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Introduction

“It’s like driving a car at night. You never
see further than your headlights, but you can
make the whole trip that way.”

FEdgar Lawrence Doctorow

Work is important. When we meet strangers, our first question is “What do
you do?” We are not asking about what they do for leisure as much as we
ask what they do as work. When defining and summarizing a person in a few
words, only one question may be more important: “Is that a miss or a bloke?”
Of course, this latter question is not very often asked verbally. Most people
would probably be offended if you questioned their sex, and in most cases a
quick look is enough to reveal the answer anyway. Telling the profession of a
person from a quick look is trickier though (unless she wears a uniform). And
asking directly may be risky, because what you think is a good ice-breaker may
just be an opening down to an icy-cold hole of water. Either your new friend
starts whining about some kind of luxury problem such as colleagues stealing
her ketchup or colleagues refusing to brew her daily cup of coffee. Or, if she
is not that obsessed with work, she probably categorizes you as shallow, since
she expects a socially skilled person to come up with something slightly more
sophisticated than this cliché question.

When people ask me what I do for a living, I have three standard answers.
Sometimes, I briefly answer: “Well, I'm a PhD student... at the Department
of Theoretical Physics”. Nineteen of twenty people respond with horror in
their eyes and direct the conversation to something completely different. The
twentieth person explains that physics is so amazingly interesting and starts to
ask questions like “If the universe is finite, what is then outside?”, “Is the cat
dead or alive?”, “How come, throwing tepid water on the aggregate, makes the
sauna warmer?”, or “Is one kilogram of ice more than one kilogram of water?”.
The twentieth person is so enthusiastic, it would be heart-breaking to explain
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I’'m not doing any physics, so I rather try to answer the questions asked.

My second answer is more of an attempt to explain what I do, rather than
describing where my computer and desk happen to be located. However, I find
it difficult to boil down years of work to one sentence and when I try, it often
results in something pseudo-understandable. A sentence containing words like
cancer and statistics. “Cancer and statistics, aha”, they think and take the
opportunity to ask whether sun bathing really is dangerous.

When 1 feel really enthusiastic about work, I try to be frank and tell them
“Ok, to describe decently what I do, I will need 10 minutes. Have you got 10
minutes?” People must be very stressed because they never have 10 minutes.

Have you got 10 minutes? Anyway, this introduction describes what I have
been up to the last years. The introduction starts with some basic molecular
biology, then follows a discussion on hypothesis testing and machine learning.
The introduction ends with a summary of the five papers this thesis is based
upon.

Molecular biology

“Je n’avais pas besoin de cette hypothese-1a.”
Pierre-Simon Laplace

The atom of life is the cell. All living organisms, from the grass in the garden to
the birds in the sky, are built from cells. Each cell consists of various molecules
including water, nucleic acids, and proteins. Proteins are important because
they catalyze chemical reactions as well as being the building blocks in different
compartments of the cell. Nucleic acids are important because they carry and
mediate the genetic inheritance.

The genetic inheritance is encoded in deoxyribonucleic acids (DNA). Chem-
ically the DNA molecule is a helix composed of two strands that are long
chains of nucleotides with the bases adenine (A), cytosine (C), guanine (G),
and thymine (T). These bases form complementary base pairs between A and
T and between C and G, respectively, with one of the bases in each strand
(Figure 1). Thus, any DNA molecule can be specified by a sequence of letters
from a four-letter alphabet [1].

A key feature of DNA is the ability to replicate. Replication starts with the
two strands being separated. Each of the two single strands works as template
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Figure 1: The DNA molecule consists of two helical strands connected via base
pairs A-T and C-G, respectively. Reproduced with permission (Jane Wang) (©2006
bioteach.ubc.ca.

for the formation of a new DNA molecule. Nucleotides are added sequentially
in such a way that base pairs form and thus the new DNA molecule is a perfect
copy of the original. In this way the genetic information is transfered from
mother cells to daughter cells, and from parents to their children. In higher
organisms, the DNA is found in the nucleus of the cell, wherein it is packed
in units called chromosomes and twisted around positively charged proteins
called histones [2]. The DNA contains thousands of genes, specific sequences
of nucleotides, serving as recipes for how to build a protein. The recipe is
transmitted via an intermediate molecule, messenger ribonucleic acid (mRNA),
very similar to the DNA molecule.

