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Popular Science Summary 
The journey of water over land gets more exciting when it rains. The rainwater 
accumulates over surfaces, penetrates the soil, leaches substances, and runs off in 
rivers until it ends at larger water bodies or evaporates into the air. Studying these 
precipitation effects is essential for the successful management of water availability 
and hazard problems such as water supply and flood control. 

The performance of computer tools used by hydrologists for runoff simulation 
largely relies on the accuracy of the precipitation data. As transient and severe as 
cloudbursts, precipitation can be highly variable across time and area. Rain gauge 
stations that measure precipitation at a point scale cannot represent the areal 
precipitation properly if they are not distributed and maintained well in a drainage 
area. In the last decades, remote sensing by centralized instruments such as satellite 
sensors or ground-based weather radars provides a wealth of precipitation data in 
larger areas and more regular resolutions than a usual rain gauge network does. Due 
to the indirect estimations by remote sensing, most of the recent studies focused on 
the validation and bias correction of the remote sensing data. 

This dissertation, mainly based on the appended papers I-IV, investigates the recent 
advances in remote sensing of precipitation at scales that are relevant to urban and 
regional scale runoff simulation. Paper V is additionally appended to discuss the 
importance of other remote sensing data such as evaporation and vegetation in 
runoff simulation. 

Primarily, the ground validation against rain gauge observations was performed for 
three daily and one monthly precipitation product at grids of about 10-km size from 
the Global Precipitation Mission (GPM) of NASA over Iran (Paper I) as well as for 
the sub-kilometre and minute scale precipitation data from Sweden’s first dual-
polarization Doppler X-band weather radar (Paper II). These studies reviewed the 
literature and theoretical backgrounds and highlighted the challenges regarding the 
future application as well that were partly addressed in Papers III and IV.  

The spatially distributed remote sensing data are mostly used in conceptually based 
computer models. These models can be structurally and computationally expensive 
due to their complex input requirements and procedures. The computationally 
advanced data-driven models based on artificial intelligence (AI) can promote 
efficient alternatives. But, without using physical equations, AI models require 
additional methods to assure a generalized solution regardless of the parsimonious 
approach. Artificial Neural Networks (ANNs) are among the most popular types of 
AI-assisted data-driven models in hydrology that are used in this dissertation for 
two purposes: 
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• Developing novel remote sensing data-driven solutions for regional-
scale monthly runoff simulation to enhance surface water management 
in data-scarce regions (Paper III). 

• Merging local X-band weather radars for consistent high-resolution 
rainfall estimation to advance stormwater monitoring and management 
in urban areas (Paper IV). 

In Paper III, five mountainous drainage areas of the Karkheh River in western Iran 
were studied. The satellite precipitation data were formulated in form of a few novel 
inputs to the ANN that resulted in obvious improvement of runoff simulations in all 
the areas. However, areas with higher spatiotemporal variability of precipitation 
showed a higher need for longer satellite records. 

In Paper IV, single and merged radar rainfall estimates in the overlapping coverage 
area of the two X-band weather radars were evaluated against the records of 38 rain 
gauges. The validated data indicated better performance of the ANN compared to 
the regression-based combination of traditional empirical methods, especially for 
the severe rainfall values.  

Paper V showed that human activities could be as important as climate factors in 
runoff variation. In the catchments with agricultural development, the human effects 
could be partially considered by monitoring vegetation and evaporation via remote 
sensing. Paper III included such supplementary data based on the MODIS satellite 
observations along with the GPM precipitation in monthly runoff simulations useful 
for water supply planning. 

In conclusion, the combination of remote sensing and AI-assisted data-driven 
solutions seems promising for coping with the rainwater-related challenges where 
gauge measurements are lacking or limited. As a result of improved precipitation 
and runoff data for urban and rural planners, liveability can then be promoted. 
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Abstract 
Accurate precipitation data are crucial for hydrological modelling and rainwater 
runoff management. Precipitation variability exists through a wide range of spatial 
and temporal scales and cannot be captured well using sparse rain gauge networks. 
This limitation is further emphasised for urban and mountainous catchments, 
especially under global warming, causing an increased frequency of extreme events. 
Recent advances in remote sensing (RS) techniques make monitoring precipitation 
possible over larger areas at more regular resolutions than conventional rain gauge 
networks. The RS data can be biased mainly due to the indirect estimations prone 
to multiple error sources and temporally discrete observations. The wealth of 
spatiotemporal precipitation data by RS, however, calls for developing data-driven 
solutions for both the bias correction and hydrological modelling that, in turn, 
requires new procedures to assure generalization of the existing methods. The 
present dissertation comprises a comprehensive summary followed by five 
appended papers, attempting to evaluate quantitative precipitation estimations 
(QPE) by state-of-the-art instruments/products for local and regional hydrological 
applications. Accordingly, two recently installed dual polarimetric doppler X-band 
weather radars (X-WRs) in southern Sweden and multiple Global Precipitation 
Mission (GPM) products in Iran were studied at the relevant scales for urban 
hydrology (1–5-min and sub-km) and large water supply river–reservoir system 
operation (daily-monthly and 0.1°), respectively. The validation against rain gauge 
observations (Paper I and II) showed a significant dependency of the X-WR and 
GPM precipitation errors on the radial distance and regional precipitation pattern, 
respectively. Taking observations from local tipping bucket rain gauges at the 1–
30-km ranges as a reference, the apparent problems with a single X-WR is related 
to the attenuation during heavy rains and overshooting (at higher elevation angle 
scans). An internationally bias-corrected GPM product called GPM-IMERG-Final 
shows a generally good correlation to synoptic observations of over 300 rain gauges 
in Iran except for extreme observations that are much better predicted by the GPM-
IMERG-Late product during spring, summer, and autumn seasons. To leverage the 
wealth of spatiotemporally complete and validated precipitation data for 
hydrological modelling, two novel data-driven procedures using artificial neural 
networks (ANNs) were developed. As in Paper III, the formulation of the new ANN 
input variables, namely, ECOVs and CCOVs, representing the event- and 
catchment-specific areal precipitation coverage ratios, improve monthly runoff 
estimations in all the studied sub-catchments of the Karkheh River basin (KRB) in 
the mountainous semi-arid climate of western Iran. Merging the doppler and dual-
polarization data in the overlapping coverage of the two X-WRs (Paper IV) via an 
ANN-based QPE improves rainfall detection and accuracy. ANN-assisted 
estimation of rainfall quantiles, compared to the merging with an empirically based 
regression model, also shows better results especially related to the extreme 5-min 
data. Finally, Paper V describes the impact of human activities such as agricultural 
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developments that can equally affect the runoff variation. This fact is considered in 
Paper III by including MODIS Terra products as additional inputs. 
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ZDR Logged differential reflectivity between horizontal and vertical in dB 
(an X-band WR variable) 
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1 Introduction 

 

1.1 Problem Statement 
Variability is a key characteristic of precipitation making it interesting for many 
scientists to study. Some climates receive more precipitation than others but heavy 
rainstorms with devastating effects often occur in arid to semi-arid climates 
(Hosseini, 2019). Similarly, droughts that are more frequent in drier climates are not 
uncommon in humid regions. The impacts of global warming in the past decades 
correlate with a higher frequency of these extreme events (Myhre et al., 2019; 
Tabari, 2020) or lack of precipitation. For example, 2018 and 2019 included the first 
consecutive drought in more than 250 years in central Europe (Hari et al., 2020). It 
was estimated that the heavy precipitation, droughts, and heatwaves caused about € 
487 billion of economic losses during the 1980-2020 period, equivalent to 80% of 
the total losses of natural hazards, in Europe1. In some arid to semi-arid regions, 
e.g., in Iran, it appears that the “normal” hydrological conditions are changing and 
flood and drought events are increasing (Hosseini, 2019).  

Precipitation data in hydrology are often used for runoff modelling, usually 
concerning surface water availability and hazard problems. Precipitation data must 
represent the spatial and temporal variability well to accurately estimate the 
corresponding runoff variations over time at the desired time scale. Otherwise, the 
uncertainty of precipitation misrepresentation to runoff simulation can put 
engineering decisions such as water supply and flood control on shaky ground. 
According to the definitions in Orlanski (1975) for the space and time scales of the 
meteorological processes, precipitation events can appear among a broad range of 
horizontal space including Micro γ (e.g., tornadoes and deep convection at 0.2-2 
km), Meso α (e.g., thunderstorms at 2-20 km), Meso β (e.g., squall lines and cloud 
cluster at 20-200 km) and Meso γ (e.g., fronts at 200-1000 km) scales with the 
equivalent characteristic time of a few minutes to an hour, one to a few hours, a few 
hours to a day, and a day to a few weeks, respectively. The predictions of more 

 
1 https://www.eea.europa.eu/data-and-maps/figures/economic-damage-caused-by-weather-5/ 
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extreme events around the globe by the Intergovernmental Panel on Climate Change 
(IPCC) can be translated to even higher variability of precipitation for the 
catchments as the nature of many extreme events is connected to convection 
(Moustakis et al., 2020).  

In view of the above, precipitation monitoring at high spatiotemporal resolution is 
necessary for developing better hydrologic models dealing with the contemporary 
and future climate. It is, however, noted that the required resolution depends on the 
hydrological problem and the catchment’s characteristics. Due to orographic and 
urbanisation impacts on local to regional scale precipitation (Furcolo et al., 2016; 
Houze, 2012; Liu and Niyogi, 2019; Yang and Ren, 2022) as well as the 
substantially diverse runoff response in complex terrains and heterogenous urban 
surfaces, high-resolution precipitation data are of most interest in catchments with 
such characteristics. Temporally, large water supply river-reservoir systems can 
operate on the weekly to seasonal aggregations of rainfall data while resolutions as 
short as 1-5 minutes are necessary for urban flood prediction. Spatially, a range of 
convective to orographic effects that can result in severe precipitation events at local 
to regional scales may have different importance depending on the catchment size. 
Using the definitions noted earlier, the recommended data scales could be 
summarized as Micro γ and Meso α for urban and rural catchments, respectively. 
Nevertheless, these scales should not neglect the smaller-scale dynamics. Hence, 
the actual observations can be ideally collected from even smaller scales but be 
summed up to the desired scale for the hydrological models. 

Precipitation data scarcity is a terminology used for explaining the lack of 
information about precipitation either related to the low-resolution observations or 
short length of records. The traditional measurements of precipitation via in-situ rain 
gauges are usually available for longer periods. However, their efficacy is largely 
limited by the extensive infrastructural, technological, and financial requirements 
regarding the regular installation and maintenance of sufficiently dense gauge 
networks operating at suitable temporal aggregation. As discussed above, this 
limitation is most relevant for urban and mountainous catchments. Remote sensing 
(RS) of precipitation using satellites and ground-based weather radars (WRs), as an 
alternative or supplement to the gauge networks, are among the promising tools for 
meeting the micro to meso-scale demands regarding precipitation observations. 
Usually, it is not only the spatiotemporal resolution but also the areal coverage of 
the observations that can be improved by RS. 

Due to the indirect estimations, and temporally discrete sampling by RS, however, 
they can carry a variable degree of uncertainty that should be addressed. The 
validation of the RS data is not always straightforward due to the incomparable scale 
and nature of the gauge–RS observations. With advanced computational techniques 
such as artificial intelligence, it is assumed that the wealth of spatiotemporal data 
can be used to advance hydrological calculations. This assumption, however, needs 
significant analyses and unbiased validations. This dissertation attempts to address 
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the necessity and challenges of RS precipitation and develop new satellite and X-
band WR (X-WR) data-driven solutions for hydrological applications.  

1.2 Objectives and Structure 
Given the problems concerning precipitation data scarcity at local to regional scales 
and the potential for improving RS solutions using computationally advanced data-
driven procedures, this section summarises the aims and objectives of the 
dissertation followed by an overview of the structure of the dissertation. 

1.2.1 Aims and objectives 
Two main aims of the dissertation were: 

- Ground validation of the state-of-the-art RS precipitation data for local and 
regional scale hydrological applications 

- Improvement of quantitative precipitation estimation (QPE) for urban and 
rural runoff simulations by developing RS data-driven procedures 

Each of the above aims was pursued with two studies focusing on the two highest 
available resolution precipitation observations using local WRs and global satellites 
for urban and rural applications, respectively. 

The main objectives were: 

- Investigating the accuracy of precipitation monitoring using satellite 
products and local X-WR by ground validation using rain gauges at 
different scales (Papers I and II) 

- Formulating new satellite-based inputs for a better explanation of areal 
precipitation variability using a generalized ANN-based precipitation–
runoff simulation model (Paper III) 

- Addressing inconsistent single X-WR-based QPE by developing new data-
driven merging models combining multiple-level measurements of a 
composite of two X-WRs, resulting in regular grid products (Paper IV) 

- Distinguishing human from climate impacts on large river flow variations 
using theoretical approaches and validations by RS and hydrological 
modelling (Paper V) 
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1.2.2 Dissertation structure 
As shown in Figure 1, the dissertation is structured based on four main papers 
(Papers I-IV) and an additional one (Paper V) as a supplementary for Paper III. 
Papers I-IV are related in two ways based on the RS data source (satellite or WR) 
and whether the focus was on ground validation via rain gauges or modelling new 
RS data driven procedures using ANN modelling. 

 

Figure 1. Diagram of the five appended papers (Papers I-V) illustrating the publication year, a descriptive keyword, 
and the study area and climate according to the legend (blue for southern Sweden and orange and red for Karkheh 
River Basin in Iran and the entire Iran country, respectively). The first four papers (Paper I-IV) are related in two ways; 
first, the underlying RS data sources (“Satellite” and “Weather Radar”); and, second; by “Ground Validation” and “ANN 
Modelling” that emphasise the methodology. As shown with the arrows, Paper III relied on the first and fifth papers 
(Papers I and V), and Paper IV relied on Paper II. 

