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Pharmacometric covariate modeling using symbolic regression networks

Ylva Wahlquist1, Martin Morin1, Kristian Soltesz1

Abstract— A central challenge within pharmacometrics is to
establish a relation between pharmacological model parameters,
such as compartment volumes and diffusion rate constants,
and known population covariates, such as age and body mass.
There is rich literature dedicated to the learning of functional
mappings from the covariates to the model parameters, once
a search class of functions has been determined. However, the
state-of-the-art selection of the search class itself is ad hoc.
We demonstrate how neural network-based symbolic regression
can be used to simultaneously find the function form and its
parameters. The method is put in relation to the literature
on symbolic regression and equation learning. A conceptual
demonstration is provided through examples, as is a road map
to full-scale employment to pharmacological data sets, relevant
to closed-loop anesthesia.
Index Terms – Health and medicine; neural networks; Modeling

I. INTRODUCTION

A. Pharmacokinetics
A common use-case of pharmacological models is to

describe the effect of a drug on the individual undergoing
treatment. The model is often partitioned into a pharma-
cokinetic (PK) part that describes uptake, distribution, and
elimination of drug within the body, and a pharmacodynamic
(PD) part, that relates drug concentration to clinical effect.

Within the context of intravenous anesthesia, the PK
model can be used to describe the dynamics between drug
administration and blood plasma concentration, while the
PD model relates the anesthetic effect to the blood plasma
concentration. In this work, we will refine attention to the
PK sub-model, although the proposed methodology is also
relevant for PD and combined PK-PD modeling.

Pharmacological models have several applications (not
limited to anesthesia). Examples include offline drug admin-
istration profile optimization, also known as target-controlled
infusion (TCI) [1], control law designs for online dosing
strategies relying on sensor feedback, also known as closed-
loop anesthesia [2], as well as traditional offline a priori
dosing computations.

Often, and indeed within the context of anesthetic drug
delivery, the structure of employed PK models is well-
established and usually physiologically motivated. For com-
monly considered anesthetic drugs, the PK can be ade-
quately modeled using a compartmental linear time-invariant
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Fig. 1. Three-compartment mammillary compartment PK model for
propofol. The drug is intravenously administered to the central compart-
ment, of volume V1, modeling the blood plasma of the patient, at a rate
u [mass/time]. Diffusion processes governed by rate constants kij [1/time]
distribute the drug between the blood plasma and the two peripheral
compartments, of volumes V2 and V3, modeling the remainder of the body.
The rate constant k10 models elimination of drug from the blood plasma.

(LTI) system. Particularly, for the intravenously administered
anesthetic propofol, a mammillary three-compartment model
captures the PK dynamics well, as discussed in [3]. Fig. 1
provides a schematic illustration of the propofol PK model
and its parameters.

B. Pharmacometric covariate modeling

While the model structure (three-compartment mammil-
lary LTI model) can be assumed known, clinical data indicate
important inter-individual variability in compartment vol-
umes and rate constants. Whether the PK model is used for
offline dose planning, TCI, or closed-loop controller tuning,
the achievable performance is limited by this variability, as
we have previously investigated in e.g. [4]–[6].

The pre-dominating way to reduce the model uncertainty
originating from the inter-patient variability is through phar-
macometric covariate modeling. This is done by investigating
how the individual PK model parameters (volumes and rate
constants, cf. Fig. 1) depend on covariates that can be
determined for the individual patient.

The population covariates typically used in the context of
anesthesia are demographic parameters such as patient age,
sex, body mass, etc. Although not yet popular within anes-
thetic pharmacometrics, the use of omics data and biomark-
ers is increasing the search space for potential population
covariates.

There are three key challenges to pharmacometric covari-
ate modeling:

1) Selection of covariates;
2) Selection of a parametric functional relation between

the covariates and the PK model parameters;
3) Optimizing parameters of said functional relations to

minimize the inter-patient variability within the model,
which is not explained by the covariates.



TABLE I
PARAMETER VALUES OF THE COVARIATE MODELS FOR THE PROPOFOL

PK COMPARTMENT VOLUMES V1 AND V2 OF (1) PUBLISHED IN [8].
UNITS ARE IMPLICITLY DEFINED THROUGH (1).