Although each cell in an organism has the same DNA, different types of cells
do not look the same. Different patterns of genes being active lead to different
proteins being produced giving each cell its specific qualities and functions.
For example, the insulin gene is active in the pancreas and insulin is produced,
whereas in all other organs the insulin gene is silenced. When a gene is active,
i.e., it is expressed, it works as a template for creating an mRNA strand in
the same manner as it works as template for a new DNA strand during repli-
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Figure 2: When a gene is expressed, DNA in the nucleus is transcribed into mRNA,
which is transfered to ribosomes in the cytoplasm where it is translated into proteins.
Reproduced with permission (Jane Wang) (©2006 bioteach.ubc.ca

cation [3]. This mRNA strand is moved from the nucleus to the ribosomes
in the cellular cytoplasm where it serves as a template in protein production
(Figure 2).

The ribosome is a neat little complex built from proteins and another kind of
RNA called ribosomal RNA. Yet another kind of RNA, transfer RNA (tRNA),
carry in amino acids. These complexes of tRNA and amino acids bind to
the mRNA, and thereby the amino acids are attached to each other building
a protein chain. As any combination of three tRNA molecules binds to a
specific amino acid, the sequence of the mRNA uniquely defines what protein
is produced.

The proteins are important because they are the doers in the cell. They have
various roles including being building blocks in the cell; receptors in the cell
membrane transmitting signals from outside to the inside of the cell; enzymes
catalyzing chemical reactions in the cell; as well as being regulatory proteins.
Regulatory proteins bind to the DNA and block a gene [4]. Alternatively, the
protein might activate a gene, in other words, it triggers the gene to produce
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mRNA [5-7]. This mRNA in turn serves as template for a protein, which may
be an activator or blocker of another gene and so forth and so on. Activating one
gene may result in a cascade of activated and deactivated genes, respectively,
and one could picture these cascades as genes interacting in a large network.

Cancer

“I don’t give a damn what the people say
I’'m gonna do it, gonna do it my way
Gonna let it all out an do my thing
Boom boom boom an a bang bang bang”
Feliz Buzton & Simon Ratcliffe

We are all made of cells - billions of cells, and every single cell is programmed
to perform its specific functions. The cells are social in the sense that each cell
knows its role and they work together in a complex network that is regulated
by a sophisticated signaling system.

However, sometimes a cell breaks out from this system and behaves as bad as
a rebellious teenager. A cancer cell is created that ignores the signals from
the regulation system and starts to focus on one thing only, replication. It
multiplies itself frenetically and as its daughter cells inherit the behavior, after
a while there is a significant group of rebellious cells. Just like the teenager,
after some time this group of cells gets the idea that home is sweet but not
sweet enough. They start moving and spreading into other tissues. Their
behavior is now more martial and asocial as they ignore the fact that they
damage the tissue they infiltrate and invade. Eventually, they break into the
transport system of the body and use it to migrate and colonize other parts
of the body. Secondary tumors, metastases, arise, and if these tumors are not
killed or removed, the normal cells will be so seriously damaged that the body
cannot survive.

Taking the perspective of the cancer cells for a few moments, there are a number
of obstacles we have to overcome. The whole idea of being a cancer cell is to
multiply ourselves unimpededly, but the body has various defense mechanisms
to prevent us from doing so [8]. The body sends signals telling us to kick back
and relax a bit [9,10]. We have no interest in calming down, so we need to
be insensitive to these signals. If things get serious and we are considered a
threat to the system, we will be told to go into apoptosis [11]. Apoptosis is
just a paraphrase for suicide, which of course is unacceptable from our point of
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view. We must avoid apoptosis, and can do that both by silencing those genes
starting apoptosis, as well as activating anti-apoptosis genes. Our behavior is
programmed in our genes, so we change our behavior by mutating important
genes. Normally, cells have a system that checks for mutations and repair the
DNA [12]. These guys are keeping back our purposes so we need to obstruct
their work. Moreover, constant reproduction costs energy, so we need to start
programmes to mobilize cell resources. All together, it is a long list of things
we need to accomplish and will likely need multiple hits on the genome [13].
However, if we are supported by a couple of inherited gene defects, we are more
likely to reach the ultimate goal of freedom and independence.

