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1. Introduction 

The incredible breakthroughs and technological advancements in 
biomedical research in the last years have prompted healthcare management to 
shift towards precision medicine approaches (1). Precision medicine aims to 
facilitate clinicians' decisions by efficiently and accurately predicting the best 
available clinical workflow for an individual patient. Hence, there is a need for 
developing/adapting tools that can be easily implemented in a clinical setting with 
a low economic burden. The identification of companion diagnostic, prognostic 
and therapeutic biomarkers needs to be achieved for each group of patients. This 
thesis is focused on the B-cell malignancy mantle cell lymphoma (MCL). The 
main aim was to contribute to the molecular knowledge of this complex disease 
while identifying companion biomarkers, for clinical implementation, to allow 
patient stratification.  

Cancer is a major public health issue worldwide and is estimated that 19.3 
million cases were identified in 2020. Cancer is the attributed cause of death to 
10 million people in 2020 (2) and the burden of cancer incidence and mortality 
is still growing in society. This is partly caused by an aging population. Treatment 
approaches to cancer today are still based on clinical factors, such as the age and 
fitness of the patient, not taking fully into account molecular characteristics of the 
tumor. Increased biology knowledge is expected to promote a shift towards 
tailored approaches. The last decades have brought massive advancements in 
technologies that allow clinicians to improve clinical management for specific 
diseases. The overall result is a significant reduction in mortality and a lower 
burden in health care, with less patients relapsing and in need of further treatment, 
and potentially lower costs for society (3-6). However, many patients still fail to 
achieve the desired outcome with current therapeutic strategies. The goal is to 
identify patterns of deregulation that can enable clinicians to stratify patients 
efficiently and accurately into tailored treatment approaches. An important 
feature of such research is the need to adapt complex molecular traits in tools that 
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are compatible with the clinical workflow, as well as maintaining a low economic 
impact on healthcare. 

MCL is an aggressive B-cell lymphoma for which afflicted patients have a 
short life expectancy of five to seven years after diagnosis (7). In the last decades, 
an improvement in overall survival (OS) has been observed (8). This is largely due 
to the implementation of rituximab, an anti-human cluster of differentiation 
(CD) 20 antibody, in combination with high dose cytarabine and autologous 
stem cell transplantation (ASCT) when deemed possible (9, 10). However, this 
approach is primarily used in young and fit patients. Thus, MCL treatment 
decision is still limited by the patients’ age and fitness.  

It is a disease characterized by a highly heterogeneous clinical course, with 
some patients achieving long and durable responses, while others failing to 
respond to first-line standard treatments. However, long-term, most patients will 
relapse (11). At relapse, no standard treatment for relapsed/refractory (R/R) 
disease is defined and little information is available to guide treatment options 
(12).  

In paper I-IV of this thesis, the focus was to explore tumor intrinsic factors 
in MCL. In Paper I, we aimed to demonstrate the applicability of a Next-
Generation Sequencing (NGS) panel of lymphoma targets developed for 
formalin-fixed paraffin-embedded (FFPE) samples in the clinical workflow of 
MCL management. The study confirmed that targeted sequencing of FFPE 
samples could be an option for tailored treatment approaches, but it remains to 
be shown which treatments will benefit most tumor protein p53 (TP53) mutated 
and other high-risk groups. In Paper II, the transcriptomic landscape was 
explored. MCL is commonly categorized by low proliferation index (PI) (low 
proliferation marker protein Ki-67 (Ki-67) expression) or high PI (high Ki-67 
expression); and with classical morphology or non-classic morphology (blastoid 
and pleomorphic variants). Highly proliferative tumors and tumors with non-
classic morphology are commonly associated with extremely aggressive disease and 
poor prognosis, being resistant to current therapies (13). The goal was to move 
beyond this classification, often susceptible to inter-observer variability, and 
identify additional molecular traits that could be used as companion biomarkers 
and alternative targets in these subgroups. Traditionally, genetic deregulation in 
MCL has been focused primarily on proliferation. However, targeting 
proliferation alone has proven insufficient to treat MCL. In this study, we revealed 
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an additional association between treatment failure and deregulation of metabolic 
pathways. Our analysis pinpointed carnitine palmitoyltransferase 1A (CPT1A), 
an enzyme in fatty acid oxidation (FAO), as a poor prognostic marker, similar to 
previous reports in other cancers (14). 

TP53 mutations are considered an independent prognostic factor in MCL 
(15), but their assessment in clinical routine is still hampered due to the lack of 
routine target sequencing approaches in the clinical workflow, particularly outside 
the major hospitals. In paper III we focused on filling this need. Our results 
showed that, when sequencing data is not available, immunohistochemistry 
(IHC) evaluation of cellular tumor antigen p53 (p53) expression is a reliable 
surrogate for identifying missense mutations in TP53. c-Myc has an important 
role in B-cell development and identifies high-risk groups in other lymphomas 
(16). However, the role of myc proto-oncogene protein (c-Myc) in MCL is far 
from understood and the frequency at which it is affected shows conflicting results 
in different studies. Thus, in paper IV, we aimed to clarify the impact of c-Myc 
molecular aberrations in MCL. We showed that c-Myc deregulations commonly 
appear at the transcriptomic and protein level, rather than involving chromosomal 
rearrangements, and could be considered a companion diagnostic marker with 
prognostic value in MCL.  

Papers V and VI focused on the impact of the microenvironment in MCL. 
The role of the microenvironment in the proliferation and drug resistance 
mechanisms in MCL is well accepted (17). Nonetheless, the composition of the 
microenvironment in MCL remains poorly studied. The goal of Paper V was to 
characterize the immune microenvironment in MCL and identify prognostic 
markers beyond the current tumor intrinsic molecular risk factors. This study 
showed the strong impact of the MCL composition in disease and treatment 
response, highlighting an immune suppressive microenvironment as a negative 
prognostic factor and opening doors to exploiting immune oncologic strategies in 
the clinical management of MCL. We showed that the presence of forkhead box 
protein P3 (FoxP3)+ cells was associated with a shorter time to progression (TTP) 
in patients treated with the current standard protocol. CD163+ macrophages 
showed the strongest prognostic impact in MCL among the phenotypes explored, 
independent of the treatment approach and other high-risk markers in MCL. 
Thus, in paper VI we explored the crosstalk between MCL tumor cells and 
CD163+ M2-like macrophages. CD163+ M2-like macrophages have different 
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phenotypic profiles depending on their spatial localization and the presence of 
macrophages in the tumor microenvironment translated into an increased 
expression of the mitogen-activated protein kinase (MAPK) pathway. 

In essence, the following chapters will put the findings of the present work 
into a broader context. Initially, an introductory chapter about the current clinical 
setting of MCL will be presented, with a brief description of the cohorts used 
throughout the studies (Chapter two). Chapter three will focus on the tumor 
intrinsic factors that are associated with poor patient prognosis and the 
identification of prognostic and companion biomarkers that allow for patient 
stratification, as an essential step towards precision medicine. In chapter four the 
tumor microenvironment will be discussed, with a focus on T-cells and 
macrophages as biomarkers beyond the traditional tumor-intrinsic factors and 
potential targets of immunomodulatory treatments. Lastly, the main conclusions 
will be presented in chapter five.   
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2. Mantle Cell Lymphoma 

In western countries, the yearly incidence of lymphoma is estimated to be 
20/100 000 people (18). In Sweden, 2 000 people are diagnosed with a subtype 
of lymphoma every year (19). Traditionally, lymphomas have been categorized in 
Hodgkin and non-Hodgkin lymphomas (NHL). Worldwide, more than 250 000 
people died of NHL in 2020, whereas more than 500 000 were newly diagnosed 
(2). MCL represents 3-10% of all NHL and is the focus of this work. MCL will 
be briefly presented in this chapter and discussed in the following chapters in the 
context of the novel findings of the different papers that constitute this thesis. 

2.1 B-cell lymphomas 

Lymphomas represent a highly heterogeneous group of malignancies that 
arise from lymphocytes (7). This heterogeneity is due to the biological 
development and differentiation of lymphocytes in the human body, which is a 
stepwise process of genetic events that lead to an extensive and diverse B and T-
cell repertoire (20). Most lymphomas arise in B-cells and bear phenotypic 
resemblances to a specific stage in B-cell differentiation, commonly termed as “cell 
of origin” (21, 22). B-cell lymphomas are commonly divided into indolent and 
aggressive subtypes, depending on clinical and biological characteristics. Indolent 
variants are for example follicular lymphoma (FL) and marginal zone lymphoma. 
Diffuse large B-cell lymphoma (DLBCL) and MCL are classified as aggressive 
lymphoma variants (7, 22).  

MCL has an increasing incidence worldwide (23), with an estimation of 
3 320 newly diagnosed patients in 2016 (24). The Nordic Lymphoma Group 
(NLG) reported an increased incidence in both Sweden and Denmark between 
2001 and 2010 (25). To address the proposed aim of this thesis, clinical material 
from two cohorts of diagnostic MCL patients was used. The first cohort named 
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NLG MCL2 and MCL3 (N-MCL2/3) is part of two clinical trials conducted by 
the NLG that established the current standard of care (9, 10). The second cohort, 
Biobank of Lymphomas in Southern Sweden (BLISS) is a population-based 
cohort of patients diagnosed with MCL in Southern Sweden between 2000-2014.  

2.2 Molecular events characteristic of MCL  

The t(11;14)(q13;q32) is the hallmark of MCL and is considered the 
primary genetic event (26). This aberration juxtaposes the cyclin D1 (CCND1) 
gene to the immunoglobulin (IGH) gene, leading to constitutive expression of 
cyclin D1(27-29). Most MCL tumors acquire the translocation in the pro/pre-B-
cell stage of B-cell differentiation, during V(D)J recombination. Alternatively, the 
translocation can be acquired during somatic hypermutation or class switch 
recombination in the mature B-cell stage (28, 30). CCND1 is a proto-oncogene 
that regulates the cell cycle transition G1-S (31). Overexpression of cyclin D1 
promotes proliferation independently on external stimuli, conferring these cells a 
growth advantage. Cyclin D1 is capable of binding to several promoters, leading 
to an abnormal transcriptome in neoplastic cells, as well as being involved in 
DNA-damage response and apoptosis regulation (31, 32).  