The papers were based on two relevant case studies from Sweden and Iran where 
precipitation data scarcity was important for urban and rural applications, 
respectively. More accurately, for the ground validation studies, sub-km and minute 
rainfall estimations of an X-WR at 1–30-km radius were studied in southern Sweden 
while daily and monthly satellite precipitation products at approximate grid sizes of 
9 km × 11 km from Global Precipitation Mission (GPM) across the entire Iran 
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country were used. In addition, for the improved RS data-driven solutions (using 
ANN modelling), the case study in Sweden covered the overlapping area of two X-
WRs at their maximum range coverage radius of 50 and 70 km in south Sweden 
while the case study in Iran included five mountainous catchment areas of the large 
Karkheh River Basin (KRB) in western Iran. 
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2 Literature Review 

2.1 Satellite Precipitation 

2.1.1 Introduction 
Accurate precipitation data are fundamental to evaluating water availability and 
hazards regarding hydrological applications (Xu et al., 2015, Liu et al., 2017, Sun 
et al., 2018). Precipitation can either be directly measured on the ground by rain-
gauge or be indirectly estimated aloft using RS techniques such as ground-based 
WR and satellite-based instruments. Rain gauges traditionally provide a reliable 
dataset used for most of studies at the hydrological catchment scales. However, they 
may not properly reflect the areal rainfall variability depending on the density of the 
rain gauge network and the complexity of rainfall (Hiebl and Frei, 2018). The 
alternative estimation of precipitation can be obtained by ground-based WRs but 
may suffer from error sources such as ground clutter, wet radome attenuation, rain-
induced attenuation, and non-uniform beam filling (Van de Beek et al., 2016). 
Moreover, several reasons such as incomplete areal coverage especially over 
oceanic and sparsely populated areas (Rana et al., 2015; Kidd et al., 2017), along 
with the lack of an integrated system for reporting ground-based observations in 
many regions (Omranian and Sharif, 2018) make them insufficient for larger-scale 
studies. These limitations need to be addressed considering the holistic view of 
environmental processes in relation to the climate change studies as well as to the 
long-term weather forecast applications. With advanced instruments, satellite 
observations compensate for these deficiencies by providing more spatially 
homogeneous and temporally complete coverage for the vast majority of the globe 
(Kidd and Levizzani, 2011; Sun et al., 2018). 

2.1.2 Precipitation products 
There are various global scale satellite-based precipitation products at multiple 
temporal and spatial resolutions that are freely available to the public or academia, 
out of which the Global Precipitation Measurement (GPM) (Hou et al., 2014), 
Tropical Rainfall Measuring Mission (TRMM) (Huffman et al., 2007), Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks 
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(PERSIANN) (Hsu et al., 1997), and Climate Prediction Center Morphing 
(CMORPH) (Joyce et al., 2004) are the most widespread ones. As one of the most 
recent missions, the GPM core observatory was launched in February 2014, as a 
successor to the TRMM, to continue and improve satellite-based precipitation 
observations globally. Using the algorithms underlying in TRMM-Multi-Satellite 
Precipitation Analysis (TMPA), PERSIANN-Cloud Classification System, 
PERSIANN-CCS) estimates, and CMORPH-Kalman Filter (CMORPH-KF) time 
interpolation scheme, the Integrated Multi-satellite Retrievals for GPM (IMERG) 
combines the collected information from the satellites’ passive microwave (PMW) 
and microwave-calibrated infrared (IR), and precipitation-gauge analyses (for 
regionalization and bias correction), into half-hourly 0.1º×0.1º gridded fields 
(Huffman et al., 2015; Huffman et al., 2019). The morphing process, integrating 
geostationary infrared satellites for filling the gap between the intermittent 
microwave observations by the satellite constellation for GPM, is the way IMERG 
algorithm addresses the temporally discrete observations. The IMERG algorithm is 
now run for both TRMM and GPM eras (since 2000; Huffman et al., 2019) and 
produce multiple products at different latency going back to 2000 (Paper III). 

A search in Web of Science exemplies that GPM and its precursor products 
comprised roughly one-third (=398/1239) of the publications regarding satellite 
precipitation in the context of hydrology during the past few years (2018-2021). The 
detail of the search is summarised in Table 1 (TI, AB, and TS show that the 
keywords were specifically searched in the title, abstract, and topic, respectively. 
AND, and OR are Boolean operators and * represents any group of characters): 

Table 1. Web of Science search results showing the importance and interest of GPM and TRMM and their 
corresponding algorithms IMERG and TMPA in the hydrology literature. 

Search phrase Years Number of results 
(TI=(satellite AND (precipitation OR rain*)) OR AB=(satellite AND 
(precipitation OR rain*)) AND TS=(hydrolog*) 

2018 – 2021 1239 

(TI=(satellite AND (precipitation OR rain*) AND (GPM OR IMERG OR 
TRMM OR TMPA)) OR AB=(satellite AND (precipitation OR rain*) AND 
(GPM OR IMERG OR TRMM OR TMPA))) AND TS=(hydrolog*) 

2018 – 2021 398 

2.1.3 Challenges and approaches 
Satellite precipitation is subject to some significant uncertainties mostly including 
estimation through cloud top reflectance, thermal radiance, infrequent satellite 
overpasses and algorithm, which originate due to their indirect nature (Khodadoust 
Siuki et al., 2017). Hence, a preliminary validation of satellite precipitation data in 
each specific region can be helpful to promote improvement in processes of satellite 
rainfall retrieval as well as for users in different applications (Tan and Santo, 2018). 
Along this line, extensive studies have been allocated to the evaluation of IMERG 
estimates compared to ground observations of rainfall such as radars and gauges or 
other existing satellite datasets in different parts of the world (e.g., Roca et al., 2010; 
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Chen et al., 2013; Hashemi et al., 2017; Worqlul et al., 2014; Sun et al., 2018; 
Mondal et al., 2018).  

Even though gauge data are the ground reference in many of these studies, it should 
be noticed that gauge measurements are also subject to uncertainties (Villarini et al., 
2008), especially in terms of areal representativeness compared to the relatively 
coarse grids of satellite data, and wind-induced under catch. In this sense, the ground 
validation studies are mainly applying two major approaches depending on the form 
of the available reference data. Some compare the point data from the gauges to the 
satellite grid (point-to-grid), while the others use the spatially interpolated ground 
data in form of regular grids as reference (grid-to-grid). 

Gridded precipitation datasets offer a solution to the problems of missing data and 
spatial bias resulting from uneven or unrepresentative spatial measurements, 
although not a perfect solution (Ensor and Robeson, 2008). The reliability of the 
interpolated precipitation can depend on the density of the in-situ measurements and 
the nature of the rainfall, which is variable by time and geospatial heterogeneity. 
While some developing countries suffer from acute data shortage, both in terms of 
quality and quantity of measurements (Beria et al., 2017), there are some successful 
examples of evaluations based on quite dense rain-gauge networks such as the ones 
used by Foelsche et al. (2017), and Omranian and Sharif, (2018). A problem appears 
when there is no access to such a dense network in many areas of the world. While 
the interpolation of rather sparse in-situ data does not result in a substantial problem 
for monthly or annual time scales (Ensor and Robeson, 2008), some studies show 
that the routinely used interpolation methods (e.g., ordinary kriging, and inverse 
distance weighting) in the ground validation studies can produce datasets with 
significantly different statistical characteristics compared to the original 
observations (Ensor and Robeson, 2008; Wagner et al., 2012). The interpolation can 
decrease the spatial variability of precipitation (Xu et al., 2015), making them less 
valid methods. To improve the accuracy of the interpolated grid data based on point 
measurements at both monthly and daily time scales, geospatial factors (e.g., 
topography, latitude, longitude, distance from the sea, etc.) are used (Hofierka et al., 
2002). Thus, the spatial and temporal factors are two controversial concerns for the 
grid-to-grid comparisons in the ground validation of the satellite precipitation and 
there is no a generalized model that satisfies the accuracy requirements for different 
locations and applications (Xu et al., 2015; Hiebl and Frei, 2018).  

With growing interest into the long term and large scale, ranging from countrywide 
(Asong et al., 2017; Sharif et al., 2018; Sungmin and Kirstetter, 2018; Kumar et al., 
2019; Gadelha et al., 2019) to worldwide studies (Sun et al., 2018), on the satellite 
precipitation evaluation, it is a challenge to find a decent compromise between, on 
the one hand, the representativeness of short-term variability, and, on the other hand, 
increasing the field of comparison (sampling area) relying on sparse measurement 
networks. It is also important to consider that the high density of the rain-gauge 
network may suffer from low maintenance introducing temporally variable errors in 
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the grids due to inconsistency of the measurements. Moreover, studies have shown 
that the variation of the station network over time can introduce temporal 
inconsistencies in grid datasets (Becker et al., 2013; Frei, 2014). Thus, using 
interpolation from a temporally invariant network of high quality could be more 
reliable to estimate the statistics of precipitation-geographic factor relationships that 
can later be applied in advanced interpolation procedures (Gottardi et al., 2012; 
Mergili and Kerschner, 2015) and gridding the point measurements. Due to the 
limitations discussed above about the application of grid-to-grid comparisons, many 
studies rely on point-to-grid evaluations (e.g., Sharifi et al., 2016; Xi and Liu, 2018; 
Hashemi et al., 2020). Regardless of the approach, the inherent difference between 
the point measurements and the areal satellite grids, i.e., a point of space in time 
accumulation versus a snapshot of time, has a major effect on the accuracy and 
precision of the evaluation results both quantitatively and qualitatively (Tang et al., 
2018). Tang et al. (2018) presented a methodology for evaluating the efficiency of 
gauge density and introducing an optimum grid size for the comparison of ground-
based and satellite-based datasets.  

As mentioned earlier, the ground validation of GPM-IMERG products is in this 
dissertation was done in Paper I for over the entire Iran using grid-to-point 
comparisons. 

2.1.4 Applications in hydrology 
Due to the challenges of the satellite precipitation data evaluation directly using the 
gauged precipitation, an indirect evaluation can be done through comparing an 
estimated response, such as runoff, with the measured values (Wagner et al., 2012). 
Thus, if a satellite precipitation product results in a better runoff modelling, it is 
validated for this purpose. Therefore, utilizing the satellite precipitation data in 
regions with precipitation scarcity is possible if runoff measurements are available 
at the outlet of catchments. There were many studies that compared multisource 
satellite precipitation inputs for streamflow simulations (e.g., Mo et al., 2020; Musie 
et al., 2019; Zhang et al., 2019; Zhu et al., 2021). 

Including the term “(streamflow OR runoff)” to the TI and AB parts of the search 
phrases in Table 1, the role of GPM and its precursor products in hydrological 
studies regarding runoff simulations, relative to other satellite precipitation 
products, can be specified better as in Table 2, which again shows the ratio of about 
one-third (=130/407). Note that the phrases can introduce some uncertainties and 
the results should be considered rough an estimation. 
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Table 2. Web of Science search results showing the importance and interest of GPM and TRMM and their 
corresponding algorithms IMERG and TMPA in the hydrology literature specified by runoff or streamflow. 

Search phrase Years Number of results 
(TI=(satellite AND (precipitation OR rain*) AND (streamflow OR runoff)) 
OR AB=(satellite AND (precipitation OR rain*) AND (runoff OR 
streamflow))) AND TS=(hydrolog*) 

2018 – 2021 407 

(TI=(satellite AND (precipitation OR rain*) AND (GPM OR IMERG OR 
TRMM OR TMPA) AND (streamflow OR runoff)) OR AB=(satellite AND 
(precipitation OR rain*) AND (GPM OR IMERG OR TRMM OR TMPA) 
AND (runoff OR streamflow))) AND TS=(hydrolog*) 

2018 – 2021 130 

2.2 Weather Radar (WR) Precipitation 

2.2.1 Introduction and overview 
Over the years it has been noticed that hydrologists face great issues in performing 
their work duties due to the inefficacy of proper hydrological data. Sometimes even 
if the data are available, their consistency is not satisfactory.  

Of prominent importance, is the measurements of rainfall. The traditional rain gauge 
provides fairly accurate point measurements. However, there may also be a 
requirement for detailed measurements of the rainfall distribution over an extended 
area. The recent technological advancements have brought RS techniques, i.e., radar 
and satellite, to the field of hydrometeorology. It is likely that radar techniques will 
become the standard method of meeting these requirements at a catchment scale, 
because of the unique capability of radar to observe the areal distribution as well as 
temporal dynamics of precipitation. Also, this technology enables collection of the 
data from a centralized site. Thus, the maintenance is easier and the data from 
several regions (e.g., municipalities) can be immediately available for the users. A 
complete background review about this technology can be found in Harrold (1965), 
and Kessler (1966) regardless of the early-stage challenges faced at that time for the 
practical applications. A detailed report on the hydrometeorological application of 
radar data is documented in Browning (1978). Due to the immense technological 
progress, advancement in radar hardware, data processing, and data and signal 
analysis, the application of WR has become more common (Einfalt et al., 2004).  

2.2.2 Types of WRs 
The most common types of WRs worldwide include S-band, C-band, and X-band 
WRs. These radars scan the atmosphere in one or multiple elevation angles (levels) 
to generate a full azimuthal volume. The temporal resolution for each 360-degree 
scan depends on the rotational speed of the radar and the number of scanning 
elevations. Radars take the instantaneous reading of precipitation rate; so, the 
temporal resolution becomes very important for determining the actual rainfall 
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intensity. All the WRs usually obtain the reflectivity scans with certain time 
intervals. Temporal resolution, in general, roughly varies 10-15 min in the case of 
S-band, 5-10 min in the case of C-band and, 1-5 min in the case of X-WRs. The 
spatial resolution of these WRs also varies among 1000-4000 m for S-band, 200-
2000 m for C-band, and 50-1000 m for X-band. The observational range could be 
limited to as large as 100-200 km for S-band, 100-150 km for C-band, and 30-70 
km for X-band (Table 3). There are also other types of radar for only research 
purposes that are designed for high-resolution rainfall monitoring as high as 15 s in 
particular areas (Van de Beek et al., 2010; Mishra et al., 2016). Typical operating 
resolutions and maximum ranges for different types of WRs suggest that the X-WR 
gives higher temporal and spatial resolution compared to C- and S-band radars while 
covering shorter range (Table 3).  

