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PREFACE

These lectures, given during the academic year 1994-1995, are intended as an
introductory course in harmonic analysis for graduate students. The prerequisites
assumed are some familiarity with distribution theory, Lebesgue integration and
functional analysis. It should be possible to read most of the notes without know-
ing distribution theory by concentrating on the study of smooth functions and
the L? theory of the Fourier transformation. However, I have chosen to build on
distribution theory since it makes many arguments simpler and more transparent.

The very short Chapter I is intended to present the algebraic contents of commu-
tative harmonic analysis in a context which is almost free of analysis. It contains
in particular a discussion of the fast Fourier transform. Chapter II develops the
basic facts on Fourier analysis in R™ starting from approximation of R™/Z"™ by
finite groups and of R™ by such torus groups. There is a substantial overlap with
my book [1], where many of the topics are dealt with in greater depth.

In Chapter III the basic principles of Fourier analysis are illustrated by a study
of wavelets, with an emphasis on wavelets of compact support. For applications
and additional results the reader should turn to Daubechies [1] and Meyer [1], [2].
Chapter IV then returns to more traditional harmonic analysis. It is centered on LP
estimates for singular integral operators and the related study of the Hardy space
" and the space BMO of functions of bounded mean oscillation. The methods
developed are also applied to prove that wavelets with compact support give bases
in LP spaces and the Hardy space. A much more extensive discussion of these
matters can be found in E. M. Stein [1].

The final Chapter V is devoted to the study of multipliers on the Fourier trans-
form of LP, in particular convergence and summability of the Fourier expansion of
functions in LP. In spite of much progress in the last few decades this is an area
where many problems remain open.

The choice of topics for a course such as this is of course in no way uniquely
determined. A guiding principle here has been to cover results and methods which
are essential in the study of linear and non-linear differential equations. So far the
study of wavelets may not qualify in that respect, but it gives excellent illustrations
of the tools of Fourier analysis and is important in signal theory.

Lund in February 1995

Lars Hormander
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CHAPTER 1

FOURIER ANALYSIS ON FINITE ABELIAN GROUPS

1.1. The structure of finite abelian groups. Let G be a finite abelian group,
with |G| elements and with group operation denoted by +. Let us recall some elementary
facts:

a) For every a € G \ {0} there exists some integer n # 0 with na = 0, for otherwise
all elements na € G, n € Z, would be different. If n is minimal then a generates a cyclic
subgroup

Go={va;0<v<n}=Z/nZ =17,
of G, and n is called the period of a. Since |G| = |G,||G/G,.| = n|G/G,]| it follows that n
divides |G| so |G|a = 0 for every a € G.

b) If p is a prime then G(p) = {a € G;p’a = 0 for some v} is a subgroup of G. It is
trivial unless p divides |G|. If |G| = [} p;nj with different primes p; and m; > 1, then
G(pj) ={a € G;p;ﬁja = 0}. We have

(1.1.1) G=G(p1) x - xG(py).
In fact, we can find integers 71, ...,7, such that
> w]lr =1
p=1 j#u

since the products have no common factor. If a € G it follows that

1%
— — M m _
a= E a,, wherea, =", Hpj a, hence p;*a, = 0.
1 JFu
Such a decomposition is unique, for assume that

14
ZaM:O, ppta, =0, p=1,... v
1

Then it follows for 1 < o < v that

v v
a0 =3 ][ a0 =0 [ 9" a0 =2 [ [ 7 D au =0,
1 J#p j#o j#o 1
Since (1.1.1) implies that |G| = |G(p1)] ... |G(p,)| and we shall see in a moment that |G (p)|
. . m
is a power of p, it follows that |G(p;)| = p;”.
The subgroups G(p) can in general be decomposed further. Since the decomposition is
not unique the proof is somewhat harder than the proof of (1.1.1).
1



2 I. FOURIER ANALYSIS ON FINITE ABELIAN GROUPS

THEOREM 1.1.1. Let G be a finite p group where p is a prime, that is, assume that
p"G = {0} for some m. Then one can find integers 14 > 19 > --- > 1, > 1 such that

(1.1.2) G=Zp X X Lpro.

The sequence r1,...,rs 15 uniquely determined although the decomposition is not.

PROOF. Let r; be the smallest positive integer m such that p™G = 0, and choose
a € G with p"*~1a # 0. Recall that the corresponding cyclic group G, is then isomorphic
to Zpr. If 0 # b € G/G, then the period p" of b is < p"* since every element b in the
residue class b has period < p™. We claim that b can be chosen so that b also has period
p". In fact, if p"b = na it follows that 0 = p™b = p"*~"na, so n must be divisible by p".
Then b’ = b — (n/p")a is in the residue class b and p"b’ = 0.

By induction with respect to |G| we may assume that the quotient G/G,, is the product
of cyclic groups of order p™ > p™ > ... > p"~ generated by bs,...,b,. For each of these
generators we choose an element b; € G with period p'/ in the residue class Bj. Then

(1.1.2) G =Gy X Gpy X xXGy,.

In fact, if g € G there are integers 7, . .., v, uniquely determined modulo p™2, ..., p" such
that g — >3 vjb; € G4, which proves (1.1.2)’, hence (1.1.2).
We can also prove the uniqueness of rq,...,r, by induction. In fact, since

pG = Zp'r’]_—l X X Zpro-—l
the numbers r; which are > 1 are determined, and since |G| = p™** "+ the number of

exponents equal to 1 can then be calculated.

Note that the only subgroups of Z,~ are p/Z, = Z,—;, where 0 < 57 < r. By the
uniqueness in Theorem 1.1.1 it is not possible to decompose Z, into the product of two
groups.

EXERCISE 1.1.1. How many non-isomorphic abelian groups of order 128 are there?

In what follows we shall avoid using the structure of G provided by (1.1.1) and (1.1.2),
but it is useful to keep in mind that finite abelian groups are not more general than direct
products of cyclic groups, which can even be taken of prime power order.

1.2. The dual of a finite abelian group and Fourier expansion. With G still
denoting a finite abelian group we shall study the group algebra C& consisting of complex
valued functions f : G — C. This is a finite dimensional complex vector space with a
natural positive definite hermitian symmetric form

(1.2.1) (f,9)=>_ flx)glx); f.geCC

zeG

With 7, denoting the translation operator

(ryf)(x) = flx—y); 2z€G, yed,
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it is clear that (f,g) is translation invariant, that is,

(Tyfvag) =(f,9); f.g¢€ CG, y € G.

