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Abstract

We demonstrate how to compute radome reference cases for benchmarking
radome codes. Radomes are electrically large structures, and to facilitate the
computations a rotationally symmetric structure is assumed. We show how
to implement this in the commercial software Comsol Multiphysics, and how
to extract the relevant data for comparison. Two example geometries are
analyzed: a spherical shell radome, and an ogive shaped radome. In each
case, the radome is in the order of ten wavelengths, but it is still possible to
simulate on a regular laptop platform in about a minute. Using a platform with
more memory and spending more time to simulate more modes and synthesize
the results, reference cases for even larger radomes with realistic feeds can be
simulated, which is suggested as a topic for future studies. Results for an
ogive shaped radome with a diameter of 30 and 50 wavelengths using a highly
symmetrical antenna are provided.

1 Introduction
The word “radome” is constructed from “radar dome”, and denotes a structure cov-
ering an antenna in order to protect it from the surrounding environment, where for
instance wind and rain may be detrimental factors. It is usually constructed as a
relatively thin shell, either as a single solid material or as a composite structure en-
tailing several layers. A particular challenge for the radome is to enable the antenna
to transmit efficiently in its band of operation. The simplest design is to make the
thickness of the radome to correspond to half a wavelength (scaled to the material)
[4]. However, this may lead to excessively heavy structures, promoting composite
structures, where for instance a thick but light-weight core material is sandwiched
between two thin but hard shells [4]. To enable further control of the electromagnetic
properties, metallic patterns may be used to achieve stronger frequency selectivity
[7].

Radomes are electrically large, typically many tens of wavelengths. This makes
their design computationally challenging, and a lot of effort has been put on devel-
oping simulation tools to evaluate their performance. In many cases, the radome
geometry is rotationally symmetric, which simplifies the problem significantly if also
the antenna can be assumed highly symmetric. In this report, we demonstrate how a
commercial code like Comsol Multiphysics may be used to simulate rotationally sym-
metric structures in order to provide reference data for in-house developed radome
simulation codes. For structures with spherical symmetry, an additional reference
code based on spherical vector waves has been developed [5, 6]. The results have
been compared with results from this report and the SmartRAT code developed by
Saab Dynamics in [2].

This report is structured as follows. In Section 2, we present the specific form
of Maxwell’s equations in cylindrical coordinates, and the expansion of the fields in
azimuthal modes. We also exemplify how a linearly polarized field can be represented
by a single azimuthal mode under certain conditions, providing a practical reference
case with a relatively small numerical cost. In Section 3, we give expressions for how
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to compute the farfield amplitude for arbitrary azimuthal modes, as well as some
special cases. Detailed derivations are given in Appendix A. In Section 4, we discuss
the implementation in Comsol Multiphysics, and in Sections 5 and 6 we provide
examples of the computations for a spherical radome, as well as a more realistically
shaped ogive radome in various sizes. Finally, conclusions are provided in Section 7.

2 Rotational symmetry
In order to conserve the computational size of the problem to be simulated, we
may consider a rotationally symmetric structure, which in principle converts the
problem from 3D to 2D. This is a huge saving in computational complexity, but
since an arbitrary excitation involves all azimuthal modes, we typically need to solve
for very many modes and synthesize the resulting solution as a superposition of the
modes, which renders the name “2.5D” for the resulting dimensional complexity
of the problem. In order to reduce the number of modes solved for, we can also
require symmetry from the excitation. Typically, we restrict the antenna to radiate
along the axis of rotational symmetry (z-axis) with linear or circular polarization,
requiring only one azimuthal mode.

2.1 Representation in cylindrical coordinates

For a rotationally symmetric structure, it is beneficial to express the fields in cylin-
drical coordinates (ρ, ϕ, z) as

E(r) =
∞∑

m=−∞

[
E(m)
ρ (ρ, z)ρ̂+ E(m)

ϕ (ρ, z)ϕ̂+ E(m)
z (ρ, z)ẑ

]
e−jmϕ (2.1)

H(r) =
∞∑

m=−∞

[
H(m)
ρ (ρ, z)ρ̂+H(m)

ϕ (ρ, z)ϕ̂+H(m)
z (ρ, z)ẑ

]
e−jmϕ (2.2)

This representation is valid for any structure, but for a rotationally symmetric struc-
ture there is no coupling between the azimuthal modes and we may consider each
mode index m separately in Maxwell’s equations. The curl operation can be written
in cylindrical coordinates as

∇×E = ρ̂

(
1

ρ

∂Ez
∂ϕ
− ∂Eϕ

∂z

)
+ ϕ̂

(
∂Eρ
∂z
− ∂Ez

∂ρ

)
+ ẑ

(
1

ρ

∂

∂ρ
(ρEϕ)−

1

ρ

∂Eρ
∂ϕ

)
(2.3)

Maxwell’s equations in isotropic space, ∇×E = −jωµH and ∇×H = jωεE, can
then be written

− jm

ρ
E(m)
z − ∂E

(m)
ϕ

∂z
= −jωµH(m)

ρ − jm

ρ
H(m)
z − ∂H

(m)
ϕ

∂z
= jωεE(m)

ρ (2.4)

∂E
(m)
ρ

∂z
− ∂E

(m)
z

∂ρ
= −jωµH(m)

ϕ

∂H
(m)
ρ

∂z
− ∂H

(m)
z

∂ρ
= jωεE(m)

ϕ (2.5)

1

ρ

∂

∂ρ
(ρE(m)

ϕ ) +
jm

ρ
E(m)
ρ = −jωµH(m)

z

1

ρ

∂

∂ρ
(ρH(m)

ϕ ) +
jm

ρ
H(m)
ρ = jωεE(m)

z (2.6)
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It is seen that only for m = 0 do these equations split into an in-plane electric field
mode (E(0)

ρ , E
(0)
z , H

(0)
ϕ ), and an out-of-plane electric field mode (E(0)

ϕ , H
(0)
ρ , H

(0)
z ). For

m 6= 0, we need to solve for all field components.

