have assumed that the system is in equilibrium, since the ac-
cessible phase space volume is determined by the macrostate. In one way this
might seem trivial, since thermodynamics describes systems in equilibrium,
and ensembles, or macrostates, is a concept which is invented by thermody-
namics.

In statistical thermodynamics we are often in need of a surrounding system,
with constant NV, V and E, of near infinite size, which we often take to be
the universe. Since we defined the macrostate of the universe, statistical ther-
modynamics would tell us that the universe is in equilibrium. Although we
can observe an increase in entropy (an increase in the "volume” of the uni-
verse), this increase is local, meaning that it is part of fluctuations around an
equilibrium value.

This is, however, not an argument for the universe being in equilibrium. Ther-
modynamics is in fact in some ways a very practical theory, and was designed
as one, and hence not designed for these types of questions.

2.3 The first laws of thermodynamics and the fundamental
equation

We have seen that the entropy gives us clues about how a system evolves when IV, V'
and F are kept constant. In the following sections other properties are derived, under
different macroscopic constraints, which play the role of the entropy. We start from
the first and second laws of thermodynamics. The first law of thermodynamics states
that the change in internal energy, dU, is the sum of the heat added to the system, dq,
the work done on the system, dw, and the change in energy due to a change in the
amount of matter in the system (the number of particles in our case), dU,,.

The first law of thermodynamics

dU = 6q + ow + dU,, (2.8)

where 0 is used to indicate a small quantity. This is commonly translated to conser-
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vation of energy; Energy can never be destroyed or created, only converted between
different forms.

The second law of thermodynamics states that the change in entropy is larger than, or
equal, to the added heat divided by temperature, plus the change in entropy due to
the change in matter.

The second law of thermodynamics

ds > %q +dSp, (2.9)

where d Sy, is the change in entropy due to exchanging matter. Note that the above
form of the second law only holds for a reversible process. A common translation is
that the entropy in an isolated system can never decrease. The second law of thermo-
dynamics is statistical, meaning that from a macroscopic view, it would appear as if the
entropy always increased. From a microscopic view however, there are fluctuations
which also decrease the entropy.

Using eqs. 2.8 and 2.9, it is possible to find the total differential for the internal
energy®, U(S,V, N) (which we have in fact already seen in eq. 2.6)

dU = TdS — pdV + > pdN; (2.10)

Eq. 2.10 is fundamental to thermodynamics, and will be used in the following section
to derive the free energy.

2.4 'The free energy

For a system of constant NV E we can make predictions about the direction which the
system will evolve, based solely on the entropy. This was due to the equal probability
of all states, which was due to that we held the energy constant. What about when
the states do not have equal probability, i.e when the energy is not constant? In such
cases one can not simply say that the entropy is maximized at equilibrium.

To further explore this, consider a box of volume V' with rigid walls confining a num-
ber of particles V. We denote this box and it’s content as S and refer to it as #he system.
S is surrounded by a much larger volume, which we simply call zhe surrounding, and
denote as S’. The energy of the combined system (system plus surrounding), E7, is
constant, B = Es + Es/. The system and surrounding cannot exchange particles
but are in thermal contact with each other and heat can flow from the system to the
surrounding and vice versa. Since we only concern ourselves with what happens at
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equilibrium, we assume that the system is in thermal equilibrium with the surround-
ing. The temperature of the surrounding, T's/, is therefore equal to the temperature
of the system, T’s, according to eq. 2.6. Since the temperatures are equal, T's and T's/
will be referred to simply as T". Therefore, in this setup, the number of particles Vs,
volume Vs and temperature Ts is constant in S. From the previous section we know
that the total entropy, S7, will be maximized at equilibrium. Hence our goal is to
find an expression for the total entropy, as a function of the properties of the system.

The total entropy change is the sum of the change in the system, and the change in
the surrounding. We thus have for the entropy and energy

dSt = dSs + dSs (2.11)

and

dUr =dUg +dUg =0 (2.12)

where dU7 is a change in the total energy, dUs and dUs/ are the changes in energy
in the system and the surrounding respectively. Since the surrounding has constant
volume and constant number of particles, eq. 2.10 reads:

dUg

dUSI = TdSSI — ng/ = T

(2.13)

The total energy is constant and hence the change in energy in the system must equal
an equal negative change in the surrounding, dUs = —dUg/. Substituting this rela-
tion into the above equation one get

d
dSg = —% (2.14)

Finally substituting eq. 2.14 into eq. 2.11 one arrives at
—T1'dSt = dUs —TdSs (2.15)

Eq. 2.15 relates a change in the total entropy, to changes in properties of the system,
namely the energy and the entropy. Hence we can use this equation to predict the
evolution of a system where IV, V and T are constant. According to eq. 2.15, there
exists a function, F', such that

F=U-TS (2.16)

which, if the temperature is constant (so that SdT" = 0), has a differential which
is equal to eq. 2.15. We define the above function F' as the Helmboltz free energy.
Note that this expression assumes that the total system is in equilibrium. Now if we
compare two different sets of microstates, their free energy difference gives us a way
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to calculate which of these two sets that has the highest probability of being observed,
thus the free energy determines the direction in which a system on average will evolve.
Equally important is that the absolute free energy of a system is a way to quantify
correlations between the particles. Hence the free energy is a very important tool in
theoretical chemistry.

One thing that remains to be determined, is how the entropy can be calculated in a
system such as the one described above (i.e when the energy, Us, is not constant). One
thing we can do is to calculate the average Boltzmann entropy of our system. This is
equal to averaging the entropy of each of the possible energy levels in our macrostate.

§=>_pU)sU. Zp Dk In ((U:) = —k:Zp (p(U2)

(2.17)
This expression is called Gibbs entropy, and will be used in the upcoming sections.

2.5 Statistical thermodynamics and the thermodynamic ensem-

bles

While thermodynamics mainly describe macroscopic systems, statistical thermodynam-
ics relates the thermodynamic observables to averages over the microstates. This cor-
responds to what is measured in most experiments. It is statistical thermodynamics
one uses to calculate properties from molecular simulation. So the discussion about
entropy in a previous section, could be regarded as stated from a statistical thermody-
namical point of view.

So far we have looked at two special types of systems, where the number of particles
N, volume V' and the energy U or temperature 1" are constant. We say that such
a set of constraints constitute a macrostate. A macrostate completely determines the
accessible microstates, or equivalently the available volume in phase space. The col-
lection of all accessible microstates, corresponding to some macrostate, is called an
ensemble. In other words a macrostate can be considered as a type of equilibrium, and
the population of the microstates follow the probability distribution corresponding
to the macrostate. We will see later that this probability distribution is fundamental
when running simulations of molecular systems.

The canonical ensemble (N,V,T)

Let us now revisit the example from the previous section, where a system S is sur-
rounded by a much larger surrounding &’. Lets further denote a specific microstate ¢
in S as S;, and a microstate in S’ as Sf . As before the combined system has constant
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energy. The energy of the system and the surrounding are functions of the respective

microstates, such that we have U = U(S) + U(S').

Lets assume that the energy of the system is U (S;) = €, which means that the energy
of the surrounding is U — €. Lets also assume for simplicity that the particles are
distinguishable, so that we can leave out the factor % when calculating the number
of states. For every accessible microstate, S;, of the system consistent with an energy
¢, the surrounding can be in (U — €) different states. Hence the probability of S to
have an energy € is

p(e) (2.18)

_ Qe)QU —¢) _ o exp [£5(e)] exp [z S(U — €)]
Y QUa)UE —€)) > exp [15(e)] exp [2S(U — €)]

where Q(U — €) is the number of microstates of the surrounding with energy U — e,
and S(U — €) is the entropy of the surroundings. The sum in the denominator is
taken over the energy levels available to the system. We now set + = U — € and
expand the entropy of the surrounding, S(z) = kIn [Q(x)], as a Taylor series. Since
&’ is assumed to be much larger that S, it is clear that U >> ¢, and we can expand
around 2’ = U. This means that we assume that the surrounding is infinitely large.
The Taylor expansion is

0S(x)
ox

S(x) =S+ [ ] B (x —2') 4+ O((z — 2')?) (2.19)

where O(2'2) is used to collect all terms of higher order than one. Since the volume
of both the system and the surrounding are constant, no work can be performed.
According the the first law of thermodynamics, eq. 2.8, the change in energy is then
solely due to transfer of heat, dU = 0q. The second law of thermodynamics, eq. 2.9,
therefore reads % = 7, which is the second term in the Taylor expansion in eq. 2.19.
What remains is to calculate the rest terms in O((x — 2/)?).

Since the temperatures of the system and surrounding are equal, we set T's = Ts/ =
T. For the O((x — 2')?) terms one can then factor out a term

#s _or 1ot
ouz  oU  T20U

which goes to zero in the limit of an infinite system (it requires an infinite amount of
energy to raise the temperature of such a system, i.e the heat capacity goes to infinity).
Hence all terms of higher order than one disappears.

Substituting eq. 2.19 into eq. 2.18, one has eliminated the dependence on the sur-
rounding, and the probability is now only a function of the energy and entropy of the
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system
exp (%(S(e) — %e))
i €xXp (%(5(61') - %Gi))
The probability can also be written as a function of the microstate, which further
eliminates the dependence on the entropy. By noting that exp (%S () = Q(e) is

p(e) =

simply the degeneracy of energy level € one arrives at

exp (—,@%U(Sﬂ)
S jes b (— 5 U(S)))

where the sum in the denominator is now taken over the accessible microstates. The

p(Si) =

expression in the denominator is very important in statistical thermodynamics, and
is called the canonical partition function, denoted Q). To see why it is important, we
substitute the above expression into the Gibbs entropy, eq. 2.17

5 —kz exp <—Qk;TU¢) . exp (—C];;TUi) _

1

k; exp <7k337TUi) (k;TUZ) +1In(Q) =

Q

1
TU+1D (Q)

Substituting this result into eq. 2.15, we get

1
F = —kgTIn(Q) or equivalently Q = e wpT

Hence the canonical partition function is related to the Helmholtz free energy. This,
in turn, means that from ), we can derive any other thermodynamic property.

As mentioned in an earlier chapter, from a classical point of view, space is continuous.
This means that the sum in the partition function can be approximated as an integral.

B 1 1 1 N N N N
Q—zi:exp (—kBTUZ) Nh?’N/SeXp <—MU(I‘ ) )>dr dp

where we have explicitly indicated that the energy depends on the two constituents of

N, and momenta p?¥ of the particles. Here one once again

Si, namely the positions r
need to introduce Planck’s constant into the volume element in the integral, to take

into account the discretization of space from quantum mechanics
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Unfortunately, direct calculation of the partition function is limited to very simple
systems. In order to alleviate the problem, the energy, U, can be factored into two
separate contributions; one for the potential energy, Up, resulting from interactions
and the other due to kinetic energies, Ux, U = Up + Uj. Since the potential energy
only depends on the position of the particles, and the kinetic energy only depends on
the momentum. The partition function then reads

1 1 1
_ b N N N N
Q= 1N /Sexp < kBTK (p )> dp /Sexp < kBTU(r ))dr ,

é;( Qu

where Qy is often denoted as the configurational partition function. The kinetic part
of the partition function, ()i, can be calculated analytically

KN TP\ kT £ am,

N 1 o0 1 |p‘|2 N 1 .
H) 3 /oo P <_kBTl 2m; >dpl - H B3 (2mm;kpT)?2 ,

=0

and thus reduces to a constant, at constant 7. The factor 3 in the exponent in the

final expression originates from the fact that we are integrating in all three dimensions

for each particle. Eq. 2.20 is often reformulated in terms of the de Broglie wavelength
_ h . .. .