In breast cancer, for example, it is well-known that carrying a mutation in
BRCA1 [14] is a high risk factor. More than half of women carrying a BRCA 1
mutation will get cancer, whereas women without the mutation have a life time
risk of 10% [15].

Genomic and proteomic expression data

“I like thinking big. If you're going to be thinking
anything, you might as well think big.”
Donald Trump

Until about ten years ago, studies of gene expression were limited to measur-
ing gene expression levels of one or a couple of genes. With the microarray
technology, a new tool was brought to the table allowing studies of thousands
of genes in parallel. The underlying idea is that because mRNA molecules are
instable and decay, the concentration of a specific mRNA reflects the activity of
the corresponding gene. In order to measure the concentrations, the mRNA is
extracted from the sample. By employing an enzyme, reverse transcriptase, the
mRNA is transcribed into complementary DNA (cDNA). The cDNA is labeled
by attaching a fluorescent molecule that absorbs and emits light at a specific
wavelength. The ¢cDNA is applied on the microarray, a small glass slide, on
which thousands of spots have been printed. Each spot contains single stranded
DNA matching a specific gene, and because of the base-pairing mechanism the
applied sample cDNA binds to a specific spot containing the matching DNA.
The microarray is then exposed to a laser beam that excites the fluorescent
molecules, and by detecting and quantifying the emitted intensity from a spot,
the amount of bound ¢cDNA can be measured. Thereby, the gene expression
can be determined for thousands of genes in parallel.
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Peptide mass fingerprinting, first suggested by Yates and collaborators [16], is
a strategy to identify many proteins in parallel. In short, trypsin is applied
to the protein of interest, which results in the protein being cleaved at specific
sites. The resulting mixture of peptides, protein fragments, comprise a unique
identifier of the protein. The masses of the peptides are measured using a
mass spectrometer that relies on the simple fact that heavy molecules accel-
erate slower than light molecules when exposed to an electrical field. In the
spectrometer the peptide mixture of interest is mixed with a chemical called
matrix and applied onto a metal plate. The matrix and peptide crystallize
together on the metal plate and the metal plate is inserted into a vacuum
chamber. The peptides are shot at by laser beams that promote the transition
from solid phase to gas phase, after which the peptides accelerate in the applied
electrical field and are detected in an ion detector, generating a histogram of
time of flights. As heavier molecules accelerate slower, the histogram of time
of flights can be translated into a histogram of masses. This histogram corre-
sponds to a fingerprint of the protein and allows for identification of the protein
by comparing it to theoretical fingerprints [17]. These theoretical fingerprints
have been calculated by cleaving known proteins with trypsin theoretically and
calculating the composition of peptide masses, the mass fingerprint.

Hypothesis testing

“Information is not knowledge. Knowledge is
not wisdom. Wisdom is not truth. Truth is
not beauty. Beauty is not love. Love is not

music and music is the best.”
Frank Zappa

Having measured the expression of all these genes and proteins is good, only
a good start though, because without an interpretation of the data we have
learnt nothing, and learning is what we are striving for, isn’t it?

A standard question in microarray analysis is which genes are differentially
expressed in two groups of biological samples. The groups may, for example,
be samples from one kind of tumor versus samples from another kind, samples
subjected to one kind of treatment versus samples subjected to another kind of
treatment, or samples with a mutation in a specific gene versus samples without
the mutation. This type of question is as old as statistics, and consequently
the statistical literature is full of suggestions on how to measure the difference
between two groups; for a review see [18]. Here, I will not go into details about
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Figure 3: Tllustration of the four possible results of a hypothesis test. A type II error
occurs when the data is not strong enough to reject the false null hypothesis. A type
I error occurs when a true null hypothesis is rejected. The significance level sets the
balance between rejected and accepted and thereby the balance between type I and
type II errors.

different methods, but sketch the basic concepts in hypothesis testing such as
null hypothesis, alternative hypothesis, significance level, and power.

To describe these concepts I will use a very well-known example of hypothesis
testing that is illustrated in tv series such as “LA Law”, “Boston Legal”, or
“Perry Mason”. Perry Mason, the hero of my childhood, is a lawyer who in
every episode convinces the jury to “find the defendant not guilty”, and the
hypothesis testing I am talking about is of course the procedure of a trial.
In a trial, the null hypothesis simply is the assumption that the defendant is
innocent. In a scientific investigation, the null hypothesis often indicates that
the treatment did not do anything or that the property of interest does not
make a difference. The alternative hypothesis is the opposite, the hypothesis
the researcher (believe in and) want to evaluate. In a trial the alternative
hypothesis is the reason the defendant was arrested in the first place.