2.2 Synthesizing linear polarization

We are primarily interested in linearly polarized antennas, which can be studied as
a superposition of m = +1 and m = −1. When the excitations of the positive and
negative azimuthal modes are given symmetrically in ρ and z and anti-symmetrically
in ϕ,

E
(±m)
0 (ρ, z) = [E

(+m)
0ρ (ρ, z)ρ̂± E(+m)

0ϕ (ρ, z)ϕ̂+ E
(+m)
0z (ρ, z)ẑ]e∓jmϕ (2.7)

where [E(+m)
0ρ (ρ, z), E

(+m)
0ϕ (ρ, z), E

(+m)
0z (ρ, z)] represent the spatial distribution of the

excitation, we find the parity rules

(E(+m)
ρ , E(+m)

z , H(+m)
ϕ ) = (E(−m)

ρ , E(−m)
z , H(−m)

ϕ ) (2.8)

(E(+m)
ϕ , H(+m)

ρ , H(+m)
z ) = −(E(−m)

ϕ , H(−m)
ρ , H(−m)

z ) (2.9)

Hence, an excitation that is a superposition of E(±m)
0 , that is, symmetric in ρ and z

and antisymmetric in ϕ,

E0 =
∞∑
m=1

αmE
(+m)
0 + βmE

(−m)
0 (2.10)

can be computed from the results of a positive azimuthal mode +m only, as

E(r) =
∞∑

m=−∞

[
E(m)
ρ (ρ, z)ρ̂+ E(m)

ϕ (ρ, z)ϕ̂+ E(m)
z (ρ, z)ẑ

]
e−jmϕ (2.11)

=
∞∑
m=1

{
E(+m)
ρ (ρ, z)[αme

−jmϕ + βme
+jmϕ]ρ̂ (2.12)

+ E(+m)
ϕ (ρ, z)[αme

−jmϕ − βme+jmϕ]ϕ̂ (2.13)

+ E(+m)
z (ρ, z)[αme

−jmϕ + βme
+jmϕ]ẑ

}
(2.14)

H(r) =
∞∑

m=−∞

[
H(m)
ρ (ρ, z)ρ̂+H(m)

ϕ (ρ, z)ϕ̂+H(m)
z (ρ, z)ẑ

]
e−jmϕ (2.15)

=
∞∑
m=1

{
H(+m)
ρ (ρ, z)[αme

−jmϕ − βme+jmϕ]ρ̂ (2.16)

+H(+m)
ϕ (ρ, z)[αme

−jmϕ + βme
+jmϕ]ϕ̂ (2.17)

+H(+m)
z (ρ, z)[αme

−jmϕ − βme+jmϕ]ẑ
}

(2.18)
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In particular, for m = 1 and circular polarization propagating along the z-axis, that
is, E(+)

0ρ (ρ, z) = E0(ρ, z), E
(+)
0ϕ (ρ, z) = −jE0(ρ, z), E

(+)
0z = 0, and α1 = β1 = 1/2, the

total excitation is linearly polarized,

E0 = E0(ρ, z)
1

2
[(e−jϕ + ejϕ)ρ̂− j(e−jϕ − ejϕ)ϕ̂] = E0(ρ, z)[cos(ϕ)ρ̂− sin(ϕ)ϕ̂]

= E0(ρ, z)x̂ (2.19)

and the total field can be computed from the positive azimuthal mode only:

E(r) = E(+)
ρ (ρ, z) cos(ϕ)ρ̂− jE(+)

ϕ (ρ, z) sin(ϕ)ϕ̂+ E(+)
z (ρ, z) cos(ϕ)ẑ (2.20)

H(r) = −jH(+)
ρ (ρ, z) sin(ϕ)ρ̂+H(+)

ϕ (ρ, z) cos(ϕ)ϕ̂− jH(+)
z (ρ, z) sin(ϕ)ẑ (2.21)

Hence, we need only solve for the m = 1 mode when computing results for linearly
polarized fields propagating along the z-axis.

3 Farfield computations
The far field amplitude from tangential electric and magnetic fields on a general
surface S with outward normal n̂ is

F (k̂) =
jk

4π
k̂ ×

∫
S

[
E(r)× n̂+ η0k̂ × (n̂×H(r))

]
ejkk̂·r dS (3.1)

where k = ω/c0 = 2π/λ is the free space wavenumber (here, ω = 2πf is the angular
frequency at ordinary frequency f , λ is the vacuum wavelength, and c0 the speed
of light in vacuum, respectively), and k̂ is the observation direction. In the specific
case of a rotationally symmetric structure, the surface S is described by a curve γ
in the ρ− z plane:

F (m)(k̂) =
jk

4π
k̂ ×

∫
ρ∈γ

∫ 2π

ϕ=0

[
E(m)(ρ, z)× n̂+ η0k̂ × (n̂×H(m)(ρ, z))

]
ej(kk̂·r−mϕ)ρ dϕ d` (3.2)

The integral in the ϕ-direction can be explicitly computed. We summarize below the
results for arbitrary m, m = 0, and synthesizing a linear polarization using m = ±1.
Detailed derivations are given in Appendix A. The formulas have been compared
with similar formulas in the literature, as in [3].
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3.1 Arbitrary m

We start with the result for arbitrary m as derived in Appendix A.1. For any
direction (θ, φ), we have

F (m)(θ, φ) = θ̂
jk

2
jme−jmφ

∫
ρ∈γ

{
−
[
CmnzE

(m)
ϕ − Sm(nρE(m)

z − nzE(m)
ρ )

]
sinφ

+
[
SmnzE

(m)
ϕ + Cm(nρE

(m)
z − nzE(m)

ρ )
]
cosφ

− η0
[
CmnzH

(m)
ϕ − Sm(nρH(m)

z − nzH(m)
ρ )

]
cos θ cosφ

− η0
[
SmnzH

(m)
ϕ + Cm(nρH

(m)
z − nzH(m)

ρ )
]
cos θ sinφ

+ η0AmnρH
(m)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2
jme−jmφ

∫
ρ∈γ

{
−
[
CmnzE

(m)
ϕ − Sm(nρE(m)

z − nzE(m)
ρ )

