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Abstract

Background: Classification of expression profiles to predict disease characteristics of for example cancer is a
common application in high-throughput gene and protein expression research. Cross-validation is often used to
optimize design of classifiers, with the aim to construct an optimal single classifier. In this work, we explore if
classification performance can be improved by aggregating classifiers into ensembles that use committee votes for
classification.

Results: We investigated if combining classifiers into ensembles improved classification performance compared to
single classifiers. A couple of commonly used classifiers, nearest centroid classifier and support vector machine,
were evaluated using four publicly available data sets. We found ensemble methods generally performed better
than corresponding single classifiers.

Background

Using microarrays and high-throughput mass spec-
tronomy, gene and protein expression profiles of sam-
ples from patients have been measured for many
diseases. A common application is to develop ap-
proaches for diagnostic predictions based on expres-
sion profiles [1–5]. To build a diagnostic predictor
for different diagnostic classes, one has to find the
characteristic features that either define each class or
discriminate between classes, and build a predictor
that based on these characteristics is able to predict
the class of unknown samples.

The construction of a predictor can be divided
into different parts. A common division is into clas-
sifier selection, feature selection, classifier training

and independent validation. Classifier selection in-
cludes choosing between different types of classifiers
such as support vector machines (SVM) or diago-
nal linear discriminant classifiers, but also choosing
values for the parameters of the classifier. Feature
selection is used to select inputs for the classifier, for
example, selecting a subset of genes to use in classi-
fication based on gene expression profiles. The pur-
pose of feature selection can vary, including selecting
the smallest possible set of features that results in
a required prediction performance, or selecting the
set of features that results in the optimal predic-
tion performance. Gene and protein expression data
sets typically contain many more features than sam-
ples. The features can, for example, be genes probed
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by microarrays or m/z values from discretized mass
spectra. In this situation large independent test data
sets are rare and often cross-validation is used to val-
idate classifiers and evaluate their predictive perfor-
mance.

In v-fold cross-validation, samples are randomly
split into v groups of which one is set aside as a test
set and the remaining groups are a training set used
to train a classifier. The procedure is repeated with
each of the v groups as a test set. These test sets
would provide an honest estimate of the predictive
performance, in the case where there are no choices
in classifier construction. However, suppose param-
eters of the predictor are tuned, or features are se-
lected, to achieve the best prediction results for the
test set, then the test set is no longer independent
of the construction of the predictor. Such dishon-
est use of the test set will lead to overly optimistic
estimates of the predictive performance [6].

To circumvent this dishonest use of the test set,
the training samples from the cross-validation can
be used in a second internal procedure of cross-
validation to optimize the predictive performance of
the classifier. The external cross-validation is used
solely to evaluate the test procedure. Procedures
in which an interior cross-validation loop is used to
construct predictors and an exterior cross-validation
loop for evaluating the test performance have ap-
plied to classification of gene expression profiles [7,8].

When internal cross-validation is used to opti-
mize choices for predictor construction, many clas-
sifiers are constructed for each test set. There are
many ways to proceed in the construction of a pre-
dictor for a test set. For example, one can train a
single classifier using the entire training set and the
optimal choices from the internal cross-validation [8],
or one can use the classifiers optimized in the inter-
nal cross-validation as an ensemble that predicts the
class of samples in the test set by using a committee
vote. Ensembles of different types of classifiers, in-
cluding artificial neural networks and decision trees
have been used for classification based on gene ex-
pression profiles [2, 9–11]

Many comparisons of classifiers for gene expres-
sion data have been performed [8,12]. While the re-
sults of these comparisons have been somewhat data
set dependent, simple classifiers combined with fil-
ter methods for feature selection have generally been
found to perform very well. There are many meth-
ods to aggregate classifiers into ensembles. Common
approaches to aggregate classifiers include bagging

and boosting. In bagging, ensemble members are
trained on individual training sets drawn at random
with replacement from the original training data,
and classifiers are aggregated with equal weights into
an ensemble vote [13]. In boosting, the resampling
of training data for a classifier is adaptively modi-
fied to include the most misclassified samples more
frequently, and the aggregation of classifiers is done
by weighted voting [14]. Ensemble methods gen-
erally perform very well for classification problems
where the number of features is much smaller than
the number of samples [15]. For this case, it has
been proven that having an ensemble of disagreeing
committee members each trained on a subset of the
samples should result in improved predictive perfor-
mance compared to one classifier trained on all sam-
ples [16]. Hence, the benefit of ensemble classifiers
stems from aggregating widely varying classifiers.