Since 7,7, = Ty4. = 7,7, the unitary operators 7, commute. Every linear operator
T : C¢ - C% commuting with T, for every y € G is a linear combination of these
operators,

T=3 clyn, thatis, (TN)() = fla—ye(y).

yeG yeG
In fact, the linear form C% 3 f + (T f)(0) can be written

(TF)0) =Y cy)f(-y), fecC,

yelG

which implies that

(Tf)(z) = (=T f)(©0) = (T /)(0) = Y e)f(z = y) = (D e)m ) (2),

yelG yelG

which proves the claim.
The commuting unitary operators 7, y € G, have a common complete orthonormal
system of eigenvectors. If x is an eigenvector for all 7, with eigenvalue A,, then

TyX = AyX, thatis, x(x —y) = A\yx(2); =,y € G.

If x(0) = 0 it follows that x = 0. Otherwise we can normalize x so that x(0) = 1, which
gives x(—y) = Ay, so x(z —y) = x(x)x(—y), or more symmetrically

(1.2.2) x(z+y) =x@)x(y); =yeG;, x(0)=1.

A function x satisfying (1.2.2) is called a group character. Note that if nx = 0 then it
follows that 1 = y(nx) = x(z)", so x(x) is an n'® root of unity, hence a |G|*" root of unity.
In particular,

(1.2.3) x(x)™t = x(~z) = x(z), €.

If x1 is also a group character then yx; is another and so is 1/x, so the characters form
an abelian group G, the dual group of G, with the character which is identically one as
neutral element. Since

06 x1) = (X myxa) = x(=y)xi(=y) (o xa), y€G,

we have (x, x1) = 0 unless x(—y)x1(y) = 1, that is, x = x1. Different characters are thus
orthogonal, so we have proved:



4 I. FOURIER ANALYSIS ON FINITE ABELIAN GROUPS

THEOREM 1.2.1. The characters on G form an abelian group G. The elements of G
divided by /|G| are an orthonormal basis for C¢, so |G| = |G|.
For every f € C% we have

F@) =Y x@)(£,0)/1GI = Y > x(@) fxu)/IGl,

xeG xeG YEG

which means that

flx) = Z f(x)x(z) = Z f(x)x(—x) implies

zeG zeG

(@) |G|Zf

xXE€EG

This is Fourier’s inversion formula. For the convolution (f x g)(z) = >_ .o f(z —y)g(y)

where f,g € C% we have m(x) =f (x)g(x), so the Fourier transformation diagonalizes
all translation invariant linear operators in C. If we multiply the inversion formula by
g(z) and sum over x, we obtain Parseval’s formula

= flx)g(x) |G| > F)900 = (£,9)/1Gl, f.9€CY,
reG XEG
which means that the linear map f — |G ] 1s unitary. By the definition of the group

operation in G the map G > X — x(z), z € G, is a character on G, so these functions form

an orthonormal basis in CC after division by 1/ \CA; |. Thus we have a complete symmetry

between G and G apart from the fact that we have written the group operation in G
multiplicatively (and the usual change of sign in Fourier’s inversion formula).

REMARK. If all the characters x € G are real then x only takes the values +1 so y? = 1.
By Theorem 1.1.1 it follows that G is then isomorphic to Z% for some positive integer n,
which implies that G is also isomorphic to Z%. Representing the elements of G' and G by
x € Z" and ¢ € Z" and writing (z,£) = 3.7 x;&; we can write £(z) = (—1)(®% and obtain
if f is a complex valued function on Z%

FO=Y (-D"9f@), fl@)y=2""> ()= f().

T€ZY ¢czy

The calculation of f seems to require 2" (2™ — 1) additions and subtractions. However, if
we do it one variable at a time we find that only 2"n such operations are then required. In
Section 1.3 we shall see that a similar improvement is possible for the group Zs» although
it is far less obvious.
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IfG = G/l\ x (35 is a direct product, then it is clear that G can be identified with @1 X 62,
for if x; € G then
G =G x G2 3 (21, 22) = x1(w1)x2(T2)

is a character on G and all characters are of this form. To make the preceding discussion
completely explicit it is therefore sufficient to discuss the cyclic group G = Z,, of order n,
not necessarily a prime power. Let w = €27/", If £ € Z then

Z > 1 W™ = 2miwt/n

defines a character on G. This identifies G with Z,, so that for a function f on Z,

(1.2.4)

This inversion formula is completely elementary: it follows from the fact that

n—1

Zezng/n =nd,y, 2=0,....,n—1,
£=0

where ¢, is the Kronecker delta, equal to 1 when j = k£ and 0 otherwise. We shall see
in Chapter II that it is easy to pass from (1.2.4) to the basic facts on Fourier series and
Fourier transforms. R R

As pointed out above the dual group of G; x G is G1 x G4, which reduces the Fourier
analysis in G = G X G2 to Fourier analysis in G; and in GG3. As a preparation for Section
1.3 we shall now study the more general case where we only have a subgroup H of the
finite abelian group G. An example is G = Z,» and H = PG with 0 < j < k.

THEOREM 1.2.2. If H is a subgroup of the finite abelian group G then the characters
which are equal to 1 on H form a subgroup H* of G which is the dual group of G/H. The
dual group of H is G/H*.

PROOF. Let f be a function on G/H lifted to G, that is, let f € C% and 7,f = f for
ye€ H. If x € G then

(fix) = (rfix) = (f, 7—yx) = x()(f.x), vy € H,

which proves that (f,x) = 0 unless x(y) = 1 for every y € H, that is, x € H+. Hence

(1.2.5) f= L > (F0x

G| =,
xeH
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which proves that H* is equal to the dual group of G//H and not only a subgroup, which
is obvious. Hence R

|G| = |G| = |G/H||H| = |[H*||H],
which implies that |H| = |G/H~| and proves that G/H> is the dual group of H, for it is
obviously a subgroup since a character x on G restricts to a character on H which is not
trivial unless y € H+.