]
cos θ cosφ

−
[
SmnzE

(m)
ϕ + Cm(nρE

(m)
z − nzE(m)

ρ )
]
cos θ sinφ

+ AmnρE
(m)
ϕ sin θ

+ η0
[
CmnzH

(m)
ϕ − Sm(nρH(m)

z − nzH(m)
ρ )

]
sinφ

− η0
[
SmnzH

(m)
ϕ + Cm(nρH

(m)
z − nzH(m)

ρ )
]
cosφ

}
ejkz cos θρ d` (3.3)

In Appendix A.2, the above expression is computed for the planes φ = 0 and φ =
π/2. In the plane φ = 0, 0 < θ < π, the far field amplitude is (this result has been
verified against the expressions in [3])

F (m)(θ, φ = 0)

= θ̂
jk

2
jm
∫
ρ∈γ

{[
m Jm(kρ sin θ)

kρ sin θ
nzE

(m)
ϕ + j J′m(kρ sin θ)(nρE

(m)
z − nzE(m)

ρ )

]
− η0

[
j J′m(kρ sin θ)nzH

(m)
ϕ − m Jm(kρ sin θ)

kρ sin θ
(nρH

(m)
z − nzH(m)

ρ )

]
cos θ

+ η0 Jm(kρ sin θ)nρH
(m)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2
jm
∫
ρ∈γ

{[
−j J′m(kρ sin θ)nzE(m)

ϕ +
m Jm(kρ sin θ)

kρ sin θ
(nρE

(m)
z − nzE(m)

ρ )

]
cos θ

+ Jm(kρ sin θ)nρE
(m)
ϕ sin θ

− η0
[
m Jm(kρ sin θ)

kρ sin θ
nzH

(m)
ϕ + j J′m(kρ sin θ)(nρH

(m)
z − nzH(m)

ρ )

]}
ejkz cos θρ d`

(3.4)
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In the plane φ = π/2, 0 < θ < π, we have

F (m)(θ, φ = π/2)

= θ̂
jk

2

∫
ρ∈γ

{[
m Jm(kρ sin θ)

kρ sin θ
nzE

(m)
ϕ + j J′m(kρ sin θ)(nρE

(m)
z − nzE(m)

ρ )

]
− η0

[
j J′m(kρ sin θ)nzH

(m)
ϕ − m Jm(kρ sin θ)

kρ sin θ
(nρH

(m)
z − nzH(m)

ρ )

]
cos θ

+ η0 Jm(kρ sin θ)nρH
(m)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2

∫
ρ∈γ

{
−
[
j J′m(kρ sin θ)nzE

(m)
ϕ − m Jm(kρ sin θ)

kρ sin θ
(nρE

(m)
z − nzE(m)

ρ )

]
cos θ

+ Jm(kρ sin θ)nρE
(m)
ϕ sin θ

+ η0

[
−m Jm(kρ sin θ)

kρ sin θ
nzH

(m)
ϕ − j J′m(kρ sin θ)(nρH

(m)
z − nzH(m)

ρ )

]}
ejkz cos θρ d`

(3.5)

These expressions apply to any mode m.

3.2 Axial excitation, m = 0

In Appendix A.3, the following formula for the far field amplitude in a plane with
arbitrary φ and 0 < θ < π is derived:

F (0)(θ, φ) = θ̂
jk

2

∫
ρ∈γ

{
−j(nρE(0)

z −nzE(0)
ρ ) J1(kρ sin θ)+jη0nzH

(0)
ϕ J1(kρ sin θ) cos θ

+ η0 J0(kρ sin θ)nρH
(0)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2

∫
ρ∈γ

{
jnzE

(0)
ϕ J1(kρ sin θ) cos θ + J0(kρ sin θ)nρE

(0)
ϕ sin θ

+ jη0(nρH
(0)
z − nzH(0)

ρ ) J1(kρ sin θ)
}
ejkz cos θρ d` (3.6)

It is seen that the field is independent of φ except for the direction of the unit vector
φ̂, that is, it is rotationally symmetric as expected.

3.3 Synthesized linear excitation, m = 1

Finally, in Appendix A.4, the far field formulas in the E-plane and the H-plane are
derived for linearly polarized excitation. For the E-plane (φ = 0, 0 < θ < π), the
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result is

F E(θ) = θ̂
jk

2
j

∫
ρ∈γ

{[
J1(kρ sin θ)

kρ sin θ
nzE

(1)
ϕ + j J′1(kρ sin θ)(nρE

(1)
z − nzE(1)

ρ )

]
− η0

[
j J′1(kρ sin θ)nzH

(1)
ϕ −

J1(kρ sin θ)

kρ sin θ
(nρH

(1)
z − nzH(1)

ρ )

]
cos θ

+ η0 J1(kρ sin θ)nρH
(1)
ϕ sin θ

}
ejkz cos θρ d` (3.7)

In the H-plane (φ = π/2, 0 < θ < π), we have

FH(θ) = φ̂
jk

2

∫
ρ∈γ

{
−
[
j J′1(kρ sin θ)nzE

(1)
ϕ −

J1(kρ sin θ)

kρ sin θ
(nρE

(1)
z − nzE(1)

ρ )

]
cos θ

+ J1(kρ sin θ)nρE
(1)
ϕ sin θ

+ η0

[
−J1(kρ sin θ)

kρ sin θ
nzH

(1)
ϕ − j J′1(kρ sin θ)(nρH

(1)
z − nzH(1)

ρ )

]}
ejkz cos θρ d` (3.8)

It is seen that in the E-plane the field is purely in the θ̂-direction, and in the H-plane
it is purely in the φ̂-direction. This is due to the linearly polarized excitation and
the rotational symmetry of the structure.

