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Popular Science

It is still in our memories those times where mobile phones were only used to
make voice calls. Current smartphones have become a very powerful computer
platform capable of delivering many other services such as video calls, music
player, gaming, camera, texting, among others. Most of these applications
are based on connectivity, and that implies the device transmits and receives
wireless signals. Not only phones, but other devices such as: laptops, drones,
VR glasses, robots, sensors, etc, are or will be part of our lives in the near
future, and all of them rely on wireless connectivity. When these devices are
outdoors, they are typically connected to a base-station. But, what is a base-
station? It is those antennas at the top of the buildings or in high masts.

Those new devices will bring new applications and connectivity demands,
mostly in connection speed and latency1. Apart from communications, there
will be applications based on localization and sensing. It means that by using
wireless signals the base-station will be able to determine your location and even
gestures or movements. Another important requirement is the need to consume
less energy in the base-stations, which is important from a sustainability point
of view.

Unfortunately, these requirements are not supported with the current base-
stations, and substantial modifications are needed. In recent years there have
already been changes to accommodate for this growing demand, and one of
them is the addition of a large number of antennas, in what is called Massive
Multiple-Input Multiple-Output (MIMO). While current base-stations are be-
ing designed with less than 100 antennas, it is envisioned to reach to hundreds
or even thousands of them in the near future, in order to support the new
applications. Those antennas will not have to be at the same location as in
current base-stations, but can be spread throughout a certain area. This is
important for two reasons:

• Antennas allow us to focus transmitted radiated energy into a certain

1 Latency is the time the data takes to go from the transmitter to the receiver.
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small area, where the device is, similar to a lens allows to concentrate the
light into a point. The more antennas we have, the more we can focus
the transmitted energy. This enable us to send a signal to the device
without wasting energy in the surroundings, which helps to reduce energy
consumption.

• By spreading the antennas in the area, some of them are placed closer to
the devices. This, in turn, also means less transmitted energy to reach
the device and therefore lower energy consumption.

In order to move these ideas from theory to reality it is necessary to over-
come numerous implementation challenges. There is a need to guide and sup-
port the design and implementation process, by giving recipes, evaluating solu-
tions and estimating the cost of different options: this is the main contribution
of this thesis. We describe briefly the main points addressed in the thesis:

• Description of mathematical operations needed to accomplish communi-
cation and localization. This is referred to as algorithms.

• Study of the performance of these algorithms in a simulated environment,
in order to determine whether they meet the requirements, and be able
to compare with other existing algorithms.

• Propose a certain topology for the system, which consists of describing
how the different antennas in the system are interconnected.

• Evaluation of the cost of selecting a certain algorithm together with a
topology. This cost is measured in different forms: amount of data needed
to be shuffled from antennas to different parts of the system, number
of mathematical operations to be performed, latency in the processing,
among others.

During chapters 1 and 2, and more in detail throughout the included arti-
cles, we cover different parts of the system design and the multiple challenges
we face, together with promising directions to overcome them. Distribution of
the baseband processing through the system, specially close to the antennas,
may alleviate the implementation issues of these type of systems. The included
articles present specific techniques for processing distribution for the applica-
tions of communications and localization. The obtained results indicate that
these techniques can alleviate the aforementioned challenges and move forward
the implementation of such systems.



Abstract

As 5G is entering maturity, the research interest has shifted towards 6G, and
specially the new use cases that the future telecommunication infrastructure
needs to support. These new use cases encompass much higher requirements,
specifically: higher communication data-rates, larger number of users, higher
accuracy in localization, possibility to wirelessly charge devices, among others.

The radio access network (RAN) has already gone through an evolution on
the path towards 5G. One of the main changes was a large increment of the
number of antennas in the base-station. Some of them may even reach 100
elements, in what is commonly referred as Massive MIMO. New proposals for
6G RAN point in the direction of continuing this path of increasing the number
of antennas, and locate them throughout a certain area of service. Different
technologies have been proposed in this direction, such as: cell-free Massive
MIMO, distributed MIMO, and large intelligent surface (LIS). In this thesis
we focus on LIS, whose conducted theoretical studies promise the fulfillment of
the aforementioned requirements.

While the theoretical capabilities of LIS have been conveniently analyzed,
little has been done in terms of implementing this type of systems. When the
number of antennas grow to hundreds or thousands, there are numerous chal-
lenges that need to be solved for a successful implementation. The most critical
challenges are the interconnection data-rate and the computational complexity.

In the present thesis we introduce the implementation challenges, and show
that centralized processing architectures are no longer adequate for this type
of systems. We also present different distributed processing architectures and
show the benefits of this type of schemes. This work aims at giving a system-
design guideline that helps the system designer to make the right decisions when
designing these type of systems. For that, we provide algorithms, performance
analysis and comparisons, including first order evaluation of the interconnec-
tion data-rate, processing latency, memory and energy consumption. These
numbers are based on models and available data in the literature. Exact val-
ues depend on the selected technology, and will be accurately determined after
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building and testing these type of systems.
The thesis concentrates mostly on the topic of communication, with addi-

tional exploration of other areas, such as localization. In case of localization,
we benefit from the high spatial resolution of a very-large array that provides
very rich channel state information (CSI). A CSI-based fingerprinting via neu-
ral network technique is selected for this case with promising results. As the
communication and localization services are based on the acquisition of CSI, we
foresee a common system architecture capable of supporting both cases. Fur-
ther work in this direction is recommended, with the possibility of including
other applications such as sensing.

The obtained results indicate that the implementation of these very-large
array systems is feasible, but the challenges are numerous. The proposed so-
lutions provide encouraging results that need to be verified with hardware
implementations and real measurements.



Preface

This doctoral thesis summarizes my research contributions during the time as
a doctoral student at the department of Electrical and Information Technology
(EIT), Lund University, Sweden. It is comprised of two parts: The first part in-
troduces the reader into the topic covered in the rest of the thesis, including the
need of very-large antenna array systems, the potential implementation issues,
motivation for distribute processing and different considerations to alleviate
these limitations.

The second part of the thesis consists of a collection of original scientific
publications written during my doctoral studies. My personal contribution to
them is detailed as follows:

Paper I

Jesús Rodŕıguez Sánchez, Fredrik Rusek, Muris Sarajlić, Ove Edfors and Liang
Liu, “Fully Decentralized Massive MIMO Detection Based on Recursive Meth-
ods,” IEEE International Workshop on Signal Processing Systems (SiPS),
2018.

Personal Contributions: I was the main contributor to the paper, devel-
oping the idea of mapping existing algorithms in the literature to a daisy-chain
topology, in order to enable distributed processing in Massive MIMO uplink
baseband processing. I also performed the writing, performance evaluation and
analysis, with the guidance and support of the rest of co-authors.

Paper II

Jesús Rodŕıguez Sánchez, Juan Vidal Alegŕıa and Fredrik Rusek, “Decentral-
ized Massive MIMO Systems: Is There Anything to be Discussed?,” in IEEE
International Symposium on Information Theory (ISIT), 2019.

Personal Contributions: This work covers the channel estimation prob-
lem in distributed systems. I took the lead in deriving expressions, and evaluate
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results, while the initial concept, writing and simulations were shared among
co-authors.

Paper III

Jesús Rodŕıguez Sánchez, Fredrik Rusek, Ove Edfors, Muris Sarajlić and Liang
Liu, “Decentralized Massive MIMO Processing Exploring Daisy-chain Archi-
tecture and Recursive Algorithms,” IEEE Transactions on Signal Processing,
vol. 68, pp. 687-700, 2020.

Personal Contributions: Extension of the Paper I, with more theoretical
support, and extensive analysis. I was the main contributor of the paper, taking
the lead in the writing part. My contributions also include the derivation of
closed-form expressions for SIR and SINR (proofs included), proposing multiple
iterations through the array, simulations, deriving expressions for complexity,
latency and memory consumption, and evaluation of results and analysis. This
was possible thanks to the guidance and support of the rest of the co-authors.
I was also responsible of developing a simulation environment for this.
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Jesús Rodŕıguez Sánchez, Ove Edfors, Fredrik Rusek and Liang Liu, “Process-
ing Distribution and Architecture Tradeoff for Large Intelligent Surface Imple-
mentation,” in IEEE International Conference on Communications Workshops
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Personal Contributions: Preliminary work in distributed processing for
Large Intelligent Surfaces. I was the main contributor in the mapping of the
IIC algorithm to mathematical operations that can be implemented in hard-
ware based on singular value decomposition (SVD). I developed an entire new
simulation framework to evaluate LIS-based systems, in terms of performance,
computational complexity, inter-connection bandwidth and latency. I was re-
sponsible for writing the paper and simulating the different scenarios, under
the guidance and support of the rest of co-authors.

Paper V

Jesús Rodŕıguez Sánchez, Fredrik Rusek, Ove Edfors and Liang Liu, “Dis-
tributed and Scalable Uplink Processing for LIS: Algorithm, Architecture, and
Design Trade-offs,” to appear in IEEE Transactions on Signal Processing.

Personal Contributions: This work represents an extension of Paper IV,
including a more advance solution for the interconnection network, more exten-
sive evaluation and analysis. I upgraded the simulator to support the extended
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Chapter 1

Motivation and Outline

We are living in the digital era, where the presence of electronic devices such
as laptops or phones is ubiquitous in our daily lives. These devices allow us
to communicate quickly and efficiently in many forms by the use of wireless
connectivity. New and more demanding applications are being envisioned for
the near future, with the intention to increase our productivity, enhance our
well-being and facilitate different tasks in hand. Future sixth generation (6G)
networks should be able to support these applications, and for that, the current
telecommunication infrastructure needs to undergo a transformation in order
to fulfill the high demanding requirements that these new applications require.

In this chapter, we describe a certain number of expected use cases for
the near future, together with their requirements from a wireless connectivity
point of view. Additionally we also provide a motivation to explore different
system architectures for future base stations, that allows the infrastructure to
adapt for such requirements, without sacrificing hardware resources and energy
consumption.

1.1 6G wireless networks: new use cases and
requirements

The fifth generation (5G) New Radio (NR) is reaching maturity with the first
networks already deployed. The 5G access interface presents high bandwidth
and massive antenna arrays, that not only provides connectivity with a higher
data rate than the current communication-based applications demand, but also
has potential for accurate localization and sensing. It is expected that this
trend will continue into the future, where the radio access infrastructure be-
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4 Introduction

comes physically larger by the introduction of distributed arrays with coherent
processing. The larger arrays will allow a further and richer exploitation of
the spatial dimension, that will not only increase communication throughput
but also push localization accuracy limits even further, opening the door to
new and exciting applications [1, 26,27]. Many of these use cases are expected
to appear in the fields of entertainment, manufacturing and healthcare. 6G
networks will offer wireless connectivity that provides low latency, high reli-
ability and high capacity links required by these applications. Furthermore,
wireless power transfer (WPT)1 techniques will offer the capability of wireless
power supply of energy-neutral devices, supporting a whole range of new ap-
plications. As an illustration of envisioned wireless-based applications, Fig. 1.1
depicts a future fully automated factory, where robots perform different tasks
with the help of sensors and cameras that provide the needed information for a
correct monitoring and control of the entire process. Different antenna arrays,
distributed across the area, provide the required wireless connectivity to those
elements, together with accurate localization of the robots within the factory.

Antenna arrays

for wireless connectivity

Intelligent sensors monitoring

manufacturing and collecting data

Autonomous robots supplying

work stations

Stationary cameras observing

overall operation

Figure 1.1: Envisioned smart factory.

Here we list and describe briefly four main areas where new and disruptive
applications are expected in the near future [1]:

1. Robotization: The use of robots is becoming more and more common,

1 Presumably, WPT will be a key technology in the future wireless infrastructure. However
it is not covered in this thesis.
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due to advances in electronics and artificial intelligence, allowing them to
complete more complex tasks in less time. Factories, warehouses, retail
and care homes are the areas where more changes in this direction are
expected. Robotization of the care homes, where robots will interact with
patients, and take care of them is a relevant area. Robotization of the
vehicles is another growing trend, where intelligent vehicles are able to
communicate with each other and with the network, in a plan to make
driving fully autonomous and safer. The control of, and communication
with, robots will come with strict demands of high data reliability and
low latency. End-to-end latency (E2E) is expected to be as low as 1ms,
while the packet error rate (PER) should not exceed 10−6 [1].

2. Augmented reality: There is a new wave of wireless devices emerging
in the augmented reality (AR) space [2], that will create an immersive
experience, making it even simpler for us to enjoy and share experiences
in real time with family and friends, who are physically apart. Gaming,
celebrations, sport events, etc, will be shared instantaneously with oth-
ers, together with the addition of virtual interactive elements to enrich
the experience. From a professional point of view, these devices will also
bring a wide range of possibilities, including an enhanced remote work
experience. From a technical point of view, this will impose high through-
put demands on individual connections, ranging from 5Mbps to 3Gbps,
and a large traffic volume, going up to 50Mbps/m2. E2E requirements
are restricted to be under 10ms [1].

3. Sensors: Sensors will be ubiquitous in our daily lives. Applications
are ranging from wearables, and in-body sensors for an efficient (and
remote) patient monitoring, to smart home automation where sensors
could bring temperature, light, sound, and air quality measurements. An
infrastructure capable of wireless power transfer enables the use of energy-
neutral devices which brings more opportunities, as they do not require
battery, and therefore reducing the acquisition and maintenance cost.
The density of devices is envisioned to be as high as 100/m2 for certain
applications, potentially reaching 50,000 simultaneous connections [1].

4. Positioning: Positioning information will be required to enable many of
the envisioned applications. Patient tracking in hospitals and care centers
brings more freedom of movement. People tracking in large venues or
shopping areas can provide personalized patterns for marketing purposes
or emergency indications if needed. Tracking of robots and UVs is also
expected. Global Navigation Satellite Systems (GNSS) services will not
be enough for these applications, as some of them will happen in indoor
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Table 1.1: System level requirements for use cases covered in this thesis,
based on the RadioWeaves [1] vision, to support new applications. ∗ indicates
requirements that are not directly covered in this thesis.

Requirement Typical range

Device density (m2)∗ 0.1-100
Number of simultaneous devices 2-50k

User experience data rate (Mbps) <3000
Mobility (m/s)∗ 0-10

Positioning Accuracy (m) 0.1-1.0
Reliability (packet loss) 10−6-10−2

End to end latency (ms) 1-1000
Traffic volume density (Mbps/m2)∗ <100

environments (where GNSS is not available) and the required accuracy
may exceed the one provided by satellite-based services. In this context,
future wireless systems will provide another source of localization. It is
expected to reach an accuracy as good as 0.1m [1].

Within these four areas, the number of foreseen applications is large and
diverse [1], which translates into a wide range of system-level requirements,
as shown in Table 1.1. To sum up, we can envision applications where the
number of simultaneous connected devices is very large (thousands), each with
relatively low to moderate data-rate demands, while other applications require
very high data-rates for a much smaller number of users. Apart from this, strict
requirements in reliability, mobility and latency will have a drastic impact on
the infrastructure architecture and cost. A fixed solution may not fit well all
these applications. Therefore, the future 6G infrastructure should be flexible
and scalable, as well as be able to adapt to the specific application demands.

Energy consumption is another important requirement for the future infras-
tructure. It is expected that these systems will be more energy-efficient2 than
current ones. As we want to transition towards a sustainable and green fu-
ture, the global energy consumption in the telecommunications networks must
be revised, especially the RAN. RAN forms the access gate for the users to
the network, comprising the infrastructure and the radio signaling that is ex-
changed between both parties and supports the wireless-based services. It is
known that around 80% of the energy consumed in the RAN has been tradition-
ally used in base stations, of which about 80% is consumed in Power Amplifiers
(which is proportional to the total radiated energy) [3]. As the baseband algo-

2 We define more energy-efficiency as the use of less energy to perform the same task or
achieve the same result.
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rithms are growing in computational complexity, it is expected that they will
account for about 50% of the energy consumption in 5G base stations [23].

The absolute volume of information to transmit through the RAN is ex-
pected to grow in the next years, and therefore the radiated energy would also
grow accordingly with the current infrastructure. As the base stations oper-
ate with more and more antennas, the radiated energy per bit is decreasing
(as the energy can be more focused towards users), and may counterbalance
the growth of transmitted data from the point of view of total radiated en-
ergy (and therefore the one also consumed by power amplifiers (PAs)). On
the other hand, increasing the number of antennas contributes to a substan-
tial increment of the total energy consumption, due to three factors: 1) the
additional circuitry added (PAs, analog front-end, DAC/ADC, etc), 2) higher
inter-connection data-rate3, and 3) more baseband processing. The first factor
is technology dependent, and scales linearly with the number of antennas. The
second scales linearly with the amount of data to exchange in the front-haul
which, as we will see, depends on the system architecture. The third factor
scales in a superlinear fashion with respect to the the number of spatially mul-
tiplexed users (or layers)4. A reduction in the base station energy consumption
requires significant effort in these three areas, in order to increase the total
energy efficiency. This thesis focuses on the second and third ones since they
are both interconnected.

While existing networks have been evolving substantially until now, the ex-
plosion of new applications and their diverse requirements call for a profound
transformation of the existing infrastructure, including the RAN. In the partic-
ular case of communications, new ideas and developments have been carried out
during these years to accommodate to the growing demand in capacity. The
exploitation of the spatial dimension has been a driving force, materialized as
an increase of the number of antennas in Multiple-User Multiple-Input and
Multiple-Output (MU-MIMO) systems, with Massive MIMO as a result [5, 6].

1.2 Beyond Massive MIMO

Massive MIMO has gone from an initial theoretical concept to a real deployment
within a decade. Massive MIMO consists of an extension of traditional cellular
base stations with a very large array of antennas (in the order of 100). This
increases the spatial multiplexing capabilities, allowing the system to communi-
cate with more devices at the same time and frequency resources, and therefore

3 Inter-connection is the capability of the system to transfer the data, from where it is gen-
erated to where it is consumed. More details can be found in Subsection 1.3.1 4 Assuming
Multiple-User Multiple-Input and Multiple-Output (MU-MIMO) processing with interference
cancellation schemes for downlink precoding and uplink detection.
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boosting the spectral efficiency. Massive MIMO can be used in relatively low
carrier frequencies, such as below 6 GHz. As a result, the hardware technology
and radio components are quite mature and inexpensive. Despite the obvious
benefits of this technology, there are many implementation challenges involved.
While many of them have been already addressed, there are still some other
ones to be solved. This thesis covers some of these challenges and propose
solutions to overcome them. Specifically we cover: interconnection data-rate,
processing distribution and architecture scalability, computationally-efficient
algorithms, cost vs performance trade-offs, among others.

Future applications, as shown in Table 1.1, demand higher data through-
put and very large number of simultaneous connections, that can not be con-
veniently supported with current Massive MIMO deployments. In order to
address this demand, we envision to extend MU-MIMO technology beyond
current Massive MIMO, which implies an increase of the number of antennas
and the physical size of the array. This is the idea behind LIS [7]. LIS was
born to exploit spatial multiplexing to the fullest, by the use of thousands of
antenna elements and fully digital transceivers, with coherent baseband pro-
cessing capabilities.

Co-located Fully distributedDistributed

Figure 1.2: Different RAN alternatives.

While Massive MIMO is typically implemented in a co-located fashion, cell-
free Massive MIMO can be found usually following a fully distributed scheme.
In the case of LIS, the large array is expected to be divided in small panels that
are physically distributed in the area of service. These three ways of organizing
a very large array are shown graphically in Fig. 1.2:

• Co-located: This is the case when all antennas are physically together.
In this scenario, each user is served by all antennas in the array. Even
though this may represent the simplest case in terms of back-haul, it re-
quires a relatively high transmit energy. This is required in order to cover
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the whole area of service (large distance between base-station antennas
and users translates into high path loss) and due to the exposure to the
shadow fading, which may reduce the coverage probability.

• Fully distributed: A fully distributed array with single-antenna access
points (APs) is preferred as increases the coverage probability, by exploit-
ing diversity against the shadow fading [29,30,32]. Potential collaboration
among APs is beneficial to reduce interference and boost system capacity.
As more than one AP may serve each user, the probability of blocking
or deep fade gets reduced. However, the back-haul complexity and main-
tenance cost are higher in terms of the number of interconnection links,
and the high operational cost due to having only one antenna per AP5.

• Distributed: Represents a middle point, where the large array is split in
sub-arrays or panels (acting as APs). These panels are distributed in the
area of service, and cooperate to jointly serve the users. This approach
represents a trade-off between exploiting spatial diversity, probability of
coverage, and back-haul interconnection.

The carrier frequency is a key element in the system design, which also plays
an important role to meet the demand of future applications. We analyze and
compare three potential bands for future RAN technologies based on current
5G standardization: low-band (below 1GHz), mid-band (1-6GHz), and high-
band or milimiter wave (mmWave) (above 24GHz). Realizing future low-band
RANs brings two main potential limitations:

• Larger array size: In order to achieve a target array gain (to provide
coverage to an area), a certain number of antenna elements are expected
in the antenna array. As co-located antennas are separated by λ/2 (where
λ is the wavelength), the physical size of arrays in low-band is expected
to be larger, which translates into more volume (and probably weight)
for the radio part of the base-station. This potentially can be a problem
for operators when extending current sites or finding locations for new
ones.

• Positioning accuracy: As the wavelength becomes larger in lower fre-
quencies, the positioning accuracy may be severely degraded. According
to results in [8], the Cramér-Rao lower bound (CRLB) related to posi-
tioning estimation in LIS scales with λ2 when the physical array size is

5 By using the term operational cost we refer to the energy consumed for maintaining the op-
eration of the panel or AP, not including the energy consumed in transmission and baseband
processing. Examples are the energy lost in the voltage conversion and the active cooling of
the system [23].
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assumed fixed. For example, transitioning from 700MHz (low-band) up
to 3.6GHz (mid-band) translates into 26 times higher positioning accu-
racy. According to Table 1.1, new applications such as tracking of robots
or goods may require high accuracy (0.1m), which may be challenging
to achieve in low-band, where this accuracy translates into 0.3λ. This
implies relying on spatially distributed and large aperture arrays [3].

On the other hand, high frequencies bring lots of available spectrum to ac-
commodate for the growing demand in terms of capacity. However, even though
high-band systems offer many benefits, there is still an interest in developing
mid-band solutions for future systems. The main reasons are [10]:

• Implementation challenges: High-band solutions have some specific
challenges [11], with implementation issues such as phase noise. Increas-
ing the subcarrier spacing and adding phase tracking reference symbols
are among the solutions proposed by the 3GPP in order to overcome this
challenge. However, as the carrier frequency continues to increase, this
may not be sufficient, and advanced functionality such as MU-MIMO
techniques and high-order modulation will be less feasible, therefore re-
ducing the spectral efficiency.

• Digital beamforming: It is technically feasible to implement full
frequency-domain digital beamforming in mid-band as the bandwidths
are usually in the order of 100MHz. By allowing a fine control of beam-
forming in frequency domain (a group of adjacent subcarriers can be
beamformed with certain beams, while the next group in frequency may
be beamformed with completely different beams), the system is able to
exploit the spatial properties of the wireless channel with the goal to
maximize the spectral efficiency. This is in contrast to high-band solu-
tions, where analog beamforming (same beams are used for the whole
bandwidth) is common practice.

• Number of elements in the array: For a certain coverage, mid-band
solutions always need less antenna elements than high-band ones, as the
latter needs to rely on higher array gains to compensate for the smaller
effective antenna aperture in those frequencies. In the case of full digi-
tal beamforming, having lower number of transceivers simplifies system
design and baseband algorithms.

Based on the previous discussions we focus on mid-band solutions in this
thesis, with emphasis on Massive MIMO and specially on LIS as potential
future technologies for 6G RAN. While the theoretical performance of LIS in
communication and positioning has been already studied [7, 8] with promising



Chapter 1. Motivation and Outline 11

results, little has been done in terms of hardware implementation of fully digital
beamforming solutions. This thesis attempts to partially fill that gap by giving
design principles and guidelines for the selection of an appropriate architecture,
including algorithm and topology (these terms will be introduced in Chapter
2). In the next sections we will introduce the implementation challenges when
implementing these type of systems, and motivate for distributed processing as
potential solution.

1.3 Implementation challenges

As the number of antenna elements grows in the system, the hardware im-
plementation becomes more challenging. In the case of LIS, with potentially
thousands of antennas, implementation requires to leverage new ideas from ar-
chitectural and algorithmic point of view. As we aim for a distributed LIS,
the processing distribution and scalability are considered the key factors for
a successful result. Additionally, the distance between panels also increases,
which makes it more challenging to move data and ensure tight synchroniza-
tion among them. In this thesis we focus on physical layer implementation,
and are aiming for an unified architecture to support different applications,
specifically: communications, localization, and sensing. We will cover the first
two in this thesis, while the third is left for future work.

In order to illustrate the potential hardware implementation challenges
when it comes to LIS, let us consider a centralized architecture based on a
central baseband processing node6 as illustrated in Fig. 1.3. We consider re-
ception (or uplink) as an example. The antenna array has M elements, and
each one is connected to a dedicated analog front end (AFE) with radio fre-
quency (RF) circuitry, followed by an ADC and digital front end (DFE), which
includes digital channel filters and downsampling. Several antennas may be
operated jointly in a subsystem that share certain common functionality. The
other part of the system is the central processing unit (CPU), which may be
physically apart from the antenna array. With this architecture in mind, we
now list and describe four hardware implementation challenges when it comes
to LIS.

It is important to remark that in this chapter we evaluate a first order
approximation of the system complexity in different areas with numbers that
are currently available in literature, in order to motivate the need of searching
for alternative architectures. The exact numbers during real deployment will
depend on specific system parameters, implementation and silicon technology,

6 The centralized baseband processing architecture has been already used in Massive MIMO
implementations, such as in the LuMaMi testbed [17]
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and likely will be optimized for the technology in hand, so may differ with the
numbers presented here.

1.3.1 Inter-connection data-rate

In this subsection we focus on the required inter-connection data rate for ex-
changing digital baseband samples between the antenna subsystems and the
CPU. Let us assume for simplicity only uplink direction, as shown in Fig. 1.3.
We can imagine that using dedicated physical links between antennas and CPU
is not practical, and has a high cost when it comes to adding a new antenna
if required. To solve this, we consider a shared bus for connections instead, as
shown in the figure.
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Figure 1.3: System architecture of a base-station with centralized pro-
cessing.

This architecture requires a very high inter-connection data-rate in the bus,
and at the input of the CPU (Rc in the figure). To illustrate that, let us consider
a received signal with bandwidth fB. Then the average interconnection data-
rate can be calculated as

Rc = 2wMfB, (1.1)

where w is the bit-width for the baseband samples (real/imaginary parts) after
DFE. To give a numerical example, we consider a signal bandwidth of 100MHz,
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with M = 1024 (1.2m × 1.2m λ/2-spaced array in the 4GHz band), and w = 12
bits. This leads to an aggregated interconnection data rate of ∼ 2.5Tb/s. To
put this number into perspective, we compare it with the user information data-
rate that the system may handle during the uplink cycle, denoted as Ri. This
rate can be upper bounded as follows: Ri ≤ Cr,maxNbs,maxKfB, where Cr,max

is the maximum coding rate, and Nbs,max is the maximum number of bits per
constellation symbol. The bound is attained if the cyclic prefix overhead is zero,
and if the same value of Nbs,max applies to the whole bandwidth. Assuming K
= 150, Nbs,max = 8 (256QAM), and Cr,max = 1, this leads to Ri ≤ 120Gb/s,
and therefore indicates that Ri is at least 20 times lower than Rc. As we can
notice, there is a large gap between these two data-rates. Closing this gap by
reducing Rc is attractive from the energy consumption point of view, especially
when considering to cover relatively long distances (in case of distributed LIS).
To illustrate this, we can consider SerDes technology for short inter-connections
and 100G Ethernet for medium to long distances. For the former case, state-
of-the-art solutions offer a merit figure of 5.34pJ/bit [12], which translates
to ∼ 13W for 2.5 Tb/s. In the case of optical Ethernet, if we consider not
only PHY but also Ethernet line cards and switches, the figure can go up to
5.2nJ/bit7 [13], which leads to a power consumption of 13kW only for data-
shuffling.

In order to reduce the gap between Rc and Ri, and enable scalability, we
aim to have an interconnection data-rate that only depends on the number
of users and therefore the information data-rate, regardless of the number of
antennas. In order to achieve that, part of the baseband processing performed
at the CPU side should be migrated close to the antennas, specifically the
MIMO processing (beamforming and equalization), acting as a preprocessing.
In the next chapter we will cover some of the proposed techniques to achieve
this goal.

1.3.2 Computational complexity

Traditionally energy consumption due to computational complexity in a base-
station has been considered small compared to other sources, such as the trans-
mission energy8. It is usually treated as a fixed term in the energy consump-
tion models, together with other operational contributions such as site cool-
ing [23–25]. With the arrival of 5G and the use of very large arrays, there is
a trend to reduce the transmit energy in exchange for an increase in the re-
quired computational complexity. Therefore, it should not be surprising that

7 For 10 Tbit/s Ethernet switch, equipped with 100GbE line cards, each using 4 channels
(4x25G). 8 Transmission energy corresponds to the energy used by PAs and RF chains [23],
which is proportional to the radiated transmitted energy.
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computational complexity can account for 50% of total energy consumption on
a 5G Massive MIMO base-station, reaching a power consumption of 800W in
high volume traffic scenarios [23]. As the density of base-stations increases, and
the distance to the users gets reduced (as is the case in distributed scenarios),
the required transmitted energy will tend to reduce, and therefore the com-
putational energy will remain dominant. This trend indicates that this factor
will be a very relevant contributor to the energy consumption of the future
systems, and should be taken into account as a potential challenge in our anal-
ysis. In order to illustrate that, let us consider one baseband processing task
as representative factor in our analysis. We select the linear minimum mean
square error (L-MMSE) equalizer method, which is a commonly used method
for MU-MIMO uplink detection. Even though the method will be described in
more detail in the next chapter, we present here its requirement from a compu-
tational complexity point of view, followed with an estimate of the demand in
terms of energy consumption. There are two phases when considering L-MMSE
realization:

Formulation

During this phase, the equalization weights are computed. In the case of the
L-MMSE method, these follow the following expression

Wlmmse =
(
HHH + αI

)−1
HH , (1.2)

where theM×K complex matrix H represents the MU-MIMO wireless channel,
K is the number of users in the system, α is a scalar, and I is the K×K identity
matrix. We assume there is a matrix H for every coherence-block (frequency
and time) of the channel (see Subsection 2.3.2 for more details).

Computation of the weights requires to perform the product HHH, which
leads to MK2 complex multiplications and additions. As the matrix to invert
is Hermitian, its inversion can be efficiently computed by the means of the
Cholesky decomposition, with the need of 1

2K
3 complex products and additions

[14]. Multiplication with the HH matrix requires MK2 complex products,
making a total ofK2(2M+ 1

2K) of multiplyaccumulate (MAC) operations. This
procedure should be performed at least once every coherence bandwidth of the
channel, while further interpolation may be needed between subcarriers in case
of orthogonal frequency-division multiplexing (OFDM) [18]. Let us assume,
for simplicity, that one coherence bandwidth equals to a resource block (RB)9,
and that the system is OFDM and time division duplexing (TDD) based, with
slot time split equally between uplink and downlink, in a similar way as in [17].

9 We define a RB as 12 consecutive subcarriers in the frequency domain.
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This scheme considers dedicated OFDM symbols for uplink pilots, one per slot.
In between two consecutive uplink pilot symbols, all uplink and downlink data
with guard symbols need to be accommodated. The weights for precoding need
to be computed based on the uplink pilots and be ready before transmission
of downlink data symbols, in order to precode the data properly. The required
number of MAC (defined as complex multiplication and addition) per second
for weights formulation is then determined by

Cw,form = K2

(
2M +

1

2
K

)
NPRB
1
2Tslot

, (1.3)

where NPRB is the total number of RB allocated for user data transmission,
and Tslot is the slot duration10. Now we give a numerical value with M=1024,
K=150, NPRB=275 (referring to 5G NR with 30KHz subcarrier spacing and
system bandwidth of 100MHz), Tslot=500µs, which leads to Cw,form ≈ 52.5
TMAC/s. To put it value into perspective, this value is three order of mag-
nitude higher than the corresponding in Massive MIMO [4].

Filtering

During filtering, the received signal, containing user data from the antennas
is filtered through the weights obtained during the formulation phase. In a
similar form, downlink data is precoded using the weights. The filtering process
requires KM complex products per subcarrier, with a total number of MACs
per second of

Cw,filt = KM
Nsc

TOFDM
≈ KMfB, (1.4)

where Nsc is the number of subcarriers allocated for data transmission, and
TOFDM is the OFDM symbol duration. The approximation is valid if the cyclic
prefix duration is negligible compared to TOFDM

11. For our analysis we assume
the same values as before, leading to Cfilt ≈ 15.3 TMAC/s. The same value
is expected for precoding.

Energy considerations

For our energy analysis we take the result obtained during formulation, as it
is dominant compared to filtering in terms of computational complexity (in

10 The spirit of this example is to give an approximative value for computational complexity,
that can illustrate potential implementation challenges with LIS. In that context, and for
simplification, we do not consider IFFT and channel estimation processing latency. A more
accurate analysis would require to give numerical values to each individual processing latency,
which is highly dependent on the specific implementation and technology used. 11 As in

this case: TOFDM ≈ 1
∆f

, where ∆f is the subcarrier spacing
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our example). If we consider that a complex multiplication can be realized
with four real products, and for an energy-efficiency figure of 3.1pJ per MAC
[15], then the power consumption during formulation is ∼ 651W. We remark
that this is only for weights computation. Other physical layer functionalities
such as OFDM modulation/demodulation, upsampling/downsampling, digital
predistortion (DPD), channel coding/decoding, etc are not included. However,
it can provide a representative value for our analysis.