Table 3. Technical specifications for the typical X-, C-, and S-band WRs. 
Parameters  X-band  C-band S-band 
Observation range (radius)  30 - 70 km 100 - 150 km 100 – 200 km 
Temporal resolution 1 min 5 - 10 min 10 - 15 min 
Spatial resolution 0.05 - 1 km 0.2 - 2 km 1 - 4 km 
Antenna diameter 1 – 2 m Up to 4 m  Up to 8 m 
Wavelength  2.5 - 4 cm 4 - 8 cm 8 - 15 cm 

 

Given the specifications above, X-WR seems to be appropriate for hydrological 
applications. According to a Web of Science search regarding the radar bands used 
in hydrology context, X-band and C-band WRs showed higher frequency than S-
band during the past decade using the search phrases in Table 4. It should be noted 
that the total number of results without specifying the desired band was much higher 
(i.e., 1003) than individual band searches and the results should be considered as 
rough estimations of the importance. 

 Table 4. Web of Science search results showing the importance and interest of X-band WR in the hydrology literature 
over the past decade. 

Search phrase Years Number of results 
(TI=(radar AND (rain* OR precipitation)) OR AB=(radar AND (rain* OR 
precipitation))) AND TS=(hydrolog*) 

2012 – 2021 1003 

(TI=(X-band AND radar AND (rain* OR precipitation)) OR AB=(X-band 
AND radar AND (rain* OR precipitation))) AND TS=(hydrolog*) 

2012 – 2021 58 

(TI=(C-band AND radar AND (rain* OR precipitation)) OR AB=(C-band 
AND radar AND (rain* OR precipitation))) AND TS=(hydrolog*) 

2012 – 2021 57 

(TI=(S-band AND radar AND (rain* OR precipitation)) OR AB=(S-band 
AND radar AND (rain* OR precipitation))) AND TS=(hydrolog*) 

2012 – 2021 24 

 
The hardware specification and physics of the radar determine the spatial resolution 
of the rainfall data. Usually, X-WR has a shorter range and smaller antennas than 
C- and S-band radars therefore it typically functions with a finer radial resolution, 
and it can operate as low as 100-500 m spatial resolution. For this, recent studies 
suggest the use of observations at X-band frequency as an alternative or an addition 
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to S- and C-bands data (Lengfeld et al., 2013; Lengfeld et al., 2014; Trabal et al., 
2013) to fulfil the requirements of urban drainage system modelling, rainfall–runoff 
models of rural river systems, hydraulic simulations, detailed information on 
extreme events, and many more. Besides higher resolution, radars operating at high 
frequencies benefit from lower costs resulting from smaller antenna size compared 
to long-wave radars. X-WRs can also derive reliable precipitation estimates close to 
the ground due to their relatively short range. S- or C-band radars measure within a 
range of hundreds of kilometres therefore, they cannot observe rainfall near the 
ground as the radar beam increases in height with increasing distance to the radar 
due to the elevation angle and the Earth’s curvature. Also, measurements taken at a 
few kilometres in height above the Earth’s surface need to be extrapolated to give 
an estimation of rainfall on the ground. These techniques are limited and imprecise, 
leading to large uncertainties in estimated reflectivity. In the last few years, the 
number of worldwide operational X-band WRs has rapidly been growing, thanks to 
an established technology that offers reliability, high performance, and reduced 
efforts and costs for installation and maintenance with respect to the more 
widespread C- and S-band systems, especially for small basins or urban areas (e.g., 
Antonini et al., 2014; Antonini et al., 2017; Shah et al. 2015; Chandrasekar et al. 
2012; Van de Beek et al., 2010; Lengfeld et al., 2014). A report by the World 
Meteorological Organization (WMO) (Büyükbaş, 2009) states that the number of 
X-band WRs in use in WMO member countries has grown to almost 20% of the 
counted radars.  

The C-band and S-band radars are more commonly used instruments for rainfall 
quantification as these radars do not suffer from signal attenuation as strongly as the 
X-WR (Van de Beek et al., 2010). This is because the X-WR has a shorter 
wavelength however, it can produce higher-resolution rainfall data with only a small 
antenna. This feature, in turn, makes the X-WR an affordable instrument for the 
spatial measurement of rainfall over distances as long as the signal attenuation is 
not a major problem (30-70 km radius). This characteristic has attracted the 
hydrometeorologists’ attention, as early as 1980s, for better quantification of the 
rainfall and better water management due to the higher frequency and shorter 
wavelength of the X-WR.  

In the 1980s and 1990s many universities and national institutes around the world 
employed mobile X-band Doppler radars to investigate the inner structures of rain 
and snow (Sharif and Ogden, 2014). For this, the X-WR is mounted in the back of 
the truck to chase the storms and quantify the local precipitation. However, recent 
studies suggest the X-WR as an alternative or addition to the C- and S-band radars 
to meet the urban drainage system modelling and urban flood warning system. Thus, 
the X-WR started to be installed in stationary condition on high ground and 
buildings for accurate real-time monitoring of rainfall events within the radar range, 
particularly, in the urban areas such as the X-WRs studied in this dissertation in 
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southern Sweden (Paper II and Paper IV) or those studied by VeVa collaborating 
initiated in the neighbouring country, Denmark (http://www.veva.dk/).  

2.2.3 WR measurements and variables 
The use of radar rainfall data has become very popular due to its accuracy and 
particularly due to its spatial and temporal resolution. WRs cannot measure 
precipitation directly; they measure reflectivity from particles along the radar’s 
signal path. The polarimetric radar variables are reflectivity factor at horizontal 
polarization (ZH, or DBZH when presented in decibel by base 10 logarithm of the 
result of the division of ZH with the equivalent reflectivity of a 1 mm drop in a cubic 
meter volume), differential reflectivity (ZDR), differential propagation phase shift 
(PHIDP), specific differential phase (KDP), and the co-polar correlation coefficient 
(CC or ρhv). Using this information, the WR retrieval data are analysed to obtain 
the precipitation rate. Quantitative precipitation measurements with conventional 
X-, C-, or S-band WRs are conventionally based on the theoretical relationship 
between radar signal power, reflectivity, and rain intensity (Marshall and Palmer, 
1948). The radar data are further processed to obtain the precipitation data and for 
that, the radar needs to be calibrated and validated accordingly.  

2.2.4 Challenges and approaches 
Validation and calibration of WR data are very important steps before the data can 
be utilized in hydrometeorological applications. The first step is to validate the 
rainfall data product obtained from retrieval data against the gauge measurement. 
As radar data is a type of remotely sensed data, one can expect discrepancies 
between the radar data and that of the rain gauges. For this, it is important that the 
radar data are well-calibrated and adjusted to obtain valid quantitative precipitation 
estimates. The common approach for calibration of X-WR data is to use the rain 
gauge data installed at different places in the catchment. The radar rainfall estimates 
are purely based on the empirical relationship between radar reflectivity and rain 
intensity that needs to be validated and calibrated using other types of ground 
measurements. These types of empirical calibration/validation have previously been 
documented by e.g., Jensen and Pedersen (2005), Rollenbeck and Bendix (2006), 
Pedersen et al. (2008; 2010), and Thorndahl and Rasmussen (2012).  

Contrary to the long wavelengths of the C- and S-band radars, reflectivity 
measurement at the shorter wavelength, X-band, is largely attenuated by liquid 
water along the signal path. The rainfall signal attenuation at any distance depends 
on the drop size, distribution, and intensity of the rainfall/drops (Lengfeld et al., 
2014). In severe cases, i.e., very high-intensity rain events, the X-WR is completely 
blocked, and no rainfall is recorded beyond the rain hotspot. This is seen as the 
major technical limitation of the X-WR in applications. To deal with this problem, 
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many scholars have suggested the implementation of a radar network. The network 
can consist of two or more X-WRs or a combination of C- or S-band with the X-
WRs.  

As illustrated in Figure 2, overshooting is another important source of error at large 
distances from the radar site, especially related to the higher-level scans. 

 

Figure 2. An example schematic illustrating how the rainfall from a cloud at an elevation of 3 km can be treated 
diversely with different levels (elevation angles) of the radar for different ranges.   

WR data are typically produced and stored in polar coordinates that are cantered on 
the radar instrument, meaning that the radar sampling volume increases with the 
distance from the radar beam. Although, this type of dataset is applicable in weather 
forecast and meteorology, in other applications, i.e., hydrology, other coordinate 
systems are required. Furthermore, in many environmental applications, the WR 
data need to be integrated with geospatial data that are based on the Cartesian 
coordinate system (Sharif and Ogden, 2014).  

In view of the above, the produced Polar coordinate data need to be converted to the 
Cartesian coordinate system. This, sometimes, requires high computational work, 
which may not be an issue considering contemporary computing technology. Data 
storage might be another practical limitation as the X-WR retrieves the rainfall 
return signal at up to six different levels around the radar and up to ~50-70 km radius 
every minute.  

2.2.5 Radar hydrology and runoff applications 
The impact of climate change on increased extreme rainfall events in many parts of 
the world calls for the development of a more efficient hydrological modelling. 
Based on the characteristics of urban hydrology and quick response time of runoff 
due to a higher percentage of impervious surfaces, higher temporal and spatial 
resolution rainfall data are an essential input to hydrological models to accurately 
simulate runoff and eventually proper design of the drainage system. Further, it is 
evident from previous studies that the uncertainty in urban hydrological models is 
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mainly due to errors in rainfall data (e.g., Willems, 2001; Thorndahl et al., 2008; 
Schellart et al., 2012).  

Many researchers around the world have applied the high-resolution WR data to 
achieve accurate rainfall estimates for use in urban hydrology (e.g., Austin and 
Austin, 1974; Yuan et al., 1999; Han et al. 2000; Tilford et al., 2002; Smith et al., 
2007; Krämer and Verworn, 2009; Villarini et al., 2010; Gires et al., 2012; Schellart 
et al., 2012; Schellart et al., 2014; Goormans and Willems, 2013). It is recommended 
that high-resolution spatial and temporal rainfall data, less than 100 m and 1 min, 
respectively, near the ground surface, are required for proper urban hydrological 
studies (Einfalt, 2003). 

Although there has been a significant development in radar technology, i.e., 
hardware, signal processing, algorithms, etc., there are still differences between the 
rain gauge measurement and radar estimates. The quality for rainfall estimation 
relies on the methods and thorough knowledge of atmospheric physics and basic 
radar principles such as antennas, frequencies, bandwidths, polarization and 
processing the data for attenuation, removal of clutter, and conversion of reflectivity 
to rainfall. These fundamental facts and applications regarding WR have been 
described in detail in Bringi and Chandrasekar (2001), Meischner (2005), Doviak 
and Zrnic (2006), Michaelides (2008), Marshall and Palmer (1945), Austin and 
Austin (1974), Wilson and Brandes (1979), Smith and Krajewski (1991), Krajewski 
and Smith (2002), Einfalt et al. (2004), Delrieu et al. (2009), Krajewski et al. (2010), 
Villarini and Krajewski (2010), and Berne and Krajewski (2013). 

In the following sections, the installed X-WR during the summer of 2018 in Dalby, 
southern Sweden is described and the radar processing algorithm and validation 
against a few rain gauges in the area is explained (mostly related to Paper II). Paper 
IV gives more examples of the single radar performance before calibration and after 
calibration with merging two X-WRs. 
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3 Study Areas and Data 

3.1 Study areas 

3.1.1 Iran (Paper I) 
Iran is a mostly arid and semi-arid country located in Western Asia and is 
surrounded by Azerbaijan, Armenia, Caspian Sea, and Turkmenistan in the north, 
Oman Sea and Persian Gulf in the south, Turkey, Iraq, and Kuwait in the west, and 
Afghanistan and Pakistan in the East (Fig. 3).  

 

Figure 3. A google map terrain view of Iran in western Asia. 
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Two high mountain ranges spreading from the northwest to northeast (Alborz) and 
from the northwest to central south (Zagros) generally limit the northern and western 
fronts to the central and eastern parts. Then, a majority of the central and eastern 
parts are deserts with low precipitation while maximum precipitations fall over 
north coasts with the Caspian see and western part of the country (Fig. 4). 

 
Figure 4. Background map of topography of Iran, labelled contourlines indicate mean annual precipitation by 
interpolating synoptic measurements at the stations denoted by colour-filled circles. Colour of circles shows rainfall 
index equal to the annual precipitation divided by average duration of dry spells using daily data (Paper I) 

3.1.2 Karkheh River Basin (Papers III and V) 
Karkheh River is among the three most hydrologically productive rivers of Iran that 
flows in west and southwest Iran until it ends at the Hawizeh Marshes or Hoor-al-
Azim on Iran-Iraq border (Fig. 5). Majority of the river basin area that is located in 
Zagros mountains, upstream area of the Karkheh Dam, is studied in Papers III and 
V. The study area is divided into five sub-areas (labelled by letters A to E in Figs. 
5) that comprise the following sub-catchment areas: Gamasiab (A: 11,500 km2), 
Qarasu (B: 5,500 km2), Seymareh (A, B, and C: 29,400 km2), Kashkan (D: 9,500 
km2), and, KRB, the entire catchment area of Karkheh Dam, which is located at the 
outlet of the basin  (A, B, C, D, and E: 42,900 km2).   
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Figure 5. The location of Karkheh River in west and southwest Iran including the sub-catchment areas in Zagros 
Mountains: Gamasiab (A), Qarasu (B), Seymareh (A, B, and C), Kashkan (D), and KRB, the entire catchment area of 
Karkheh Dam, (A, B, C, D, and E). 