An important observation is that it takes infinite amount of evidence to prove a
hypothesis, whereas it only takes one good piece of evidence to disprove it. For
that reason it is every prosecutor’s strategy to disprove the null hypothesis.
If the null hypothesis is rejected, logically the jury will accept the alterna-
tive hypothesis and send the criminal to jail. The same strategy is employed
in statistics. Given the evidence, the statistician calculates the probability the
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evidence would appear this strong, if the null hypothesis were true. If this prob-
ability, the p-value, is small, the null hypothesis is rejected and consequently
the alternative hypothesis is accepted. A standard threshold for rejection is a
p-value cutoff of 0.05, which means that on average 5% of true null hypotheses
are rejected. This is not perfect but means, what in statistics is called, type
I errors occur. Alas, the same type of error occurs in the court. Although
the null hypothesis shall only be rejected when evidence is convincing beyond
reasonable doubt, it sometimes happen that innocent people are sent to jail.
Most people find this error upsetting, but very few people would accept the
only possible solution to avoid this travesty on justice. Because the solution
is to re-write the law such that people are only sent to jail when we can be
absolutely sure they are guilty, and being that strict means we cannot judge
anyone, in other words, also criminals are set free. In statistics, accepting a
false null hypothesis is referred to as a type II error. In a scientific investiga-
tion the balance between type I errors and type II errors may be set by the
investigator, by choosing a significance level, i.e., the threshold for the p-value.
A smaller threshold leads by definition to fewer type I errors, and thus more
type II errors. However, there are ways to decrease the number of type II error
without changing the significance level. A trivial way is to collect more evi-
dence in the first place and make the decision easier for the jury. Another way
is to choose a jury that can interpret the data in a more clever and powerful
way. This is applied in some legal systems, in which the jury is replaced by
educated judges who know the law. In statistical testing this corresponds to
choosing the most powerful test. A test is considered more powerful if it has
less expected type II errors.

Another situation in which you apply hypothesis testing is when you play a
good game of poker. Imagine you notice the new fellow around the table gets
good cards a bit too often. Then you would ask yourself what the chances are
he could get those cards by chance. If that chance is too small, it cannot only
be good luck and the night might end with a smoking gun.

Do think twice though, before you shoot your new friend. The chance of getting
the best hand, a royal straight flush, in one round may be small. However, if
the night is getting late and you guys have played many rounds, the chance
that one of your friends would get a royal in one of the rounds is not that
small anymore. The same thing occurs in the microarray analysis. The chance
that a specific gene gets a p-value less than say 0.01 is by definition only 1%.
However, when we have measured 50,000 genes, the chance that at least one
p-value is less than 0.01 is virtually 100%.

More exact, by pure chance we expect 1% of the genes to be discriminatory
and have a p-value less than 0.01. Thus, a natural question is whether there
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are more discriminatory genes than we would expect by pure chance. If there
is a great overabundance of discriminatory genes, then the expression profiles
of the two groups can be claimed to be different.

A more sophisticated way to investigate the difference between two groups is to
employ machine learning methods. In machine learning an optimal decision rule
is found by learning from data. This approach gives a more holistic picture than
looking at a gene at a time. Methods such as nearest centroid classifiers [19],
support vector machines [20], and artificial neural networks [21] have been
found to be useful. When the machine manages to distinguish the groups
this means there is a difference between the groups. If the machine fails, we
can conclude the possible difference is more subtle. Another application for
machine learning in this area is to really use the created predictors in clinical
settings as a diagnostic tool.

Support vector machines

”Endast idioten har ett fritt val. Den
intelligenta véljer det basta.”
Willy Kyrklund

In machine learning a machine is trained to distinguish training samples ac-
cording to sample labels. A decision rule is found that may be applied on test
samples to evaluate the machine, or the rule may be used to predict a sample
with unknown sample label. The support vector machine (SVM) is a popu-
lar machine learning method. The embryo of what would become SVM was
brought to the world in 1963 in the form of Vapnik’s maximal margin classi-
fier [22]. The method was later on improved by the usage of kernels [23], which
made it applicable also on non-linear problems; and with the introduction of
soft-margins [24] the method became famous under the name support vector
machines.

