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Biological Background

We begin with a brief overview of the concepts of molecular biology that
are relevant to this dissertation followed by an introduction to tech-
nologies for generating genome-wide data. For further knowledge of
molecular biology, the reader can refer to the book [1].

Basic Concepts of Molecular Biology

DNA, gene, mRNA, and protein

Cells are basic units of life. All living organisms are built from cells. At
the center of the cell, there is the cell nucleus which contains the genetic
code, DNA (Deoxyribonucleic acid), of the cell. The DNA molecule
consists of two long sequences of nucleotides, where each nucleotide is
composed of one sugar molecule, one phosphate molecule, and one of
the four bases: adenine (A), cytosine (C), guanine (G), and thymine
(T). These bases can form complementary base pairs in the form of A-T
and C-G, joined by hydrogen bonds. The two sequences of the DNA
are joined by such base pairs and twisted into a double helix (Figure 1).
DNA is organized into separate chromosomes in the cell nucleus, and
the whole genetic information encoded in the DNA for an organism is
termed genome.

A gene is a region on the DNA sequence that codes for proteins. In
the human genome, there are over 30,000 genes, and there are even
more proteins than genes, because each gene can code for multiple pro-
teins. Genes encode proteins through two main steps. Firstly, the DNA
sequence of a gene is transcribed into another molecule called mRNA
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Figure 1: An illustration of the DNA molecule. Image taken from

http://web.jjay.cuny.edu/˜acarpi/NSC/12-dna.htm

(Ribonucleic acid) by base pairing, thereby the mRNA contains a nu-
cleotide sequence complementary to its template DNA sequence. This
process is termed transcription. When a gene is transcribed into mRNA,
the gene is said to be expressed. The expression level of this gene refers
to its mRNA abundance. Secondly, the mRNA leaves the cell nucleus
and travels to the cellular processing units called ribosomes, where it
serves as template for protein synthesis. Every three consecutive nu-
cleotides of the mRNA sequence are converted into one amino acid, and
the amino acids are linked together by peptide bonds into a poly-peptide
chain. This process is termed translation. Finally, the chain folds into a
protein with specific three dimensional structure (see Figure 2).

Gene expression regulation

The are often many types of cells in an organism. In the human body,
there are brain cells, lung cells, liver cells, skin cells, and so on. Al-
though all the cells contain the same DNA, they appear different and
have different functions. This is because different genes are expressed in
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Figure 2: The central dogma of molecular biology. Genetic information encoded

in the DNA is passed to RNA through transcription and then to proteins through

translation.

different types of cells, which leads to production of different proteins.

Gene expression is largely controlled by regulatory proteins called tran-

scription factors. To control gene expression, transcription factors bind
to specific short sequences on the DNA in the region upstream of the
transcription start site of the gene. This binding recruits or impedes
proteins necessary for transcription to enhance (up-regulate) or inhibit
(down-regulate) the transcription of this gene. Such an upstream region
of a gene is called a promoter region.

In the cell, one gene can be regulated by many transcription factors. One
transcription factor can bind to many short sequences in the promoter
regions of different genes to regulate their transcription. This forms a
complex regulatory network. Similar binding sequences of a transcrip-
tion factor are represented by a common pattern called the motif of
the transcription factor. One transcription factor could have multiple
motifs.
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Figure 3: A schematic representation of the signal transduction within a eukary-

otic cell. Once the signaling molecule binds to the receptor, the signal is passed

through a number of steps into the cell nucleus, where gene expression is affected.

Signaling and metabolic pathways

Cells have the ability to communicate with their internal and external
environment, and adjust their functions in response to environmental
changes. This ability is achieved through a number of signaling pathways
that receive and process signals.

A signaling pathway consists of a set of molecules, such as ligands, recep-
tors, enzymes, and transcription factors. Ligands are signaling molecules
from the external or internal environment, and receptors are proteins lo-
cated on the cell membrane or within the cell that bind to signaling
molecules. Once ligands bind to receptors, the signal is propagated
within the cell through a cascade of biochemical interactions between
receptors and transcription factors (Figure 3). As a result, various tran-
scription factors are activated or inactivated, which in turn alters the
expression levels of many genes and eventually alters the activities of
biological processes.