For prediction based on gene and protein expres-
sion data sets, the situation is different. If the num-
ber of samples is much smaller than the number
of features, the improved performance expected by
having an ensemble of disagreeing classifiers may be
ruined by each classifier being too poor as a result of
being trained on too few samples. Instead, one clas-
sifier trained using all training samples may provide
better results. In this work, we evaluate if combining
classifiers into ensembles, using an unweighted vote
for predictions, results in improved performance for
gene and protein expression data sets. We used a
filter method for feature selection and two different
classifiers, SVM [17] and nearest centroid classifiers
(NCC) [3], both shown to work well combined with
filter methods for high-dimensional data [8, 18–20].
We compared the performance of six different meth-
ods to construct classifiers, including both individual
classifiers and classifiers aggregated into ensembles,
using four publicly available data sets, three gene
expression data sets and one proteomic data set.

Methods
Classifiers

We used NCC and SVM as classifiers, both individ-
ually and aggregated into ensembles.

For NCC, the centroid for each class was the vec-
tor of means for each feature. Unknown samples
were evaluated by calculating the distance between
its feature profile and and each class centroid using
1 − Pearson correlation as distance. Unknowns were
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assigned the class to which they were nearest. We
did not shrink centroids as this does not seem to be
important for classification of microarray data [20].
In ensembles the average distance to each centroid
across classifiers was used for class assignments.

For SVM, we used the maximal margin classifier,
that is SVM with no soft margin (C parameter set
to infinity) and linear kernel. In ensembles the av-
erage distance from the decision hyperplane across
classifiers was used for class assignments.

Classifier evaluation

External 3-fold cross-validation of all data was used
to evaluate each classifier. The cross-validation was
iterated 100 times so that each sample was a test
sample 100 times and there was a total of 300 test
sets.

For each test set the predictive performance was
evaluated using balanced accuracy (BACC) and area
under the receiver operating characteristic (AUC).
BACC is the average of the sensitivity and speci-
ficity: the average of the number of correctly classi-
fied samples in each class. AUC corresponds to the
probability that in a randomly chosen pair of sam-
ples, one from each class, the predictions for each
sample is closest to the correct class. AUC com-
plements BACC in the sense that BACC requires a
decision regarding the class prediction for each sam-
ple, whereas AUC indicates the largest possible clas-
sification accuracy obtainable if an optimal decision
based on the predictions could be found. Both mea-
sures are 50% for random predictors. The averages
of BACC and AUC across the 300 test sets are pre-
sented.

To compare different methods to construct clas-
sifiers, we also ranked each construction method for
each test set such that the best performing method
got rank one. Methods were evaluated based on the
average rank for the 300 test sets. We ranked NCC
and SVM classifiers separately to high-light differ-
ences in classifier construction.

Feature selection

We used a filter based on a ranking criterion to select
features. This feature selection consists of two parts.
First the features are ranked based on their ability
to individually discriminate between classes. It is
our and others experience [8] that the most widely

used ranking criteria perform very similarly. There-
fore the choice of criterion is not crucial and we have
used the signal-to-noise ratio (SNR) [1] to rank fea-
tures. Second the number of top-ranked features to
use is selected based on classification performance.

We used sets of features, where each set con-
tained 1.5 times more top-ranked features than the
previous set. The first set contained only the top-
ranked feature and the final set contained all fea-
tures. To select which set of features to use, we em-
ployed 3-fold cross-validation internal for the train-
ing samples and computed the predictive perfor-
mance for each feature set. The number of features
resulting in the best average BACC for ten complete
cross-validation rounds (a total of 30 validation sets)
was selected.

Often forward or backward filter selection proce-
dures are used, in which one starts using one feature
and increase the number of features, or starts using
all features and decrease the number of features, re-
spectively, until the performance deteriorates. We
evaluate all feature sets employed. Hence, we use
neither a forward nor a backward method.

For some gene expression data sets, it has been
observed that using different subsets of samples re-
sults in large differences in which features are se-
lected [21]. To get a potentially more robust rank-
ing of features, we utilized the subsets of training
samples from the internal cross-validation. In this
consensus feature selection, features were ranked ac-
cording to their median rank for the internal training
samples.