The SVM method is built on kernel theory [25,26], Kuhn-Tucker optimization
theory [27], and Vapnik Chervonenkis risk minimization theory [28], which may
frighten even the most enthusiastic newbie. However, as with cars, we do not
need to understand the components to motivate the usage. Here, I will describe
the basic properties of the SVM; for a more thorough introduction see [29].

For a linear classification method finding a classification rule is to find a hy-
perplane separating the two groups of training samples. In the first version of
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SVM, the maximal margin classifier, the classification rule is found by consider-
ing two things. First, a condition for the classification rule is that the training
samples are correctly classified, in other words, the found hyperplane does sepa-
rate the two group of training samples perfectly. Second, among all hyperplanes
fulfilling this condition, the hyperplane that maximizes the margin is chosen.
The margin is the distance from the hyperplane to the closest training sample,
and thus maximizing the margin is to maximize the width of the sample free
strait around the decision hyperplane (Figure 4). Mathematically, this situa-
tion is equivalent to my favorite problem in mechanics. Imagine two parallel
boards attached with numerous springs pushing the boards apart. However,
when the boards reach certain points (the data points) forces are triggered in
these points perpendicular to the board such that the boards never cross the
points. For the static situation there are two obvious questions: 1) How are the
boards positioned? 2) How large are the forces? The first question is obviously
equivalent to finding the hyperplane in the maximal margin classifier, because
in the static solution the potential energy from the springs is minimized which
means the distance between the boards is maximized. Interestingly, the second
question is often easier to answer. In fact, a good strategy to find the answer to
question 1 is to first find the forces in question 2, and plug these forces into the
equations of equilibrium (zero net force and zero torque). This strategy is ex-
actly the strategy employed when training a support vector machine. Rather
than maximizing the margin with the constraints described above, an easier
dual problem is solved. The dual problem consists of minimizing a function of
Lagrange multipliers that have been introduced to take care of the constraints.
Lagrange multipliers appearing here having the same role as the forces should
not be a surprise to the reader familiar with analytical mechanics, because in
analytical mechanics forces often appear in shape of Lagrange multipliers [30],
and all this comes together beautifully.

The maximal margin classifier in its simplicity has shown to work very well on
high dimensional data such as genomic [20] and proteomic data [31]. There are
a couple of reasons why it works so well. First, many problems in genomics and
proteomics appear to be virtually linear and thus a linear method is appropri-
ate. Second, a weakness of the maximal margin classifier is that it collapses
if the training samples are not linearly separable. Remember, a condition for
the decision rule is that the decision hyperplane perfectly separates the two
groups of training samples. This weakness is not a problem in high dimen-
sional data, because the high dimensionality makes data most likely linearly
separable. Third, as a general rule in machine learning, when working with
high dimensional data the number of dimensions needs to be reduced. Oth-
erwise, the problem is under-determined and the resulting classifiers tend to
have poor performance on test samples. The maximal margin, as any variant
of SVM, has a built-in dimensional reduction. By construction the number of
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Figure 4: A dataset containing 11 data points with 2 inputs each. The two groups
denoted + and x, respectively, are separated by a decision hyperplane (solid line).
The margin is defined by the two dotted lines parallel to the decision hyperplane.
The SVM is designed to maximize the margin without having data points between
the dotted lines.

degrees of freedom equals the number of samples. More exactly, the normal to
the decision hyperplane is a linear combination of the training points, which
implies that we are working in the sub-space defined by the training points.
In other words, the SVM decision rule can be pictured as projecting the data
point down to the the normal of the decision hyperplane. The fact that this
normal always belong to the sub-space defined by the training data points al-
lows splitting this projection in two parts. First the data point is projected
down to this sub-space, followed by a projection from the sub-space to the nor-
mal. Hence, directions orthogonal to the sub-space are ignored by the decision
rule, which makes sense because the training points have no variation in these
directions and thus contain no information. The maximal margin is very neat
in its simplicity and lack of user parameters. However, SVMs would not have
reach its status of fame and popularity in the machine learning community
unless two tricks were added allowing non-linear classification and mislabeled
data.