Signal transduction is at the core of many biological processes. For
example, cell growth, proliferation, differentiation, and apoptosis are
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all controlled by signaling pathways. The cell can respond to multiple
signals at a time, and the cell’s response to one specific signal could
activate multiple signaling pathways. Various signaling pathways within
the cell form a signaling network.

In addition to signaling pathways, metabolic pathways are also impor-
tant for the cell’s survival. A metabolic pathway is a series of enzyme-
catalyzed biochemical reactions that produce energy storage molecules
and biomolecules for the cell. In a metabolic pathway, the product of one
reaction is the substrate of the next reaction. Metabolic pathways can
share common substrates and enzymes forming a metabolic network.

Gene and Protein Expression Profiling

Most processes within the cell are carried out by proteins and their
interactions with other molecules. For example, proteins function as
enzymes that catalyze biochemical reactions, receptors that receive and
propagate signals, and transcription factors that regulate gene expres-
sion. Each process is governed by a specific set of active proteins, and
the activities of proteins thereby provide important information about
the ongoing processes in the cell. In many cases, protein activities are
correlated with their abundances. Since proteins are produced from
the mRNAs of genes, protein abundances are often correlated with the
mRNA abundances of the genes encoding the proteins. Therefore, gene
expression studies have the potential to reveal the active processes in
the cell.

Cells affected by diseases often have a set of genes differentially expressed
with respect to normal cells, because different cellular processes typically
are activated as a response to genetic or cellular changes. Such differen-
tially expressed genes may provide insight into the causes of the diseases
or be potential drug targets. However, there are hundreds to thousands
of genes in an living organism. It is impossible to know which genes to be
examined without detailed prior knowledge. This had been a bottleneck
for biomedical research using traditional biotechnologies, which can only
measure the expression levels of one or few genes at a time. Fortunately,
the invention of DNA microarray technology about a decade ago has
made genome-wide gene expression studies possible [2].
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Microarray-based gene expression profiling

DNA microarrays can measure expression levels of thousands of genes
simultaneously on a single slide. Each slide contains thousands of spa-
tially separated spots on the surface. And each spot contains multiple
copies of a short DNA sequence that represents one gene. To measure
gene expression levels, the mRNA contents of cells are extracted from
samples and reversely transcribed into complimentary DNAs (cDNA).
The cDNAs are labeled with a fluorescent dye that absorbs and emits
light at specific wavelengths. Then, the cDNAs are hybridized on the
array where they bind to their complementary DNA sequences in the
spots. Finally, the array is scanned to obtain the emitted fluorescent in-
tensities for all spots. The intensity of each spot indicates the expression
level of the gene it represents.

There are many types of DNA microarrays, which differ in array fabri-
cation or choice of dyes [3]. In a two-color DNA microarray [4], which
is relevant for this dissertation, the mRNA abundances of genes in two
samples are compared directly on the same array by labeling them with
different fluorescent dyes. After hybridization, the array is scanned at
two different wavelengths, which generates two intensities for each spot
corresponding to the expression level of this gene in the two samples. I
will refer to the two intensities as red and green in the later context. A
schematic overview of cDNA microarray technology is shown in Figure 4.

The mRNA abundance is, however, not always correlated with protein
abundance. For example, the rates of mRNA decay, translation, and
protein decay can influence this correlation. In addition, protein activ-
ity is not always correlated with its abundance either. Proteins could
be activated or inactivated by post-translational modifications. Hence,
large-scale data at protein level, termed proteomic data, are useful. Tech-
nologies like protein microarray [6], two dimensional poly-acrylamide gel
electrophoresis (2D-PAGE) [7,8], and mass spectrometry [9] are used to
generate data for proteomic research. These technologies are still imma-
ture and under development though, due to complex features of proteins.
So far, the most widely applied approach for proteomic research has been
protein expression analysis.
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Figure 4: A schematic overview of the two-color DNA microarray technology.