Classifier construction

The only parameter values and other choices to op-
timize for the SVM and NCC classifiers we use are
the number of features to employ. For each split
into a training and test set from the external cross-
validation, the optimal number of top-ranked fea-
tures, ng, to use was found using internal cross-
validation of the training set as described in the pre-
vious section “Feature selection”. We optimized ng

separately for SVM and NCC. The internal 3-fold
cross-validation of training data iterated 10 times
resulted in 30 classifiers in ensembles.

The following six methods to construct a classi-
fier were used.
Single classifier. Construct a single classifier using
all features and all training data.
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Ensemble of classifiers. Use internal cross-validation
of training samples to construct an ensemble of clas-
sifiers in which each classifier uses its own internal
training data for training but no feature selection
(all features are used).
Single classifier with feature selection. Construct
one classifier using all training data and the top ng

genes for this training data.
Ensemble of classifiers with individual feature selec-
tion. Use internal cross-validation of training sam-
ples to construct an ensemble of classifiers in which
each classifier uses its own internal training data for
training and the top ng genes ranked based also on
its internal training data.
Single classifier with consensus feature selection.
Construct one classifier using all training data and
the top ng genes from a consensus gene list based on
3-fold internal cross-validation of all training data.
Ensemble of classifiers with consensus feature selec-
tion. Use internal cross-validation to construct an
ensemble of classifiers in which each classifier uses
its own internal training data, but the same genes
(the top ng genes from a consensus gene list based
on the internal cross-validation of all training data.)

Data sets

We used four different publicly available data sets
to evaluate different methods to construct classifiers.
Three of the data sets were from gene expression pro-
filing studies and one was from a mass spectrometry
based proteomic study.
Leukemia. This data sets contains gene expression
profiles of 72 samples from leukemia of two variants:
25 samples of acute myeloid leukemia (AML) and 47
samples of acute lymphoblastic leukemia (ALL) [1].
We used the quality filtering described for this data
set by Dudoit et al. [12] to reduce the total of 7,129
features to 3,571 features used in our analysis.
Central nervous system (CNS) embryonal tumors.
This data set contains gene expression profiles of
samples from embryonal tumors of the central ner-
vous system [4]. We used the subset of 60 samples for
which outcome information after embryonic treat-
ment of the CNS was available. Of the 60 samples,
21 represent survivors and 39 represent deaths. We
used the quality filter described in the supplemen-
tary material of ref. [4] to reduce the total of 7,129
features to 4,459 features used in our analysis.
Breast cancer. This data set consists of gene expres-
sion profiles of samples from breast tumors [3]. We

used the subset of 97 samples from sporadic tumors
consisting of 51 samples from patients with a good
outcome and 46 from patients with a poor outcome.
We required each feature to have at least six sam-
ples with a maximal p value, from the Rosetta error
model [22], of 0.01. This quality filter reduced the
total number of features (24,481) to 8,472 features
used in our analysis.
Liver cancer. This data set consists of SELDI-TOF
mass spectrometric profiles of peptides and proteins
in a total of 411 sera samples from 199 hepatocel-
lular carcinoma patients and 212 healthy individu-
als [23]. Each mass spectra in the data set consisted
of ≈ 340, 000 m/z values with corresponding ion
intensities. We used spectra pre-processed accord-
ing to the low-level analysis described in ref. [23].
This pre-processing reduced the number of features
to 368.

Results and Discussion
Leukemia data

The results of predictions for the six different ways
to construct classifiers are presented in Table 1. For
both SVM and NCC, the best ranked method found
was an ensemble classifier with no feature selection.
These two methods obtained similar average BACCs
for the test sets: 97.2% and 97.3%, respectively. For
NCC without feature selection, the BACC was larger
for the ensemble classifier than for the single classi-
fier for 14 of the 300 test sets, whereas the single
classifier never obtained a larger BACC than the
ensemble classifier. For SVM without feature se-
lection, the corresponding numbers were 27 and 0,
respectively. Hence, while the differences for these
two construction methods were small and they of-
ten tied, we note that the single classifiers never
performed better than the corresponding ensemble
classifiers. Similarly, we note that all three NCC and
all three SVM ensemble methods were ranked better
than their respective corresponding single classifier.