We saw in (1.2.5) that if f € C% and Tyf = f for every y € H, then f vanishes in
G \ Ht, and the restriction to H' is |H| times the Fourier transform of the function

induced in G/H. (Note that the scalar product }_ . f(z)x x(z) is equal to |H| times the
sum with only one x chosen in each residue class mod H.)
Every f € C% can be uniquely written in the form

(1.2.6) Z for fo= %' o

,/eg/HJ_ XEV

Note that 7,f, = 1/( )f, if y € H. Here v(y) is defined since v is a character on H. We
have f,(x) = |H|f(x) when x € v and f,(x) = 0 when x ¢ v, and

(1.2.7) fv = Z v(y)ryf, thatis, f,( Z flz+yv(y), =€,

yeEH yeEH

for

> v Tyf— Z d_vWnfu= ) |H|Z = fv-

yeH HEG/HL yeH /LEG/HL yEH

Thus f, (z) are for fixed = the Fourier coefficients of f in the fiber x+ H of G/H, identified
with H by the mapHBh»—)x—I—h
If we choose € G in the residue class v € G JH*, then f,(x) = f,(z)0(— ) is invariant

under the translations 7, with y € H, for f,,( ) = \H]f(xz/) if x € H' and f,,( ) =0if
x € G\ H*. Thus it follows that

FO0=f00/|H| = ny

(1.2.8) R

— B = = F@)i(@)x@), xeveG/H.

zeG

IH!

The division by |H| disappears if only one x in each residue class mod H is taken in the
sums, which corresponds to taking the Fourier transform of f,, as a function in G /H.
Summing up, we can calculate the Fourier transform of f by
(i) computing f,, using (1.2.7) for one x in each coset in G/H, that is, calculating the
Fourier transform of |G/H| functions in the group H;
(ii) calculating the Fourier transforms of the |H| functions f, in G/H, or equivalently,

apply (1.2.8).
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The importance of this remark is as follows. Computing f from first principles means
letting a |G| x |G| matrix act on a vector with |G| (complex) components, which requires
(|G| — 1])? multiplications and |G|(|G| — 1) additions, since all elements in one row and
one column of the matrix are equal to 1. If instead we divide the task into two steps as
above, we need |G/H||H|(|H| —1) = |G|(]H| — 1) multiplications and additions in step
(i). In step (ii) we need at most |H||G/H|?* multiplications and additions, or altogether
at most |G|(|H| — 1 + |G/H]|) operations of each kind. Here 2 < |H| < |G|/2 so this is
< |G|(1 4+ |G|/2). There is a more drastic saving if we have a ladder of subgroups

(1.2.9) {O}:HOCch.HQC"'CHN:G.

In the first step, with H = H; we have to make |G|(|H1|—1) operations, and are essentially
left with |H;| functions in G/H;. To compute their Fourier transforms we use the subgroup
Hy/H; and find that step (i) requires |H:||G/H:|(|H2/H1| — 1) = |G|(|H2|/|H1| — 1)
operations. Continuing in this way until we reach Hy = G so that no step (ii) is required,
the number of operations used becomes altogether

N
(1.2.10) G (= 1), v = [Hyl/|H .
1

Here v; > 2, and we have v < 277! when v > 2. Since Hjlv v; = |G| the bound in (1.2.10)
is > |G|log, |G|, with strict inequality unless v; = 2 for every j, that is, G is a 2 group.
(The case of the group ZY is fairly trivial and was discussed in a remark after Theorem
1.2.1. The more interesting case of the group Z,~ will be discussed below.) The bound
|G|log, |G| for the number of operations is of course much better than the bound (|G| —1)?
if |G| is large, which is the reason for the importance of the fast Fourier transform using
the group Zy~, which will be discussed more explicitly in the next section.

When the group G and the subgroup H are cyclic, the calculation of the Fourier trans-
form of f € C% using (1.2.7) and (1.2.8) can be described explicitly as follows. Let
G = Zyn where N = ab for some integers a,b > 2, and let H = aZy. We identify G with
Zy, defining the characters by Zy 3 = +— exp(2wizé/N) when ¢ € Zy. Then H+ = bZy,
we represent G and G by integers 2 and ¢ in [0, N — 1], and write

r=ay+z 0<z<a, 0<y<b E=bm+(¢ 0<(<b 0<n<a.

Then exp(2mizé/N) = exp(2miz(/N) exp(2miy(/b) exp(2mizn/a), hence

a—1 b—1
(1.2.11) flm+¢) = Z e~ 2mizn/a (e‘ZmZC/N Z flay + z)e‘zmyC/b>.
z=0 y=0

With our earlier notation the inner sum in (1.2.11) is the Fourier transform in H calculating
fe(2) in (1.2.7). The product by e=27#¢/N is f-(z), and the outer sum in (1.2.11) calculates
its Fourier transform in G/H as in (1.2.8). Thus formula (1.2.11) describes in the cyclic
case precisely the same procedure as before, but with the conceptual background removed.
(I owe this observation to C. Bennewitz.)
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1.3. The fast Fourier transform. In this section we shall examine in detail the
Fourier transform of functions on the group G = Z,v = Z/2NZ following the pattern
outlined at the end of Section 1.2. Let H; be the subgroups

(1.3.1) H; =2N"1G, 0<j<N.
We have as in (1.2.9)
(1.3.2) {0}=HoCHiC---CHn=G, Hj/Hj 1275 1<j<N.

We can parametrize G by {0,1}" using binary digits,

N
{0,135 (r1,....orw) = > 127 € Z— Zow,
1

and we parametrize the dual G = Z,~ similarly by (901,...,0n). Then the character
G x G2 (z,€) — exp(2mizé /2V) becomes

exp(2mi Z rjop2I TR,
J,k>1,j+E<N+1

The subgroup H; consisting of all z € Zyy with 272 = 0 is defined by r; = -+ =ry_; =0,
so G/H, is parametrized by (r1,...,7n—;). Since HjL is defined by g1 = --- = p; = 0 the
quotient é/H]L is parametrized by g1,. .., 0;.

Let f € C¢. With H = H; the first step in the calculation of f is to decompose f by
the two characters on Hy = Zo,

folz) = f@) + fla+2Y7Y), file) = f(z) - fla+2771).