Transcription factor SOX-11 (SOX11) is a disease-specific antigen in 
MCL, reported to be overexpressed in 90% of MCL patients (33-36). SOX11 
expression is epigenetically regulated (37-39), with the promoter region being 
unmethylated in MCL tumors, as opposite to SOX11 negative B-cell lymphomas. 
SOX11 reduces BCL6 expression, hindering entrance into the germinal center 
(40). Additionally, SOX11 is also reported to promote paired box protein Pax-5 
(PAX5) expression, which blocks the cell in the mature B-cell stage (41). It is then 
postulated that epigenetic deregulation of SOX11 may be an early and important 
player in MCL initiation. 

2.3 Clinical presentation and pathobiology evaluation 

Diagnosis of MCL is performed according to the World Health 
Organization Classification of Hematological Neoplasms (7). Patients that 
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develop MCL are elderly, with a median age at diagnosis of >70 years, and often 
male (7, 25, 27). Our population-based cohort (BLISS) has a median age at 
diagnosis of 71 years (range from 45-94) and 76% of male predominance. N-
MCL2/3 is representative of clinical trials focused on young patients (≤ 65 years), 
as so, age at diagnosis was considerably lower (median of 57 years, ranging from 
28 to 65) than the median diagnostic age for MCL. Nonetheless, the male 
predominance is still represented, with 73% of patients being male.  

MCL is a highly heterogeneous disease and patients diagnosed with MCL 
show a variety of clinical presentations. Most of the patients are diagnosed with 
advanced and disseminated disease (Ann Arbor stage III and IV), showing 
lymphadenopathy, cytopenia, splenomegaly and extra-nodal manifestations (12). 
Extra-nodal manifestations commonly appear in the bone marrow, blood, and 
gastrointestinal tract (7, 42). Involvement of the central nervous system (CNS) is 
rare at the time of initial diagnosis, with some studies reporting a negative effect 
on survival, yet scarce information is available (43-45).  

The advancements in the last decades have expanded the knowledge on the 
cell of origin and the current classification of MCL into two main categories: 
conventional and leukemic non-nodal MCL (Figure 1). Subtyping of MCL aids 
in understanding the heterogeneous clinical characteristics reported in MCL and 
the subtypes are described as having different cells of origin (7, 12). Most 
diagnosed MCL are of conventional presentation. The leukemic non-nodal MCL 
variant, which is reported with highly variable frequency, is indolent and often 
asymptomatic at diagnosis (7). Both cohorts used throughout our studies are 
mostly representative of the classical MCL, with patients presented as 
symptomatic at the time of diagnosis. Most tissue samples are from an affected 
lymph node, followed by biopsies from bone marrow and the gastrointestinal 
tract. Moreover, an additional entity, in situ mantle cell lymphoma, is reported 
(7), associated with accidental findings and believed to have a low rate of 
progression that may not require therapeutic intervention (46). 

From the histological point of view, three subtypes of MCL are distinguished: 
classical, pleomorphic and blastoid. Classical MCL is traditionally cyclin D1 
positive (7, 12), but cyclin D1 negative cases do exist (47). These cases are often 
cyclin D2 or cyclin D3 positive, highlighting the impact of D-type cyclins in the 
development of MCL (47-50). SOX11 works as a supportive diagnostic 
biomarker for cyclin D1 negative cases, since its expression is not connected with 
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of cyclin D1 immunoreactivity (7, 34, 36). Above 90% of MCL as SOX11 
positive. Assessment of t(11;14)(q13;q32) is done by fluorescent in situ 
hybridization (FISH). MCL cells are positive for common B-cell antigens, 
namely, CD19, CD20, CD22, and CD79. Usually, MCL cells are also positive 
for FMC-7, CD5 and CD43, but negative for CD3, CD23, CD11c, CD10 and 
negative for CD200 (7, 12). Aberrations of the common immunophenotype of 
MCL have also been reported, such as CD5 negativity, CD11c, CD23 and 
CD200 positivity (51, 52).  

 
Figure 1 Mantle cell lymphoma pathogenesis. MCL is characterized by Cyclin D1 reactivity due to the hallmark 
t(11;14)(q13;q32) that juxtaposes the CCND1 gene to the IGH gene. Although less frequent, Cyclin D1 negative MCL cases 
are reported in the literature, frequently overexpressing other members of the Cyclin D family. WHO classification 
currently identifies two clinical subtypes of MCL: Leukemic non-nodal MCL and conventional MCL, which are described to 
have a different cell of origin. Histologically, MCL is classified into three subtypes: classic, pleomorphic, and blastoid, with 
the latter two commonly referred to as non-classic MCL. Non-classic MCL is more aggressive and associated with a higher 
proliferation index, higher frequency of TP53 mutations, p53 and c-Myc overexpression and increased levels of CPT1A 
protein expression. These high-risk factors, although more frequent in non-classic MCL are not exclusively of this 
histological subtype. 

2.4 Prognosis 

The MCL International Prognostic Index (MIPI) is currently the only 
prognostic score used in the clinical workflow. It is calculated based on age, 
performance status, lactate dehydrogenase, and leukocyte counts. MIPI stratifies 
the patients into three risk categories, low, intermediate, and high-risk patients. 
These three groups were initially reported to have an average OS not reached, 51 
months and 29 months, respectively (53). In a more recent update, the five-year 
OS rate was 83%, 63% and 34% for low, intermediate and high-risk patients, 



27 

respectively (54). Variations of MIPI have also been explored with combinations 
with other markers, such as MIPI-B (including Ki-67 expression) (55) MIPI-B-
miR (including microRNA-18b expression) (56), and including p53 and SOX11 
overexpression (57), among others, but they remain to be applied in the clinical 
setting as routine. Patients with non-nodal MCL are hypothesized to have an 
indolent disease associated with longer survival (58). The blastoid and 
pleomorphic histological variants of the disease, also termed non-classic 
morphology, are associated with inferior prognosis (7, 15, 59). Other commonly 
attributed markers of poor prognosis are high PI, measured by Ki-67 expression 
(60), TP53 mutations (15), and c-Myc aberrations (61). In chapter three, these 
high-risk markers will be further described. 

MCL patients have a median of 5-7 years of OS after diagnosis, with age 
being one of the strongest prognostic markers (7, 12). The BLISS cohort reflects 
real-world patient data, with a median OS of 4.5 years. The NLG clinical trials 
MCL2 and MCL3 (9, 10) showed that young and fit patients could achieve a 
median OS of 12.7 years and a median TTP of 9.9 years. This cohort is a source 
of valuable biological material to be used to understand possible mechanisms that 
predict relapse and pinpoint prognostic indicators. 

2.5 Current treatment strategies in MCL 

Nowadays, treatment management is based upon the patients’ age at 
diagnosis, evaluation of physical fitness, and underlying comorbidities. 
Clinicopathological traits, such as morphology assessment and Ki-67 positivity, 
can be included. Overall and disease-free survival has increased considerably in 
the last decades. Nevertheless, MCL is still deemed an incurable disease with a 
high frequency of relapses and an insufficient response to salvage treatment (62). 

2.5.1 First-line treatment approaches 

As a first-line treatment stratification, young and fit patients receive 
intensive combinatorial chemotherapy approaches, that include rituximab and 
cytarabine, and will be evaluated for consolidation with ASCT. Twenty years ago, 
the addition of rituximab to CHOP (cyclophosphamide, doxorubicin, vincristine, 
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and prednisolone), R-CHOP, showed increased survival in MCL (63). More 
recently, the NLG demonstrated in the MCL2 and MCL3 clinical trials, that the 
administration of high-dose cytarabine with CHOP and rituximab as induction 
therapy, followed by high-dose cytarabine prior to ASCT, led to a remarkable 
improvement in survival and TTP in young and fit patients (9, 10, 15, 64). 
Unfortunately, a high frequency of relapses is still observed (11).  

At diagnosis, most patients are above 65 and might not be eligible for high-
intensive chemotherapy or ASCT. Old and fragile patients are frequently treated 
with other chemoimmunotherapies, such as VR-CAP (65) (Bortezomib, 
rituximab, cyclophosphamide, and doxorubicin) and R-BAC (rituximab, 
bendamustine, and cytarabine) (66, 67) and Rituximab and Bendamustine (R-
Bendamustine) (68). Of note, such old and fragile patients are in majority in the 
real-world clinical setting. This is also noted in our BLISS cohort, where a large 
fraction of patients was considered older than N-MCL2/3 patients, and thus were 
more frequently treated with R-Bendamustine. An approach of “watch and wait” 
is accepted in the non-nodal MCL subtype which corresponds to less than 20% 
of patients (25, 69-71).  

2.5.2 Relapse and refractory disease: the current role of target agents 

There is no standard therapy for relapsed MCL (12). Treatments are 
selected based on individual factors, including symptomatology, prior therapy 
(both in number and category), TTP, age, comorbidities, and performance status 
(72). A tendency is a high number of relapses per patient and a progressive 
shortening of duration between relapses (62).  

R/R patients may receive the same chemoimmunotherapy regimens as 
above but are nowadays also commonly treated with targeted agents against 
molecules of deregulated pathways in MCL, often in combination with rituximab. 
The development of these regimens is due to the increased understanding of MCL 
pathogenesis. The most frequent therapy options include Bruton’s tyrosine kinase 
(BTK) inhibitors, such as ibrutinib (73) which showed impressive activity in 
MCL (74). The apoptosis regulator Bcl-2 (BCL-2) inhibitor venetoclax and the 
immunomodulatory agent lenalidomide have also been extensively explored in 
R/R patients (75-77). Other explored target therapies are phosphoinositide 3-
kinase (PI3K) inhibitors (e.g., idelalisib) (78), mammalian target of rapamycin 
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(mTOR) inhibitors (e.g., everolimus) (79), proteasome inhibitors (e.g., 
bortezomib) (80), and histone deacetylase inhibitors (e.g., vorinostat) (81).  