A= T T The canonical partition function then reduces to

_ L 1 N\ N
Q_A3N/86Xp( k:BTU(r ))dr.

and the probability becomes

= (2.21)

Thus we can focus on particle positions, V. In the remainder of this chapter we
however stick to the sum over discrete states. At any time one wishes to go to a
classical description, one can just switch the sum to an integral and divide by A3,
hence our choice has no impact of the actual results.

The grand-canonical ensemble (11,V,T)

We now look at a different type of system. Consider, as in the previous section, a
system embedded in a much larger surrounding. The total energy of the system plus
surrounding is still constant, however, now we also allow the systems to exchange
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particles. Hence the total number of particles is constant, but the number of particles
in each of the two systems varies. We have seen that in such a system the chemical
potential is same same for the two systems at equilibrium, eq. 2.6. Hence the number
of microstates in the smaller system is now dependent on both the energy U (S) and
the number of particles N (S). Note that the phase space of S now includes an
additional coordinate, which is the number of particles. Proceeding as in the previous
case, but this time directly writing the probability as a function of the microstate, the
probability of observing a microstate in the smaller system is

exp [£S(U = U(S), N = N(S)))]
Zj exp [%S(U — U(Sj)v N — N(SJ))]

p(Si) =

(2.22)

where the sum is over available microstates. We now use a 2-dimensional Taylor ex-
pansion of the entropy, and set = U — e and y = N — n and expand around the
point (' = U,y’ = N). As in the previous case this is equivalent of assuming that
the surrounding is infinitely large. The Taylor expansion reads

98(z,y) 95(z,y)

_ / N _ I\ I o A S S _a/

S(x,y) = S, y) 5y (&) 9y (y—y)+
O((z—a")?) +0((y—y))

where again dS(Ud%ZJIV_n) = T%q/ and from eq. 2.7 we get dS(UJTZ]/V_M = —%.

The system is in equilibrium with the surrounding and hence 7' = Ts = Ts» and
it = pts = pg. Substituting these results into eq. 2.22 we arrive at

exp | gg (sm — ©)|
S exp |y (WN(S) = U(S)]

In the same way as before, we can identify the expression in the denominator as the

(2.23)

P(e,n) =

grand canonical partition function:
== Zexp L (UN(Si) = U(S:))
- kT

In section 2.4 we derived the Helmholtz free energy for a system where N, V and T’
are constant. Following the same procedure while no longer keeping N constant, one
ends up with a free energy differential,

_TdStotal =dU —TdS + ,udN
Which then yields another free energy, called the Grand potential
O =U-TS5+uN
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Just as in the case of the canonical partition function, the grand canonical partition
function is related to this free energy through

—kpTIn(E) = @

In papers II-VI we make use of the grand canonical ensemble to simulate our systems.
In paper IIT we directly calculate the grand potential using a method called classical
density functional theory, which will be introduced in another chapter.

2.6 Energy, entropy and the discretization of space

i o N
2 Jims(k) = in(L")
1
g lims(k)=0
w0 0 k-
-1
-2
-1000 -500 0 500 1000 1500 2000
k

Figure 2.4: Illustration of the entropy in a one dimensional system, consisting of one particle in an external
field, defined by ¢(x) = k2. The entropy is here plotted against the force constant k. The purple
lines shows the relevant limits.

Before ending this chapter, we will in this section investigate a simple theoretical sys-
tem. In this example the entropy is analytically available, which enables us to highlight
some interesting aspects about the interplay between energy and entropy, as well as
the effect of going from a quantized space (as in quantum mechanics) to a continuous
space (as in classical mechanics).

Consider a single particle on a line of length L. An external potential is acting along
the line and has the form ¢(x) = kx?, where k is a force constant and 1 is a position
on line. When k£ = 0, the system is equivalent to an ideal particle on a line. The
(configurational) partition function of this system is

L/2
Q= / e Th 4y
L)2

where we have set kg = 1 and h = 1 for simplicity. In this system one would expect
that as £ — 00, the entropy would go towards 0, since only one state is then available
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Jims(k) = in(L") = In(21)

kETms‘k)=’"(2)

lims(k) =0

—-500 0 500 1000 1500 2000
k

Figure 2.5: lllustration of the entropy in a one dimensional system, consisting of one particle in an external
field, defined by ¢(x) = kz2. The entropy is here plotted against the force constant k. The purple
lines shows the relevant limits.

(in the middle of the line). As k — —00 one would expect an entropy of In (2), since
two states are available, one on each side of the endpoints. When & — 0 one expects
that the entropy is equal to that of an ideal particle, In (L").

As we have seen before the free energy is given by F' = —kpT In (Q) and the entropy
isgivenby § = — % To simplify the algebra when calculating the entropy, we define

v = \/%andw:\/?rerf (’yé)

The entropy is then given by

2
S=-N <L6L472’y —w—2wln <w>>
~

A plot of the entropy as a function of the force constant, k is shown in figure 2.4.
In this figure the limits are also shown. This entropy displays the correct limiting
behaviour in the limit k — 00, as well as when & — 0. In the latter case, the entropy
tends to that of an ideal particle, which is also a global maximum, as can be seen in
fig. 2.4. As a side note this is equivalent to the limit of infinite temperature, which
is also readily seen from the Boltzmann factor. In the limit & — —oo the entropy
does not show the correct behaviour. This is due to the approximation of going from a
discrete space to a continuous space. Instead calculating the entropy in a discrete space
yields an entropy as plotted in fig. 2.5, which has the correct limits. This procedure
amounts to dividing the line into £ segments, then summing over those segments in
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the partition function. If we set dx = %, the partition function can be written as

£l 1 11 ?
QDZIXZ;)GXP _fk (L <£—|—1_2> +:ch:c> ] (2.24)

where the subscript ”D” on the partition function denotes that it is calculated over

a discretized space. One can then use Gibbs formula in eq. 2.17, to calculate the
entropy, and then plot it as a function of the force constant.
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Chapter 3

Energy

We have now arrived at the second main thermodynamic property: Energy. As we
saw in the previous chapter, energy, together with entropy, constitute the free energy.
The energy introduced here, the interaction energy (which is in the remainder of this
chapter simply referred to as energy), is a way to quantify the correlations between
particles, that are not due to entropy. There is a constant interplay between energy
and entropy, and more often than not, they result in opposing forces. In fact, one
could even argue that they always are opposing forces, as introducing interactions (i.e
adding energy to the system) always decreases the entropy in a system.

3.1 Electrostatic interactions

There are many different types of interactions between particles, and they can be very
complex. For instance the polarization of an atom in the presence of another atom.
While the first atom is polarized, its new charge distribution will in turn polarize the
second, or a third atom, which will then again affect the first atom. Such interactions
would have to be solved iteratively. One simplification we can make is that all of the
interactions are pairwise and pairwise additive.

In this thesis we will only concern ourselves with two types of interactions. One due
to the excluded volume of particles (specifically Pauli repulsion), the second which
originate from the correlations between charges, i.e electrons and protons, which is the
focus of this chapter. This type of interactions are called electric interactions. In reality
particles interact via different mechanisms, many deriving from electric interactions
(Keesom, London, Debye etc). In classical molecular simulations it is common to
assume that electric interactions occur statically, namely that the interactions do not
depend on the movement of the charges, which brings us to electrostatic interactions,
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which will be the focus of this chapter. In addition to statically occurring interactions,
we assume that all charges are infinitesimal points in space. In this regime, two charged
particles 7 and j with charges ¢; and ¢;, can be represented by two delta functions,
p(r) = q;0(|r; — r|) + g;6(|r; — r|), where r; is the position of the i point charge.
q is thus defined as the valency times the elemental charge. The potential generated
by these two point charges is given by Poisson’s equation.

Poisson’s equation

Poisson’s equation has a central role in electrostatics since it relates the electric poten-
tial, ¢(r), to the generating charge distribution, p(r).

V- [eoe(r, T)Vo(r)] = —p(r),

where €(r, T') is a function describing the relative electric permittivity of the medium
and € is the permittivity of free space. Often one assumes homogeneous permittivity
of the medium, €(r,T") = €.(T), in which case one can write ege,.(T) = €(T).
Poisson’s equation is then reduced to:

p(r)
e(T)’

Ap(r) = — (1)

where A =V -V = [6‘9—; + 88722 + 59722} is the Laplace operator. If we go back to

the example of two point charges, the solution to Poisson’s equation, the potential, is®

1 i qj
o) = TneD) <|r o T r—Jrj|>

The interaction energy between two point charges ¢ and j is thus

_ 4i4;
Uiglr) = dme(T)ri;
where 7 is the distance between the charges and €(T") is the dielectric permittivity of
the medium intervening the two charges at temperature 7". This potential is called the
Coulomb potential. To be a bit more precise the Coulomb potential is actually a free
energy, due to the fact that the dielectric permittivity depends on the temperature.
It thus includes an entropy component, and not just an energy component. This
entropy component comes from the response of the solvent, to the presence of the
two charges ¢; and g;.

Since the Coulomb energy decays as r~*

, we say that it is long ranged. This means
that for two particles that are relatively far away from each other, there is still a non
negligible interaction energy. Hence, as stated in the introduction, we need to intro-
duce PBC. Before diving too deep into how to solve this, lets define what we mean

with energy in the context of simulations.

28



3.2 Energy of a simulation box

Consider a general system composed of charged particles, and a number of replica
systems, to approximate a bulk system. The total electrostatic (Coulomb) energy of
this system is given by the familiar equation®:

Us = 24ﬂ_€ Z ZZQZQJ —|—1’10L‘ (.2)

where o denotes the component-wise product and L = [L, Ly, L] is a vector de-

scribing the (orthogonal) box. The sum over n € 73 runs over all replicas and the
prime indicates that when n = 0, the term ¢ = j is excluded. The factor 1/2 in front
is usually attributed to cancellation of double counting. A subtle (and perhaps a bit
confusing) detail about the above equation, is that terms where i = j and n # 0 are
only included once (for each n), yet still divided by two. Hence the factor 1/2 is not
only accounting for double counting, but as we shall see, also due to how the energy
of the simulation box is defined (which perhaps one could argue is the same thing).

Consider a system S, containing only two particles A and B, as well as one of its
replicas S’ as in fig. 3.1. We are interested in finding the energy of S. One might be
tempted to define the energy as simply the sum of the interactions of all particles in
S with all other particles which, avoiding double counting, amounts to

Us =AB + AA' + AB' + BA' + BB’

The above equation however yields an energy that is not extensive, and hence is erro-
neous. Instead one defines the energy as the total energy, including the energy of all
replicas and the interactions between them, divided by the number of replicas. The
total energy of such a system is the sum of all interactions:

Ur=AB + AA' + AB' + BA'+ BB' + A'B’

This equation can be simplified since AB = A’'B’, due to symmetry. One then

arrives at

Ur =2AB + AA' + AB' + BA' + BB’

Dividing by 2 yields the energy per box (or equivalently the energy of ) and thus we
have:

Us=AB+ = (AA’+AB’+BA’+BB)

If the minimum image convention is used (and we extend the system in fig. 3.1 with
another replica to the left) we get that AB” = BA’, and the above equation can then
be written as

1
Us=AB+ AB' + 5(AA’ + BB')
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Figure 3.1: A simple illustration of a system and one replica

Hence for a general system S with an arbitrary number of replicas S’, the energy can
be written as in eq. 3.2.