Here fo(z + 2V71) = fo(x) but fi(z + 2N¥~1) = —fi(x). The non-trivial character which
gave rise to fi corresponds to the coset of G/Hj- defined by ¢, = 1, and we choose in it
the character in G corresponding to ¢ = (1,0,...,0). Then f; is modified to

fi(@) = (f(2) = fla+ 21?27,
To simplify notation we drop the tilde and define now
(1.3.3) for(2) = (f(x) + (=1)2 f(a + 2N~ Y))e2mizer/2" 5 = 0,1,

These two functions are now defined in Zy~—1. The Fourier transform of f,, as a function
in Zon-1 at Zév_l 0;27=2 will be the Fourier transform of f at Eiv_l 0; 2771,

It is now clear how to continue the algorithm. When f,,  ,,(x) has been defined as a
function in Zon-« for g1,...,0r = 0,1, we define if £ < N, for gx+1 = 0,1,

—k— —2mizopy /2N F
(1.3.4) for.oni1 (@) = (for...on () + (_1)Qk+1f.91...,gk(l‘+2N k 1))e=2miver+ 2N
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which are functions in Zs~v-x—1. The last functions f,. are defined in Z,, that is,

constants, and

0N

N
(1.3.5) FO -0 277Y) = foron-
1

—2miv/2% and the binary representation of integers in

[0,27) have been precomputed, we have here made 2% ! multiplications and 2 additions
or subtractions in each step, for a total of N2V~ multiplications and N2V additions or
subtractions. Parametrizing x € G by the binary digits ry,...,ry we see that f,, . . ()
is parametrized by r1...rN_k, 0k - . . 01 Which shows that the function values calculated in
each step can be naturally stored at the same places as those in the preceding step which
makes the algorithm fast and easy to program.

The algorithm is often presented in a somewhat different way which is independent of
the general scheme described in Section 1.2. Let n = 2V. The task is to calculate the
polynomial

Assuming that the exponentials e

at the n'" roots of unity, or equivalently, to calculate the residue classes modulo z — w’
for j =0,...,n — 1 where w = exp(27i/n). Since n is even the n'® roots of unity can be
divided up into solutions of the equations 2™/2 = 1 and z"/2 = —1. For roots of the first
kind we can first reduce p modulo z"/? —1 and for the second type we first reduce modulo
2™/2 4+ 1. Since n is a power of 2 the procedure can be continued. After j < N steps we
have 27 polynomials ¢ of degree 2N=J — 1 the values of which we want to calculate at the

oN—J oN=iy

zeros of z —w where v is an integer. Thus we have to compute the values of ¢

at the zeros of 22" ° ' Fw? ' ¥ after reducing ¢ modulo these polynomials. For the
lower sign we replace v by v + 27 to preserve the structure. After N steps we are left with
2N polynomials of degree 0 to evaluate at w” where v = Zf[ 0;2771 and p; = 0 if the
minus sign is chosen in the ;' step of the construction, 0; = 1 otherwise. Now reducing

a polynomial Zg“ - a; 2 modulo z* F ¢ gives the polynomials

pn—1

Z(aj + ajq,0)7’

0

which means that p multiplications and 2y additions or subtractions are required to cal-
culate the new coefficients. The total computational effort is of course the same as in the
first description of the algorithm.



CHAPTER II

BASIC FOURIER ANALYSIS OF (PERIODIC) FUNCTIONS IN R”

2.1. The one-dimensional case. In this section we shall study functions on R, its
closed subgroups TZ with T' > 0, and the quotient groups R/TZ (the circle group). We
start with the latter case.

Thus let f be a continuous function on R with period T'. For an arbitrary integer v > 0
we can restrict f to a function f, on Z, = Z/vZ defined by

(2'1'1) fl/(]) = f(T.]/V)v JEZ,

and apply the Fourier inversion formula (1.2.4) for Z,, to f,. The Fourier coefficients of f,
are

=Y f(Tj/v)e > kY ke,
and the inversion formula states that

(2.1.2) f(Tj/u):% S (k)i

—v/2<k<v/2

When v — oo we have by the definition of the Riemann integral ¢, (k)/v — c(k) where

1 T
‘ 1 ,
(2.1.3) c(k) :/ F(Tx)e 2™k dy = _/ f(a:)e—%mkx/T da.
0 T Jo
From (2.1.2) we would obtain
(2.1.4) flz) = Zc(k,)e%rikx/T’

if it is legitimate to pass to the limit when v — oo and T'j /v — . We shall now prove that
this is permissible if f € C?, thanks to the precaution of shifting the summation index k in
(2.1.2) so that k/v does not come close to any integer # 0. To estimate ¢, (k) we observe
that

Cu :t27rzk/v Zf j:l:l /I/ 727rwk:/1/ hence

I
—

v

ey (k)(2 = 2T — 2Ty =% (2 (Tj/v) = (TG + 1) /v) = F(T(G = 1) v))e >0,

<.
I
o

10
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The parenthesis in the left-hand side is —(e™*/¥ — e=™*/")2 = 45in?(nk/v) > 16(k/v)?
when |k| < v/2, for |sin(rz)| > 2|xz| when |z| < 1/2 by the concavity of the sin function in
[0,7/2]. The second difference of f on the right is bounded by (T'/v)?sup|f”|, so we have

e (k) /v| < (T%/16k%)sup | "],k #0; e, (0)/v| < sup|f].

Thus |c, (k)/v]| is majorized by a convergent series which proves that the inversion formula
(2.1.4) is valid.

ProposiTION 2.1.1. If f € C*(R) where pu is an integer > 0, and f is periodic with
period T > 0 then the Fourier coefficients c(k) defined for k € Z by (2.1.3) have the bound

1 T
(2.1.5) |2mk/T) e(k)| < —/ f ¥ ()| da < sup | f*)].
T 0

If p > 2 then (2.1.4) is valid with absolute and uniform convergence, and Parseval’s formula
T oo
(2.1.6) /0 F@Pde =TS [e(k)P

is valid. Conversely, if c(k), k € Z, is a given sequence € C such that k*c(k) is bounded
then (2.1.4) defines a function f € CH=2(R) with period T if i > 2, and (2.1.3) is valid.