2.6 Towards personalized treatment approaches 

In the last years, there has been a significant shift in the treatment strategies 
in MCL. Previously, options were restricted to the use of intensive 
chemoimmunotherapies, associated with high levels of toxicity. These options are 
continuously being challenged towards chemotherapy-free approaches, both at 
the frontline and R/R stage. The high heterogeneity of the disease and the 
complex crosstalk of malignant cells with its surroundings challenges the 
treatment outcomes and forges the need to develop tailored-treatment 
approaches.   

2.6.1 Risk-stratified treatment strategies 

So far, high-risk variants of MCL have an inferior OS and TTP irrespective 
of the treatment approach chosen (13, 15). This highlights the urgent need for 
tailored approaches for these subgroups of patients.  

The current guidelines still support the treatment of high-risk patients with 
standard-of-care, despite the poor outcome. However, recommendations are to 
include these patients in novel clinical trials when available (13, 67). Novel agents 
are explored for de novo high-risk MCL and R/R MCL, which is also associated 
with an increased frequency of high-risk variants (82-84). A clinical trial with 
acalabrutinib demonstrated a similar overall response for patients, irrespective of 
high-risk features, albeit still considered short (85). A hopeful result came from 
the AIM clinical trial, which showed that venetoclax in combination with 
ibrutinib was effective in TP53 mutated patients (83). However, a promising trial 
for TP53 mutated tumors is the ZUMA-2 with chimeric antigen receptor (CAR)-
T-cell therapy, where an objective response was achieved in most patients, 
irrespective of TP53 mutation status (86).  

A lesser established group of high-risk patients is the one that carries c-Myc 
aberrations, where no proposal on treatment in the clinic has been made. In paper 
IV, we explored the possibility of administering serine/threonine-protein kinase 
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PLK1 (PLK1) inhibitors to high c-Myc tumors. PLK1 is a mitotic kinase with 
central roles in the cell cycle, DNA damage response and DNA repair pathways 
(87). We showed in paper IV that its expression correlated with c-Myc expression. 
Others have shown that PLK1 effectively reduced survival in in vitro MCL 
models. PLK1 inhibitors have already been explored in other preclinical studies 
in MCL in combination with ibrutinib, belinostat and copanlisib (88-90). 
Further investigations will be required to fully demonstrate the effect of PLK1 
inhibitors in MCL as treatment approaches and as a tool to overcome the 
aggressiveness of c-Myc deregulation.  

2.6.2 Novel immunotherapy strategies: are chemo-free approaches the 
future of MCL treatment? 

Worldwide, the interest in immunotherapeutic strategies has increased, 
mostly due to the success of immune checkpoint blockade (ICB) in specific 
subtypes of patients (91). Thus, there is a hope that such treatment approaches 
will benefit high-risk MCL patients.  

Programmed cell death protein 1 and its ligand (PD-1/PD-L1) is among 
the most common targets for ICB and expression of these markers is 
inconsistently reported in MCL (92-97). In paper V, however, we show that a 
small subset of patients expresses PD-1 and PD-L1. Others have shown that MCL 
cells that express PD-L1 were able to inhibit T-cell proliferation and the blocking 
of PD-L1 in MCL cells leads to increased T-cell responses in vitro and in vivo 
(94). Nonetheless, when PD-1 blockade was administered in NHL patients, the 
therapeutic response was not achieved (98). A small number of patients diagnosed 
with MCL were included in the studies and the results were discouraging, with 
experts suggesting that the low expression of PD-1/PD-L1 could explain the poor 
results. Of note, PD-L1 upregulation is proposed to be dependent on a functional 
ATM/ATR/CHK1 axis (99), and ATM serine/threonine kinase (ATM) is the 
most frequently mutated gene in MCL (paper I). Interestingly, PD-L1 levels 
tended to be higher in p53 overexpressing tumors in our study, which often do 
not have a mutated ATM (paper V). PD-1/PD-L1 ICB needs to be further 
explored in MCL, as it could be a therapeutic strategy for a specific subgroup of 
patients.  
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To overcome rituximab relapse, second-generation anti-CD20 monoclonal 
antibodies have started to be explored, including ofatumumab (100), 
obinutuzumab (101-103), and ublituximab (104). Another approach being 
explored is bispecific T-cell engagers (105). Blinatumomab, a CD3/CD19 BiTE 
was used in 24 R/R MCL and showed an overall response rate of 71% (106). 
Glofitamab, a CD3/CD20 BiTE has also been shown to induce high response 
rates in R/R MCL patients, with an overall response rate of 81% (107). 

One of the most promising immunotherapy strategies in MCL has been 
CAR-T-cell therapy. Brexucabtagene autoleucel is an anti-CD19 CAR-T that was 
explored in the ZUMA-2 trial. A 93% of overall response rate was reported, with 
67% of patients having a complete response. At a median follow-up of 17.5 
months, 48% of the patients still had ongoing responses. Patients with high-risk 
variants, e.g., high PI, non-classic morphology, and TP53 mutations had similar 
initial responses as non-aggressive variants (86, 108), but blastoid cases were a 
representative subgroup that had had disease progression within 24 months (109). 

Therapies targeting macrophages are underexplored but are a promising 
approach in MCL. As shown in paper V, the frequency of CD163+ cells in the 
tumor region was associated with worse survival in MCL. CD163 is a common 
marker of M2-like macrophages. One suggested strategy to overcome the crosstalk 
between macrophages and cancer cells is the inhibition of CD47. CD47 is an 
immunoglobulin that binds to signal regulatory protein alpha (SIRPα) and 
enables CD47+ cells to escape macrophage-mediated phagocytosis. CD47 has 
shown overexpression in NHL, with the highest value associated with MCL (110, 
111). Chao and colleagues showed the synergetic effect of anti-CD47 antibodies 
and rituximab, through a mechanism leading to stimulation of phagocytosis and 
elimination of lymphoma in a mice model (110). ALX148, a fusion protein 
between a CD47 blocker and an inactive human immunoglobulin fragment 
crystallizable region, in combination with rituximab, leads to a 41-64% overall 
response rate in highly aggressive high-grade B-cell lymphoma, including MCL, 
at a median follow-up of 14 months (112, 113). Moreover, ibrutinib and 
macrophage colony-stimulating factor 1 (CSF1) inhibitors have shown preclinical 
potential in MCL (114). CSF1 is involved in the survival and proliferation of 
macrophages (115). Altogether, our finding of the prognostic role of macrophages 
with these previous studies supports the novel approach of disrupting MCL and 
macrophages crosstalk as therapeutic strategies in MCL.  
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3. Tumor intrinsic mechanisms 
and molecular deregulation 

The heterogeneity in MCL also manifests at the molecular level. The 
advancements of biotechnology and bioinformatics have brought the possibility 
to study the different deregulations at a deeper level and exploit the interactions 
and regulatory mechanisms that lead to specific clinical phenotypes. The study of 
the different omics allows for a deeper understanding of the complexity of MCL 
and sheds light on targetable aberrations. This translates into new opportunities 
for clinical management and the development of tailored treatment approaches 
that prompt better outcomes for patients. 

Although overexpression of cyclin D1 remains characteristic of MCL, this 
phenomenon by itself is incapable of leading to overt lymphoma. This has been 
supported by the finding of t(11;14)(q12;q32) in the blood of healthy individuals 
(116, 117), as well as previous mice studies (118-120). Secondary aberrations and 
deregulations must happen for the malignant transformation to occur. These 
deregulations occur at distinct molecular levels.  

3.1 The genomic landscape in MCL portrays a highly 
heterogeneous disease 

Numerous studies in the past years have consistently shown the genomic 
heterogeneity in MCL, regarding mutated genes and their incidence (30, 121-
128), and deregulation of epigenetic mechanisms (124, 129-132), providing 
important insights into the molecular profile and pathogenesis of the disease.  
MCL is characterized by frequent chromosomal imbalances. Common 
cytogenetic abnormalities, besides the t(11;14)(q13;q32), include: the 3q25-q29, 
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7p22 and 8q24 (MYC proto-oncogene (MYC) gene locus) gains and 1p32, 
13q33-q34, 17p13 (TP53 gene locus) and 6q loss (30, 133-135). Among the most 
mutated genes in MCL, ATM is reported at a higher frequency, with roughly 50% 
of the tumors harboring at least one mutation. Other frequently mutated genes 
identified are TP53, CCND1, KMT2D, KMT2C, UBR5, NOTCH1, NSD2, 
BIRC3, and NOTCH2 (30, 121, 123-127).  

In Paper I, we intended to demonstrate the applicability and potential 
benefits of including sequencing approaches in the clinical workflow for MCL. 
We evaluated a target panel of 200 genes in a total of 77 biopsies of diagnostic 
MCL from the population-based BLISS cohort and confirmed the most 
commonly recurring mutated genes in MCL could be found. 70% of the analyzed 
tumors had at least one mutation in a gene involved in cell cycle regulation. This 
observation strengthens the importance of cell cycle deregulation in MCL. 
Commonly affected pathways include apoptosis and TP53-transcriptional 
pathways (Paper I)(136). Pararajalingam et al. have proposed in their study that 
two myocyte enhancer factor 2B (MEF2B) recurring mutations were MCL-
specific (137). In our study we found four samples matching these mutations in 
MEF2B. MEF2B codes a protein that is hypothesized to drive lymphomagenesis 
and be involved in the germinal center formation. ATM and TP53 have shown a 
tendency to be mutually exclusive (30, 138), which is also demonstrated in our 
study (Paper I). Nonetheless, a small subset of patients can have mutations in both 
genes (15). We showed that a significant number of mutations in these two genes 
are driver mutations, thus it can be hypothesized that either ATM or TP53 
mutations might be required for malignant development. Further, we show that 
60/77 patients studied harbored at least one mutation with the potential to be 
included in the management and treatment decisions in the clinics in the 
foreseeable future. 

In this study, we used FFPE samples, which are the golden standard for 
IHC-based routine pathology diagnosis, but are characterized by partly degraded 
nuclei acids. The partial DNA degradation in FFPE samples reduces their quality 
and has hampered their use in molecular technologies. It is to be noted that a 
significant number of samples failed quality control and were not sequenced. It is 
possible to iterate reasons for this phenomenon, such as the lack of guidelines and 
protocols for the fixation and handling of FFPE samples, particularly in more aged 
blocks. Nonetheless, we showed in paper I, the applicability and potential to bring 
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target NGS approaches to clinical management in the context of MCL using 
archival FFPE samples, although only 50% of our samples passed quality control. 
We believe that this potential is increased with the standardization of protocols 
for FFPE handling in the clinical setting. 