4 Implementation in Comsol Multiphysics
Solving Maxwell’s equations in a rotational symmetric setting is straightforward in a
commercial program like Comsol Multiphysics. All that has to be done is to choose
the azimuthal index m and define the geometry, material parameters, and the port
settings, in a 2D geometry, see Figure 1. However, the infrastructure for setting up
a multimodal excitation and summing the results for different modes is at present
not straightforward, and we have resolved to using a very small number of azimuthal
modes in order to generate reference data. However, these sets of data should still
be quite valuable to benchmark the codes from Saab Dynamics.

In the top part of Figure 1, we see how to set the azimuthal mode number m
in the physics module Electromagnetic Waves, Frequency Domain. The region with
green color is a Perfectly Matched Layer (PML), which is a numerical implementa-
tion of an absorbing boundary condition allowing propagating waves to escape the
computational domain without being reflected.

In the lower part of Figure 1, we see that the exciting antenna is defined as a
PEC-backed port, with an electric mode field given as (in Comsol the cylindrical
radius ρ is named ’r’)

Eport = cos(πρ/w)(ρ̂− jϕ̂) (4.1)

where w is the diameter of the antenna. This corresponds to a linearly polarized cir-
cular antenna with a cosine-tapering in the radial direction. The amplitude tapering
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Figure 1: Some settings in Comsol Multiphysics, including azimuthal mode index
m = 1, PML region, and port settings.
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Figure 2: Computational settings for farfield in Comsol Multiphysics.

helps in reducing the sidelobes of the antenna. When shrinking the width w of the
antenna to a very small number compared to wavelength λ, a dipole excitation is
achieved regardless of the tapering.

Further, the far field integration needs to be implemented. This can be done
in postprocessing by using the possibility to set up a line integration as shown in
Figure 2. Formulas like (3.7) and (3.8) can be explicitly provided in the Graphical
User Interface (GUI). One thing to watch out for is that if there are parameter
sweeps or multiple studies activated, there are several solutions stored in Comsol.
One way of choosing which solution to use in the integrals, is to use the command
’withsol()’. A particular circumstance is that the formulas are quite long, and the
final expression to integrate may be in the order of tens of lines of code. In order
to handle the input, we have typed the expressions in a separate text editor where
more advanced ’search and replace’ operations are available, and then copy-pasted
the final expression into the Comsol GUI.

When the far field results have been computed into a table as seen in the lower
right part of the screen shot in Figure 2, they can be exported in text format to a
file which can be exchanged between organizations to facilitate comparisons between
different computational methods.

In the following, we give examples of radome geometries analyzed with Comsol
as described above.
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p

d

z

w

ab

ε0, µ0

ε, µ
ε0, µ0

Figure 3: Geometry parameters of the spherical radome. The antenna consists of
a small horizontally polarized electric dipole p on the z-axis at distance d from a
reflector of width w at the origin. The radome thickness is t = b− a.

5 Example: spherical radome
The simplest geometry is a spherical radome. This has been analyzed using expan-
sions in spherical vector waves in [6], and using SmartRAT in [2]. The geometry
parameters are defined in Figure 3. Several comparisons between the methods for
many different geometries are given in [2]. In this document, we provide only a
representative example of a relatively large radome.

The parameters of the problem are (not to scale of Figure 3)

• f0 = 10GHz (frequency)

• λ0 = c0/f0 (wavelength)

• a = 10λ0 (inner radius of radome)

• t = λ0/4 (thickness of radome)

• b = a+ t (outer radius of radome)

• w = 3λ0 (diameter of PEC disk)

• d = 1.8λ0 (distance from origin to dipole)

• εr = ε/ε0 = 3(1−0.01j), µr = µ/µ0 = 1 (relative permittivity and permeability
of radome)
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Figure 4: Fields of a reflector-backed dipole antenna inside a spherical radome.

The computation only takes about a minute on a regular laptop. The results are
normalized so that the far field amplitude at θ = 0 for the dipole alone is 1. In
Figure 4 the near field distribution is shown. In Figure 5 the far field distribution
in the E-plane and H-plane are shown, for the following cases:

• Dipole antenna only.

• Dipole antenna and circular disk PEC reflector.

• Dipole antenna with radome present, no reflector.

• Dipole antenna with reflector and radome present.

In Figure 5, the dashed black curve shows the radiation pattern of a small dipole:
the maximum radiation is in broadside to the dipole, and zero radiation is in the
direction of the dipole. The remaining curves show significant influence from the
reflector and the radome, illustrating the non-trivial nature of the test case. Several
further test cases and comparisons with other methods are given in [2].

6 Example: ogive radome
The spherical radome can be analyzed with the method presented in [6], based
on expansion in spherical vector waves. However, this method can not easily be
extended to non-spherical geometries, whereas the rotationally symmetric approach
used here does not have a problem. For instance, we can analyze an ogive-shaped
radome, which is a common design for a nose cone radome, see Figure 6. This design
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Figure 5: Far field of a reflector-backed dipole antenna inside a spherical radome.
(a) E-plane, (b) H-plane.
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w

2Ra

2Rb

H

La
Lb

d

x =
√
ρ2b − z2 +Rb − ρb

x =
√
ρ2a − z2 +Ra − ρa

x

z

Figure 6: Geometry parameters of the ogive radome, adapted from https://en.
wikipedia.org/wiki/Nose_cone_design. The radius of curvature for the ogive
parts is computed from the other parameters as ρa,b = (R2

a,b + L2
a,b)/(2Ra,b), and

the thickness of the radome at the base is d = Rb − Ra. The antenna width is w,
and the distance between the antenna and the radome is d0 = Ra − w/2.

has several features of a realistic radome, such as a pointed tip and non-uniform wall
thickness.

The baseline parameters of the radome, corresponding to Figure 6, are chosen as

• f0 = 10GHz (frequency)

• λ0 = c0/f0 (wavelength)

• w = 10λ0 = 0.300m (diameter of antenna)

• d0 = λ0/2 = 0.0150m (distance from antenna to radome)

• εr = 3(1− 0.01j) (relative permittivity of radome)

• d = λ0/(2Re
√
εr) = 8.7mm (thickness of radome)

• α = 2 (ogive shape factor)

• Ra = w/2 + d0 = 0.165m

https://en.wikipedia.org/wiki/Nose_cone_design
https://en.wikipedia.org/wiki/Nose_cone_design
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Figure 7: Fields of a cosine-tapered circular antenna inside an ogive-shaped radome,
w = 10λ0.