Two samples are labeled with a red and a green fluorescent dye respectively and

are hybridized on the same array. After hybridization, the array is scanned to

obtain two images. The two images are often merged into one image where

spots are colored on a scale from red to yellow to green corresponding to the

relative gene expression in the two samples. Reprinted with permission from

Johan Vallon-Christersson [5].

2D gel-based protein expression profiling

One common way of measuring the abundances of thousands of proteins
simultaneously is by means of 2D-PAGE. In 2D gels, proteins extracted
from a sample are first separated by isoelectric point using an immo-
bilized pH gradient. Next, proteins are separated by molecular weight,
because proteins with different weights move at different speed on the
gel. The resulting gel is then stained to visualize the protein spots.
Finally, the gel is scanned to obtain the intensities of all spots.

Traditional 2D-PAGE can only deal with one sample on each gel. More
recently, differential in-gel electrophoresis (DIGE) [10] was introduced,



8 Biological Background

Protein extract 1
Labeled

Protein extract 2
Labeled

Mix labeled
extracts

Excitation
wavelength 1

Excitation
wavelength 2

Separate by 2D PAGE

Overlay images Data quantitation

Analysis of difference

Figure 5: Outline of a DIGE experiment to compare protein abundances in two

samples. Protein extractions of two samples are labeled with two different dyes

and are resolved on the same gel. Finally, two scanned images are obtained, and

the intensities of the spots indicate the abundances of proteins.

which can measure protein abundances of up to three samples on the
same gel. In DIGE gels, protein extractions from samples are labeled
with different fluorescent dyes and are mixed prior to 2D gel electrophore-
sis. Finally, the abundances of proteins in these samples are determined
by the scanned intensities for the spots. An overview of the DIGE tech-
nology is shown in Figure 5.



Genomic and Proteomic Data

Analysis

Recent advances in technologies have made a vast amount of data at the
genome scale available, including complete genome sequences, genome-
wide protein-DNA binding sites, and genome-wide gene and protein ex-
pression profiles under various conditions. Such data provide important
genetic and cellular information. However, transforming these immense
amounts of data into biological information is challenging, especially
when there are measurement uncertainties in the data. A successful
transformation relies on theoretically-founded methods with deep un-
derstanding of the biology. In this chapter, I will discuss some of the
challenges: normalization of expression data, identification of differential
expression, unsupervised classification, and investigation of functional
networks. These are addressed in the appended papers.

Normalization of Expression Data

Expression data obtained by using microarrays are noisy. Differences in
the RNA abundances between samples are often mixed with nonbiolog-
ical variations. Dye bias is the most common nonbiological variation,
caused by different labeling or scanning properties of dyes. In particu-
lar, the RNA may bind to one dye better than the other, or the same
RNA sample labeled with different dyes could have different measured
intensities. Except for the dye bias, differences between arrays would
exist when the hybridization efficiency on each array is different. Dif-
ferences between spots would exist when there is different amount of
cDNAs printed on each array for the same gene. And different print-
tips for different locations on the array would introduce variation as
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well. Before applying microarray data for biological studies, the data
must be normalized to remove nonbiological variations arising from the
technology.

There are many statistical approaches to normalizing two-color DNA
microarray data. For instance, normalization can be done separately
for each array, using only the red (R) and green (G) intensities for this
array, or it can be done using multiple arrays. Overall, many of these
approaches aim to have all normalized log2(R/G) ratios on each array
centered around zero. The underlying assumption is that the numbers
of up- or down-regulated genes in each sample are roughly the same,
when a random set of genes are printed on each array. Consequently,
the mean log2(R/G) for each array should be close to zero.

Global normalization is the simplest and most widely used approach,
where all the green intensities are multiplied with a constant factor such
that the red and green intensities have equal mean or median. This can
be done using all the genes on each array, or a selected set of genes, e.g.
housekeeping genes [11] or externally spiked genes [12] whose expression
levels are constant across multiple conditions. However, dye effects are
often dependent on spot intensity and location on the array, so intensity
dependent and print-tip based local normalization methods seem more
appropriate in this regard [13,14].