Epigenetic deregulation is characteristic of cancer cells. MCL cells seem to 
have epigenetic imprinting similar to the germinal center-experienced B-cells, 
which suggests that MCL is antigen-driven. Identical to the heterogeneity 
observed at the genomic level, DNA methylation changes are highly variable, and 
many alterations are only seen in one or a few cases. (132). Several deregulated 
epigenetic mechanisms have been described (131) and genes involved in such 
mechanisms are commonly subjected to mutations in MCL (30, 124). Such 
examples are NSD2, KMT2D, and genes involved in the SWI/SNF chromatin 
remodeling complex, that we showed to be mutated in paper I.  

3.2 The transcriptome in MCL – from deregulated 
signaling pathways to treatment response prediction 

Understanding the mechanisms behind the deregulation of MCL-
associated pathways and increased proliferation has been the focus of several 
studies in MCL, with the goal of developing alternative treatment strategies.  

In addition to deregulation of the cell cycle (139-141), MCL seems to be 
dependent on constitutive B-cell receptor (BCR) activation (142-145). The 
impact of BCR deregulation in patient management was shown in Bomben et al. 
study that separated high and low BCR activation tumors by a signature 
containing six representative genes, which was then reported to have a prognostic 
impact (146). Apoptotic mechanisms are also impaired and involve BCL-2 
mRNA overexpression as described in 3-17% of MCL tumors (147, 148). 
Activation of the PI3K/AKT/mTOR pathway (149, 150) and JAK/Signal 
transducer and activator of transcription (STAT)3 (151) has been observed in 
MCL. Other reported deregulations include constitutive activation of the classical 
and alternative nuclear factor kappa-light-chain-enhancer of activated B-cells 
(NF-κB) pathways (124, 144, 152), deregulation of Notch (126), and WNT 
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pathways (150). These studies have ultimately led to the development of targeted 
treatment strategies. 

3.2.1 Proliferation and treatment outcome signatures  

Cell cycle deregulation is a key feature of MCL and the development of 
technologies that allowed analysis of the full transcriptome of a sample has led to 
an avalanche of global gene expression profiling investigations dedicated to 
understand the underlying biology and variability in MCL.  

In 2003, Rosenwald and colleagues pioneered the work on defining a 
proliferation signature that correlated with the frequency of Ki-67 positive cells 
and the mitotic index in MCL (48). This proliferation signature was later in 2008 
used as a basis for the development of a five-gene list that could be applied to fresh 
frozen and archival samples for use in pathology departments (153). Several other 
proliferation signatures have been proposed, with little overlap between them (48, 
69, 144, 146, 150, 153-157). This variability reflects the strong effect 
proliferation has on the transcriptome.   

In 2017, the MCL35 assay, an amplification-free Nanostring-based 17-
gene signature, was developed. This signature includes both genes that are up and 
down-regulated in proliferative tumors, and although it has been validated, 
evaluation of Ki-67 is still the prevailing method for proliferation assessment.  The 
MCL35 assay (155) is the most promising gene expression signature reported to 
date (158-160). It was able to stratify patients into three risk groups: high, 
standard, and low, with a median OS of 1.1, 2.6, and 8.6 years, respectively. 
Nonetheless, MCL35 failed to stratify patients treated with the N-MCL2/3 
protocols, the current gold standard treatment, based on TTP (158). In Paper II 
we aimed at filling this gap. We used the homogeneously treated N-MCL2/3 
cohort, which has a significantly higher median follow-up than the cohort used 
to establish MCL35 (8, 11, 15). With this strategy, we identified several genes 
able to distinguish short versus long TTP. As expected, the cell cycle pathway was 
enriched among the ones associated with TTP. Thermogenesis, fatty acid 
degradation, and oxidative phosphorylation (OXPHOS) were additional 
pathways associated with inferior survival.  

Current clinical management in most centers does not include gene 
expression analysis, which contributed to the lack of current clinical use of any of 
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the developed signatures. The identification of surrogate markers of easy 
applicability in the clinic is thus a great need. One such technique that is part of 
the clinical routine is IHC. CPT1A was upregulated in patients with poor 
prognoses in our analysis, and it was part of the thermogenesis/OXPHOS cluster 
(Paper II). We validated, in the population-based BLISS cohort and in a subset of 
patients of the N-MCL2/3 cohort, the prognostic value of CPT1A at the protein 
level, through IHC. CPT1A is a key rate-limiting enzyme in FAO that is 
ubiquitously expressed in the body and highly regulated (14). Recent studies have 
shown that CPT1A is a marker of worse prognosis in other malignancies, such as 
breast cancer (161) and acute myeloid leukemia (162, 163), and targeting CPT1A 
alone or in combination with cytarabine treatment could be a therapeutic option 
in hematological malignancies (164). Of note, we also found that SLC25A20, 
which is involved in the transport of long-chain fatty acids into mitochondria 
(165), was also upregulated, suggesting that the carnitine cycle may have a role in 
MCL development that has not been identified before.  

3.3 High-risk variants of Mantle Cell Lymphoma 

The avalanche of advancements in technologies has boosted our 
understanding of the underlying mechanisms governing MCL lymphomagenesis. 
This has encouraged the identification of distinct subtypes characterized by 
different molecular features and/or commonly associated with poorer prognosis. 
Several studies have reported high-risk features for MCL, namely: advanced age 
(166, 167), significant comorbidities, poor performance status (168), non-classic 
morphology (169), high Ki-67 expression (55), and TP53 aberrations (15).  

With increased knowledge of the disease came the development of 
improved therapies and the strive to move past conventional chemotherapy, with 
often intensive regimens and high cytotoxic effects. Considering this, other 
markers of high-risk have been proposed, such as c-Myc aberrations (61, 170), 
complex karyotype (171), minimal residual disease-positive (172), and several 
genomic mutations (121, 126, 128, 173, 174). Nonetheless, most of these 
molecular traits have not been validated in prospective studies and a few remain 
challenging to implement in the clinical setting due to lack of more recent 
technologies in the hospital setting and further clinical validation. 
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Here, highly proliferative tumors, non-classic morphology, TP53, and c-
Myc aberrations in MCL will be discussed, reflecting upon the translational 
application of our findings, seeking the establishment of prognostic markers of 
easy evaluation in the clinical workflow. 

3.3.1 Highly proliferative tumors – Ki-67 overexpression 

To this date, the proliferation index (PI) in MCL is commonly evaluated 
using Ki-67 expression as measured by IHC (60). A negative prognostic value 
associated with high PI at diagnosis has been repeatedly demonstrated in large 
patient cohorts by both us (Paper III, Paper V) and others (10, 15, 175-179). Also 
at relapse, high PI is associated with inferior prognosis (180, 181). Thus, the 
prognostic impact of PI is well defined and seems to be independent of treatment 
approaches, even in the rituximab era. However, poor reproducibility of this 
marker due to interobserver variability is a strong concern among the expert 
community (60, 182).  

In our cohorts, around 20% of the patients showed Ki-67 expression ≥ 
30%, the established cut-off for classification as highly proliferative tumors. 
Frequent studies showed a strong overlap between high PI and non-classic 
morphology (175, 180, 183). This could also be seen in our studies (paper I-V). 
In paper I, only nine patient samples overexpressed Ki-67, but we observed that 
all tumors either harbored ATM or TP53 mutations. p53 overexpression is also 
associated with highly proliferative tumors (paper III), which is consistent with 
previous reports (179, 183, 184). In paper II and paper IV we report a correlation 
between high MYC mRNA and c-Myc protein with Ki-67 overexpression. 

Given the prognostic impact of PI in MCL, it is of major interest to 
understand the molecular features that characterize this subgroup of patients, as 
well as to identify alternative treatment approaches for patients with highly 
proliferative tumors. In paper II, we showed that WEE1 G2 checkpoint kinase 
(WEE1) and flap structure-specific endonuclease 1 (FEN1) mRNAs were highly 
upregulated in tumors with Ki-67 ≥ 30%. The association was validated on the 
protein level in an independent cohort of MCL patients. Wee1-like protein kinase 
(WEE1) has a critical role in the cell cycle and DNA damage response. WEE1 is 
believed to be a pseudo-oncogene in malignant cells that sustains proliferation 
upon oncogene activation while maintaining a high genetic instability and 
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enhancing DNA repair upon chemo and radiotherapy treatments (185). A 
screening approach previously published also identified WEE1 inhibition as a 
complement to rituximab (186). It has also been shown in preclinical models that 
the combination of CHK1 and WEE1 inhibition is a promising therapy in MCL 
(187), but so far WEE1 inhibition has not been assessed in clinical trials.  

FEN1 is involved in DNA replication, namely at Okazaki fragment 
maturation and in the base excision repair pathway (188). Interestingly, FEN1 is 
necessary for the repair of oxidative DNA damage (189) and OXPHOS 
represented one cluster that was enriched in high Ki-67 tumors (Paper II). 
Additionally, FEN1 is not expressed in quiescent cells (190), and it is 
hypothesized to support the increased proliferation of cancer cells (191). Studies 
have shown that mice carrying FEN1 mutations had early-onset of B-cell 
lymphomas (192). These data support the role of FEN1 in highly proliferative 
cells and as a putative target for MCL tumors with high Ki-67 expression. 

3.3.2 Non-classic morphology: Blastoid and pleomorphic variants 

Blastoid and pleomorphic are cytological variants of MCL, characterized 
by blastic morphological features and high proliferation, with abysmal prognosis 
(15, 55, 59, 193, 194). Blastoid cells resemble lymphoblasts, with fine chromatin 
and round nuclei, often medium-sized. Pleomorphic cells are large with irregular 
nuclei and prominent nucleoli (7). Non-classic morphology comprises these two 
cytological MCL variants, that constitute 10-20% of all MCL cases (15, 55, 195). 
In our cohorts, the frequency of non-classic morphology tumors was 12%, with 
the highest frequency observed in the N-MCL2/3 cohort where eligibility criteria 
included age < 65 years. Some studies have reported that patients with blastoid 
variants are slightly younger at diagnosis (59, 194). 