In 1992 Boser and colleagues [23] suggested a way to create non-linear SVMs
by applying the kernel trick [32]. A key observation is that the maximal margin
classifier does not depend on the data explicitly but only on the scalar products,
a:?xj, between data points. Boser and colleagues replaced the linear scalar
product with a non-linear kernel function that corresponds to the scalar product
in a feature space K(z;,z;) = ¢(z;)T¢(x;). Thus the resulting algorithm
finds the optimal hyperplane in feature space ¢ and this hyperplane may then
correspond to a non-linear surface in the original space of data points. The
beautiful thing is that the transformation into feature space is never needed
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explicitely. Especially, as the feature space often is very high dimensional and
thus it would have been computational expensive to do the transformation.

One well-known example is the Gaussian kernel K (z;, z;) = exp(m;#) that
corresponds to an infinite dimensional feature space. In general, when choosing
a kernel it is not necessary to know what transformation it corresponds to, but
one should know there exists a transformation, because otherwise the kernel

matrix may become non-definite which implies training problems.

The next ingredient added to the SVM method was the soft-margin, which
was added to avoid over-training. In machine learning over-training means
the machine has adapted too detailed features from the training data leading
to poor predictive power when applied on an unknown sample. The machine
then has large generalization error because the rules it has learnt cannot be
generalized to other samples outside the training set. One reason SVMs may
get over-trained is the constraint in the maximal margin training that the
classification on the training set must be perfect. It is easy to see that this might
cause problems, particularly when working with noisy data and an outlier may
ruin the predictive power completely. As the name suggests, soft-margins solve
this by softening the constraints a bit and allowing violations. During training
these violations are minimized at the same time as the margin is maximized
and the balance between these two competing objectives is defined by the user.

Going back to the comparison to the boards connected with springs, we need
to replace the boards because nothing could pass those boards. The situa-
tion in soft-margin SVMs resembles more of having a thick mattress that we
squeeze in between the training points. We want the mattress to be as thick
as possible, and the fact that it is indeed a soft mattress allows training points
to compress the mattress pointwise. However, this compression costs and the
thicker mattress we use, the more points we need to compress. In the end, the
balance between having a thicker mattress and having less compressed points is
determined by how soft the mattress is. A user defined parameter determines
in the same manner, in an SVM, the balance between misclassifications and
stiffness. A too stiff SVM may lead to poor generalization performance. On
the other hand, making the SVM too soft means misclassifications are ignored
completely during training and the SVM learns nothing. Machine learning has
turned into machine ignorance.
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Aims of the study

With the great progress of technology in genomics and proteomics generating an
exponentially increasing amount of data, computational and statistical methods
have become essential for accurate biological conclusions. As well as biology
obviously benefits from development of computational methods, development
of sensible methods is driven by relevant applications. This study therefore
aimed at both developing algorithms, and applying computational methods to
address biological questions. More specifically, the aims were

e to improve data preprocessing methods such as normalization and filter-
ing.

e to develop and apply methods to explore large amounts of data and find
relations, for example, between genes or between proteins.

e to utilize machine learning approaches for understanding biological sys-
tems.

Results and discussion

Paper I

In paper I, we present an algorithm for missing value imputation. Gene ex-
pression microarrays typically generate data of varying reliability; for instance,
low-intensity data tend to be noise dominated. Therefore, microarray data
analysis is commonly preceded by filtering according to some quality control
criteria chosen by the investigator. Filtering leads to incomplete data that
must be handled carefully because ignoring missing values might lead to a bias
in analysis and inaccurate conclusions.

Many approaches have been suggested in the statistical literature [33]. Roughly
speaking, methods appear in three groups. First, naive methods such as aver-
age imputation, in which each missing value is replaced by the average of the
feature. A close relative is data deletion, in which calculations of statistics are
based on available data, e.g., calculation of correlation is based on available
pairwise data. Second, maximum likelihood methods have been suggested, in
which a model of the data is built followed by estimating the missing values in
a maximum likelihood fashion. Third, regression methods in which a regres-
sion model is established for each feature predicting the missing value from the
available features. In hot deck, a close relative to regression methods, a missing
value in one feature is replaced by the corresponding value in the most similar
feature.