After presenting the previous results of our analysis, in order to address the
expected high computational complexity, we list two directions to explore:

• Processing distribution: While processing distribution does not re-
duce the total computational complexity, it ensures a more uniform al-
location of processing resources in the system, and therefore of the en-
ergy consumption, facilitating the scalability. Another key property of
processing distribution is that by allocating computational resources in
the antenna subsystems, only nearby users (those received with enough
energy) need to be processed12, reducing the computational complexity
significantly due to the O (K3) dependency. Other applications, such as
AR, also benefit from a distributed processing approach [2].

• Algorithm complexity: While the L-MMSE method is known to offer
excellent performance, its cost in terms of complexity and energy con-
sumption is relatively high. We look for solutions that can offer a good
balance between performance and computational cost, and at the same
time the scalability we are looking for.

Both directions can be considered together, as shown in the papers included
in this thesis.

1.3.3 Memory capacity

Memory plays a very important role in the energy efficiency and latency of
the system. Processors need to access memory to read instructions and data
to perform certain tasks. While off-chip memory access is expensive in terms
of latency and energy, on-chip access becomes faster and much more energy
efficient. To give some perspective, in 45nm CMOS technology, a 32 bit floating
point addition requires 0.9pJ, a 32bit SRAM cache access consumes 5pJ, while
a 32bit off-chip DRAM memory access demands 640pJ, which is almost three
orders of magnitude more expensive than an addition operation [16]. This
makes on-chip access very attractive since it is two orders of magnitude more
energy efficient than off-chip. However, on-chip memories are very limited in

12 This is only valid for distributed arrays.
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size. The memory requirements in the system, to store the equalizer weights,
is indicated as

Memw = 2wKMNPRB. (1.5)

To get an idea of the memory requirements of the system regarding weights,
let us use the same numerical values as in the previous example, that is, M
= 1024, K = 150, NPRB = 275, and w=12. For this case, Memw = 126MB.
This is the required memory space only for the weights. Usually there is also
a need to buffer received data, which would require additional memory, and
would make the integration of such a large on-chip memory very challenging.

Energy considerations

We can give an estimate of the energy consumed by memory accesses due to
reading weights during filtering, in order to obtain a representative value of the
energy requirements when it comes to memory. We assume no interpolation in
weights [18], one memory access per single weight (complex number), and all
weights are read within half slot duration. This leads to a power consumption
of 0.8W for an on-chip cache, and 108W in an off-chip memory. As we can
observe, the difference is substantial, and an on-chip option is highly preferred,
as it can be integrated into the processors of each antenna subsystem. However,
as shown previously, there are other aspects in the system design that are more
relevant from energy consumption point of view.

1.3.4 Synchronization

All elements in a multi-antenna system are required to maintain a certain level
of coordination among them, in order to ensure the system works as expected.
This coordination can take many forms. One of them is synchronization, which
is a critical part of the architecture in distributed systems [28]. It needs to be
properly considered in order to avoid systematic errors. Those errors do not
average out with the array size, and therefore lead to performance degradation
[19]. To get more insight, let us introduce two main types of synchronization
in a multi-antenna system:

• Frequency: Each antenna branch with its corresponding transceiver
needs a high frequency local oscillator (LO) signal for up and down con-
version. Even though static or very slowly-varying phase offsets among
these LOs can be seen as part of the wireless channel, ideally we prefer
to have a common reference shared with all transceivers. This scheme
guarantees a tight synchronization under many circumstances. Global
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(or centralized) carrier synchronization is considered as the ideal scenario
from a performance point of view, but it leads to high energy consumption
and scalability limitations. In single-chip arrays with 16-32 transceivers
on the die, it is possible to generate a single LO and distribute it to each
transceiver in the array. When the array grows and the system becomes
multi-chip, or distributed with multiple and distanced panels, routing
high frequency LO signals can be very energy consuming. Low frequency
reference signal distributed with local LO generation (distributed LO
generation) may alleviate theses challenges in spite of introducing slight
de-synchronization among LOs, leading to an important design trade-off.
Different architectures for LO generation and distribution have been ana-
lyzed and compared in [20]. The best trade-off solution seems to point to
the distributed LO generation, where each generator or PLL is in charge
of a group of transceivers, providing short LO routing and requiring a
relatively low number of PLLs. One promising alternative to achieve
frequency synchronization is the transmission of RF signals over optical
fiber, as explored experimentally in [21]. Similar considerations can be
taken into account with the sampling clock frequency and phase in ADC
and DAC elements [19,20].

• Time: Synchronization in the time domain is important, and covers two
aspects: trigger and timestamp. A trigger signal is used to indicate an
event time for the different modules in the system, for example, as a
starting time [17]. This allows, for example, to indicate when to start
sending samples (in case of downlink) for the first OFDM symbol at the
same time. Timestamp is a more evolved form of time synchronization,
that allows the system to have an absolute common time-base shared
among all nodes in a network. This implies also a common clock frequency
and phase.

In real deployments, as the system becomes larger and distributed, ensuring
tight synchronization among all nodes may be expensive, energy hungry, and
technologically challenging [31]. While there are available technologies to pro-
vide synchronization over a large number of nodes and distances such as White
Rabbit [22], it is expected that such a tight synchronization level among all of
them may not be required in practice, only within the ones that are to cooper-
ate for coherent processing. This implies that those LIS panels (or subarrays)
that are beamforming to the same users may need to be tightly synchronized
in order to achieve a constructive contribution of the desired signal level at
the user. As these panels tend to be physically together, the synchronization
is more feasible. This is the principle behind Federation concept within the
RadioWeaves paradigm [3]. While synchronization is a very important aspect
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in the system design, this thesis does not cover it, and perfect synchronization
is always assumed among all nodes.

1.4 Thesis structure

The rest of the first part of the thesis contains two more chapters, that ad-
dress how to exploit scalability through distributed processing techniques, by
leveraging topology selection and algorithm design. We specifically focus on
communication and positioning services using radio signals, aiming for a unique
architecture to support both. In more detail:

• Chapter 2 gives an introduction to algorithm-topology co-design, topol-
ogy classification, processing distribution in communications and posi-
tioning.

• Chapter 3 presents the conclusion and future directions.

The second part of the thesis contains six original research papers that cover
the areas described in the first part. In more detail:

• Paper I proposes three different algorithms for uplink equalization tai-
lored for daisy-chain topology and sequential processing.

• Paper II explores channel estimation in decentralized processing sys-
tems, including MMSE estimation and performance evaluation.

• Paper III extends the results from Paper I by proposing an algorithm
for uplink equalization and daisy-chain topology, including closed-form
performance expressions, detailed system level analysis and the required
hardware resources.

• Paper IV is a first look into hardware implementation of LIS, proposing
a panel architecture and interconnection topology to exploit processing
distribution, and establishing guidelines for system design.

• Paper V extends the results from Paper IV by proposing a system ar-
chitecture, including panels, complete interconnection network topology,
and corresponding algorithms. The paper also includes a first-order ap-
proximation of the hardware resources needed for system deployment,
and establish interesting trade-offs, serving as guidelines for a system
designer.
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• Paper VI explores the positioning problem in distributed LIS systems,
by proposing an algorithm and topology solution, that provides high ac-
curacy with relatively low hardware cost.



Chapter 2

Processing Distribution
and Algorithm-Topology
Co-design

As described in previous chapter, future RAN infrastructures will enable mul-
tiple applications under highly demanding requirements. The system designer
should translate these into key design decisions, such as: carrier frequency, to-
tal number of antennas in the array, system bandwidth, number of processing
nodes1 and how they are connected, algorithms that are executed, etc. These
can be formulated as low-level hardware requirements, such as: computational
complexity, interconnection data-rate, latency, and memory. This together
with implementation decisions, such as the hardware platform to use (FPGA,
ASIC, ASIP, etc), technology node, use of accelerators, etc, lead to an estimate
of the energy consumption and latency. This process is graphically illustrated
in Fig. 2.1. These specifications will constraint the number of available design
possibilities, making certain options more appropriate than the others in terms
of cost, latency and energy consumption. In summary, there may be multi-
ple solutions that fulfill the applications requirements while offering different
hardware cost.

As the number of nodes grows in the system, the system design process
becomes more complex. In this thesis, we focus on an infrastructure composed
of multiple interconnected nodes (or panels) with local computing capabilities,
as was motivated in the previous chapter. In the next sections we describe how

1 Element in the system with processing capabilities. It is also refered as panel in the context
of LIS.
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Figure 2.1: Requirements flow during system design and implementa-
tion phases. Applications requirements can be translated into system-
level design choices, which can then be formulated in terms of low-level
hardware requirements and decisions. Different solutions may fulfill the
applications requirements while having different cost, latency and energy
consumption.

processing is distributed and mapped onto the nodes, and how these are con-
nected. The three important aspects determining the processing distribution of
the system are: architecture2, topology and algorithm. In the next section we
will provide a clear definition for these three, that will be applied throughout
the rest of the chapter.

2.1 Distributed processing: architecture, topolo-
gies and algorithms

Under the distributed processing paradigm, the different nodes in the system
should have analog and digital processing capabilities. Architecture involves
a detailed mapping of this processing, by dividing it in separate parts, each
with specific functionality and requirements, and the connection of such parts.
One possible internal architecture of a processing node (or panel) is shown in
Fig. 2.2, where many of the relevant processing elements have been depicted,

2 It is important to remark that the concept of architecture here refers only to demand on
processing, and not protocols.
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together with the respective connections.

...

FE

OFDM

CHEST

LocalizationComm.

Digital interconnection

to other panels
from other panels

Figure 2.2: Processing architecture of a processing node or panel, ca-
pable of providing communications and localizations services, assuming
OFDM-based wireless access. CHEST stands for Channel Estimation.
Front-End (FE) comprises analog front end (AFE), ADC/DAC, and dig-
ital front end (DFE). Digital interconnection includes data exchange and
synchronization.

The Front-End (FE) is connected to the antennas. It comprises the AFE
with all the analog processing tasks in the panel, the ADC/DAC, and the
DFE, with up/downsampling and filtering. In the digital baseband domain, a
OFDM block (assuming OFDM-based wireless access) performs frequency-time
transformation, followed by channel estimation (CHEST), communication and
localization processing.

The respective processing results are collected and transmitted to other
panels via the digital interconnection sub-block. At the same time, results
from other panels can arrive and be used to refine the ones obtained locally.
Even tough the architecture supports this, it is up to the algorithm (which is
running in the panel) to decide what operations are performed and what data
to exchange with other panels. Algorithms will be covered in Section 2.3, with
a focus on communication and localization.

Processing nodes can be connected in many different ways, leading to spe-
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cific enhancements in certain aspects or potential limitations in others, as we
will see in Subsection 2.2. By using the term connection, we refer to logi-
cal connection, indicating the way the information flows in the system3. The
way nodes are interconnected is defined as topology. In this section four of
the most relevant ones in this context are described and shown in Fig. 2.3.
Additionally, we also provide a brief analysis of them and a comparison.

(a) Daisy-chain (b) Mesh

(c) Tree (d) Hybrid

Figure 2.3: Illustration of different topologies covered in this thesis.
Grey circles and black dots represent processing nodes. While the former
ones typically contain antennas, the latter ones may play the role of
aggregator with or without antennas.

The third aspect is the algorithm, that specifies the operations in terms
of information processing to be performed in order to achieve a certain goal.
This may lead to the exchange of data with other nodes in the system. As we
can imagine, the topology plays an important role here. As the algorithm is
mapped onto the topology, the pattern of data traffic becomes defined, together
with the interconnection data-rate in the links. This mapping has also influence
in the latency. For example, if the algorithm indicates that node 1 should send
data to node 4, that may imply three hops in daisy-chain topology, while it may

3 In this context, logical connection refers to a wired or wireless connection between two
nodes where data may be exchanged in both directions. Both nodes do not have to be
physically connected, and other nodes without active role in the communication (such as
relays) may be in between them.
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be only one in mesh. If both nodes need to exchange data at a high rate, it is
beneficial to place a dedicated link between them, as that would reduce latency,
and possibly routing congestion. The price to pay is to deploy and maintain
a dedicated link, whose cost depends on the technology and the distance. In
this case, we are questioning the topology by asking: ”Is this topology suitable
for the data exchange flow imposed by the algorithm?”. On the other hand, we
can question the algorithm by asking: ”Is the pattern of data exchange between
nodes appropriate for the current topology?”, followed by a further one: ”Is
the exchange of data between these two nodes really needed?”. Unfortunately,
usually none of these questions have an easy answer. In general, we could start
the design process by choosing an existing infrastructure topology and then
select a suitable algorithm for that one, or we could also start with an existing
algorithm in literature and proposing a matching topology for it. Probably,
none of the approaches lead to the optimal solution from resources and en-
ergy consumption point of view. Rather, these two can be seen as part of an
iterative method, named topology-algorithm co-design, where the goal is
to obtain a system design, in which the topology and algorithm are matching,
in a way that the algorithm has low computational complexity, and the links
available through the topology are in low number and efficiently used4. As an
example, we refer to the centralized processing scheme illustrated in the pre-
vious chapter, where the algorithm and topology were not an optimal choice,
and that motivated the search for a distributed approach. Unfortunately, in the
topology-algorithm co-design method it is difficult to have a systematic form to
approach the solution. Therefore, we will based our analysis in certain heuris-
tics that provide satisfactory solutions for the applications under demand. In
the next section we discuss some of these.

In reality, topology-algorithm co-design can be seen as a tool for the system
designer in order to find an appropriate topology and algorithm, that match
together. Once the system design is completed, the resulting selected topol-
ogy, algorithms and architecture (among other factors) act as inputs for the
hardware implementation. This allows to obtain estimates of cost, latency and
energy of the system (as illustrated in Fig. 2.1), which need to fulfill the opera-
tor requirements5. If those are not met, it is necessary to return to the system
design process and to iterate through different design options (as illustrated in
Fig. 2.4). The process ends when the applications and operator requirements
are mutually met.

4 Here the term ”efficient” is very broad, and includes high occupancy of the link, with
low redundancy in the data. Additionally, low redundancy is expected among data carried
through different links. 5 Infrastructure operators may impose system level requirements
on the equipment such as: maintenance cost, energy consumption, total throughput in the
area of service, support of a certain technology, latency, etc.
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Figure 2.4: System design and hardware implementation cycle. The
system design process is assisted by the topology-algorithm co-design
method, in order to leverage suitable topology, algorithms, and archi-
tecture that has the potential to fulfill the different set of requirements
coming from the applications and the operator. Multiple iterations may
ne needed to meet the specifications.

In this section we have introduced our methodology, the topology-algorithm
co-design. Before entering into details regarding topology, algorithm and archi-
tecture, here we would like to provide a short guideline about how these details
are structured. In Section 2.2, we will go through several well known topolo-
gies that may be used for distributed processing architectures. In Section 2.3
we will introduce algorithms for communications. We will start with standard
linear methods, and then we will present several strategies on how to distribute
these standard methods into different algorithms. In Section 2.3 we will map
the distributed algorithms onto the topologies introduced in Section 2.2.

2.2 Topologies: description and analysis

In this section the different topologies already presented in Fig. 2.3 are briefly
described and compared based on four different criterion: scalability, number
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of links, latency and reliability. This serves as a useful guideline for the system
design [3].

2.2.1 Daisy-chain

In the daisy-chain topology, shown in Fig. 2.3a, each node is connected to
two neighboring ones (except both ends) with bidirectional links. There are
two benefits of this topology: 1) scalability, as adding one additional node
into the system is very straightforward, only requiring to establish one or two
connections (depending if edge node or not); and 2) low number of physical
connections compared to other topologies.

On the other hand, there are two main limitations of this topology: 1)
relatively high latency, as collecting results from each node requires a number
of hops equal to the number of nodes in the system (N), which may limit its
use in latency-critical applications; and 2) low reliability, as a failure in any
of the nodes may lead to a partial or total outage of the infrastructure.

As a summary, daisy-chain is a solid candidate in scenarios where latency
is not critical, and deployment should be easy (minimum reconfiguration when
a new node is added).

2.2.2 2-D mesh

2-D mesh topology, shown in Fig. 2.3b, can be seen as the natural extension
of daisy-chain in the 2-D world, where each node is connected to more than
one neighbor6. These extra connections help to reduce the number of hops
between any pair of nodes. In the particular case of a mesh-grid, it scales with
O (
√
N), which is a significant reduction compared to the daisy-chain case.

Additionally, the new connections improve the reliability issue presented in the
1-D case, enabling re-routing if a node fails.

On the other hand, real implementations may become more complicated
as each node may receive data from multiple neighbors, which may require
a special attention to the synchronization among the nodes. The different
number of connections in the nodes may lead to a diversity of implementa-
tions/requirements at the nodes that are difficult to predict in advance, re-
quiring higher degree of reconfigurability. The increment in the number of
connections compared to daisy-chain is another disadvantage, which may im-
pose limitations in the deployment over large areas, making this topology more
preferable when nodes are physically co-located.

6 Even tough this definition is very broad and cover all topologies, we restrict to provide a
general evaluation for this topology, while for the rest a more specific description is presented.
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2.2.3 Multi-level tree

Multi-level tree topology introduces hierarchical levels, in contrast to daisy-
chain where all nodes are organized in a flat structure. Tree topology, shown
in Fig. 2.3c, establishes a single node as root, connected to a certain number
of nodes, which are also connected to other nodes in a recursive fashion. We
consider two different types of nodes in this thesis. First, leaf nodes, depicted
as circles in the figure, which contain antennas. Second, aggregators, depicted
as black dots, that may but do not have to contain antennas. The latter ones
may collect, process, and deliver data (depends on the algorithm).

A significant reduction in latency is expected in this topology, as the number
of hops between two nodes scales now with O (logN).

The potential limitations come from reliability and imbalanced computa-
tional load. The existence of hierarchies, with some nodes serving as fusion
nodes or aggregating points, impose strict requirements and workload in those
nodes, leading to potential computational and inter-connection bottlenecks if
the algorithm is not carefully selected for this topology. Additionally, failure
in one of these nodes may lead to a partial or total outage.

To sum up, multi-level tree is an convenient selection in applications where
latency is critical. The algorithm is crucial, as it needs to distribute processing
across the nodes and limit the dependence on the aggregation nodes. Examples
of such algorithms are shown in the next section.

2.2.4 Hybrid topology

Hybrid is a variant of a previously presented topology, with the aim to enhance
it in certain aspects. In this thesis, we consider hybrid topology as a multi-level
tree with direct connections between the nodes of the same level. This extra
links may help to reduce latency (if the algorithm is properly designed) and
increase reliability. It is depicted graphically in Fig. 2.3d.

Table 2.1: Illustration and comparison of the different topologies discussed in
this thesis with respect to different characteristics: scalability, number of links,
latency and reliability. Symbols definition: ↑ = high, ↓ = low, and - = average

Daisy-chain Mesh Tree Hybrid

Scalability ↑ ↓ - -
Number of links ↓ ↑ - -
Latency ↑ - ↓ ↓
Reliability ↓ ↑ - ↑
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In Table 2.1 a summary of the presented topologies is shown, together with the
relative strengths in certain areas.

2.3 Algorithms for communications

The design process of an efficient system with processing distribution for com-
munication and localization is not straightforward. One promising heuristic to
reach our goal is performing local dimensionality reduction in the panel, as
it seems to be the right direction to alleviate the implementation issues pre-
sented in centralized processing (as shown in Chapter 1). This approach can
be combined with another heuristic, the data locality principle, according
to which data should be consumed as close as possible to where it is generated.
These principles, that can be applied to panel baseband processing, can be
summarized as follows:

• Per-user processing: Performing per-user processing (apart from per-
antenna processing) is the first step to reduce dimensionality and enable
scalability. In case of communications, the ratio antennas to spatially-
multiplexed users can be in the order of 10 or even more, leading to
substantial reductions in dimensionality. Moving from antenna-domain to
user-domain processing requires to map an equalization and localization
algorithm into the processing node (or panel) for the communications and
localization cases. A significant dimensionality reduction is expected to
be achieved by following this principle.

• User scheduling: In spatially distributed and very large arrays as LIS,
the system may cover a large geographical area. Therefore, it is expected
that a part of the it, such as a panel, receives sufficient signal level from
a limited number of users, typically the ones closer. An energy-efficient
strategy for resources allocation7 should focus exclusively on those users.
Additionally, in many real scenarios, the users are moving, what demands
a dynamic reconfiguration and resource allocation in the system.

CSI is used in communication and localization services, as illustrated in
Fig. 2.2 with the panel processing architecture. More specifically, CSI in the
communication context allows for a proper equalization of the received symbols
during uplink, and support for an adequate beamforming during downlink. On

7 By resource allocation we refer to radio (frequency and time) and hardware resources
(processing and memory).
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the other hand, in localization, CSI can be used in machine learning-based fin-
gerprinting methods, such as in Paper VI and [33–36]. In these methods, a
machine learning algorithm, typically a neural network, is trained to provide an
estimate of the user location from the obtained CSI. In both cases, communica-
tions and localization, the data locality principle and local per-user processing
introduced before can be applied. This implies that each panel has knowl-
edge of local channel information exclusively, and no element in the system
has full knowledge of the complete channel information. The above mentioned
assumption is the key to ensure scalability and efficient use of resources.

In this section, we first introduce different existing methods in the literature
for communications, specifically downlink precoding and uplink equalization,
followed by concrete algorithms based on those. In the second part, we discuss
algorithms for localization.

2.3.1 System model

Let us consider a distributed LIS infrastructure with M antenna elements and
N panels, serving to K single-antenna users, as shown graphically in Fig. 2.5.
For simplicity we assume all the panels have same number of antennas, which
is: Mp = M

N .
The radio access between the LIS and users is assumed to be based on

TDD and OFDM 8. The M × K channel matrix H can be written as H =
[HT

1 ,H
T
2 , ·,HT

N]T , where Hi is the Mp×K channel matrix of the i-th panel. In
case of uplink, the signal received by the antennas follows the next relationship

y = Hx + n, (2.1)

where x is the K × 1 users transmitted signal, and the M × 1 noise vector
n is modeled with Gaussian i.i.d. elements: n ∼ C N (0, σ2

nI). In the case of
communication, the transmitted signals from users may correspond to pilots or
data, where the latter one is assumed to be random and mutually independent.
For localization, it only consists of pre-determined pilots for channel estimate.

2.3.2 Communications: Equalization and precoding

For simplicity we will reduce our scope to linear methods, including maximum
ratio transmission (MRT) and maximum ratio combining (MRC), zero forcing
(ZF), and minimum mean square error (MMSE). In case of uplink, for linear
equalization methods, the transmitted data vector estimated is obtained as

x̂ = Wy, (2.2)

8 Further exploiting the spatial domain is a main goal of LIS, and OFDM-TDD is the
preferred solution under this assumption.
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Figure 2.5: System model. K users transmitting simultaneously to a
LIS made up of N panels.

where W is a K × M complex matrix, which can be written as W =
[W1,W2, · · · ,WN], where Wi is the K ×Mp filtering matrix corresponding
to the i-th panel. Similarly for y, it can be written as y = [yT1 ,y

T
2 , · · · ,yTN]T .

For downlink precoding, the M × 1 vector y at the antennas is given by

y = Px, (2.3)

where x is the K×1 data vector to transmit, P is the M ×K precoder matrix,
which can be also written as P = [PT

1 ,P
T
2 , · · · ,PT

N]T , where Pi is the Mp×K
precoding matrix corresponding to the i-th panel.

Each panel estimates the channel locally based on orthogonal pilots sent
by the users. This channel information is then used to compute the filtering
matrix for uplink detection and downlink precoding.

In this thesis, and for performance evaluation purposes only, we will assume
a block-fading channel model, where channel remains approximately constant
over a coherence block (frequency-time). However, in real implementation there
may be a need for interpolation in frequency and time domain (across OFDM
symbols) in order to estimate channel response in between subcarriers, which
may impose more severe constraints from computation time point of view, when
calculating the precoder weights [18]. In that sense, there is a need to verify
the model with real measurements.
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We now revise some of the most common methods for equalization and pre-
coding, followed by different distributed processing strategies, including several
algorithms to implement these methods.

Maximum Ratio Transmission (MRT) and Maximum Ratio Combin-
ing (MRC)

MRT/MRC is a technique for downlink precoding and data filtering in uplink,
where the goal is to maximize signal-to-noise ratio (SNR) at user equipment
(UE) (case of MRT), and in the base station receiver (case of MRC). The vector
of used weights is calculated directly from the channel estimate, more formally:
Wi = HH

i , and Pi = αH∗i , where α is an scalar for meeting transmit energy
constraint.

MRT/MRC are highly suitable under the distributed processing scheme
as there is no exchange of data required for interference cancellation, which
indeed reduces baseband processing latency and interconnection bandwidth.
This enables all baseband processing to be performed locally in the panel,
including equalization and precoding.

The downside of this method lies in its limitations to cope with inter-user
interference, which is critical in the scenarios with large number of users. Those
scenarios are typically limited by interference (instead of noise), and therefore
reducing significantly the achievable rate for the users. In conclusion, this
method can be a good candidate when the number of users is relatively high
but the individual throughput demand is low.

Zero-forcing (ZF)

Zero-forcing (ZF) is another linear method for uplink equalization and down-
link precoding, that aims to cancel user interference. Having no interference
makes the system capable of operating with a larger number of users and,
therefore, considerably increase the capacity of the infrastructure to transmit
and receive information. To achieve that, panels need to exchange data (in
contrast to MRT/MRC) with the consequent implications in terms of latency
and interconnection bandwidth. The filtering matrix in ZF is defined as W =
(HHH)−1HH , while the precoding matrix is defined as P = αH∗(HHH)−1,
and α is a scalar.
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Minimum mean square error (MMSE)

While ZF filtering is able to cancel user interference, at the same time it may
enhance the received noise. To mitigate this issue, MMSE9 can be used, as
it presents the best trade off between interference cancellation and noise en-
hancement, by maximizing post-filtering signal-to-interference-plus-noise ratio
(SINR). The filtering matrix is in this case defined as W = (HHH+σ2

nI)−1HH ,
while the precoding matrix is defined as P = αH∗(HHH + σ2

nI)−1.

The above presented methods require the calculation of the weights first by
a procedure called formulation, and subsequently use those weights during
filtering/precoding. In case the block-fading channel model is applicable in the
context of LIS, it is possible to reuse the same weights for all transmitted signals
under the same channel coherence block (time-frequency).

It is important to notice that different algorithms can be used to imple-
ment the methods presented before. We are focused on algorithms that enable
distributed processing. In this section we describe some of the available algo-
rithms in the literature. All the algorithms listed below are linear equalizers
and follow (2.2):

Channel Gram matrix adder

This algorithm is able to achieve exact ZF/MMSE solution, and it requires the
computation of the matrices {Gi}, where Gi = HH

i Hi. These matrices are
added and the resulting matrix inverted, and therefore obtaining matrix D as
follows

D = (HHH + G0)−1 =

(
N∑

i=1

Gi + G0

)−1

, (2.4)

where G0 is a constant term and G0 = 0 in case of ZF, and G0 = σ2
nI in case of

MMSE. The resulting matrix D is multiplied with the corresponding channel
matrix to obtain the filtering weights as follows

Wi = DHH
i . (2.5)

When it comes to processing distribution, this algorithm allows for a map-
ping where Hi is obtained locally in panel i, together with the local computation
of Gi and Wi.

9 It is worth to mention that when data vector x is assumed to follow a multivariate Gaussian
distribution then the linear MMSE estimator described here is actually the MMSE estimator.
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Coordinate descent (CD)

Paper III introduces an approximate ZF method based on coordinate descent
(CD) for daisy-chain topology in Massive MIMO scenarios. With a very low
computational complexity formulation, this algorithm achieves very good in-
terference cancellation properties without the need of explicit matrix inversion.
The pseudocode is shown in Algorithm 1, where matrix Ai is a K×K complex
matrix, and wi the corresponds to the K × 1 equalizer vector of i-th antenna.
Multiple optional iterations through the array improve the performance, closing
the gap to ZF, but at the expense of an increment in latency.

Algorithm 1: Coordinate descent

Input : H = [h1,h2 · · ·hM ]
T

Preprocessing:
1 A0 = IK
2 for i = 1, 2, ...,M do
3 wi = µiAi−1hi
4 Ai = Ai−1 −wih

H
i

5 end

Output : W = [w1,w2 · · ·wM ]
T

Approximate ZF precoder

An approximate decentralized Massive multiple-input multiple-output (MIMO)
ZF precoder for daisy-chain topology is introduced in [38]. The algorithm per-
forms close to ZF in scenarios when the number of antennas is large compared
to the number of users. The pseudocode is presented in Algorithm 2, where
pi represents the i-th row of precoder matrix P, corresponding to the 1 ×K
precoding vector of the i-th antenna. The selection of the scalar ε is detailed
in [38]. Although it shares some similarities with the CD algorithm, the down-
link requirement that all antennas must transmit the same mean energy calls
for a different approach and solution.

iterative interference cancellation (IIC)

Paper V introduces the IIC algorithm suitable for distributed uplink pro-
cessing in LIS scenarios. This technique exploits user scheduling principle by
filtering the received signal from a panel with a certain number of vectors.
These ones are related to the singular vectors of the channel matrix associ-
ated with such panel. The number of used vectors is related to the number of
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Algorithm 2: Approximate ZF precoder

Input : H = [h1,h2 · · ·hM ]
T

Preprocessing:
1 A0 = IK
2 for i = 1, 2, ...,M do

3 pi = ε
hHi Ai−1

‖hHi Ai−1‖2

4 Ai = Ai−1 − hipi
5 end

Output : P = [p1,p2 · · ·pM ]
T

nearby users, and should be much lower than the total number of them in the
system. Furthermore, certain information is shared throughout the different
filtering vectors, in order to mitigate the inter-user interference. The result
of this technique is a dimensionality reduction processing pipeline, which is
able to achieve good performance with low computational complexity and in-
terconnection bandwidth. The algorithm pseudocode is presented below. Z is
a complex K ×K matrix.

Algorithm 3: Algorithm IIC

Input : {Hi}
1 Z0 = IK
2 for i = 1, 2, ..., N do
3 [Uz,Σz] = svd(Zi−1)

4 H̃i = HiUzΣ
−1/2
z

5 Ũ = svd(H̃i)

6 Wi = Ũ(:, 1 : Np)

7 Zi = Zi−1 + ρHH
i WiW

H
i Hi

8 end
Output : {Wi}

When it comes to processing distribution, this algorithm allows for a map-
ping where Hi is obtained locally in panel i, together with the local computation
of Wi and Zi. Zi is passed from the i-th panel to the i + 1-th panel. Local
and fast connections can be used for this purpose (more details in Paper V).
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2.3.3 Sequential estimation

The second group of algorithms presented in this section aims to achieve a
sequence of estimates during the uplink filtering process, as follows: x̂1 → x̂2 →
· · · → x̂N . Each element of the sequence is computed based on the previous
element together with local observations from a certain panel, more specifically:
x̂i = f(yi,Hi, x̂i−1). Typically we are interested in linear combiners in the form

x̂i = Aiyi + Bix̂i−1, (2.6)

where the matrices {Ai} and {Bi} are calculated during the formulation phase
and may depend on the local CSI. The algorithms following this approach
implement linear equalization methods. More specifically, (2.6) is a special
case of (2.2). This can be seen when expanding the recursive expression in
(2.6) we get

x̂i = Aiyi + Bi (Ai−1yi−1 + Bi−1x̂i−2)

=

i∑

j=1

i∏

k=j+1

BkAjyj .
(2.7)

For the last estimate of the sequence, we have

x̂ = x̂N =

N∑

j=1

N∏

k=j+1

BkAjyj . (2.8)

By comparing (2.8) and (2.2) we can observe that

Wi =

N∏

k=i+1

BkAi, (2.9)

which corresponds to a linear filter. The spirit of the update rule following
(2.6) is to develop iterative algorithms that can be executed sequentially. This
property can be exploited when mapping the algorithm onto the topology as
will be described in the following Section 2.4. These algorithms, as presented
below, aim to implement exactly or approximately the equalization methods
presented before (ZF and MMSE). We describe two algorithm following this
update rule as follows:

Recursive least squares (RLS) and sequential MMSE (S-LMMSE)

Paper I proposes a distributed processing scheme to implement the RLS
method, which is a recursive version of the traditional Least squares (LS) so-
lution to the optimization problem minx ‖y −Hx‖2. For zero-mean Gaussian
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distributed noise, this solution matches with the output of the known ZF filter
as shown in Subsection 2.3.2. Similarly, the same idea can be applied to the
sequential version of LMMSE (S-LMMSE), described in [40] and defined as

x̂i = x̂i−1 + Ki(yi −Hix̂i−1), (2.10)

where
Ki = Mi−1H

H
i (σnI + HiMi−1H

H
i )−1, (2.11)

and
Mi = (I−KiHi)Mi−1, (2.12)

where Ki and Mi are matrices. To initialize, we take x̂0 = 0, and M0 = I.