Parameter c1 c2 c3 c4 c5

Value 9.29 33.55 0.364 -0.0156 0.547

The first and third challenge have received notable re-
search attention, as exemplified by [7] and [8], respectively.
However, surprisingly few works tackle the second challenge
in-depth. Instead, it is customary to assert one, or a few—
typically vaguely motivated—structures for the functions
relating the individual covariates to the parameters of the
PK model. The third challenge is then normally approached
using optimization within a nonlinear mixed-effect model
framework. The goal of this optimization is to find parame-
ters of a pre-determined covariate model structure that (with
some assumptions) maximize the likelihood of a clinical
data set to be explained by the model. Since the 1980s, the
software NONMEM [9] has constituted the gold standard
for carrying out the numeric optimization, but there is now
at least one modern contender in Pumas AI [10]. However,
both softwares rely on the second challenge (establishment of
covariate model structure) having been externally addressed.

In the context of propofol, and many other drugs—not only
anesthetics, the considered data set comprises of two parts:
time-aligned blood plasma drug concentration samples and
corresponding recorded (intravenous) drug administration
profiles; values of the considered demographic covariates for
each individual in the set.

For propofol, there exist a multitude of published phar-
macometric covariate models aiming to minimize PK uncer-
tainty stemming from inter-individual variability observable
within clinical data, e.g. [11]–[14]. Recently, there has been
an attempt [8] to establish a combined covariate model that
is valid across several of these data sets.

C. Covariate model selection

Traditionally, pharmacometric covariate models comprise
of compact closed-form functions. For example, in [8] the
volumes of the central compartment V1 and the peripheral
compartment V2 (in the unit of liters) are modeled as

V1 =
c1WGT

WGT + c2
, (1a)

V2 = c3WGT exp(c4AGE + c5), (1b)

where AGE (age in years) and WGT (body mass in kilo-
grams) are the covariates, while the covariate model parame-
ters, c1, . . . , c5 determined through NONMEM optimization
in [8], are given in Table I.

It is not motivated in [8] as of why the functions that relate
WGT and AGE to V1 and V2 should have the structures of
(1a) and (1b), respectively. Corresponding strong motivations
are also lacking in [11]–[14], and indeed quite generally.

÷

+

WGTc2

×

WGTc1

Fig. 2. Graphical representation of the expression tree equivalent to the
function from WGT to V1 defined by (1a).

Instead, it is typically common to optimize over just a
few frequently re-occurring but seemingly ad hoc structures,
often involving linear or exponential relations as those in (1).

While it would be technically viable to for example
express the covariate model functions in terms of a standard
artificial neural network (ANN) and learn their parameters
(weights and biases) from data, such representation becomes
opaque and is not likely to be adopted by clinicians.

However, confining to simple explicit functions to model
the relation between covariates and PK parameters results
in a poorly (exponentially) scaling combinatoric problem,
as we will shortly see. For a covariate modeling scenario
of realistic complexity, exhaustive search through parameter
optimization of each possible model structure becomes com-
putationally intractable, even by modern cloud computing
standards.

D. Symbolic regression

The desire to learn “human-readable” closed-form func-
tional expressions as those in (1) from data has emerged
within several scientific disciplines. The family of methods
dedicated to this end is known as symbolic regression
methods.

Symbolic regression was an early research topic within
artificial intelligence (AI), with a few noteworthy examples
provided in the review [15]. For a long time, the popularity
of the paradigm has been overshadowed by rapidly emerging
and highly successful deep learning and statistical methods.
However, lately, symbolic regression has gained increased
research attention, not least through the AI Feynman project
[16], which demonstrated a remarkable ability to learn the
structure of physical laws from data.

The symbolic regression problem comprises synthesizing
an expression tree to represent a function. An example is
shown in Fig. 2, representing the function (1a) that maps
WGT to V1 according to the structure suggested in [8].

Whereas an ordinary regression problem would confine to
determining the parameters c1 and c2 of Fig. 2 from data, the
symbolic regression problem additionally entails determining
the structure of the expression tree. This is done by generat-
ing the tree from a set of pre-determined base expressions,
such as addition, multiplication, and division in the case
of Fig. 2. For a tree with a fixed number of nodes, there
is a discrete choice associated with the selection of which
base expressions go where in the tree. Consequently, the



combinatorial problem scales poorly (exponentially) in both
the number of considered base expressions and covariates.