Being in operation since 2002, Karkheh reservoir, at the outlet of KRB, is the largest 
artificial lake in the country and has experienced reduction of inflow that could 
affect hydropower generation, food production, and vulnerable wetlands 
downstream. Increased upstream water withdrawals due to increased population and 
agricultural development, as well as impacts of global warming are considered 
important factors. However, lack of knowledge about the share of each factor could 
exacerbate the condition due to additional uncertainties in the undertaken 
management strategies. Therefore, Paper V, used a Budyko approach, supported by 
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hydrological modelling (using HBV), to separate impacts of climate variation and 
human activities on runoff for the sub-catchments of KRB. 

3.1.3 X-band WRs in south Sweden (Paper II and IV) 
The X-WRs in Sweden were installed for in Dalby and Helsingborg Cities, southern 
Sweden, in 2019 and 2020, for operational use by VA Syd and NSVA, respectively 
(Fig. 6). Prior to that, a pilot test installed the same device in Dalby. The technical 
specifications of the X-WRs are listed in Table 5 according to the manufacturer. 

 

Figure 6. The two X-band WRs in southern Sweden covering multiple tipping bucket rain gauges in the overlapping 
coverage and beyond by VA Syd and NSVA. The coloured polygons labelled 1-4 are four zones that encompassed all 
the 38 tipping buckets (and an example SMHI gauge at Hörby) in the overlapping area. The boundaries of the polygons 
were defined based on three rings around each X-WR corresponding to the one-third, two-thirds and full range radiuses. 
The two blue regtangles are bounding boxes for two sub-catchment areas of the Lundakra and Ellinge treatment plants. 
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Table 5. Specifications of the Compact Dual Polarimetric X-band Doppler Weather Radar WR-2100 (FURUNO). 
Parameters  Descriptions 
Antenna Polarity Dual polarimetric (Vertical and Horizontal), Simultaneous transmission/receiving 
Operating Frequency 9.4 GHz band 
Beam Width 2.7 degrees (both horizontal and vertical beams) 
Peak Output Power 100 W (both horizontal and vertical beams) 
Vertical Scan Angle -2 to 182 degrees (adjustable) 
Antenna Rotation Speed 16 rpm max. (adjustable) 
Observation Range 60 km max. 
Scan Modes PPI, Volume Scan, Sector PPI, Sector RHI 
Output Parameters Reflectivity factor Zh (dBZ), Doppler velocity V (m/s), Doppler velocity width W 

(m/s), Cross polarization difference phase φdp (deg), Specific differential phase 
KDP (deg/km), Correlation coefficient between two polarizations ρHV, Differential 
reflectivity factor ZDR, Rainfall intensity R (mm/h) (see Appendix 1) 

Data Correction Distance attenuation, Rain attenuation, Doppler Velocity Folding 
Doppler Speed +/-48 m/s 
Unwanted Signal Removal Land and vessel clutter suppression and Interference Rejection 
Operating Temperature -10 to +50 °C 
Maximum Wind Survival 
Speed 

60 m/s 

Power Supply 100-240 VAC, Single Phase, 50/60 Hz 

 

Paper II studied the single X-WR in Dalby during the pilot test (3-July-2018 14:14 
UTC to 12-Sep-2018 12:21 UTC), while Paper IV studied the overlapping coverage 
area of the two X-WRs in Dalby and Helsingborg for May-September 2021. 
Therefore, Figure 6 shows the coverage of the two X-WRs with some additional 
information such as the location of tipping bucket rain gauges operated by the water 
utility companies of VA Syd and NSVA (coloured points). Those gauges used for 
the pilot test (Paper II) of a single X-WR in Dalby are indicated with a white vertical 
line crossing the blue points. These and all the other gauges within the overlapping 
area were used in Paper IV for evaluating both the single and merged X-WR rainfall 
estimations. Merging data from two X-WRs (Paper IV) was needed because of 
inconsistent rainfall estimation with single radar and single levels depending on the 
range and elevation angle of the sampling location of radar. 

3.2 Study Data  

3.2.1 Synoptic weather stations data (Paper I) 
All synoptic stations shown in Figure 4 with available daily precipitation data across 
Iran were studied as ground truth for the GPM-IMERG products (Paper I) during 
the study period April 2014 to December 2017. In total, 403 stations were under 
operation across the country during the study period, of which 368 and 349 had at 
least two and three years of daily records, respectively.  
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3.2.2 GPM-IMERG products (Papers I and III) 
The GPM-IMERG precipitation data used for ground validation (Paper I) included 
three daily products (IMERG-Early, -Late, and -Final) and a monthly product 
(IMERG-Monthly). The spatial resolution of all the IMERG products were 0.1° × 
0.1° (about 11 km on the equator). The ground validation analyses were made at 
daily, monthly, and annual time scales by comparing the observations of each station 
with the corresponding grid encompassing the station.  

The two near real-time runs of the IMERG algorithm give IMERG-Early and 
IMERG-Late products originally in half-hourly time scale with about 4 hours 
(shorter for the second halves of hours) and 14 hours (shorter for recent data) 
latency, respectively. IMERG-Late uses data from more satellites than IMERG-
Early and, can employ a two-way (forward and backward) morphing process as it 
includes two overpasses of the satellites. The IMERG-Final is a bias-corrected 
product relying on monthly observations from the global rain gauge network GPCC 
(Global Precipitation Climatology Centre). Therefore, it is available with a 
minimum latency of 3.5 months and cannot be useful for near-real time applications. 
NASA comments that IMERG-Late and IMERG-Final products are similar (mainly 
over oceans, and, to a lesser extent, over land). 

For the satellite-based monthly runoff modelling in KRB (Paper III), data from the 
IMERG-Late product were used for all grids whose centres were within the 
boundary of the sub-catchments Gamasiab, Qarasu, Seymareh, Kashkan, and KRB 
as defined in Figure 5. It should be noted that the available IMERG product data for 
Paper III were from June 2000 (Version 6) while the data for Paper I were from the 
previous version (when IMERG was only run for the GPM era from 2014). 

3.2.3 MODIS Terra data and products (Paper III) 
As part of the satellite data-driven modelling of monthly runoff in KRB (Paper III), 
a few MODIS Terra satellite-based input variables were used (along with IMERG-
Late) to consider the effects such as evapotranspiration, vegetation index and soil 
moisture. MODIS stands for the Moderate Resolution Imaging Spectroradiometer, 
and Terra is one of the two satellites for MODIS program that together observe the 
entire Earth every 1–2 days in 36 wavelength bands with different resolutions (250, 
500, and 1000 m for different bands). The composite (combination of other data 
sources and Terra data) and band data from MODIS that were used for monthly 
runoff modelling in KRB are as summarized in Table 6.  

It is noted that the length of record, spatial resolution and revisit time are important 
aspects of RS data to be used in hydrological modelling. Despite the higher 
resolution and temporal coverage of Landsat, in comparison to MODIS, (30–100 
vs. 250–1000 m), it has a longer revisit time (16 days vs. daily). Also, geostationary 
satellites with rather continuous temporal resolution usually operate at too coarse 
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spatial resolution. Sentinel 2A and 2B, that together present a more balanced 
spatiotemporal resolution (5–10 days and 10–60 m) has limited length of records 
(since 2015 and 2017, respectively).  

Table 6. MODIS Terra product or band data used for monthly runoff modelling in KRB (Paper III). 
MODIS Terra product Variables Resolution 
MOD16A2v006 (Running et al., 2019) 
composite product data 

Evapotranspiration actual (ET) and 
potential (PET) 

8-day and 500-m 

MOD13A3v006 (Didan et al., 2015) product 
and band data 

* Normalized Difference Vegetation 
Index (NDVI) and band 7 (B7) 

Monthly and 1-km 

* studies used B7 (Chu, 2018) and NDVI (Wang et al., 2007) as predictor variables for soil moisture estimation. 

3.2.4 Runoff data (Paper III and V) 
Monthly average flow data at the outlet of the five Karkheh sub-catchments (as 
defined in Fig. 5) were studied as reference for calibration and verification of 
satellite data driven monthly runoff modelling (Paper III). Daily runoff data were 
used in Paper V as input to the HBV runoff modelling for the same sub-catchments. 
Figure 7 illustrates a statistical overview of the runoff values during the common 
period between September 1999 to September 2017 (corresponding to 18 complete 
water years in Iran) 

 

Figure 7. Variation of mean (a), coefficient of variation (b), skewness (c), and kurtosis (d) of the average monthly 
runoff by catchment size for the five sub-catchment areas of KRB during September 1999-September 2017. 
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The average of mean monthly runoff at the outlet of Gamasiab, Qarasu, Seymareh, 
Kashkan, and KRB was about 16.3, 11.8, 54.2, 34.4, 104.3 m3 s-1, respectively (Fig. 
7a). As shown in Figure 7a, the mean runoff increases by catchment size. However, 
the coefficient of variation (standard error normalized by mean runoff), skewness 
(asymmetry compared to normal distribution), and kurtosis (degree of presence of 
outliers in the distribution) decrease by catchment size (Figs. 7b-d). 

3.2.5 Tipping buckets data (Papers II and IV) 
The tipping bucket data were used as reference for rainfall data validation estimated 
by the X-WRs. The distribution of these gauges in the study areas is shown in Figure 
6. It is noted that the number of tipping buckets in the overlapping coverage area of 
the two X-WRs was 38 (29 by VA Syd and 9 by NSVA) in 2021 and lower in the 
past. The location information is listed in Table 7. 
Table 7. Latitude and lingitude of the tipping bucket rain gauges located in the overlapping coverage of the X-WRs in 
Dalby and Helsingborg at their max range of 50 and 70 km, respectively (the first 29 gauges are for VA Syd and the 
remaining ones for NSVA). 

No. Stations Latit. Longit. No. Stations Latit. Longit. 
1  Arlöv PST* 55.636 13.059 20 Turbinen PST* 55.605 12.982 
2 Arlöv NYA 55.627 13.110 21 Limhamn PST 55.585 12.924 
3 Eslöv VV 55.846 13.302 22 Augustenborg 55.577 13.027 
4 Marieholm PST 55.867 13.136 23 Bulltofta VV 55.610 13.069 
5 Billinge VV 55.964 13.330 24 Hammars Park PST* 55.570 12.915 
6 Kungshult VV 55.854 13.417 25 Höja TS 55.583 13.068 
7 Löberöd PST 55.773 13.519 26 Klagshamn ARV 55.525 12.904 
8 Örtofta PST 55.777 13.243 27 Sjölunda ARV 55.633 13.042 
9 Harlösa ARV 55.714 13.514 28 Oxie PST 55.555 13.107 
10 Ellinge ARV 55.824 13.303 29 Rosendal PST 55.609 13.027 
11 Lomma Hamn 55.676 13.068 30 Asmundtorp 12.943 55.880 
12 Bjärred TS 55.725 13.035 31 Billeberga 13.000 55.885 
13 Norra Verket TS 55.712 13.204 32 Billesholm 12.986 56.061 
14 Dalby Godemansvägen* 55.672 13.347 33 Ekeby 12.978 56.004 
15 Genarp PST 55.608 13.397 34 Landskrona 12.853 55.869 
16 Södra Sandby PST* 55.721 13.365 35 Landskrona p14 12.829 55.888 
17 Veberöd TS 55.642 13.492 36 Lundåkra 12.849 55.865 
18 Lund Råbyvägen* 55.694 13.208 37 Teckomatorp 13.073 55.870 
19 Källby ARV 55.694 13.164 38 Vallåkra 12.854 55.966 

* The gauges used in the pilot test (Paper II). 

Every record of the rain gauge, tipping bucket type, had a resolution equal to 0.2 
mm rain-depth. Therefore, the temporal resolution of the gauge observations could 
vary by rainfall intensity. For a consistent use of tipping buckets as reference for 
radar estimations (originally at minute scale), event-based cumulative rainfall 
hyetographs (in Paper II) and 5-min aggregations (in Paper IV) were used. 

It is worth mentioning that the study period for Papers II, and IV was in summer 
2018, and summer 2021, respectively. Hence, the rainfall terminology was preferred 
over precipitation in the X-WR context of this dissertation. 
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4 Methodology 

4.1 Ground validation of satellite precipitation (Paper I) 

4.1.1 Statistical analyses 
The ground validation of the GPM-IMERG satellite precipitation products was 
performed by comparing all the available gauge-satellite data pairs. Satellite data 
from GPM-IMERG were available in grids of 0.1°×0.1° size. The equivalent ground 
truth data were collected from the synoptic gauges across Iran as shown in Figure 
4. The statistical criteria were defined as listed below: 

- Mean absolute error: MAE = ∑ |ௌ೔ିை೔|೙೔సభ ே     (1) 

- Correlation coefficient: CC = ∑ ሺௌ೔ିௌ̅ሻሺை೔ିைതሻ౤౟సభට∑ ሺௌ೔ିௌ̅ሻ ∑ ሺை೔ିைതሻ೙೔సభ౤౟సభ   (2) 

- Relative bias: rBIAS = ∑ ሺௌ೔ିை೔ሻ೙೔సభ∑ ை೔೙೔సభ  𝑜𝑟  ௌ̅ି ைതைത    (3) 

- Probability of detection: POD = ୬భభ୬భభା୬భబ × 100  (4) 

- False alarm ratio: FAR = ୬బభ୬భభା୬బభ × 100   (5) 

- Percentage frequency of overestimations: Over = 100 × ேଵே  (6) 

- Percentage frequency of underestimations: Under = 100 × ேଶே  (7) 

- Percentage frequency of close estimations: Equal = 100 × ேିேଵିேଶே  (8) 

where 𝑆௜ and 𝑂௜ are satellite estimation and gauge observation at time i, respectively. nଵଵ, n଴ଵ, and nଵ଴ denote the number of times that satellite and gauge both detected 
rain, satellite did not confirm the gauge record, and gauge did not confirm the 
satellite record, respectively. N is total number of the compared satellite-gauge data 
pairs. N1 is the number of times that 𝑆௜ − 𝑂௜ is bigger than 0.25 mm d-1 or 0.1×𝑂௜ 
while N2 is the number of times that 𝑂௜ − 𝑆௜ is bigger than 0.25 mm d-1 or 0.1×𝑂௜. 
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There are several statistical criteria used for the ground validation of satellite 
precipitation (Wang et al., 2017). Some of them such as mean absolute error (MAE) 
and relative bias (rBIAS) measure the error between the two datasets and some 
others, such as the probability of detection (POD) and false alarm ratio (FAR), 
evaluate the detecting abilities of the satellite sensors. By focusing on the 
dependency of these criteria on the nature of rainfall and considering that what 
(point) is being compared to what (grid), these statistics might not show the actual 
reliability of the satellite datasets in a region or compared to other locations with 
completely different nature of rainfall. For example, MAE is the average magnitude 
of the individual errors, so lower values of it are generally favourable. However, it 
can result in a misleading interpretation. For example, in a dry location with a 
percentage of zero values higher than 90%, where intense rainfalls are then rare, 
MAE will not reflect it if there are a few huge individual errors related to the extreme 
weather which are important to estimate. On the other hand, rBIAS calculates the 
accumulated individual errors (overall bias) relative to the accumulated observed 
rainfall during the period of comparison, so it can show both the overall 
under/overestimations (according to the negative or positive sign) and a comparable 
bias value for different locations. Anyway, the use of MAE together with rBIAS is 
essential. While a low magnitude of both MAE and rBIAS implies stronger evidence 
of a good performance of the satellite product, a combination of a large magnitude 
of rBIAS with a low MAE for a site may be due to a -usually- low magnitude of 
individual errors a long with a few huge errors. This situation is more likely to 
appear for dryer sites with a higher frequency of minor rainfalls. Also, a low 
magnitude of rBIAS should not be ignored if a large MAE exists. Furthermore, a 
low magnitude of rBIAS means that the total amount of rainfall observed in a site 
is closely estimated by the satellite product during the period of comparison, in 
another word, the sum of the positive individual errors is almost equal to the sum of 
the absolute values of the negative individual errors, regardless of the magnitude of 
the individual errors or correlation between the two datasets. 