Each of the approaches above is likely to remove only certain non-
biological variations in the data. A more general approach for normal-
izing DNA microarray data is to use the analysis of variance (ANOVA)
models, including fixed-effects ANOVA and mixed-model ANOVA [15–
17]. The ANOVA models can be designed to account for variations aris-
ing from many sources including arrays, dyes, spots, and their confound-
ing effects, by considering each of them as an unknown parameter of the
model. The normalized expression levels of each gene can be obtained
by fitting the model using data from all arrays.

In paper I, we introduced a linear mixed model that is able to correct
for protein-specific dye effects in DIGE data. DIGE data for protein
expression studies have similar properties as microarray data and must
be normalized as well.
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Identification of Differential Expression

A common task of microarray and DIGE data analysis is to find the
genes or proteins differentially expressed between biological groups, for
example, disease versus healthy, different cell types, and different condi-
tions. Genes or proteins with expression patterns associated with these
groups could provide insight into the causes of diseases, be molecular
markers differentiating between cell types, and reflect the active cellular
processes under different conditions.

The simplest way of finding differentially expressed genes is the fold
change, which considers all genes, whose log ratios between two groups
are larger than an arbitrary threshold as differentially expressed [18,19].
The statistical significance of a gene being differentially expressed is,
however, unknown for the fold change. More commonly, differentially
expressed genes are identified by performing a statistical test gene-by-
gene.

For comparison between two groups, the most widely used tests are t-
test [20, 21], modified t-tests (significance analysis of microarrays [22];
the regularized t-test [23]), paired t-test [24], Pearson correlation [25],
Wilcoxon rank-sum test [26], and permutation test. Each of these tests
emphasizes different aspects of the data. The difference between the
t-test and its modifications lies in the calculation of the variance of each
gene, so that a gene with too small fold change but small variance by
chance will not be selected, or vice versa. In the paired t-test, array
and spot effects are taken into account, where, for each gene printed on
the array, the expression levels from two groups are compared directly
and used as a pair in the t-test. The Pearson correlation measures the
association between the expression of a gene with the group label, rather
than tests the difference in the mean expression of two groups. Com-
pared with all types of t-tests and Pearson correlation, the Wilcoxon
rank-sum test and permutation tests do not require normal distribution
of data. As microarray data are noisy and often do not form a normal
distribution, the nonparametric tests are appealing in this context. The
permutation test is also very flexible. It can be used to test the signifi-
cance of a score constructed in any way, including the scores used in the
different tests.
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To identify genes differentially expressed between multiple groups, the
ANOVA F test [27] and Kruskal-Wallis test [28] are widely used. In
addition, the likelihood ratio test and Wald test are also common, when
using models for expression analysis. These two tests can be applied to
comparison between any number of biological groups.

Each of these tests has its merits. None of them is superior to others
for all microarray data sets. The particular test used depends on the
data set under study. Statistical methods for identifying differentially
expressed proteins are similar.

In paper I, we applied the likelihood ratio test and the Wald test to
identify differentially expressed proteins. We employed the Wilcoxon
rank-sum test and the Kruskal-Wallis test, in paper II, to find differen-
tially expressed genes.

Unsupervised Classification

Unsupervised classification refers to revealing unknown biological classes
in a collection of samples. In medicine, an important usage of unsu-
pervised classification is to find new subtypes of cancers. Cancer is a
complex genetic disease having many subtypes. Classification of cancer
is primarily based on the histopathological appearance of the tumor.
However, tumors with similar histologic appearance could have devel-
oped from different genetic aberrations and have different responses to
therapy. For example, different subtypes of breast tumors have different
responses to chemotherapy. Cancer treatment based on conventional di-
agnosis is thus difficult. A major challenge of cancer treatment has been
to find specific therapies to pathogenetically distinct tumor types.