Serial CD

The CD algorithm described before can be expressed in a serial form as pre-
sented in Paper III. The key idea of this algorithm is to replace the matrix
Ki in (2.10) with another one, which does not require matrix inversion. This
provides a significant reduction in computational complexity, in exchange of a
performance loss compared to the MMSE method. The update rule is defined
as follows, for the particular case of one antenna per iteration step

εi = yi − hTi x̂i−1

x̂i = x̂i−1 + µih
∗
i εi,

(2.13)

where µi = µ
‖hi‖2 . This algorithm works on per-antenna basis, where yi and hi

are the observation and channel vector of the i-th antenna respectively.

2.4 Mapping algorithms to topologies

In this section we briefly introduce certain considerations when mapping al-
gorithms to topology. As was mentioned in Section 2.1, for a certain pro-
cessing architecture, the selection of algorithm and topology involves a wide
variety of system metrics, raging from communication performance (capacity,
bit-error-rate, etc) to energy consumption. This selection should be a joint
process within an optimization framework, which was previously described as
topology-algorithm co-design, and illustrated in Fig. 2.4 as part of the
system design process.

There are some considerations to take into account when mapping an algo-
rithm:
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• The algorithm demands a certain level of computational complexity de-
pendent on the type of operations (matrix-matrix product, matrix-vector
product, accumulation, etc), and operation rate (MAC/s).

• The processing architecture provides the computational capabilities and
interconnection resources (number of I/O ports, data-rate, etc) present
in the different nodes in the system.

• The topology tells us how the nodes are connected, which translates to
the number of hops needed to move data from one node to another one.

Before entering into details, it is important to realize that all algorithms
presented before in Subsection 2.3.2 can be mapped into each of the topologies
presented in Subsection 2.2. However, the impact in computational complexity
and interconnection data-rate at each node and link is different, which implies
that some topologies are more appropriate for certain algorithms. When the
algorithm is mapped onto the topology, not only the operations to be performed
at each node are determined, but also the interconnection data-rate and data
movement in the system (i.e.: transfer data X from node 1 to node 3).

Algorithms that follow the filtering approach in (2.2) can be efficiently
mapped to different topologies. The linear equalizer general form in (2.2) can
be expressed as

x̂ =
∑

i

Wiyi, (2.14)

where yi is the corresponding received vector at the antennas of the i-th panel.
We can conveniently compute locally and store each filtering matrix Wi at
the corresponding panel, which allows to perform the multiplication Wiyi also
locally at the i-th panel. These partial results can be aggregated (summed)
throughout the infrastructure until the corresponding aggregation point, root
node, or CPU, that performs final detection and decoding. This approach al-
lows all panels or nodes to work simultaneously on the same subcarrier during
filtering, and once the results are ready, they can be conveniently aggregated
throughout the infrastructure. In that regard, it offers high degree of flexibil-
ity regarding how the accumulation can be performed, and that includes the
topology. In low-latency applications, a tree-based topology can be an ideal
candidate due to its adder-tree. The cost to pay is the number of required
links, which is larger than in other topologies, such as the daisy-chain. Fig-
ures 2.6a and 2.6b represent the aggregation process in the tree and daisy-chain
topologies, respectively, when mapped with any of the algorithms under this
approach. These two are examples, and combinations of both topologies are
also possible.
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W1y1

W2y2

W1y1 +W2y2

W3y3

W4y4

W5y5

W3y3 +W4y4 +W5y5

W1y1 +W2y2 +W3y3 +W4y4 +W5y5

(a) Tree

W1y1

W1y1 +W2y2

W1y1 +W2y2 +W3y3

(b) Daisy-chain

Figure 2.6: Mapping algorithms under the filtering approach in (2.14)
onto tree and daisy-chain topologies.

In the case of 2-D mesh, the large number of links increase the reliability of
the system to a node failure as presented in Subsection 2.2.

Regarding the algorithms following the sequential filtering format shown in
(2.6), the idea is to map each iteration (computation of each estimate in the
sequence) to a different physical node or panel. Under this approach, the CSI
and the received signals from the antennas do not need to be exchanged with
other nodes, and therefore saving in inter-connection data-rate. During filter-
ing, the estimates are passing from node to node, while during formulation the
exchange consists of data aiming for interference mitigation. Certain topologies
are more suitable for this type of algorithms. Evidently, daisy-chain is a very
good fit, while tree may suffer from an increment in interconnection data-rate
and latency. This is illustrated in Fig. 2.7a, where the computed estimates
need to traverse the tree to follow the sequential processing order, which may
imply multiple hops to reach the next processing node.

2.4.1 Initial analysis of hardware requirements

In this subsection we present an initial analysis of the presented algorithms and
topologies based on their hardware requirements. Results for uplink filtering
are shown in Table 2.2, where for simplicity no dimensionality reduction is
assumed (panels process all users, K). Dimensionality reduction techniques
such the ones proposed in Paper V reduce computational complexity and
interconnection data-rate in exchange of potential performance loss. The paper
includes a detailed analysis of the hardware requirements.

For simplicity we only cover two topologies, daisy-chain and tree. From
Table 2.2 we can observe that sequential algorithms following (2.6) imply twice
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x̂1

x̂1

x̂2

x̂2
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x̂4

x̂4

x̂5

x̂5

(a) Tree

x̂1
x̂2

x̂3

(b) Daisy-chain

Figure 2.7: Mapping algorithms under the filtering approach in (2.6)
onto tree and daisy-chain topologies.

as much computational complexity as the ones following (2.14), making com-
putational complexity the main drawback of the sequential approaches. Addi-
tionally, the sequential tree requires twice as much interconnection data rate
compared to the other approach due to the links being used in both directions,
as illustrated in Fig. 2.7a.

Daisy-chain and corresponding algorithms seem to be a reasonable choice
when latency is not critical, as it simplifies control and enables easy scalability.
For use cases where latency is the main concern, the number of elements in the
chain has to be kept below a certain value. Another option is to select tree
topology instead, as we explain next.

In general, a parallel tree (and a hybrid) seems adequate for latency crit-
ical applications with a large number of nodes. It shows the lowest hardware
requirements, except for the number of links, which is larger than daisy-chain.
However, as the number of children per node increases in the tree (d in Ta-
ble 2.2), the number of links becomes the same as for a daisy-chain.
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2.4.2 Summary of the system design process

In this subsection we refer to the system design and hardware implementation
cycle described in Section 2.1 and shown graphically in Fig. 2.4. In order to
illustrate the importance of this methodology in the system design process,
we describe in detail the procedure that leads to the distributed processing in
hybrid-tree topology proposed in Paper V.

The starting point (in the case of communication) is the equalization
method ZF, described in Subsection 2.3.2. Applying a centralized processing
approach here leads to the implementation challenges and limitations presented
in Chapter 1, which involves a high interconnection data-rate and relatively
high computational complexity due to the required matrix inversion. As this
solution is not suitable, we iterated in the design cycle by employing a pro-
cessing distribution approach. At that stage, a serial processing algorithm was
selected (CD), together with a convenient topology (daisy-chain) that could
alleviate the limitations described before (solution proposed in Paper III). As
the processing was distributed across the different nodes in the system, a more
balanced and scalable system design was achieved. However, the relatively
large latency imposed by the daisy-chain topology may result in a limitation
for certain applications. This motivated another iteration in the design cy-
cle, resulting in the proposal of the IIC algorithm and hybrid-tree topology
in Paper V. This selection, not only provide the benefits of the processing
distribution, but also experiences low latency due to the tree topology.

This iterative process can continue until a certain list of requirements are
met. Those may come from the application to be supported, as described in
Section 1.1, or from the operator, as seen in Section 2.1.

2.5 Architecture for distributed positioning

In the case of localization, the system wants to estimate the user’s location
based on the received signals at the panels. As said previously, the idea is
to have a common infrastructure and processing architecture that can support
both services: communication and localization, as shown in Fig. 2.2. In general,
we are interested in studying how to extract location information from the CSI
(which is already available for communication purposes), and how to use it in
a way that can be efficiently implemented and deployed in reality.

Localization based on RF signals is a well studied topic with abundant
material in the research literature. Its importance is derived from its potential
to enable high accuracy localization in indoor and outdoor environments with
and without line of sight, becoming a very inexpensive alternative to camera-
based systems.
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Some known techniques may require the calibration of panels and ensure
a tight synchronization between them in order to be able to measure time-
differences between RF signal time-of-arrival. Unfortunately this option seems
expensive if we take into account the large number of antenna elements and
panels involved in the LIS. One alternative that does not need calibration is
based on fingerprinting, which consists of the (off-line) creation of a data-
base of a certain RF-based measurements, such as the received signal strength
indicator (RSSI), from different panels and locations [45–48]. During the esti-
mation, real-time RF measurements are compared with the data-base entries,
in order to find the closest ones and therefore the user’s location. An alternative
to RSSI is the CSI10, which has two main advantages: 1) it is already avail-
able for communication demodulation purposes; and 2) contains richer features
than RSSI, as it is able to capture not only the amplitude but also the phase
relationship of the impinging signals, and herein localization information. Un-
fortunately, as the number of antenna elements and bandwidth is expected to
be large in LIS and future 6G RAN systems, a data-base filled with CSI may
not be feasible as it would require very large data-base, slowing down the access
and comparison process, and therefore becoming a potential bottleneck [42]. In
order to alleviate this limitation, machine learning (ML) techniques, specially
neural networks (NNs) have attracted the attention for their generalization
capabilities as universal interpolator. Many previous works cover the use of
NNs within RF-based localization such as [33–36] among others, with success-
ful results. It is relevant to mention recent works, such as [33], which covers
localization in MU-MIMO scenarios with multiple Wi-Fi APs. In [33] each AP
computes a probabilistic estimate of the user’s location, that can be further
merged by convenient techniques based on information fusion. Paper VI aims
to be a step further in this direction, proposing a novel distributed processing
pipeline for localization with probabilistic description of the user’s location.
In this case, the panels provide a Gaussian probability distribution of the lo-
cation which can be fused by Gaussian conflation as described in [43]. This
scheme is very convenient as it is able to support any topology. As the future
RAN systems, as LIS, are expected to grow in number of antennas and become
distributed, having a built-in mechanism for information fusion is critical.

Fig. 2.8 shows the system particularized for the localization case, where two
panels provide estimates of the user’s location based on local CSI, which can
be conveniently fused into one estimate. This approach follows the recommen-
dations presented at the beginning of the section:

• By providing the coordinates estimates per panel (or other form of loca-
tion description), we exploit per-user processing or dimensionality

10 Here we consider CSI as complex-values representing the wireless propagation channel in
a certain set of time-frequency resources.
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(x2,y2,z2)

(x1,y1,z1)

(x*, y*, z*)

Figure 2.8: System model for localization purposes. Two panels pro-
vide an estimate of the user location based on local observations. By
using information fusion techniques, these two estimates can be merged
into a single one.

reduction, as we avoid the exchange of CSI with the corresponding sav-
ings in interconnection data-rate.

• Data locality principle is also employed here, as the location estimate
is formulated exclusively using local observations (local CSI). There is no
need for CSI exchange among panels or nodes.

• Information fusion techniques are vital, as we can merge different es-
timates along the way to the CPU or root node, with important savings
in interconnection and routing resources.

In this section, we discussed about positioning using the received RF signals.
Specifically how the CSI, already available for communications purposes, can
be utilized for positioning. From the topology point of view, the tree has been
shown to be very convenient, as it unifies communications and positioning.
Processing distribution enables the capability of providing local estimates, that
are fused by the use of information fusion techniques. This avoid sending all
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data to the CPU, which reduces the inter-connection data-rate. This is highly
important as it allows to overcomes the limitation introduced in Chapter 1.

In the next chapter, we will present the conclusions and future directions
of this thesis.
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Chapter 3

Conclusion and Future
Directions

3.1 Summary and conclusions

In this thesis we have introduced some of the envisioned use cases and applica-
tions of future wireless communication systems, and translate those to require-
ments in the telecommunication infrastructure, especially from the base-station
point of view. As the consumption of data is expected to keep growing, together
with higher accuracy requirements in localization, these systems are evolving
towards wider signal bandwidths and very large and distributed arrays, aiming
to increase spatial multiplexing capabilities and therefore spectral efficiency.
Additionally the capability to beamform energy to smaller volume in space im-
proves radiated energy efficiency and localization accuracy. We studied Massive
MIMO and LIS, as relevant technologies in this direction.

Despite of the discussed benefits, such systems present multiple challenges
from implementation point of view. Those challenges come from high intercon-
nection and computational aspects, leading to potential bottlenecks in scala-
bility. We addressed these limitations and proposed different solutions, where
processing distribution was identified as the key aspect to unlock scalability. We
introduced novel algorithms, together with system-level topologies and process-
ing architecture considerations to enable the implementation and deployment
of these systems. Additionally, analysis of different hardware resources involved
were also presented and compared with centralized solutions as a motivation
to pursue these ideas.

Future applications demand not only communications but other services

47
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such as localization and sensing. Supporting all within the same system ar-
chitecture is the goal. In that context, we explored the localization problem,
and proposed a solution that is feasible from implementation point of view and
compatible with the system architecture and topology developed for commu-
nication purposes.

3.2 Future directions

In this section we list some of the most relevant and promising future directions:

• Several algorithms have been proposed in the included papers to the
present thesis. In most cases, an analysis of the demands of such algo-
rithms from hardware point of view has been presented, together with
performance evaluation. These analysis are meant to be guidelines for
the system designer, giving an estimate of the computational complex-
ity and interconnection data-rate among other metrics. These numbers
are very generic and require an specific implementation in order to deter-
mine exact values. Implementing such algorithms in a real-time hardware
platform is a promising future direction to validate the results of those
algorithms, and to give more accurate numbers.

• Most of the included papers are focusing on the uplink aspect of the com-
munication. Further exploration of the downlink, especially precoding, is
expected in order to fully validate these algorithms.

• Synchronization, which is not covered in this thesis, is a vital aspect of the
system design. As mentioned in 1.3.4, ensure tight synchronization among
all panels is extremely challenging from implementation point of view.
A future direction consists of the analysis of performance degradation
at different levels of synchronization, and therefore obtaining interesting
trade-offs.

• A description of the system design and implementation iterative cycle was
described in Chapter 2, together with an introduction to the relevance
of the topology-algorithm co-design and how to approach it. Due to its
complexity, the techniques described in this thesis to approach this are
based on heuristics. A future direction may include the investigation of
a more systematic method for this purpose.

• Positioning with probabilistic description using machine learning and fin-
gerprinting techniques is very promising, especially because its capacity
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to enable information fusion, which becomes vital in distributed process-
ing systems. The method proposed in Paper VI pretends to be an
initial exploration and analysis of the topic. While the obtained results
are promising, further evaluation should be done in this area. Robustness
against potential hardware impairments, such as frequency offsets, and
uncertainties in the phase and amplitude of the estimated channel are
critical to guarantee a correct behavior in real deployments.

• We have covered communication and localization in this thesis. Sensing
is another relevant application that is expected to play an important role
in future systems. Another research direction could be to explore how
to support sensing using the same system architecture proposed in the
thesis.
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Fully Decentralized Massive MIMO

Detection Based on Recursive Methods

Algorithms for Massive MIMO uplink detection typically rely on a

centralized approach, by which baseband data from all antennas mod-

ules are routed to a central node in order to be processed. In case of

Massive MIMO, where hundreds or thousands of antennas are expected

in the base-station, this architecture leads to a bottleneck, with critical

limitations in terms of interconnection bandwidth requirements. This pa-

per presents a fully decentralized architecture and algorithms for Massive

MIMO uplink based on recursive methods, which do not require a central

node for the detection process. Through a recursive approach and very

low complexity operations, the proposed algorithms provide a sequence of

estimates that converge asymptotically to the zero-forcing solution, with-

out the need of specific hardware for matrix inversion. The proposed

solution achieves significantly lower interconnection data-rate than other

architectures, enabling future scalability.
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“Fully Decentralized Massive MIMO Detection Based on Recursive Methods,”

in Proceedings of the 2018 IEEE International Workshop on Signal Processing Sys-
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1 Introduction

Massive multi-user (MU) multiple-input multiple-output (MIMO) is one of the
most promising technologies in the wireless area [1]. High spectral efficiency
and improved link reliability are among the key features of this technology,
making it a key enabler to exploit spatial diversity far beyond traditional MIMO
systems by employing a large scale antenna array with hundreds or thousands
of elements. This allows for unprecedented spatial resolution and high spectral
efficiency, while providing simultaneous service to several users within the same
time-frequency resource.

Despite all advantages of Massive MIMO, there are challenges from an im-
plementation point of view. Uplink detection algorithms like zero-forcing (ZF)
typically rely on a centralized architecture, shown in Figure 1a, where baseband
samples and channel state information (CSI) are collected in the central node
for further matrix inversion and detection. Dedicated links are needed between
antenna modules and central node to carry this data. This approach, that is
perfectly valid for a relatively low number of antennas, shows critical limita-
tions when the array size increases, with interconnection bandwidth quickly
becoming a bottleneck in the system.

Previous work has been done proposing different architectures for Massive
MIMO base-stations [2–6]. All of them conclude by pointing to the inter-
connection bandwidth as the main implementation bottleneck and a limiting
factor for array scalability. Most of them recommend moving to a decentralized
approach where uplink detection and downlink precoding can be performed lo-
cally in processing nodes close to the antennas. However, to achieve that, CSI
still needs to be collected in a central node, where matrix inversion is done and
the result distributed back to all modules [2,3,5]. A further step has been made
in [6], where CSI is obtained and used only locally (not shared) for precoding
and detection. This architecture relies on a central node only for processing
partial results. This dependency on a central node limits the scalability of this
solution as will be shown in section 4.

In this paper we propose a fully decentralized architecture and recursive
algorithms for Massive MIMO uplink detection. Antennas in the array are
grouped into clusters. Apart from antennas, clusters contain RF, Analog-to-
Digital Converters (ADC), OFDM receiver, channel estimation and detection
blocks. The decentralized topology is based on the direct connection of clus-
ters forming a daisy-chain structure as shown in Figure 1b. The proposed
algorithms are pipelined so that they run in a distributed way at the cluster
nodes, providing a sequence of estimates that converge asymptotically to the
zero-forcing solution. We will make use of the following algorithms: Recur-
sive Least Square (RLS), Stochastic Gradient Descent (SGD) and Averaged
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Figure 1: Comparison between base station receiver chain in central-
ized and fully decentralized architectures for Massive MIMO uplink. An-
tenna array with M elements is divided into C clusters, each containing
B antennas. (a): Centralized architecture. Clusters contain RF am-
plifiers and frequency down-conversion (RF) elements, analog-to-digital
converters (ADC) and OFDM receivers. Each cluster has one link to
transfer baseband samples to a central baseband processing node, where
the rest of processing tasks are done. (b): Fully decentralized architec-
ture for detection. Clusters performs RF, ADC, OFDM, channel esti-
mation (CHEST) and detection (DET) locally. Decoding (DEC) is cen-
tralized. Clusters are connected to each other by uni-directional links.
Only one cluster has a direct connection with central node. Proposed
algorithms are executed in DET blocks in parallel mode. The points
where the interconnection data-rate is estimated are marked by circles
and the value is denoted by R.

Stochastic Gradient Descent (ASGD), which are detailed in section 3.
Decentralized architectures overcome bottlenecks by finding a more equal

distribution of the system requirements among the processing nodes of the sys-
tem. Apart from this, data localization is a key characteristic of decentralized
architectures. This architecture allows data to be consumed as close as possi-
ble to where it is generated, minimizing the amount to transfer, and therefore
saving bandwidth and energy. Following this idea, processing nodes need to be
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located near the antenna. Further, they perform tasks such as channel estima-
tion and detection locally. Local CSI is estimated and stored locally in each,
without any need to share it with any other nodes in the system.

The remainder of the paper is organized as follows. The system model for
MIMO uplink is presented in section 2. In section 3 we introduce the proposed
algorithms. In 4 we analyze the performance of these algorithms, present the
advantages of the daisy-chain topology, and analyze interconnection data-rates.
Finally, section 5 presents the conclusions of this publication.

Notation: In this paper, lowercase, bold lowercase and upper bold face
letters stand for scalar, column vector and matrix, respectively. The opera-
tions (.)T , (.)∗ and (.)H denote transpose, conjugate and conjugate transpose
respectively. The vector s in the nth iteration is sn. Computational complexity
is measured in terms of the number of complex-valued multiplications.

2 System model and detection algorithms

In this section we present the system model for MIMO uplink and introduce
the ZF equalizer.

We consider a scenario with K single-antenna users transmitting to an
antenna array with M elements. The input-output relation for uplink is

y = Hs + v, (1)

where y is the M × 1 received vector, s is the transmitted user data vector
(K × 1), H = [h1 h2 · · · hM ]T is the channel matrix (M ×K) and v samples
of noise (M × 1). Under the Massive MIMO assumption, M � K.

Assuming time-frequency-based channel access, a Resource Element (RE)
represents a slot in the time-frequency grid. Within each RE, the channel
model follows (1).

A least-squares (LS) estimate of s is obtained as

ŝZF = (HHH)−1HHy. (2)

This method, commonly referred to as ZF, requires a central architecture as in
Figure 1a because the complete matrix H needs to be collected in the central
node before the Gramian matrix (HHH) and its inverse can be computed.
Decentralized architectures, such as the one shown in Figure 1b, require other
type of algorithms.
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3 Proposed algorithms

In this section we propose three algorithms for MIMO decentralized uplink
detection.

Depending on the situation some algorithms are more appropriate than
others. If full knowledge of matrix H and y is available at a single node, direct
methods such as ZF can be applied (2). However, there are situations when the
cost of collecting all knowledge at a single node is too high. For those cases, a
different approach has to be used.

The goal of the proposed algorithms for uplink detection is the estimation
of the transmitted user data vector, s in (1), based on knowledge of H and
y that is distributed among nodes. These algorithms provide a sequence of
estimates, which converge to ŝZF as more knowledge of H and y is obtained.
Estimation is done in a sequential manner, by which the estimate is passed from
one antenna to the next one, being updated every time based on the previous
estimate (ŝn−1), local CSI (hn) and antenna observation (yn). This can be
summarized as ŝn = f(ŝn−1,hn, yn), which can be seen as a recursive form.
This approach is in accordance with the data localization principle, which is a
key characteristic of decentralized systems. In the Massive MIMO case, data is
consumed close to where it is generated, namely at the antennas. This makes
it possible that neither hn nor yn are shared, since only the estimate is.

These algorithms are flexible enough to work in clusters of antennas (see
Figure 1b), whose size can vary from 1 up to M , the last case being equivalent
to a centralized system.

The first recursive algorithm to be presented is the Recursive Least Square
(RLS) method, which is a recursive form of (2). Uplink detection can be also
seen as a regression parameter estimation - a problem well studied in the area
of stochastic approximation methods. Stochastic Gradient Descent (SGD) and
its averaged version (ASGD) fall within this group, and are based on a Gradient
Descent algorithm in which the gradient is partially known.

In Section 3.1 we present RLS applied to MIMO uplink detection, which
provides approximate ZF performance at the expense of a preprocessing stage.
Afterwards, we present the SGD algorithm and its enhanced version, the Av-
eraged SGD (ASGD), which increases robustness of SGD while achieving per-
formance close to ZF for very large arrays.

Before we describe the algorithms we clarify the role played by the variable
B, i.e., the number of antennas per cluster. Our algorithms are in fact inde-
pendent of the value of B, therefore we present them with notation tailored
to the choice B = 1. However, B > 1 is still of importance from an imple-
mentation point of view since each cluster may be implemented with a single
processing unit. Thus, with M = 100 antennas, the choice B = 1 requires 100
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processing units, while B = 10 merely requires 10 such units. Nevertheless,
performance of our algorithms remains the same. B therefore takes a trade-off
role: The larger the B, the less number of processing units, but meanwhile, the
architecture becomes more centralized.

3.1 Recursive Least-Squares (RLS)

RLS is the recursive version of the LS algorithm. It can be shown [7] that the
ZF/LS estimate, i.e., the l.h.s. of (2), can be approximated by the RLS as
ŝZF ≈ ŝM where ŝn is recursively found as follows

εn = yn − hTn ŝn−1

Γn = Γn−1 −
Γn−1h

∗
nhTnΓn−1

1 + hTnΓn−1h∗n
,

ŝn = ŝn−1 + Γnh∗nεn.

(3)

The quality of the approximation depends on the initial value of ŝ0. Never-
theless, for a randomly chosen ŝ0, the impact of ŝ0 quickly fades out over the
index n and it can be shown that sM → ŝZF as M →∞ with probability one.
In (3), ŝn is a K×1 vector and is the output of cluster n, yn is the observation
at the nth antenna, εn is the prediction error and Γn is a K ×K matrix. As a
side comment, we remark that ŝn is an approximate LS solution up to the nth
antenna element.

In view of Figure 1b, increasing the iteration number in (3) from n to
n + 1 corresponds to passing on information from cluster n to cluster n + 1.
Each cluster receives an estimate of the transmitted data vector from previous
cluster, ŝn−1, and compute a new estimate ŝn based on local CSI, hn, and a
local observation, yn.

Under the block fading channel model, multiple Resource Elements (RE) in
a certain region of the time-frequency grid experience identical channels. We
name this region Coherence Block (CB), and following this model it is possible
to re-use same CSI for all REs in the same CB.

Straightforward implementation of (3) at every RE is not efficient. In fact,
a hefty share of the operations associated to (3) can be reused within the CB,
namely those associated to computation of Γn. Defining Γ0 = IK and

zn = Γn−1h
∗
n

αn =
1

1 + hTnzn

Γn = Γn−1 − αnznzHn , n = 1, 2, . . . ,M
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we see that at each RE it suffices to compute

εn = yn − hTn ŝn−1

ŝn = ŝn−1 + αnznεn, n = 1, 2, . . . ,M

in order to execute (3). It is easily verifiable that the complexity of preprocess-
ing is O (K2), whilst the complexity is O (K) at every RE.

3.2 Stochastic Gradient Descent (SGD)

The setup in SGD [8] is that one intends to solve the unconstrained LS problem

min
s
‖y −Hs‖2 (4)

via a gradient descent (GD) approach. The gradient of (4) equals ∇s =
HHHs − HHy. An immediate consequence is that GD is only feasible in a
centralized approach.

SGD is an approximate version that can be operated in a decentralized
architecture. It does so by computing, at each cluster, as much as possible of
∇s with the information available at the cluster. Then the cluster updates the
estimate ŝ using a scaled version of the ”local” gradient and passes the updated
estimate on to the next cluster.

The above described procedure can, formally, be stated as

εn = yn − hTn ŝn−1

ŝn = ŝn−1 + µnh∗nεn,
(5)

where {µn} is a sequence of scalar step-sizes.

3.3 Averaged Stochastic Gradient Descent (ASGD)

Selection of optimum values µn in SGD is not trivial. Even though we take
µn = µ for simplification, the optimum value will depend on M , K and channel
properties, where the latter may be unknown in many cases. An inappropri-
ate selection of µ can lead to severe performance degradation depending on
the scenario. Averaging a SGD sequence provides an asymptotically optimal
convergence rate provided that the noise v is Gaussian [9], which increases
robustness to the step-size selection. In the ASGD algorithm there are three
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sequences defined as follows

εn = yn − hTn x̂n−1

x̂n = x̂n−1 + µnh∗nεn

ŝn =

{
x̂n if n < n0

1
n−n0+1

∑n
k=n0

x̂k if n ≥ n0,

(6)

where x̂n takes the role of the SGD output ŝn in (5). The ASGD output ŝn
thereby becomes an averaged SGD sequence, where n0 determines the onset of
the averaging procedure.

The averaged sequence can be written more conveniently as

ŝn =

{
x̂n if n < n0

ŝn−1 + 1
n′ (x̂n − ŝn−1) if n ≥ n0,

(7)

where n′ = n − n0 + 1. As will be seen in our numerical results, the ASGD
grossly relaxes the need for careful selection of µ.

4 Analysis

In this section we analyze the proposed solution. First, the performance of the
presented algorithms will be shown and compared with each other. Second, a
few strong points of the daisy-chain topology are given. Finally, an analysis
of interconnection bandwidth is presented, followed by a comparison for four
different configurations.

4.1 Detection performance

In this section, we present performance results for all algorithms. Reported
metrics are Mean-Square-Error (MSE) and Bit-Error-Rate (BER) in block
faded Rayleigh channels.

We report MSE, measured between ŝ and s, as a function of the number of
iterations (antenna index). The reported signal-to-noise ratio (SNR) is the av-
erage receive power at any base station antenna, divided by the noise variance.

MSE results for SGD are shown in Figure 2 for three different step-size
values. As can be observed, step-size plays a critical role in the convergence
speed of the algorithm. High step-size values provide faster convergence but
high steady-state MSE, and low values may not even enter into the steady-state
within the array. Given a certain M and K, it is possible to find an optimum
step-size which provides the lowest MSE.
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Figure 2: MSE vs antenna index for three different step-size values in SGD.

We now turn our attention towards Figures 3 and 4 which compare RLS,
SGD, and ASGD. When the SGD sequence is averaged, MSE and BER curves
get closer for different step-sizes, making the algorithm robust against non-
optimal step-size selection. The selection of n0 also has an impact, but less
compared to non-optimal step-size in SGD.

As shown in Figure 4, RLS meets ZF (2) performance, as it is optimal for
a Gaussian noise source [9]. For large M , performance of RLS and ASGD
converge due to ASGD’s asymptotically optimal rate property.

4.2 Strengths of daisy-chain topology

Ostensibly, it may come across as if our daisy-chain solution incurs a latency
penalty. This is, however, not the case as the detection process over time and/or
frequency can be pipelined. While cluster 2 is processing data at subcarrier,
say, f0, cluster 1 can process data at subcarrier f0 + 1. In the next iteration,
cluster 2 processes data at subcarrier f0 + 1, etc. See Figure 5 for a graphical
visualization of the pipelining procedure.
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Figure 3: MSE vs antenna index for RLS, SGD and ASGD for different
step-size values. Left: M=256. n0=150 and 75 for µ=0.02 and 0.04
respectively. Right: M=2048. n0=1000 and 400 for µ=0.004 and 0.008
respectively. K=16 and SNR=12dB in all cases.
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Further, our daisy-chain solution allows for a power save since if a cluster
n regards its incoming estimate to be sufficiently good, then it can do one out
of at least two things, 1) set ŝn+1 = ŝn, or 2) send the incoming estimate ŝn
to the baseband processing node, thereby terminating the detection procedure.
The former has the advantage over the latter that only the last cluster needs to
be connected to the baseband processing unit. Further, an indication whether
or not the incoming estimate is of sufficiently good quality can be obtained,
e.g. for RLS, by the value εn in (3).

Finally, our topology is flexible so that additional antenna clusters can be
added in a plug-and-play fashion. For example, in order to double the number of
antennas, it is merely required to disconnect the cable between the last cluster
and the baseband processing unit, connect that very cable to the last cluster of
the added antenna array, and connect the two arrays. This will solely impact
software scheduling at the baseband processing unit, but not the hardware as
would have been the case for the centralized topology in Figure 1a.

4.3 Interconnection data-rate

In order to estimate the expected data-rate in the proposed architecture, we can
assume an OFDM-based frame structure based on slots. Each slot is made by
Nslot consecutive OFDM symbols with duration Tofdm. Each symbol contains
Nu subcarriers (an RE in OFDM) to carry user data. We can determine the
average input/output data rate in the uplink for each of the clusters during a
certain slot for SGD as follows

R̄SGD =
K · ws ·Nu ·NUL

Tslot
= α · K · ws ·Nu

Tofdm
, (8)

where Tslot is the slot duration, NUL is the number of OFDM symbols allocated
for UL data in a slot, ws is the number of bits used to represent each element
in the sequence of estimates (ŝn) and α = NUL

Tslot
represents the fraction of time

spent in UL within the slot, so 0 ≤ α ≤ 1. In Figure 1b, R̄SGD corresponds to
R.

This analysis does not take into account the total amount of data that is
generated (which depends on M) and needs to move through the structure,
but only the data that moves between clusters (which depends on K) because
it is the one that imposes physical constraints in the inter-cluster connections
and may limit the scalability.

For ASGD, the averaged data rate is expected to be twice the one in SGD,
because for each sequence element, two previous elements, x̂n and ŝn−1, are
needed as can be observed in (7), and therefore

R̄ASGD = 2 · R̄SGD. (9)
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For RLS, the data-rate has two components, one due to the preprocessing
stage and the other one due to each RE. During the first stage, matrix Γ is
passed from cluster to cluster. During the RE processing stage, data rate is
the same as in SGD. The averaged data rate for RLS is calculated as

R̄RLS =
NCB ·K2 · wγ

Tslot
+
K · ws ·Nu ·NUL

Tslot

=
Nu ·Nslot

SCB
· K2 · wγ
Tofdm ·Nslot

+ α · K · ws ·Nu

Tofdm

= α · K · ws ·Nu

Tofdm
·
(

1 +
β

α
· K
SCB

)
,

(10)

where NCB is the number of CBs per slot, SCB the number of REs in each CB,
wγ the number of bits to represent each element in Γ and β =

wγ
ws

. From (10)

it can be seen that R̄RLS > R̄SGD.
We can compare our proposed solution with another cluster-based decen-

tralized architecture, but which relies on a central node to collect partial results,
performing a low complexity operation, such as averaging, and broadcasting
back the result to the clusters according to an iterative algorithm. This star
topology has been proposed in [6]. In this case, the central node will have C
bi-directional links with an average aggregated data rate per direction of

R̄star = C · niter · R̄SGD, (11)

where niter is the number of iterations for the selected detection algorithm.
From (11) we can observe that typically R̄star � R̄SGD.