To explore, why filter selection did not improve
predictions, we investigated the number of features
selected for each test set (Fig. 1). We made three
observations. First, selecting all features was the
most common choice. Second, a large variation in
the number of selected features across test sets was
observed for both methods. Finally, SVM tended to
select more features than NCC. The second observa-
tion means that different subsets of samples not only
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Table 1: Comparison of methods to construct classifiers for the leukemia data.
Validation Test

Predictor Filter Ensemble BACC(%) AUC(%) BACC(%) AUC(%) Ranka

Mean SD Mean SD Mean SD Mean SD Mean

NCC None No - - - - 97.1 3.0 99.4 1.1 2.94
None Yes 97.3 1.7 99.3 0.7 97.2 2.9 99.4 1.1 2.81
Individual No - - - - 95.8 3.4 99.5 1.0 3.86
Individual Yes 97.4 1.8 99.5 0.6 95.9 3.5 99.5 1.0 3.75
Consensus No - - - - 95.8 3.4 99.5 1.0 3.83
Consensus Yes 97.8 1.7 99.6 0.6 95.9 3.4 99.5 1.0 3.81

SVM None No - - - - 97.0 3.1 99.5 0.9 3.47
None Yes 97.1 2.2 99.5 0.5 97.3 2.9 99.5 0.9 3.22
Individual No - - - - 96.6 3.5 99.4 1.0 3.70
Individual Yes 97.0 3.0 99.3 3.0 96.5 6.8 99.1 5.7 3.44
Consensus No - - - - 96.6 3.5 99.4 1.0 3.68
Consensus Yes 97.4 2.1 99.6 0.4 96.9 3.3 99.5 0.9 3.47

aNCC and SVM were ranked separately.

results in different and equally performing rankings
of features as found by Ein-Dor et al. [21], but also
results in different numbers of features selected when
optimizing supervised classifiers. This observation
suggests that it is difficult to optimize the number
of features to use based on internal cross-validation
of training data, as it is not likely to perform as
good on an independent test set. In agreement, we
observed systematically better and competitive re-
sults for the validation data sets as compared to the
test data sets: optimizing the number of selected
features resulted in over-fitting (Table 1).

Comparing with other predictions of this data
set, we note that Wessels et al. found that using the
dimensional reduction method partial least squares
(PLS) performed better than feature selection using
forward filtering based on SNR [8]. Our performance
using all features is similar to the performance ob-
tained using PLS. Our results indicate that to ob-
tain a highly competitive performance for this data
set the choice of classifier is not crucial if all features
are used. It has also been observed for other gene ex-
pression data sets that SVM classifiers perform best
when all features are used [24,25].

CNS embryonal tumor data

The results for the CNS embryonal tumor data set
are presented in Table 2. For NCC, the best ranked
classifier was an ensemble with individual feature se-
lection, for which a BACC of 60.6% was obtained.
This classifier performed better for 136 and worse for

81 test sets when compared with its corresponding
single classifier. For SVM, the best ranked classi-
fier was a single classifier with no feature selection,
which performed better than the NCC classifiers and
a BACC of 63.0% was obtained. This classifier was
similarly ranked as its corresponding ensemble clas-
sifier, and performed better for 102 and worse for 99
test sets.

For the leukemia data set performances close to a
100% were obtained, making it difficult to compare
predictive performances for the test sets with the
potentially overly optimistic estimates from the val-
idation sets. For the CNS embryonic tumors the pre-
dictive performances were much worse, making com-
parisons between test and validation results more
illustrative. We made three observations both for
NCC and SVM.

First, with no feature selection the validation re-
sult was worse than the test result. Here, there is no
feature selection and no optimization of classifiers
and the validation result is an honest estimate of
the predictive performance. However, in the internal
cross-validation each sample is classified by an en-
semble of the 10 classifiers for which it was not used
in training, whereas the test samples from the exter-
nal cross-validation are classified by an ensemble of
all 30 classifiers from the internal cross-validation.
Apparently, the larger ensembles perform better for
this data set.

Second, with individual feature selection the val-
idation results are overly optimistic estimates of the
predictive performance. Here, the only dishonest as-
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Figure 1: The optimal number of features selected for each test set for the leukemia data. There was a total
of 300 test sets and 3,571 features. A) NCC. Median number of selected features was 1598 and B) SVM.
median number of selected features was 2397.

pect of the validation performance is that the num-
ber of features selected has been optimized to give
the best performance. Hence, even though features
are ranked individually for each classifier based only
on its training samples, an overly optimistic estimate
was obtained.