Blastoid morphology frequently arises de novo, but it may also evolve from 
classical disease during progression (177, 196, 197).  A single study has reported 
that transformation occurred in up to 35% of patients (198), but this remains to 
be validated. Clinically, these patients are similar to those with classic MCL, 
however, they are described as more often presenting extranodal (59, 194) and 
CNS involvement (199). Non-classic morphology is associated with TP53 
aberrations and high proliferation (55, 183, 193, 200) (Paper III). However, none 
of these characteristics are specific nor all-encompassing for non-classic 
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morphology variants. Non-classic morphology remains a strong prognostic factor 
in MCL (13) and pinpoint therapeutic alternatives is a current unmet need. In 
paper I and paper II we address this issue by exploring genomic and transcriptomic 
deregulations in non-classic MCL. 

In paper I, we saw that similar to highly proliferative tumors, blastoid 
tumors had either ATM or TP53 mutations and we report two blastoid cases with 
a very short OS that harbored the exportin 1 (XPO1)E571K mutation. XPO1 
encodes the exportin-1 protein that mediates the translocation of RNAs and 
proteins from the nucleus (201). This protein is highly expressed in MCL, with a 
possible role in pathogenesis and an association with poor prognosis (202). This 
mutation is hypothesized to be lineage-specific and almost exclusive of B-cells 
(203). The role of the mutation is not clear, but recent studies believe that it can 
alter the nuclear translocation dynamics and could promote lymphomagenesis 
driven by BCL-2 and c-Myc (203, 204). c-Myc aberrations are reported to be 
enriched in blastoid morphology cases (Paper IV) (170, 205). XPO1 is a targetable 
gene, and several selective inhibitors of nuclear export compounds are being 
explored in different studies (201).  

Interestingly, Streich and colleagues (200) recently observed that 
chromothripsis occurred in 62% and was exclusive of blastoid MCL. 
Chromothripsis is a complex phenomenon that leads to patterns of alternating 
gene copy number changes within chromosomes. The presence of this 
phenomenon highlights the high genomic instability and replication stress in 
these tumors (206, 207). In paper II, when evaluating the gene expression 
profiling of blastoid tumors, MAP2K6, MAP3K8, PPP2R1B, and CUL5 were 
exclusively deregulated in these tumors. These four genes have roles in the 
regulation of cell growth and proliferation, with the first being involved in the 
activation of the MAPK signaling pathway in response to environmental stress 
(208-210). Several metabolic pathways showed higher deregulation in non-classic 
vs classic morphology in our approach. These data strongly suggest that non-
classic morphology MCL is associated with higher cellular stress and genomic 
instability, likely contributing to their adverse prognosis. 
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3.3.3 TP53 mutations and p53 overexpression 

TP53 is the strongest negative prognostic marker in MCL (15, 57, 138, 
174, 211-216), with currently no adequate treatment approach. TP53 is a key 
tumor suppressor gene and is one of the most important genes involved in 
regulating apoptosis. TP53 encodes a transcription factor, p53, which binds to its 
target genes through the DNA binding domain and regulates their expression. 
p53 has a pleiotropic effect and, besides DNA repair, is also involved in apoptosis, 
senescence, antioxidant defense, cell metabolism, and cell cycle arrest. TP53 
deregulation is described in lymphomas at the DNA, RNA, and protein levels 
(217).  

 

3.3.3.1 TP53 deregulation in MCL 
TP53 is reported to be deregulated at the genomic level due to point 

mutations, deletions, and chromosomal alterations, and at the protein level, with 
overexpression of the p53 protein (15, 57, 174, 212). TP53 mutations are 
estimated to be present in 10-20% of patients diagnosed with MCL (15, 212, 
214, 218). The majority are missense mutations and affect mostly the DNA 
binding domain (Paper III), leading to a protein with only one amino acid 
substitution, called mutp53 (219). Mutations seem to be more frequent in 
relapsed tumors compared to diagnostic samples (82, 83). Deletions are also 
frequently reported in diagnosed patients (10-30%) and reports of concomitant 
aberrations have also been published (15, 212-215, 220). 

TP53 mutations have been consistently shown to be associated with a 
worse prognosis, irrespectively of current treatment approaches (138, 174, 213, 
218, 221). The NLG studied the N-MCL2/3 cohort and showed that the median 
OS time for mutated patients was 1.8 years, compared with 12.7 years in wild-
type (WT) patients (15). In our population-based cohort, the median OS time 
for patients carrying TP53 mutated tumors was similar, 1.4 years, however, the 
WT patients had a shorter OS of 6.2 years. Deletions involving this gene have 
also been shown to carry a prognostic impact in MCL, but they seem to be less 
significant than mutations (15, 125, 212, 214). We showed that p53 protein 
expression is present in 13% of the patients diagnosed with MCL (Paper III). 
Overexpression of p53 protein, defined as ≥ 30% of positive cells, is associated 
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with a poor prognosis and in our population-based cohort, patients with p53 
overexpression had a median OS of 0.9 years, with a hazard risk of 3.1 (Paper III). 

TP53 aberrations are associated with non-classic morphology (183, 215, 
222) and high Ki-67 expression (15, 223). Additionally, it has been proposed that 
TP53 mutations may represent non-nodal MCL that, after an indolent phase, 
evolved to a highly aggressive variant (224). These cases are frequently reported as 
SOX11 negative in literature. However, in Paper III, we could not confirm an 
association between the two markers, TP53 and SOX11. Despite TP53 
aberrations being enriched in other markers of aggressive disease, mutated TP53 
tumors can be of classic morphology and classified as low proliferative tumors. 
Thus, there is a need for an assessment of TP53 aberrations for improved risk 
stratification in MCL patient management, beyond the current guidelines. 

 

3.3.3.2 From mutations to overexpression of the protein: applicability in the clinical 
routine 

As targeted sequencing remains to be fully implemented in clinical routine, 
a strategy to stratify patients with TP53 mutations, who seem to require 
alternative treatments, is warranted. Immunostaining for p53 as a surrogate 
marker for TP53 mutations is suggested in other tumors (225-228), since mutp53 
protein is stabilized and overexpressed in the cancer tissue. Hence, in paper III, 
we aimed at evaluating the feasibility of applying p53 immunoreactivity as a tool 
to identify TP53 mutations. We showed that positive p53 expression is an 
accurate method to identify TP53 missense mutations, with an area under de 
curve of 0.96 for the population-based material. We reached 100% specificity and 
82% of sensitivity when evaluating p53 immunostaining of tissue microarrays and 
complementing with whole tissue sections. Of note, in our study, bone marrow 
samples did not always reflect the TP53 mutational status on the tumor, with a 
higher level of concordance when the same biopsied material was considered for 
both analyses. Albeit not identifying all mutation types, one advantage of IHC 
analysis was the visualization of mutated subclones, which can easily be missed by 
sequencing due to low allele frequency. Thus, immunostaining of p53 was able to 
identify poor prognosis patients with TP53 missense mutations and to single out 
cases with the presence of clones for p53, making it an important tool in the 
clinical workflow of MCL.  
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3.3.4 c-Myc aberrations in B-cell lymphoma and MCL 

Deregulation of c-Myc is reported in most B-cell lymphomas (229-233). 
The MYC gene is located at 8q24 and was first identified as an oncogene in 
Burkitt lymphoma, due to the characteristic t(8;14)(q24;q32) (234), that 
juxtaposes MYC with the IGH, leading to overexpression of c-Myc (235). c-Myc 
is a transcriptional factor able to regulate 10-15% of the human genome and affect 
both protein-coding genes and non-coding RNA products (236-238).  

c-Myc has a pivotal role in B-cell proliferation, being expressed in the 
initiation events of the germinal center. c-Myc transcriptional targets are involved 
in the regulation of cellular metabolism, DNA replication, and telomerase 
function (21). c-Myc driven malignant B-cells are associated with disease 
aggressiveness and involved in the transformation of indolent lymphomas (16, 
239-241). c-Myc constitutive expression leads to genomic instability (242), cell 
proliferation (243), and overall deregulation of MYC physiological targets (244).  

The frequency of MYC aberrations in MCL is far from understood and at 
which molecular level it occurs remains to be elucidated. MYC is commonly 
deregulated in many cancers (245, 246), but rarely by oncogenic mutations. 
Instead, aberrant activation of c-Myc is due to amplification (247), insertional 
mutagenesis (238, 248), chromosomal translocations (234, 235) and 
transcriptional/post-transcriptional events (249, 250). In paper I, we confirm that 
the MYC gene is rarely mutated in MCL. Then, in paper IV we investigated the 
presence of additional abnormalities of MYC in diagnostic MCL. We showed that 
15% of the samples had more than 20% of positive c-Myc cells, and were 
considered to overexpress the protein (MYC+). However, chromosomal alterations 
were scantly observed in our study. Of note, we were not able to evaluate all 
samples through FISH analysis, so it is possible that some chromosomal 
rearrangements were missed, as it has been described that translocation of MYC 
might not lead to c-Myc overexpression. Ongoing investigations will include 
FISH analyses of all cases.  Through mRNA in situ hybridization, we assessed the 
expression of MYC mRNA and showed a strong correlation between protein and 
mRNA, which indicates that part of the deregulation of c-Myc happens at the 
transcriptomic level. To be noted that this evaluation was particularly challenging 
in samples with a high frequency of autofluorescent cells, such as bone marrow 
biopsy samples.  
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Most patients with c-Myc deregulated tumors will have some additional 
known aggressive characteristics. c-Myc has been associated with disease 
progression, relapse, and transformation of classic to non-classic variants (61, 232, 
240, 251, 252). In paper IV we show that commonly reported aggressive variants 
of MCL, namely highly proliferative tumors, non-classic morphology, and high-
risk MIPI cases, were enriched for c-Myc aberrations. MYC+ was associated with 
a worse prognosis, with MYC+ tumors having an OS of 1.5 years and a four-fold 
risk of dying. This negative effect was independent of other high-risk markers of 
aggressiveness (Paper IV). With respect to the impact of MYC rearrangements, 
although less frequent, they remain associated with a poorer prognosis (61, 231, 
253).  

3.3.5 c-Myc+ and TP53/p53+: a new high-risk group? 