E. Equation learning

Another way to perform symbolic regression is through
a family of methods that collectively go under the name
“equation learning” [17]. Instead of applying perturbations
to a nominal expression tree, the equation learning approach
is to start with a rich (densely connected and potentially
large) nominal expression tree, and then prune it down to
obtain one that has a sound balance between expressional
complexity and fit to training data.

In the equation learning context, the expression tree is
modeled as an artificial neural network (ANN). Instead of
customary activation functions (such as sigmoids or the relu),
the activation functions are chosen to model the considered
base expressions. The covariates (WGT in the case of (1a))
are the inputs to the ANN, the parameters (c1 and c2 in
the case of (1a)) are modeled through weights and biases
of the ANN, and the considered PK model parameter (V1

in the case of (1a)) constitutes the output of the ANN.
The parameters can then be learned from data by training
the ANN using (stochastic) gradient descent and classic
backpropagation.

To arrive at a tree representing an expression of admissible
complexity, the tree must be pruned to the correspond-
ing complexity. This throws us back at the combinatorial
problem of selecting which nodes to keep, and which to
discard. Instead of solving this problem exactly, equation
learning systems typically employ L1-regularization [18]
followed by truncation, or L0 regularization, where weights
are encouraged to be exactly zero [19]. The regularization
can be readily achieved by adding a corresponding term to
the loss that training of the ANN aims to minimize.

F. Contributions

The main contribution of this work lies in the demon-
stration of how symbolic regression can be used to obtain
structurally optimized, and human-readable, PK covariate
models.

We build on the idea of equation learning and device
a feed-forward neural network that is capable of learning
closed-form expression covariate models. In Section II-B we
introduce a prototypical example, that we use to demonstrate
how expressions for the covariate model (1) can be learned.

Particular attention is given to ensure (numeric) robust-
ness. To avoid division by (close to) zero denominators, we
introduce log-barrier functions into the context of equation
learning. We also conduct explicit checks to ensure that the
expression tree remains connected throughout training and
pruning. These aspects are further detailed in Section II-C.

II. METHOD

A. Expression tree structure

The expression tree is implemented as a feed-forward
ANN with one input layer, one output layer, and d densely
connected hidden layers in-between. A schematic illustration

is provided in Fig. 3, where each of the d = 2 hidden layers
is marked by a gray box.

The network inputs are the covariates (AGE and WGT in
our example), while the outputs are the considered PK model
parameters (V1 or V2 in our example).

As in a conventional machine learning ANN, each hidden
layer k generates a dense affine mapping of its inputs, that
are organized into the vector xk:

yk = Wkxk + bk, (2)

where Wk and bk are a real weight matrix and bias vector,
respectively.

As is also the case in conventional machine learning
ANN, the output of each of these dense layer nodes would
propagate to an R → R activation function—typically a
sigmoid, relu function, or similar. However, here the acti-
vation functions are instead defined by the considered base
expressions. This means that

• each activation function could take one or more argu-
ments. For example, in Fig. 3 the exponential function
“exp” takes one argument, while the multiplication “×”
takes two;

• the type and number of considered base expressions
define the output dimension of each hidden layer;

• as in an ordinary ANN, the activation functions lack
trainable parameters;

• as in an ordinary ANN, each activation function pro-
duces a scalar output, that is passed to the next layer.

The real trainable parameters of the network are thus the
union {W1, . . . ,Wd} ∪ {b1, . . . , bd}.

B. Case study

In this paper, we focus on the equation learning problem.
Particularly, we learn expressions for V1 and V2 from a data
set obtained by generating “true” V1 and V2 values for each
of the 727 data tuples (AGE,WGT) defined by the individuals
of the [8] data set.

In a real use-case, the covariate functions would instead
need to be learned directly from time-aligned blood samples
and drug administration data. In Section IV, we discuss
further how our simplified setting can be readily expanded
into a practically relevant tool for pharmacometric modeling.

In our examples to follow, we have chosen to penalize the
difference between the “true” volumes y generated by (1)
across the data set, and corresponding values ŷ generated
by the network being trained. For both V1 and V2, we set
out with the nominal expression tree shown in Fig. 3. It has
d = 2 hidden layers and was chosen sufficiently complex to
be able to recover the exact expressions for both (1a) and
(1b).