Third, with consensus feature selection the vali-
dation results are even more optimistic than for in-
dividual feature selection. Here, there is a dishonest
use of the class of the validation samples in the inter-
nal cross-validation because all internal samples have
been used to rank features. Using validation samples
to rank features may not only result in overly opti-
mistic results but may also inflate performance for
classes which can not be classified, leading to incor-
rect conclusions [6].

In the original analysis of this data set [4],
Pomeroy et al. used k-nearest neighbor classi-
fiers and evaluated the predictive performance us-
ing leave-one-out cross-validation. Both the number
of neighbors, k, and the selected number of features
were optimized in the cross-validation. This use of
the validation samples in classifier optimization re-
sulted in an overall classification accuracy of 78%,
not likely to be obtainable when using an indepen-
dent test set.

As for the leukemia data, we note that for SVM
no feature selection performed best. The BACC of
this classifier (63.0%) was also higher than for all
classifiers evaluated in ref. [8], where the best BACC
obtained was 61.3%. In ref. [8], SVM obtained the

best result when combined with recursive feature
elimination. This combination obtained a BACC of
60.1% with on average 1235 features selected. SVM
combined with forward filtering selected fewer fea-
tures, on average 120, and performed worse: 57.6%
BACC. SVM combined with our filtering method se-
lected roughly as many features (on average 1,655)
as recursive feature elimination and performed sim-
ilarly. Together, these findings show a sensitivity to
minor details in the combination of classifiers and
feature selection methods and that forward filtering
may find local maxima in performance.

Breast cancer data

The results for the breast cancer data set are pre-
sented in Table 3. For NCC, the best ranked clas-
sifier was an ensemble with consensus feature selec-
tion, for which a 66.4% BACC was obtained. All
four NCC classifiers with feature selection achieved
similar results. For SVM, the best ranked classifier
was an ensemble classifier with individual feature
selection, which performed slightly worse than the
NCC classifiers and a BACC of 66.0% was obtained.
This SVM classifier performed better for 174 and
worse for 94 test sets compared to its corresponding
single classifier. To our knowledge, there is no com-
parable study for this data set, but our results are in
agreement with previous studies of variants of this
data set [8, 26].
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Table 2: Comparison of methods to construct classifiers for the CNS embryonal tumor data.
Validation Test

Predictor Filter Ensemble BACC(%) AUC(%) BACC(%) AUC(%) Ranka

Mean SD Mean SD Mean SD Mean SD Mean

NCC None No - - - - 58.6 9.4 64.2 10.4 3.81
None Yes 58.4 6.3 59.2 8.5 59.5 9.8 64.2 10.4 3.53
Individual No - - - - 59.5 10.1 63.5 10.8 3.44
Individual Yes 64.3 6.8 66.6 8.8 60.6 10.3 65.7 11.8 2.96
Consensus No - - - - 58.9 10.2 63.2 10.8 3.67
Consensus Yes 72.6 7.6 78.4 8.9 59.0 10.0 63.2 10.8 3.57

SVM None No - - - - 63.0 10.3 68.4 10.8 3.08
None Yes 61.4 8.9 68.0 9.3 62.3 9.1 69.0 10.8 3.14
Individual No - - - - 59.8 11.0 63.6 11.9 3.97
Individual Yes 64.9 8.6 70.0 9.0 62.2 9.4 66.9 11.9 3.21
Consensus No - - - - 60.1 10.1 63.3 11.7 3.94
Consensus Yes 73.4 7.9 82.0 8.3 60.7 9.8 64.8 11.5 3.66

aNCC and SVM were ranked separately.

Table 3: Comparison of methods to construct classifiers for the breast cancer data.
Validation Test

Predictor Filter Ensemble BACC(%) AUC(%) BACC(%) AUC(%) Ranka

Mean SD Mean SD Mean SD Mean SD Mean

NCC None No - - - - 65.0 7.2 74.9 7.2 3.96
None Yes 65.2 4.1 72.8 4.7 65.0 7.2 74.9 7.2 3.95
Individual No - - - - 66.1 7.0 74.5 7.0 3.28
Individual Yes 68.7 4.4 75.8 4.7 66.2 7.4 76.0 7.1 3.39
Consensus No - - - - 66.3 7.0 74.5 7.0 3.22
Consensus Yes 79.1 4.4 86.8 4.1 66.4 7.0 74.5 6.9 3.19