PROOF. We have just proved that (2.1.4) is valid if f € C?, and (2.1.6) follows if

we multiply by f(z) and integrate, interchanging the integration and the summation. If
f € C*(R) then we obtain by p partial integrations in (2.1.3)

I ‘
(2mik/T) (k) = T/ f(#)(x)e—2ﬂzkm/T dz,
0

which proves (2.1.5). On the other hand, if c¢(k) is given with |c(k)] < CEk™H, u > 2,
then (2.1.4) converges to a function f € C*~2 with period T, for the series is uniformly
convergent and remains so after at most p— 2 differentiations. The Fourier coefficients of f
can be calculated by termwise integration which gives (2.1.3) in view of the orthogonality

relations

L[ oriG—kye/T
f/o 2R/ T g — 541,

REMARK. Note that the functions x(z) = exp(2wikz/T) with k € Z are bounded
continuous characters on R/TZ, that is, x(z + y) = x(z)x(y) for z,y € R. We leave
as an exercise to prove that all bounded continuous characters are of this form. (Hint:
Prove first by integration with respect to y that a continuous character is continuously
differentiable and derive a differential equation for it to prove that it is an exponential.)

If f is a C? function on R which is not periodic but has compact support, we can define

a function fr € C? with period T' by pushforward of f to the quotient space R/TZ, that
is,

fr@) = Y fle+ kD).

k=—0o0
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The Fourier coefficients of fr are

1 [T . 1 [° . 1 .
cﬂmzfl.ﬁmf%mﬁwzfj'ﬂMKMM”mzfﬂ%wn,

where f denotes the Fourier transform
(2.1.7) ) = /R F(@)e= ¢ da.

By (2.1.4) we have
- - 1<, |
(218) fT(ZC) — Z CT(kJ)@Zﬂ—ka/T — T Z f(?ﬂ'k/T)eQTmmk/T dz.

When T' — oo the left-hand side converges to f(z); in fact on any compact set it is equal
to f(x) when T is large enough. To find the limit of the sum in the right-hand side of
(2.1.8) we note that partial integration gives

?ﬂ@z—/ﬁ%%”“m,hmwﬂ+¥W@ﬂ§/W%M+U@WW-

We can regard the sum in (2.1.8) as the integral of the function of & which is equal to
f(2rk/T)e?™@k/T wwhen |€ — k/T| < 1/2T. It is bounded by C/(1 + £2) for every T > 1
so the dominated convergence theorem gives

(2.1.9) fla) = [ Femgemetas = o [ foescas, aer

PROPOSITION 2.1.2. If f € C*(R) and 27 f®) (z) is bounded for 0 < j < pu, 0 < k < v,
where i > 2, then the Fourier transform f of f defined by (2.1.7) is in C*~2(R), and

(21.10)  |€FP(e)] < /R |(d/dz)’ (" f(x))| dz < 7~ sup(1 + 2?)[(d/dz)’ (=" f ()],

when k < pu—2and j <wv. If v > 2 also then f 18 integrable, the Fourier inversion formula
(2.1.9) is valid, and so are Parseval’s formula

(21.11) J1r@rd =5 [ 1R,

and Poisson’s summation formula

(2.1.12) > f(T) = %Zf(ka/T).
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PRrROOF. If k <y — 2 then we may differentiate (2.1.7) k times under the integral sign,
which gives

F9 () = /R f() (—iz)e— = da,

for the integral remains uniformly convergent. If j < v we can multiply by ¢/ and integrate
by parts 7 times to get

706 = [ (=id/dap () (i)

which proves (2.1.10). In particular, if ¥ > 2 and p > 2 the proof of the inversion formula
given above for f € C? of compact support remains valid, for fr(x) — f(z) as T — oo
since p > 2, and the determination of the limit of the right-hand side of (2.1.8) used only

a special case of (2.1.10). Parseval’s formula (2.1.11) follows if we multiply (2.1.9) by f(z)
and integrate, interchanging the orders of integration in the right-hand side. Poisson’s
summation formula (2.1.12) is the special case of (2.1.8) with x = 0.

The gap between the periodic and the non-periodic case can be bridged as follows. Let
f again be as in Proposition 2.1.2. Then we have used that

fr(x) =) f(z+kT)

is periodic with period T, but fp only preserves information on the spectrum of f at
27Z/T. To avoid this loss of information one can premultiply by the character e~*¢ and
define

fre(x)e ™ = Z f(x+ kT)e " @HFTE  that is,

(2.1.13) fre(z) = i f(z + kT)e k1%,

(Compare this with (1.2.6) and (1.2.7).) Then F(x,&) = fr¢(z) is continuous in R? and
(2.1.14) F(z,§+27/T) = F(2,£), F(z+T,¢) =" F(,9).

The Fourier coefficients of F' as a periodic function of £ are f(z—kT'), so Parseval’s formula
for Fourier series gives

27 /T ) or 0 )
[ =T ik
and integration with respect to = yields

T 27 /T
(2.1.15) /0 dx/o ]F(x,£)|2d§:2%/R\f(:z:)|2da:.
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Conversely, let F' € C?(R x R) satisfy the periodicity conditions (2.1.14) and set

27w /T
(2.1.16) @) = %/0 F(x, €) d.

Then f € C?, and since for 0 # v € Z

T 27 /T T 2m/T
flatvT) = o / TP (2, €)dE = —o—(vT)” /0 VTEGF (z,€) /07 d,

it follows that z7 f(z) is bounded for j < 2. Fourier series expansion of F' gives with the
Fourier coefficients just calculated

)= fla—vT)e"TS = fre(a),

so (2.1.16) and (2.1.13) are inverse transformations. In particular using (2.1.15) we con-
clude that the map from f to [0,7] x [0,27/T] > — /T /27 fr¢(x) extends to a
unitary map from L?(R) to L2?([0,T] x [0, 27 /T]). It is sometlmes called the Zak transform
(see Daubechies [1]), and sometimes called expansion in Bloch waves.

The preceding two propositions are precisely analogous to the Fourier analysis for finite
abelian groups in Chapter I, with (27/7")Z as dual group of R/TZ and R as its own dual
group. However, the local and global hypotheses are too strong in both of them and they
will be relaxed later on. Before doing so we shall discuss an extension of Propositions 2.1.1
and 2.1.2 to distributions.