4.1.2 Geospatial and temporal analyses 
To assess whether the performance of IMERG products could be related to the 
geospatial, climatic factors, or time of the year, the indices introduced above were 
separately calculated for some regional categories based on elevation, slope, 
latitude, longitude, and rainfall index (i.e., average annual rainfall/mean dry period) 
as well as temporal categories such as months and seasons. The calculated indices 
for each category can then be illustrated by box plots. Such analyses help to discern 
dependencies of the satellite precipitation performance to different factors, which is 
useful for the selection of input variables for bias corrections. 
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4.2 Evaluation of radar rainfall (Papers II and IV) 
Theoretically, the radial resolution (range resolution) is a function of radar pulse 
length, therefore, could be very small. In practice, however, it is governed by the 
storage and data transmission limitations (Thorndahl et al. 2017). The range 
resolution for the radar in Dalby was set at the fixed intervals of 50 meters during 
the pilot and operational use. Table 8 presents the bin area and the equivalent 
rectangle width in different ranges of the radar. As an example, the equivalent 
rectangle for a bin area in the range of 1 km is 50×47 m2 (0.24×10-2 km2) while it 
increases to 50×471 m2 (2.4×10-2 km2) in the range of 10 km for 2.7º beam width. 
The average heights of the sample boxes as a function of distance from the radar 
location (range) are presented in Table 8. For example, while the sampling volume 
in the 6 km range of the radar in the first scanning level is almost 200 meter above 
the ground, for the ranges as much as 40 km the sample volume from the fourth 
elevation scan has around 7 km height (Table 8).  
Table 8. Estimated radar bins, the equivalent rectangle width, and sampling height in different ranges of Dalby XR. 

Range 
(km) 

Radar bin area 
(×10-2 km2 or hectare) 

Equivalent 
rectangle width (m) 

Sampling box height above the horizon for 
different elevation scans (m) 

   L1 (2°) L2 (4°) L3 (8°) L4 (10°) 
0.05 0.01 2.4 1.7 3.5 7.0 8.8 
0.5 0.12 24 17 35 70 88 
1 0.24 47 35 70 141 176 
5 1.2 236 175 350 703 882 
6 1.4 283 210 420 843 1058 
10 2.4 471 349 699 1405 1763 
19 4.5 895 663 1329 2670 3350 
20 4.7 942 698 1399 2811 3527 
30 7.1 1414 1048 2098 4216 5290 
40 9.4 1885 1397 2797 5622 7053 
50 11.8 2356 1746 3496 7027 8816 

 

The X-WRs in southern Sweden give a rainfall estimation using a built-in procedure 
to the X-WRs. The underlying equations for these single level rainfall estimations, 
which are named RATE by the manufacturer involve three dual polarization 
variables, namely, DBZH, ZDR, and KDP (these variables were introduced earlier 
in section 2.2.3), using the equations described in Paper II. Radar rainfall equations 
are usually based on the Marshall-Palmer relationship, representing an exponential 
relationship between the radar reflectivity measurements and rainfall intensity. 
RATE product of the X-WRs used the same relationship with a corrected horizontal 
reflectivity (DBZH) based on ZDR and KDP (Paper II). 
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4.2.1 Evaluating RATE using tipping buckets (Papers II and IV) 
The dual polarization observations and RATE calculations for the X-WRs were at 
the azimuthal sweeps of less than 0.5° and the radial resolution of less than 100 m 
at a revisit (overpass) time interval of about one minute at each elevation angle 
scans. To evaluate the high-resolution precipitation estimations by such radars, local 
tipping bucket rain gauges (as shown in Fig. 6) data were used in two ways:  

- Visual investigations using cumulative and non-cumulative hyetographs 
(Paper II: using the Dalby X-WR) 

- Statistical analyses of 5-min aggregated data using some goodness-fit-
criteria as well as quantile-quantile plot (Paper IV: using the both X-WRs) 

The equivalent radar data for a gauge location could be based on the closest radar 
bin (the projection of each radar sampling volume on the cartesian plane). 

Hyetographs 
The hyetographs showed rainfall depth data distribution (in cumulative or non-
cumulative form) over time using bar charts for gauges and lines for RATE data at 
every 1-min timestep. In the cumulative form, for example, a hyetograph could look 
like as in Figure 8. An interpolated rainfall estimation that is also presented in this 
figure will be described in the following section. 

 
Figure 8. Cumulative hyetograph during the first 30-min period of a rainfall event observed in Arlöv gauge station in 
summer 2018. In this example, radar shows RATE data from the closest bin of the Dalby X-WR at elevation angle 
10°. Radar-interp, stands for the interpolated (weighted average) rainfall from the adjacent bins that intersected the 
closest bin. 
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4.2.2 Projection to cartesian 
Figure 9 shows how bins of a radar are distributed over the ground in comparison 
to the square grids due to the polar observations.  

 

Figure 9. Typical intersections of the 150m × 1º polar radar bins (red) with the 1000 m × 1000 m square grids (black) 
(Sharif and Ogden, 2014). 

According to the specifications of the X-WRs presented in Table 5, the beam angle 
was 2.7°. Therefore, the average azimuthal change for every sweep (<0.5°) was a 
few times smaller than the beam width. Thus, there are overlaps for adjacent bins 
from a few neighbouring scan-lines. Figure 10 shows an example of three 
consecutive sweeps (scanline) illustrated in three different colours (red, grey, and 
green in a clockwise azimuthal direction, respectively). Accordingly, an exemplary 
radar bin of size 50 m × 2.7º from Dalby X-WR, which is located between 4.95 km 
and 5.00 km ranges and azimuthal angles of 358.2º–0.9º (marked in bold black in 
Fig. 10), can be divided into three areas a1, a2, and a3. While the radar only reports 
the rainfall obtained from the grey scanline for this bin, the information from other 
scanlines (red and green) can be disregarded. From the simple arithmetic 
relationships (inspired by Sharif and Ogden, 2014), the radar output can be adjusted 
by considering the information from all the scanlines with an overlap area within a 
given bin. For the bin highlighted in Figure 10, this can be presented as: 𝑅 − 𝑖𝑛𝑡𝑟𝑝 =  ோೝሺ௔భା௔మሻା ோሺ௔భା௔మା௔యሻା ோ೒ሺ௔మା௔యሻଶሺ௔భା௔యሻାଷ௔మ    (9)
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where R is the RATE reported for the bin by X-WR while R-interp is the amount 
obtained after considering Rr and Rg, the other RATEs from two adjacent scanlines 
(red and green, respectively) with overlaps within the initial scanline. 

 

Figure 10. Schematic of three consecutive sweeps (scanlines) of the radar in a few ranges around 5 km, in red, grey 
and green in a clockwise azimuthal direction, respectively. 

Thus, the programmed code is capable of interpolating the retrieval data for the 
existing radar bins by giving a weight to each neighbouring bin based on its 
overlapping area within the target bin. It is estimated that depending on the spatial 
complexity of the local rainstorm, there are differences between the interpolated and 
raw data of radar.  

In many applications of WRs, such as for weather warning systems, remapping to 
regular grids is inevitable for integrating meteorological information from different 
sources such as networks of X-, S-, and C-band radars, satellites, and weather 
stations, which are typically sampled in different coordinate systems. Also, 
providing inputs to the hydrological models requires rainfall amounts presented in 
regular grids (Sharif and Ogden, 2014).  

4.3 Satellite data driven runoff modelling by ANN 
In remote mountainous catchments where weather stations are lacking, it is not 
possible to locally validate the accuracy of RS data. So, the calibration of 
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conceptually based runoff models that usually require accurate inputs can be 
challenging. The computationally advanced data driven models such as artificial 
neural networks (ANNs) that are skilful in non-linear function fitting may indirectly 
consider the bias correction of satellite inputs when modelling runoff. However, in 
large catchments, the wealth of input variables from many satellite grids may not be 
easily useful without physical equations. As a result, more collective input variable 
would be generally preferred. Although the use of average precipitation over 
catchment could be a basic input, Paper III introduced a few new collective input 
variables based on the areal coverage ratio of satellite precipitation over the 
catchment. Accordingly, to have more than one input variable of this type, coverage 
ratios for a few categories of total precipitation depth were formulated. These 
variables were named event- and catchment-specific areal precipitation coverage 
ratios (ECOVs and CCOVs, respectively). The categories used for CCOVs were 
based on 11 constant denominators while the categories used for ECOVs were 
variable from one event (i.e., a month) to another as they were calculating the ratio 
of the catchment area that received higher than 50, 75, 100, 125, 150, and 200% of 
the appeared average areal precipitation in the event. 

4.3.1 Artificial Neural Networks 
ANN modelling which are sometimes called deep learning modelling is among 
well-known AI methods introduced for the non-linear function fitting problems in 
hydrology. Structurally, an ANN is a combination of neurons spread over a few 
hidden layers in between an input layer and an output layer, as shown in Figure 11, 
coloured in red, black, and blue. Once the input variables introduced to a model of 
specified architecture, a random scalar weight (w) and bias (b) is applied to each 
input variable by the corresponding neurons on the input layer (black nodes in Fig. 
11) in form of multiplication and addition, respectively (n = w × xi + b, where xi is a 
vector of data for an input variable). Then, a non-linear activation function can 
project the resulted value, usually, over (-1,1) as is the case for the hyperbolic 
tangent sigmoid function in Figure 12. The projected values will then comprise 
inputs to the neurons on the next layers, and so on. Once all weights and biases were 
initialized, the model can calculate a vector of estimations for the output variable y 
(y’). Then, ANN considers the mean squared errors for the estimations (MSE) as a 
loss function of weights and biases that should be solved for minimization in several 
iterations based on a gradient descent or Jacobean algorithm (as described in Hagan 
et al., 1997). MATLAB comments that the so-called backpropagation Levenberg-
Marquardt algorithm is usually the fastest method for training moderate-sized 
feedforward neural networks (up to several hundred weights). 
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Figure 11. Architecture of a feedforward ANN with two hidden layers (including red neurons) and four input variables 
x1,…, x4 to estimate output variable y. 

 

Figure 12. The shape of a hyperbolic tangent sigmoid function applied to the neuron values n. 

4.3.2 Overfitting and generalization 
There are several ways to analyse and prevent the overfitting issue for the ANNs. A 
basic way is obtained by dividing the available dataset for calibration into two 
portions, namely, training and validation. Then, the training dataset is the only data 
directly used for parameterization of the ANN while MSE is also calculated for the 
validation set at each iteration. The validation is a popular in-process way to address 
overfitting problems that threaten any ANN modelling based on the use of many 
parameters (weights and biases). Accordingly, a continuous increase in MSE for the 
validation dataset, while MSE is decreasing for the training dataset, by iteration is 
considered an overfitting signature. In Paper III, a maximum validation fail was 
introduced to stop modelling if the increase of MSE for validation for six 
consecutive iterations. Paper III (and, as it will be shown later, Paper IV) further 
analysed the performance of the ANNs using another portion of data that was neither 
used in training nor in validation. This portion is called testing or verification. 

An adjusted k-fold cross validation/verification process was used to divide the 
dataset into 5 folds where each fold received random, but equal number of, data 
from each of the twenty categories of runoff including 0-5, 5-10, 10-15, …, 95-100 
percentiles. Then, calibration-validation-verification were possible in 20 ways for 
selecting a fold for testing, a fold for validation, and rest for training, k×(k-1). 
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Moreover, the generalization was pursued further by combining outputs of several 
ANNs after repeating the parameterization with different random initialization of 
weights and biases under a specific assumption for the modelling to do not stuck in 
local minimums and avoid noisy estimates. The possible assumptions were based 
on the choice of calibration-validation-verification fold, input variable combination, 
and ANN architecture. While the initial parameterization repeated only 10 times per 
modelling assumption, since the architecture choices alone let 420 repeats (one or 
two hidden layers with 1-20 neurons per layer, 20×21), for a given fold and input 
variable 4200 repeats were tried out. In paper III, an arithmetic average of six top-
ranked models based on six statistical criteria (during calibration) was reported for 
each fold choice for testing (i.e., k=5). Thus, finally, five hybrid models (with 
different testing folds) per input variable combination were reported and analysed. 
A complete list of input variable combinations is listed in Table 9 (Paper III). 
Table 9. Combinations (Comb.) of input variables (P: precipitation, ET: actual evapotranspiration, PET: potential 
evapotranspiration, NDVI: Vegetation index NDVI, B7: MODIS Band 7, SM: seasonal runoff, Pp: perturbations of P from 
the seasonal P, CCOVs: coverage ratios for 10 catchment-specific categories, and ECOVs: coverage ratios for 6 event-
specific categories). Refer to Paper III for more information. 