C. Training

1) Loss function: The training loss

J = ∥y − ŷ∥22+λ

d∑
k=1

∥Wk∥1+µD (3)
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Fig. 3. Nominal expression tree ANN with two hidden layers, each marked by a gray box. The shown network was used in both examples of the paper.

comprises of a first term representing the nominal loss, a
second sparsity-enforcing regularization term, and a third
term for avoiding numeric errors caused by (close to) zero
denominators in division expressions. Here we have chosen
the nominal loss to be the L2-norm of the output error y−ŷ.
The second term constitutes a L1 regularization, discussed
next, while the final term implements log-barrier functions,
discussed further below.

2) Pruning: For the trained network to represent ex-
pressions of adequate—human-readable—complexity, some
degree of sparsity needs to be enforced upon the nominal
expression tree, here exemplified by Fig. 3. This can be
obtained by pruning the network and removing connections
associated with insignificant weights and biases. There are
many methods to achieve this, as further discussed in e.g.
[20].

The purpose of the L1 regularization term in (3) is to
encourage all but a few weights to be zero. This is typically
known as Lasso regression, and constitutes the basis for one
of several possible pruning techniques [20]. The scalar hyper-
parameter λ in (3) determines the extent of regularization and
thus constitutes a trade-off between accuracy and “approxi-
mate” sparsity. Increasing λ encourages weights to tend to
zero. However, they might not attain the value of exactly
zero (thus resulting only in “approximate” sparsity).

One way to enforce “true” sparsity of the network would
be to remove all connections corresponding to weights and
biases with magnitudes that fall under a certain cut-off size,
defined by a hyper-parameter. However, when this pruning
should take effect—during or after training, once or in every
training epoch—is an aspect that has to be considered.

Letting 2Ne be the number of training epochs, we there-
fore apply the following pruning method:

1) Train without pruning for Ne epochs.
2) After each consecutive epoch, prune weights and bi-

ases with magnitudes smaller than a pre-defined hyper-
parameter δ.

3) After 2Ne epochs, remove the weight or bias with the
smallest magnitude.

4) Repeat the step above until the number of remaining
weights and biases matches or is lower than a pre-
defined hyper-parameter Nf .

5) Simplify the resulting expression using symbolic com-
putations.

To avoid keeping non-influential parameters, a set of
simplification rules are enforced at the end of step two.
Parameters upstream from a node representing a multipli-
cation by zero can be removed if they thus do not effect
the final expression. For example, if the numerator of a
division expression evaluates to zero, the entire division
activation function, as well as all upstream nodes that do not
provide input to other activation functions of the network,
are removed. If instead the denominator becomes zero, the
division is replaced with a unit function with the value of
the nominator divided by the bias term of the denominator.
The same idea is applied to the exponential function. If only
the bias b remains upon pruning, the exponential function is
replaced by the constant value exp(b). Depending on what
base expressions are used, the list of simplification rules
could readily be extended or modified.

3) Regularized division: The division base expression is
problematic since it leads to numerical instability if the
denominator approaches zero. In the literature, this has
prompted ad hoc fixes, as exemplified by [21]. We approach
the problem with modified log-barrier functions, otherwise
commonly employed to enforce (approximations of) hard
constraints in optimization problems. A hyper-parameter β
defines a cut-off limit, and a term D = − log(|d|) is added
to the optimization loss whenever a division denominator d
evaluates to a value with |d|< β. In the last term of (3), D is
the sum of all such terms, and µ is a hyper-parameter to be
increased until possible numeric instability caused by (near)
zero denominators vanishes.



V2 =(l1 exp(l2x1 + l3x2) + l4x
2
1 + l5x1 + l6x1x2 + l7x

2
2 + l8x2 + l9)(l10 exp(l2x1 + l3x2) + l11x

2
1 + l12x1 + l6x1x2 + l7x

2
2 + l13x2 + l14)

+ l15x
2
1 + l16x1x2 + l17x

2
2 + l18 exp(l2x1 + l3x2) + l19 exp(l20 exp(l2x1 + l3x2) + l15x

2
2 + l21x1x2 + l22x2 + l23x

2
1 + l24x1)

+ l25x1 + l26x2 + l27 +
l28 exp(l2x1 + l3x2) + l29x2

1 + l30x1 + l31x1x2 + l32x2 + l33x2
2 + l34

exp(l2x1 + l3x2) + l35x2
1 + l36x1 + l37x1x2 + l38x2 + l39x2

2 + l40
. (4)

4) Implementation: We have implemented the proposed
method in Julia, which is a language with native support
for automatic differentiation. This makes implementing and
training of the ANN straightforward. The ANN was im-
plemented using the Flux [22] package, and the stochastic
gradient optimizer Adam [23] was employed to perform
weight and bias optimization within each training epoch.