• La = αRa = 0.330m

• ρa = (R2
a + L2

a)/(2Ra) = 0.412m

• Rb = w/2 + d0 + d = 0.174m

• Lb = αRb = 0.347m

• ρb = (R2
b + L2

b)/(2Rb) = 0.434m

• H = 5λ0 = 0.150m

The antenna is implemented as a linearly polarized circular antenna with a cosine-
tapering in the radial direction as described in Section 4, in particular equation
(4.1). The baseline antenna is ten wavelengths in diameter, making the radiation
highly directive.

Once again, the simulation only takes in the order of a minute on a regular laptop.
The limiting factor with respect to radome size is the memory (16GB were available
on the used platform). The near field distribution is shown in Figure 7, where it
is seen that the large size of the antenna makes the wave propagate almost purely
in the forward direction. It is seen that there is a significant interaction with the
pointed tip, where the field distribution is distorted as compared to a propagating
plane wave.

In Figure 8, the far fields in the E-plane and the H-plane are given for three
different radome sizes, where w/λ0 = 10, 30, 50. Note that dB-scale is used for
the vertical axis in Figure 8, due to the large dynamics involved, and that the two
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larger sizes w/λ0 = 30, 50 are run on a platform with larger memory than 16GB
(but using comparable implementations in Comsol). In each subfigure, all results
are scaled to the maximum radiation of the antenna without a radome. It is noted
the side lobe level is below 20 dB in all cases, and that the insertion loss at θ = 0 is
around 1 dB for w = 30λ0 and w = 50λ0.

7 Conclusions
We have presented a method to compute reference cases for rotationally symmetric
radomes using commercial software. Comsol Multiphysics was used as an example
since this was readily available at our university, but any software being able to
handle rotationally symmetric structures should be possible to use in the same way.
The drawback is that in order to reduce the number of azimuthal modes, the ex-
citation needs to be highly symmetrical, typically radiating in the direction of the
axis of symmetry. More realistic sources can be treated at the expense of longer
simulation time, but does not require more memory since the simulations can be
made in sequence and only a small amount of data (the far field amplitude) needs
to be saved from each simulation. However, this kind of simulation requires more
work to be implemented, and is suggested as a natural follow-up to provide more
realistic reference cases for radome simulations.
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Figure 8: Far field of a cosine-tapered circular antenna inside an ogive-shaped
radome for three different sizes: w = 10λ0 (top), w = 30λ0 (center), and w = 50λ0
(bottom).
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A Computation of far field amplitudes
In this Appendix, we give explicit derivations of how the far field amplitudes used in
the computational examples can be derived. The general setup of solving Maxwell’s
equations in a rotationally symmetric geometry is provided in Section 2. There, it
is seen that the fields can be represented in cylindrical coordinates (ρ, ϕ, z) as

E(r) =
∞∑

m=−∞

[
E(m)
ρ (ρ, z)ρ̂+ E(m)

ϕ (ρ, z)ϕ̂+ E(m)
z (ρ, z)ẑ

]
e−jmϕ (A.1)

H(r) =
∞∑

m=−∞

[
H(m)
ρ (ρ, z)ρ̂+H(m)

ϕ (ρ, z)ϕ̂+H(m)
z (ρ, z)ẑ

]
e−jmϕ (A.2)

In this Appendix, we demonstrate how to solve the azimuthal part of the far field
integral

F (k̂) =
jk

4π
k̂ ×

∫
S

[
E(r)× n̂+ η0k̂ × (n̂×H(r))

]
ejkk̂·r dS (A.3)

for arbitrary azimuthal mode index m. The radiation direction k̂ is parametrized
by the standard polar angle θ and azimuth angle φ. Having derived the general
case, we also derive expressions for the φ = 0 and φ = π/2 planes, the axial mode
(m = 0), and the E-plane and H-plane results for linear polarization synthesized
from the m = ±1 modes. The computations are provided in detail to show what
underlies the resulting formulas.

A.1 Arbitrary m

The fields E(m)(ρ, z) and H(m)(ρ, z) depend only on ρ and z, whereas the ϕ-
dependence is in a factor e−jmϕ. Hence, the far field integrals to be computed
are proportional to∫
ρ∈γ

∫ 2π

ϕ=0

[E(m) × n̂]ej(k·r−mϕ)ρ dϕ d` and
∫
ρ∈γ

∫ 2π

ϕ=0

[n̂×H(m)]ej(k·r−mϕ)ρ dϕ d`

(A.4)
where γ is the curve in the ρ-z plane where the integral is to be computed, ρ and
z are coordinates on this curve, with d` as a line element. The unit normal vector
is n̂ = nρρ̂ + nzẑ, meaning the electric and magnetic tangential fields are (using
ρ̂× ϕ̂ = ẑ)

E(m) × n̂ = (nρE
(m)
z − nzE(m)

ρ )ϕ̂− nρE(m)
ϕ ẑ + nzE

(m)
ϕ ρ̂ (A.5)

n̂×H(m) = (−nρH(m)
z + nzH

(m)
ρ )ϕ̂+ nρH

(m)
ϕ ẑ − nzH(m)

ϕ ρ̂ (A.6)

The unit vectors are

ρ̂ = x̂ cosϕ+ ŷ sinϕ (A.7)
ϕ̂ = −x̂ sinϕ+ ŷ cosϕ (A.8)
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meaning the tangential fields are

E(m) × n̂ = [nzE
(m)
ϕ cos(ϕ)− (nρE

(m)
z − nzE(m)

ρ ) sin(ϕ)]x̂ (A.9)

+ [nzE
(m)
ϕ sin(ϕ) + (nρE

(m)
z − nzE(m)

ρ ) cos(ϕ)]ŷ − nρE(m)
ϕ ẑ (A.10)

n̂×H(m) = −[nzH(m)
ϕ cos(ϕ)− (nρH

(m)
z − nzH(m)