In case of a fully centralized architecture as the one in [5], the interconnec-
tion data-rate depends linearly on M as follows

R̄central =
M ·Nu ·NUL · wsc

Tslot
= α · M ·Nu · wsc

Tofdm
, (12)

where wsc is the number of bits representing a sample of the received signal y.
It is seen that (12) cannot scale easily. R̄central corresponds to R in Figure 1a.
Going from (12) to (8), roughly reduces the data-rate by a factor M

K (typically
≥ 10 in Massive MIMO).

Table 1 shows date-rates for four scenarios. We assume the following pa-
rameters: Tslot = 500µs, ws = 16, wsc = 24, Nu = 1200, Nslot = 7, NUL = 6,
α = 6/7, β = 3/2, SCB = 400 and niter = 3. We can observe that the analyzed
topology and algorithms achieve significantly lower interconnection data-rate
than other architectures [5] [6], enabling future scalability. As observed, for
very-large arrays, RLS and ASGD require similar data-rates and have similar
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Table 1: Data Rate comparison for different topologies / algorithms

M 128 256 512 1024

K 16 32 64 128

C 8 8 16 16

B 16 32 32 64

R̄SGD 439MB/s 879MB/s 1.7GB/s 3.4GB/s

R̄RLS 470MB/s 1.0GB/s 2.2GB/s 5.3GB/s

R̄ASGD 879MB/s 1.7GB/s 3.4GB/s 6.8GB/s

R̄star [6] 10.3GB/s 10.3GB/s 20.6GB/s 20.6GB/s

R̄central [5] 5.1GB/s 10.2GB/s 20.4GB/s 40.8GB/s

performance, but RLS requires a pre-processing stage and matrix manipulation
that ASGD does not.

5 Conclusions

In this article we have introduced a base station uplink architecture for Massive
MIMO and analyzed the main implementation bottleneck, the interconnection
data-rate. We have proposed three algorithms and a fully decentralized topol-
ogy for uplink detection, which alleviate this limitation. One of the algorithms
(RLS) achieves approximate zero-forcing performance, while another (ASGD)
is an approximation which converges to the former one for very large arrays.
All of them are of low-complexity and do not require matrix inversion. An es-
timate of data-rate is also presented and compared with other architectures for
different array-sizes and configurations, showing the benefits of the proposed
solution.
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Decentralized Massive MIMO Systems:

Is There Anything to be Discussed?

Algorithms for Massive MIMO uplink detection are typically based on a

centralized approach, by which baseband data from all antenna modules

need to be routed to a central node for further processing. In the case of

Massive MIMO, where hundreds or thousands of antennas are expected

in the base-station, such architecture requires high interconnection band-

width between antennas and the central node. Recently, decentralized

architectures have been proposed to maintain low interconnection band-

width, where channel-state-information (CSI) is obtained locally in each

antenna node and not shared. Further, Massive MIMO performance is

sensitive to CSI quality. However, in the literature, ideal CSI is typically

assumed in decentralized systems, which is not only far from reality but

also limits the generality of the analysis.

This paper proposes a decentralized (a term that will be defined in the

main body of the paper) architecture with the following main features: (i)

the channel matrix is not made available at any single node, (ii) there is

no inter-communication among antennas, (iii) the architecture used dur-

ing the payload data phase, is reused to provide a certain statistic to a

processing node, (iv) A non-standard channel estimation problem based

on said statistic arises, (v) a matrix inversion is needed (in case of zero-

forcing) at said processing node.

A hefty share of the paper is devoted to (iv).
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Jesús Rodŕıguez Sánchez, Juan Vidal Alegŕıa and Fredrik Rusek,
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1 Introduction

Massive MIMO [1] is one of the most relevant technologies in contemporary
wireless communications. High spectral efficiency and improved link reliability,
achieved by using hundreds or thousands of antenna elements, are among the
technology’s key features, making it a key enabler to exploit spatial diversity
far beyond traditional MIMO systems. Unprecedented spatial resolution is
achieved, while simultaneously providing service to multiple users within the
same time-frequency resource.

Despite all advantages of Massive MIMO, there are challenges from an im-
plementation point of view. Uplink detection algorithms, like zero-forcing (ZF),
typically rely on a centralized architecture, where baseband samples and chan-
nel state information (CSI) are collected in a central processing node for further
matrix inversion and detection. Physical connections are needed between the
antenna modules and the central node to carry the required data. This ap-
proach, that is perfectly valid for a relatively low number of antennas, becomes
problematic when the number of antennas increases, with the interconnection
bandwidth as the main bottleneck in the system.

Initial Massive MIMO prototypes [2] [3] were the first to face this prob-
lem and pragmatic solutions were proposed. Later, efforts have been made to
study the problem more rigorously, see for example [4] and [5]. In [5], a par-
tial decentralized (PD) solution is put forth, which achieves exactly the same
estimates (and therefore performance) as linear detectors, such as maximum
ratio combing (MRC), ZF and L-MMSE. There are more recent activities in
this area in [6] and [7], where antennas are connected by direct links forming a
daisy-chain. It has been shown that such a structure is able to achieve approx-
imate ZF performance under IID channel conditions and perfect CSI with very
low inter-connection requirements and fully decentralized detection/precoding
processing. In order to achieve this, obtaining CSI is required prior to detec-
tion. However, motivated by scalability reasons, decentralized architectures do
not allow all baseband samples to be collected at a single point, which limits
one’s channel estimation capability.

It has been understood that the full benefits of massive MIMO, such as high
spectrum efficiency, heavily rely on accurate CSI. Poor channel estimates can-
not reach sufficiently good inter-user interference (IUI) cancellation, a problem
that amplifies as the number of users grows. Unfortunately, channel estima-
tion is not typically covered in the decentralized debate and ideal CSI is always
assumed to be available.

In this work we argue that much of the centralized vs. non-centralized
discussion is unnecessary and that non-perfect CSI has to be assumed for the
problem not to be trivial. In short, our arguments are as follows: The non-
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centralized discussion seems to be revolving around the training phase, more
specifically around avoiding the collection of full CSI at any given node. How-
ever, there is also a payload data phase, and during this phase it can be assumed
that each antenna contributes, at the very minimum, with a scalar value to a
central processing unit (responsible for, e.g., error control decoding, HARQ,
etc.). In order to maintain low interconnection bandwidth, these antenna con-
tributions are likely to be summed up before being formally presented to the
central processing unit. That said, we observe that there is an easy way to
transfer a statistic that is sufficient for demodulation purposes, using the same
circuitry used during the payload data phase. Such a method can, according
to a separate discussion in the next section, be classified as non-centralized
since it 1) does not store the full CSI at any given node, and 2) it does not ex-
pand the interconnections between antennas and processing unit beyond what
is needed for payload data. At the central processing node, channel estimation
and channel inversion remains, but we argue that these are fairly minor tasks
compared to other baseband tasks needed at such a node. One of our main
messages we try to convey is that, in our view, meeting 2) is sufficient for a
scheme to be classified as non-centralized (roughly speaking, 1) is a natural
consequence of 2)). Further, if perfect CSI is assumed, then the method to be
presented is optimal, so not much discussion is needed.

The remainder of the paper is organized as follows. A system model and a
review of linear detection methods in Massive MIMO is presented in section 2.
In 3 we discuss centralized and decentralized systems and motivate the scope
of our article. Our method and a collection of practical channel estimators are
presented in 4. Results are presented in 5. Finally, section 6 summarizes our
conclusions.

Notation: In this paper, lowercase, bold lowercase and upper bold face
letters stand for scalars, column vectors and matrices, respectively. The opera-
tions (.)T , (.)∗ and (.)H denote transpose, conjugate and conjugate transpose,
respectively. 0F̃1 is the hypergeometrical function of a matrix argument, de-
fined as in [8], Γ̃m denotes the complex multivariate gamma function. |A|,
tr(A) and eig(A) represent the determinant, trace, and eigenvalues of a matrix
A, respectively. C N (0,A) denotes circularly-symmetric multivariate complex-
valued Gaussian probability density distribution with covariance A.

2 System model

For uplink detection, we consider a scenario with K single-antenna users trans-
mitting to a base-station (BS) with an antenna array with M elements through
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a narrow-band channel with IID Rayleigh fading

y = Hx + n, (1)

where y is the M×1 received vector, x is the transmitted user data vector (K×
1), with uniform unitary power distribution across users such that E{xxH} =
I, H = [h1 h2 · · · hM ]T is the channel matrix (M × K) whose rows follows
C N (0,C), and n thermal noise (M×1) at the BS with distribution C N (0, N0I).

2.1 Linear processing in massive MIMO

We consider only linear detectors, because they exhibit close to optimal per-
formance in Massive MIMO while having low complexity. A linear equalizer
provides an estimate of x, x̂, by applying an equalizer filter matrix W to the
vector observation, y, as follows

x̂ = Wy, (2)

where W = [w1 w2 · · · wK ]T is a K ×M complex matrix.
We limit our exposition to maximum-ratio combining (MRC) and zero-

forcing (ZF), with the remark that our analysis would remain essentially unal-
tered for other choices, whose equalizer matrices are defined as

W =

{
HH for MRC

G−1HH for ZF.
(3)

where G = HHH is the Gramian matrix. It is important to note that matrix
W is valid during a Coherence Block (CB) of the channel, representing a time-
frequency region where the channel can be considered approximately constant.

MRC represents ideal decentralized processing, allowing each antenna node
to obtain an equalization vector from local CSI. ZF, on the other hand, os-
tensibly requires the system to collect all CSI from all antennas in a central
processing node, for further matrix inversion. It is well known that ZF pro-
vides superior performance over MRC due to perfect inter-user interference
cancellation capabilities at the cost of increased inter-connection bandwidth
and processing requirements. However, as we will show, the interconnection
bandwidth needs in fact not to increase, leaving the amplified processing as
the only issue. If we take all other tasks that a central processing node needs
to carry out into account, we argue that the need of a matrix inversion per CB is
not the bottleneck of a centralized architecture. Thus, it is the interconnection
bandwidth that needs consideration.
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3 Decentralized vs centralized: current debate

Linear processing in Massive MIMO was presented in the previous section to-
gether with two detection methods. These two schemes can be implemented
in centralized or decentralized systems. In centralized architectures, the cen-
tral node collects CSI from all antenna elements, represented by the matrix
H, which allows for optimal construction of the matrix W. Apart from that,
the central unit’s tasks also include, e.g., demodulation and decoding. Process-
ing at the antenna side comprises RF, ADC and optionally OFDM processing
(FFT). The amount of interconnection data-rate between antennas and the cen-
tral node depends on M , which is an important limitation in Massive MIMO
systems where a large number of antenna elements is expected.

There is nowadays a trend towards decentralized systems in order to allow
scalability of the system. Decentralized systems perform antenna processing
locally, including CSI acquisition and partial detection. One of the key char-
acteristics of this type of systems is that full CSI is not available at any point.
The central node carries out remaining parts, such as per-user processing (e.g.,
symbol de-mapping and decoding).

In both types of architectures, antenna elements need to be connected to
the central node. We acknowledge that the definition of a decentralized system
is not an easy one to make, but here we define the term as a system where the
volume of the data provided during the training phase to the processing node
is independent of M. Our definition allows for the Gramian to be transfered,
since it is of dimension K ×K.

We now, briefly, interlude the discussion by considering what tasks are
needed during the payload data phase. Since matched filtering is information
lossless, we can, without any loss of generality, assume that such operation
is performed. This implies that, for each channel observation, each antenna
should multiply its observed signal with aK×1 vector, and that theM resulting
K × 1 vectors should be summed and passed to the central node by specific
hardware that has to be be in place.

Let us now return to a decentralized system. For K single-antenna users,
there are K slots per CB where the payload data phase is inactive1. This
releases K usages of the hardware mentioned just above. Earlier it was also
mentioned that passage of the K×K Gramian to the central node is within the
delineations of a decentralized architecture. Conveniently, such transfer can be
done via K transmissions of K × 1 vectors. Since the Gramian can be written
as a sum over the M outer products of the antennas’ channel vectors, we can
conclude that the hardware used in the payload data phase is, 1) sufficient

1 Thesis: In the original paper it was written ”in inactive”, while the correct words are ”is
inactive”, referring to the resources needed for orthogonal pilots during channel estimation
in training phase.
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to transfer the Gramian, and 2) unoccupied for a duration sufficient for the
transmission of the Gramian.

Under assumption that matched filtering is applied at each antenna, it re-
mains for the central node during the payload data phase to invert the Gramian,
and apply the inverse to its K × 1 input vectors. We claim that this is of non-
prohibitive complexity when taking its other tasks into account.

If we further, assume an absolute absence of noise, then the above described
method would be optimal. In that case, we do not see much need for any further
discussion on decentralized architecture design. Our sentiment is, thus, that
non-ideal CSI must be assumed. Consequently, we must study the channel
estimation problem that the central node faces, namely, that of the estimation
of a Gramian matrix from a noisy version. We study this in some detail in the
next section, with outcome that it poses no noteworthy challenges.

4 Channel estimation

In this section we discuss channel estimation of Gramian matrices. However, we
commence by first going through all steps prior to the central node facing said
estimation problem. An initial channel estimation is performed per-antenna
basis, based on pilots sent by users. With a received signal y given by (1),
the goal for each antenna is to obtain an estimate of its corresponding part
of H. If users send orthogonal pilots, we can define the K × K matrix P =
[p1,p2, ...,pK ], where pk is defined as a K × 1 vector of the following form

pk(i) ,

{
pk if k = i

0 if k 6= i,

where pk is a complex number known by the BS which represents the pilot
from the k-th user. Based on this definition, the M ×K BS observation matrix
Z can be described by

Z = HP + N, (4)

where Z = [z1, z2, ..., zM ]T , zm being the K × 1 observation vector at antenna
m. N = [n1,n2, ...,nM ]T represents the noise term as a M × K matrix and
nm the K × 1 noise vector related to the same antenna. For antenna m, (4)
becomes

zm = Phm + nm,

and channel estimation is performed locally based on the observation vector
zm. The Least Squares (LS) estimate of H is

ĤLS = ZP−1, (5)
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and in the simple case P = I, then ĤLS = Z, or per antenna ĥm,LS = zm.

The second step in channel estimation is to obtain R = ĜLS, where ĜLS =
ĤH

LSĤLS. To do that, each antenna computes the partial term Rm = ĥ∗mĥTm,

a K ×K matrix, and therefore R =
∑M
m=1 Rm. This addition can be carried

out by exploiting the existing antennas’ connections needed for data detection.
In next subsections we obtain the PDF of R and G, and the results will

be used to formulate estimators of G, which outperform the one-step channel
estimation based solely on the decentralized LS channel estimate derived from
(5).

4.1 Derivation of conditional PDFs

If Z is an M ×K complex matrix whose rows follow a multivariate normal dis-
tribution with covariance matrix Σ and mean E(Z) = H, then the conditional
distribution of R = ZHZ is noncentral Wishart and is defined as [8]

p(R|G) = e−tr(Σ−1G)
0F̃1(M ; Σ−1GΣ−1R)

× 1

Γ̃K(M)|Σ|M
e−tr(Σ−1R)|R|M−K ,

(6)

and noted as R|G ∼ WK(M,Σ,Σ−1G). The matrix Σ−1G is referred to as
noncentrality matrix in most literature.

The marginal PDF for matrix G becomes a central Wishart and its expres-
sion is as follows

p(G) =
1

Γ̃K(M)|C|M
e−tr(C−1G)|G|M−K , (7)

and noted as G ∼WK(M,C). The marginal PDF of R can be obtained as

p(R) =
1

Γ̃K(M)|Σ|M
e−tr(Σ−1R)|R|M−K

× 1

Γ̃K(M)|C|M

∫
e−tr[(Σ

−1+C−1)G]|G|M−K

× 0F̃1(M ; Σ−1GΣ−1R)dG.

Introducing a matrix A such that A−1Σ−1 = Σ−1 + C−1, which translates
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to A = (I + C−1Σ)−1, leads to

p(R) =
|ΣA|M

Γ̃K(M)|Σ|M |C|M
e−tr[Σ

−1R(I−A)]|R|M−K

×
∫

1

Γ̃K(M)|ΣA|M
e−tr(Σ−1RA)e−tr(A−1Σ−1G)

× |G|M−K0F̃1(M ; Σ−1RΣ−1G)dG,

(8)

where we used the fact that eig(PXPY) = eig(PYPX) given any complex
matrix P, being X and Y two Hermitian complex matrices, and therefore

0F̃1(M ; PXPY) = 0F̃1(M ; PYPX). In our case P = Σ−1, X = G and
Y = R.

We can manipulate |ΣA|M
|Σ|M |C|M as follows

|ΣA|M

|Σ|M |C|M
= |A|M |C−1|M

= |A(A−1 − I)Σ−1|M

= |(I−A)Σ−1|M ,

(9)

where the equality C−1 = (A−1 − I)Σ−1 has been used.
By comparing (6) and (8) it is possible to observe that the second part of

(8) is actually the integral of a noncentral Wishart PDF and therefore its value
must be 1. The final expression for p(R) is a central Wishart as shown below

p(R) =
1

Γ̃K(M)|Σ(I−A)−1|M
e−tr[(I−A)Σ−1R]|R|M−K , (10)

which we denote as R ∼WK(M,Σ(I−A)−1). Additionally, using Σ(I−A)−1 =
C + Σ then R ∼WK(M,C + Σ).

Finally, the posterior PDF can be obtained by using Bayes’ theorem and
the results from (6), (7), (9) and (10) as follows

p(G|R) =
p(R|G)p(G)

p(R)

= e−tr(Σ−1RA)
0F̃1(M ; Σ−1RΣ−1G)

× 1

Γ̃K(M)|ΣA|M
e−tr(A−1Σ−1G)|G|M−K .

(11)

PDF in equation (11), assuming IID noise samples, is a noncentral Wishart,
G|R ∼WK(M,ΣA,A−1Σ−1ARA).

Once we have presented the PDFs involved in this study we can introduce
the estimators.
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4.2 Maximum Likelihood (ML)

Maximum Likelihood (ML) estimate of G is defined as the matrix ĜML, which
maximizes the likelihood as follows

ĜML = arg max
G
{p(R|G)}

= arg max
G
{−tr(Σ−1G)

+ log[0F̃1(M ; Σ−1GΣ−1R)]}.

(12)

If R has an eigenvalue decomposition R = UΛUH , then we look for so-
lutions whose form is G = UΩUH , where Ω and Λ are diagonal matrices
containing the eigenvalues of G and R respectively. In the particular case that
all pilots have equal power, i.e., |pk| = |p|,∀k, then without loosing generality
we can set |p| = 1, leading to Σ = N0I, and (12) can be expressed as

ĜML = arg max
Ω

{
− 1

N0
tr(Ω) + log

[
0F̃1(M ;

1

N2
0

ΩΛ)

]}
.

After derivation of the argument of the previous expression, the optimality
condition can be expressed as

1

N0
0F̃1(M ;

1

N2
0

Ω∗Λ)I =
∂0F̃1(M ; 1

N2
0
ΩΛ)

∂Ω
|Ω=Ω∗ ,

where ĜML = UΩ∗UH , and from where we do not continue in an analytical
form.

4.3 Maximum A Posteriori (MAP)

The Maximum A Posteriori (MAP) estimate is defined as

ĜMAP = arg max
G
{p(G|R)}

= arg max
G

log
[

0F̃1(M ; Σ−1RΣ−1G)
]

− tr(A−1Σ−1G) + (M −K) log |G|.

If Σ = N0I and C = hpowI then A−1Σ−1 =
(

1
N0

+ 1
hpow

)
I and there-

fore the MAP estimate can be expressed as follows, where µ1, .., µK are the
eigenvalues of G,

ĜMAP = arg max
µ1,µ2,..,µK

log

[
0F̃1(M ;

1

N2
0

ΩΛ)

]

−
(

1

N0
+

1

hpow

) K∑

i=1

µi + (M −K)

K∑

i=1

log(µi).
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4.4 Minimum Mean Square Error (MMSE)

The Minimum Mean Square Error (MMSE) estimate is defined as the expec-
tation over the posterior probability. Taking into account that G|R is a non-
central Wishart, that is G|R ∼WK(M,ΣA,A−1Σ−1ARA), the expectation
is

ĜMMSE = E(G|R) = MΣA + ARA. (13)

If C = hpowI and Σ = N0I then (13) becomes

ĜMMSE =
hpowN0

hpow +N0
MI +

(
hpow

hpow +N0

)2

R. (14)

When hpow � N0 then ĜMMSE ≈ R. On the other hand, when N0 � hpow

then ĜMMSE ≈ hpowMI, which does not depend on R, due to R conveys
almost no information about G in that case.

5 Equalizer formulation and results

The ZF equalization matrix is made up of two parts (3). The first part (or

MRC part), ĤH , that is implemented in a decentralized form by the antenna

modules, and the second part, Ĝ−1, that is performed in a central processing
unit. Let’s define two equalizers and compare their performance. ZF based on
MMSE channel estimation (14) and LS channel estimation (5), is defined as,
respectively,

WMMSE = Ĝ−1
MMSEĤH

LS, WLS = Ĝ−1
LS ĤH

LS.

5.1 Channel estimation

In this subsection we compare both channel estimation methods based on the
relative error defined as follows

εQ , E

{
‖ĜQ −G‖2F
‖G‖2F

}
,

where Q ∈ {MMSE,LS}. In scenarios with high SNR, that is hpow � N0,

(14) simplifies to ĜMMSE ' R, so εMMSE ' εLS. At low SNR levels, that is

N0 � hpow, ĜMMSE ≈ hpowMI and εMMSE saturates unlike εLS, that grows
with N0. Figure 1 shows this behavior in simulation2.

2 Thesis: In the original paper, the figure included reference to ZF, while the correct method
is LS. Also in the caption a reference to W was made, when this is not required in channel
estimation, and therefore removed in the present thesis.
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Figure 1: Channel estimation error vs. noise level for both methods,
MMSE and LS. M=100. K=16. ε(dB) = 10 log10(ε).

5.2 Sum-rate

The instantaneous SINR for user k is given by

SINRk =
|wH

k hk|2∑K
i=1,i6=k |wH

k hi|2 +N0‖wk‖2
,

and the ergodic sum-rate as follows

R = E

{
K∑

k=1

log2 (1 + SINRk)

}
. (15)

Figure 2 shows the simulation results in terms of ergodic sum-rate for ZF
with MMSE and LS channel estimators versus K

M . It is observed same perfor-
mance for relative low K. MMSE outperforms the LS counterpart as K grows
which shows greater robustness against inter-user interference.

6 Conclusions

We claim that the Gramian can be collected in a processing node by re-using ex-
isting connections without increasing inter-connection data-rate requirements,
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Figure 2: Total sum-rate for ZF detector with both channel estimation
methods, LS and MMSE, according to (15) versus K

M for M=100. SNR
at base-station receiver antenna. SNR = hpow/N0.

and that this is sufficiently decentralized for practical purposes. In this pa-
per we have discussed in detail the ensuing channel estimation in decentralized
Massive MIMO systems, where channel information is distributed and not fully
available in one single point. We proposed a channel estimation based on the
Gramian matrix for further ZF detection which outperforms direct methods
based uniquely on per antenna processing.
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Processing Exploring Daisy-chain

Architecture and Recursive Algorithms

Algorithms for Massive MIMO uplink detection and downlink precoding

typically rely on a centralized approach, by which baseband data from all

antenna modules are routed to a central node in order to be processed.

In the case of Massive MIMO, where hundreds or thousands of anten-

nas are expected in the base-station, said routing becomes a bottleneck

since interconnection throughput is limited. This paper presents a fully

decentralized architecture and an algorithm for Massive MIMO uplink

detection and downlink precoding based on the Coordinate Descent (CD)

method, which does not require a central node for these tasks. Through

a recursive approach and very low complexity operations, the proposed

algorithm provides a good trade-off between performance, interconnection

throughput and latency. Further, our proposed solution achieves signifi-

cantly lower interconnection data-rate than other architectures, enabling

future scalability.
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1 Introduction

Massive MIMO is one of the most relevant technologies in wireless commu-
nications [3, 4]. Among the key features of this technology are high spectral
efficiency and improved link reliability, making it a key enabler for 5G. Massive
MIMO exploits spatial diversity far beyond traditional MIMO systems by em-
ploying a large scale antenna array in the base-station (BS) with hundreds or
possibly even thousands of elements. This large number of elements allows for
unprecedented spatial resolution and high spectral efficiency, while providing
simultaneous service to several users within the same time-frequency resource.

Despite all the advantages of Massive MIMO, there are still challenges from
an implementation point of view. One of the most critical ones is sending
data from the BS antennas to the central processing unit (CPU) and vice-
versa, and the high interconnection throughput it requires. In current set-ups,
uplink detection algorithms based on zero-forcing (ZF) equalizer typically rely
on a centralized architecture, shown in Fig. 1a, where baseband samples are
collected in the CPU for obtaining channel state information (CSI) and further
matrix inversion, which allows data estimation and further detection. The same
argument is valid for downlink precoding. In order to avoid dedicated links
between antenna modules and CPU, a shared bus is typically used to exchange
this data. In case of LuMaMi testbed [5, 6], the shared bus was reported to
support an aggregated data-rate of 384Gps, which exceed base-station internal
interface standards such as eCPRI [7]. Additionally, the pin-count of integrated
circuits (IC) limits the number of links the IC can handle simultaneously and
thus the throughput. Due to this high data-rate, the power appears as another
potential limitation. This combination of factors are considered as the main
bottleneck in the system and a clear limitation for array scalability. In this
paper we will address the inter-connection throughput limitation by decreasing
its value per link and consequently reducing the impact of the other two (pin-
count and power).

The inter-connection bottleneck has been noted in several previous stud-
ies on different architectures for Massive MIMO BSs [5, 8–13]. As a solution,
most of these studies recommend moving to a decentralized approach where
uplink estimation and downlink precoding can be performed locally in process-
ing nodes close to the antennas (final detection can still be done in a CPU).
However, to achieve that, CSI still needs to be collected in the CPU, where
matrix inversion is performed [5,8, 9], imposing an overhead in data shuffling.

The CSI problem is addressed in [11], where CSI is obtained and used only
locally (not shared) for precoding and estimation, with performance close to
MMSE. However, this architecture relies on the CPU for exchanging a certain
amount of consensus information between the nodes, and this exchange nega-
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(a) Centralized architecture (b) Decentralized architecture

Figure 1: Comparison between base station receiver chain in central-
ized and fully decentralized architectures for Massive MIMO uplink. An-
tenna array with M elements is divided into RPUs, each containing a
set of antennas. (a): Centralized architecture. Each RPU has one link
to transfer baseband samples to the CPU, where the rest of processing
tasks are done. (b): Fully decentralized architecture for detection. Each
RPU performs RF, ADC, OFDM, channel estimation (CHEST) and data
estimation (EST) locally. Detection (DET) and decoding (DEC) is cen-
tralized. RPUs are connected to each other by uni-directional links.
Only one RPU has a direct connection with the CPU. Proposed algo-
rithms are executed in EST blocks in parallel mode. The points where
the interconnection data-rate is estimated are marked by circles and the
value is denoted by Rc and Rd for centralized and decentralized respec-
tively. The goal is to have Rd � Rc without compromising performance
and latency.

tively impacts the processing latency and throughput [12], and therefore limits
the scalability of this solution. In order to solve these problems, feedforward
architectures for detection [13] and precoding [12] have been proposed recently,
where the authors present a partially decentralized (PD) architecture for detec-
tion and precoding, which achieves the same results as linear methods (MRC,
ZF, L-MMSE), and therefore becomes optimal when M is large enough. Partial
Gramian matrices from antennas are added up before arriving to a processing
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unit where the Gramian is inverted.
In [8], a flat-tree structure with daisy-chained nodes was presented. The

authors propose conjugate beamforming as a fully decentralized method with
the corresponding penalty in system capacity. In the same work it is also
pointed out that by following this topology the latency was being severely
compromised. The more detailed analysis on latency is thus needed to evaluate
the algorithm.

In this article we propose a fully decentralized architecture and a recursive
algorithm for Massive MIMO detection and precoding, which is able to achieve
very low inter-connection data-rate without compromising latency. The pro-
posed algorithm is pipelined so that it runs in a distributed way at the antenna
processing units, providing local vectors for estimation/detection that approx-
imate to the zero-forcing solution. We make use of the Coordinate Descent
(CD) algorithm, which is detailed in Section 4, to compute these vectors.

There is previous work based on CD, such as [14]. The main difference is
that the coordinate update in [14] is done per user basis, i.e., a different user
index is updated every iteration, while in our proposed method the coordinate
update is done per antenna basis, updating all users at once.

We extend the work presented in [1] and [2], which are also based on decen-
tralized daisy-chain architecture. The novelties of the present work compared
to these two is as follows:

• A common strategy for downlink precoding and uplink equalization is
presented, in contrast to [1] and [2], which only covers uplink and down-
link separately.

• The algorithm has been modified that serial processing is only needed
when new CSIs are estimated. The corresponding filtering phase can be
conducted in parallel to reduce latency, in contrast to [1], where serial
processing is always needed, which increases the latency.

• A recommended step-size is provided, in contrast to [1].

• An analytical expression for resulting SINR and a complete performance
analysis is presented in this paper.

• Complexity analysis from a general point of view (not attached to any
specific implementation) is provided, which includes: inter-connection
data-rate, memory size and latency. In [1], only inter-connection data-
rates are analyzed.

Decentralized architectures, as shown in Fig. 1b, have several advantages
compared to the centralized counterpart, as shown in Fig. 1a. For example,
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they overcome bottlenecks by finding a more equal distribution of the system
requirements among the processing nodes of the system. Apart from this, data
localization is a key characteristic of decentralized architectures. In uplink,
the architecture allows data to be consumed as close as possible to where it is
generated, minimizing the amount to transfer, and therefore saving throughput
and energy. To achieve data localization, processing nodes need to be located
near the antenna, where they perform processing tasks locally such as channel
and data estimation. Local CSI is estimated and stored locally in each, without
any need to share it with any other nodes in the system. This approach has
been suggested previously in [8–13], and we take advantage of it in the proposed
solution.

The remainder of the paper is organized as follows. In Section 2 the prelim-
inaries are presented, comprising the system model for uplink and downlink,
together with an introduction to linear processing and the ZF method. Sec-
tion 3 is dedicated to a comparison between the centralized and decentralized
architectures and reasoning why the latter one is needed, together with an
overview of the daisy-chain topology. The proposed algorithm, based on CD,
is presented in Section 4. In 5 closed-form expressions of the SIR and SINR
are provided for this algorithm, together with interconnection data-rates, la-
tency and memory requirements of the proposed solution. Finally, Section 6
summarizes the conclusions of this publication.

Notation: In this paper, lowercase, bold lowercase and upper bold face let-
ters stand for scalar, column vector and matrix, respectively. The operations
(.)T , (.)∗ and (.)H denote transpose, conjugate and conjugate transpose respec-
tively. The i-th element of vector h is denoted as hi. A vector w and a matrix
A related to the mth antenna is denoted by wm and Am, respectively. Ai,j
denotes element (i, j) of A. Am(i, j) denotes element (i, j) of the m-th matrix
in the sequence {Am}. The kth coordinate vector in RK is defined as ek. Kro-
necker delta is represented as δij . Probability density function and cumulative
density function are denoted respectively as fX(x) and FX(x). Computational
complexity is measured in terms of the number of complex-valued multiplica-
tions.

2 Background

2.1 System model

For uplink, we consider a scenario with K single-antenna users transmitting
to a BS with an antenna array with M elements. Assuming time-frequency-
based channel access, a Resource Element (RE) represents a unit in the time-
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frequency grid (also named subcarrier in OFDM) where the channel is expected
to be approximately flat. Under this scenario, the input-output relation is

yu = Hxu + nu, (1)

where yu is the M × 1 received vector, xu is the transmitted user data vector
(K × 1), H = [h1 h2 · · · hM ]T is the channel matrix (M × K) and nu an
M × 1 vector of white, zero-mean complex Gaussian noise. The entries of
H are i.i.d. zero-mean circularly-symmetric complex-gaussian entries, with
rows hi ∼ C N (0, I) for all i. The noise covariance at the receiver is N0I.
The average transmitted power is assumed to be equal across all users and we
assume, without any loss of generality, a unit transmit power. SNR is defined
as 1

N0
and represents the average ”transmit” signal-to-noise ratio.

For downlink, if Time Division Duplex (TDD) is assumed, then according
to channel reciprocity principle and by employing reciprocity calibration tech-
niques [15], it is assumed that within the same coherence time, the channel
matrix is the same as in the uplink case, and the system model follows

x̃d = HTyd + nd, (2)

for a RE, where yd is the M × 1 transmitted vector, x̃d is the received data
vector by users (K × 1), and nd samples of noise (K × 1).

Once the system model is established, we introduce the linear processing
fundamentals used for downlink precoding and uplink estimation.

2.2 Linear processing

In this article we focus on linear estimators and precoders, because they show
close to optimal performance in Massive MIMO regime while requiring low
complexity.

A linear estimator provides x̂u, which is an estimate of xu, by applying an
equalizer filter matrix W to the vector of observations, yu:

x̂u = WHyu

=

M∑

m=1

w∗my
u
m,

(3)

where W = [w1 w2 · · · wM ]T is an M ×K matrix, wm is a K × 1 filter vector
related to antenna m and yu

m the observation at antenna m. As it can be
seen the estimate x̂u is computed by the sum of M partial products. If wm

is obtained and stored locally in the mth antenna module, then the partial
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products can be computed with local data only, reducing the amount of data
to exchange between nodes. From implementation point of view, the linear
estimator relies on the accumulation of all partial results according to (3),
which can be done centrally (fusion node) or distributed.