3.3 Ewald summation

Charge-charge interactions are arguably the most important of the electrostatic inter-
particle interactions in ionic systems. In such systems these interactions are sometimes
one or more orders of magnitude stronger than other electrostatic interactions. Hence,
it is often a reasonable approximation in ionic systems to neglect all other interactions,
except exchange repulsion.

In simulations, the size of the systems that we are able to simulate are limited by
the computational resources available. We also have to figure out how to handle the
boundaries of the simulation box. A first approach to mitigate this problem and
minimize size effects is to introduce PBC. Since electrostatic interactions are long
ranged, simply using PBC with a minimum image truncation (defined above) is in
many cases inadequate.

As mentioned earlier, the most common way of emulating an infinite system in molec-
ular simulation, is to replicate the simulation box (fig. 1.1), and represent each charged
by a point charge. The potential generated by such a charge distribution is given by:

o(r) = 47T6 Z Z\r—rz—i—noL\

nezZ3 i=1

Direct summation of the box replicas yields a slowly converging sum due to the |r|~*
dependency. This sum is also conditionally convergent, and the result depends on the
summation order (or geometry). To overcome the slow and conditionally converging

10:11js the predominantly used method. In Ewald summation,

sum, Ewald summation
the infinite sum is split into two parts, one short-ranged and another long-ranged term.
To achieve this, a screening charge distribution, o(r), is added and subtracted from

the original charge distribution (see fig. 3.2), which we here assume to be a collection
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charge distribution - screening

charge distribution +
screening

Figure 3.2: lllustration of eq. 3.3. purple and green distributions symbolize o(r) and —p(r) respectively. Black
lines represent the delta functions. Note that the scale is not accurate

of point charges, ¢d(r):

N N N
p(r) =Y qid(r—r;) = > qiolr — )+ Y qiolr —1;). (3.3)
i=1 i=1 i=1

ps(r) pr(r)
A common screening charge distribution is in the form of Gaussian functions:
1
—e
(2m02)3/?
where o is the standard deviation of the Gaussian. o is related to the so called “splitting
parameter”, o, by o = ﬁ Since we have added and subtracted o(r), the resulting

r\2
20

|

o(r) = : (3.4)

charge distribution is effectively split into one short-range, p5(r), and one long-range
term, pr,(r). As we will see later, the decay of the resulting potential is dependent on
0. The potential generated by a charge distribution is given by Poisson’s equation, eq.
3.1 and, due to linearity, the short- and long-range parts can be solved separately. The
short-ranged potential is given directly as a solution:

1
Ags(r) = _TT)pS(r) —
1 N erfc(ﬁh‘—ri—i—noL\)
¢s(r) = Ire(T) YD a r—r tnol) ; (3.5

nezZ? i=1

which converges rapidly for large |r — r;|. It is common to use a minimum image
truncation for the short range potential, since o can be chosen so that the magnitude
of potential is very small at the cutoff. The interaction energy resulting from the short
range potential is thus given by:

1 N
Us =35> 49s(r;) (5.6)
j=1
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where the prime on ¢g (given by eq. 3.5) indicate that when |n| = 0, the term
r; = r; is excluded.

Solving for the long-ranged part however, yields a slowly converging sum

N erf(ﬁh’—rﬁ—noL\)
oL(r) = oy ZZ PR TR (.7)

nez3 i=1

due to the erf (r) term. To alleviate this problem, the long ranged potential is instead
solved in Fourier space. This method involves expanding the long range potential as
a complex Fourier series

1 - .
= = > dulger, (9)
k

where k = (2n/L,,2n/L,,27/L.) o n are the reciprocal wave vectors, o again
denotes a component-wise product and V' is the volume of the simulation box. Using

Poisson’s equation (eq. 3.1) in Fourier space, ¢(k) = kQE(%), where k = |k| eq. 3.8

i ﬁL(k) eik-r
V4 k2e(T) ’

can be rewritten as:

pr(r) = (3.9)
Hence one needs to calculate the Fourier transform of the long range charge distribu-
tion pr,(k), which is given as:

|r—r~+nL|2

- ]. _ik-r e B
k)= ———5 > qu/ e Te T dPr

Note that in eq. 3.6, the term r; = r; when |n| = 0 is removed, therefore the above
equation should also exclude this term (a charge should not interact with it’s own
screening charge distribution). However, the above equation can be solved by making
the variable substitution r + n o L — r. Thus, by rearranging and multiplying with
1 = "5~ one ends up with:

N lr—r;|2

- Y )3/2 / emele=r) o~ 3k gy,
o
Jj=

The term r; = r;j when |n| = 0 is called the se/f zerm and will be removed later.

, : L et 7 5 _o%k?
Using the Fourier transform of a Gaussian e 202 — V27mo?e” 2, and the corre-

sponding for the y and z dimensions, and substituting the result into eq. 3.9 yields
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the long range potential in real space:

. _a2k2
Z qu k2 Zk'(l‘—rj)e 2. (3.10)

Y o =1

The infinite sum over k is in practice limited using a cutoff, k42, so that only terms
where k < kpqz is included in the sum. The term where k = 0 is called the surface
term'?, and has been excluded from the sum since it diverges. This term has to be
calculated in another manner, which will be shown later.

Comparing egs. 3.7 and 3.10 for the long range potential, eq. 3.10 scales as ﬁ which

converges much faster than the ﬁ term in eq. 3.7. The resulting interaction energy
for the long range potential is:

LN
=35 > aior(ri) (3.11)
i=1

We now have both the short and long range contributions to the energy. What remains
is to calculate the two remaining contributions, the self energy and the surface energy:

The self term

As mentioned above one needs to remove the spurious interaction between a point
charge and its own screening charge distribution (the self term). The self energy, re-
sulting from the self term, is the potential at r = r; generated by a Gaussian charge
distribution (eq. 3.7). By setting r; = 0 and letting [r| — 0

o lim L erf ! r ! Q\f
Are(T) r—0 r V20 471'6(T) o

(bself - ¢L(O) -

2

Mz

Uyt = (3.12)

471'6 27ra

=1

Hence the above term, Uy f, needs to be subtracted from the total energy.

The surface term

As previously stated, when k = 0 the expression in eq. 3.10 diverges. Hence one
needs to calculate this term in another manner. This term is usually called the surface
term. To calculate this contribution we follow the procedure of Hu'3, and start from
the value of the long range energy as k — 0 (i.e eq 3.11)

o21k|2
k
‘ o lkl” 7,k Tij

Jim Uy, = Usury = 17 hm Z Z;qzq]
=17
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where 0 is the zero vector (0,0, 0). The above expression diverges due to the k% term
in the numerator. Therefore this equation is expanded as a geometric series

X n
T
=
n!
n=0
where if we set z = — 2% + ik - r;; one arrives at
Usurf =
1( oK’ 2
+ ik - r; +
k—)O k2 Z Z 4i9; < ij
i=1 j=1
O(k?)
All terms containing odd powers of 7k - r;; cancels because r;; = —r;;. Terms not

ependent on r;; also cancels due to electroneutrality. terms containin or
depend ij al Is d | ality. All g k3
higher disappears as the limit is taken. Hence the only terms we are left with is

N N

(k- rz]
Usury = _W llg% ; ; qzq] (3.13)

Since k is a vector, one must choose a path when taking the limit. A natural first choice
would be to let & — 0, which would amount to transforming the above equation
into spherical polar coordinates, then averaging out the angular parts of k, kg and ky,
before letting the radial component k, = |k| = k go towards zero.

N N 2n 7 2 .
(k - ri;)” sin (kg)dkodk
Usurf:_ilmzquq 0 fO o ﬂ-”_ ¢

2V k=04~ & 2157 Jo sin (ky)dkodkg
where denominator is simply equal to k2 For notational 51mp11c1ty lets now denote
ry = |rij|cos(rg)sin(rg), 1y = |rij|sin(ry)sin(rg) and 7, = |r4] cos (rp).

After expanding the dot product in the square term, all cross terms disappear in the
integration, and only the square terms survive.

1 27 -
47rk:2/0 /0 (k- ri;)”sin (kg)dkedky =

1 27 m
w2 [ [ i k) (s s () dhod
47 0 0

1 27 pm
—r? / / sin (kg) (sin (k¢) sin (ko))? dkodky+
47 Y 0 0

1, 27 pm . ) r,nin
rz/ / sin (kg) (cos(kg))” dkgdky = 3
o Jo
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Since each of the above integrals are equal to 4%. Using the definition of the dipole
moment M = Zf\[ ¢ir; and substituting in this result into eq. 3.13 yields

2
ey
Usurf W ]ll_mlzjz%(]] 3 = 7M -M (3.14)

where we have used >, >, qiqu?j =-2(>; qir;)?, and the fact that the sys-
tem is electroneutral. Using eq. 3.14 is equivalent to adopting a spherical summation
geometry.

Another way to take the limit in eq. 3.13 is to first let k go to zero in the (x, y) plane
and then in z. This is equivalent to adopting a slabwise summation geometry, and
yields a surface term of the form:

- (k-ry)?
ZZ%% lim (;ﬁfgok? =

=1 j=1
1 N N 1
2
—T,§ > qigjz; = M-
i=1 j=1

(3.15)

where M, is the dipole moment in the 2z dimension. It has been shown that when sim-
ulating systems of slab geometry, the above surface term yields good results'4. When

simulating bulk systems, the spherical surface term if the most common®.

Since k is has units of reciprocal length, k — 0 correspond to infinite distance. There-
fore, one can argue that the surface term depends on the permittivity of the surround-
ing medium, €(T") sy, i.e on the surface of the crystal, instead of the permittivity of
the crystal itself. If so called tin foil boundary conditions are used, where the surround-
ing medium is assumed to be infinitely conducting (¢(7") sur = 00), the surface term
therefore vanishes. When simulating bulk systems containing ions, it is suggested to
use tinfoil boundary conditions!®. It remains to be determined in which cases this is
indeed the best choice, or that simply the dipole moment squared is so small that it
does not make any difference.

Now we are finally equipped with all terms necessary to calculate the energy using
Ewald summation. Combining eqs. 3.6, 3.11, 3.12 and 3.14 yields the final expression
for the total energy

U= US +UL — Uself + Usurf-

Note that since we have assumed an electroneutral cell in the derivation above, this ex-
pression is only valid in electrically neutral systems. Although simulating systems with
a net charge might yield correct results, the net charge can also introduce artifacts*>
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Figure 3.3: Plot of the energy vs the reciprocal cutoff value along z.