Interestingly, recent studies have found that some morphologically sim-
ilar tumors can be molecularly divided into subclasses with distinct
pathogenese. For example, microarray-based gene expression studies
have identified subtypes of cutaneous melanoma [29] and four subtypes
of breast tumors [30]. These and similar findings have triggered the en-
thusiasm for unsupervised classification of samples using gene expression
data. Many methods have been developed for this purpose.
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The most widely used method for unsupervised classification is perhaps
agglomerative hierarchical clustering [31, 32]. This method begins by
considering each sample as a cluster, and then merges the two closest
clusters based on a similarity metric. This process of merging is repeated
until there is a single cluster left. Finally, the samples are organized into
a tree structure. Classes can be obtained by cutting the tree at a particu-
lar height. The k-means method is another commonly used method [33].
Starting from k randomly or carefully chosen data points, called ’cen-
troids’, the k-means method iteratively assigns samples to the nearest
centroid’s cluster and adjusts the centroids to represent the center of the
new clusters, optimizing some objective function. Eventually, samples
are divided into k clusters. In addition to these two methods, there are
a few model-based methods that assume data are sampled from a model
distribution, for example a mixture of Gaussian distributions, and seek
for parameters that best fit the data [34].

In paper II, we took a strategy different from those described above by
using information about differentially expressed genes. Samples from
known different classes usually have an overabundance of genes differ-
entially expressed, compared with random classes. These differentially
expressed genes are often up-regulated in one class and down-regulated
in the other, which forms nice expression patterns characterizing the dis-
tinction between compared biological groups. These expression patterns
are intrinsic features of the data. Even if we did not know the class
labels of the samples, there would still exist such expression patterns.
Therefore, in unsupervised classification, we are likely to find the bio-
logically relevant classes in the data, if we could find a partition that
exhibits such expression patterns. We applied simulated annealing to
find the best partitions.

Investigation of Functional Networks

Finding genes or proteins differentially expressed between biological groups
and identifying unknown groups using expression profiles are approaches
capable of characterizing biological groups and diagnosing diseases. Fur-
thermore, mapping the differentially expressed genes and proteins to
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biological categories, including chromosome location and biological pro-
cesses, help account for the observed differences between biological groups.

It is important to realize that, in living cells, many genes and proteins
function coordinately for complex functions. It is crucial to understand
the relationships between them. This understanding has significant im-
pact on drug discovery, because complex diseases often depend on altered
interactions between a few genes, rather than changes in a single gene.
For example, p53 is a tumor suppressor responsible for DNA repair. It
inhibits cell growth in response to DNA damage. But p53 function is
controlled by the Mdm2 protein interacting with it. Mdm2 enhances
degradation of p53 [35]. If a person has lung cancer, and also has an
abnormal overabundance of MDM2 protein in his lung cells, this person
can not be cured by simply increasing p53 transcription.

Ideally, we would like to learn the relationships of all genes and proteins
in an organism, but biological complexity increases exponentially with
the number of genes and the interactions between them. Such large-
scale studies are only feasible for simple organisms. In yeast, studies
have shown that it is possible to infer molecular pathways [36] and regu-
latory networks [24,37,38] from gene expression data, using probabilistic
models, bayesian or boolean networks. For higher organisms, efforts have
been focusing on learning the structure and dynamics of small systems,
such as the cell cycle [39] and specific signaling pathways [40]. Such small
systems can be studied by perturbation (for example, knocking out inter-
esting genes or overexpressing specific proteins) followed by monitoring
the response of each element over time. Finally, the relationships of ele-
ments of the system and its response to individual perturbations can be
described by mathematical models.

Alternatively, unlike the studies above attempting to learn the detailed
relationships, some other studies aim to uncover the coordinate behav-
ior of many genes and proteins in terms of known systems, including
metabolic pathways [41, 42] and signaling pathways [43]. Since each
pathway usually involves many genes and proteins, and different path-
ways often share common genes, the set of all known pathways form a
complex network of genes and proteins. Active and inactive pathways
provide insight into the regularities in the observed gene expression pro-
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files with respect to the topology of this gene network.

In addition, gene expression data alone might not be enough for learning
functional relationships. More recently, two studies have tried to identify
regulatory programs in large-scale transcriptional signatures in cancer,
by integrating microarray data with regulatory motifs [44] and DNA
copy number [45].

In paper IV, we presented a strategy to study the regulatory mechanisms
responsible for the observed gene expression profiles in the context of
signaling pathways. We integrated pathway information with regulatory
motif data for pathway analysis.