Comb. class Input variables  Comb. class Input variables  

1 A P, Pp, PET, SM 7 B P, Pp, ECOVs, PET, NDVI, SM 

2 A P, Pp, CCOVs, PET, SM 8 B P, Pp, CCOVs, ECOVs, PET, NDVI, 
SM 

3 A P, Pp, ECOVs, PET, SM 9 C P, Pp, ET, PET, NDVI, B7, SM 

4 A P, Pp, CCOVs, ECOVs, PET, 
SM 10 C P, Pp, CCOVs, ET, PET, NDVI, B7, 

SM 

5 B P, Pp, PET, NDVI, SM 11 C P, Pp, ECOVs, ET, PET, NDVI, B7, 
SM 

6 B P, Pp, CCOVs, PET, NDVI, 
SM 12 C P, Pp, CCOVs, ECOVs, ET, PET, 

NDVI, B7, SM 

4.3.3 ANN performance score by statistical criteria 
As summarized below, a set of statistical criteria were used to compare the runoff 
estimations (𝑦ො௜) to the corresponding observed values (𝑦௜). 

- Pearson correlation coefficient: 𝑃𝐶𝐶 = ∑ ቀ൫𝑦𝑖−𝜇൯×൫𝑦ො𝑖−𝜇ො൯ቁ𝑁𝑖=1ට∑ ൫𝑦𝑖−𝜇൯𝑁𝑖=1 ×ට∑ ൫𝑦ො𝑖−𝜇ො൯𝑁𝑖=1  (10) 

- Nash-Sutcliffe efficiency: 𝑁𝑆𝐸 = 1 − ∑ ൫𝑦𝑖−𝑦ො𝑖൯2𝑁𝑖=1∑ ൫𝑦𝑖−𝜇൯2𝑁𝑖=1   (11) 

- King-Gupta efficiency: KGE = 1 − ටሺPCC − 1ሻଶ + ቀఙෝఙ − 1ቁଶ + ቀఓෝఓ − 1ቁଶ (12) 

- Root mean square error: RMSE = ට∑ ሺ௬೔ି௬ො೔ሻమ೔ಿసభ ே    (13) 

- Relative absolute error: RAE = ∑ |௬೔ି௬ො೔|೔ಿసభ∑ |௬೔ିఓ|೔ಿసభ    (14) 
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- Mean absolute error: MAE = ∑ |௬೔ି௬ො೔|೔ಿసభ ே    (15) 

where, i is the index of time (𝑖 = 1, 2, … ,𝑁 in months), 𝜇 and 𝜎 are mean and 
standard deviation of runoff observations 𝑦௜ in MCM (million cubic meters); 𝜇̂ and 𝜎ො are mean and standard deviation of runoff estimates 𝑦ො௜ in MCM. More 
information about these statical criteria can be found in Paper III. 

4.4 Merging QPE by two X-WRs 
As discussed in Paper IV, and mentioned earlier, due to inconsistent rainfall 
estimation by single-device X-WR operation, depending on the radar range and 
level (from Paper II), merging X-WR data based on the range and level was 
evaluated in this dissertation. 

As shown before in Figure 6, the four zones in the overlapping area of the Dalby 
and Helsingborg X-WRs could be used to develop a merged X-WR QPE. 
Accordingly, two methods (linear regression and ANN) were used to develop a 
separate model for each zone. 

RMP refers to the regression-based hybrid of Marshall–Palmer type estimations of 
rainfall. With the RMP model, the six single-level RATE products (RATEs) built 
into the X-WRs were combined based on a linear regression model without intercept 
(Paper IV). However, the input variables to the ANNs did not include RATEs. 
Instead, the ANN inputs were 5-min dual X-WR variables (here, RHOHV, KDP, 
VRAD, DBZH, and ZDR from the six vertical levels; five from Dalby and one by 
Helsingborg X-WR) for the equivalent bins for the 38 ground-truth gauges. The data 
period relied on the available radar data and the utilized data was based on the 
gauge-detected events whose MGI>2 mm h-1 (maximum gauge intensity). This 
threshold selected an event if at least one out of the 38 gauges recorded more than 
1 mm rainfall in a half an hour time step of the event to focus on moderate to extreme 
events. Accordingly, the number of input-output data pairs were:  

• 16,500 from 11 gauges for Zone I 
• 14,200 from 9 gauges for Zone II 
• 9,200 from 7 gauges for Zone III 
• 14,500 from 11 gauges for Zone IV 

Due to the high number of data, the chance for overfitting based on a shallow 
network could be smaller than the case for satellite-based runoff modelling 
described before. However, the generalization would be still interesting to avoid 
local minimums and find the best outcome. Thus, 6000 random parameterization 
repeats per zone were used that allowed for random choice among multiple ANN 
settings such as ANN architecture (two hidden layers by 5-30 neurons on each), and 
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dataset partitioning ratios (50, 55, and 60% for training and 20 or 25% for testing, 
remaining for validation) in each repeat. The maximum validation fail was raised to 
10. In the end, a repeat with the best validation result was considered to fix the 
parameterization. For comparability, the RMP models were developed based on the 
same calibration data (training and validation) as in the finally selected ANN. 

For the rainfall, rather than runoff, a majority of the 5-min observations was 
comprised of zero or small values. Therefore, rather than the adjusted k-fold process 
introduced for runoff, the focus for the division of rainfall data variability to 
calibration-validation-testing was on higher percentiles. Thus, equivalent portion of 
training-validation-testing were selected from each of the following categories: 
<95%, 95–97.5%, 97.5–99%, 99–99.9%, and > 99.9%. 

Finally, the selected model based on ANN and RMP were analysed for testing 
portion of the data using the following verification scores (Paper IV): 

- Relative bias: rBIAS =  100 × ∑(ா೟ି ை೟)∑ை೟     (16) 

- Mean absolute error: MAE =  ∑|ா೟ିை೟|ே    (17) 

- Pearson CC: PCC = ∑((ை೔ିைത)×(ா೟ିாത))ே×ఙ೚×ఙ೐    (18) 

- Nash-Sutcliffe efficiency: 𝑁𝑆𝐸 =     2 × 𝜎𝑒𝜎𝑜 × PCC − (𝜎𝑒𝜎𝑜)2 − (𝜇𝑒−𝜇𝑜𝜎𝑜 )2 (19) 

- King-Gupta efficiency: KGE = 1 − ට(PCC − 1)ଶ + (ఙ೐ఙ೚ − 1)ଶ + (ఓ೐ఓ೚ − 1)ଶ (20) 

- Probability of detection: POD =  100 × ுுାெ   (21) 

- False alarm ratio: FAR =  100 × ிிାு   (22) 

- Gilbert skill score: GSS =  100 × ுିு௥ுାிାெିு௥   (23) 

where, E and O denote estimated and observed rainfall, respectively, 𝐻𝑟 = (𝐻 +𝐹) × (𝐻 + 𝑀)/(𝐻 + 𝐹 + 𝑀 + 𝑅), and H, M, F, and R are frequency values related 
to four possible rainfall detection conditions: hits (correct alarms), misses, false 
alarms, and correct rejects. Considering the 0.2 mm resolution of the ground-truth 
observations by tipping buckets, H, M, F, and R were defined as below. 

- H: the number of time steps where Ot ≥ 0.2 and Et > 0 

- M: the number of time steps where Ot ≥ 0.2 but Et = 0 

- F: the number of time steps where Ot = 0 but Et ≥ 0.2 

- R: the number of time steps where Ot = 0 and Et < 0.2 
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5 Results and Discussions 

5.1 Satellite Precipitation Validation 
The comprehensive evaluation of the GPM-IMERG products over Iran can be found 
in Paper I. Here, I discuss some example results with more explanations considering 
the descriptions presented in section 4.1.1 about the evaluation of the criteria values. 
Figure 13 shows quantile-quantile plots for five arbitrary sites from Paper I. These 
locations showed different combinations of correlation coefficient (CC), MAE, and 
rBIAS values. Looking carefully at these plots, it can be discerned that at sites no. 
(1) and no. (2) deviations from the 45-degree line are less compared to the other 
sites, so the satellite product for these two sites performed a bit better than site no. 
(3) and much better than site no. (4) and no. (5) in resembling actual daily data 
distribution. This is while the correlation values for the sites no. (1) and no. (2) are 
significantly different. Moreover, the performance of the satellite product for sites 
no. (3) and no. (5) are completely different, while they both showed a high 
correlation (0.79) and a similar MAE (~0.7 mm/day). Therefore, rBIAS could play 
a more discriminating role than a misleading CC. On the other hand, we know that 
data from any point in a satellite grid (e.g., rain gauge) is not an excellent 
representative of that grid, so the errors that were attributed to the satellite products 
using rBIAS are not necessarily actual errors. Instead, it can also be an indication of 
spatiotemporal variability of rainfall for that location within a grid. This could be 
more discussed using the detection criteria such as FAR. As seen in the boxplots 
presented in Figure 14 (from Paper I), the general increase of FAR for the dryer bins 
(lower rainfall index) suggests that very local rainfall events are more probable to 
appear in dryer locations. In such conditions, a rainfall event affects partially a grid 
while it is not observed by a gauge located in a dry part of the grid. Conversely, the 
chance for this condition is reduced for the wetter locations (higher rainfall index), 
which sounds to be reasonable. 
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Figure 13. Q-Q plots for comparing different combinations of CC, rBIAS, and MAE in five sites where very small 
values of rBIAS are showing better performances of the IMERG-Early in estimating observed precipitation quantiles 
for different combinations of CC and rBIAS (The large circles’ center shows the position of the 95 percentile). 

  

Figure 14. Box plots of the criteria indices for the ten rainfall index bins (horizontal axis), in blue, green, and red 
corresponding to the IMERG-Early, IMERG-Late, and IMERG-Final products, respectively. The horizontal line in the 
middle of boxes, and the upper and lower bounds of the boxes are the 50th, 75th, and 25th percentiles, respectively. 
The red plus symbols denote the outlier data and the whiskers (dashed black lines), extend to the most extreme data 
not considered outliers. There are equally around 40 stations used for each bin. 

In contrary to the observed variation of satellite precipitation performance for 
different classes of rainfall index (such as a decreasing trend in Fig. 14), the trends 
were not that interesting to interpret with high confidence based on the other 
geospatial factors. Some examples are given in Figure 15 and 16. 
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Figure 15. FAR boxplots for 10 classes of slope in blue, green, and red corresponding to the IMERG-Early, IMERG-
Late, and IMERG-Final products, respectively. 

 

Figure 16. FAR boxplots for 10 classes of elevation in blue, green, and red corresponding to the IMERG-Early, 
IMERG-Late, and IMERG-Final products, respectively. 

5.2 Evaluating X-WRs (Papers II and IV) 

5.2.1 Single X-WR QPE for pilot test (Paper II) 
As described before, a method of this dissertation for the evaluation of X-WR QPE 
was based on hyetographs that can be found in Paper II. Additional analyses are 
presented here by evaluating local variability of rainfall based on the interpolation 
method introduced in section 4.2.2. Figure 17 shows the rainfall variability in an 
event observed at three different bins. These bins were in the ranges of 1, 19, and 
30 km of the Dalby X-WR encompassing the location of the tipping bucket gauges 
in Dalby, Arlöv, and Hammars Park. As a result, the differences between the rainfall 
estimations from the single-bin and interpolated multiple bins (overlapping the 
single-bin) were possible at every rate. More visible differences are at local peak 
values where the interpolated rainfall (Radar-interp) is lower than the single-bin 
estimation. Accordingly, we decided to use single-bin data for QPE in Paper IV to 
better represent local gauge measurements (more in the next section). 
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Figure 17. Difference between rainfall intensity from single-bin and interpolated multiple bins for a rainfall event 
observed at three radar bins at 1 (a), 19 (b), 30 (c)-km ranges and elevation angle of 2°. 
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Looking at the examples for a specific bin (at Arlöv station) but at different elevation 
angles as in Figure 18, some moments of the event are generally missed at the higher 
elevation angles. Also, the estimated rainfall at higher level (Fig. 18.a) is generally 
smaller in magnitude. Since the distance and direction from the Dalby X-WR were 
the same for the two plots in Figure 18, we cannot attribute the difference between 
them to the attenuation. Instead, as shown in Table 8, the higher altitude of the 
sampling volume for L4 compared to L1 may be a result of overshooting of part of 
the storms. For hyetographs comparing the radar-gauge data refer to Paper II. 

 

Figure 18. Level 4 (a) vs. Level 1 (b) rainfall estimation for an event observed by the Dalby X-WR at Arlöv station. 

5.2.2 Single vs. Merged X-WR QPE (Paper IV) 
Figure 19 summarizes four of the studied statistical criteria evaluating the 
performance of the single level products (RATEs: RH, RD1, RD2, …, RD5) and 
merging models (RMP and ANN) for different zones. Generally, improved 
verification scores from RATEs to RMP and ANN are observed for all zones by the 
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decrease of rBIAS (Fig. 19a) and MAE (Fig. 19d) and increase of GSS (Fig. 19b) 
and NSE (Fig. 19c) from left to right. A problematic single level was related to RD1 
that belonged to the elevation angle 1.5° of Dalby X-WR, susceptible to ground 
clutter and contaminated radar measurements especially for Zone IV (in the 
direction towards Malmö City). Except that, Zone III (the farthest to Dalby X-WR 
and closest to Helsingborg X-WR) generally was the most problematic region 
according to GSS and MAE. 