A lot of optimizations to Ewald summation exist in literature such as symmetry con-
siderations of the trigonometric functions and the choice of parameters’®, as well as
discretization of space and using fast Fourier transforms'”, especially in combination
with interpolation®. Most popular simulation packages use some or a combination

of these optimizations %2021,

Practical considerations

How does one choose the different parameters when running an actual simulation?
The accuracy of the real space term is obviously dependent on the real space cutoff,
as well as the width of the gaussian screening function (o). Choosing a value of

ﬁ = &, yields a value at the curoff of

erfc (RLCRC) 10-5
R. R,

which is a reasonable choice for most cutoffs, and a good rule of thumb?2. Choosing
the reciprocal space cutoff is not as easy. In practice one has to calculate the energy
of a random configuration, of the system of interest, for different values of the cutoff
kmaz and plot the result (as in fig. 3.3), to see when the energy converges to within a
tolerable error. When using asymmetric simulation boxes, further considerations are

(3.16)

needed. Consider the system in fig. 3.4. When a spherical cutoff is used, the volume
outside the cutoff is larger in one of more dimensions compared to the other. This
in turn means that more reciprocal vectors are needed in the longer dimension, since
it requires more trigonometric functions to describe the fluctuations in the charge
distribution. This can be a problem when simulating narrow slits. Then the number
of reciprocal vectors in the large dimensions has to be much larger than in the short
dimension.
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Figure 3.4: lllustration of an asymmetric simulation box. The figure shows the cutoff (orange circle) of a tagged
particle (red).

3.4 Using alternative screening functions

As mentioned in the previous section, Ewald summation is the predominantly used
method for calculating the electrostatic interactions in molecular simulation. The ac-
curacy of energy evaluations using the Ewald summation technique depends on three
parameters, namely the real space cutoff R, the standard deviation of the Gaussian
screening charge distribution, o, and the number of reciprocal wave vectors in the
long range term Ky (see eq. 3.11). Changing o alters the effectiveness” of the
screening charges and thus changes the value of the short range potential at the cutoff.
In turn, this also changes the required ky,qz for a given accuracy. Thus decreasing
o results in a decrease of the value of the potential at the cutoft R, which in turn
increases the required Kyyqz. In practice o is chosen so that the value of the factor
% erfc (ﬁr), in eq. 3.5, at the short range cutoff is small, usually on the order 1076

to 107°. Then Kkynqz is chosen large enough so that the reciprocal sum converges
with a given accuracy. Thus there is a balance between R, ¢ and Ky, 4, which need
fine tuning for optimal efficiency and accuracy, and the values depends on the system
studied. This adds extra complexity as the effect of changing the parameters may not
be apparent to an unexperienced user, as neither of the parameters has a direct rela-
tionship with the accuracy of the calculated energies or forces. It also not apparent
why a Gaussian screening function is the optimal choice for general systems.

In paper I, entitled "An Exact Ewald Summation Method in Theory and Practice”
we present the Ewald method with a different screening charge function, namely a
truncated Gaussian. Since this function is spherically symmetric, it is convenient to
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charge distribution - screening

charge distribution +
screening

Figure 3.5: lllustration of the split in the charge distribution. Purple and green distributions symbolize the
added and subtracted screening charge distributions. Black lines indicate the delta functions. Note
that the scale is not accurate.

express it in spherical coordinates, |r| = r:
Y p

or(r) = RQ(—T) —), (3.17)
4 [ o(r)r2dr

where o(r) is given in eq. 3.4 and 7 is the radial component, # is the Heaviside step
function and R is the cutoff of the truncated Gaussian. The truncated Gaussian is, as
in regular Ewald summation, added and subtracted from the point charge distribution
(see fig. 3.5). This results in a short range potential which is exactly zero at the cutoft,
R, for all values of 0. This has implications also in force evaluations as the forces will
not diverge at the cutoff (for instance in molecular dynamics or force biased monte
carlo). Consequently our method is dependent only on two variables, R and K4z,
where K4z is directly related to the accuracy. o can then be thought of as a tuning
parameter for efficiency in terms of computing time.

Apart from eliminating the o dependence it is also interesting to see what effect a
change in screening function has.

As a continuation of this study it would be interesting to investigate if one could find
an optimal choice of o in terms of time complexity. Also to investigate what happens
when o approaches 0o as this would result in a screening charge distribution which
resembles a square wave function.

3.5 Conducting surfaces

The behaviour of ions close to conducting surfaces is important in many different ar-
eas of Science. For instance, the interaction between metallic particles in salt solution.
If the particles are large enough, these can be approximated by flat surfaces at short
separations. In a electric double layer super capacitor, two conducting electrodes con-
fine an ionic fluid. To be able to simulate such systems, it is important to accurately
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z=0

Figure 3.6: lllustration of the image charge (r»), induced by a charge at r;. The image charge is reflected
across the electrode at z = 0 illustrated by a grey line.

model not only the particle-particle interactions, but also the particle-surface inter-
actions. Modelling conducting systems is no easy task due to the complexity of the
induced effects in the conductors.

Consider a perfect conductor, inside of which the electrical permittivity €(7") = oc.
It is further infinitely extending in the zy-plane as well as in the region z < 0, and
is grounded, hence the potential is zero everywhere on its surface. If a charge ¢ is
placed a distance d away from the electrode, at say r1 = (, y, d), where the electrical
permittivity is distinct from that in the electrode, the charge will induce an opposing
surface charge on the conductor. An exact equivalent of this system, which satisfies
the same boundary conditions, can be constructed by replacing the electrode with an
imagined charge —q at ry = (x,y, —d), see fig. 3.6. The potential from the latter

1 e q
¢(r)_47re(T)’<|rr1| |rr2|>' G18)

This potential satisfies the boundary conditions of the first system, where the potential

system is

in the plane z = 0 vanishes, as well as when 2,y — 00. Due to reasons that are
outside of scope for this thesis, this solution is unique, and hence also the solution
for the first system. The solution is however only valid above the surface in the region
z > 0, not in the region z < 0, i.e inside the conductor. The second charge is called
an image charge and the method is called method of images*3. 1f another electrode is
introduced parallel to the first, at say z = h where A > d, the image charge in the
first electrode will polarize the second electrode, which induces another image charge.
This new image charge will in turn again polarize the first electrode. The resulting
system is an infinite array of image charges in the z-dimension as if fig. 3.7.

Accounting for image charges in 3D Ewald

In paper II, entitled ”Grand canonical simulations of ions between charged conduct-
ing surfaces using exact 3D Ewald summations”, we present a useful and simple
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z=0 z=h

Figure 3.7: Illustration of image charges reflected in two electrodes at = = 0 and z = h, represented by grey
lines. Solid black lines represent edges of the original simulation box and dashed lines represent
the image cells. Three dots symbolize a continuation of the image cells.

methodology to simulate charged particles confined by conducting surfaces with con-
stant applied potential. Our methodology exploits the symmetry of the replicas in
Ewald summation, and in addition involves a bias potential which enables us to simu-
late in the grand canonical ensemble at constant electrode potential. The electrostatic
interactions between ions and the electrodes are calculated by constructing a unit cell
C. C consists of the original simulation cell C, centered at origo, with electrodes in
the zy-plane at £ /4. Tons in Cj with a z-coordinate < 0 are reflected through the
left electrode, creating an “image”-cell C{). Ions with z-coordinate > 0 are reflected
through the right electrode, fig. 3.8. Replicating the unit cell C' using regular Ewald
summation yields a system with an infinite array of image charges in the 2 dimension,
which is exactly the desired condition for ions confined between conducting surfaces
(see section 3.3). In addition, such a system is always electroneutral, as each charge
is neutralized by an opposing image charge. However, the total energy of the system
would include interactions between the image charges. This is easy to amend for by
realizing that the interaction energy of the subcell Cjy with the surrounding cells, is
equal to the corresponding energy for subcell C{,. Thus the energy for Cy is simply
given as half the total energy of C, due to simple symmetry arguments. This con-
struction gives a surface potential (see section 3.7) of zero on both electrodes. Note,
however, that the surface potential is not zero compared to a bulk solution.

The individual ion chemical potential for specie ¢, 1, in a bulk electrolyte can be
written as

Wi = [t — qi€Pref (3.19)

where 9. s is a reference potential. .y is zero for symmetric salts, as in a charge
symmetric restricted primitive model for instance, but non-zero for asymmetric salts.
Hence, it is a measure of the asymmetry of the electrolyte model.

In our simulations we define an effective” individual chemical potential using

15 = jt — Gi€Wpias. (3.20)
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Figure 3.8: lllustration of the unit cell C used in our method.

L/4

Yhias is used to bias either cations or anions to enter the simulation box. The corre-
sponding acceptance criterion in the Metropolis-Hastings algorithm, for an addition
of a specie 4, (eq. 4.9), becomes

l / . . N+1 N
N — mi Vi B tiethias) o~ BUEN ) -UEN))
a(N;|N; + 1) = min <1,Ni+1e e ),

where V; is the total volume accessible to specie i and V; is the total number of
particles of type .

Using egs. 3.19 and 3.20 it is possible to write:

:u"li = Hi — Qie(d}bias - wref) (3.21)
—————
YD

where 9p is the Donnan potential. ¢ p is equal to the surface potential of the elec-
trodes relative to the bulk electrolyte and hence can be interpreted as the applied
potential. In an unsymmetric salt, where 1, # 0, 1r¢y is needed to calculate ¥p.
Yres can be measured in a simulation by noting that the potential at the midplane
of the simulation box ¢(z = 0) — —1p. Provided that the separation between the
electrodes is large enough to generate bulk-like conditions at the midplane. So by
running a simulation with ;a5 = 0, the Donnan potential is simply equal to the
reference potential, 1)p = 1),¢y at the midplane.

Our method provides a simple way to simulate both ion behaviour at a single electrode,
by using large separation between the electrodes. As well as narrow slits which can be
used to mimic a pore in one of the electrodes in a EDLC.

In addition this technique gives us access to the individual chemical potential of the
involved species through eq. 3.19.
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Vacuum p . Vacuum
@ .

Figure 3.9: lllustration of the Ewald method using vacuum slabs to approximate a slab geometry. The dashed
black line indicates the box which confines the particles. The orange box represents the simulation
box with the vacuum slits, which is the box replicated in space.

3.6 Non-conducting surfaces

One might think that the treatment of non-conducting surfaces in simulations would
be simpler than for conducting surfaces. After all, in such systems there are no image
charges to take into account. This is, however, not the case, even though an exact
formulation of 2D-Ewald summation exists. Simulation of non-conducting surfaces
would be equivalent to only replicating the system in the dimensions which lie parallel
to the surfaces, so called quasi-2D. The 2D-Ewald formulation is computationally
inefficient, and what one can do instead is use regular 3D Ewald with a modified
simulation cell. A slab of vacuum is placed on each side of the simulation box, i.e as in
fig 3.9. This yields a system of slab geometry, with non-conducting surfaces. In doing

4 in order to obtain the

so one has to slightly modify the Ewald energy expression!
correct energy. The width of the slabs should be wide enough so that the interaction
between the replicates in this dimension in negligible. A slab width of 3-5 times the

length of the box in the parallel dimension has been reported to be sufficient4,

3.7 The surface potential

In these systems an important property is the surface potential. In experiments this
potential could represent a voltage difference between the surface and the bulk so-
lution, or another electrode (for instance between anode and cathode). The surface
potential is thus the value of the electrical potential at the surface of the electrode,
relative to a bulk solution. In experiments it is this potential that is constant, and
gives rise to a surface charge.