Concomitant alterations in TP53 and/or p53 and c-Myc seem to be 
associated with a strongly increased risk of dying (Paper IV). Patients with tumors 
harboring alterations in both molecules showed a median OS of only 0.9 years 
after diagnosis and were associated with aggressive variants of the disease. 
Although other studies had noticed the association between c-Myc and p53 in 
MCL (213, 254-256), no comprehensive study on the prognostic effect of 
concomitant alterations has been made before our report. Interestingly, in the a 
study that focused on molecular subtyping MCL, the clusters with shortest 
survival identified harbored TP53 mutations and had a strong active MYC 
pathway (257).  

The additive negative effect of p53 and c-Myc has also been noticed in 
DLBCL (258, 259). The mechanism behind the negative effect is unclear, and 
studies have pointed to the regulation of apoptosis by c-Myc. Further, MYC-
induced genomic instability and cell cycle progression seem to be enhanced when 
p53 is absent (242, 260-262). Additionally, different mutp53 have been shown 
to affect and be affected by c-Myc, e.g., R172H mutp53 was stabilized by c-Myc 
(263). However, the concrete mechanism behind c-Myc and TP53/p53 additive 
negative effect remains to be fully elucidated in B-cell lymphomas.  
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4.Tumor microenvironment in 
MCL 

The microenvironments in B-cell lymphomas can be divided into three 
categories; recruitment, re-education, and effacement as proposed by Scott and 
Gascoyne (264). The proposal emphasizes that the microenvironment attributes 
resemble a continuous spectrum, rather than three very distinct 
microenvironment subtypes. The determinants of the different classification 
stages included tumor-intrinsic characteristics, the dependence on external stimuli 
for tumor proliferation, survival and immune invasion, and the host inflammatory 
response. The MCL microenvironment is placed between re-education and 
effacement microenvironments, but resembles more a re-educated 
microenvironment. This pinpoints a complex network between tumor intrinsic 
factors and the surrounding environment. The MCL microenvironment is 
referred to as a dynamic niche, with crosstalk between the tumor cells, accessory 
cells, and soluble factors.  

In this chapter, the MCL tumor immune microenvironment will be 
discussed, mentioning the different components and their postulated role in the 
disease. In light of the conclusions of papers V and VI, a special focus on 
regulatory T-cells (Tregs) and macrophages will be presented. 

4.1 The immune microenvironment in MCL 

The importance of the immune microenvironment is already established 
in B-cell lymphoma, but there is a lack of knowledge into its composition and 
role in treatment response in MCL. In paper V we aimed at filling this gap. There 
we showed that there was high heterogeneity in the immune microenvironment 
in MCL and that T-cells were the most common, albeit inter-patient variability. 
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The main mechanisms postulated to drive immune evasion in lymphoma 
are: i) defective immune recognition, such as mutations in specific genes that 
impair recognition, including MEF2B; ii) aberrant co-stimulatory/co-inhibition 
signals, e.g., expression of PD-1 and PD-L1 in the microenvironment; iii) 
presence of immune suppressive cells, like macrophages and T regulatory cells 
(Tregs); iv) secretion of immune regulatory factors that suppress T-cell effector 
functions, such as interleukin-10 (IL-10) and indoleamine 2,3-dioxygenase 
(IDO) (265-269). Interestingly, in paper I, we showed that seven patients carried 
mutations in MEF2B, in paper V we reported that PD-1 had an average 
expression of 10% in our MCL cohorts. Although to a low extent, but with a 
negative impact on prognosis, macrophages and Tregs were found in a proportion 
of tumor samples (Figure 2). This data suggests that different mechanisms are 
involved in MCL evasion from immune cells. 

 
Figure 2 Mantle cell lymphoma cells interact with T regulatory cells and M2-like macrophages in the tumor 
microenvironment. MCL cancer cells express CD40 and interact with CD154+ cells, leading to increased BCR and NF-kB 
signaling. MCL cells secrete cytokines, such as CCL5 and CCL4 that can attract Tregs to the microenvironment. Tregs, which 
are FoxP3+ cells, interact with MCL cancer cells through CD70/CD27 axis and can promote increased anergy and/or 
exhaustion in effector T-cells. MCL cancer cells interact with macrophages in a loop involving IL-10 and CSF1 secretion. 
MCL express CD47, a “do not eat me” signal, that binds to SIRPα on macrophages, as an evasion mechanism. The presence 
of M2-like macrophages in the tumor microenvironment in MCL is associated with an increase in MAPK signaling.  
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4.1.1 T-cell subsets and their impact on MCL 

T-cells seem to be the most frequent immune population infiltrated in 
MCL tissue (270). This is also supported by the observation that soluble CD40 
ligand (CD154) was present at higher levels in peripheral blood of MCL patients 
(271). It is thus hypothesized that MCL cells, which express CD40, interact with 
CD154+ T-cells, leading to aberrant expression of BCR, NF-κB pathway, and 
survival factors, promoting lymphomagenesis and drug resistance (17, 272).  

In paper V, the majority of CD3+ cells were cytotoxic T-cells (TC cells), 
rather than helper T-cells (TH cells), with an average of 5.8% and 3.7% of positive 
cells, respectively. An increase in CD3+ cells within the tumor had a positive 
impact on prognosis, most likely due to its negative association with age and the 
presence of a higher number of TC cells. Nygren et al. reported a lower T-cell level 
in MCL compared to reactive lymph nodes, with a tendency of a decrease in T-
cell numbers when the pattern of malignant growth was diffuse rather than 
mimicking mantle zone growth. Further, they showed that the decline was due to 
a loss of CD4+ cells (273). In our study, an increased frequency of CD4+ cells was 
associated with short OS (Paper V). Nonetheless, the prognostic impact of CD4+ 
cells show conflicting results, with a low absolute count in MCL peripheral blood 
samples and a high CD4:CD8 ratio previously being associated with longer OS 
(273, 274). Higher CD8:CD3 ratios have been frequently associated with high-
risk MIPI cases. A higher ratio of CD8:CD4 central memory T-cells has also been 
connected to shorter TTP and OS in patients treated with ASCT (275).  

A study in MCL has pointed out that lymph nodes with high proliferation 
showed higher levels of CD8, cytotoxic T-lymphocyte protein 4 (CTLA-4), PD-
1, and PD-L1 expression, which points towards the exhaustion of TC cells in this 
subgroup of patients (276). Given the high complexity of the subtypes of T-cells 
and their range of activation status, these conflicting results are, to a certain 
degree, expected. One of the strongest limitations of the study in paper V is the 
use of single IHC staining. By only evaluating one cell marker is not possible to 
confidently clarify which cell type is presented, as the same marker can be 
expressed by more than one cell type. Thus, the role and impact of both TC and 
TH cells remain controversial and elusive in MCL, with a need for further studies 
and a deeper molecular characterization of specific subsets. 
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4.1.1.1 Tregs are associated with sorter TTP in MCL 
A strong correlation between CD4+ cells and FoxP3+ cells was observed in 

paper V, which suggests that a large number of CD4+ T-cells are Tregs. Tregs are 
immunosuppressive cells, hampering the function of effector T-cells, antigen-
presenting cells, and NK cells. Common mechanisms involved in Treg immune 
suppression include upregulation of immune checkpoints inhibitors, 
consumption of IL-2 leading to effector T-cell deprivation, and release of 
suppressive molecules, such as IL-10 (277). IL-10 seems to be important in MCL 
development (278). Tregs appear enriched in B-cell lymphoma compared to lymph 
nodes and inflammatory tonsils (279). In MCL lymph node biopsies, evaluated 
by flow cytometry, around 11% of CD3+ cells showed a CD4+CD25+FoxP3+ 
phenotype, a similar frequency to DLBCL, but significantly lower than in FL 
(280).  

MCL cells secrete CCL4 and CCL5 (281), which can attract Tregs to the 
microenvironment (282). Overexpression of CD70 on MCL cells is correlated 
with Treg levels (283). CD70 is the unique ligand for CD27, a co-stimulatory 
molecule expressed in lymphocytes, whose expression on Tregs has been correlated 
to a strong suppressive function (284). The increased expression of CD70 has 
been proposed as a mechanism of immune escape either by induction of 
immunosuppressive cells or anergy/exhaustion in effector T-cells (285, 286). Tregs 
in MCL have also been shown to express the transmembrane protein CTLA-4, 
reported to be constitutively expressed by this cell type (283). CTLA-4 binds to 
the co-stimulatory molecules CD80 and CD86 on antigen-presenting cells 
leading to degradation of these molecules and inhibiting dendritic cell expression 
of IL-6 and TNF-α (287, 288). 

Furthermore, we showed that higher levels of FoxP3+ cells predict a worse 
prognosis in patients treated with R-CHOP, hinting that the impact of these cells 
may be dependent on the treatment approach (paper V). Similar findings have 
also been reported in DLBCL (289, 290) and FL in the rituximab era (291). 
Higher frequency and ratios of FoxP3+ cells in relation to both CD3+ and CD4+ 
cells have been further associated with worse OS in MCL (270, 283). Nonetheless, 
Tregs have not been sufficiently explored in MCL, and due to their role in 
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modulating the immune response, they may be an interesting therapeutic target 
in this disease. 

4.1.2 Macrophages: key players in carcinogenesis and immune evasion 

Studies have shown that macrophages appear to be crucial in 
lymphomagenesis, as support for tumor growth (292, 293). Macrophage presence 
seems to be transversal to all B-cell lymphomas (264, 294-297), including MCL, 
as we showed in paper V.  

In physiologic conditions, macrophages are involved in homeostasis, 
inflammatory responses, and immune responses, serving as links between intrinsic 
and adaptive immunity (298). Historically, macrophages have been categorized 
into classic or alternatively activated macrophages, M1 and M2, respectively. 
Increased efforts have been made to understand the polarization process of 
macrophages (299, 300). Transcription and translation are tightly regulated in 
these cells to fine-tune cellular function and the modulatory effects of 
macrophages are defined based upon activation of specific transcription factors, 
histone modifications, changes in DNA methylation patterns, and regulation by 
different non-coding RNAs (301, 302). The deeper knowledge of this process has 
led to the realization that M1 and M2 are the extremes of the polarization 
spectrum (303, 304). In the carcinogenesis process, M1 macrophages are 
considered anti-tumor with cytotoxic capabilities, whereas M2 macrophages have 
strong immunosuppressive properties, like the production of IL-10 and IL-13 
(305).  