ρ ) sin(ϕ)]x̂ (A.11)

− [nzH
(m)
ϕ sin(ϕ) + (nρH

(m)
z − nzH(m)

ρ ) cos(ϕ)]ŷ + nρH
(m)
ϕ ẑ (A.12)

The phase factor is

ej(k·r−mϕ) = ej(k·(ρρ̂+zẑ)−mϕ) = ej(kρ sin θ cos(ϕ−φ)−mϕ)ejkz cos θ (A.13)



19

where we used k·r = kρ sin θ cos(ϕ−φ)+kz cos θ, with k = k[sin θ(cosφx̂+sinφŷ)+
cos θẑ]. Thus, the typical azimuth integrals to be computed are:∫ 2π

0

ej(kρ sin θ cos(ϕ−φ)−mϕ) dϕ
ϕ′=ϕ−φ+π/2

=

∫ 2π

0

ej(kρ sin θ cos(ϕ
′−π/2)−m(ϕ′+φ−π/2)) dϕ′

= e−jm(φ−π/2)
∫ π

−π
ej(kρ sin θ sin(ϕ

′)−mϕ′) dϕ′

= e−jmφjm2π Jm(kρ sin θ)

= 2πjme−jmφAm (A.14)∫ 2π

0

sin(ϕ)ej(kρ cos(ϕ−φ)−mϕ dϕ =
1

2j

[∫ 2π

0

ej(kρ sin θ cos(ϕ−φ)−(m−1)ϕ) dϕ

−
∫ 2π

0

ej(kρ sin θ cos(ϕ−φ)−(m+1)ϕ) dϕ

]
=

1

2j

[
e−j(m−1)φjm−12π Jm−1(kρ sin θ)

− e−j(m+1)φjm+12π Jm+1(kρ sin θ)
]

= 2πjme−jmφ
1

2j

[
ejφj−1 Jm−1(kρ sin θ)− e−jφj Jm+1(kρ sin θ)

]
= −2πjme−jmφ1

2

[
ejφ Jm−1(kρ sin θ) + e−jφ Jm+1(kρ sin θ)

]
= −2πjme−jmφSm (A.15)∫ 2π

0

cos(ϕ)ejkρ cos(ϕ−φ)−mϕ dϕ =
1

2

[∫ 2π

0

ej(kρ sin θ cos(ϕ−φ)−(m−1)ϕ) dϕ

+

∫ 2π

0

ej(kρ sin θ cos(ϕ−φ)−(m+1)ϕ) dϕ

]
=

1

2

[
e−j(m−1)φjm−12π Jm−1(kρ sin θ)

+ e−j(m+1)φjm+12π Jm+1(kρ sin θ)
]

= 2πjme−jmφ
1

2

[
ejφj−1 Jm−1(kρ sin θ) + e−jφj Jm+1(kρ sin θ)

]
= −2πjme−jmφ j

2

[
ejφ Jm−1(kρ sin θ)− e−jφ Jm+1(kρ sin θ)

]
= −2πjme−jmφCm (A.16)

where we used the representation [1, p. 9.1.21]

Jm(z) =
1

π

∫ π

0

cos(z sin θ−mθ) dθ = 1

2π

∫ π

−π
ej(z sin θ−mθ) dθ =

1

2π

∫ 2π

0

ej(z sin θ−mθ) dθ

(A.17)
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where m is a positive integer or zero. Thus, after integration over ϕ, we have
(premultiplying with the factor 1/(2πjmej(kz cos θ−mφ)) for simplicity)

1

2πjmej(kz cos θ−mφ)

∫ 2π

0

[E(m) × n̂]ej(k·r−mϕ) dϕ

= −
[
nzE

(m)
ϕ Cm − (nρE

(m)
z − nzE(m)

ρ )Sm
]
x̂

−
[
nzE

(m)
ϕ Sm + (nρE

(m)
z − nzE(m)

ρ )Cm
]
ŷ − nρE(m)

ϕ Amẑ (A.18)

and

1

2πjmej(kzz−mφ)

∫ 2π

0

[n̂×H(m)]ej(k·r−mϕ) dϕ

=
[
nzH

(m)
ϕ Cm − (nρH

(m)
z − nzH(m)

ρ )Sm
]
x̂

+
[
nzH

(m)
ϕ Sm + (nρH

(m)
z − nzH(m)

ρ )Cm
]
ŷ + nρH

(m)
ϕ Amẑ (A.19)

The remaining cross products are (rewriting x̂, ŷ, and ẑ in terms of (θ, φ) as the
polar angle and azimuth angle in the direction k̂)

k̂ × x̂ = k̂ × (k̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ) = φ̂ cos θ cosφ+ θ̂ sinφ

(A.20)

k̂ × ŷ = k̂ × (k̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ) = φ̂ cos θ sinφ− θ̂ cosφ
(A.21)

k̂ × ẑ = k̂ × (k̂ cos θ − θ̂ sin θ) = −φ̂ sin θ (A.22)

k̂ × (k̂ × x̂) = [k̂k̂ − 1] · (k̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sinφ)

= −θ̂ cos θ cosφ+ φ̂ sinφ (A.23)

k̂ × (k̂ × ŷ) = [k̂k̂ − 1] · (k̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ)

= −θ̂ cos θ sinφ− φ̂ cosφ (A.24)

k̂ × (k̂ × ẑ) = [k̂k̂ − 1] · (k̂ cos θ − θ̂ sin θ) = θ̂ sin θ (A.25)
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Bringing it all together, the far field is then

F (m)(θ, φ) =
jk

4π
k̂ ×

∫
S

[
E(m)(r)× n̂+ η0k̂ × (n̂×H(m)(r))

]
ej(kk̂·r−mϕ) dS

=
jk

2
jme−jmφ

∫
ρ∈γ

(
−
[
nzE

(m)
ϕ Cm − (nρE

(m)
z − nzE(m)

ρ )Sm
]
(φ̂ cos θ cosφ+ θ̂ sinφ)︸ ︷︷ ︸

=k̂×x̂

−
[
nzE

(m)
ϕ Sm + (nρE

(m)
z − nzE(m)