The potential profile can be calculated by integrating Poisson’s equation (eq. 3.1)
twice?>. This is done by using the appropriate boundary conditions. For instance
when using conducting surfaces with image charges, the locally measured potential is
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zero at both electrodes and hence the boundary conditions are

P(L1) = ¢s =0
(3.22)
¢(L2) =¢s =0
At z = —00 the electric field vanishes, and therefore we integrate from —o0 to z
dg(z) / C g
=— d C
7 . p(z)dz" + C1

where prime indicates dummy variables. The lower integration limit can be changed
to L since there are no charges in the electrode i.e for 2 < L1, p(z) = 0. Integrating
again yields

o(2) = —/ / p(2")d2"dz" + C1(2 — L) + Co (3.23)
L1 JIy
Using the boundary conditions in eq. 3.22 we find the constants C' and Cs:

1
C:/ / S)ddz
YT LI L
=0

Ch =

Thus the potential profile is given as:

Lo
/ / 2Nd"d2 + —— / / "dZ'dz (3.24)
Ly JILy L2 - Ly

In paper II we use the surface potential to evaluate the correctness of our method. The
surface potential is also used when calculating the capacitance, (see Chapter 6).
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Chapter 4

Simulations

Molecular simulation is a large field, and as such many different simulation methods
have been developed. There are two main branches of molecular simulations. The
first contains methods which take quantum effects into account (i.e probability dis-
tributions or kinetics of electrons), such methods are aimed as solved the Schrédinger
equation, such as Hartree-Fock or DFT. The other branch is classical simulations. In
this branch there are no explicit electrons, and the net atomic or molecular charges
are often approximated as point charges, as described in the previous chapter.

Markov chain Monte Carlo (MCMC) and Molecular Dynamics (MD) simulations
are two commonly used methods in classical molecular modelling. In MD the system
is propagated through phase space using Newton’s equations of motion. In contrast,
MCMC, which is going to be the focus of this chapter, use a more theoretical ap-
proach by directly sampling the appropriate probability distribution. The goal of
most simulations is to calculate some property, which generally is an average over
all microstates in some thermodynamic ensemble. Herein lies the main difficulty in
molecular simulation, since the number of microstates often is prohibitively large, a
simulation will never be able to visit them all.

Before we dive into the details of MCMC simulations, it is beneficial to look at some
differences between MCMC and MD, and when one is preferable over the other. The
main difference is how the two methods are propagated. Since MD is propagated
using the equations of motion, the result one ends up with, is the particle positions
as a function of time. From this, so called #ajectory, one can calculate any property.
Another implication of solving the equations of motion is that the energy is constant,
at least in theory. If one also keeps the volume and the number of particles constant,
the “inherent” ensemble is thus NVE. If one wishes to simulate in other ensembles
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one has to control other parameters, for instance add a thermostat to control the
temperature. The perhaps main drawback of MD is that processes that are slow in
real life, are also slow in simulations. Such processes could be for instance a binding
process or any other process where there is a free energy barrier.

MCMC has the advantage of more freely exploring the free energy landscape, since
it relies on direct sampling using the probability distribution of the microstates. This
means that one does not care how the system transitions between the microstates,
only that these transitions are performed with the correct probability. This means
that one can invent moves that propagate the system “unphysically”, as long as it
does not perturb the final distribution. The downside is then that kinetics are not
freely available, since there is no concept of time. There are of course algorithms to
aid both MCMC and MD with their downsides, such as dynamic Monte Carlo?® to
approximately capture kinetics in MCMC simulations, or metadynamics?’ to allow
MD to more efliciently explore the phase space, and overcome free energy barriers.
Now that we have a good grasp on the positives and negatives of MCMC, lets dive
into some details.

More formally, a Markov Chain Monte Carlo simulation is a random walk on a
weighted and directed graph, which consist of M nodes (microstates), see Fig. 4.1.
In this description the "weighted graph” is the Markov chain and Monte Carlo is
what drives the “random walk”. As we shall see later the random walk is in fact not as
random as one would think. Due to the size of phase space a completely random walk
would be very ineflicient. MCMC instead prioritizes states with high probability and
explores the relevant parts of phase space little by little using local moves. Although
there are differences between continuous Markov chains and discrete Markov chains,
only discrete chains will be considered here (generalization to continuous is in many
cases straightforward).

4.1 Markov chains

A Markov chain is characterized by a transition matrix (kernel) T consisting of M?
elements T;; defining the transition probabilities (weights) of transitioning from state
i to state j. Hence row i is the probability of transitioning from state i to any other
state. The matrix T is a stochastic matrix, which implies:

N
Y Ty=1Vj€S,
A

where S is, as in the previous chapter the state space, but here each state is represented
by an index from 0 to M — 1. The inital (starting) state is described by a state
probability vector S(°) where each of the M elements is the probability of starting
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Figure 4.1: A weighted and directed graph with 3 nodes (states) labelled i, j and k. Arrows indicate possible
transition paths and T7; is the probability to transition from state i to state j.

in that state. Multiplication by T yields the state probabilities in the first step in the
Markov chain:

s =sO,
The state probability distribution at the m:th step is therefore:

s(m) = gm=1p

or equivalently:

stm) — g©Om,

In molecular simulations averages are collected from a given probability distribution,
and it is hence required that the state probability vector becomes stationary after a
finite number of steps, m, i.e

st = T, Vit > m,
where 7 is a stationary distribution. The above equation implies that
7« T = . (4.1)

So to calculate valid averages from some probability distribution, 7 needs to exist
(which for a finite Markov chain is always true?®) and it needs to be independent of
the starting state S(?) i.e it has to be unique. One also needs a way to make sure that
7 is the desired probability distribution that one wants to sample.
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Stationary distributions

If a Markov chain is irreducible, 7 is unique. In an irreducible Markov chain there is
a non-zero probability of going from any state ¢ to any other state j in some number
of steps m

[p™];; > 0, Vi, j (for some m),

where [p"™];; is the probability of being in state i and going to state j in m steps.

Thus the chain visits all states if the simulation is run long enough. An irreducible
Markov chain is also called an ergodic Markov chain, and guarantees that the station-
ary distribution is unique?®. The average state probability distribution is the stationary
distribution

t—oo t

t
lim E Z S(m) = (4.2)
=1

7 is then called a limiting distribution. Since 7 is unique, it does not depend on the

starting state S(¥), and given enough steps 7 will be reached from any S(%). Theoret-
ically non-ergodic simulations may seem to not be an issue in molecular simulation.
In practice, however, regions in phase space can be separated by large free energy bar-
riers, which practically renders the simulation non-ergodic. It is far from trivial to
see if a simulation is ergodic, although there are some techniques to help the system
overcome free energy barriers and also to get hints about the ergodic nature of the
system3°. One can, for instance, add large (at least the size of half the box length)
occasional displacement moves. Nevertheless, in most molecular systems, ergodicity
is an assumed property.

If further the Markov chain is aperiodic, the convergence is absolute, i.e the limit

lim T™ =T, (4.3)

m—r00

exists. For an aperiodic state ¢ in the Markov chain there is a non-zero probability
for the chain to start in 4 and revisit 7 in all future steps i.e

[pm]ii > 0, Vm

A simple yet instructive example of a Markov chain which is irreducible but not ape-
riodic is constructed using the transition matrix:

0 1
.
The chain has two states and starting in either will result in a chain that periodically

jumps between the states. Thus the convergence is not absolute as in eq. 4.3, but
converges in an average sense as in eq. 4.2.
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We now know when the distribution converges and also from eq. 4.1 that the distri-
bution is 7r. Intuitively eq. 4.1 means that the probability flow into a state equals the
flow out of that state. Hence it is called the balance equation. In practice, however,
this equation is often of little use and a more stringent condition is often used, called
detailed balance.

Detailed balance (reversible Markov chains)
By equating each term in the balance condition (eq. 4.1) one arrives at:
mil = 7T}, Vi, J, (4-4)

which is the detailed balance condition. Eq. 4.4 implies reversibility of the Markov
chain, i.e the net flow between any two configurations is zero. In the next section
we shall see how in practice the detailed balance condition is used to assure that the
limiting distribution is our desired distribution.

4.2 Monte Carlo

Due to the enormous amount of microstates in most systems it would not be feasible
to simply use the full transition matrix T in a simulation. Utilizing Monte Carlo
however, one can perform a random walk on the Markov chain, and only keep track of
the current state. The predominantly used algorithm to perform a random walk on a
Markov chain while preserving the correct equilibrium distribution is the Metropolis-
Hastings algorithm.

Metropolis-Hastings
In the Metropolis-Hastings algorithm3'-32 the transition matrix is defined as:
Tij = q(ilg)a(ily),

where «(i|7) is the probability of accepting a move from state 7 to state j, and ¢ is
the probability of selecting that move. Substituting the above definition of T;; into
the detailed balance equation, eq. 4.4,

a(ilj) _ q(li)m;

a(jli) - q(ilg)m (4.5)
If a(i]j) is chosen as
1) = min (1. 29102
a(i|j) = min (1, (il )ps >, (4.6)

where p is the desired probability distribution, eq. 4.5 is satisfied and p = 7 by
construction. Hence the Metropolis-Hastings algorithm provides a way of choosing
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the stationary distribution 7. The Metropolis-Hastings algorithm is not the only
method of choosing a stationary distribution but it is by far the most common in
molecular simulation.

4.3 Monte Carlo moves

Many different types of moves can be implemented to propagate the system through
a Markov chain. The main goal of Monte Carlo moves is to efficiently (as fast as possi-
ble) explore all the degrees of freedom in the ensemble of interest. This is done by first
choosing the appropriate probability distribution as the stationary distribution, and
then including moves that properly explores all the degrees of freedom of that ensem-
ble. To propagate the system, one is free to choose whichever moves one can think
of, however unphysical they may be, as long as the moves obey detailed balance (eq.
4.4), and couple the acceptance criterion of each move with the correct probability
distribution. Detailed balance is easily fulfilled for the simplest moves like translation
and rotation, since for these moves it is often the case that ¢(i|j) = ¢(j|i). The
probability of accepting or rejecting such a move, that does not change the number
of particles or the volume, is given by the Boltzmann distribution, even if the desired
ensemble is not the Canonical. This is valid because the NVT ensemble is a subset of
both NPT and pVT. It is straightforward to implement NPT or VT from an NVT
program code, by just adding moves that properly allow the system to explore the new
degrees of freedom. A simple algorithm for an MCMC simulation in the canonical
ensemble is illustrated below.