For downlink, the data vector intended to the users, xd, is precoded with
matrix P as

yd = Pxd, (4)

where P = [p1 p2 · · · pM ]T is an M × K matrix, which fulfills a power con-
straint ‖P‖2F ≤ P , such that P is the maximum transmitted power. Particu-
larly for antenna m we have

yd
m = pTmxd. (5)

Similarly to uplink, if pm is obtained and stored locally at the mth antenna
module, then yd

m can be computed only with local data after xd is broadcasted
to all antennas.

The zero-forcing (ZF) equalizer, which is one type of linear estimator, con-
stitutes a reference in our analysis. It is defined for uplink estimation as

WH
ZF = (HHH)−1HH , (6)

and PZF = W∗
ZF for the downlink precoding.

ZF is able to completely cancel inter-user interference (IUI) and reach the
promised spectral efficiency of Massive MIMO. However, as ZF is performed in a
central processor, the Gramian matrix HHH needs to be collected and inverted,
which increases the average inter-connection data-rate. The computational load
is also increased due to the matrix inversion and posterior matrix multiplication
during estimation phase. Taking this into consideration, we look for methods
with IUI-cancellation capabilities but with lower requirements for the system.

2.3 Uplink & downlink reciprocity

Substituting (1) into (3) leads to

x̂u = Euxu + zu (7)

for uplink, where Eu = WHH is a K × K matrix containing the equivalent
uplink channel with IUI information and zu is the K×1 post-equalization noise
term.

On the other hand, in the downlink, substituting (4) into (2) leads to

x̃d = Edxd + nd, (8)
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where Ed = HTP is a K×K matrix containing the equivalent downlink chan-
nel with IUI information. For the particular case that PT = WH , we have
Ed = ET

u , meaning that both equivalent channels are transposed, and there-
fore experiment the same IUI cancellation properties. From this result it is
clear that once an equalization matrix W is obtained for uplink detection, it
can also be applied for downlink precoding with no extra effort. It is interesting
to note that, since PT = WH , it follows that pi = w∗i , so each antenna node
can re-use same vector for detection and precoding, ideally reducing complex-
ity and storage needs by half. Said that, in this article we focus mainly on
uplink estimation without limiting the results to downlink. In reality, there is
a downlink power constraint as the total transmitted power, which is addressed
in 5.

3 Centralized vs decentralized

In this section we describe the differences between centralized and decentralized
Massive MIMO processing and the justification to study the later one.

Uplink estimation based on ZF equalization has two components that should
be multiplied: WZF and yu. The former includes a K ×K matrix inversion,
which typically is done in one place, and for that, CSI from all antennas needs
to be collected. Apart from that, the observation data vector, yu, is also needed
for estimation. This vector is M × 1, increasing considerably the amount of
data to transfer and limiting the scalability of the array. Based on those con-
siderations, we can think of two possible architectures for the Massive MIMO
base-station: centralized and decentralized.

Fig. 1a presents an architecture based on a central baseband processing
node, where baseband samples are exchanged between Remote Processing Units
(RPUs) and CPU. Each antenna is connected to a receiver and transmitter cir-
cuitry, which involves: RF front-end, ADC/DAC and OFDM processing. For
simplicity, only uplink is represented in this figure. We can identify some com-
mon tasks among these processing elements across different antennas, such
as: time synchronization, automatic gain control, local oscillator generation,
carrier frequency and sampling rate offset estimation, phase noise compensa-
tion, among others. Therefore, a few antennas (together with corresponding
receivers/transmitters) can be grouped into one RPU for efficient implemen-
tation of such common tasks. However, for simplicity, in this work we only
analyze the case where each RPU manages one antenna.

Dedicated physical links would easily exceed the number of I/O connections
in current standards, in addition to the increment of the cost of adding a new
RPUs when needed. To overcome this, we consider that RPUs are connected
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to the CPU node by a shared bus as shown in Fig. 1a.
Even though, this approach can support ZF detection (and precoding) from

a functionality point of view, from the implementation point of view, it requires
a very high inter-connection data-rate in the bus and at the input of the CPU
(Rc in the figure). As an example, consider a 5G NR-based system with 128
antennas and OFDM as an access technology, then the average data-rate can
be calculated as

Rc =
2wMNu

TOFDM
, (9)

where Nu is the number of active subcarriers, w is the bit-width for the base-
band samples (real/imaginary parts) after FFT, and TOFDM is the OFDM
symbol duration. For Nu = 3300, w = 12 and TOFDM = 1/120kHz then
Rc = 1.2Tbps. This result clearly exceed the limit data-rate for common inter-
faces, such as eCPRI [7] and PCIe, and furthermore, it is proportional to M ,
which clearly limits the scalability of the system.

As a solution to this limitation, we propose the fully-decentralized archi-
tecture for baseband detection and precoding shown in Figure 1b. We can
observe that channel estimation and estimation/precoding have been moved
from the CPU to the RPUs, with detection and decoding as a remaining task
in the CPU from physical layer point of view. The benefit of this move is
manifold. Firstly, the inter-connection data-rate scales with K instead of M .
Secondly, the high complexity requirement in the CPU for channel estimation
and data estimation/precoding is now equally distributed among RPUs, which
highly simplifies the implementation and overcomes the computational bottle-
neck and, additionally, CSI is obtained and consumed locally in each RPU
without the need for exchange, with the consequent reduction in the required
inter-connection data-rate. In addition to the advantages already mentioned,
which are common to other decentralized schemes, the proposed architecture
presented in this work achieves an unprecedented low inter-connection data-
rate by the direct connection of RPUs forming a daisy-chain, where the CPU
is at one of the ends.

In the daisy-chain, depicted in Fig. 1b, nodes are connected serially to each
other by a dedicated connection. All elements in the chain work simultaneously
in pipeline mode, processing and transmitting/receiving to/from the respective
next/previous neighbor in the chain. The data is passed through the nodes
sequentially, being updated at every RPU. There is an unique connection to
the root node where the last estimate is transmitted and therefore been detected
by the CPU. An important remark is the average inter-connection data-rate
between nodes is the same regardless of the number of elements in the chain.
This topology was proposed in [8] and further studied in [1] and [2] with specific
algorithms designed for this topology.
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When the decentralized architecture in Fig. 1b needs to be deployed, an-
tennas can be collocated in the same physical place or distributed over a large
area. These antennas and therefore their corresponding RPUs can behave as
nodes in the chain, whilst the CPU remains as the root node. There may be
multiple chains in a network. The selection of the RPUs to form a chain may
depend on the users they are serving. RPUs which serve the same set of users
should be in the same chain, so they can work jointly to cancel IUI. This con-
cept fits very well with the distributed wireless communication system [16], the
recent cell-free Massive MIMO concept [17] and the promising large intelligent
surface [18].

Decentralized architectures, such as the one shown in Fig. 1b, require other
type of algorithms compared to Fig. 1a. In the next section we introduce
our proposed algorithm, which is a method for obtaining wm and pm as the
equalization and precoding vectors, respectively.

4 Coordinate Descent

Our proposed algorithm is an iterative algorithm based on the gradient descent
(GD) optimization, in which the gradient information is approximated with a
set of observations in every step. From this, each antenna can obtain its own
equalization/precoding vector sequentially in a coordinate descent approach.
The main advantage of this method is that it does not require access to all ob-
servations at each iteration, becoming an ideal choice for large scale distributed
systems.

4.1 Preliminaries

From (7) we know that in the non-IUI case, Eu is a diagonal matrix, which is
the case when zero-forcing (ZF) is applied. In the general case, IUI is not zero
and as consequence Eu contains non-zero entries outside the main diagonal.

The objective is to find a matrix W, which cancels IUI to a high extent
(Eu ≈ I), while fulfilling the following conditions:

• Uses daisy-chain as a base topology, so we exploit the advantages seen in
Section 3.

• No exchange of CSI between nodes. Only local CSI.

• Limited amount of data to pass between antenna nodes. It should depend
on K instead of M , to enable scalability.
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• Limit the dependency on the central processing unit in order to reduce
data transfer, processing and memory requirements of that unit. One
consequence of this is to avoid matrix inversion in the central unit.

4.2 Algorithm formulation

The algorithm setup is that one intends to solve the unconstrained Least
Squares (LS) problem in the uplink

x̂ = arg min
x

‖y −Hx‖2 (10)

via a GD approach. The gradient of (10) equals ∇x = HHHx −HHy. Even
though HHH and HHy can be formulated in a decentralized way, the selec-
tion of x and the product with HHH is preferably done in a central process-
ing unit to limit latency and inter-connection data-rates. Following the fully-
decentralized approach and the intention to off-load the equalization/precoding
computation from the CPU to the RPUs, we propose a different approach.

The proposed method can be derived as an approximate version of GD that
can be operated in a decentralized architecture with minimum CPU interven-
tion. It does so by computing, at each antenna, as much as possible of ∇x

with the information available at the antenna. Then the estimate x̂ is updated
by using a scaled version of the ”local” gradient and the antenna passes the
updated estimate on to the next antenna.

The above described procedure can, formally, be stated as

εm = ym − hTmx̂m−1

x̂m = x̂m−1 + µmh∗mεm,
(11)

for antenna m, where µm is a scalar step-size. The update rule in (11) corre-
sponds to the Kaczmarz method [19], whose step-size is according to [20]

µm =
µ

‖hm‖2
, (12)

where µ ∈ R is a relaxation parameter. In case of consistent systems, this is
y = Hx (if SNR is high enough or there is no noise), µ = 1 is optimum and
the method converge to the unique solution. Otherwise, when the system is
inconsistent, µ give us an extra degree of freedom, which allows to outperform
the µ = 1 case, as we will see in Section 5.
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After M iterations of (11) we have

x̂M =

M∏

m=1

(
IK − µmh∗mhTm

)
x̂0

+

M∑

m=1

M∏

i=m+1

(
IK − µih∗ihTi

)
µmh∗mym.

If we assume x̂0 = 0K×1
1, then it is possible to express x̂M as linear combi-

nation of y, in the same way as (3), and identify wm (the equalization vector
associated to antenna m) as

wm =

[
M∏

i=m+1

(
IK − µihihHi

)
]
µmhm. (13)

If (11) is applied in reverse antenna order (m = M · · · 1), then we obtain a dif-
ferent estimation. The expression for wm when using the alternative approach
is

wm = µmAm−1hm, (14)

where matrix Am is defined as

Am =

m∏

i=1

(
IK − µihihHi

)
. (15)

It is important to remark that both approaches lead to different wm se-
quences, however the overall performance should be the same if CSI in all
antennas shows same statistical properties (stationarity across antennas).

4.3 Algorithm design and pseudocode

In this subsection we derive an equivalent and more attractive form for the
calculation of the weights of the algorithm in (14) in an easy and low-complexity
way, suitable for hardware implementation.

The algorithm description is shown in Algorithm 1. The vector wm is
computed in each antenna, while the matrix Am−1 gets updated according to
the recursive rule: Am = Am−1−wmhHm. Then, wm is stored for the detection
and precoding phase, and Am is passed to the next antenna node for further
processing.

From Algorithm 1 we can observe that after M steps we achieve the follow-
ing expression: AM = IK − E∗u. Then, if perfect IUI cancellation is achieved,

1 If prior information of x is available, it can be used here.
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Algorithm 1: Proposed algorithm

Input : H = [h1,h2 · · ·hM ]
T

Preprocessing:
1 A0 = IK
2 for m = 1, 2, ...,M do
3 wm = µmAm−1hm
4 Am = Am−1 −wmhHm
5 end

Output : W = [w1,w2 · · ·wM ]
T

Eu = IK and therefore AM = 0. As a consequence we can take ‖Am‖2 as a
metric for residual IUI. The interpretation of Algorithm 1 is as follows. ‖Am‖
is reduced by subtracting from Am a rank-1 approximation to itself. In order
to achieve that, Am is projected onto hm to obtain wm, therefore wmhHm is
the best rank-1 approximation to Am, having hm as vector base. Ideally, if the
channel is rich enough, vectors hm are weakly correlated and assuming M is
large (Massive MIMO scenario) then IUI can be canceled out to a high extent2.

The role of step-size µ is to control how much IUI is removed at every
iteration. High values will tend to reduce IUI faster at the beginning when
the amount to remove is high, but will lead to oscillating or unstable residual
IUI after some iterations because the steps are too big, so the introduced error
dominates. Low values for µ will ensure convergence of the algorithm and a
relatively good IUI cancellation at the expense of a slower convergence.

4.4 Multiple-iterations along the array

Recalling from Section 4.3, Algorithm 1 reduces the norm of A at each step,
providing as a result AM , which contains the residual IUI after the algorithm
is run along the array. It is possible to expand the algorithm and apply AM

as initial value, A0 for a new iteration through the array, with the intention
of decreasing even more the norm of A. The pseudocode of the expanded
version is shown in Algorithm 2, with niter iterations, and as it can be seen,
an increment of wm is computed at each iteration. From topology point of

2 The selection of Coordinate Descent as our method’s name is because we consider
the vectors {wi} as the outcome of the method, and these can be seen as coordi-
nates of a cost function to minimize. Such optimization problem can be written as:
wm = arg minz f(w1, · · · ,wm−1, z,wm+1, · · · ,wM ), where f = ‖Am−1 − zhH

m‖2F , and

Am−1 = IK −
∑

i6=m wih
H
i . Each antenna solves this optimization problem in a sequential

fashion, obtaining one coordinate as a result, while keeping the rest fixed. This is valid for
single and multiple iterations to the array, which is presented in the next subsection.
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view, it requires an extra connection between last and first RPUs, closing the
daisy-chain and becoming a ring. It is expected to improve the performance at
the expense of increasing the latency.

Algorithm 2: Proposed algorithm multiple iterations

Input : H = [h1,h2 · · ·hM ]
T

Preprocessing:
1 A0,1 = IK
2 wm,1 = 0,m = 1, ...,M
3 for n = 1, 2, ..., niter do
4 for m = 1, 2, ...,M do
5 wm,n = wm,n−1 + µmAm−1,nhm
6 Am,n = Am−1,n −wm,nhHm
7 end
8 A0,n+1 = AM,n

9 end

Output : W = [w1,niter ,w2,niter · · ·wM,niter ]
T

5 Analysis

In this section we present an analysis of the proposed solution. The main points
are:

• Performance analysis of the presented solution based on SIR, SINR and
BER evaluation, and comparison with other methods.

• Complexity and timing analysis, including computational complexity,
inter-connection throughput, memory requirement and latency.

As was commented in the Introduction, the analysis presented in this section
is quite general and not dependent on any specific hardware implementation.
The idea is to provide high level guidelines on algorithm-hardware trade-offs,
system parameter selections, and hardware architectures. A more specific anal-
ysis can be performed when one has decided the dedicated implementation
strategy.

5.1 Performance

In this subsection we obtain and present different metrics to evaluate and com-
pare the performance of the proposed algorithm. The analysis we present is
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divided as follows: Derivation of SIR and SINR closed form expressions, bit-
error-rate (BER) analysis of the proposed algorithm based on ideal and mea-
sured channels and comparison with other methods, such as MF and ZF. The
performance analysis that follows is focused on uplink, but it can be extended
to downlink.

SIR & SINR

Specifically for user k, (7) is reduced to

x̂u
k = Ek,kx

u
k +

K∑

i=1,i6=k

Ek,ix
u
i + zk,

where the first term represents the desired value to estimate (scaled version),
the second one is the interference from other users and the third one is due to
noise. The signal-to-interference ratio (SIR) for user k is defined as

SIRk =
E|Ek,k|2

E
{∑K

i=1,i6=k |Ek,i|2
} . (16)

And for the signal-to-interference-and-noise ratio (SINR) we have

SINRk =
E|Ek,k|2

E
{∑K

i=1,i6=k |Ek,i|2
}

+ E|zk|2
. (17)

A list of parameters and their corresponding values are presented in Table
1, which are used in the following propositions.

Table 1: Parameters

Parameter Description

α 1− 2µ
K + µ2

K(K+1)

β µ2

K(K+1)

ν 1− µ
K

ε 1− 2µ
K + µ2

K

From (16) it is possible to obtain a closed-form expression of the SIR as
follows:
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Proposition 1 With perfect CSI and channel model as defined in Section 2,
SIR per user in uplink with CD algorithm for estimation is

SIR =
1− 2νM + αM

(
1− 1

K

)
+ εM 1

K(
1− 1

K

)
· (εM − αM )

, (18)

which can be simplified in case of relatively large M , K, and M
K , which is the

case of Massive MIMO, as

SIR ≈ eµ(2−µ)MK . (19)

Proof: See Appendix-A.
The maximum value of (19) is achieved for µ = 1 and the SIR value only

depends on the ratio M
K in an exponential fashion, showing how fast the IUI

is canceled as M grows, and therefore ZF is approached. As an example, for a
target value of SIR = 40dB, MK = 10 meets the requirement, which is a typical
ratio in Massive MIMO regime.

Regarding SINR, it can be derived based on previous results as

Proposition 2 With perfect CSI and channel model as defined in Section 2,
SINR per user in uplink with CD algorithm for estimation is given by

SINR =
1− 2νM + αM

(
1− 1

K

)
+ εM 1

K(
1− 1

K

)
(εM − αM ) + N0

K−1

(
µ

2−µ

)
(1− εM )

, (20)

which can be simplified in case of relatively large M , K, and M
K , which is the

case of Massive MIMO, as

SINR ≈
[
e−µ(2−µ)MK +

1

K · SNR

(
µ

2− µ

)]−1

. (21)

Proof: See Appendix-B.
The first term in (21) represents SIR containing IUI information, while the

second one takes into account the post-equalized noise power. For high SNR,
the first term is dominant and SINR → eµ(2−µ)MK , which depends on M

K and
µ, but not on SNR. On the other hand, when SNR is low, the second term is

dominant and SINR→ SNR ·K
(

2−µ
µ

)
as M grows, which grows linearly with

SNR and K (up to certain value). This linear dependency on K is due to the
post-equalization noise is equally distributed among the users. While the noise
power per antenna remains constant, the portion assigned to each user decays
as K grows, so the SINR per user grows linearly. However, as K increases



116 PAPER III

the IUI does so (first term in (21) grows), and both effects cancel out at some
point, being IUI dominant afterwards, with the corresponding decay of SINR.

The optimal value of µ, denoted as µ∗, depends on M , K, and the specific
channel. For the i.i.d. case, defined in Section 2, it is possible to obtain µ∗

by numerical optimization over (20). An approximate value, denoted as µ0, is
presented as follows.

Proposition 3 A recommended value for µ0, in the vicinity of µ∗, under CD
and i.i.d. channel as defined in Section 2, is given by

µ0 =
1

2

K

M
log(4M · SNR). (22)

Proof: See Appendix-C.
As a side result, from the analysis performed in this section, we can extract

interesting properties of the matrix W, such the following one:

Proposition 4 The equalization matrix W as result of CD algorithm satisfies
the next properties for µ ∈ [0, 2)

E‖W‖2F =
K

K − 1
· µ

2− µ
·
(
1− εM

)
. (23)

Proof: See Appendix-D.
This result is relevant in downlink, where a transmission power budget is

needed. Expression in (23) is a monotonically growing function of µ. It can
be shown that total transmitted mean power is bounded by 4MK , reaching
this value at µ = 2. However, as we will see in next section, optimal µ for
i.i.d. Gaussian channel is within the range (0, 1], therefore for a large enough
K, we have E‖W‖2F ≤ 1, which does not depend on M , therefore ensure the
scalability of the proposed solution.

Expression (20) is plotted in Figure 2a showing SINR vs µ for CD under
different SNR values and step-size according to (12). As expected, optimal µ
approaches 1 as SNR grows. Simulation results shows a good match with (20).
The curve with µ0 values obtained from (22) is also plotted for a wide range
of SNR. It is observed how the µ0 value is reasonably close to the optimum
for the SNR range depicted. Furthermore, the result is much closer to ZF
than MRC values, which are {40.5, 30.5, 20.5, 10.5}dB and {9.0, 9.0, 8.8, 6.8}dB
respectively for the different SNR values used in the figure.

Figure 2b shows simulation results for the CD algorithm performance un-
der different channels. For some of them we use a model (i.i.d and WINNER
II) and others are based on real measurements (Rich A and LOS A). For this
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Figure 2: a) SINR vs µ under different SNR. M=128 and K=16. b)
SINR vs µ under different channels. M=128 and K=5. SNR=0dB.

comparison we use different M
K ratio and the step-size according to (12). Rich

A is non-line-of-sight (NLOS) channel, rich in scatters, while LOS A is pre-
dominantly line-of-sight (LOS) channel. WINNER II is obtained from a NLOS
scenario with a uniform linear array at the BS, with M elements separated
by λ/2. Users are randomly located in a 300m×300m area, with the BS at
the center. Carrier frequency is 2GHz. It is noticed how rich channels (i.i.d
and WINNER II) provide better performance. SINR levels reached by ZF are
{20.9, 20.9, 19.8, 17.6}dB and for MRC they are {14.3, 15.2, 7.8, 4.8}dB, in
both cases for the i.i.d., WINNER II, Rich A and LOS A channels, respectively.
It is also noticed that CD performance lies in between ZF and MRC for these
scenarios.

Figure 3 shows SINR versus M
K for M = 128 and SNR = 0dB. SINR for

CD is shown comparing the effect of using µ∗ and µ0 according to (22). We
observe that M

K ≈ 10 (equivalent to K ≈ 12) is the preferred working point,
where SINR reaches the maximum value and µ0 gives the same result as µ∗.
We also compare the performance with ZF and MRC algorithms.

As presented in Subsection 4.4, the algorithm can be extended to perform
multiple iterations through the array, in order to increase the performance.
Figure 4 shows SINR versus µ for a different number of iterations through the
array together with ZF for comparison. From the figure we can notice that the
maximum SINR increases after each iteration, approaching to ZF. It is also
relevant to note that µ∗ changes with the number of iterations.
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Figure 3: SINR (dB) versus M
K for SNR=0dB and M=128. SINR for

CD is plotted in the case of µ∗ (dashed) and µ0 (solid) are used. i.i.d.
channel.

BER

BER versus SNR is shown in Figure 5 under i.i.d. channel for three different
methods: CD, ZF and MRC. CD is shown using two different values for µ: 1
and µ∗. It is noticeable the great impact of the selected µ and therefore the
importance of selecting an appropriate value.

The effect of non-ideal CSI in the BER is shown in Figure 6 for ZF and CD
(for µ∗). The non-ideal CSI is modeled as an ideal-CSI with a noise contribution
(complex normal distributed) with a variance equal to N0, therefore it depends
inversely on SNR. No boosting in pilots is used. As it can be observed, for
SNR<0dB the SNR gap is very small and increases as long as SNR increases
too, in a similar fashion as the ideal CSI case. For SNR>0 the SNR gap in
both cases is similar.

5.2 Complexity & timing

In this subsection we analyze the complexity of the proposed solution from
three different domains: computational complexity (data processing), inter-
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Figure 4: SINR vs. SNR for M=128, K = 16. 16QAM. i.i.d. channel.
SNR=0dB. SINR after a certain number of iterations through the array.
ZF added for comparison.

connection throughput (data movement) and memory (data storage). Timing
in the form of total system latency is also analyzed.

For this analysis we assume a frame structure based on OFDM, which con-
tains one dedicated OFDM symbol per frame for channel estimation based on
orthogonal pilots, so each one is dedicated to one of the users in a consecutive
way. The other symbols convey users’ data. Under the TDD assumption, some
of them are used for DL and others for UL. We also assume that all RPUs
perform IFFT/FFT in parallel with an output data-rate of Nu

TOFDM
.

We can exploit channel correlation based on the Physical Resource Block
(PRB) concept in 3GPP. A PRB is a region in frequency-time domain where the
channel response is assumed to be approximately constant across all subcarriers
within that PRB. Within an OFDM symbol, the number of subcarriers in
each PRB and the number of PRB per symbol, defined as Nsc,PRB and NPRB

respectively, are related as follows: Nu = NPRBNsc,PRB. We define TPRB as
the time needed by Nsc,PRB consecutive subcarriers to come out the FFT.

For each PRB we have a different channel matrix and also MIMO model
as in (1) and (2). Then, it is required to have a unique set of vectors wm
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Figure 5: BER vs. SNR for M=128, K = 16. 16QAM. i.i.d. channel.

and pm(m = 1...M) per antenna, as in (3) and (5), for uplink detection and
downlink precoding respectively. The phase where these vectors are computed
is named formulation, while the phase where user’s data is processed is named
filtering and precoding for UL and DL respectively. To minimize data buffer-
ing, formulation needs to be completed before filtering/precoding starts. This
imposes the constraint that the formulation phase needs to be finished within
one OFDM symbol, or in other words, all antennas need to obtain these vec-
tors and the matrix A needs also to pass through the array within one OFDM
symbol. A diagram of the main activities involved and their timing relation-
ship is shown in Figure 7. The analysis assumes that the processing and data
transmission are pipelined in each RPU so they concurrently operate.

Computational complexity

• Formulation phase: The number of complex multiplications needed to
formulate one precoding/filtering vector per antenna are Cform ≈ 2K2,
which represents the matrix-vector product to obtain wm and the outer
product to update Am according to algorithm 1. Other possible required
operations such as norm, square root or division are assumed to be neg-
ligible.
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Figure 6: BER vs. SNR for M=128, K = 16. 16QAM. i.i.d. channel.
Comparison between ideal and non-ideal CSI.

• Filtering phase: During the filtering phase, each RPU performs the re-
quired operations for UL detection. Vectors wm are applied to all ob-
servations (data subcarriers), yu

m, under the same PRB. The complex-
ity measured in number of complex multiplications per antenna and per
Nsc,PRB subcarriers is Cfilt = KNsc,PRB.

• Precoding phase: During the precoding phase, each RPU performs the
operations required by (5). Similarly to the filtering case, the same vector
pm is applied to all data vectors xd

m under same PRB. The complexity
measured in number of complex multiplications per antenna and PRB is
Cprec = KNsc,PRB.

Inter-connection data-rate

• Formulation phase: The average inter-connection data-rate during for-
mulation can be calculated assuming that the average time to complete
a transfer of a matrix A is TPRB, which leads to an average rate of

Rd,form =
2wAK

2NPRB

TOFDM
,
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Figure 7: Time diagram representing formulation and filter-
ing/precoding activities performed in the antenna modules. Each OFDM
symbol is split into NPRB blocks (N in the figure) in the same order as
data come out of any of the receiver FFT. Those blocks which con-
tains pilots are shown as Pi, while those carrying data are denoted as
Di. Channel estimation is performed during Ci blocks, while formula-
tion is done in wi blocks. Filtering/precoding data is carried out during
the MIMO processing blocks, named Mi. As it can be observed, all
antennas perform their tasks simultaneously, while formulation is done
sequentially as a matrix A(n) passes through the array. In total, N
matrices are passed sequentially through antenna m, corresponding to

A
(n)
m , n = 1 · · ·N . wi vectors need to be available in the antenna mod-

ules before the corresponding data comes out of the receiver FFT so it
can be properly processed. Daisy-chain topology exploits the parallelism
of the operations by allowing the pipeline of the operations and the fully
usage of all dedicated links simultaneously.

where the numerator represents the amount of bits to transfer (all matri-
ces A in a symbol) and wA is the bit-width of A entries (real/imaginary
parts).

• Filtering phase: Partial filtering results from each RPU are added up
through the chain. The average inter-connection data-rate per dedicated
link can be calculated as

Rd,filt =
2wdKNu

TOFDM
,

where wd is the bit-width of baseband samples exchanged among RPUs.



Decentralized Massive MIMO Processing Exploring Daisy-chain Architecture
and Recursive Algorithms 123

• Precoding phase: In the precoding phase, the data vectors xd are passed
through the array for processing. Each node receives a vector which is
passed to next node without any required pause (broadcasting). This
leads to the same data-rate as in the filtering case.

Latency

The processing latency in the formulation phase for one antenna is given from
next expression

Tproc,form =
CformTCLK

Nmult

≈ 2K2TCLK

Nmult
,

where Nmult is the number of multipliers available in each RPU that can be
used in parallel, TCLK is the clock period and we assume that one complex
multiplication can be done within one TCLK. Total latency is expressed as

Latform = M · Tproc,form + (NRPU − 1) · Ttrans,

whereNRPU is the number of RPUs in the system, and Ttrans is the transmission
latency between two consecutive RPUs. As said before, formulation needs to
be finished within one TOFDM, therefore the formulation latency is constrained
as Latform < TOFDM. This leads to an upper limit for M as

M <
TOFDM + Ttrans

Tproc,form + Ttrans

MRPU

,

where MRPU = M
NRPU

is the number of antennas per RPU, which is considered
as a design parameter. We can consider another limit, slightly lower than
previous one but easier to extract conclusions as follows

M <
TOFDM

Tproc,form + Ttrans

MRPU

.

We analyze three scenarios:

• Tproc,form → 0: When processing time is reduced, by increasing Nmult or
decreasing TCLK, then transaction time becomes dominant and a reduc-
tion in the number of links allow for higher values of M . Formally, the
upper value for M scales proportionally to MRPU as follows

M < MRPU ·
TOFDM

Ttrans
.
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• Ttrans → 0: By decreasing the transaction time the upper limit of M con-
verges to a certain value, which is inversely proportional to the processing
time as follows

M <
TOFDM

Tproc,form
.

• MRPU � Ttrans

Tproc,form
. When MRPU increases beyond a certain value, pro-

cessing time becomes dominant and we obtain the same limit as previous
point.

In case of filtering, its related processing is done in parallel as soon as
data comes out of the FFT. However, partial results needs to be accumulated
through the array from RPU 1 to NRPU. This latency is uniquely due to data
transfer through the dedicated links, then

Latfilt = (NRPU − 1) · Ttrans

< Latform

< TOFDM.

(24)

Memory

In terms of memory requirement, a centralized architecture requires to store
the channel matrix H fully at the CPU, previous to the inversion. There
is a channel matrix per PRB, so CSI storage requires MH = 2whMKNPRB

bits, where wh represents the bit-width of H entries (real/imaginary parts),
and in order to store the resulting square matrix, (HHH)−1 requires Minv =
2whK

2NPRB and therefore the total requirement is: Mcentral = MH + Minv ≈
MH.

In the decentralized architecture, each antenna module needs to store the
corresponding h, which gets replaced by w after formulation. Both of them
requires the same amount of memory if same bit-width is assumed, which is
Mw = 2whKNPRB, and the total amount of memory in the system is: Mdaisy =
M ·Mw ≈ Mcentral. Therefore, the total amount of memory required for H
and W is the same in both systems, however the daisy-chain allows a uniform
distribution of the memory requirements across all antenna modules, reducing
design complexity, time and cost. As a drawback, we point out the need for
data buffering during the filtering phase due to latency in the transfer of partial
results, as discussed in the previous subsection (Latency). The buffer size for
the RPU closest to the CPU (worst case) can, based on (24), be obtained as

Mbuffer =
2wdKNuLatfilt

TOFDM
,

which is shared by all antennas belonging to that RPU.
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Table 2: Inter-connection data-rate comparison for different system parame-
ters [Gb/s]

Scenario

M 32 64 128 256

K 4 8 12 12

Rd,form 12.67 50.69 114.05 114.05

Rd,filt/prec 38.02 76.03 114.05 114.05

Rc 304.13 608.26 1216.51 2433.02

Table 3: Computational complexity comparison for different system parame-
ters [GOPS]

Scenario

M 32 64 128 256

K 4 8 12 12

Cd,ant 1.58 3.17 4.75 4.75

Cc 50.69 202.75 608.26 1216.51

5.3 Comparison

Table 2 shows a comparison of interconnection data-rate between daisy-chain
and centralized architecture for different scenarios of M and K. It is important
to remark that Rc corresponds to the aggregated data/rate at the shared bus,
while Rd is the average data/rate in each of the RPU-RPU dedicated links. For
the centralized case, (9) is used, while for the daisy-chain case, data-rates are
detailed according to the different tasks (formulation, filtering and precoding)
as described in Section 5.2. For the numerical results we employ TCLK = 1ns
and w = 12. The rest of system parameters are as follows according to worst
case in 5G NR: Nu = 3300, NPRB = 275, Nsc,PRB = 12 and TOFDM = 1

120KHz .
We observe that for M = 128 case, daisy-chain requires ∼ 10% of the inter-
connection data-rate needed by the centralized case. This number can even
decrease as M

K grows. As it is observed, daisy-chain requires much lower inter-
connection data-rates than the centralized counterpart. We remark that if we
take into account the total inter-connection data-rate in the decentralized case,
which is NRPURd,form, may easily exceed the centralized counterpart Rc, how-
ever the decentralized architecture is able to distribute this data-rate equally
across all links, reducing considerably the requirements for each of them.

Table 3 shows a computational complexity comparison between centralized
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Table 4: Latency comparison for different system parameters

Scenario

M 32 64 128 256

K 4 8 12 12

Lat(µs) 0.83 2.52 7.71 15.52

Lat/TOFDM 0.10 0.30 0.92 1.86

and decentralized architectures. Cd,ant represents complex multiplications per
second and per antenna in the decentralized case, while Cc is the computational
complexity required by CPU in centralized system. In both cases, only filter-
ing/precoding is taken into account because formulation depends on how often
channel estimation is available. The result of the comparison is meaningful.
Even tough, the total complexity in the decentralized system is approximately
equal to the centralized counterpart, this is M · Cd,ant ≈ Cc, our decentralized
solution is able to divide equally the total computational complexity among all
existing RPUs, relaxing considerably the requirements compared to the CPU
in centralized case. The relatively low number obtained for the daisy-chain
allows the employment of cheap and general processing units in each RPU, in
opposite to the centralized architecture where the total complexity requirement
is on the CPU.