Distributions f € 2’'(R) with period T can be identified with continuous linear forms
on the C* functions on R with period T. In fact, let L be such a linear form. We can
define a distribution f € 2'(R) by setting

(2.1.17) fle) =L(®), ¢ecC(R), where ®(z ng (x — kT),

for ® € C*°(R) is periodic with period T. We leave as an exercise to verify that f is
a distribution. It is periodic since ® does not change if p(x) is replaced by @(x — T)).
Conversely, assume given f € 2'(R) with period T. We want to define L(®) for ¢ €
C>°(R) of period T so that (2.1.17) is valid when ¢ € C§°(R). This is a unique definition,
for if p € C§°(R) and Y.> _ (xz — kT) = 0 then

ngx—sz ngx—kT

is in CG°(R) and ¢(z) = ¢1(z) — ¢1(z +T), so f() = f(p1) — f(e1(- +T)) = 0 by the
periodicity of f. On the other hand, we can choose ¢ € C§°(R) so that Y% ¢(x—kT) =
1, for if ¢4 € C§°(R) and 91 > 0 with strict inequality in [0,7], then we can take
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Y(z) = 1(x)/ > 1(x — kT). For any ® € C*°(R) it follows that we can take ¢ = ¢®
in (2.1.17), so L(®) = f(¢®) is defined and is obviously a continuous linear form on
periodic ® € C*. If f € LY(R/TZ), that is, f is a locally integrable function with period
T, it is clear that

(2.1.18) L(@):/Rf(x)go(x)dx:/o f(x)Zgo(x—k:T)d;c:/O F(2)®(x) da.

Thus L(®) should be thought of as f® integrated over a period, and we shall usually write

(f,®)r 1z or even (f, ®)jo 1 or fOT f® dz instead of L(®).
In particular, the Fourier coefficients ¢(k) can be defined for every f € 2'(R) with
period T' by

(2.1.3)' c(k) = = (f,e " )R 1.

1
T
If f is of order u it follows that

(2.1.19) le(k)| < C(1 4+ |k|)H.

If ® € C°(R/TZ) has Fourier coefficients ®, then it follows from Proposition 2.1.1 that

(I)(x) _ Z(}Tke—QTrikm/T

where the Fourier series converges in C'>°. Hence we obtain the polarized version of Par-
seval’s formula

(£, Q) r/rz =T kP

It proves that f = 0 if all the Fourier coefficients of f vanish. Now (2.1.19) implies that
the Fourier series

(2.1.20) F =Y c(k)e*™*/T

converges in &', for the series

> (k) (ki + 1) Ne2rike/T

— 00

converges absolutely and uniformly if N is an integer > u+1, and if we apply the differential
operator ((T/27)0/0x + 1)V, which is continuous in 2’, it follows that (2.1.20) is also
convergent. That the Fourier coefficients of F' defined by (2.1.20) are equal to ¢(k) follows
as in the proof of Proposition 2.1.1. Thus we have proved:
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THEOREM 2.1.3. If f € Z'(R) is periodic with period T, then the Fourier coefficients
defined by (2.1.3)" have the polynomial bound (2.1.19) and the Fourier series (2.1.4) con-
verges to f in Z'(R). Conversely, for every sequence c(k) satisfying (2.1.19) the series
(2.1.20) converges in 2'(R) to a distribution F which is periodic with period T and has
Fourier coefficients c(k).

Summing up, taking Fourier coefficients gives an isomorphism between periodic distri-
butions and sequences of at most polynomial growth.

Theorem 2.1.3 was based on the duality between C* periodic functions and periodic
distributions on one hand, and between rapidly decreasing and polynomially bounded
sequences on the other. Theorem 2.1.2 suggests introducing a class of test functions giving
an analogue for distributions on R.

DEFINITION 2.1.4. By . or .(R) we shall denote the space consisting of all ¢ €
C*(R) such that z7¢®)(z) is bounded for arbitrary j and k.

7 is called the Schwartz space. The boundedness of 27 (d/dz)*y for all j and k implies
that any product of multiplication by x and differentiation with respect to x applied to
o(z) gives a bounded function, for the commutation relation

d d

(@w - 90%)1# =1

allows us to change the order of the factors, introducing only new terms with fewer factors
x and d/dx. The space . is a Fréchet space with the seminorms

< 3 o sup ]a:jgp(k)(a:)\,

and C§°(R) is a dense subspace of .. We leave the proof as an exercise. (See Hérmander
[1, Lemma 7.1.8] if necessary. Note that .(R) is dense in LP(R) for 1 < p < oo for even
C§°(R) is dense.) This implies that the dual space .#/(R) of temperate distributions can
be identified with a subspace of the space 2'(R) of distributions on R; the restriction of a
continuous linear form L on . (R) to C§°(R) is obviously a distribution, and if it is equal
to 0 then L = 0 since C§°(R) is dense in . (R).

The importance of the space . is due to the fact that b/}\f Proposition 2.1.2 the Fourier

transformation f — f is continuous from .¥ to .#. Since f(z) = 27 f(—x) by the Fourier
inversion formula (2.1.9), it is a surjective map with continuous inverse. If f € L'(R) so

that the Fourier transform f (&) can be defined by (2.1.7), then we obtain

/ F(€)p(6) de = / f@)p(x)dz, €.,

if we multiply (2.1.7) by ¢(&) and integrate, interchanging the order of integration in the
right-hand side. We can therefore extend the definition of the Fourier transformation to
arbitrary f € ./ by defining

(2.1.21) (foo)=(f.0), pe,
for ¥ 5 ¢ — (f,p) is a continuous linear form on . since the maps . 5 ¢ — ¢ € &
and .¥ 5 ¢ — (f, ) are continuous.
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THEOREM 2.1.5. The Fourier transformation defined by (2.1.21) is an isomorphism

L' (R) = " (R), and Fourier’s inversion formula is valid, that is, f =2nf where f is
the refiection in the origin defined by

(foo)=(f,9), veIR); ¢z)=p(-2).

We have f € L2(R) if and only if f € L%(R), and Parseval’s formula (2.1.11) is then
valid. When f € ' the Fourier transform of —idf /dx (resp. xzf) is &f (resp. idf/df),
where x (resp. £) denotes the variable where f (resp. f) lives. The Fourier transform of
f(-+h) is e f, and the Fourier transform of ' f is f( —h)ifheR. When0#a€R
the Fourier transform of f(a-) is |a|~1f(-/a).