Results and discussion 15

The main idea in our approach is to, rather than to start from filtered data,
embed the quality control estimate into the imputation method. We do not
dichotomize values into missing or non-missing, but rather assign a continuous
quality weight between zero and unity to each data value.

In other words, we suggest usage of a continuous quality weight instead of
binary weights, and to examine the effects of this change, we extended two
widely used methods to handle continuous weights. The two new methods:
weighted average based on average imputation, and WeNNI based on a popular
hot deck method named KNNimpute [34], were evaluated on replicate datasets.
We found that the weighted approach improved the accuracy of imputation of
data.

Conclusion: Including spot quality weights in estimation of missing values
improves estimations.

Paper 11

In paper II, we compare predictive power for ensembles of classifiers and for
single classifiers in context of genomic and proteomic data. When designing
a single classifier the aim and ambition is to select the optimal design and
parameter setting for the classifier. All data is included in the training to
construct the best possible classifier. In an ensemble several classifiers are
constructed, and although none has as good predictive power as the optimal
single classifier, the hope is that the average vote is more accurate than any
single classifier. The underlying idea is that the classifiers in the ensemble
compensate for each other’s errors and agree on the correct decision. Clearly,
to achieve this effect, there must be a diversity on opinion among classifiers.
An ensemble of identical classifiers is effectively a single classifier. However,
diversity should not be exaggerated. Including classifiers with poor predictive
power, in its extreme random classifiers, would make the majority decision less
distinct and deteriorate the predictive power of the ensemble.

In paper II, we evaluate three strategies to construct an ensemble of diverse high
quality classifiers. We perform the evaluation parallel on four different datasets
using two types of classifiers, nearest centroid classifiers and support vector
machines. We use a cross-validation schema, whereby each classifier is trained
on two thirds of training data and an ensemble of 30 classifiers is constructed.
We examine the effect of feature selection, in other words, whether predictive
power can be improved by using only features that individually discriminate
the sample labels. We try feature selection in two ways. Either each classifier
performs its own feature selection or the whole training dataset is utilized to
select one consensus set of features. The former implies larger diversity as each
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classifier selects different sets of features, whereas the latter possibly leads to a
set of features more relevant for the task. We evaluated each strategy on four
separate test datasets.

Conclusion: Ensembles of classifiers generally perform better compared to a
single classifier. Feature selection improves the accuracy of prediction in most
cases.

Paper 111

In paper I, we use microarrays and SVMs to investigate gene expression pat-
terns in 61 melanoma cell cultures. In many melanoma tumors, the MAPK
pathway is activated by a mutation in genes BRAF or NRAS. However, these
mutations rarely occur together, suggesting that a NRAS/BRAF double muta-
tion would not yield any advantage for a tumor. For that reason we considered
the possibility that NRAS and BRAF mutation, respectively, result in similar
gene expression patterns. However, when we trained SVMs to discriminate
samples carrying a mutation in either BRAF or NRAS from samples being
wild type for both BRAF and NRAS, we got test performance comparable to
random classifiers. Hence, we could not find a common expression pattern for
the MAPK pathway.

On the other hand, when we took the three groups of samples, BRAF mutants,
NRAS mutants, and double wild type samples, and trained SVMs to distin-
guish BRAF mutants from the other two groups, we got test performance
significantly better than random classifiers. Moreover, when employing multi-
dimensional scaling, we observed a separation between BRAF mutants and the
other two groups. These findings suggest that the expression profiles in BRAF
mutants and NRAS mutants are different, which means either BRAF or NRAS
is signaling in an additional pathway on top of the common MAPK pathway.

Recently, Solit and colleagues [35] found that BRAF mutated melanomas are
sensitive to treatment inhibiting MEK, whereas NRAS mutants showed much
lower sensitivity to this treatment. This finding suggests, in line with our
observations, that the whole BRAF mutation signaling is going through the
direct downstream target MEK, whereas NRAS appears to be signaling through
an additional pathway.

Conclusion: Our findings suggest that gene expression patterns in BRAF
mutant samples are significantly different from gene expression patterns in
NRAS mutant samples.