Numerical results for latency are shown in table 4 for Nmult = 8, Ttrans =
100ns and NRPU = M

4 . These design parameters meets the constraint Lat <
TOFDM up to M = 128. For larger arrays there are different solutions: allows
the latency to increase and buffer the needed input data (need for larger mem-
ory), group more antennas in each RPU (which reduces the number of links
but increase the complexity of the CPU controlling each RPU), and/or employ
low-latency link connections (reducing Ttrans at the expense of higher cost). It
is relevant to note that TOFDM value in the table is the worst case 1/120KHz.

In table 5 a comparison between both systems from memory perspective is
shown. If wh = 12 and NPRB = 275 are assumed, then for the M = 128 case,
each antenna module in the daisy-chain only needs ∼ 80kbits of memory and
each RPU needs at maximum 354kbits for buffering, while in the centralized
architecture, the central processor requires ∼ 11Mbits, which is a challenging
number for a cache memory. The memory requirement grows proportionally
to M in the centralized system, while that does not happen in Mw. In order
to reduce the buffer size we can group more antennas in each RPU, so all of
them share the same buffer memory.
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Table 5: Memory requirement comparison for different system parameters
[kbits]

Scenario

M 32 64 128 256

K 4 8 12 12

Mw(ant) 26.4 52.8 79.2 79.2

Mbuffer(RPU) 26.6 114.1 353.6 718.5

MH 844.8 3379.2 10137.6 20275.2

Minv 105.6 422.4 950.4 950.4

6 Conclusions

In this article we proposed an architecture for Massive MIMO base-station for
uplink detection and downlink precoding, which is based on the fully distri-
bution of the required baseband processing across all antenna modules in the
system. The main goal is to reduce the inter-connection data-rate needed to
carry out the processing tasks and enable the scalability needed in Massive
MIMO. We continued our previous work in this topic [1] [2] by a detailed intro-
duction to the CD algorithm and its application to the Massive MIMO case.
We also presented an extensive analysis of the expected performance of the
system, the inter-connection data-rate, complexity, latency and memory re-
quirements. The results show that there is a performance loss compared to ZF,
but unlike MF, our proposed method does not have an error floor, from which
we can not recover, while the inter-connection data-rate is distributed avoiding
the aggregation of the centralized approach. At the same time, complexity and
memory requirements per antenna module are easy to meet with commercial
off-the-self hardware, which proves the scalability of this solution.
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Appendix

In the appendix we present two propositions which are going to support the
proof of propositions 1 and 2 seen in Section 5. We start with some important
considerations.

Let’s define the random matrix Qi as

Qi , IK − µihihHi , (25)

where hi ∼ C N (0, I) and independent CSI is assumed between antennas, this
is E{hHi hj} = δij ,∀i, j. Additionally, based on (25) we can rewrite (15) as

Am = Q1Q2 · · ·Qm, (26)

as well as (14), which can be expressed in the following form

wm = µmQ1Q2 · · ·Qm−1hm. (27)

We list in Table 6 some useful properties which are used throughout this
section.

Table 6: PROPERTIES

E
{

hhH

‖h‖2

}
1
K I,

E
{

hhH

‖h‖4

}
1

K(K−1)I

[
E
{
|hk|2hhH

‖h‖4

}]
i,j





E
{
|hk|4
‖h‖4

}
= 2

K(K+1) if k = i = j

E
{
|hk|2|hi|2
‖h‖4

}
= 1

K(K+1) if k 6= i = j

0 if i 6= j,

E{Qm} νI,∀m
E{A} νMI

The previous properties are based on the following proofs:

• E
{

hhH

‖h‖2

}
= aI, where a is a complex number, due to the i.i.d. prop-

erty among elements in h. Applying the trace operator to both sides of
previous equality, it follows that a = 1

K , which proves the property.

• E
{

hhH

‖h‖4

}
= aI, by the same principle as previous property. Applying

trace to both sides leads to: E
{

1
‖h‖2

}
= aK. Let define the random vari-

able Y = ‖h‖2, then Y follows a Chi-Square distribution with 2K-degrees
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of freedom, this is Y ∼ χ2(2K), such that: fY(y) = 1
Γ (K)y

K−1e−y.

Then follows: E
{

1
Y

}
=
∫∞

0
y−1fY(y)dy = Γ (K−1)

Γ (K) = 1
K−1 , therefore:

a = 1
K(K−1) , and proving the property.

• E
{
|hk|2hhH

‖h‖4

}
is also a diagonal matrix as previous properties. The val-

ues of the elements in the main diagonal can be obtained as follows:

1 = E
{
‖h‖4
‖h‖4

}
= KE

{
|hk|4
‖h‖4

}
+ K(K − 1)E

{
|hk|2|hi|2
‖h‖4

}
, where the next

equality has been used: ‖h‖4 =
∑K
k=1 |hk|4 +

∑K
k=1

∑K
i=1,i6=k |hk|2|hi|2.

Then deriving one of the expectations leads to the other one. Let’s define

the random variable Z = ‖h‖2
|hk|2 as: Z = 1 + Y

X , where X = |hk|2 and

Y =
∑K
i 6=k |hi|2. X follows an exponential distribution, fX(x) = e−x and

Y ∼ χ2(2K − 2). To obtain fZ(z), first we express
FZ(z) = P (Z ≤ z) = P (Y ≤ X(z − 1)) =∫∞

0
fX(x)

∫ x(z−1)

0
fY(y)dydx. The derivative with respect to z is:

fZ(z) =
∫∞

0
fX(x)fY(x(z− 1))xdx = 1

Γ (K−1) (z− 1)K−2
∫∞

0
xK−1e−xzdx

= 1
z2 (1 − 1

z )K−2(K − 1) for z ≥ 1 and 0 otherwise, where the definition
of gamma function based on improper integral has been used. Finally,
E
{

1
Z2

}
=
∫∞

1
z−2fZ(z)dz = 2

K(K+1) , proving the property.

• E{Q} = I−µE
{

hhH

‖h‖2

}
= I−µ 1

K , due to first property, where µm = µ
‖hm‖2

has been used and the index m in Q dropped for clarity.

• E{A} = E
{∏M

m=1 Qm

}
=
∏M
m=1 EQm due to statistical independence

among antennas, then proving the property.

Proposition 5 For a matrix Q defined as in equation (25) and µ as in (12),
the next result holds for any deterministic diagonal matrix D

E
{
QDQH

}
= αD + β Tr(D)I, (28)

where α and β are defined in table 1.

Proof: Let’s define a deterministic diagonal matrix as D = diag{d1, d2, · · · , dK}
and a random matrix Q defined according to (25). Taking into account the
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properties in Table 6 we can establish the following

E
{
QDQH

}

= E
{

D− µD
hhH

‖h‖2
− µhhH

‖h‖2
D + µ2 hhHDhhH

‖h‖4

}

= D− 2
µ

K
D + µ2E

{
hhHDhhH

‖h‖4

}
,

where

E
{

hhHDhhH

‖h‖4

}
= E

{
hhH

‖h‖4

(
K∑

k=1

dkeke
T
k

)
hhH

}

=

K∑

k=1

dkE
{
|hk|2hhH

‖h‖4

}
,

which can be simplified as follows taking into account properties in table 6,

E
{

hhHDhhH

‖h‖4

}
=

1

K(K + 1)
D +

Tr(D)

K(K + 1)
I,

proving the proposition.
This proposition leads to a more general one.

Proposition 6 For a matrix Am defined as in equation (26) the next result
holds for any deterministic diagonal matrix D

E
{
AmDAH

m

}
= αm [D−Da] + εmDa, (29)

where Da = Tr(D)
K I, and for the particular case of D = I it reduces to

E
{
AmAH

m

}
= εmI, and for D = eTk ek the following result applies

eTk E
{
Ameke

T
kAH

m

}
ek = αm

(
1− 1

K

)
+ εm

1

K
.

Proof: Let’s define a sequence of diagonal matrices {Dm}m=0,...,M , which
can be defined recursively as

Dm =

{
E
{
QmDm−1Q

H
m

}
if m > 0

D if m = 0

where Q is a matrix defined according to (25). From proposition 5 we know
that

Dm = αDm−1 + β Tr(Dm−1)I,
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and therefore Tr(Dm) = εTr(Dm−1), following that Tr(Dm) = εm Tr(D0),
which leads to

Dm = αDm−1 + Tr(D0)βεm−1I

= αmD0 + Tr(D0)βεm−1
m−1∑

i=0

riI,

for m > 0, where r = α
ε < 1, and finally taking into account that Dm =

E
{
AmD0A

H
m

}
the proposition is proved.

A. Proof of Proposition 1

We prove the proposition by derivation of analytical expressions for E|Ek,k|2

and E
{∑K

i=1,i6=k |Ek,i|2
}

. From the properties shown in Table 6, E|Ek,k|2 is

expressed as

E|Ek,k|2 = E|eTkEuek|2

= 1− eTk E{A}ek − eTk E{AH}ek + eTk E{Aeke
T
kAH}ek

= 1− 2νM + αM
(

1− 1

K

)
+ εM

1

K
,

(30)

and for the IUI term

E





K∑

i=1,i6=k

|Ek,i|2


 = E‖eTkEu‖2 − E|Ek,k|2

= eTk E{AAH}ek − eTk E{Aeke
T
kAH}ek

=

(
1− 1

K

)
·
(
εM − αM

)
,

(31)

which proves the first part of the proposition.
In the limit when M → ∞, if the ratio M

K is kept constant, then εM →
e−µ(2−µ)MK . Similarly, for α we have αM → e−2µMK under same conditions.

Given that, we have that εM − αM → e−2µMK

[
eµ

2M
K − 1

]
. If we assume M

K

is large enough, such that µ2M
K � 0, then 1 is negligible in the second term

(within brackets), and therefore
(
1− 1

K

)
(εM − αM ) → e−µ(2−µ)MK . In the

numerator, assuming µMK � 0, then 1− 2νM + αM (1− 1
K ) + εM 1

K → 1 when

M → ∞ and M
K kept constant. Then, under previous assumptions regarding

the ratio M
K , SIR → eµ(2−µ)MK when M → ∞. Based on this limit, we can
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establish the following approximation: SIR ≈ eµ(2−µ)MK = SIRa for large values
of M . To give an idea of the validity of this approximation, we give some
numerical values. For example, for M = 128, K = 16 and µ = 1 leads to
SIR(dB) = 36.2dB, while SIRa(dB) = 34.7dB, resulting in a relative error of
4%. For M = 256, K = 32 and µ = 1, leads to an error of 2%, while the error
goes down to 1% for M = 512 and K = 64, approaching 0 in the limit, and
proving the second part of the proposition.

B. Proof of Proposition 2

The proof of the proposition is based on the corresponding proof to SIR ex-
pression (Appendix-A). The noise term, E|zk|2, is the only term which has not
been analyzed in the proof of Proposition 13. This term can be computed as

E|zk|2 = N0e
T
k

M∑

m=1

E
{
wmwH

m

}
ek. (32)

Recalling that wm = µAm−1
hm
‖hm‖2 and taking into account properties in

Table 6, (32) can continue as

E|zk|2 =
µ2N0

K(K − 1)
eTk

M∑

m=1

E
{
Am−1A

H
m−1

}
ek

=
N0

K − 1
·
(

µ

2− µ

)
·
(
1− εM

)
,

(33)

where Proposition 6 has been used, and shows that the post-processing noise
power per user does not depend on M . This result, together with (17) and
Proposition 1 leads to the final expression shown in (20), and proving the first
part of the proposition.

In the limit, E|zk|2 → N0

K−1 ·
µ

2−µ when M →∞. Based on this result, we can
establish an approximation, similarly to the proof of Appendix-A, consisting of:
E|zk|2 ≈ N0

K−1 ·
µ

2−µ for large values of M . As an example of the validity of this
approximation, let’s consider a Massive MIMO scenario such as: M = 128,
K = 16, µ = 0.4, and N0 = 1. This leads to a relative error of 0.13% for
magnitudes in dB. This approximation, together with the one in Proposition
1, provides (21). To check the validity for this approximation, for the same
scenario as before, (20) and (21) provide 16.60dB and 16.66dB respectively,
which leads to a relative error of 0.36%. This completes the proof of current
proposition.

3 Thesis: In the original article it states ”Proposition A”, while the correct term is ”Propo-
sition 1”.
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C. Proof of Proposition 3

If (21) is denoted as S̃INR, then maximizing this value is equivalent to mini-
mizing the inverse value, whose derivative is

∂S̃INR
−1

∂µ
= −2(1− µ)

M

K
e−µ(2−µ)MK +

1

K · SNR
2

(2− µ)2

and by setting to 0 leads to an expression which does not have closed form.
However, which can be further simplified as: 4M · SNR = e2µMK , leading to
(22) and proving the proposition.

D. Proof of Proposition 4

From (32) and (33) we can derive the exact expression as

E‖W‖2F = TrE
{
WHW

}

=
K

K − 1
· µ

2− µ
·
(
1− εM

)
,

(34)

proving the proposition.
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Processing Distribution and

Architecture Tradeoff for Large

Intelligent Surface Implementation

The Large Intelligent Surface (LIS) concept has emerged recently as a

new paradigm for wireless communication, remote sensing and position-

ing. It consists of a continuous radiating surface placed relatively close to

the users, which is able to communicate with users by independent trans-

mission and reception (replacing base stations). Despite of its potential,

there are a lot of challenges from an implementation point of view, with the

interconnection data-rate and computational complexity being the most

relevant. Distributed processing techniques and hierarchical architectures

are expected to play a vital role addressing this while ensuring scalability.

In this paper we perform algorithm-architecture codesign and analyze the

hardware requirements and architecture trade-offs for a discrete LIS to

perform uplink detection. By doing this, we expect to give concrete case

studies and guidelines for efficient implementation of LIS systems.
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1 Introduction

The LIS concept has the potential to revolutionize wireless communication,
wireless charging and remote sensing [1–4] by the use of man-made surfaces
electromagnetically active. In Fig. 1 we show the concept of a LIS serving three
users simultaneously. A LIS consists of a continuous radiating surface placed
relatively close to the users. Each part of the surface is able to independently
receive and transmit electromagnetic (EM) waves with a certain control, so the
EM waves can be focused in 3D space with high resolution, creating a new
world of possibilities for power-efficient communication.

Apart from LIS, other network architectures have been proposed recently
for beyond-5G systems. Some of them can be classified within the smart ra-
dio environment paradigm [5], by which the wireless channel can be controlled
to facilitate the transmission of information, as opposite to traditional com-
munication systems where the channel is assumed to be imposed by nature,
and transmitter and receiver adapt to changes in it. One example of this new
trend is the reconfigurable surfaces, known as intelligent reflecting surfaces
(IRS), programmable metasurfaces, reconfigurable intelligent surfaces, and pas-
sive intelligent mirrors among others 1, which consist of electronically passive
surfaces with the capability to control how the waves are reflected when hitting
their surface. Furthermore, the term LIS has also been used for such a passive
surfaces [8–11], with the subsequent risk of confusion. In the common form
of these surfaces there is a lack of a receiver chain, therefore not having the
possibility to obtain channel state information (CSI) necessary to control the
reflected waves for coherence beamforming. This means that the control must
come from an external system resulting in a corresponding latency. This is in
conflict with the real-time requirements of many communication systems, such
as cellular communications, where channel updates are required within typi-
cally 1ms. In addition, it is known that conventional MIMO communication
is more efficient than IRS-aided transmission in terms of rate [12]. These two
limitations lead us to consider LIS as the preferred architecture for beyond-5G
systems.

Regarding LIS, there are important challenges from an implementation
point of view. It is known [1] that a continuous LIS can be replaced by a
discrete one with no practical difference in achieved capacity, and therefore
making LIS implementable. This discrete LIS is made up of a large number of
antennas with the corresponding receiver (and transmitter) chains producing a
huge amount of baseband data that needs to be routed to the Central Digital
Signal Processor (CDSP) through the backplane network. As an example, a
2m×20m LIS contains ∼ 28, 500 antennas in the 4GHz band (assuming spacing

1 We refer to [6] and [7] for a complete list of surfaces.
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Figure 1: A LIS serving multiple users simultaneously.

of half wavelength), with the corresponding radio frequency (RF) and analog-
to-digital converter (ADC) blocks. Then, if each ADC uses 8bits per I and Q,
that makes a total baseband data-rate of 45.5Tbps. This is orders of magni-
tude higher than the massive MIMO counterpart, where this issue has been
analyzed [13–16]. In order to ensure feasibility of LIS without compromising
the expected benefit over Massive MIMO, in terms of spectral efficiency (mainly
due to the greater number of elements and proximity to users) there are two ap-
proaches: relax the requirements (antenna density, ADC resolution, hardware
quality, etc), and design proper algorithms/architecture allowing modulariza-
tion and scalability. In this paper we focus on the second approach.

LIS is fundamentally different to massive MIMO due to the potential very
large physical size of the surface and the amount of data to be handled, which
requires specific processing, resources and performance analysis. [17] is a pre-
liminary work addressing this issue by employing a distributed approach, where
panels exchange messages with neighbors in order to build the equalizers. Mul-
tiple iterations are expected to be needed until a certain level of convergence
is being achieved. The lack of a need of central processing unit (while build-
ing the equalizer) in this proposal is the key argument to ensure scalability.
Together with the architecture, [17] presents the corresponding performance
analysis. However, an evaluation of the required cost, from hardware point
of view, is missing. For the best of our knowledge, there is not publication
which performs analysis of the processing distribution, performance and the
corresponding cost together for LIS.

In this paper, we propose to tackle those challenges leveraging algorithm and
architecture co-design. At the algorithm level, we explore the unique features
of LIS (e.g., very large aperture) to develop uplink detection algorithms that
enable the processing being performed locally and distributed over the surface.
This will significantly relax the requirement for interconnection bandwidth. At
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the hardware architecture design level, we propose to panelize the LIS to sim-
plify manufacturing and installation. A hierarchical interconnection topology
is developed accordingly to provide efficient and flexible data exchange between
panels. Based on the proposed algorithm and architecture, extensive analysis
has been performed to enable trade-offs between system capacity, interconnec-
tion bandwidth, computational complexity, and processing latency. This will
provide high-level design guidelines for the real implementation of LIS systems.

2 Large Intelligent Surfaces

In this article we consider a LIS for communication purpose only. Due to the
large aperture of the LIS, the users are generally located in the near field. A
consequence of this is that the LIS can harvest up to 50% of the transmitted
user’s power. This is one of the fundamental differences to the current 5G
massive MIMO. One consequence of this difference, is that the transmitted
power in uplink/downlink is much lower than in traditional systems, opening
the door for extensive use of low-cost and low-power analog components.

Another important characteristic of LIS is that users are not seen by the
entire surface as shown in Fig. 1, which can be exploited by the use of localized
digital signal processing, demanding an uniform distribution of computational
resources and reduced inter-connection bandwidth, without significantly sacri-
ficing the system capacity.

2.1 System model

We consider the transmission from K single antenna users to a LIS with a
total area A, containing M antenna elements. We assume the antennas are
distributed evenly with a distance of half wavelength. The M × 1 received
vector at the LIS is given by

y =
√
ρHx + n, (1)

where x is the K × 1 user data vector, H is the M × K normalized channel
matrix such that ‖H‖2 = MK, ρ the SNR and n ∼ C N (0, I) is a M × 1 noise
vector.

Assuming the location of user k is (xk, yk, zk), where the LIS is in z = 0.
The channel between this user and a LIS antenna at location (x, y, 0) is given
by the complex value [1]

hk(x, y) =

√
zk

2
√
πd

3/2
k

exp

(
−2πjdk

λ

)
, (2)
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Figure 2: Overview of the LIS processing distribution and backplane
interconnection. Backplane interconnection in red.

where dk =
√
z2
k + (xk − x)2 + (yk − y) is the distance between the user and

the antenna, and Line of Sight (LOS) between them is assumed. λ is the
wavelength.

2.2 Panelized implementation of LIS

An overview of the processing distribution and interconnection in a LIS is
shown in Fig. 2. As it can be seen, we propose that a LIS can be divided
into units which are connected with backplane interconnections. We will use
the term panel to refer to each of these units. Each panel contains a certain
number of antennas (and transceiver chains). A processing unit, named Local
Digital Signal Processor (LDSP) is in charge of the baseband signal processing
of a panel. LDSPs are connected via backplane interconnection network to
a Central DSP (CDSP), which is linked to the backbone network. In the
backplane network, there are Processing Swiching Units (PSU) performing data
aggregation, distribution, and processing at different levels.

Based on the general LIS implementation framework, the number of panels
P , the panel area Ap, the number of antennas per panel Mp, the algorithms
to be executed in LDSP and CDSP, and the backplane topology are important
design parameters we would like to investigate in this paper.
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3 Uplink detection algorithms

The LIS performs a linear filtering

x̂ = Wy =
√
ρWHx + Wn (3)

of the incoming signal to the panels, where W is the K ×M equalization-filter
matrix, and x̂ the estimated value of x.

In this section we introduce two algorithms for uplink detection suitable for
the panelized implementation presented in the previous section. The outcome
of both is the formulation of the equalizer matrices {Wi} for panels.

3.1 Reduced Matched Filter (RMF)

The Reduced Matched Filter [18] is a reduced complexity version of the full MF,
where the Np strongest received users (Np ≤ K) by the i-th panel according
to their respective CSI are used as filtering matrix, this is

WRMF,i =
[
hk1 ,hk2 , ...,hkNp

]H
, (4)

where WRMF,i is the Np ×Mp filtering matrix of the i-th panel, and hn is
the Mp × 1 channel vector for the n-th user, {ki} represents the set of indexes
relative to the Np strongest users. The corresponding strength of user n is
defined as ‖hn‖2.

3.2 Iterative Interference Cancellation (IIC)

IIC is an algorithm that allows panels to exchange information in order to
cancel inter-user interference. The detailed description of the algorithm can be
found in [18], and the pseudocode for the processing at the i-th panel is shown
below, where Hi is the Mp×K local CSI matrix as seen by the i-th panel, Zi−1

Algorithm 1: IIC algorithm steps for i-th panel

Input : Hi,Zi−1

1 [Uz,Σz] = svd(Zi−1)

2 Heq = HiUzΣ
−1/2
z

3 Ueq = svd(Heq)

4 WH
i = Ueq(1 : Np)

5 Zi = Zi + HH
i WH

i WiHi

Output : Wi,Zi
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is the K × K matrix received from the (i − 1)-th panel (neighbor), and Wi

the local filtering matrix. Uz and Σz are the left unitary matrix and singular
values of Zi−1 respectively. Ueq is the left unitary matrix of Heq, and Wi is
made by the eigenvectors associated to the Np strongest singular values. Each
iteration of the algorithm is performed in a different panel. Matrix Z is passed
from one panel to another by dedicated links.

Ideally we would like to find the set of filtering matrices {Wi} providing the
maximum sum-rate capacity for a given channel information set {Hi}. Solving
this optimization problem in a distributed way is not trivial, so in the IIC
approach we solve a local optimization problem in each panel and share the
result with neighbor panels. Panel i will calculate Wi while taking the other
matrices in {Wi} as given (fixed and not subject to optimization) in the form of
Zi−1. This matrix Zi−1 acts as a noise covariance matrix in the local sum-rate
optimization problem carried out locally.

4 Local DSP and hierarchical interconnection

In this session, we describe the corresponding LDSP and backplane architecture
that supports both the RMF and IIC algorithms. We assume the OFDM-based
5G New Radio (NR) frame structure and consider uplink detection only.

4.1 Local DSP in each panel

The architecture of the LDSP is depicted in Fig. 3a. After the RF and ADC,
FFT blocks perform time-to-frequency domain transformation. The processing
of the uplink signal is divided in two phases: formulation and filtering. During
the formulation phase, the Channel Estimation block (CE) estimates a new
Hi for each channel coherence interval. In this paper we assume perfect chan-
nel estimation. The Filter Coefficient calculation (FC) block receives Hi and
computes the filtering matrix Wi. FC performs complex conjugate transpose
in the case of RMF and executes Algorithm 1 in the case of IIC. Wi is then
written to the memory. During the filtering phase, the Filters block reads Wi

and apply it to the incoming data. The Filters block reduces the Mp× 1 input
to a Np × 1 output (Np � Mp), which is sent to the backplane for further
processing.

4.2 Hierarchical backplane interconnection

To reduced the required interconnection bandwidth, a hierarchical backplane
topology is developed to fully explore the data locality in the proposed al-
gorithms. As shown in Fig. 3a, the backplane is divided into local direct
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(a) LDSP architecture and hiarachical backplane interconnection.
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(b) Tree-based global interconnection with distributed processing-switching
units.

Figure 3: Overview of the local DSP unit in each panel and the back-
plane interconnection topology.



150 PAPER IV

Table 1: System parameters

Parameter Definition

Mp number of antennas per panel
Ap panel area
Np number of filtered outputs per panel
wfilt bit-width of the panel output
K number of users
fB signal bandwidth (Hz)
Ncs number of coherent subcarriers

panel-to-panel link (marked in blue) and global interconnection (marked in red
and will be described in detail in the next sub-section). The local link is dedi-
cated for low-latency data exchange between two neighboring panels, e.g., the
Zi−1 in the IIC algorithm. The global interconnection will aggregate the Np×1
filtering result from each panel to CDSP for final decision.

4.3 Tree-based global interconnection and processing

For the global interconnection, we propose to use a tree topology with dis-
tributed processing to minimize latency (the latency grows logarithmically with
the number of panels), as shown in Fig. 3b. There are several levels of process-
ing switching units (PSU) in the tree to aggregate and/or combine the panel
outputs. These hierarchical PSUs can reduce the overall bandwidth require-
ment of the backplane and also the processing load of CDSP. Fig. 3b also
shows the detailed block diagram of a PSU. It is flexible to support both RMF
and IIC, and can be extended for other algorithms. Combination and bypass
functionalities are used in RMF, while for IIC the streams are bypassed to the
CDSP for final decision.

5 Implementation cost and simulation results

In this section, we analyze the implementation cost of the proposed uplink
detection algorithms with the corresponding implementation architecture, in
terms of computational complexity, interconnection bandwidth, and process-
ing latency. The trade-offs between system capacity and implementation cost
is then presented to give high-level design guidelines. For convenience, we
summarize the system parameters in Table 1.
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Table 2: Computational complexity in MAC/s/m2.

Method RMF IIC

Cfilt
NpMpfB

Ap

NpMpfB
Ap

Cform
KMpfB
NcsAp

fB(30K3+bK2+cK)
NcsAp

5.1 Computational complexity

In Table 2, we summarize the required computational complexity for both
RMF and ICC algorithms. The complexity includes both formulation phase
and filtering phase and are normalized to panel area AP . In the filtering phase,
the operations are the same for RMF and ICC, which is applying a liner filter
of size NP ×MP to the MP × 1 input vector.

The formulation phase of RMF includes the computation of ‖h‖2 for each
user. For the IIC algorithm, the steps required for the formulation phase are
shown in Algorithm 1. For step 1, which consists of of a singular value decompo-
sition (SVD) of the K×K Gramian matrix Zi−1, complexity is 17K3 [19]. Step
2 has a complexity of (Mp+1)K2, step 3 requires a complexity of 4M2

pK+13K3,
and step 4 and 5 need MpKNp + NpK

2. In Table 2, b = Mp + Np + 1 and
c = 4M2

p +MpNp.

5.2 Interconnection bandwidth

The normalized (to panel area) bandwidth requirement for the global intercon-

nection can be formulated as Rglobal =
2wfiltNpfB

Ap
[bps/m2]. The corresponding

bandwidth requirement for the local panel-to-panel link is (only needed for the

IIC algorithm) Rlocal = 2wWK
2fB

NcsAp
[bps/m2].

5.3 Processing latency

The processing latency of the filtering phase can be formulated as Lfiltering =
TFilter +log4(P )TPSU, where TFilter is the time needed for performing the linear
filtering and TPSU represents the PSU processing time as well as the PSU-to-
PSU communication time.

The latency of the formulation phase differs for RMF and IIC. For RMF,
the formulation phase is done in parallel in all the panels. The corresponding
latency Lform,RMF depends on the computational complexity Cform, RMF, the
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clock frequency, and the available parallelism in the computation. On the
other hand, the latency for IIC includes both computation and panel-to-panel
communication. The worst case is Lform,IIC = PTcompute,IIC+(P−1)Tpanel-panel,
where Tcompute, IIC is the time for computing the filter coefficient and Tpanel-panel

is the transmission latency between two consecutive panels.

5.4 Results and trade-offs

The scenario for simulation is shown in Fig. 4. Fifty users (K = 50) are
uniformly distributed in a 40m × 45m (depth x width) area in front of a
2.25m × 22.5m (height x width) LIS. Signal bandwidth and carrier frequency
are 100MHz and 4GHz, respectively.

22.5m

Figure 4: Top view of the simulation scenario.

The average sum-rate capacity at the interface between panels and process-
ing tree for both algorithms is show in Fig. 5. The figures show the trade-offs
between computational complexity (Cfilt in the vertical axis) and interconnec-
tion bandwidth (Rglobal in the horizontal axis). Dashed lines represent points
with constant panel size Ap, which is another design parameter for LIS im-
plementation. To illustrate the trade-off, we marked points A, B, and C in
the figures, presenting 3 different design choices to a targeted performance of
610bps/Hz. Comparing the same points in both figures, it can be observed
the reduction in complexity and interconnection bandwidth of IIC compared
to RMF. We can also observe as small panels (e.g., point C comparing to point
A) demand lower computational complexity in expense of higher backplane
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(a) RMF method.
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(b) IIC method.

Figure 5: Sum-rate contour plot as a function of filtering complexity
(Cfilt) and inter-connection bandwidth (Rglobal). Carrier wavelength (λ)
= 7.5cm, number of users (K) = 50, SNR = 0dB, signal bandwidth
(fB) = 100MHz, ADC resolution (wfilt) = 8bits, number of coherence
subcarriers (Ncs) = 12, and antenna spacing is λ/2.
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bandwidth. Once Ap is fixed, the trade-off between system capacity and im-
plementation cost (computational complexity and interconnection data-rate)
can be performed depending on the application requirement.

6 Conclusions

In this article we have presented distributed processing algorithms and the
corresponding hardware architecture for efficient implementation of large intel-
ligent surfaces (LIS). The proposed processing structure consists of local panel
processing units to compress incoming data without losing much information
and hierarchical backplane network with distributed processing-switching units
to support flexible and efficient data aggregation. We have systematically an-
alyzed the system capacity and implementation cost with different design pa-
rameters and provided design guidelines for the implementation of LIS.

As a future direction in our research, we aim for the implementation of a
LIS, as a proof-of-concept of this technology.
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Distributed and Scalable Uplink

Processing for LIS: Algorithm,

Architecture, and Design Trade-offs

The Large Intelligent Surface (LIS) is a promising technology in the

areas of wireless communication, remote sensing and positioning. It con-

sists of a continuous radiating surface located in the proximity of the users,

with the capability to communicate by transmission and reception (replac-

ing base stations). Despite its potential, there are numerous challenges

from an implementation point of view, with the interconnection data-rate,

computational complexity, and storage the most relevant ones. In order to

address these challenges, hierarchical architectures with distributed pro-

cessing techniques are envisioned to be relevant for this task, while ensur-

ing scalability. In this work we perform algorithm-architecture codesign to

propose two distributed interference cancellation algorithms, and a tree-

based interconnection topology for uplink processing. We also analyze

the performance, hardware requirements, and architecture trade-offs for

a discrete LIS, in order to provide concrete case studies and guidelines for

efficient implementation of LIS systems.
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1 Introduction

Large Intelligent Surface (LIS) has been identified as one of the key technologies
for beyond 5G [3–6]. In Fig. 1 we show the concept of a LIS serving multiple
users simultaneously. The LIS is a continuous radiating surface located in the
proximity of the users. Each part of the surface is capable of receiving and
transmitting electromagnetic (EM) waves with a certain control, so the EM
waves can be focused in 3D space with high resolution, opening the door to a
new world of possibilities for power-efficient communication.

Apart from LIS, another type of intelligent surface has been studied in
the literature, which can be classified within the smart radio environment
paradigm [7]. This consists on a wireless channel that can be controlled to
facilitate the transmission of information, as opposed to traditional wireless
communication systems, where the channel is imposed by nature, and the trans-
mitter and receiver adapt to changes in it. One example of this new trend is the
reconfigurable surfaces, known as intelligent reflecting surfaces, programmable
metasurfaces, reconfigurable intelligent surfaces (RIS), and passive intelligent
mirrors among others [8–14], which consist of electronically passive surfaces
with the capability to control how the waves are reflected when hitting their
surface. Furthermore, the term LIS has also been recently used for such passive
surfaces [15–17], which further adds to the confusion. While RIS can be seen as
part of the radio channel, LIS acts as an active base station/access point. LIS
contains full transmitter and receiver chains, together with baseband process-
ing capabilities. A list of the main differences between RIS and LIS is provided
in Section 2.2.

Most of the research on LIS has been focused on concept exploration [3–6],
system performance [18, 19], and communication modeling [20, 21]. However,
the implementation aspects have not been explored yet. This paper aims to
cover this area, by identifying and addressing implementation challenges, and
providing design guidelines for an efficient implementation of LIS.