Proor. If f € . and ¢ € .7 then

(o) = (£ @) = (f. B) = 2n(f.0) = 2n(f. )

by Fourier’s inversion formula for ., so it is inherited by .#’. The same is true for the
other rules of computation; for example,

(—idf [dx, §) = (f,id¢/dz), (zf, &) = (f,2p),

and the proof of Proposition 2.1.2 contains a proof that id¢(x)/dz is the Fourier transform
of £ — £p(€) and that xp(x) is the Fourier transform of £ — —idp(£)/d€. Hence

(—idf Jdz,¢) = (f.£0(8)) = (&f,0), (xf, @) = (f,—i¢') = (if,¢).

The verification of the other rules is left as an exercise. If f € L? then

(o)l = KO < I leell@lee = 1 fllz2V2rllele, ¢ €5

Since .# is dense in L? and every continuous linear form on L? is the scalar product by a
function in L? it follows that f € L? and that ||f| ;2 < /27| f]|z2. Hence

Iflze < V2r|flle < 27l fllz,

and since f = 27 f it follows that there is equality throughout, so f — f /V/27 is a unitary
operator in L2.

We give a few important examples, leaving for the reader to fill in the details.

ExXAMPLES. 1. The Fourier transform of §,, a € R, is £ — e ¢, Hence the Fourier
transform of ¢ — €% is 2md,. In particular the Fourier transform of the function which is
identically 1 is 27dg.

2. The Fourier transform of the characteristic function of R is Fi(¢ F1i0)~1, for it is
the limit as ¢ — +0 of the Fourier transform of the product by e™**. Hence the Fourier
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transform of x — sgnz is —2i vp(1/€), that is, the limit in .’ of & — —2i£/(£% + £2) as
e — 0. The Fourier transform of vp(1/x) is { — —imsgné.

3. The Fourier transform of P, = Y dy, where a > 0 is equal to (27/a) Par q, for
Poisson’s summation formula (2.1.12) gives

<PT7§0> :T_1<P27r/T7¢>7 @Ef,

which means that the Fourier transform of Py /7 is equal to T'Pr.
4. If f € 2'(R) is periodic with period T', then f € ./(R), and if the Fourier coefficients
are defined by (2.1.3)" then

f =2m Z (k)02 /T

This follows from Example 1 above since f is the limit in .’ of the partial sums of the

Fourier series. Note that Example 3 is a special case.

5. For the Gaussian g(x) = e~%"/2 we have by Cauchy’s integral formula

a6 = / e AT e = e/ / T dr = ¢g(¢), e= / /2 g > 0,
R R R
By Fourier’s inversion formula 2rg(—z) = §(z) = cj(z) = 2g(z), so ¢ = v/2r. Hence
/e‘x2/2_m§ dr =/ 27re_€2/2, e R.
Replacing = by x+/a and £ by £/+/a, a > 0, we obtain

/eam2/2im§ dr — \/m6752/2a7

for a > 0 and & € R. The integral is well defined for arbitrary a,& € C with Rea > 0, so
by analytic continuation the formula remains valid then, with the square root chosen in the
right half plane. Hence the Fourier transform of the general Gaussian z + exp(—ax?/2 +
br) is & — /27 /aexp(—(£ + ib)?/2a) for arbitrary a,b € C with Rea > 0.

For further important examples see Hormander [1, Lemma 7.1.17].

Since .(R) is continuously embedded in C*°(R), we have &' (R) C .¥/(R); in fact, the
obvious map &' — .’ is injective since the composition with the injection .’ — %' is
the usual injection of &” in ' (see Hormander [1, Theorem 2.3.1]).

THEOREM 2.1.6. If f € &'(R) then the Fourier transform is the C*° function

(2.1.22) f(&) = (fae™™™), EER,

where f, means that f acts as a distribution in the x variable. We can extend f to an
entire analytic function in C, the Fourier-Laplace transform, by letting £ € C in (2.1.22).

A~

If supp f C [a,b] where a < b, and f is of order u, then F({) = f({) has a bound
(2.1.23) [F(O) < CA+[¢)" exph(Im(), ¢ €C;  h(n) =max(an,bn).
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Conversely, if F' is an entire analytic function such that (2.1.23) is valid, then F = f where
f € & has support in [a,b] and order < max(0,u + 2). If g € &'(R) then the Fourier
transform of the convolution f x g is & — f(£)g(&).

ProoF. If p € C§°(R) then
~ R T —iek&
p(§) = lime _EOO plek)e

where |k| < C/e in the sum and the convergence is uniform for £ in any compact set and
remains so after any number of differentiations with respect to ¢ under the summation
sign. Hence

(Foo) = (f,0) = lime Y p(ek) F(ck),

where F(¢) = (f,ec) and eq(x) = e7*¢, ¢ € C. Since the map C > ( — e, € C*®°(R) is
continuous, it follows that F is continuous in C, hence the Riemann sums converge and
we obtain (f, ¢) = [w(§)F(&)d¢, ¢ € C5°(R), which means that f = F in R. Since the

power series expansion
oo

e = (—ix¢) /5!

0

converges in C*°(R) as a function of z, uniformly for ¢ in any compact subset of C, it
follows that

oo

F(¢) = (—i¢)(f.a")/j!, ¢eC,

0

which proves that F' is an entire analytic function. The definition of the convolution shows
that

frec(x) = fylecle —y)) = ec(@) fy(ec(=y) = f(Qec(w), (€C, zeR.
If g is another distribution in &” it follows that
(fxg)xec=fx(gxec) = f(QaQec, ¢€C,

which proves that f g is the Fourier-Laplace transform of f x g.
To prove that (2.1.23) is valid for F' = f we note that

|f(0)] <C sup ZI@O(” . ©€CHR),

a<x<b

for we can redefine ¢ outside [a, b] by the Taylor expansions of order u at a and b without
changing f(p). (See Hormander [1, Theorem 2.3.3].) Hence

A< O+ [¢))* exp( sup «Tm ),
a<z<b
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which proves (2.1.23).
Now assume given an entire analytic function F' satisfying (2.1.23). At first we assume
that 4 < —1. Then

F(z) = /RF(f)e_mE dr, x€cR,

is a bounded continuous function. By Cauchy’s integral formula applied to a rectangle
with corners at +R and £R + i1 we find when R — oo that for any n € R

ﬁ(m) = / F(€ + in)e @& gy
R

Hence
|[F'(x)| < Csup(an + h(n)), n€R.