SVM None No - - - - 65.1 6.9 70.5 7.4 3.61
None Yes 64.0 5.0 70.5 7.4 65.3 6.8 71.2 7.5 3.61
Individual No - - - - 64.0 14.2 67.9 9.4 3.81
Individual Yes 67.7 6.6 72.1 8.2 66.0 8.7 70.6 9.9 3.07
Consensus No - - - - 64.4 8.4 68.3 9.5 3.70
Consensus Yes 77.8 7.7. 86.0 8.2 65.7 7.8 70.2 7.9 3.20

aNCC and SVM were ranked separately.

Liver cancer data

The results for the liver cancer data set are presented
in Table 4. For NCC, the best ranked classifier was
an ensemble with individual feature selection, for
which a 77.0% BACC was obtained. Even though
the best ranked classifier performed better for 61 and
worse for 39 test sets compared to its corresponding
single classifier, the performance for each test set
was typically very similar, and all four NCC clas-
sifiers with feature selection achieved almost identi-
cal BACC. For SVM, the best ranked classifier was
also an ensemble with individual feature selection,
for which a 91.3% BACC was obtained. This clas-
sifier performed better for 238 and worse for 48 test

sets compared to its corresponding single classifier.
Moreover, it was the best classifier for most of the
300 test sets, as seen from its average rank being
close to one. It also outperformed all NCC classi-
fiers.

Ressom et al. obtained a BACC of ≈91.5% for
this data set when using SVM combined with parti-
cle swarm optimization for feature selection [23]. We
obtained a comparable BACC using filtering based
on SNR for feature selection, indicating that the
choice of feature selection method is not crucial.
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Table 4: Comparison of methods to construct classifiers for the liver cancer data.
Validation Test

Predictor Filter Ensemble BACC(%) AUC(%) BACC(%) AUC(%) Ranka

Mean SD Mean SD Mean SD Mean SD Mean

NCC None No - - - - 76.4 3.3 84.9 3.0 3.67
None Yes 76.4 1.7 84.6 1.5 76.4 3.3 84.9 2.8 3.63
Individual No - - - - 77.0 2.9 84.8 2.8 3.47
Individual Yes 78.0 1.4 84.7 1.5 77.0 2.8 84.8 2.8 3.31
Consensus No - - - - 77.0 2.9 84.8 2.8 3.48
Consensus Yes 78.0 1.5 84.8 1.4 77.0 2.9 84.8 2.8 3.44

SVM None No - - - - 75.3 6.8 83.4 7.2 5.45
None Yes 85.3 1.8 92.5 1.2 86.7 3.0 93.7 2.1 3.40
Individual No - - - - 89.6 2.5 95.8 1.5 2.23
Individual Yes 91.1 1.4 96.7 0.8 91.3 2.3 96.7 1.3 1.24
Consensus No - - - - 76.1 6.0 84.4 5.8 5.45
Consensus Yes 86.0 1.0 93.0 1.3 87.0 2.9 94.0 1.9 3.25

aNCC and SVM were ranked separately.

Conclusions
We have investigated if aggregating classifiers into
ensembles improves classification performance for
gene and protein expression data sets, for which the
number of features typically is much larger than the
number of samples. The general conclusions may be
summarized as follows:

• Ensemble methods performed best, even
though differences in terms of predictive ac-
curacies often were relatively small. For NCC,
an ensemble method performed best for all four
data sets. For SVM, an ensemble method per-
formed best for three data sets.

• Even minimal dishonest use of test samples,
such as optimizing only the number of features
to use based on predictive performance of test
samples, may result in overly optimistic esti-
mates of predictive performance.

• If the goal is to obtain good predictive per-
formance regardless if very many features are
used, SVM with no feature selection often per-
forms very well.

• Forward filtering may find classifiers that per-
form well using small feature sets, however,
better performance is often obtained using
larger feature sets.

The performance of classifiers can potentially be
improved in many ways. For example, various ap-
proaches to weight the classifiers in the ensembles

can be explored. We have used ensembles of size 30,
and our results indicate that smaller ensembles per-
form worse. There is a trade-off between ensemble
size and ensemble construction time. Therefore, it
may be worthwhile to investigate the dependence of
performance on ensemble size.
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