Macrophages are hypothesized to be part of carcinogenesis already at early 
stages, by producing reactive oxygen species, thus leading to genomic instability, 
and interacting with cancer stem cells, promoting protective conditions for cancer 
development (306, 307). Additionally, macrophages are associated with resistance 
to treatments, by blocking cytotoxic effects from T-cells and NK cells due to the 
expression of PD-L1 and V-type immunoglobulin domain-containing suppressor 
of T-cell activation (VISTA) (308-310). Importantly, the tumor 
microenvironment also supports the immunosuppressive properties of 
macrophages. The acidic pH of the tumor microenvironment modulates 
macrophages towards the promotion of immune evasion (311), the presence of 
TH type 2 cells, and consequent secretion of type 2 cytokines (312), and Tregs 
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attraction (313). Tumor cells are also known to release cytokines that attract and 
modulate macrophages. CD47, a ‘do not eat me’ signal that is expressed in many 
tumor cells including MCL cells, interacts with SIRPα on macrophages 
contributing to immune evasion (110, 111, 314).  

 

4.1.2.1 Crosstalk between Macrophages and tumor cells in MCL 
MCL interacts closely with macrophages, but the modulatory effects 

between these two cell types have not been explored. Paper VI was focused on 
characterizing the crosstalk between tumor cells and macrophages and identifying 
targets for the modulation of macrophages. In paper VI, we used the new digital 
space profiling technology from Nanostring to spatially characterize the 
expression of 69 proteins in CD163+, CD3+, and CD20+ cells. This technology 
provided a platform for multiplex protein profiling, allowing for discrimination 
between spatially localized CD163+ cells. With this approach, we were able to 
phenotypically profile M2-like macrophages and changes associated with their 
localization in the tissue. M2-like macrophages not in contact with tumor cells 
expressed increased levels of the immune-checkpoint regulators B7 homolog 3 
(B7-H3) and VISTA. VISTA is highly expressed in myeloid cells (315) and 
studies have shown a co-inhibitory role in the tumor microenvironment (316). 
B7-H3 is often associated with worse prognosis in cancer and its expression has 
been previously reported in MCL (317, 318). The increased expression of these 
two molecules suggests that M2-like macrophages in regions adjacent to tumor-
rich areas have a role in T-cell proliferation inhibition. 

Macrophages within the MCL microenvironment have been reported 
previously (177, 319). In our study, the frequency was low, with an average of 
0.06% positive cells, but a higher number of CD163+ M2-like macrophages, was 
associated with more aggressive disease (paper V). M1-like macrophages can also 
be found within the tumor microenvironment of MCL, reported more frequent 
than M2-like macrophages (319, 320). Interestingly, both types of macrophages 
have been shown to express PD-L1 (319). Papin et al. showed that macrophages 
in MCL were more M2-like but were able to express both M1 and M2 soluble 
factors (114). Koh et al. showed that CD163+ cells were more frequent in patients 
with bone marrow involvement (321). We showed that bone marrow samples had 
an average higher frequency of CD163+ cells than compared to the lympho nodes, 
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0.42% and 0.05%, respectively (Paper V). In vitro studies showed that 
macrophages/monocytes were necessary for the establishment of long-term 
culture of MCL cells and hypoxic conditions favored macrophage activation and 
potentiate cancer cells survival (322, 323). Further, myeloid precursor cells 
provide favorable conditions for the growth and establishment of MCL cells in 
the bone marrow (323-325). Unfortunately, a large part of the bone marrow 
samples had to be excluded from the study presented in paper VI due to increased 
levels of background and autofluorescence. 

Current discoveries suggest that monocytes may be able to differentiate or 
be reprogrammed into macrophages in the tumor microenvironment. B1 
lymphocytes, described as the normal counterpart of MCL cells, are capable of 
recruiting monocytes due to secretion of relevant cytokines, such as IL-10, and 
promote their programming towards alternative activated M2 phenotypes (323, 
326). Papin et al. demonstrated this phenomenon in MCL, with reprogramming 
being attributed not only to IL-10 but also to CSF1. IL-10 and CSF1 plasma 
levels are high in MCL patients (114). Le et al. showed that IL-10 secreted by 
macrophages polarized by MCL cells lead to STAT1 activation and MCL growth 
(320). These studies suggest a strong loop between MCL cells and macrophages, 
via IL-10 secretion, that allows for immune evasion and malignant growth.  

We report an increase in MAPK activation in tumors with macrophages in 
the tumor microenvironment (Paper VI). MAPK pathway activation is known to 
be involved in macrophage polarization (327). Further, the MAPKs extracellular 
signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNK), and p38 are 
reported to be activated upon CSF1 treatment (328-330). We showed that 
expression of phosphorylated ERK1/2 in tumor cells was increased in the presence 
of macrophages (Paper VI) and it is suggested by previous studies that inhibition 
of ERK decreases the expression of IL-10 (330), making it an interesting target 
for modulation. Additionally, increased basal levels of phosphorylated-ERK and 
p38 have been previously associated with poor survival in MCL (145).  

We showed that the presence of CD163+ macrophages within the tumor 
area was associated with a worse prognosis, irrespective of the treatment approach 
(paper V). There is an association between poor prognosis and high monocyte 
counts in the peripheral blood (321). It has thus been hypothesized that monocyte 
counts can be surrogate markers of alternatively activated M2 macrophages in the 
tumor and predict worse survival (331). Koh et al. did not report an association 
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between CD163+ macrophages and survival, instead, a positive correlation 
between absolute monocyte counts and CD163+ cells was observed, with the first 
associated with worse outcome (321). The discrepancy in results might be related 
to the method of staining and evaluation, as in paper V we focused on 
macrophages within the tumor area and, as we show in paper VI, CD163+ 
macrophages are phenotypically different in different spatial localizations. The 
presence of CD163+ cells in the MCL tumor might be a surrogate marker for an 
immunosuppressive environment. Moreover, a significant correlation was 
observed in our study between the expression of CD163+ cells and FoxP3+ cells. 
Tumors with high numbers of CD163+ and FoxP3+ cells had a worse TTP when 
treated with R-CHOP (Paper V). Streich et al. (200) also reported the presence 
of tumor-infiltrating macrophages positive for PD-L1 in blastoid tumors. In paper 
V, non-classic morphology tumors showed a higher frequency of PD-L1+ and 
CD163+ cells than classic morphology tumors, which shows that these variants 
may be surrounded by a highly immunosuppressive environment.  

Mainly, our data together with other findings strengthen the role of M2-like 
macrophages in MCL and underline the crosstalk between malignant cells and 
M2 macrophages in the development and treatment response in MCL. 
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5.Concluding remarks 

A major goal in MCL management is to reduce treatment failure and 
relapse frequency and potentially develop curative strategies. The implementation 
of new immunotherapy approaches compared to the current strategies has the 
potential to induce long-term remissions and to cure patients. To reach this, 
identification of companion biomarkers that allow for patient stratification and 
that can be easily implemented in the current clinical workflow, is urgently 
warranted.  

The last years have brought incredible advances in technology that 
revolutionized biomedical research and allowed us to study diseases at 
unparalleled resolution, promoting an increment in knowledge into the cellular 
mechanisms that contribute to cancer development, progression, and treatment 
failure. The work developed for this thesis has benefitted from such 
advancements, one of the most obvious being the adaptability of these techniques 
to challenging samples such as FFPE samples, which were our main source of 
patient samples. FFPE samples are still the preferred archival sample format in 
hospitals worldwide, making them a valuable source of information. However, 
there has been a lack of guidelines for processing FFPE samples, which led to 
limited use of these samples in molecular studies, as the fixation and preparation 
fragments and highly degrade biomolecules.  

This thesis is based on six original papers that focused on understanding 
specific deregulations within MCL biology while bridging the gap between 
research and clinical application. In Paper I we demonstrated the applicability of 
an NGS panel in the clinical setting, providing relevant information for further 
tailored treatment strategies in MCL. The massively reduced costs of sequencing 
and the potential of clinical targetable mutations have boosted the interest in 
evaluating specific mutations in the context of clinical management. We showed 
that FFPE samples, despite the fragmented DNA, can be used in MCL for target 
sequencing and that several genes that appear mutated in the samples could be 
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used as targets for therapy. Thus, this pipeline can be easily implemented in the 
current patient management setting. Further investigations on the efficacy of 
compounds targeting these mutations are warranted, e.g., compounds targeting 
XPO1. 

To date, the mechanism behind treatment response and drug resistance is 
not fully understood, but the identification of patients that do not benefit from 
the current standard of care is essential to further develop alternatives more 
beneficial for them. In paper II we reported that global gene expression changes 
in non-treatment responders pinpointed metabolic alterations in these tumors, 
namely OXPHOS and FAO, as potential deregulated mechanisms that help 
tumors overcome high-intense chemotherapeutic approaches. Among the 
different targets, CPT1A was further explored at the proteomic level, underlying 
the significance of metabolism in treatment response. 

Unfortunately, the clinical implementation of the rapid knowledge 
originated from advanced technologies has not kept pace with the current 
discovery rate. The ability to translate complex findings obtained with more 
powerful technologies into guidance for clinicians’ decisions has been nothing but 
challenging. High costs and the requirement of specialized personnel are some of 
the reasons behind the challenge. In an attempt to minimize this gap, we aimed 
at validating our most promising findings through IHC. IHC is the standard 
diagnostic technique in lymphomas, thus it is readily available in the current 
clinical workflow. This makes IHC the optimal choice to bridge the gap between 
the information obtained through the cutting-edge technologies applied in the 
research and the clinical setting. In paper III we successfully showed the use of 
p53 IHC as a surrogate marker for identifying mutations in the TP53 gene. Given 
the strong prognosis of these mutations, their assessment remains a crucial step to 
be included as standard of protocol. 