Results and discussion 17

Paper IV

Paper IV is primarily concerned with examining the role of PTEN in breast
cancer tumors. We used immunohistochemistry to determine expression levels
of PTEN protein in 343 tumors, dichotomized into PTEN— (low level) and
PTEN+ (high level) groups. Due to the known influence of estrogen recep-
tor (ER) status and lymph node status on gene expression in breast cancer,
we selected 105 tumors such that ER status and lymph node status were bal-
anced in the two groups. The 105 tumors were applied on microarrays for
gene expression profiling. Using the expression profiles, we constructed SVMs
that could predict PTEN status with high accuracy. Moreover, we ranked the
genes according to how well their expression level correlated with PTEN pro-
tein level. We identified a set of 246 discriminatory genes, which is a 15-fold
overabundance compared to random chance.

Using these 246 PTEN associated genes in hierarchical clustering provided as
expected two clusters containing PTEN+ and PTEN—, respectively. However,
some samples appeared in the erroneous cluster, and interestingly these mis-
classifications correlated with mutations in PISK, a component in the same
signaling pathway as PTEN. More interestingly, these groups, suggested by
clustering, correlated with survival. To further investigate this correlation be-
tween survival and expression of the 246 genes, we constructed nearest centroid
classifiers to classify gene expression profiles according to which group they are
most similar. We applied these classifiers on several publicly available datasets.
For each dataset, we performed survival analysis on the groups suggested by
the classifier and found that the groups correlate significantly with survival.

Conclusion: We have found a PTEN/PI3K associated gene expression signa-
ture that correlates with survival.

Paper V

In paper V, we present an algorithm to cluster protein mass spectra. We use
lists of peptide peak masses extracted from the mass spectra. In order to cluster
these peak lists, we introduced a score measuring the similarity between peak
lists. The similarity score is calculated in two steps. First, a peak match score
is calculated between pair of peaks reflecting the probability the two peaks
originate from the same peptide. Second the two peak lists are aligned to find
which peaks are matched, and individual match score are summed up to a total
similarity score. Because the peak match score depends on mass differences in
a smooth fashion, the similarity score is less sensitive to measurement errors,
in contrast to bin-based approaches where a small change in mass may move a
peak from a bin into the neighboring bin.
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The suggested algorithm, SPECLUST, is available through a web interface
(http://bioinfo.thep.lu.se/speclust.html), where peak lists can be transformed
into dendrograms wherein similar proteins cluster together. The clustering
gives an initial picture on how the different proteins relate to each other. More-
over, spectra can be analyzed within a cluster to see which peaks are overlap-
ping between spectra and to reveal differences between spectra. In paper V,
we point out numerous applications of this tool by using the approach on a
dataset compiled from strawberry proteins.

Conclusion: The proposed algorithm for clustering of protein mass spectra is
a useful tool to highlight peptides of interest for further investigations.
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Future directions

As usual when questions are carefully answered, additional questions have
arised during this study. Among the plethora of questions, some could be
addressed by doing the following;:

e Microarrays typically generate data of varying quality. Therefore, it is
important to improve estimation of spot quality and incorporate spot
quality weights into statistical tools. For SVMs kernels could be ex-
tended to utilize quality weights, and this choice should be evaluated and
compared to using a weighted imputation approach (paper I) followed by
a regular kernel.

e Further develop and validate methods to incorporate prior knowledge
into statistical analysis. There are two aspects of this important field.
One aspect is methods in which genes on the microarray are grouped
according to e.g. ontology annotations and correlations between groups
and sample labels are examined. Another aspect, in a sense orthogonal,
is treating multiple sample labels. For instance, systematically analyze
correlations between expression profiles and combinations of mutations.

e With the increasing number of spots printed on microarrays, it is getting
more common to have reporters printed in replicate. Therefore, an im-
portant question is how to handle these replicates. Different strategies
need to be evaluated. Is it preferable to merge replicate reporters to an
average reporter? When merging and also applying imputation methods,
should imputation be performed before merging or after? How is the
reliability of a merged reported optimally estimated?

e Complement gene expression profiling with high-throughput proteomics
to get a more complete picture of cells. Thus, statistical tools need to be
developed to handle these data in a synergetic manner.

e The similarity score between peptide peak lists, suggested in paper V, can
be viewed as a scalar product. Therefore, it might be worthwhile evaluat-
ing usage of the similarity score together with kernel-based methods such
as multidimensional scaling, principal component analysis, and support
vector machines. For SVM usage it is important to examine whether the
similarity score is a valid scalar product in the sense of fulfilling Mercer’s
condition.
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