ρ )Cm
]
(φ̂ cos θ sinφ− θ̂ cosφ)︸ ︷︷ ︸

=k̂×ŷ

− nρE(m)
ϕ Am (−φ̂ sin θ)︸ ︷︷ ︸

=k̂×ẑ

+ η0
[
nzH

(m)
ϕ Cm − (nρH

(m)
z − nzH(m)

ρ )Sm
]
(−θ̂ cos θ cosφ+ φ̂ sinφ)︸ ︷︷ ︸

=k̂×(k̂×x̂)

+ η0
[
nzH

(m)
ϕ Sm + (nρH

(m)
z − nzH(m)

ρ )Cm
]
(−θ̂ cos θ sinφ− φ̂ cosφ)︸ ︷︷ ︸

=k̂×(k̂×ŷ)

+ η0nρH
(m)
ϕ Am θ̂ sin θ︸ ︷︷ ︸

=k̂×(k̂×ẑ)

)
ejkz cos θρ d` (A.26)

Our final result is then

F (m)(θ, φ) = θ̂
jk

2
jme−jmφ

∫
ρ∈γ

{
−
[
CmnzE

(m)
ϕ − Sm(nρE(m)

z − nzE(m)
ρ )

]
sinφ

+
[
SmnzE

(m)
ϕ + Cm(nρE

(m)
z − nzE(m)

ρ )
]
cosφ

− η0
[
CmnzH

(m)
ϕ − Sm(nρH(m)

z − nzH(m)
ρ )

]
cos θ cosφ

− η0
[
SmnzH

(m)
ϕ + Cm(nρH

(m)
z − nzH(m)

ρ )
]
cos θ sinφ

+ η0AmnρH
(m)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2
jme−jmφ

∫
ρ∈γ

{
−
[
CmnzE

(m)
ϕ − Sm(nρE(m)

z − nzE(m)
ρ )

]
cos θ cosφ

−
[
SmnzE

(m)
ϕ + Cm(nρE

(m)
z − nzE(m)

ρ )
]
cos θ sinφ

+ AmnρE
(m)
ϕ sin θ

+ η0
[
CmnzH

(m)
ϕ − Sm(nρH(m)

z − nzH(m)
ρ )

]
sinφ

− η0
[
SmnzH

(m)
ϕ + Cm(nρH

(m)
z − nzH(m)

ρ )
]
cosφ

}
ejkz cos θρ d` (A.27)

which gives the far field amplitude for azimuthal mode m at any direction (θ, φ).

A.2 Expressions for angular cuts

It is often desired to consider (A.27) in the two typical planes φ = 0 and φ = π/2,
often (but not necessarily) corresponding the E-plane and H-plane of the radiation.
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Using the recurrence relations [1, p. 9.1.27]

Jm−1(z) + Jm+1(z) =
2m

z
Jm(z) (A.28)

Jm−1(z)− Jm+1(z) = 2 J′m(z) (A.29)

the original expressions for Am, Sm, and Cm can then be written as

Am = Jm(kρ sin θ) (A.30)

Sm =
1

2

[
ejφ Jm−1(kρ sin θ) + e−jφ Jm+1(kρ sin θ)

]
=

{
m Jm(kρ sin θ)

kρ sin θ
φ = 0

j J′m(kρ sin θ) φ = π/2

(A.31)

Cm =
j

2

[
ejφ Jm−1(kρ sin θ)− e−jφ Jm+1(kρ sin θ)

]
=

{
j J′m(kρ sin θ) φ = 0

−m Jm(kρ sin θ)
kρ sin θ

φ = π/2

(A.32)

We also note that

jme−jmφ =

{
jm φ = 0

1 φ = π/2
(A.33)

In the plane φ = 0, 0 < θ < π, the far field pattern (A.27) then becomes (this
plane corresponds to the form provided in [3], with the difference that m → −m
and F → −F in their work)

F (m)(θ, φ = 0)

= θ̂
jk

2
jm
∫
ρ∈γ

{[
m Jm(kρ sin θ)

kρ sin θ
nzE

(m)
ϕ + j J′m(kρ sin θ)(nρE

(m)
z − nzE(m)

ρ )

]
− η0

[
j J′m(kρ sin θ)nzH

(m)
ϕ − m Jm(kρ sin θ)

kρ sin θ
(nρH

(m)
z − nzH(m)

ρ )

]
cos θ

+ η0 Jm(kρ sin θ)nρH
(m)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2
jm
∫
ρ∈γ

{[
−j J′m(kρ sin θ)nzE(m)

ϕ +
m Jm(kρ sin θ)

kρ sin θ
(nρE

(m)
z − nzE(m)

ρ )

]
cos θ

+ Jm(kρ sin θ)nρE
(m)
ϕ sin θ

− η0
[
m Jm(kρ sin θ)

kρ sin θ
nzH

(m)
ϕ + j J′m(kρ sin θ)(nρH

(m)
z − nzH(m)

ρ )

]}
ejkz cos θρ d`

(A.34)



23

In the plane φ = π/2, 0 < θ < π, we have

F (m)(θ, φ = π/2)

= θ̂
jk

2

∫
ρ∈γ

{[
m Jm(kρ sin θ)

kρ sin θ
nzE

(m)
ϕ + j J′m(kρ sin θ)(nρE

(m)
z − nzE(m)

ρ )

]
− η0

[
j J′m(kρ sin θ)nzH

(m)
ϕ − m Jm(kρ sin θ)

kρ sin θ
(nρH

(m)
z − nzH(m)

ρ )

]
cos θ

+ η0 Jm(kρ sin θ)nρH
(m)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2

∫
ρ∈γ

{
−
[
j J′m(kρ sin θ)nzE

(m)
ϕ − m Jm(kρ sin θ)

kρ sin θ
(nρE

(m)
z − nzE(m)

ρ )

]
cos θ

+ Jm(kρ sin θ)nρE
(m)
ϕ sin θ

+ η0

[
−m Jm(kρ sin θ)

kρ sin θ
nzH

(m)
ϕ − j J′m(kρ sin θ)(nρH

(m)
z − nzH(m)

ρ )

]}
ejkz cos θρ d`

(A.35)

These expressions apply to any mode m.