The implementation relies on several hyper-parameters
being defined. The perhaps most obvious one is the choice
of base expressions and their structural organization into
the nominal ANN, as exemplified in Fig. 3. We have also
mentioned named hyper-parameters λ, µ, Ne, Nf , δ. In
addition, the numeric optimization algorithm employed for
back-propagation generally has several hyper-parameters.
Finally, more hyper-parameters are needed to define how
random repeated initialization, desirable to avoid finding
shallow minima of the loss (3), is to be carried out.

What hyper-parameter values are adequate vary between
modeling problems. Rather than listing numeric values that
are hard to interpret out of context—and to provide additional
detail to what is realistically possible to convey in the main
text—we have therefore disclosed the implementation used
to generate the results of this paper in [24].

III. RESULTS

The expression corresponding to the nominal ANN of
Fig. 3 is not quite human-readable even after simplification,
as seen in (4), where AGE and WGT have been replaced
by x1 and x2, respectively. Values of li resulting from
optimization of (3) with λ = 0 and Nf = ∞ can be found
in [24].

However, specifying to keep at maximum Nf = 12
parameters, the method manages to identify the expressions

V̂1 =
6.35WGT − 1.43

0.685WGT + 22.7
, (5a)

V̂2 = 0.624WGT exp(−0.0155AGE), (5b)

for estimation of V1 and V2 generated by (1) and the
covariates in [8]. The pruned networks corresponding to
these expressions are shown in Fig. 4 and Fig. 5, and the
model fit across the training data is shown in Fig. 6 and
Fig. 7.

Decreasing to Nf < 7 instead results in the constant mod-
els V̂1 = 5.98 and V̂2 = 0.600WGT − 0.00533AGE WGT,
which do not capture the inter-individual variability seen in
the training data.

IV. DISCUSSION

This paper demonstrates how symbolic regression net-
works can be used within pharmacometric covariate mod-
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Fig. 4. Resulting trained ANN for the model V̂1 of (5a).
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Fig. 5. Resulting trained ANN for the model V̂2 of (5b).

eling. Particularly, the methodology can be used both to find
parametric functional relations between covariates and PK
model parameters and to optimize the numeric values of
these relations.

In the two provided examples, the final expressions (5)
are of the same form as the “true” model (1), from which
the training data was generated. In contrast to previous
research on “symbolic regression” where the goal has been to
identify physical laws, this is of minor interest in our context.
Instead, we primarily wish to find expressions that provide
an adequate balance between complexity (expression size)
and fit to data. This trade-off is available foremost through
the selection of base expressions and structure of the nominal
ANN, and the degree of pruning through the final size hyper-
parameter Nf .

Symbolic regression networks provides a large flexibility
in the choice of which functional relations that are included.
In this work, we have chosen base expressions that are
commonly present in existing anesthetic models, see for
example [8], [12]. However, these can be chosen freely to
match underlying structures of the data, or based on expert
input.

Although it is time-consuming to tune hyper-parameters,
the alternative of evaluating all possible combinations of base
expressions will be practically infeasible already for small
model expressions.
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Fig. 7. Covariates AGE and WGT against PK parameter V2 for training
data (dots); generated by trained model (5b) (surface). Although hard to
see, the dots lie (almost) perfectly on the surface.

In this paper, the main focus has been on the demonstration
of the symbolic regression method, with the assumption that
the “true” PK covariate model in (1) is known. However,
in a real use-case this will not be the case. Instead, the
model prediction should be compared to clinical data, which
for this model is blood plasma sample concentrations with
the corresponding drug infusion profiles, as described in [8].
Simulation of the PK model candidates gives a possibility
to compute the model output error at each sample. By the
computation of a statistic measure on the output error, such as
the mean absolute error or the L2-norm, this constitutes our
new training loss. While the training methodology remains
the same, it now also includes a PK model simulation step.
The framework in Julia allows for automatic differentiation
through this simulation step.

These promising early results have motivated us to con-
tinue with the prospect to evaluating the methodology on
actual pharmacological study data.
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