1. Choose a random move from a list of possible moves

2. Perform the move (e.g translate or rotate a randomly chosen particle)

3. If the move is accepted, update the current state

4. Collect samples

5. If enough samples are collected, exit the program, otherwise go to step 1

In practice, one more term enters eq. 4.6 namely the probability of selecting “sub-
move” type (for instance the addition and deletion moves within a grand canonical
simulation). In most cases one does not need to consider this factor but in some
circumstances it can be relevant. Say, for instance, that one runs a GC MCMC sim-
ulation which includes addition and deletion moves. If the addition move is selected
with 30% probability and the deletion move with 10% probability, this has to be
taken into account. If the moves are chosen with the same probability, this term
cancels.
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The canonical ensemble

If we consider rigid particles, with no internal degrees of freedom, in the canoni-
cal ensemble, then two moves are sufficient to properly explore the full ensemble: a
translation move, and a rotation move. The acceptance probability of a translation or
rotation move from state 7 to state j, is given by substituting the canonical probability

density, eq. 2.21, for 7 and j into the factor %, in eq. 4.6. This then yields (since the
1
partition functions cancel):

a(i]j) = min (1,6*5<UrU2'>).

Due to the detailed balance condition, there are some restrictions on how these moves
are allowed to be performed. It is not, for instance, allowed to only rotate in the same
direction around the same vector by some angle < 27 at each rotation move. Hence,
it is common for translation and rotation moves to be constructed such that a reverse
move is possible, and chosen with the same probability, i.e ¢(j|i) = ¢(i|j). Note
that the optimal choice of moves is highly dependent on the nature of the system of
interest.

The grand canonical ensemble

In the Grand canonical ensemble, the number of particles is allowed to fluctuate.
This introduces one more degree of freedom, as compared to the canonical ensemble.
Hence, one needs to include at least two more moves, namely an addition move, and a
deletion move. In an addition move, one or more particles are inserted into the simu-
lation box, thus increasing the total number of particles. In a deletion move, particles
are removed from the simulation box, decreasing the total number of particles.

Addition move

The acceptance probability of an addition move is given by the same procedure as
in the canonical case, in the previous section, by substituting the grand canonical
probability density, eq. 2.23, into eq. 4.6. There is one caveat though, that we did not
need to concern ourselves with until now. In computer simulations identical particles
are not indistinguishable 3, since we somehow need to refer to each of them by saving
them in some sort of data container (e.g an array). This only has practical implications
when changing the number of particles, since in all other cases, any V! terms cancel.
Taking this into account and now substituting eq. 2.23 (without the N! term), into
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eq. 4.6 we arrive at

1 _ N+1
b ek PUCNHY

Di ASLNeBNHQ*BU(TN)

%eﬁue—mmr“l)w(m (4.7)

Often, the factor % is absorbed into the chemical potential
u’:u—len(A3).
The resulting 1 is the (relative) chemical potential used in most simulation software.

In contrast to canonical moves, ¢(j]?) is not generally equal to ¢(i|j). If the proba-
bility to add a particle is equal everywhere inside the simulation box, the probability
density of adding at a specific position is 1/V. Thus ¢(i|j) = 1/V. The probability
of reversing the addition (deleting the added particle) is ¢(j|i) = NL—H Hence by
multiplying eq. 4.7 by NL-H one ends up with the probability of accepting an addition
move:

CL(N|N + ]_) = min <17 N‘f‘_ 1eﬁy’6_ﬁ(U(rN+l)_U(rN))> '

Deletion move

For a deletion move the relations are reversed, a random particle to delete is chosen
with probability 1/N. The probability density of reversing the move (adding back
the removed particle) is % Hence ¢(i|j) = 1/N and ¢(j]i) = 1/V. Hence the
acceptance probability of deleting a particle is given by:

G(N|N — ]_) = min <]_7 ]‘\/]eﬁule_ﬁ(U(er)_U(rN))>7
where again the de Broglie wavelength has been absorbed into the chemical potential.

Single particle GC moves for systems with different species

When performing addition of deletion moves on charged particles, it is often necessary
to insert or delete electroneutral groups of molecules, because of the global electroneu-
trality constraint. In paper II we develop a method, which automatically ensures that
the system is electroneutral, irrespective of the number of cations or anions. When
using this method one can hence utilize single ion insertions and deletions.

For a general system containing N, different species, the GC partition function is:

Nep | o0 1 N
Qur=T[ | 3 eVt / e~ BUGN) g |
i=1 | N;=0 A; S
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where V; and p; are the number of particles and the chemical potential of the ¢
specie. A; is the de Broglie wavelength using the mass of a particle of the ¢ specie.

The probability density is:

Nep
1 o N;
P ox H e eBNini o —BU(xNi) (4.8)
i=1

Following the same procedure as in the above case for adding one particle of type i,
one arrives at

a(N;i|N; + 1) = min <1, eﬁ“{ieﬁ(U(rNH)U(rN))). (4.9)

(2
N;+1
where V; is the volume accessible to specie i.

The isobaric, isothermal ensemble

In the isobaric, isothermal (NPT) ensemble the pressure is kept constant. In MCMC
simulations, this is achieved by adding a volume move, which increases or decreases
the box volume V' — V. When the move is performed the coordinates of all particles
are scaled accordingly, as v’ = Vir. Utilizing the NPT probability distribution®, the
acceptance probability is given by

/

V N / IN N
a(V|V') =min | 1, (V) e APV =V)g=BUGT)=UxT)) |

and as in the canonical case it is common to choose the volume move such that
q(jli) = q(il7).

The acceptance ratio of the moves discussed above usually depends on the magnitude
of the move (for instance the length of the translation). The optimal choice is not
obvious, and there is no generally accepted consensus. A good choice seems to be a
set of parameters that leads to an acceptance ratio of about 20-40%°. However, in
some systems it is not realistic to reach this acceptance, for instance when running
grand canonical simulations in dense systems.

4.4 Widom insertion

Widom insertion®# is a common method used to calculate the chemical potential of
the species in a system. Using the definition of the chemical potential in eq. 2.7, the
chemical potential can, for large IV, be approximated as:

QN+1>
Qn )’

,U'%FN-H —FN = —kT1H<
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Often one is interested in the excess chemical potential 1’ which, using the above
equation, can be written as:

@ =—kTIn <e_ﬂ(U(rN+l)_U(rN)>>.

Thus, in order to measure y/, non-perturbing “ghost” particles are inserted into the
simulation box at some interval. The energy difference U (r'¥ 1) — U (r) is calcu-
lated for each insertion, and the average is then calculated. Non-perturbing in this
context means that the inserted particles does not perturb the system in any way, and
are removed before the next iteration.

4.5 Correlation

In an MCMC simulation, collected samples are correlated to some extent (depending
on how often they are collected). This means that the value of an observable depends
on the value at the previous step(s). It can be useful to check how far back this cor-
relation persists, in order to determine a suitable sampling frequency. This can be
achieved by plotting the auto-correlation, A, of an observable as a function of the lag
time k. The energy autocorrelation, for instance, can be written as:

Ay (k) = /0 T UWUE+ Ryt

where t is the time or MCMC step and U is the potential energy.
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Chapter s

Density Functional Theory

Despite the various approximations and optimizations, molecular simulation can be
very time consuming, and some properties can be very hard to calculate. A good
solution to these problems would be if we had a cheap way to acquire a function for
the free energy, since we could derive all other properties from it. There are different
methods for acquiring the free energy in MCMC and MD. Many of these methods
require a lot of sampling, which is computationally costly for strongly coupled systems,
such as ionic solutions with high ionic strength.

The free energy is obviously dependent on the particle positions, or the particle density.
Since we know that the free energy is minimized at equilibrium, one can minimize the
free energy as a function of the particle density, which then would yield the particle
distribution. This is the idea of classical Density Functional Theory (cDFT)?3°. This
method is not very unlike its quantum counterpart, quantum DFT where the energy is
minimized as a function of the electron density. The goal of cDFT is thus to construct
a functional of the form:

Fn(r)] = Un(r)] = TS [n(r)]

which then can be minimized with respect to n(r), in order to find the equilibrium
density distribution. The following paragraphs is hence devoted to finding expressions
for U [n(r)] and S [n(r)]. Here we will start by introducing the theory on a mean
field level, later extending to approximately include spatial correlations. Let us start
by finding a function for the entropy, as a function of the particle density. In an ideal
gas the particles do not interact with each other, hence U(r") = 0. The Helmholtz

VN

free energy is then
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If we assume that our system is large, we can use the Stirling approximation, to ap-
proximate the factorial in the denominator. The entropy is given as the derivative of
the free energy with respect to temperature, we thus get:

oF N

were we can identify N/V as the density n. In a non-homogeneous system the density
is a function of r, such that [;, n(r)dr = N, and the above equation becomes

Sn(r)] = k/ n(r) (In(n(r)) +1)dr
\%4

This form of the entropy does not include any excluded volume effects. These can be

incorporated by assuming that each particle occupies a volume V),. The free available

volume is then Ve = V' — NV, the entropy then directly follows. We now have

a function of the entropy, and what remains is to construct a function for the energy.

Before we begin, we note that in the upcoming sections we will encounter the pair
energy as a function of the displacement between two particles, U(r). This energy
should be distinguished from the total energy as a function of density, which is de-
noted U [n(r)].

A simple approximation for the total energy, is given by the pure mean field energy of
ahomogeneous particle density n;, interacting with another particle density n;. If the
interaction potential, U (r), is radially symmetric, the angular parts can be integrated
out, which then yields an energy per particle belonging to %, Up,

1 o
Uy = 47Tnj§ / U(r)ridr (s.1)
0

where 7 is the radial component. An improvement would be to introduce in-homogeneous
densities n(r), instead of assuming a uniform density. The mean field energy per par-

ticle is then )

Uy(r) = 2/‘/nj(r')U(r —r')dr’

The total energy, U [n(r)], is hence:

Uln(r)] = /Vni(r)Up(r)dr = ;/V/Vni(r)nj(r’)U(r —1r')drdr’  (5.2)
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We now have both components for the free energy functional

Fln(r)] = Uln(r)] = T'S[n(r)] =

1 / / /
5 /v /V n;(r)n;(x")U(r —x')drdr'+ (5.3a)
/ n(r)Ueye(r)dr (5.3b)
\%4
kT/Vn(r) In (n(r) — 1)dr+ (5.3¢)

where the term in eq. 5.3b takes care of any external potential present in the system.

Here we are mostly interested in systems where an ionic fluid is confined by two
charged, and infinitely large planar surfaces. Such a system is in principle one di-
mensional, if we assume that the particle distributions are uniform in the directions
parallel to the surfaces. Using cylindrical coordinates, one can integrate the Coulomb
potential in the directions parallel to the surfaces®®, which yields an interaction energy

1
Ulzij) = F(T)qz‘qjm — 7] (5.4)
inserting this expression into eq. 5.2 yields the total interaction energy

Uln(z)] = 247T6 / / ni(2)nj(2")qiqjlz — 2'|dzd2’

where L is the distance between the surfaces. In this case Uey¢(r) is the interaction of

an ion with the two charged surfaces. Assuming that the surfaces have charges charges
o, and oy, the interaction energy is given by

Uemt(z) = - (UZZ+GT(L_'Z))

_ 7
2¢(T)
where if the surface are equally charged, 0; = 0, = o the above equation reduces to

q

ex =————+0lL .
U, t(Z) 2€(T)G (5 5)
Combining equations 5.4 and s.5, the one dimensional free energy now reads
L
F(n(z)) = k:T/ n(z)In (n(2) — 1)dz— (5.60)
1 qiq; / / nz n 2; —z \dzdz (5.6b)
2 Ame(T i
q O‘L/ n(z)dz (5.6¢)
2¢(T)  Jo
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In our work we are mostly interested in simulating grand canonical systems, which
means that the free energy that we want to minimize is the grand potential. The grand
potential is related to Helmholtz free energy through a Legendre transform3:

L
& [n(r)] = F [n(r)] - p /0 n(2)dz 65.7)

Minimizing the grand potential leads to an expression for the density that can be
solved self-consistently:

)= (5 (e [ @00 )) 69

meaning that first a rough guess is used for the density. Inserting this guess into
the equation above yields a better approximation, which then again can be inserted
into the expression. In practice inserting the full new density into eq. 5.8 renders the
solution unstable. Therefore one uses so called Picard iterations where in each iteration
the new density inserted into 5.8 is a linear combination of the two previous densities.