A.3 Axial fields, m = 0

A common excitation is an axisymmetric current, which generates the m = 0 mode.
For m = 0, we have (using J−1(z) = − J1(z))

A0 = J0(kρ sin θ) (A.36)

S0 =
1

2
[ejφ J−1(kρ sin θ) + e−jφ J1(kρ sin θ)] = −j sinφ J1(kρ sin θ) (A.37)

C0 =
j

2
[ejφ J−1(kρ sin θ)− e−jφ J1(kρ sin θ)] = −j cosφ J1(kρ sin θ) (A.38)
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The farfield pattern (A.27) is then

F (0)(θ, φ) = θ̂
jk

2

∫
ρ∈γ

{
−
[
−j cosφnzE(0)

ϕ + j sinφ(nρE
(0)
z − nzE(0)

ρ )
]
J1(kρ sin θ) sinφ

+
[
−j sinφnzE(0)

ϕ − j cosφ(nρE
(0)
z − nzE(0)

ρ )
]
J1(kρ sin θ) cosφ

− η0
[
−j cosφnzH(0)

ϕ + j sinφ(nρH
(0)
z − nzH(0)

ρ )
]
J1(kρ sin θ) cos θ cosφ

− η0
[
−j sinφnzH(0)

ϕ − j cosφ(nρH
(0)
z − nzH(0)

ρ )
]
J1(kρ sin θ) cos θ sinφ

+ η0 J0(kρ sin θ)nρH
(0)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2

∫
ρ∈γ

{
−
[
−j cosφnzE(0)

ϕ + j sinφ(nρE
(0)
z − nzE(0)

ρ )
]
J1(kρ sin θ) cos θ cosφ

−
[
−j sinφnzE(0)

ϕ − j cosφ(nρE
(0)
z − nzE(0)

ρ )
]
J1(kρ sin θ) cos θ sinφ

+ J0(kρ sin θ)nρE
(0)
ϕ sin θ

+ η0
[
−j cosφnzH(0)

ϕ + j sinφ(nρH
(0)
z − nzH(0)

ρ )
]
J1(kρ sin θ) sinφ

− η0
[
−j sinφnzH(0)

ϕ − j cosφ(nρH
(0)
z − nzH(0)

ρ )
]
J1(kρ sin θ) cosφ

}
ejkz cos θρ d`

= θ̂
jk

2

∫
ρ∈γ

{
− j(nρE

(0)
z − nzE(0)

ρ ) J1(kρ sin θ)

+ jη0nzH
(0)
ϕ J1(kρ sin θ) cos θ

+ η0 J0(kρ sin θ)nρH
(0)
ϕ sin θ

}
ejkz cos θρ d`

+ φ̂
jk

2

∫
ρ∈γ

{
jnzE

(0)
ϕ J1(kρ sin θ) cos θ

+ J0(kρ sin θ)nρE
(0)
ϕ sin θ

+ jη0(nρH
(0)
z − nzH(0)

ρ ) J1(kρ sin θ)
}
ejkz cos θρ d` (A.39)

It is seen that there is no dependence on the angle φ (except for the direction of the
φ̂ unit vector), reflecting the rotational symmetry of the m = 0 mode.

A.4 Synthesized linear polarization, m = 1

We finally turn to synthesizing a linear polarization by combining the m = +1 and
the m = −1 modes, as outlined in Section 2.2. The synthesized linear polarization
has the far field

F
(1)
LP(θ, φ) = F

(1)(θ, φ) + F (−1)(θ, φ) (A.40)

using the following parities for m = ±1:

(E(+m)
ρ , E(+m)

z , H(+m)
ϕ ) = (E(−m)

ρ , E(−m)
z , H(−m)

ϕ ) (A.41)

(E(+m)
ϕ , H(+m)

ρ , H(+m)
z ) = −(E(−m)

ϕ , H(−m)
ρ , H(−m)

z ) (A.42)
J′m(z) = − J′−m(z) (A.43)

m Jm(z) = (−m) J−m(z) (A.44)
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The expressions simplify in the planes φ = 0 (E-plane) and φ = π/2 (H-plane).
Taking odd and even parities into account, we have in the E-plane (φ = 0, 0 < θ < π)

F E(θ) = F
(1)(θ, φ = 0) + F (−1)(θ, φ = 0)

= θ̂
jk

2
j

∫
ρ∈γ

{[
J1(kρ sin θ)

kρ sin θ
nzE

(1)
ϕ + j J′1(kρ sin θ)(nρE

(1)
z − nzE(1)

ρ )

]
− η0

[
j J′1(kρ sin θ)nzH

(1)
ϕ −

J1(kρ sin θ)

kρ sin θ
(nρH

(1)
z − nzH(1)

ρ )

]
cos θ

+ η0 J1(kρ sin θ)nρH
(1)
ϕ sin θ

}
ejkz cos θρ d` (A.45)

In the H-plane (φ = π/2, 0 < θ < π), we have

FH(θ) = F
(1)(θ, φ = π/2) + F (−1)(θ, φ = π/2)

= φ̂
jk

2

∫
ρ∈γ

{
−
[
j J′1(kρ sin θ)nzE

(1)
ϕ −

J1(kρ sin θ)

kρ sin θ
(nρE

(1)
z − nzE(1)

ρ )

]
cos θ

+ J1(kρ sin θ)nρE
(1)
ϕ sin θ

+ η0

[
−J1(kρ sin θ)

kρ sin θ
nzH

(1)
ϕ − j J′1(kρ sin θ)(nρH

(1)
z − nzH(1)

ρ )

]}
ejkz cos θρ d` (A.46)

It is seen that the far field is polarized purely in the θ̂-direction in the E-plane,
and purely in the φ̂-direction in the H-plane. This is due to the linearly polarized
excitation and the rotational symmetry.
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