Summary of the Papers

Paper I

In Paper I, we study the dye effects in protein expression data gener-
ated by DIGE experiments, where abundances of thousands of proteins
in three samples are measured simultaneously on one gel. Each of the
samples is labeled with a distinct fluorescent dye. Prior to compari-
son of protein abundances, differences between dye intensities must be
removed. This is usually done by a global normalization within each
dye channel. However, we find that dye effects are in fact protein-
specific and cannot be removed by any global normalization methods.
To address this problem, we introduce an algorithm, a linear mixed
model, which incorporates protein-specific dye effects and is applicable
to most experimental designs. The algorithm is implemented in a JAVA
program called DIGEanalyzer that automatically corrects for protein-
specific dye effects and identifies differentially expressed proteins be-
tween any linear combination of groups. DIGEanalyzer is available at
http://bioinfo.thep.lu.se/digeanalyzer.html.

Conclusion: Dye effects in DIGE data are protein-specific which cannot
be corrected for by global normalization methods. We present a program
that corrects for protein-specific dye effects and identifies differentially
expressed proteins.
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Paper II

In Paper II, we present a method to find biologically relevant groups
in a set of samples using microarray data. Unlike many methods that
cluster experiments based on their distances in gene expression space,
we look for partitions of samples that have an overabundance of differ-
entially expressed genes, starting from a predefined number of groups
and randomly labeled samples. We evaluate this method using two pub-
lished microarray data sets: small round blue cell tumors (SRBCT) and
breast tumors. The SRBCT data set contains samples belonging to four
different SRBCT types and the breast tumors data set contains non-
BRCA1/2 familial breast tumors. When applying the method on these
data sets, interestingly, we find that the SRBCT data set can be sep-
arated perfectly into two groups: tumors and cell lines or into three
groups reflecting print batches of microarrays. Our method is able to
detect such groups and remove genes discriminating them from analysis,
which enables us to find the biologically relevant groups in these data
with high success rates. This method is available as a PERL program
at http://bioinfo.thep.lu.se/classdiscoverer.

Conclusion: Unknown biological groups in a set of samples could be
identified by looking for partitions of samples with an overabundance of
differentially expressed genes.

Paper III

In paper III, we study the TGF-β signaling system. Transforming growth
factor-β1 (TGF-β) regulates cellular functions, such as proliferation, dif-
ferentiation, and apoptosis through the TGF-β signaling pathway. It is
well-known that the TGF-β signal is transduced through receptor com-
plexes composed of TGF-β receptor type II (TβRII) and activin-like
kinase receptor-5 (Alk5) on the cell surface. In this study, we screen for
alternative receptors for TGF-β in murine embryonic fibroblast (MEF)
cells using gene expression profiling and functional assays. We also iden-
tify gene targets of TGF-β signaling in MEF cells.

Conclusion: TGF-β signals exclusively through receptor complexes in-
volving Alk5 in MEF cells.
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Paper IV

In Paper IV, we present a method to study the regulatory mechanisms
underlying diseases and other biological observations in terms of signal-
ing pathways. We look for active and inactive signaling pathways in
the gene expression signatures characteristic of these observations. The
method takes a gene signature as input and outputs the signaling path-
ways whose activation or inactivation might have resulted in the observed
expression patterns of these genes. In the analysis, all pathways in the
TRANSPATH database are extracted and each is characterized by a set
of transcription factors mediating it. The activity of each pathway in the
gene signature is inferred based on the enrichment of the downstream
target genes of the pathway. Since there are few known target genes,
we search for putative target genes by looking for the binding motifs of
the transcription factors in the promoter regions of genes. This method
is different from many methods in two aspects: First, the activities of
pathways are determined by the enrichment of target genes of pathways
rather than that of molecular components of pathways. Second, puta-
tive target genes that contain the motifs of the transcription factors are
used, instead of the few known target genes. We evaluate this method
using six human and mouse gene expression signatures.

Conclusion: Regulatory motif analysis of gene expression signatures re-
veals signaling pathway activation or inactivation.
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