NoTtE §.I. CALCULATING THE DONNAN POTENTIAL

Consider a system consisting of a salt, confined by two infinitely extending,
planar surfaces. The surfaces are equally charged and lie in the (z,y) plane at
z = 0and z = L. Lets assume that the system initially is not electroneutral
but has some net charge A. We thus have that

/L (nt(2) +n (2))dz+20 = A
0

We now wish to calculate a suitable change in the Donna potential, Ay p that
neutralizes our system. We thus want to calculate a Avp such that

L
/ (eq+A¢Dn+(z) + el A¥Dp - (z)) dz+20=0
0

where g1 and ¢ are the valencies of the cations and anions respectively. If
we now define e2¥P = gz, fOL nt(z)dz = NT and likewise for the density
of the anions, we get a polynomial expression

2 NT+ 2T N~ 420 =0 (5.9)

This equation can be solved either analytical, in cases where it is possible, or
by a suitable numerical algorithm. Finally the ion densities are updated, as
well as the Donnan potential vvp = AvYp + ¢¥p
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In the case of charged particles, one has to ensure that the system is electroneutral,
which can be done through an applied Donnan potential, 1 p. Physically, the Donnan
potential represents the potential difference that develops between the system and
a bulk solution. The Donnan potential then works to push ions in or out of the
system until it is electroneutral. The Donnan potential can therefore be seen as an
external potential, which motivates defining, U,y = U/, + qetbp, where U, is
any other external potential. In practice this amounts to solving for a AYp upon
each iteration, which yields an electroneutral system, see note s.1. To summarize, a

schematic algorithm for performing cDFT calculations of an jonic fluid could be
1. Construct the first initial guesses of ng (2) and ng (2)
2. Calculate new non-electroneutral densities nj (2) and ny (z) from ng (z) and
ng (2), using eq. 5.8
3. Calculate a A p, which gives electroneutral nj (2) and ny (2)
4. Usealinear combination to construct the new densities, i.enj (z) = Anj (2)'+
ng (2), where A typically is around 0.01 to 0.1. The same is done for ny (2).

5. If the difference between nf (2) and ng (2) is smaller than some threshold, the
calculation is converged, else set nd (2) = nj (2), ny (2) = nj (2) and go to
step 2.
Correlations

The mean field theory overestimates the repulsion between like charged particles, be-
cause of the assumption that the particle density is uniform. It is not obvious that this
is the case for oppositely charged particles. Since such an interaction includes both an
attractive and a repulsive regime. An integral over the attractive and repulsive regimes
in such an interaction could then approximately equal zero. Which would in turn
mean that the mean field approximation would yield relatively accurate results.

To correct for the overestimation between like charged particles, one could include
a suitable approximation of the radial distribution function. One could also simply
decrease the interaction of two particles on short distances. This can be done by in-
troducing a so called Coulomb hole, in the expression for the energy, U(7;). In paper
I1I we use a Coulomb hole to approximate the correlations between similarly charged
particles in the presence of charged surfaces.. The interactions between oppositely
charged particles are treated using the mean field approximation. The specific form
of the Coulomb hole is given by3”:

1 )
45~ f .

Ulrij) = q;]ér ifr > R (5.10)
(ﬁ)r:Rc (r—R:) +Ul(rij) otherwise
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This form has the advantage that it is continuous at the cutoff distance. So by for
instance approximating the Coulomb potential as a linear function at short range,
one would create a Coulomb hole. We used this form of a Coulomb hole in paper

II1.

Another way to account for correlations would be to approximate the excluded volume
of each particle. The simplest form of an excluded volume would be the Heaviside
step function. This would correspond to a depleted region around each particle and
would be equivalent to hard sphere particles. The Heaviside step function is defined
as

o) = {Oifr<0

1 otherwise

In practice this is done by modifying eq. 5.3a

1/ / n(r)© <\r —r'| - 1d> n(xYU(|r — r'|)drdr’ (5.11)

where d is typically chosen to be the diameter of a particle.
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Chapter 6

Behaviours of Tons in Slab Systems

Charged particles are ubiquitous in our everyday life. They exist in the appliances
and electronics we use and the food that we eat, not to mention in the majority of
the waters. Charged particles are also vital in biological systems, for instance charged
proteins in our cells or salts in our blood. Therefore it is of fundamental importance
that we understand how charged particles behave in different environments. Here we
mainly focus on how charged particles interact with charged surfaces. This approach
has the benefit of representing two different types of systems. The first is simply ions
interacting with a charged surface. The second is ions interacting with a charged
macroparticle. Consider a small ion interacting with a much larger macroparticle. In
the eyes of the ion, the macroparticle will behave like a flat surface.

The ions close to a charged surface will form a so-called electrical double layer (EDL).

@
®o®
Stern layer ‘

Diffuse layer
0 %0°
®

Figure 6.1: lllustration of a negatively charged surface (thick black vertical line), along with the Stern and
diffuse layers (orange boxes) formed by the ions.
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The ions with an opposite charge to that of the surface (the counter-ions) attract to
the surface, and the innermost layer of counter-ions is called the Stern layer. These
ions are normally only laterally mobile. The counter-ions which has adsorbed on
the surface in turn attracts co-ions (i.e ions with a charge of the same sign as the
surface charge), which together with other counter-ions form an outer layer, called
the diffuse layer. This EDL model is depicted in fig. 6.1. The structure and formation
of the EDL is interesting from a number of perspectives. It has implications for how
charged macroparticles interact in a solution containing ions and is also important in
electric double layer capacitor systems.

Many different methods have been developed to model EDLs and the interaction
between charged surfaces in an ionic solution. The simplest is perhaps the Poisson-
Boltzmann theory (PB)38. In PB theory, the charge density of the Poisson equation,
3.1, is assumed to follow the Boltzmann probability distribution, derived in an earlier
chapter. In one dimension this amounts to

p(z) = coe Paev(?) (6.1

where ge1p(z) is the potential energy of an ion placed at z in the potential field ¢(z),
and ¢y is the bulk density. 1)(z) can be composed of an external potential, as well as
the interaction between particles. In PB theory, this inter-particle interaction is taken
into account in a mean field manner, meaning that a given particle interacts with the
average distribution of the other particles. This yields a particle density

o) = coexp <—B(Um(Z) + [nu( - z’)dz')) (62)

As a side note this density is equal to the density of the cDFT formulation, neglect-
ing correlations. Typically this method works quite well for describing ions in the
diffuse layer in systems where the ion valency is not too high. Often the Stern layer is
much more dense than the diffuse layer, and therefore ion correlations become more
important.

Another popular method to calculate the interaction between surfaces or macromolecules
in ionic solutions is DLVO3°. DLVO considers two main contributions to the inter-
actions between the surfaces. An attractive van der Waals component acting on short
range, and an electrostatic component which models the repulsion generated when
two electrical double layers overlap. The electrostatic term is in the form of a screened
Coulomb potential. Hence direct ion-ion correlations in the intervening solution are
ignored.

As we will see in the upcoming sections, including ion correlations changes the be-
haviour of the system. At strong electrostatic coupling, it is no longer a feasible ap-
proximation to ignore ion correlations.
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6.1 Modelling ions in computer simulations

Charged particles come in many different shapes and forms, from small single atom
ionic species, to large macromolecules. In our research, we have used crude models,
which capture the essentials of what an ion is. We approximate the ions as both soft
and hard spheres (papers III, IV and V respectively), containing a single point charge.
In doing so we thus reduce the number of internal degrees of freedom of the particles.
This method of reducing the internal degrees of freedom is called coarse graining.
Our particle models might seem as a gross simplification, but it turns out that such a
simple model is able to capture some of the more complex behaviour of real jons.

There are, however, limits to where such models are applicable and obviously, such an
ion model will not behave exactly as a real ion. There are two main reasons for these
simplifications. The first, and obvious one, is computational. Since we are removing
the internal degrees of freedom of the ions, we are reducing the complexity of the
problem. Hence, our simulations take less time to perform. The second reason, is
that there is scientific value in reducing the number of parameters. If we only have a
few parameters, it is much easier to elucidate the main mechanisms behind complex
behaviour.

Our ion models are all variants of the Restricted Primitive Model (RPM). In the
RPM, the anion and cation are spherical particles with central point charges. Both
ions have a common radius, as well as the same valency. One problem with the RPM
model is the symmetry, both internally and between the ions. With our models we
try to capture some of the asymmetric elements of real ions, to enable more complex
behaviour.

6.2 Ion correlations

Introducing correlations between ions enables more complex behaviour, especially
in slit geometries. One interesting phenomena is correlation induced attraction of
equally charged surfaces at short range %41, This attraction only appears if correlations
between counter-ions are taken into account, and the electrostatic coupling is strong
enough. It is hence dependent on the surface charge and ionic strength. In such
systems, PB predicts a strong repulsion in these circumstances. In fig. 6.2 the free
energy of interaction between two equally charged surfaces if plotted as a function of
separation h. The free energies have been calculated using cDFT with and without
correlations between counter-ions, as explained in an earlier chapter. From this figure
it is clear that the short range attraction only appears as correlation between counter
ions are present.

Another correlation induced phenomenon is overcharging 2. Overcharging, or charge
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Figure 6.2: Free energy of interaction between two equally charged surfaces, plotted against the separation
distance h. The salt concentration is in both cases 1mM while the surface charge is 0.01e/A on both
surfaces.

reversal as it is also called, is where the counter-ions overcompensate the surface charge.
Thereby effectively reversing the sign of the potential some distance away from the
surface. This effect is of course dependent on the electrostatic coupling and ionic
strength. Overcharging in turn generates secondary effects such as long range attrac-
tion or repulsion between like-charged, or neutral, surfaces. These effects are hence
very important for the stability of colloidal dispersions. Papers III and IV is a two
part study of overcharging and related effects.

In paper III, "Overcharging and Free Energy Barriers for Equally Charged Surfaces
Immersed in Salt Solutions”, we study this overcharging behaviour using a combina-
tion of cDFT and MC. Specifically our system consists of multivalent counter-ions
and monovalent co-ions, confined by charged, non-conducting surfaces. In previous
studies, significant attention has been devoted to the short range correlation attrac-
tion between charged surfaces. In this paper we instead focus on the interactions at
long range. In particular we show that our investigated systems display overcharging,
and that it is due to the correlations between the counter-ions.