The first step to make LIS implementable is to make it discrete (based on
discrete antennas). It is known [3] that a continuous LIS can be replaced by a
discrete one with no practical difference in achieved capacity. However, an effi-
cient implementation of a discrete LIS is still very challenging, as it is expected
to be made up of a very large number of antennas with the corresponding re-
ceiver (and transmitter) chains, which translates into a tremendous amount
of interconnection data-rate, that needs to be routed to the Central Digital
Signal Processor (CDSP) through the backplane network. This centralized
approach has already been employed in the LuMaMi Massive multiple-input
and multiple-output (MIMO) testbed [22], with a need of 100 bidireccional
links, and a total aggregated interconnection bandwidth of 5GB/s. In case of
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Figure 1: A LIS serving multiple users simultaneously.

LIS, this number is much higher. To illustrate, let’s assume a 1.2 m × 1.2
m array containing 1,024 antennas in the 4GHz band (assuming spacing of
half wavelength), with the corresponding radio frequency (RF) and analog-to-
digital converter (ADC) blocks. Then, if each ADC uses 12 bits per I and Q,
that amounts to a total rate of ∼ 48Tb/s1. This is three orders of magnitude
higher than the massive MIMO counterpart [22], where this issue has been
previously addressed [23–26]. Consequently there is a need to come up with
specific architectures and algorithms in order to overcome this bottleneck.

We propose to tackle those challenges by algorithm and architecture co-
design. At the algorithm level, we explore the unique features of LIS (e.g.,
very large aperture) to develop distributed algorithms that enable the process-
ing being performed locally, near the antennas. This will significantly relax
the requirement for interconnection bandwidth. At the hardware architecture
design level, we propose to panelize the LIS in order to facilitate processing
distribution, scalability, manufacturing, and installation. A hierarchical inter-
connection topology is developed accordingly to provide efficient and flexible
data processing, and data exchange between panels and CDSP. Based on the
proposed algorithm-architecture, extensive analysis has been performed to en-
able trade-offs between system capacity, interconnection bandwidth, computa-
tional complexity, and processing latency. This will provide high-level design
guidelines for the real implementation of LIS systems. The contributions of this
work are originated from our previous work in [27] and [1], being considerably
extended in the present paper. The contributions of this paper compared to
previous ones are summarized as follows:

• While the preliminary work presented in [1] covers baseband processing
in the panels, and an analysis of the complexity and performance, in the

1 Assuming 5G-NR standard, and sampling rate of 480, 000 · 4, 096 ∼ 2Gs/s.
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present work we introduce a new interconnection topology that expands
the dimensionality reduction capabilities. Furthermore, in the present
work we also perform a more extensive analysis at system level with solid
examples.

• Our work in [27] is a preliminary study addressing the processing distri-
bution in LIS, that considers panels exchange messages with all neighbors
(2D mesh structure) in an iterative fashion. This is done in a fully de-
centralized manner with minimal intervention of CDSP. In contrast, in
present work we simplify the interconnection protocol for ease of imple-
mentation and reduced processing latency. The algorithms presented in
this work are fundamentally different from the ones in [27].

This article is organized as follows: Section 2 introduces the LIS concept,
then the system model is presented in Section 3. Our proposed algorithms are
described in Section 4, and the architecture description in Section 5. Analysis
and design trade-offs are discussed in Section 6, and finally conclusions in
Section 7.

Notation: In this paper, lowercase, bold lowercase and upper bold face let-
ters stand for scalar, column vector and matrix, respectively. The operations
(.)T , (.)∗ and (.)H denote transpose, conjugate and conjugate transpose re-
spectively. IK represents the identity matrix of size K ×K. Operator diag(.)
returns a block diagonal matrix built with the list of matrices in the argument.

2 Large Intelligent Surfaces

This section describes the key features of LIS, by juxtaposing them with the
corresponding features of massive MIMO and RIS. We also present the general
concept of panelized LIS, which is proposed to ensure scalability and imple-
mentation feasibility.

2.1 Differences with Massive MIMO

Multi-antenna technology has evolved in recent years in the form of Massive
MIMO, where the number of antennas in the base station (BS) grows up to
∼ 100, bringing many benefits from communication and energy consumption
points of view [28]. LIS goes even further by increasing the number of antennas
by one or two orders of magnitude, which brings gains beyond what massive
MIMO can provide. This results in fundamental differences between these two
technologies, which are listed as follows:
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• LIS aperture is larger in comparison to Massive MIMO, which translates
into higher directivity and spatial multiplexing capabilities.

• The users are close to the LIS in relation to its size, being in the near
field region, as opposed to massive MIMO (and other cellular access tech-
nologies) where users are in the far field region. Being in the near field
requires the use of channel models based on spherical waveforms, rather
than the planar wave approximation, whose use is generalized in massive
MIMO (and other cellular technologies).

• Due to the lower path loss (owing to the close proximity between users
and LIS), and the large antenna gain, transmit power is expected to be
relatively small for both sides of the communication, opening the door
for extensive use of low-cost and low-power analog components.

• Received power distribution from users is not uniform throughout the
surface as illustrated in Fig. 1. The same user’s signal is received with
different signal intensity from different parts of the LIS. This can be ex-
ploited by the use of localized digital signal processing, leading to a more
efficient use of computational resources, and interconnection bandwidth,
without significantly sacrificing the system performance. This is in con-
trast with Massive MIMO (and other cellular technologies), where users
are seen with same power across the antenna array.

2.2 Differences with RIS

As commented in the Introduction, LIS and RIS are fundamentally different
technologies. The main differences are summarized here:

• RIS acts as a programmable reflector between the radio access point and
the users, forming part of the channel. Typically it is configured in a way
to improve a certain quality metric, such as capacity. LIS acts as a radio
access point capable of communicating directly with the users.

• LIS contains full receivers (in contrast to most of RIS) and baseband
processing capabilities to obtain channel state information (CSI) from
pilots transmitted by users. This allows an accurate calculation of the
corresponding equalization matrix, and further detection within LIS.

2.3 Panelized implementation of LIS

Given that LIS is physically large and there is a need for distributed processing
close to the antennas, we propose to divide the LIS into square units or panels.
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(a) LIS panel with 64 dual-port antennas (b) Internal LIS panel architecture

(c) Fully connected LIS using 16 panels (d) Partially connected LIS using 6 panels

Figure 2: LIS architecture components in the form of a) panel, b) each
with internal analog and digital processing resources, synchronization,
and digital back-haul. Identical panels can be combined in arbitrary
configurations, e.g., fully or partially connected. Each panel contributes
with its own processing resources, making the available resources for
distributed processing fixed per area unit.
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Panelization allows the LIS to adapt to a wide range of scenarios by adding,
moving, or removing panels as desired, and consequently changing the size and
form of the LIS. Different shapes can be achieved by placing the panels in
different formations: square, rectangular or distributed (panels not physically
together, but covering a certain area). It also simplifies the system design,
verification, and fabrication by only focusing on the panel as a building block,
instead of covering all possible LIS sizes and forms. Additionally, the installa-
tion becomes simpler as the panel weighs less, and hence is easier to lift and
mount.

A high level overview of the LIS architecture components, processing distri-
bution, and interconnection is shown in Fig. 2. Panels are composed of a group
of antennas forming a square-shaped array as depicted in Fig. 2a. Each panel
contains internal processing resources in the analog and digital domains, and
interconnection capabilities to connect the panel to other panels (Fig. 2b). As
mentioned before, panels provide freedom to assembly the LIS. As an example,
Fig. 2c shows 16 panels fully connected, forming a 1024-antenna LIS, while in
Fig. 2d, 6 physically distant panels are connected in a distributed fashion (e.g:
covering a certain volume in space, such as an office, or a theater).

3 System model

A conceptual view of a discrete LIS system is presented in Fig. 3. We consider
K users transmitting to the LIS, which is divided in three parts: front-end,
backplane, and CDSP. The term front-end will be used to refer to the per-
antenna processing which is performed locally at each panel, and backplane to
the related processing involving data aggregation, distribution, and processing
for further dimensionality reduction. The backplane can be made of multiple
levels and processing nodes as we will present in Section 5. The processing unit
in the front-end is the Local DSP (LDSP), while the one in the backplane is
the Backplane DSP (BDSP). The data are finally collected by the CDSP for
detection. A mathematical model for the communication and the LIS-baseband
processing is also derived in this section.

We consider the transmission from K single antenna users to the LIS con-
taining M active antenna elements (input dimensionality). The LIS is divided
into P square-shaped panels, each with Mp elements, such that Mp · P = M .
Each panel has an output dimensionality of Np, and the total number is N ,
such that N = Np · P . Panels are connected to the backplane, which collects
and process the output data, and provides the CDSP with K values to ensure
proper detection. The data dimensionality is reduced from the antenna ele-
ments interface (vector y ∈ CM in the figure) to the backplane input (z ∈ CN )
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Figure 3: K users transmitting to an M -element discrete-LIS formed
by P panels.

due to the front-end, and from this to the CDSP interface (s ∈ CK) due to
backplane processing. M � K is assumed for the rest of the article.

The M × 1 received vector at the LIS is given by

y =
√
ρHx + n, (1)

where x is the transmitted K × 1 user data vector, and E{xxH} = IK . H
is the channel matrix, and n ∼ C N (0, I) is an M × 1 noise vector, that it is
assumed with identity covariance for simplicity without loss of generality. This
convention leaves ρ as the ”transmit” signal-to-noise ratio (SNR) and therefore
it is dimensionless.

Assuming the location of user k is (xk, yk, zk), where the LIS is at z = 0,
the channel between this user and a LIS antenna at location (x, y, 0) is given
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by the complex value [3]

hk(x, y) =

√
zk

2
√
πd

3/2
k

exp

(
−2πjdk

λ

)
, (2)

where dk =
√
z2
k + (xk − x)2 + (yk − y)2 is the distance between the user and

the antenna, λ is the wavelength, and Line of Sight (LoS) propagation between
them is assumed. The channel matrix can be expressed as

H = [HT
1 ,H

T
2 , · · ·HT

P ]T , (3)

where Hi is the Mp×K channel matrix of the i-th panel. Each panel is assumed
to have perfect knowledge of its local channel.

3.1 Dimensionality reduction: a lossless or lossy process

As stated previously, our LIS architecture can be seen as a system to reduce
the dimensionality of the very large incoming signal (M × 1) down to a value
required for detection at the CDSP (K × 1). We can classify this process
attending to the criteria of preserving information as: lossless and lossy. A
lossless process maintains the mutual information between CDSP input and
user’s data, formally expressed as

I(s; x) = I(y; x),

so the system can achieve channel capacity performance if optimal processing
is done at CDSP. Initial progress on the trade-offs of distributed processing for
MIMO systems in the lossless approach can be seen in [29], and more recently
in [30]. In this regime Np ≥ min{Mp,K}.

In spite of the attractiveness of achieving optimal performance, the loss-
less approach imposes a high cost from an implementation point of view, as it
requires larger panel output dimensionality, which translates in higher intercon-
nection bandwidth throughout the backplane. In this article we seek to achieve
a good compromise between implementation cost and performance, which leads
us to explore the case Np ≤ Mp, and especially Np � Mp. By selecting this
regime it is expected to significantly reduce the interconnection bandwidth at
the cost of a loss in performance, which can be expressed formally as

I(s; x) ≤ I(y; x).

Our approach is to include enough flexibility into the system in order to ob-
tain sufficient working points to establish a rich trade between implementation
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cost and performance, which in fact, allows the system to adapt to a large vari-
ety of scenarios during the deployment phase. As we will see in Section 6, it is
possible achieve close-to-channel-capacity conditions with significant reduction
in implementation cost.

Filtering

In order to achieve dimensionality reduction, linear filtering is employed for the
incoming data, and to achieve enough flexibility, separate filters for front-end
and backplane are considered.

Let us consider the panelized architecture shown in Fig. 3, where each panel
performs local per-antenna processing on the received signal and delivers the
result to the backplane. There is no cooperation among panels during front-end
filtering, and as a result the filter matrix WP has the following structure

WP = diag(WP,1,WP,2, · · · ,WP,P ) (4)

where WP,i is the Mp ×Np matrix filter of the i-th panel. Then the front-end
output is given by

z = WH
P y =

√
ρWH

P Hx + n̂, (5)

where n̂ = WH
P n is the filtered noise. It should be noted that the size of z is

N , and N ≤M . Finally, the backplane filters z in order to obtain s as

s = WH
B z, (6)

which is used by CDSP for detection.

3.2 Sum-rate capacity

The mutual information between z and x is I(x; z) = H(z) − H(z|x), where
H(.) represents entropy. Assuming white Gaussian signaling transmitted by
users, the mutual information for a given H and WP can be further expanded
as

I(x; z) = log2 |Σzz| − log2 |Σn̂n̂|
= log2 |ρWH

P HHHWP + WH
P WP|

− log2 |WH
P WP|,

(7)

where Σzz and Σn̂n̂ are the covariance of the multivariate complex Gaussian
vector z and n̂ respectively. If WP is a full-rank matrix, and taking into account
that M ≥ N , then (WH

P WP)−1 exists and (7) can be rewritten as

I(x; z) = log2 |IK + ρHHWP(WH
P WP)−1WH

P H|. (8)
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We are interested in maximize the sum-rate capacity for this front-end ar-
chitecture, and it will be the maximum of (8) over all possible WP for a given
H. If we take into account the block structure of H and WP presented in (3)
and (4) respectively, the sum-rate capacity at the z interface is given by

Cz = max
{WP,i}

log2 |IK + ρ

P∑

i=1

HH
i WP,i(W

H
P,iWP,i)

−1WH
P,iHi|

= max
{Qi:QH

i Qi=INp}
log2 |IK + ρ

P∑

i=1

HH
i QiQ

H
i Hi|,

(9)

where Qi is a Mp ×Np semiunitary matrix, consisting of the Np-first singular
vectors of WP,i. For the last expression in (9), it is assumed that all matrices
(WH

P,iWP,i) are full-rank, implying that the inverses exist.
As it will be shown in the next section, selection of {WP,i} is done in a way

that each element is semiunitary, which leads to white noise at the front-end
output. Therefore, once the front-end filters are selected, they can be seen as
part of the channel by the backplane, and we can apply the same reasoning to
obtain WB, leading to2

Cs = max
WB

log2 |IK + ρH̃HWB(WH
B WB)−1WH

B H̃|, (10)

where H̃ = WH
P H is the equivalent channel.

4 Distributed algorithms for dimensionality re-
duction

In this section we introduce two algorithms to obtain the filtering matrices
{WP,i} and WB, which are executed in the LDSP and BDSP respectively.
The way the algorithms are explained here refers to the panels for simplicity,
but can be extended to the backplane by using H̃ instead of H, and P equal to
the number of processing nodes in backplane. More details about the backplane
case can be found in Section 5.

The first of the algorithms is a straightforward approach with relatively low
computational complexity based on the known Maximum Ratio Combining or
Matched Filter (MF) method, which we select conveniently as a comparison
baseline for our proposed algorithm.

2 A detailed explanation of this process can be found in Section 5.
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4.1 Reduced Matched Filter (RMF)

RMF consists of a reduced version of the known MF method. In this case, the
filter Wi is built by the Np strongest columns of Hi. The strenght of a column
hn is defined as ‖hn‖2. The Mp ×Np filtering matrix of the i-th panel is then
expressed as

WRMF,i =
[
hk1 ,hk2 , ...,hkNp

]
, (11)

where hn is the Mp × 1 channel vector for the n-th user, and {ki} the set of
indexes relative to the Np strongest users3.

When RMF is applied at the panel level as local filtering, each output is
associated to a certain user. Therefore, nodes in the backplane can combine
data coming from the same user, in a similar fashion as in distributed MF [31].
The result of the filtering is available at CDSP input for final detection (hard or
soft). It is important to note that in this method front-end processing nodes can
work independently, without sharing channel related information. This saving
in interconnection bandwidth comes with a performance loss as described in
Section 6.

4.2 Iterative Interference Cancellation (IIC)

The IIC algorithm aims to solve the optimization problem described in (9).
It is an iterative algorithm based on a variant of the known multiuser water-
filling method [32]. The pseudocode is shown in Algorithm 1. The algorithm

Algorithm 1: IIC algorithm pseudocode

Input : {Hi}
Preprocessing: Qi = 0, i = 1 · · ·P

1 repeat
2 for i = 1, 2, ..., P do

3 Zi = IK + ρ
∑P
j=1,j 6=i H

H
j QjQ

H
j Hj

4 Qi = argmaxQi
|ρHH

i QiQ
H

i Hi + Zi|

5 subject to Q
H

i Qi = INp

6 end

7 until sum-rate converges;
Output : {Qi}

3 This is connected to the non-uniform user power distribution in the LIS, described in
Section 2.1, which translates to the fact that a panel may not see all users with same power,
which depends on their physical proximity.
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splits the joint optimization problem (9) into P small ones, which are solved
sequentially. The goal of the algorithm is to calculate the Mp × Np matrices
{Qi}. The product QiQ

H
i is low-rank, as Np ≤ Mp, which exploits the fact

that only a few users are conveniently seen by each panel (ideally this number
is Np). The fundamental difference between our current algorithm and [32] is
due to the low-rank constraint present in our proposed algorithm.

At each iteration of the algorithm, the K × K matrix Zi is obtained as
intermediate result, which contains contribution from the rest of the panels,
and plays the role of noise covariance in the sum-rate optimization problem
formulated in line 4. The algorithm iterates over all panel indexes, as many
times as needed until a certain convergence criterion is achieved.

4.3 Processing distribution

It is natural to map each iteration of the IIC algorithm to each panel, as it
requires local CSI, while Zi can be computed also locally as an update of Zi−1.
Therefore, each panel computes and shares Zi with the neighbor panel i + 1,
while Qi is stored locally for further filter calculation, and not shared.

We propose that the panels are connected by fast local and dedicated con-
nections for the exchange of data related to matrix Z. In general, we can say
that the matrix Z is passed from panel to panel using the dedicated connections
depicted in Fig. 3. This decentralized approach is described in Algorithm 2
for a certain panel i4. The solution to the local optimization problem at the

Algorithm 2: Decentralized IIC algorithm at i-th panel

Preprocessing: Z0 = IK
Input : Hi,Zi−1

1 Qi = argmaxQi
|ρHH

i QiQ
H

i Hi + Zi−1|

2 subject to Q
H

i Qi = INp

3 Zi = Zi−1 + ρHH
i QiQ

H
i Hi

Output : Qi,Zi

i-th panel is Qi = [ũ1, ũ2, · · · , ũNp ], where ũn is the n-th left-singular vector

of H̃i = HiUzΣ
−1/2
z , corresponding to the n-th ordered singular value, and

Zi−1 = UzΣzU
H
z the eigen-decomposition of Zi−1. See Appendix-B for proof.

The pseudocode for the processing at the i-th panel is shown in Algorithm
3, where Ũ is the left unitary matrix of H̃, and Qi is made by the eigenvectors

4 For simplicity and to limit latency, only one iteration to the set of panels is considered
throughout the rest of this article. We are aware that increasing the number of iterations
improves the performance.
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associated to the Np strongest singular values.

Algorithm 3: Decentralized IIC algorithm processing steps for i-th panel

Input : Hi,Zi−1

1 [Uz,Σz] = svd(Zi−1)

2 H̃i = HiUzΣ
−1/2
z

3 Ũ = svd(H̃i)

4 Qi = Ũ(:, 1 : Np)

5 Zi = Zi−1 + ρHH
i QiQ

H
i Hi

Output : Qi,Zi

4.4 Selection of W in IIC algorithm

In the single panel case, the optimal selection of Q leads to Q = ŨH
H , where

ŨH is an M ×N semiunitary matrix made by the N -first left singular vectors
of H. Then, capacity will be given by the first N largest singular values of H.
Once Q is known, in order to select W, we observe that W = QΣ̃WVH

W , where

Σ̃W is a diagonal N × N matrix containing the N largest singular values of
W. Selection of Σ̃W and VW does not play any role in the sum-rate capacity,
but the right choice can provide some benefits in other areas. In this work,
Σ̃W = IN is chosen to make W a semiunitary matrix, which is beneficial
in terms of reduction of interconnection bandwidth, that will be explained in
next section. Selection of VW can be arbitrary, and for simplicity VW = IN is
selected. However, other unitary matrices are also valid, and could offer some
advantages, but this is not covered in the present work.

In the multiple panel case, (9) represents a joint optimization problem
among the matrices in the set {Qi}. Similarly to the single panel case, Wi =

QiΣ̃W,iV
H
W,i. Therefore, once Qi is obtained, the selection of Σ̃W,i and VH

W,i

will entail identical considerations, this is: Σ̃W,i = INp
, and VH

W,i = INp
.

5 Interconnection topology and DSP architec-
ture

In this section, the proposed LIS architecture is presented, including intercon-
nection topology, and LDSP internal architecture able to support both the
RMF and IIC algorithms.
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5.1 Tree-based global interconnection and processing

Figure 4: Front-end and backplane tree topology and interconnection
for a 64-panels LIS. Each panel contains an LDSP for distributed MIMO
processing. Additionally, each node in the tree contains a BDSP unit,
which aggregates data from four nodes, processes, and delivers the result
to the next node after corresponding dimensionality reduction, this is:

N
(i+1)
b ≤ 4N

(i)
b , i = 1, 2, and N

(1)
b ≤ 4Np.

In order to further increase the dimensionality reduction of the incoming
data, while performing spatially local processing, we propose a hierarchical in-
terconnection based on tree topology. The tree represents a distributed back-
plane, where front-end processing nodes are the leaves, and their outputs are
combined in backplane nodes through multiple levels, reducing the total in-
terconnection bandwidth each time, until the resulting data is delivered to the
CDSP. This process is shown in Fig. 4. The main idea is to enable system scala-
bility by adding levels in the tree as the LIS grows (more panels), while keeping
the CDSP resource demands constant (dependent only on K). Another benefit
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of the tree topology is its low latency, as the latency grows logarithmically with
the number of panels.

As shown in the figure, the LIS backplane constitutes a 4-ary tree, which
acts as an adaptation between the panels and the CDSP, introducing an extra
dimensionality reduction of the incoming signal down to a level which can be
efficiently transfered and handled by the CDSP, but high enough to allow good
detection performance. Each node in the backplane contributes to WB, and
aggregates data from four nodes, processes it and delivers the output to the
next node. The dimensionality of the output is lower or equal to the input, this

is: N
(i+1)
b ≤ 4N

(i)
b , i = 1, 2, and N

(1)
b ≤ 4Np. This reduction is accumulated

for the different consecutive levels of nodes that the signal goes through.
Let us assume the panels, during the formulation phase and after they ob-

tain their local filtering matrices {WP,i} (according to the selected algorithm),
deliver the products {WH

P,iHi} (each with size Np ×K) to the corresponding
node in the backplane. This can be seen as the result of filtering over the in-
coming pilot signals, which requires the same amount of data as the filtering
phase. These products are the equivalent channel between the panel output
and the users. A node aggregating the outputs from four panels (4Np) can see
those incoming values as an equivalent channel including the wireless channel
and the four panels combined. The dimensionality of this equivalent channel
is 4Np, which is lower compared to the 4Mp at the antenna level, but we ex-
pect it to carry most of the captured channel capacity. Taking into account
that {WP,i} are selected in the panels as semiunitary matrices according to
Subsection 4.4, then the noise will be also white at the panel output. And
filtered noise from the four adjacent panels is still white due to the indepen-
dence property of noise of different antennas/panels. Therefore at any node in
the backplane connected to the panels, the same model as in (1) applies with
the equivalent channel instead of the wireless channel, and the filtered noise
instead of the noise at antennas, but with same covariance (identity matrix5).
Refer to Appendix-C for proof. For the tree-based backplane proposed here,

the corresponding filtering matrices for first level, {W(1)
B,i}, can then be ob-

tained by following the same procedures described in Section 4. This process
can be repeated recursively for all levels of the tree up to the CDSP, which
receives the total equivalent K ×K channel matrix between the CDSP input
interface and the users6. This is used by the CDSP for detection. The general
formulation algorithm to be executed at a certain LDSP or BDSP follows the

5 In case of not using semiunitary matrices, the noise gets colored and the covariance needs
to be taken into account for sum-rate capacity optimization, therefore this noise covariance
matrix needs also to be transfered between nodes in the tree. Selecting semiunitary matrices
for the filters saves from this requirement. 6 We remark that this procedure is a suboptimal
form (from performance point of view) of solving (10), while allowing processing distribution
and lower interconnection data-rate.
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steps shown in Algorithm 4, where Heq is the equivalent channel matrix from
current node input interface to users7.

Algorithm 4: General formulation algorithm for tree-based LIS

Input : {Heq,Z}
1 if algorithm == IIC then
2 {W,Z} = IIC(Heq,Z)
3 else
4 W = RMF(Heq)
5 end

Output: {WHHeq,Z}

5.2 DSP in panel and backplane nodes

The internal architecture of the panel together with LDSP is depicted in Fig.
5. LDSP comprises all digital signal processing involved in the uplink tasks.
After the RF and ADC, digitalized incoming signal is processed by fast Fourier
transform (FFT) blocks to perform time-to-frequency domain transformation.
During the formulation phase, the channel estimation block (CE) estimates
a new Hi for each channel coherence interval8. The spatial processing unit
(SPU), and specifically the formulation unit (FU) block, receives Hi and com-
putes the filtering matrix WP,i (in the figure the subscript P is omitted for
convenience). FU performs complex conjugate transpose in the case of RMF,
and follows steps in Algorithm 3 in the case of IIC. WP,i is then written to the
memory. During the filtering phase, incoming data vector (yi) gets multiplied
by WP,i, and its dimensionality reduced from Mp to a Np (Np ≤ Mp), which
is then sent to the backplane for further processing.

The SPU is shown in the figure as part of the LDSP, but it is also present
in the BDSP architecture. SPU is in charge of data collection, filtering, and
distribution. It also performs matrix filtering calculation and storage. In case
of the BDSP architecture, SPU is its main processing element, as in this case
FFT and channel estimation are not needed9. The filtering matrix can be either

W
(j)
B,i, or WP,i, depending on whether it is part of BDSP or LDSP respectively,

and it supports both algorithms. The multiplexers allow to switch between the
filtering and formulation phase. It is important to notice that the same input

7 Our experimental results shows no performance improvement by sharing Z among back-
plane nodes. Due to this reason its use is skipped in Fig. 4 8 In this paper, perfect channel

estimation is assumed. 9 Even tough the SPU as a processing unit is identical at each node,
data dimensionality may differ from one level to another in the system tree
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Figure 5: Overview of the Local DSP and spatial processing unit (SPU)
in a panel. Panel-panel, and panel-backplane connections are also shown.
Blue lines are used only in formulation phase. Blue letters relate to data
which is generated/transfered during formulation. Red ones refer to fil-
tering phase. Green lines are used in both phases. In those cases, blue
and red data structures are shown above and below the line. ctrl rep-
resents control line to switch between formulation and filtering phases.
Wi represents WP,i, and W the end-to-end filtering matrix, including
panels and processing tree.
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and output data ports are used during both phases. The dimensionality in
both phases is the same. This design decision of using the same SPU archi-
tecture throughout the LIS is highly desirable, as it simplifies the design time,
verification, and cost of the system considerably. Furthermore, by using the
same unit, some or all of the backplane nodes may potentially be mapped onto
the panels, therefore reducing the number of physical units in the system (at
the expense of increasing the workload in panels).

6 Performance analysis and design trade-offs

In this section, we analyze the performance and implementation cost of the
proposed uplink processing pipeline with the corresponding implementation
architecture. More in detail:

• Performance is analyzed based on sum-rate capacity.

• Implementation cost in terms of computational complexity, interconnec-
tion bandwidth, and processing latency.

The trade-offs between sum-rate capacity and implementation cost are then
presented to give high-level design guidelines.

6.1 Performance: optimality and capacity bounds

Closed-form sum-rate expression for multi-panel LIS and IIC algorithm is out
of the scope of this work, however we present two upper bounds which pro-
vide useful insights. Numerical evaluation of the bounds is shown in the next
subsection.

Proposition 1 For a certain channel realization H, an upper bound for Cz is
given by

Cz ≤ min{Cub1, Cub2}, (12)

where

Cub1 = K log2

(
1 + ρ

SN

K

)
, (13)

and

Cub2 =

K∑

n=1

log2(1 + ρλn), (14)

where SN =
∑P
i=1

∑Np

n=1 λ
(i)
n , λ

(i)
n is the n-th eigenvalue of HH

i Hi, and λn is
the n-th eigenvalue of HHH. PNp ≥ K is assumed.
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Figure 6: Simulation scenario. A 10m×10m×3m volume, with 1.2m×
1.2m LIS. 64 users uniformly distributed in 3D.

Proof: Cub2 corresponds to the single panel case. It acts as an upper bound,
and always outperforms the multiple-panel case under the same conditions of
M and K. See Appendix-A for proof of Cub1.

6.2 Performance: experimental results and simulation

The scenario for simulation is shown in Fig. 6. It consists of 64 users (K = 64)
uniformly distributed in a 10m × 10m × 3m (depth × width × height) vol-
ume, and a 1.2m × 1.2m (height × width) LIS. Signal bandwidth and car-
rier frequency are 100MHz and 4GHz, respectively. We assume the orthogo-
nal frequency-division multiplexing (OFDM)-based 5G New Radio (NR) frame
structure [33] and consider uplink processing.

To obtain meaningful statistical information, 100 channel realizations are
generated by placing the users within the volume following a uniform distri-
bution in the three dimensions. For each realization, sum-rate capacity is
calculated at different interfaces10 of the system, and then averaged across all
realizations. The first analysis consists of studying the relation between sum-
rate and SNR, and the validity of the bounds in Proposition 1. Averaged Cz

for Np = 2 at different SNR values is shown in Fig. 7, which has been divided

10 Interfaces include: panels output, tree nodes outputs, and CDSP input.
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(a) Low SNR (b) High SNR

Figure 7: Average sum-rate capacity at panels output interface vs SNR.
Upper bounds in Proposition 1 also shown in low and high SNR regimes.
M = 1024, Mp = 16, Np = 2, and K = 64.

in two SNR regions for visual clarity11. Selection of Np = 2 allows us to have
enough output panel dimensionality 12, specifically: N = 128 > K. Averaged
values of the bounds are also shown for comparison. Cub1 is tight in the low
SNR region, while both bounds and Cz follow the same slope (K) at high SNR
values, with ∼ 5dB offset in this case. Cub1 is better bound than Cub2 in this
scenario.

The sum-rate capacity at CDSP input interface depends on the individual
selection of the dimensionality reduction factor at each node in the system,
which leads to a considerable number of possibilities. In order to simplify the
analysis and show in a clear form how this individual selection affects the system
performance, let us consider a tree with 3 levels (as in Fig. 4) and reduction

factors as follows: βb2 = βb3, and βb3βb2βb1βp = K
M , where βbi ,

N
(i)
b

4N
b(i−1)

,

βp , Np

Mp
, and βb1 ,

N
(1)
b

4Np
. By doing so, we ensure there is dimensionality

K at the CDSP input for every combination. Therefore, β represents the
dimensionality reduction at a certain level of the system (all nodes in a certain

11 The bounds are obtained for the sum-rate at the panels output interface, but are also
valid for any other internal interface in the system (such as CDSP input), as sum-rate is
reduced after each processing. 12 Np > 2 also meets this requirement, but at the expense
of an increased interconnection bandwidth.
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(a) RMF (b) IIC

Figure 8: Sum-rate capacity normalized by channel capacity at CDSP
interface for different values of βb1 vs βp. βb1 = βb2 = βb3. M =
1024,Mp = 16,K = 64, ρ = 10. Black dots represent simulated cases.
The rest is obtained by linear interpolation.

level are assumed to have the same β for simplicity13), and may take values
from 0 (total reduction) to 1 (no reduction). Under this constraint, βp and βb1

can be freely chosen. Each possible combination provides a different sum-rate
at CDSP interface, in exchange of different complexity cost. Fig. 8 shows the
relation between these two parameters and the normalized sum-rate (value 1
refers to the channel capacity measured at antenna interface, and consequently
it is the same for both algorithms) for RMF and IIC. It is important to note the
multiple (βp, βb1) working points on the same contour level provide the same
performance. We observe that a high β value (close to 1) leads to high capacity
(but high interconnection bandwidth), reaching the maximum (or close to it) for
points in the upper right corner in the figure, corresponding to configurations
where almost no dimensionality reduction is performed in the first two levels.
It is evident that IIC allows higher dimensionality reduction than RMF for
same performance, which translates in lower complexity during filtering, in
exchange of higher computational complexity and interconnection data-rate in
formulation.

13 We suspect a non-uniform β case can be more adequate for scenarios with non-uniform
user distribution, which allows to spend resources where it is needed. This is left for further
analysis.
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6.3 Computational complexity

We evaluate the number of complex multiply-accumulate operations (MAC)
as a metric to measure computational complexity. Our analysis includes both
phases, namely formulation and filtering. In the filtering phase, the operations
are the same for RMF and ICC, which consist of applying a liner filter in the
panels (of size Np ×Mp each), to the Mp × 1 input vector. Similar consider-
ations apply to the BDSP nodes (with corresponding filter sizes). The total
computational complexity for filtering is given by (in MAC/s)

Cfilt = fBPC
(0)
filt︸ ︷︷ ︸

front-end

+ fB

L∑

n=1

N
(n)
SPUC

(n)
filt

︸ ︷︷ ︸
backplane

, (15)

where fB is the signal bandwidth, C
(0)
filt = MpNp is the computational complex-

ity per panel to filter one subcarrier, C
(n)
filt = 4N

(n−1)
b N

(n)
b is the corresponding

computational complexity in a node at level n, L is the number of levels in

the tree, N
(n)
SPU is the number of SPUs at level n, which is N

(n)
SPU = P

4n , and

N
(0)
b = Np for notation convenience.