 

Figure 19. The verification scores rBIAS (a), GSS (b), NSE (c), and MAE (c) for the single level products (RATEs: RH, 
RD1, RD2, …, RD5) and merging models (RMP and ANN) for different zones based on the data portions that were not 
used in the calibration of ANN and RMP (testing). 

5.2.3 Gridded radar data for urban runoff modelling 
To evaluate the produced data by X-band WRs outside of the gauges’ locations, all 
rainfall estimations within two catchments named Ellinge and Lundåkra were 
studied (within the bounding boxes shown in Fig. 6 and as shown in Fig. 20 and 21). 
Accordingly, 5-min radar rainfall estimations in the bins were rescaled to grids of 
500-m size for the catchment areas using the mass-conserving method as described 
in Sharif and Ogden (2014). The only assumption added here was that the bins are 
rectangular although they have slight curvature in the azimuthal direction. The 
examples given in Figures 20 and 21 show the distribution of local tipping buckets 
in or around the Ellinge and Lundåkra catchments, respectively.  
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Figure 20. An example illustration of a gridded rainfall product for the Ellinge catchment. The map shows the rainfall 
depth at a 5-min time step of an event on August 16, 2021 between 20:45 and 20:49:59. 

 

Figure 21. An example illustration of a rainfall product for the Lundåkra catchment. The map shows the rainfall depth 
at a 5-min time step of an event on August 15, 2021 between 23:45 and 23:49:59. 
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The underlying mering model or RATE used for the catchments are summarized in 
Table 10. The reason for not using Zone III models for runoff modelling was that it 
revealed the most erroneous rainfall estimations for the merging models. Although 
some parts of Lundåkra were in Zone III, they were not too far from Zone II where 
we observed much better rainfall estimates based on X-WRs.  

Table 10 The underlying zone RATE and merging model used in different grids for the studied catchments. 
Catchment RATE Merging model 

Ellinge RD2 (all the grids) ANN model of Zone I (for the grids in Zone I) 
ANN model of Zone II (for the grids outside of Zone I). 

Lundåkra RH (all the grids) ANN model of Zone II (for all the grids). 

 

The catchment rainfall products were then saved in the multi time-step GIS ASCII 
files and sent to the water utility companies, NSVA and VA Syd, for rainfall-runoff 
modelling. They used a pre-calibrated model based on MIKE Urban+ and re-ran it 
for a few additional inputs such as local gauges and C-band WR, along with the X-
WR products described earlier (Table 10) as part of a research collaboration project. 
Also, it is noted that the X-WR data that were based on separate events were gap-
filled by the data from the local tipping buckets for running the rainfall-runoff 
model. Based on the returned runoff results from VA Syd and NSVA, further 
analyses were made using MAE, CC, and NSE (as in eq. 17-19, but using the 
observed vs. modelled runoff data). The resulted scores were calculated for the 
selected event periods during May-September 2021 as summarized in Table 11 and 
Table 12 for the Ellinge and Lundåkra catchments, respectively. In Table 11, The 
highest NSE and CC and lowest MAE were obtained for ANN. According to the 
results, the merged product helped to improve runoff modelling in the Ellinge 
catchment as compared to the other available inputs. In Table 12, the values of the 
three criteria under ANN as input were rather comparable to those under local rain 
gauges as input for Lundåkra, so these inputs obviously outperformed the other two 
inputs (i.e., RH and C-band WR). The negative NSE for some inputs such as C-band 
WR at both catchments shows a worse performance than using average runoff as an 
estimator, according to the definitions given earlier about NSE. It is noted that the 
catchment runoff values were based on the pump stations in the sewage system 
rather than direct measurement of flow. Therefore, a degree of uncertainty in the 
modelling could be related to the unwanted time lags between rainfall and runoff 
measurements. The studied sub-catchments were rather small (as can be seen from 
Figs. 6, 20, and 21) where tipping buckets existed rather densely. Therefore, it can 
be argued that in catchments with lower density of local gauges, more benefits of 
X-WRs to the runoff modelling could be observed. 
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Table 11. Statistical performance criteria for the runoff modelling in Ellinge using different input variables at 5-min time 
scale (available observed and modelled runoff data pairs from the selected events, May-September 2021, for the runoff 
modelling were used in the evaluations). 
Rainfall input  MAE (l/s)  CC  NSE  

Local tipping buckets 20.11  0.62  0.15  
SMHI station at Hörby*  43.58  0.05  -0.92  
ANN (X-WR merged) 15.75  0.77  0.54  
C-band WR 44.09  -0.03  -0.34  
* see the location in Figure 6. 

Table 12. Statistical performance criteria for the runoff modelling in Lundåkra using different input variables at 5-min 
time scale (available observed and modelled runoff data pairs from the selected events, May-September 2021, for the 
runoff modelling were used in the evaluations). 
Regnindata  MAE (l/s)  CC  NSE  

Local tipping buckets 4.83  0.76  0.19  

RH (X-WR RATE) 5.53  0.82  -0.13  

ANN (X-WR merged) 5.14  0.75  0.10  

C-band WR 6.52  0.53  -0.27  

5.3 Satellite-based monthly runoff modelling (Paper III) 
For the monthly runoff simulation using ANN, the k-fold process described in 
section 4.3.2. left 41, 41, and 123 pairs of input-output datasets for testing, 
validation, and training, respectively. For a certain combination of input variables 
(Table 9) and maximum lag time (0, 1, or 2 months), five hybrid models (each an 
arithmetic average of the six top-ranked models in calibration based on the criteria 
in equation 10-15), corresponding to the number of fold choices for testing, were 
obtained. As a result, a set of figures each comprising four plots, equivalent to four 
combinations of the input variables within each class (Table 9) for each lag time 
was produced. The selected model per plot had the lowest test RMSE. Thus, Figures 
22-26, equivalent to the KRB sub-catchments, illustrate the selected figures that 
included the best model for the sub-catchments. For example, for Gamasiab (Fig. 
22), based on the performance criteria for testing (values coloured in red), Comb. 7 
and Lags 2 resulted in the highest PCC, NSE, and KGE (0.95, 0.90, and 0.93, 
respectively) and the lowest MAE, RAE, and RMSE (16.12 MCM/month, 0.30, and 
27.76 MCM/month, respectively) compared to other competing models. 

Moreover, the mean ± standard deviation (M±SD) of the performance criteria for 
the five hybrid models per plot was calculated for all data partitions (values coloured 
in blue in Fig. 22-26). Lower SD at optimal M (i.e., minimum MAE, RAE, and 
RMSE or maximum PCC, NSE, and KGE) implies more robust runoff modelling 
regardless of data partitioning. From the M±SD values in Figure 22, modelling 
under Comb. 8 and Comb. 7 had comparable results, while both outperformed 
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modelling under Comb. 5. For instance, the M value for KGE in Comb. 5 is 0.87 
while it is 0.93 and 0.91 under Comb. 7 and Comb. 8, respectively (Fig. 22). Similar 
outperformance was observed for testing alone, where, e.g., RMSE and RAE were 
reduced by over 7 MCM/month and 19%, respectively, under Comb. 7 in relation 
to Comb. 5. The lower SD under Comb. 7 and Comb. 8 (e.g., ±0.03 for KGE) 
compared to Comb. 5 (e.g., ±0.07 for KGE) implied robust modelling for Gamasiab 
when ECOVs alone (Comb. 7) or together with the CCOVs (Comb. 8), were 
combined with the catchment-scale input variables (i.e., P, PET, NDVI, and SMs).  
For all catchments (Fig. 22-26), an input combination from class B or C (Table 9) 
with a max lag of 1 or 2 months resulted in the best modelling according to: 

- For Gamasiab (Fig. 22), Comb. 7 and Lags. 2 

- For Qarasu (Fig. 23), Comb. 12 and Lags. 1 

- For Seymareh (Fig. 24), Comb. 7 and Lags. 2 

- For Kashkan (Fig. 25), Comb. 7 and Lags. 1 

- For KRB (Fig. 26), Comb. 12 and Lags. 2 

It can be inferred that the memory of the hydrologic system, concerning the 
influence of the previous state of input variables, is longer for Gamasiab, Seymareh, 
and KRB (catchment sizes > 11,000 km2) than for Qarasu and Kashkan (catchment 
sizes < 10,000 km2), perhaps due to the higher storage capacity. However, the best 
combination of input variables was Comb. 12 for both the smallest (Qarasu) and the 
largest (KRB) catchment, while Comb. 7 was best for other sub-catchments. 
Referring to Table 9, Comb. 12 from class C incorporates B7 and ET as additional 
variables compared to Comb. 7 from class B which incorporates ECOVs in addition 
to the catchment-scale basic variables in classes A and B. However, the ECOVs for 
Qarasu appear to be more useful than in KRB since the second-best model for 
Qarasu was obtained under Comb. 11 while this was Comb. 9 for KRB.  

In general, the difference in the best combination of input variables for different 
sub-catchments can be interpreted in two ways: inadequacy of the coverage ratios, 
or necessity to include more variables such as soil moisture. Among the catchments, 
Kashkan and Gamasiab had the weakest and strongest modelling performance, 
respectively, based on RAE, CC, NSE, and KGE. RAE was 0.5 and 0.3, CC was 
0.86 and 0.95, NSE was 0.73 and 0.90, and KGE was 0.77 and 0.93 in the testing of 
the selected models for Kashkan (Fig. 25) and Gamasiab (Fig. 22), respectively. As 
discussed in Paper III, these two catchments had the highest and lowest variation of 
the catchment-scale monthly precipitation, respectively. Therefore, the weaker 
performance may be related to the insufficient calibration limited by the length of 
the satellite data. Also, higher ±SD of the performance criteria from the selected 
model for Kashkan compared to the other sub-catchments suggests that longer data 
will be needed for better modelling of catchments with higher variability of 
precipitation.  
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Figure 22. Observed (Obs) and modelled (Mdl) monthly runoff from Gamasiab sub-catchment for the combination of 
input variables (Comb.) and maximum lag times (Lags.) including the selected model (Mdl sel) and all models (Mdl all) 
of the 5-fold process. The performance values in blue are calculated using all data partitions for Mdl all. The 
performance values in red are calculated using the testing partition (Test) of Mdl sel. 
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Figure 23. Observed (Obs) and modelled (Mdl) monthly runoff from Qarasu sub-catchment for the combination of 
input variables (Comb.) and maximum lag times (Lags.) including the selected model (Mdl sel) and all models (Mdl all) 
of the 5-fold process. The per-formance values in blue are calculated using all data partitions for Mdl all. The 
performance values in red are calculated using the testing partition (Test) of Mdl sel. 
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Figure 24. Observed (Obs) and modelled (Mdl) monthly runoff from Seymareh sub-catchment for the combination of 
input variables (Comb.) and maximum lag times (Lags.) including the selected model (Mdl sel) and all models (Mdl all) 
of the 5-fold process. The performance values in blue are calculated using all data partitions for Mdl all. The 
performance values in red are calculated using the testing partition (Test) of Mdl sel. 



 

70 

 
Figure 25. Observed (Obs) and modelled (Mdl) monthly runoff from Kashkan sub-catchment for the combination of 
input variables (Comb.) and maximum lag times (Lags.) including the selected model (Mdl sel) and all models (Mdl all) 
of the 5-fold process. The performance values in blue are calculated using all data partitions for Mdl all. The 
performance values in red are calculated using the testing partition (Test) of Mdl sel. 
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Figure 26. Observed (Obs) and modelled (Mdl) monthly runoff of the Karkheh reservoir for the combination of input 
variables (Comb.) and maximum lag times (Lags.) including the selected model (Mdl sel) and all models (Mdl all) of 
the 5-fold process. The performance values in blue are calculated using all data partitions for Mdl all. The 
performance values in red are calculated using the testing partition (Test) of Mdl sel. 
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The suitability of IMERG products for runoff simulation is presented in different 
regions. In a study of a catchment in Brazil, Amorim et al. (2020) indicated that the 
IMERG-Final product could outperform the rain gauge and TRMM-TMPA product 
for monthly runoff simulation with a lower uncertainty. Higher-resolution 
implementation of GPM-IMERG products, such as hourly streamflow simulations 
by Zhu et al. (2021) in a subtropical monsoon climate of China, showed an overall 
acceptance of IMERG-Early, IMERG-Late, and TMPA 3B42RT for streamflow 
simulations. They showed that IMERG-Final overestimated low flows while 
performing the best for flood events. More interestingly, the satellite products could 
perform better than gauge-based data in detecting the peak flood time. 

The general hypothesis for calculating the areal coverage ratios of precipitation was 
that not only the average precipitation over the catchment but also its spatial 
distribution contributes to the runoff variation. This was reasonable to assume but it 
is important to note that CCOVs and ECOVs do not directly explain the location of 
precipitation. Instead, they consider the areal coverage ratios of precipitation with a 
possible correlation with the spacetime patterns of precipitation. For example, the 
underlying stratiform, rather than convective/orographic, precipitation events 
(typically representing slight to moderate intensities of precipitation over larger 
areas and durations) can be reflected as a bigger coverage ratio (close to 1) at a few 
low precipitation categories (e.g., CCOV1 = 0.9 and CCOV2 = 0.8 while CCOV9 
= 0 and CCOV10 = 0). Conversely, the underlying convective precipitation events 
(typically representing local but intense rains) can be reflected as a lower coverage 
ratio at a few higher precipitation categories (e.g., CCOV1 = 0 and CCOV2 = 0 
while CCOV9 = 0.2 and CCOV10 = 0.1). Thus, CCOVs and ECOVs are only 
considered as additional inputs to DD models that can indirectly compensate for the 
lack of input data variability, that challenges lumped precipitation–runoff 
modelling. Anyway, these new variables were successful in all the studied 
catchments based on all the six performance criteria values. Thus, most likely, they 
can be useful in other study areas as well since they were formulized as catchment-
specific and event-specific ratios. Some variation, such as a different categorization 
of precipitation data, might be needed depending on, e.g., how big the catchment is, 
how wet the climate is, and how long the available observation data are. For 
example, ECOVs contained six event-dependant variables, while CCOVs were 
based on ten catchment-specific categories, and the ECOVs were to some extent 
more useful than the CCOVs. The reason could be related to the presence of a small 
variation per a higher number of categories for training when the record is short. 
How long data should be used can also depend on the variability of the dataset. 