The goal of paper IV was to understand the role of another possible high-
risk factor in MCL, c-Myc. Resorting to a vast number of MCL samples, we 
unraveled the negative prognostic role of c-Myc overexpression in MCL. 
Interestingly, this negative effect was reinforced when there was a combination of 
aberrations in c-Myc and TP53, suggesting an interplay between the two proteins 
in MCL. These two studies (paper III and paper IV) have shown that patient 
stratification is an unmet need in MCL and an effective clinical management 
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workflow is dependent on understanding disease drivers and identifying the best 
approaches to diminish their effects in disease aggressiveness. 

In the last two papers of this thesis (paper V and paper VI), the focus shifted 
towards the immune microenvironment in MCL. As current treatment 
investigations have a strong focus on cellular therapies and immune modulation, 
a deeper understanding of the microenvironment plays a pivotal role. Thus, in 
paper V we aimed at providing a comprehensive characterization of the immune 
composition of MCL. We showed the strong impact of the MCL composition in 
disease and drug response, highlighting that an immune suppressive 
microenvironment has a negative prognosis, opening to exploiting immune 
oncologic strategies in the clinical management of MCL, such as PD-1/PD-L1 
inhibitors for patients that showed expression of these markers. The presence of 
FoxP3+ cells was associated with a shorter TTP in patients treated with the N-
MCL2/3 protocol in our analysis. Of all phenotypes interrogated, CD163+ 
macrophages showed the strongest prognostic impact in MCL, independent of 
the treatment approach and other high-risk markers in MCL. Thus, in paper VI 
we aimed to understand the crosstalk between MCL tumor cells and CD163+ 
M2-like macrophages and identify strategies to modulate their interaction towards 
a beneficial outcome. We were able to profile how macrophages modulated their 
immediate environment in this disease, with the most interesting finding being 
the upregulation of the MAPK pathway in tumors with CD163+ cells. 
Interestingly, this exploratory study also showed that macrophages in contact with 
tumor cells differ from macrophages that do not directly interact with the tumor 
cells. The spatial architecture is thus an important component in tumor 
development and modulation of these immune cells can be a target in MCL 
clinical management.  

Throughout this thesis, I mainly used two MCL cohorts and took 
advantage of the development of new technologies to further identify biomarkers 
that can be easily accessible in the clinical setting, with the ultimate goal of 
contributing towards personalized approaches in MCL. The studies included 
investigations at different molecular levels, that combined provide a complex view 
of this disease and highlight the need to consider the different deregulations when 
evaluating treatment response and/or understanding the lymphomagenesis 
process. Further studies are warranted to validate the biomarkers here identified 
and to explore the feasibility of using them as targets for future stratified treatment 
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strategies The continuous understanding of the microenvironment contributions, 
namely regarding the crosstalk between macrophages and MCL cells, hopefully, 
will potentiate new immunotherapeutic strategies that will effectively kill the 
cancer cells. 

The current flow of data that is possible to obtain from these new 
technologies and the current computational power available, position modern 
research at the crossroads of understanding how the different omics deregulations 
can, jointly, determine patient management. It is to be believed that the future 
will bring molecular signatures that originate from distinct molecular levels and 
take into account the interactions between tumor cells and their surroundings, 
and focus on how these collectively contribute to disease development and 
treatment response. Hopefully, this work contributed to this end. I would like to 
finish with a sentence that I have heard a few times throughout these four years, 
from clinicians treating patients with this disease, one of those my co-supervisor 
Mats Jerkeman: “These are exciting times to be working with B-cell lymphomas”. 
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Popular Science Summary 

Cancer is a devastating disease worldwide. The goal is to treat each patient 
individually while minimizing secondary effects. Such an approach is called 
precision or personalized medicine. In this work, we aimed at identifying 
biomarkers that could sort patients based on their treatment response to different 
therapeutic approaches. Biomarkers are biological characteristics, such as 
alterations in a specific gene or expression of a protein, that can be measured and 
associated with a particular disease state. Our focus was on a subtype of blood 
cancer that is difficult to treat and where patients suffer from relapses. 

The currently available treatment options for this cancer type give a wide 
range of responses: some patients will be cancer-free for several years, others will 
have relapses within shorter times, and some will not respond at all to the 
treatment. We try to identify which patients belong to which group to optimize 
treatment choices and thus to improve the life expectancies. We found out that 
metabolism, which is responsible for transforming food into energy in cells, is 
altered in groups of patients that do not respond well to the current treatment. 
Moreover, we identified a specific protein, called c-Myc, which could be used as 
a biomarker for disease prognosis. We showed that patients with high levels of 
this protein in tumor cells were more likely to die from the disease. 

For these patients, immunotherapy treatments are one of the future 
strategies that can postpone disease outbreaks. Such strategies take advantage of 
human immune cells which are programmed to attack cancer cells. Immune cells 
are responsible for protecting our bodies from diseases and fighting infections, 
and cancer cells are known to be able to deceive them. Part of our study aimed at 
understanding how these immune cells are affected in this cancer subtype and 
how we can use them to fight it. A specific type of immune cell, called 
macrophages, showed in our studies to have an impactful role. Macrophages are 
cells that recognize and kill their targets, but their effect is context dependent. We 
discovered that macrophages express different protein markers when they are in 
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close contact with tumor cells and seem to provide them support for treatment 
resistance. Tumor cells were also affected if macrophages were present. This 
signals a conversation between macrophages and tumor cells which opens the door 
to exploring immunotherapy strategies targeting macrophages. 

In the last years, the scientific world has experienced major technological 
breakthroughs that allow studying cancer at a deep level. Unfortunately, these 
technologies are not implemented in the clinical setting. The findings obtained 
from these studies need to be adapted to currently clinically available technologies. 
Thus, throughout our work, we put an effort into providing affordable and easily 
implemented methods which can identify already known biomarkers in the 
clinical setting. We managed this by confirming our findings through a widely 
used clinical technique called immunohistochemistry. Consequently, we believe 
that our findings can be rapidly implemented and benefit nowadays patients. 

In short, our work contributes to the knowledge of one of the blood cancer 
subtypes and bridges the gap between the technological advancements in research 
and the clinical application of such discoveries. We expect to have contributed to 
a future where patients get tailored treatments that will benefit them most. 
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Resumo em Português 

O cancro é uma doença mundialmente devastadora. Atualmente, o 
objetivo é tratar cada doente e, simultaneamente, minimizar possíveis efeitos 
secundários. Tal estratégia é denominada medicina personalizada. O principal 
intuito deste projeto foi a identificação de biomarcadores com potencial para 
classificar doentes de acordo com a resposta individual a diferentes linhas 
terapêuticas. Biomarcadores são características biológicas, tais como alterações na 
expressão de genes ou proteínas, mensuráveis, e podem ser associadas a 
determinados estádios da doença. O foco deste projeto foi um tipo de cancro do 
sangue considerado de tratamento difícil e com os doentes a sofrerem 
frequentemente recidivas.  

As terapias atualmente disponíveis para este tipo de cancro traduzem-se 
num elevado espectro de respostas: alguns doentes mantêm-se livres de doença por 
vários anos, outros doentes sofrem recidivas num curto espaço de tempo, e outros 
não apresentam qualquer tipo de resposta à terapia. Tentámos identificar quais os 
doentes que pertencem aos diferentes grupos de forma a otimizar a escolha de 
terapias, aumentado a esperança de vida nestes doentes. Descobrimos que o 
metabolismo, mecanismo responsável nas células por transformar alimento em 
energia, apresenta alterações em grupos de doentes com fraca resposta à atual linha 
terapêutica. Identificámos uma proteína, chamada c-Myc, que pode ser utilizada 
como um biomarcador de prognóstico nesta doença. Num dos estudos 
conseguimos comprovar que elevados níveis desta proteína expressos nas células 
cancerígenas estavam associados a uma maior probabilidade de sucumbir à 
doença. 

Para estes doentes, tratamentos de imunoterapia são vistos como estratégias 
futuras para prolongar o tempo até uma possível recidiva. Estas estratégias utilizam 
a capacidade das células do sistema imunitário estarem programadas para atacar e 
eliminar as células cancerígenas. As células do sistema imunitários são as 
responsáveis por proteger o corpo humano de doenças, assim como combater 
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infeções. Contudo, as células cancerígenas desenvolvem frequentemente 
mecanismos para as enganar. Uma parte dos nossos estudos teve como objetivo 
perceber como é que estas células do sistema imunitário estão alteradas neste tipo 
de cancro e qual a possibilidade de as usar para combater o desenvolvimento desta 
doença. Um tipo de células do sistema imunitário, denominado macrófagos, 
células que reconhecem e destroem os seus alvos, demonstrou ter um papel 
importante. O seu efeito está, no entanto, dependente do contexto em que se 
encontram, pois estas células expressam diferentes proteínas dependendo da sua 
proximidade às células cancerígenas e parecem ter um papel de suporte, levando a 
que se verifique uma resistência terapêutica. As células cancerígenas mostraram 
também ser afetadas pela presença de macrófagos. Estes resultados indicam que 
existe uma interação entre ambas as células, macrófagos e células cancerígenas, o 
que proporciona uma base para a exploração e desenvolvimento de imunoterapias 
direcionadas aos macrófagos.   

Nos últimos anos, a comunidade científica experienciou grandes avanços 
tecnológicos que permitiram estudar o cancro numa elevada complexidade. 
Infelizmente, estas tecnologias não se encontram em prática clínica. Como tal, 
todas as descobertas deste projeto necessitam de ser adaptadas às tecnologias 
disponíveis hoje em contexto de prática clínica. Ao longo do desenvolvimento 
deste trabalho, foram feitos esforços significativos para providenciar métodos de 
baixo custo e de fácil acesso que permitam a avaliação dos biomarcadores em 
contexto clínico. Para isso, confirmámos as nossas descobertas mais relevantes 
através de uma técnica recorrente na prática clínica, chamada imuno-
histoquímica. Consequentemente, acreditamos que o nosso trabalho pode ser 
rapidamente implementado e passível de vir a beneficiar os doentes atuais.  

Concluindo, o nosso trabalho contribui para um maior conhecimento 
acerca deste tipo de cancro do sangue e preenche a lacuna entre os avanços 
tecnológicos da investigação e a sua aplicação na prática clínica. Esperamos vir a 
contribuir para um futuro em que os doentes obtenham as terapias que mais os 
venham a beneficiar.  
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