The formulation phase of RMF includes the computation of ‖h‖2 for each
user. For the IIC algorithm, the steps required for the formulation phase are
shown in Algorithm 3 for each panel14. This algorithm relies on SVD, which
we assume is based on two steps: the Householder bidiagonalization and the
QR method by Givens rotations. Bidiagonalization is dominant in terms of
complexity, so the total complexity of SVD of an L × T complex matrix can
be approximated by 2L2T . For step 1 of the Algorithm 3, SVD of a K × K
Gramian matrix Zi−1 is required, with a complexity of 2K3. Step 2 has a com-
plexity of (Mp +1)K2, and step 3 combined with step 4 require a complexity of
2Npd

2
0, where d0 = max{K,Mp}. HH

eq = WHH consists of NpMpK products,
and step 5 requires NpK

2 products. We evaluate formulation over the whole
bandwidth, and for that, we assume one channel estimate per physical resource
block (PRB), and therefore one filtering matrix calculation per PRB. The total
computational complexity (in MACs) for IIC is given by

Cform,IIC = NPRBPC
(0)
form︸ ︷︷ ︸

front-end

+NPRB

L∑

n=1

N
(n)
SPUC

(n)
form

︸ ︷︷ ︸
backplane

(16)

14 For backplane there is no exchange of Z as explained in Section 5, so the computational
complexity is highly reduced.
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where C
(0)
form = (2K + Mp + Np + 1)K2 + NpMpK + 2Npd

2
0 is the com-

putational complexity per panel and PRB during formulation, while C
(n)
form =

4N
(n)
b N

(n−1)
b K+2N

(n)
b d2

n is the one per node at level n, and dn = max{K, 4N (n−1)
b }.

For RMF, expression (16) also applies, with C
(0)
form = MpK, and C

(n)
form =

4N
(n−1)
b K. Fig. 9a shows normalized sum-rate capacity versus computational

complexity during filtering for both algorithms and different panel sizes. We
observe that IIC achieves better performance than RMF for the same panel
size, while large panels are key to harvest most of the capacity, with Mp ≥ 64
reaching channel capacity in our simulations. Fig. 9c shows sum-rate capacity
versus computational complexity during filtering for different LIS sizes (IIC
and Mp = 64 assumed). It is interesting to observe that the same performance
(for example 200) can be achieved by both M = 4096 and M = 1024, and with
the same computational complexity. However, their architecture may differ
substantially, as the smaller LIS requires higher output dimensionality per
panel and lower reduction than the larger LIS, where aggressive dimensionality
reduction can be used. In summary, the smaller LIS (M = 1024) is harvesting
a significant fraction of the available channel capacity, while the larger LIS
is only exploiting a very small fraction of it. This presents a very interesting
design trade-off.

6.4 Interconnection bandwidth

In this section we analyze the interconnection bandwidth during the filtering
phase, covering panel-node and node-node links. This bandwidth (in bps) is
given by

Rinter = 2wfBPNp︸ ︷︷ ︸
front-end

+ 2wfB

L∑

n=1

N
(n)
SPUN

(n)
b

︸ ︷︷ ︸
backplane

, (17)

where w is the bit-width of the SPU input/output (real and imaginary parts).
Our analysis includes the movement of data happening internally at pan-
els/nodes level, which covers the data transfer between the inputs ports to the
SPU for processing, and from it to the output ports. We name this transfer
data-rate as intra-connection data-rate or Rintra, and is given by

Rintra = PRintra,FE︸ ︷︷ ︸
front-end

+

L∑

n=1

N
(n)
SPURintra,BP

︸ ︷︷ ︸
backplane

,
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(a) Sum-rate vs Cfilt (b) Sum-rate vs Req

(c) Sum-rate vs Cfilt for different M (d) Sum-rate vs Req for different M

Figure 9: Sum-rate capacity normalized by channel capacity at CDSP
interface versus computational complexity (9a) and interconnection
data-rate (9b). In all cases, results for different panel sizes are shown,
together with both algorithms. For both cases: βb1 = βb2. Simulated
points represent different Np values. Sum-rate capacity versus computa-
tional complexity (9c), and versus interconnection data-rate for different
LIS size (9d). Mp = 64, IIC method, α = 1

10 , and ρ = 10. K = 64 in all
cases.

where Rintra,FE = 2wfB(Mp +Np), and Rintra,BP = 2wfB(4N
(n−1)
b +N

(n)
b ) cor-

respond to a panel and backplane node respectively. We are aware that Rintra

does not include all internal data-rate in a real system, as this is highly depen-
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dent on the specific implementation, internal topology, and type of processing
unit employed in the panel. However, the spirit of this work is to provide a
general analysis and first order approximation of the complexity required, ap-
plicable to all possible implementations, instead of being attached to a specific
hardware implementation, and provide exact analysis numbers.

In order to take both magnitudes into consideration in the analysis, we de-
fine the relative cost α, as α , cost(Rintra)/cost(Rinter), and the cost equivalent
interconnection data-rate Req as: Req , Rinter + αRintra. In this analysis, the
ratio power/data-rate is considered as cost magnitude. If serial link (serdes)
technology is assumed for intra-connection, and Ethernet for interconnection,
then a power consumption of 1.29− 24.8mW/Gbps, and 40mW/Gbps are ob-
tained respectively according to different sources [34–37]. The serdes power
range is very wide, so we take 4mW/Gbps as reference, that gives α ∼ 1

10
15.

Fig. 9b shows normalized sum-rate capacity versus equivalent interconnec-
tion bandwidth during filtering for both algorithms and different panel sizes.
According to the results, IIC achieves better performance than RMF for same
panel size, and large panels are capable of harvesting most of the channel ca-
pacity in our simulations. It is relevant to point out that small panels require
more total interconnection data-rate than large panels, however this is more
distributed among panels and nodes, reducing the bottlenecks considerably.
Fig. 9d shows the sum-rate capacity versus interconnection bandwidth during
filtering for different LIS sizes (IIC assumed). Similar conclusions can be drawn
compared to Fig. 9c.

6.5 Processing latency

The processing latency represents the time between when the estimated channel
of a subcarrier is available at panels and when the data of that subcarrier
is filtered and available at the CDSP input for detection. The latency can
be expressed as Ltot = Lform + Lfilt, where Lform is the formulation latency,
and Lfilt is the latency for data filtering. More specifically, Lform = Lproc

form +
(nP − 1)Lcom

local + (L + 1)Lcom
global, where nP is the number of panels involved

(nP = 1 in RMF and P in IIC for the worst case)16, Lproc
form is the time needed

to calculate the filter coefficients, Lcom
local refers to panel-to-panel communication

latency (only in IIC), and Lcom
global refers to panel-to-node, and node-to-node link

communication latency. For filtering latency: Lfilt = Lproc
filt + (L + 1)Lcom

global,
which accounts for filtering in panels and nodes, and communication latency.

15 These numbers are dependent on the technology used, however, the method still holds.
16 Depending on the users distribution there may not be a need to go through all panels
(nP < P ) with the subsequent benefits. We leave this for future work.
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We assume the IIC formulation is performed sequentially along all panels (worst
case) using local connections, and then across nodes in the tree.

The latency for processing greatly depends on the hardware architecture
used to implement the algorithms. Here we assume highly optimized accelera-
tors (e.g., application-specific integrated circuit) are used such that the avail-
able data parallelism (Nparal) can be explored using Nproc processing units
(Nproc < Nparal), i.e., the Nproc units will take Nparal/Nproc clock cycles to
iteratively process Nparal parallel operations. Moreover, the channel matrix (of
the subcarrier that is being processed) is cached in register files (the latency for
memory access is hidden). The main component of Lproc

form is the time needed to
perform SVD which is implemented by Householder bidiagonalization followed
by QR method based on Givens rotations. The processing of each column
and row can be done in parallel, while sequential processing is needed between
columns and rows due to the data dependency.

With these assumptions, the total processing latency in formulation phase

is Lproc
form = C̃formTCLK

Nproc
, where C̃form = nPC

(0)
form +

∑L
n=1 C

(n)
form. The first term

in C̃form represents the serial processing in the front-end, and the second term

represents the computational complexity of one branch of the tree. C
(0)
form and

C
(n)
form are defined after (16). TCLK is the clock period, and it is assumed that one

MAC can be done within one clock cycle. In case of filtering, processing latency

is given by Lproc
filt = C̃filtTCLK

Nproc
, where C̃filt =

∑L
n=0 C

(n)
filt is the computational

complexity corresponding to a path between a panel and the CDSP, and C
(n)
filt

is defined after (15).

6.6 Case study and discussion

The performance has been analyzed, together with the computational com-
plexity, interconnection data-rate, and processing latency. General expressions
for these different metrics have been presented based on general system pa-
rameters, such as the number of users, number of antennas, number of panels,
and signal bandwidth, among others; what makes it easy to particularize for
concrete implementations. Nevertheless, based on the trade-off analysis shown
in Fig. 9a and Fig. 9b, we can see Mp = 64 as an attractive option, as it pro-
vides higher capacity than Mp = 16 for the same computational complexity and
interconnection data-rate, while it is able to reach channel capacity in our anal-
ysis scenario. On top of that, its physical dimensions (30cm× 30cm at 4GHz)
make it easy to handle and mount. Numerical values of the analyzed complex-
ity for this panel size are presented in Table 1. The following parameter values
are assumed: nP = P = 16, TCLK = 1ns, Nparal = 100, Lcom

local = 100ns (serdes
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Table 1: M = 1024, Mp = 64, Np = 13, Nb = 25, K = 50, w = 16 bits,
fB = 100MHz. Units are as follows: Cform [GMAC], Cfilt [TMAC/s], Rinter

[Tb/s], Rintra [Tb/s], L [µs]

Method Cform Cfilt Rinter Rintra Lform Lfilt

IIC 3.1 2.4 1.1 5.4 111.4 1.0
RMF 0.02 2.4 1.1 5.4 1.0 1.0

technology assumed [34,35]), and Lcom
global = 300ns (Ethernet assumed [36–38]).

Assuming 12 subcarriers per PRB, the subcarrier spacing in our example is:
fB

12NPRB
= 30KHz, and the OFDM symbol duration is therefore ≈ 33µs.

The benefits of the distributed architecture are evident in terms of inter-
connection data-rate reduction. Looking at the CDSP input interface, the
reduction is easily obtained as: M

K ∼ 20x. Of course, this comes at the cost
of a performance loss due to dimensionality reduction, but as it was explained
before, the system is fully configurable, offering a rich performance-complexity
trade-off. It is important to consider that even though computational complex-
ity and interconnection data rates numbers may seem large, they are distributed
among all processing units in the LIS. This LIS contains 21 SPUs (panels +
backplane nodes).

Regarding latency, Lform,RMF and Lfilt values seem reasonable for the NR
frame structure. We observe Lform,IIC shows much higher value due to the
higher computational complexity required in this method (equivalent to 3
OFDM symbols in this example). For a certain LIS system, this latency is
sensitive to the β used in panels and nodes (which translates into complex-
ity cost). Therefore, we can see a trade-off between these system parameters
and how often filters are updated in panels and tree nodes. It is important
to remark that latency is analyzed from a worst case point of view, where all
panels in the LIS are serially connected and jointly contribute to the formula-
tion. In reality this may not be the best approach as this may only be helpful
in cases with very high density of users with dominant interference over noise.
We envision groups of panels performing formulation in parallel, where those
panels belonging to the same group perform serial processing, reducing the
formulation latency considerably. We are aware that depending on the imple-
mentation, latency may be different (selection of memory system, hardware,
interconnection, etc), and here we provide high level analysis assuming the use
of dedicated accelerators without any overhead.

In the present work, we also compare our proposed scheme to existing ones
in literature, in particular we select one scheme based on daisy-chain topology,
which can be found in recent works, such as [25] and [26] for Massive MIMO,
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Table 2: Description of three different plans for dimensionality reduction used
for comparison, and corresponding system parameters values.

Mp Np Nb K

Case A 64 50 50 50
Case B 64 32 50 50
Case C 64 16 16 50

and in cell-free massive MIMO networks with serial fronthaul (also known as
radio stripe) with examples in [39] and [40] among others. [39] performs ex-
act L-MMSE (linear minimum mean-square error) detection using daisy-chain
topology with distributed processing. For the comparison, IIC is used as the
method for dimensionality reduction, and L-MMSE for detection in the CDSP.
The filtering matrix used for linear detection is based on the equivalent channel
formed by the combination of the wireless channel and the filtering matrices
implemented in the front-end and backplane, which is available at the CDSP
following the procedure described in Section 5.1. We establish 3 different con-
figurations with different levels of dimensionality reduction: a scenario with
low dimensionality reduction (case A), medium reduction (case B), and high
reduction (case C). System parameters can be seen in Table 2. The other sys-
tem parameters are chosen according to Table I. BER (bit error rate) has been
simulated for 16 QAM transmission and the SNR (ρ) that achieves BER=10−3

for uncoded transmission is included. For this experiment all users are as-
sumed to transmit with the same mean power, and BER accounts for errors
in all users. For the sum-rate capacity we provide an approximate value of

E
{∑K

k (log2(1 + SINRk))
}

, where SINRk represents the instantaneous signal-

to-interference-plus-noise ratio (SINR) for user k, and the expectation is with
regard to the wireless channel. We employ 100 channel realizations for this
approximation. The ergodic wireless channel capacity (EC) has also been in-
cluded for reference. The computational complexity, interconnection data-rate
and latency have also been included, and only take data filtering phase into
account (no formulation). The result of the analysis is summarized in Table 3.
In case of [39], and for comparison purposes only, we assume each AP (access
point) acts as one LIS panel.
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For the computational complexity, Cfilt in (15) has been used to account for
panels and backplane, while an extra 0.25 TMAC/s = fBK

2 has been added
to take linear detection (filtering) in CDSP into account. The computational
complexity in case of [39] has been calculated as 2fBMK. Regarding inter-
connection data-rate, Rinter in (17) has been used for the three cases, while
2wfBPK is used to calculate the corresponding value for [39].

Our analysis indicates that the proposed method allows to exploit locality
of users in the panels by taking advantage of the dimensionality reduction that
the IIC method provides. As discussed before, it offers the same performance in
terms of BER and sum-rate compared to an exact L-MMSE solution, while re-
quiring almost half the computational complexity, slightly less interconnection
data-rate, and half latency (in case B) compared to the daisy-chain topology.

7 Conclusions

In this article we have presented distributed uplink processing algorithms and
the corresponding hardware architecture for efficient implementation of large
intelligent surface (LIS). The proposed processing structure consists of local
processing units near antennas to reduce incoming data dimensionality without
losing much information, and hierarchical backplane network with distributed
processing-combining units to support flexible and efficient data aggregation.
We have systematically analyzed the system capacity and implementation cost
with different design parameters, and provided design guidelines for the imple-
mentation of LIS.
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Appendix

A. Proof of Proposition 1

Proof: According to (9), the sum-rate capacity with the multi-panel archi-
tecture is given by

C = log2 |IK + ρA|, (18)

where A =
∑P
i=1 HH

i QiQ
H
i Hi. For a certain channel realization, the maximum

capacity is achieved if all eigenvalues of A are equal, that is: λn = λ, 1 ≤ n ≤
K17. In that case, the capacity would be: Cub1 = K log2(1 + ρλ). Now, let us
find the maximum value for λ as follows

λ = max
{Qi}

1

K
Tr{A} =

1

K

P∑

i=1

max
Qi

Tr{HH
i QiQ

H
i Hi}

=
1

K

P∑

i=1

Np∑

n=1

λ(i)
n ,

(19)

and then C ≤ Cub1, proving the proposition18.

B. Proof of solution to local optimization in Algorithm 2

Proof: We drop the panel index for simplicity. The objective function to
maximize is

|ρHHQQHH + Z| = |Z||IK + ρZ−1/2HHQQHHZ−1/2|
= |Z||INp + ρQHHZ−1HHQ|
= |Z||QH(ρHZ−1HH + IMp

)Q|.

|Z| does not depend on Q, therefore the solution to our problem is the same
as the solution of the maximization of the second determinant, which consists
of the ordered eigenvectors (in descent order of corresponding eigenvalue) of
the matrix: HZ−1HH .

C. Proof of white filtered noise

As an example, the filtered noise due to the first four panels and the connected

nodes is denoted by n
(1)
1 and obtained as: n

(1)
1 = W

(1)H
B,1 WH

P,1−4n1−4, where

17 Note that we assume rank(A) = K, and PNp ≥ K. 18 We remark that this bound
may not be attained in practice, as it needs a favorable set of {Hi}, such that it provides
uniform eigenvalues in A with the proper selection of {Qi}.
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WP,1−4 is the combined filtering matrix of the first four panels and it is defined
as WP,1−4 = diag(WP,1,WP,2,WP,3, · · · ,WP,4), and n1−4 is the aggregated
input noise vector corresponding to the first four panels and it is defined as
n1−4 = [nT1 ,n

T
2 ,n

T
3 ,n4]T . The covariance is given by

E
{

n
(1)
1 n

(1)H
1

}
= W

(1)H
B,1 WH

P,1−4E{n1−4n
H
1−4}WP,1−4W

(1)
B,1

= W
(1)H
B,1 WH

P,1−4I4Mp
WP,1−4W

(1)
B,1

= W
(1)H
B,1 I4Np

W
(1)
B,1 = I

N
(1)
b
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Positioning for Distributed Large

Intelligent Surfaces using Neural

Network with Probabilistic Layer

Wireless-based positioning with large antenna arrays is a promising

enabler of the high accuracy positioning services envisioned for 6G. These

systems provide high spatial resolution due to the large number of an-

tennas, while enjoying the benefit of sharing a common infrastructure

between communication and positioning. Among the available techniques

for wireless-based positioning, channel state information (CSI)-based fin-

gerprinting via neural networks (NNs) offers high accuracy under chal-

lenging propagation conditions, without the need of storing and accessing

large amounts of measurement data during inference. On the other hand,

large antenna systems, such as Large Intelligent Surfaces (LIS), benefits

from a distributed architecture and local processing of wireless signals

received from nearby antennas, producing intermediate results that can

be aggregated, and therefore considerably reducing the demand on inter-

connection bandwidth. In this work, we propose a method to perform

positioning of users based on estimated CSI in a LIS built from panels.

Following this method, panels provide a parameterized probability density

function for the location of each user, which can be shared conveniently

and fused in different panels or a central processing unit (CPU), providing

high positioning accuracy using very low interconnection bandwidth.
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1 Introduction

6G is envisioned to enable services based on high positioning accuracy in indoor
and outdoor venues [1]. It is well known that large antenna arrays with very
high spatial resolution are expected to be part of 6G radio-access systems. In
addition to enabling the promised high communication data-rates, they can also
provide high positioning accuracy. This facilitates a common infrastructure
for communications and positioning, which is quite beneficial from cost and
maintenance points of view. Large Intelligent Surfaces (LIS) is a technology
providing these two capabilities [2, 3].

However, such large antenna systems, despite their benefits, present
formidable implementation challenges, where computational and intercon-
nection resources face critical bottlenecks that need to be overcome in order to
realize these systems. In order to alleviate these limitations, a panelized LIS
with tree topology has already been proposed for communication purposes [4],
where panels contain processing capabilities to perform local baseband pro-
cessing, with very little or limited cooperation among them. Individual panel
results are aggregated before reaching the central processing unit (CPU), re-
ducing considerably the interconnection bandwidth compared to a centralized
LIS architecture, where raw baseband samples are shared with the CPU during
the uplink detection phase, with the additional high computational burden.

In order to ensure LIS is able to support positioning applications (apart
from communication ones), we explore efficient algorithms that can be mapped
onto the tree-based panelized topology with distributed processing proposed
in [4] without much hardware overhead. Following this idea, in this work we
propose a method to perform positioning of users that suits such architecture.
In this method, each panel estimates channel state information (CSI) (func-
tionality available already in communication), which is further processed by a
local neural network (NN) in order to map CSI to positioning information.

Neural networks have recently been applied to wireless positioning [5–15],
mainly in the Massive MIMO arena, but also for indoor applications, for ex-
ample based on WiFi. Most previous work is based on centralized process-
ing providing point estimates of the user location. Recently, [15] proposed a
distributed scheme for indoor positioning with probabilistic description and
support for fusion of position information from several access points. Models
based on probabilistic descriptions are far superior to the ones based on point
estimates for one fundamental reason: probabilistic results contain a measure
of the uncertainty in the estimate (an estimate with very high uncertainty does
not provide much information), which is of great importance as it allows the
model to express its uncertainty in the result based on the observations; in
addition, uncertainty is the base for fusion of different estimates, which al-



206 PAPER VI

lows them to be properly weighted. Following this reasoning, in our proposed
method panels provide a parameterized probability density function for the lo-
cation of a certain user, which can be conveniently shared and fused in different
panels, tree processing nodes, or in the CPU, providing high accuracy using
much lower interconnection bandwidth than the centralized architecture, where
panels would share their estimated CSI with the CPU, and one NN would pro-
cess all incoming CSI to deliver a position estimate. As we will see in Section
5, this decentralized approach can achieve few hundred times reduction in the
interconnection data-rate.

2 System model

The system under consideration is graphically represented in Fig. 1. We con-
sider a single-antenna user u 1 whose position, denoted by pu = (xu, yu, zu) ∈
R3, is to be estimated. The user is transmitting a signal which is received by
multiple panels forming a LIS. Each panel contains Mp antenna elements, to-
gether with radio-frequency, analog and baseband (BB) processing capabilities
in order to perform down conversion of the received signal and obtain CSI.
Once CSI is available locally at a panel, a machine learning algorithm based
on neural networks produces a probabilistic description of the user position,
denoted by pi(p

u) for panel i. In other words, pi(p
u) is the probability density

of the user being in position pu. Multiple probability functions, from different
panels, can be fused into a single probability density function, which can be
used for further fusion down the pipeline with other panels or sensors, or to
obtain a point estimate of the user location.

2.1 Signal model

We consider a LIS containing a total of M active antenna elements, and divided
into P square-shaped panels, each with Mp elements, such that Mp · P = M .
We assume an OFDM-based transmission system, centered at carrier frequency
fc, with a bandwidth BW across which Nsc equally spaced subcarriers contain
pilots for channel estimation.

The M × 1 received vector at the LIS for a certain subcarrier is given by

y = hx+ n, (1)

where x is the transmitted pilot signal for which we, without loss of generality,
assume x = 1, h is the channel response vector, and n ∼ C N (0, σ2

nI) is an
M × 1 i.i.d. noise vector.
1 Extension to multiple users is straightforward under the assumption that the channel
responses are independently measured.
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Figure 1: System model with a single-antenna user transmitting. Two
distant panels provide an individual probabilistic description of the user’s
location, which is fused into a single probability function.

We model the line-of-sight (LoS) channel between the user at location pu

and a LIS antenna element at location p by the complex value [3]

h(p,pu) =
1

du

√
cosφ(p,pu) exp

(
−j 2πdu

λ

)
, (2)

where φ(p,pu) is the relative orientation angle between the user antenna and
the LIS antenna element at p. When φ(p,pu) = 0 the LIS antenna is facing
perpendicularly to the incoming wavefront. du = ‖p − pu‖ is the distance
between the user and the antenna. λ is the wavelength at the corresponding
subcarrier frequency. For our analysis we will consider more realistic channel
models, concretely based on multipath propagation caused from specular re-
flection in walls, where a certain reflection coefficient is assumed, being denoted
as α, and 0 ≤ α ≤ 1. The channel in this case is modeled as linear combination
of individual components with respective reflection coefficients, this is

∑
αihi,

where αi and hi are the reflection coefficient and channel associated to the i-th
multipath component respectively.

2.2 User position density model

In this work panels output the inferred probability distribution of the user po-
sition, which we model as a multivariate Gaussian distribution, this is pi(p

u) =
N (µi,Σi) for the i-th panel, where µi ∈ R3 is the mean, and Σi ∈ R3×3 the
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Figure 2: Processing pipeline for positioning inference in a panel, in-
cluding channel estimation block and neural network. Acronyms: CE =
channel estimation, DP = dropout, BN = batch normalization. Proba-
bilistic layer is only used during training (dashed line). Numerical values
represent dimensionality (real numbers) of the data exchanged assuming
Mp = 64 and Nsc = 8. 2D positioning assumed.

covariance. The reason to select the distribution as Gaussian is twofold: the
distribution is represented exclusively by the tuple {µi,Σi}, requiring only a
reduced number of values to be shared with the fusion module, and the fusion
process becomes relatively simple, as further described in Section 4.

3 Positioning via Neural Networks

As presented in the Introduction, NN have recently been used for user position-
ing in wireless systems. It provides a low complexity approach for inference, as
an alternative to CSI-based fingerprinting stored in a data-base.

3.1 Feature extraction

In our analysis we model the CSI estimate as C N (h, σ2
nI), and it is used dur-

ing training and inference 2. These user-specific complex-valued CSI obtained
at pilot subcarriers are separated into real and imaginary parts and stacked
together in a feature vector ĥ.

3.2 Neural Network with probability

The NN architecture is illustrated in Fig. 2. After the channel is estimated
and the feature vector (ĥ) formed, four dense layers are used (three with ReLU
activation functions and one with linear outputs). The output of the last

2 We remark that we consider a noisy channel estimate in our analysis during training and
inference.
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dense layer is the probability distribution parameters {µ,Σ}. These parameters
completely represent the distribution, and can be used during inference for
point estimate (i.e. selecting the mean µ) and for fusion (see Section 4).

The last layer (dashed line in the figure) is the probabilistic layer and pro-
vides the probability density function using the input parameters. This is only
used during training, and is described in more detail in next subsection.

The numerical values depicted in Fig. 2 correspond to the case of users
positioned on a plane (used in our analysis in Section 5), therefore a 2D multi-
variate distribution is generated. In this particular case, the mean µ as a 2× 1
vector, and the covariance Σ as a 2 × 2 matrix which, due to symmetry, only
has three quantifying values.

3.3 Training Neural Networks with probability layers

The goal of training is to learn the NN parameters, here named θ, comprising
weights and biases. In this section, and for clarity, we note that the NN outputs
are a function of the input channel estimate ĥ and θ, this is µ ≡ µ(ĥ, θ),

and Σ ≡ Σ(ĥ, θ). As commented before, the probabilistic layer is only used
during training. Its mission is to provide the corresponding probability density
functions, which is required for computing the loss function.

The loss function used in this work is the Negative Log-Likelihood function,
defined as

NLL(θ) = −
∑

n

log{p(pun|ĥn; θ)}, (3)

where p(pu|ĥn; θ) = N (µ(ĥn, θ),Σ(ĥn, θ)), and {ĥn,pun} is the training set
made with different locations covering the area of service. For simplicity, we
assume no error in the estimate of these locations. For a certain training lo-
cation pun, the channel estimate is obtained ĥn, and the corresponding NN

output for the current θ is calculated: {µ(ĥn, θ),Σ(ĥn, θ)}. Given these in-
put parameters, the probabilistic layer provides the full probability density,
which is used to compute the likelihood, by evaluating the probability den-
sity at training location pun, as p(pun|ĥn; θ), as shown in (3). High values of
likelihood (or equivalently lower values of NLL) indicate a good fit between
the parameterized distribution and the ground truth location. The sum cov-
ers usually a subset of the training set (minibatch), and gives a cost value.
This cost function is minimized using the Adam optimizer [16], whose outcome
is the maximum likelihood (ML) solution (which minimizes the NLL), this is
θML = arg minθ NLL(θ), which is used for inference.

Additionally during training, and to take the effect of noise distribution
into account, we take Nrep samples per training location in the training set.
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This means that for each location we sample the random variable ĥ multiple
times. This also imply to augment the size of the training set (even though the
number of physical locations remains the same).

4 Probability fusion

The goal of probability fusion is to consolidate a finite number of probability
distributions into a single one. In our case, we are interested in the fusion of
probability densities provided by the panels as shown in Fig 1. Given that
the individual density functions are Gaussian, Gaussian conflation represents
a convenient fusion method, as it ensures the resulting distribution is also
Gaussian, and leads to the classical weighted least squares method, providing
the best unbiased and maximum likelihood estimators [17]. Following this
method, the fused distribution is proportional to the product of the individual
ones.

As mentioned before, the Gaussian conflation of P individual Gaussian dis-
tributions is also Gaussian, with covariance and mean represented respectively
as

Σf =

(
P∑

i=1

Σ−1
i

)−1

, (4)

and

µf = Σf

(
P∑

i=1

Σ−1
i µi

)
. (5)

5 Simulation results and analysis

The scenario considered for our analysis is a volume of size (width×depth×height)
= (10m × 10m × 0.4m). The volume has four solid reflecting walls covering
the sides (we do not consider reflection in floor and roof). Four panels of
size (0.4m× 0.4m) are installed on the walls, occupying the center of each, as
shown in Fig. 3a with red lines. The users are located on the plane crossing
the panels by half, this is (x, y, 0), assuming panels are within (x, y,−0.2m)
and (x, y, 0.2m). The panels are trained individually according to the method
described in Subsection 3.3. The system parameters are: Mp = 64, fc = 3GHz
(λ = 10cm), BW = 100MHz, Nsc = 8, Nrep = 10, and noise variance
σ2
n = 0.002. For simplicity we only consider one specular reflection in the

walls with α = 0.1 3. We first consider 9 locations for inference (red dots). In

3 Extension to more advanced channel models is left for future work.
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Table 1: Mean and std error for panel 0 inference and fusion results in exper-
iment where user is in nine locations, depicted in Fig. 3 . Units in cm.

Panels 0 0, 1 0, 1, 2 0, 1, 2, 3

mean error 31 4.2 2.7 3.0
std error 21 4.1 2.1 2.3

Table 2: Mean and std error for panel 0 inference and fusion results in exper-
iment with square-shaped trajectory, depicted in Fig.4. Units in cm.

Panels 0 0, 1 0, 1, 2 0, 1, 2, 3

mean error 15 5.7 4.3 3.5
std error 11 3.0 2.3 1.7

Fig. 3a it is shown the result of inference of panel 0 (bottom) as 2 std ellipses
(black) and the respective means (blue dots). We observe that the angular
accuracy is quite good for all positions, while the distance accuracy gets worse
for points further away from the panel, as they lay outside of the near-field
region and less information about the distance is contained in observed, the
increasingly planar, wave front. Error values are shown in Table 1, where
error is measured between the distribution mean (µ) and the ground truth.
Figure 3b shows the result of the fusion between panel 0 (bottom) and 1 (left),
with an important improvement in accuracy as both panels complement each
other 4. Results of extended fusion process is shown in Fig. 3c and 3d, with
incremental improvements in the accuracy.

Fig. 4 shows the result of another experiment, where we analyze 100 loca-
tions for a square-shaped trajectory. For some of them, 2 std and mean results
of inference from panel 0 are shown in Fig. 4a, while 4b shows only the mean
values of all locations. Error results are shown in Table 2. Result of fusion
between panel 0 and 1 is shown in Fig. 4c and 4d for 2 std and mean, where
we observe an important improvement in accuracy, similar to the observed in
previous experiment. Results of the fusion of panels 0, 1 and 2 are shown in
Fig. 4e and Fig. 4f. The result of fusion of all panels is shown in Fig. 4g and
4h.

From interconnection bandwidth point of view, there is a significant reduc-
tion in exchange of data compared to the centralized approach. Each panel
shares 5 values (in case of 2D), instead of 1024 required by ĥ, which is a 200x
reduction.

4 The uncertainty in the distance shown by panel 0 is compensated by the high accuracy in
the angle from panel 1 and vice versa.
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(d) Fusion panels 0, 1, 2, and 3

Figure 3: Results of inference on 9 user locations. Top view of the
scenario. Red lines represent panels, and red points denote ground truth
locations. Blue points denote mean of distribution, and black 2 std
ellipse. Fig. 3a represents results from panel 0. Fig. 3b represents the
result of the fusion of panels 0 and 1. Fig. 3c represents the result of the
fusion of panels 0, 1 and 2, and Fig. 3d shows the result of the fusion of
all four panels.

6 Conclusions

In the preset work we have introduced a novel method for wireless positioning
in distributed Large Intelligent Surfaces using neural network with probabilistic
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layer. Each panel forming the LIS provides a probabilistic description of the
user location based on the local channel estimate, that can later be fused to
a single probability distribution comprising information from more/all panels.
By choosing a parameterized probability distribution, as the Gaussian, only
the parameters need to be inferred, considerably reducing the interconnection
bandwidth with the fusion module or CPU. Our analysis show that by fusion
of two panels is enough to achieve fraction of wavelength accuracy level in a
scenario with users distributed over a 100λ× 100λ area.
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(g) Fusion panels 0, 1, 2
and 3
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Figure 4: Results of inference on 100 user locations forming a square-
shaped trajectory. Top view of the scenario. Left column: Red points
denote ground truth. Blue points denote mean of inferred distribution,
and black 2 std ellipse. Fig. 4a represents results from panel 0 (only 20
out of 100 locations are shown for convenience). Figures 4c, 4e, and 4g
represent different results of fusion with different panels. Right column:
Figures 4b, 4d, 4f, and 4h show the mean. Colors used are only intended
to ease the visual association between estimated and true locations, given
the high number of points.
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