A similar methodological variation can be imagined for the adjusted cross-
validation and verification process, although the general idea can be as that was used 
here. For example, the larger testing portion for a 5-fold process (than for a 10-fold 
process) could help to ensure the robustness of the developed model in future uses. 
A 10-fold process, however, allows more data in calibration that could result in a 
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better training. Therefore, a reasonable strategy can be to first use the 5-fold process 
and then, depending on if the calibration needs improvement, the 10-fold process 
could also be additionally evaluated. 
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6 Conclusions 

Ground validation of satellite precipitation (Paper I) 

Although satellite-based precipitation products have been providing valuable data 
for the last few decades, studies have shown that there are some discrepancies 
between the satellite and ground-based precipitation data that require thorough 
validations. In this study, the performance of GPM IMERG products was evaluated 
in daily (Early, Late, and Final) and monthly temporal resolution using a well-
maintained rain gauge network over the entire Iran country during the 2014-2017 
period. Eight criteria indices were considered to evaluate the performance of 
IMERG products considering temporal and geospatial features. The general 
performance of the IMERG products against rain gauges approved the major 
improvement in the accuracy from IMERG Early to Final. In particular, the results 
showed a considerable decrease in rBIAS from IMERG Early to Final. The Q-Q 
plots analysis was carried out to evaluate the statistical distribution of satellite 
products versus rain gauge measurements. The findings revealed that the IMERG 
Final may not be the best choice for studying extreme events in the country, but the 
IMERG-Early and Late can do better. Investigation of the relationship between 
various physical and location-specific factors of rainfall showed that the increase in 
rainfall index (from dry to wet regions) leads to a lower and higher frequency of 
overestimations and underestimations, respectively. In addition, higher values of 
FAR were observed for most of the dry areas. The higher POD were more frequent 
in dry regions (perhaps due to the existence of many zero values) while lower POD 
values were observed in the wet regions. In general, the accuracy of the products 
increased from IMERG-Early to Final with an exception for extreme rainfall. As 
these analyses and results were conducted at the country level, it is suggested to 
validate the IMERG products at catchment scale before their extensive application. 

Evaluating QPE by X-WR (Papers II and IV) 

Regarding a single X-WR validation in southern Sweden, it was shown that the 
estimation of high-intensity rainfall was subject to attenuation due to heavy rain so 
that gathering of data was practically interrupted, especially at ranges longer than 
20 km. For the two investigated rainfall events, overshooting of the lower-lying 
showers by the higher-level scans of radar (i.e., elevation angles 8 and 10°) caused 
huge underestimation at ranges as long as 19–30 km. On the other hand, rainfall 
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estimation at short ranges (<1 km), especially by lower-level scans (i.e., elevation 
angles 2 and 4°), was found to suffer from reflectivity contamination due to moving 
objects in the radar vicinity, resulting in overestimation. The results of this study 
showed that the rainfall estimation by the X-WR in mid-range (∼5–10 km) was the 
most accurate as it was less affected by reflectivity contamination, overshooting, 
and attenuation due to heavy rain. All in all, higher resolution spatiotemporal rainfall 
monitoring for wider applications will benefit from the integration of data by a 
network of X-band WRs, assuming that deficiencies of individual radars can be 
overcome by a system of radars. Due to the various sources of error affecting rainfall 
estimation by radar, however, data-cleaning is not a straightforward task and will 
require detailed studies distinguishing between the affecting sources, according to 
the characteristics of the areal rainfall in time and space. Therefore, more 
investigations are needed that can combine data of different sources to improve 
estimation methods. An interesting prospect mentioned above is to use local X-band 
data to improve the quality of the national C-band WR-based products, that way 
producing an added value also outside the X-band domain. 

Due to inconsistent rainfall estimation by single-device X-WR operation, varying 
with the radar range and elevation angle level, a merging X-WR framework 
emphasising the role of range and level was designed and tested using neural 
network and regression models.  

In summary, the study aimed to merge data from two X-WRs in southern Sweden 
for better rainfall estimations in their overlapping coverage area. The X-WRs in 
Dalby and Helsingborg operated at 50 and 70 km ranges and scanned the weather 
at five elevation angles (1.5, 2, 4, 6, and 8°) and one elevation angle (2°) per minute 
during May-September 2021, respectively. Each scan of an X-WR provided a full 
range data map of the radar variables (RHOHV, KDP, VRAD, DBZH, and ZDR 
that were used in the merging models) as well as a built-in rainfall intensity product 
(RATE based on the Marshall–Palmer equation adjusted for attenuation correction). 
The overlapping coverage of the X-WRs encompassed 38 tipping bucket rain 
gauges, which were used as ground truth for calibration and validation of two 
merging models after some preliminary steps, and to assure the generalization of the 
models and efficient reduction of the data processing time. Thus, the gauge-detected 
rainfall events were extracted for the study area and those with the MGI of 2 mm h-

1 or less (based on the 30-min accumulations) were excluded from the study. Radar 
data were downloaded for the studied events and some extra events had to be 
removed due to the missing X-WR data. The study area was divided into some sub-
areas where four of them included all 38 gauges (Zone I-IV). For merging the X-
WRs data, the artificial neural networks (ANN) and Marshall–Palmer type linear 
regression-based model (RMP) were calibrated based on major part of the data 
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(training and in-process validation for ANN). The calibration was repeated 6000 
times to find the optimum ANN architecture and prevent a parameterization stuck 
in local minima. Finally, four rainfall estimation models equivalent to the number 
of zones were developed for each modelling type (ANN and RMP). 

Based on 20-25% of the data, which were kept out of the calibration of ANN and 
RMP, additional verifications were considered. As a result, the 5-min rainfall 
estimation was obviously improved over most of the overlapping area by merging 
the two X-WRs. Since the XRs' software makes it possible to change the operational 
range from 50 km to 70 km, it is, therefore, recommended to do so for the Dalby 
XR to increase the overlapping area in the future. However, the accuracy of the 
rainfall estimations (also the estimated quantiles) of the single level RATEs and 
merging models, ANN and RMP, were not interesting in Zone III. This zone was 
the farthest to Dalby and closest to the Helsingborg X-WR. In our study, data from 
only one level of Helsingborg X-WR was available at 2° elevation angle. This level 
of the Helsingborg X-WR and the lower levels from Dalby X-WR showed to be the 
most erroneous levels for some of the zones perhaps due to the higher ground clutter 
chance at lower altitude scans. Due to a recent adjustment, more levels are now 
available from the Helsingborg X-WR, and it is expected that this will help to 
improve the rainfall estimation for the entire coverage in future studies. As noted 
earlier, the X-WRs susceptibility to errors such as attenuation, overshooting, and 
ground clutter depended on radar range and level. Also, the underlying causes of the 
inconsistency in single-level radar scans could depend on the storm characteristics 
that are usually reflected in vertical profile of storm (convective vs. stratiform). 
Therefore, the hybrid approach of the study for merging X-WRs emphasised the 
role of range and level. Since the nature of these dependencies could be complex 
and non-linear, the use of AI modelling such as ANN was suggested and proved 
useful. The generalized ANN approach employed in the study showed no sign of 
overfitting (confirmed by comparing with RMP and RATEs during testing periods 
which were not used in calibration). Also, it showed at least as good as RMP with 
some better performance for representing most extreme values. 

A limitation due to the use of tipping buckets in the study was that the developed 
models had to be calibrated at 5-min scale rather than the original 1-min data for the 
radars. Using coarser scales such as 10 min could lower the uncertainties of the 
calibration but would be less interesting for urban runoff modelling, which can vary 
substantially in 1-2 min scales. This then may suggest the need for alternative 
ground truth data such as disdrometers or higher precision rain-gauges. Recently 
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three disdrometers and a vertically oriented Micro Rain Radar were added to the 
overlapping coverage of the two X-WRs and can help to increase the temporal 
resolution of the ground-truth and merging products, among others. The study 
indicated high potential for such improvements based on the designed data-driven 
approaches for merging X-WRs. 

Satellite-based monthly runoff estimation using ANN (Paper III) 

The new input variables were formulated based on the gridded RS-based data, 
primarily useful for large-scale runoff modelling in sparsely gauged catchments. 
The combination of these variables with simple hydrological notions were put into 
a new conceptualized AI-assisted data-driven (DD) framework. Backpropagation 
feed-forward ANNs, widely used in hydrological modelling, was used as the 
reference DD model. Each of the employed input–output combinations were 
evaluated using an adjusted cross-validation and verification process to minimize 
overfitting. To assure achieving outputs with a reliable degree of generalization, 
many network configurations were evaluated for each combination of input–output 
variables. Eventually, multiple hybrid models from the best-ranked single models 
were selected for five case studies of the KRB with different catchment sizes 
between 5,000 and 43,000 km2. As a result, the best runoff model for all catchments 
relied on an input variable combination that incorporated ECOVs (or both CCOVs 
and ECOVs) together with reference input variable combinations. From the inter-
catchment comparison, it was shown that, regardless of the catchment size, the best 
and worst performance criteria were obtained for Gamasiab and Kashkan, having 
the lowest and the highest spacetime precipitation variation, respectively. More 
interestingly, for Kashkan, the improvement of the performance scores by 
incorporating the precipitation coverage ratios, compared to the condition without 
the coverage ratios, was the highest among all sub-catchments. However, the 
performance of modelling in Kashkan showed a higher dependency on the data 
portions used for calibration and verification. Thus, while the highest usefulness 
(from test data) was observed for the most challenging catchment in the sense that 
it had the highest variability of precipitation, a longer data length would be needed 
for generally better-performing model development in such catchments. On the 
contrary, the lowest degree of usefulness was for the largest catchment area, the 
entire study area of Karkheh. 

In conclusion, the shown usefulness of areal precipitation coverage-based variables 
here suggests new conceptualization potentials to leverage the increasingly 
advancing DD methods and satellite RS data in rainfall–runoff modelling, along 
with the use of physically-based (or conceptual) models. One of the strengths of AI-
assisted DD modelling, such as ANN algorithms, is the ability to combine different 
inputs and apply multiple time lags with the automatization of modelling under a 
different architecture, which is not often the case for regular hydrological modelling. 
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In addition, physically based (or conceptual) modelling is not an ideal tool for the 
direct simulation of monthly runoff as its underlying concepts such as the UH theory 
is usually built to relate precipitation and runoff data at an event scale. Thus, the 
monthly runoff estimates are accumulated, e.g., from the initial daily estimates. 
These issues may result in computationally expensive modelling using regular 
physically based (or conceptual) hydrological models when large-scale simulations 
need to evolve in accordance with the advancing worldwide satellite observations. 

Finally, as in any hydrological study relying on indirect estimations and modelling, 
the methodology introduced here is subject to uncertainty. Probably, the most 
important aspect is related to the limited length of the datasets for the advanced, 
high-resolution, satellite data. There are obvious benefits of the new input variables 
used here; however, reliance on the model as well depends on the long-term 
representativity of the data. Developing a model using available data may still be 
useful for locations without an alternative that is a valid situation for many data-
scarce catchments. As a technical note, the practical application of the modelling as 
described here can result in an error when the observed catchment-scale 
precipitation (P) in a month is greater than the higher edge of the final category of 
P for a catchment, and the model relies on CCOVs. To avoid such errors, the higher 
edge of the final category should be monitored. Another issue is related to the RS-
based input variables used in the study, as well as the selection of what satellite 
product to use. The GPM is an advanced satellite precipitation mission that has 
gained interest in recent research of satellite precipitation after its precursor TRMM. 
GPM-IMERG data are now expanded to almost the same time span as its precursor 
and presented in a few products at different temporal resolutions and data access 
latencies. Deciding which of the IMERG-Final or IMERG-Late products (probably 
the most useful ones here) is better to use for a region needs thorough investigations. 
As we discussed in the Introduction, the RS data are subject to errors, but it is not a 
straightforward task to adjust the biased data using the usually sparse ground 
observations, particularly in data-scarce catchments that will perhaps benefit most 
from the methodology. 

This study focused on monthly runoff modelling and used monthly input variables. 
The benefits of using direct monthly data for strategic surface water management 
were discussed in the previous paragraph. However, daily data are also interesting 
for other purposes where, for example, sub-monthly data are important. It has been 
noted that the methodology introduced here needs more investigations. 
Additionally, it is worth mentioning that some of the RS-based inputs used in this 
study (e.g., ET) were only available at 8-day and 16-day resolutions (at highest) that 
may not be favourable for daily modelling. 

Future scopes 

From the above conclusions about satellite and radar precipitation data, it seems RS- 
and AI-assisted models are useful for more reliable hydrological applications in the 
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future. Therefore, more studies can be conducted to evaluate other variations of the 
methodology (e.g., other machine learning models, etc.). A challenge regarding the 
calibration of the RS data, however, is incomparable scales of the ground-truth and 
RS data. Also, the efficacy of ground-truth data can be questioned, e.g., when the 
RS data are only calibrated at a few grids/bins from a local relationship obtained 
based on sparse in-situ rain gauges. Therefore, a fundamental step to improve the 
applications of the AI and RS data is to increase the in-situ data or use different 
calibration sources such as runoff. For example, a simple method could be based on 
using rain gauges and RS data together. Then, the calibration can be obtained based 
on the runoff response as a more applied output. Future studies can combine 
different satellite sensors and radar types with those used here. Also, they can use 
longer records of satellite data which seems necessary for catchments with higher 
variability of precipitation (Paper III). Also, the merging of X-WR data can be based 
on the longer observations where, e.g., each season or month can have its own 
merging model. Also, the methodologies can be extended to forecast problems. 
Then, the use of recurrent neural networks, e.g., can be useful. 
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