We investigate the concentration dependence of this overcharging, and find that at
high salt concentration the surfaces overcharge, effectively reversing the sign of the
inherent surface charge. At these conditions there is a significant free energy barrier
between the surfaces. At low salt concentration on the other hand the surfaces are un-
dercharged, again resulting in a free energy barrier. At intermediate concentrations
we find a critical concentration where the surfaces are perfectly neutralized. In this
regime the free energy barrier disappears, which would destabilize a colloid suspen-
sion. As such, in this paper, we demonstrate a clear relationship between the apparent
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surface charge and the interaction free energy between two charged non-conducting
surfaces.

This study is continued in paper IV, "Interactions between conducting surfaces in salt
solutions”, where we investigate a similar system but with conducting surfaces. Here
we use the method developed in paper II, to study overcharging and surface neutral-
ization when conducting surfaces are present. Due to the complexity of handling
conducting surfaces, such systems have not been studied as much as non-conducting
surfaces. In this study again find a non-monotonic dependence of the surface charge
on the salt concentration. However, in contrast to non-conducting surfaces, we find
a large repulsion between non-charged surfaces. This repulsion is generated by the ad-
sorption of multivalent counter-ions on the surfaces. In addition, we show a clear rela-
tionship between the apparent surface charge and the interaction free energy barriers
between the surfaces. We also explicitly show the existence of a critical concentration
where the surfaces are neutralized, above which the surface have a charge and below
which the charge is inversed. We also show that that the particle surface interaction
can be succesfully modelled by a simple interaction potential, which drastically de-
creases the computational complexity. Our simple interaction potential is linear and
has the form:

~Au® (1-542) ifd <2< ¥

pU = (6.3)

0, otherwise

6.3 Image charge effects

It turns out that when conducting surfaces are present, even more behaviours emerge.
In particular one can find an anomalous charging regime, where the magnitude of
the overcharging is increasing with decreasing surface charge density. In this section
we will simulate a system which displays this behaviour, using the method from pa-
per II. Our system consists a simple 2 : 1 salt, where the cation and anion share a
common radius of 2A. The ions are confined by two infinitely conducting electrodes,
placed at z = —100Aand z = 100A. For comparison, the same setup but with non-
conducting electrodes is also simulated. There is one important difference between
these two simulations. While the simulations with non-conducting surfaces are per-
formed in a constant charge density ensemble, here called o-control, the simulations
with conducting surfaces are performed in an constant potential ensemble, 1-control.
Consequently, in the following section, the reported surface charge densities, o, in the
case of conducting surfaces are averages, while when using non-conducting surfaces
o is an input parameter. In both cases, the chemical potential is adjusted so that the

bulk density is about 100mM.

In fig. 6.3 we have plotted the apparent surface charge against the z-coordinate of
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the system with non-conducting surfaces. Here it is clear that the strength of the
overcharge (the maximum of the apparent surface charge) is increased as the surface
charge is increased.
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Figure 6.3: Apparent surface charge for a 2 : 1 salt simulated using o-control at different surface charges.
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Figure 6.4: Apparent surface charge for a 2 : 1 salt simulated using v-control, at different applied bias poten-
tials.

When the surfaces are made conducting, the charges are further attracted towards the
discontinuity by their image charge. The increased attraction results in a considerable
increase in the overcharge, as expected. A not so expected behaviour is that of the
overcharge as the surface charge is varied. In fig. 6.4 the results for a 2:1 salt near
conducting surfaces is shown. Here one can observe that there is a regime where the
strength of the overcharge increases as the surface charge becomes more positive, the
opposite of what one would expect. One might be tempted to attribute this behaviour
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to saturation of counter-ions at the surfaces. This is however not the case as evident
by fig. 6.5. In this figure, a snapshot from a simulation of the ions close to one of the
surfaces is shown, and it is clear that the surface is not saturated. Further evidence for
this is shown in fig. 6.6, where the ion density profiles are plotted. From this figure

it is clear that the counter-ion concentration at the surface increases, as the surface
charge increases.

Figure 6.5: Snapshots of ions with a z-coordinate z < 5A. Purple spheres are cations and green spheres are
anions

0.008
0.00015
0.006
i
= 0
ﬂ -99 -80 -70
2 0.004
Q —0.0109e/A2(-) —— —0.0056e/A%(+)
—— —0.0109e/A%(+) —0.0019e/A%(-)
—0.0081e/A2(~) —— —0.0019¢/A%(+)
0.002
—— —0.0081e/A%(+) —0.0006e/A%(—)
Mo.oossemz(—) —— —0.0006e/A%(+)
e —
0.000 J
—-98.0 —-97.5 -97.0 —-96.5 -96.0 —-95.5 -95.0
z(A)

Figure 6.6: lon densities for the 2:1 salt. A magnified version of the anion density profile is shown in the insets.

Two clear peaks in the density of the co-ions can be seen in fig. 6.6. The magnitude
of the inner peak is increased as the surface charge is increased, while the outer peak
displays the opposite trend. From this we can identify two different charging regimes.

67



Ata strong negative surface charge, —0.0109¢/ Ato —0.0056¢ / A, the divalent cations
are strongly attracted to the surface due to the inherent (negative) surface charge and
also due to the image charges. This leads to an overcompensation of the surface charge.
Thus attracting co-ions which reside in the second particle layer resulting in a single
peak of the co-ion density, which can be seen in the inset of fig. 6.6. This peak
increases in magnitude as o is made more negative, to compensate for the increase in
counter-ions in the Stern layer. In this regime the overcharging increases when |o|
increases (becomes more negative). As the surface charge is increased (made more
positive), the co-ions will attract closer to the surface as the attraction to the image
charge overcomes the repulsion from the surface charge and loss of entropy. This
results in the formation of a second peak in the density of the co-ions, which lie in the
Stern layer. This peak increases with increasing (more positive) surface charge. Hence
the innermost layer now consists of both counter-ions and co-ions. As the surface
charge continues to increase, the concentration of co-ions increases in the Stern-layer.
In this regime the overcharging increases with decreasing |o|.

0.006
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Figure 6.7: Apparent surface charge for a 2 : 1 salt simulated using v-control, at different applied bias poten-
tials. Cation radius is set to » = 0.5A

This interesting behaviour persists if the radius of the cations is made smaller. In figs.
6.7 and 6.8 we have plotted results for an RPM-like salt, where the radius of the cation
is decreased. In fig. 6.7 the radius is set to 0.5A while in 6.8 it is 1A. In both cases the
radius of the anions is 24, as in the previous case. This ion model displays the same
trends, and approximately the same magnitude of the overcharge.
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Figure 6.8: Apparent surface charge for a 2 : 1 salt simulated using v-control, at different applied bias poten-
tials. Cation radius is set to » = 1A

6.4 Capacitors

Capacitors are one of the fundamental building blocks in electronic circuits, and are
used in a variety of different contexts, such as alternating current to direct current
conversion, timing circuits and signal filtering. A capacitor is similar to a battery in
that it stores electrical energy. Typically a capacitor consists of a dielectric material
sandwiched between two electrodes. If a voltage (electric potential difference) is ap-
plied across the capacitor, the dipoles in the dielectric aligns to oppose the resulting
electric field, which is the storage mechanism in a conventional capacitor.

In contrast to a battery a capacitor has much lower energy density but higher power
density, meaning they can not store as much energy, but can charge and discharge
much faster. This property makes capacitors ideal in situations where a quick burst
of energy is needed as for instance in camera flashes and braking systems. In addition
there are no chemical reactions in the charging and discharging process of a capacitor,
which increases the maximum number of recharge cycles to way beyond that of bat-
teries. The integral capacitance, ¢, is a measure of the storage capacity of a capacitor.

The integral capacitance is
o

where o is the surface charge on the electrodes resulting from a surface potential (volt-
age) ¢s. In an ideal, so called parallel-plate capacitor, the capacitance is directly pro-

portional to the surface area of the electrodes and inversely proportional to the distance
between them:

C

eoerA

c=—0 (6.4)
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Figure 6.9: Crude sketch of a porous electrode. Blue and red spheres represent anions and cations respectively.

where A is the area of the electrode and d is the distance between the electrodes.

In electric double layer super capacitors (EDLCs) the dielectric is replaced by an elec-
trolyte, where room temperature ionic liquids is a promising choice>#4. When a
potential is applied across an EDLC, cations accumulate on the anode and anions
on the cathode. EDLCs store energy in the formed double layers at the electrode-
ion interface. The charges in the electrolyte are able to approach very closely to the
electrode surface which greatly increase the capacitance (see eq. 6.4). Also, since the
capacitance is proportional to the surface area of the electrodes, EDLCs are often
constructed using porous electrodes, see fig. 6.9.

An EDLC pore (inside a porous electrode) can in simulations be approximated by two
flat surfaces confining an ionic liquid. The electrostatic interactions between ions and
electrodes, in such a system, can be calculated using methods explained earlier (see
section 3.3). A direct summation of all the ions and image charges is, however, very
inefficient. There has been a lot of research on how to efficiently calculate the image
charge interactions#>:46:47-48:49,

In comparison with the integral capacitance, the differential capacitance, cp, is more
informative about the charging process. The differential capacitance is defined as:

en(s) = 270, (65

dos
where o is the surface charge density. The differential capacitance is an important
property since the surface charge in many EDLC systems is not a linear function of
the applied voltage>°. To calculate the differential capacitance in a simulation setting,
several simulations are performed of the same system but at different applied potential.
In each simulation the average surface charge is calculated and ¢p(¢s) can then be

plotted.

In paper V, ”Simulations of phase transitions and capacitance, of simple ionic fluids
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in porous electrodes.”, we study a simple RPM salt confined between conducting and
non-conducting surfaces. With such a setup, we try to mimic a pore in a porous elec-
trode, in an EDLC. Our aim is to systematically investigate under which conditions
our system displays a negative capacitance, and the general behaviour at near-critical
conditions.

Using Grand Canonical simulations, to properly account for the equilibrium between
our system and a bulk solution, we study a dilute ionic fluid, which may undergo
capillary condensation, if the surface charge density is high enough. We simulate this
system in both a constant potential and a constant surface charge density ensemble.
In the constant charge simulations we use explicit charges on the surfaces. The surface
charges are placed in a 2D lattice on each surface at the start of the simulation. They
are immobile and does not move during the simulation. We replicate the system in
space using Ewald summation with vacuum slabs. The constant potential simulations
are performed in the same manner, but instead of ion pairs, individual ions are inserted
each GC step. This way the surface charge fluctuates while the surface charge stays
constant.

We find that in a constant potential ensemble, the capacitance is positive for all inves-
tigated cases. At some critical applied potential the surface charge density displays a
sudden jump, coinciding with the phase transition to the denser phase. Using non-
conducting surface we further find that such a system may display a hysteresis, which
means that at a given applied potential, the system may be in either two states. Hence
when using non-conducting surfaces, the meta stable states seem to be stabilized, as
compared to the case of conducting surfaces.

In a constant surface charge density ensemble, we find regions where the potential
decreases with increasing surface charge, indicating a negative capacitance.

We also investigate how these behaviours are affected by pore width. By running
simulations at different separations, we find that both the jump and the negative
capacitance is lost, if the pore is made narrow. At larger pore widths, the constant
potential simulations display a first order phase transition, causing a sudden jump in
the surface charge density. For the constant surface charge density simulaitons we
observe a metastable region between the two states.
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