When 1 — +oo this proves that F(z) = 0 if # + b < 0, and when 1 — —oo it follows
that ﬁ(az) =0 if x +a > 0. Hence suppﬁ C [-b, —al, so F is continuous with compact
support. By Fourier’s inversion formula we conclude that F = f where f(z) = F(—x)/27
is a continuous function with support in [a, b].

To complete the proof we choose ¢ € C§°(R) with suppy C [-1,1] and [pdz = 1;
then ¢(0) =1 and

[s=(s] Seumd/\go(j)(x)\dx.

If F satisfies (2.1.23) it follows that F({)p(e() satisfies (2.1.23) with a,b replaced by
a —¢e,b+ ¢ and p replaced by any real number. Hence the Fourier transform has support
in [-b—¢e,—a+¢]. When ¢ — 0 it follows that the Fourier transform of F' has support
in [-b, —al, so f = F/2r has support in [a,b] and Fourier transform F. If N is a non-
negative integer > u + 1, then ¢ — (i€ + 1)~V F(¢) is integrable so the Fourier transform
is a continuous function. Applying the differential operator (—d/dz + 1)V to the Fourier
transform we conclude that F' is of order N, which completes the proof.

The characterization of the Fourier transform of &’ in Theorem 2.1.6 is a variant of
the Paley-Wiener theorem due to Schwartz. The last statement in Theorem 2.1.6 has
also several variants worth mentioning. A classical version is that if f,g € L'(R) then
(f *xg)(x) = [ f(x —y)g(y) dy is defined almost everywhere and belongs to L'(R); the
Fourier transform is f g. The proof follows at once from the Lebesgue-Fubini theorem and
is left as an exercise for the reader, but we shall prove:

THEOREM 2.1.7. If ¢, € L (R) then (o x¥)(x) = [ p(z —y)¢(y)dy = (¥ * ¢)(z) is
in Z(R) and the bilinear map & X & 3 (o, ) — @ x 1 € & is continuous. If f € '

and ¢ € . then fx ¢ € . is defined by

(2.1.24) (frpp)=({fibxp), e,

and the Fourier transform is fg?:
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PROOF. Derivatives of ¢ * 1 can be calculated by differentiating either factor, and if
k > 0 then

(1 + J2))*|(p* ¥)(2)] < Sup oz = y)|(A + |z —y))* /(1 + 1yl (y)l dy

since 1+ |z| < (14]z—y|)(1+]|y|) by the triangle inequality. This proves that p*1) € . and
that (¢,1) — ¢ x 1) is continuous in .. Hence (2.1.24) defines a distribution f x ¢ € %/,
and the map . 2 ¢ — fxp € . is continuous. Since the Fourier transformation is
continuous in .’ and the Fourier transform of f x ¢ is fgb if ¢ is in the dense subspace
Cg° of .7, it follows that this is true for every ¢ € ..

We shall now discuss some properties of distributions f € ./ with f € &'; they are
called band limited in signal theory. By Theorem 2.1.6 f is the restriction to R of an
entire function; in particular f € C'°°. Let supp f C [=A, A\] and choose an even function
¢ € C5°(R) which is equal to 1 in [-X,A]. Then f = fo, and since ¢ is the Fourier
transform of ¢/(2m) € ., it follows from Theorem 2.1.7 that f = f % ¢/(27). When
differentiating the right-hand side we can let all derivatives fall on ¢, so all derivatives are
in LP N L>® N C* if f € LP for some p € [1,00]. Holder’s inequality gives if p < oo

1

2xf@) < [ 176 - vllewlar < ([ -vFieeia)” ( [iewia) .

Hence f(x) — 0 as x — oo, and

> lenf )P < ([ 1P Y It +ka)ldy) 217"

which proves that

(21.25) (/1 + 1) S 1 k)) " < Ol

Thus (f(kx))rez € 1P if © # 0.
A modification of the preceding argument yields a classical inequality due to S. Bernstein
and some of its generalizations, with exact constants:

THEOREM 2.1.8. If f € LP(R) for some p € [1,00] and supp f C [—A, A] then

(2.1.26) | f sina/X+ feosalpe < | fllee, o« €R.

ProOF. Changing scales we note that the support of the Fourier transform of g(z) =
f(z/\) is contained in [—1, 1] and that (2.1.26) is equivalent to

|hllee < |lgllze, if h =g sina+ gcosa.
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At first we assume that supp § C (—1,1). We have h(¢) = (i€ sin a + cos a)g(€). We would

like to continue the function [—1,1] 3 £ +— i§sina + cosa to a function with period 2 on
the real axis, but that would lead to a discontinuity at +£2. However,

D(€) = (i€sina+ cosa)e ™, —1< <1,

is a better choice since ®(£1) = 1, and for the extension of ® with period 2 we have the
Fourier coefficients

1 ‘ ‘ .2
c(k) = 2 /_1(1'5 sin v + cos a)e T TR ¢ — (—1)’“%,
where (sin? a)/a? should be read as 1 when o = 0. Thus the Fourier series of @ is

absolutely and uniformly convergent, 1 = ®(1) = >->°_sin® a/(a + km)2. If g € L* then g
is continuous, and we have

) = O 4a(E) = (-1 e g 6)

where the series converges uniformly, hence in .%’. This proves that

2

(2.1.27) h(z) = Z(—l)kﬁ—:wg(waﬂk).

If g is not in L' but just in L> we can apply (2.1.27) to g(z)sin®(ex)/(ez)? when ¢ is so
small that suppg C (=14 2¢,1 — 2¢). When ¢ — 0 it follows by dominated convergence
that (2.1.26) is valid for g. If we only assume that ¢ is bounded and that supp g C [—1,1]
we can apply (2.1.27) to = +— ¢g(tz) when 0 < ¢t < 1, and when ¢ — 1 we conclude that
(2.1.27) is valid without restriction for such functions g. Hence Minkowski’s inequality
yields

.2
sin” o
7 lgllze ®(1) = llgll -

[hlle < llgllze Z m

When p = oo there is equality when g(z) = sin(z — «) and h(z) = sinz. For p < oo
equality is never attained but the constant is best possible then too, an exercise for the
reader, who might also wish to prove that if P is any polynomial with only real zeros, then
(2.1.26) can be generalized to

(2.1.26)' [1P(d/dx)fl[e < [PADI| S zr,

for the same f as in Theorem 2.1.8.

A very similar argument will now be used to show how a band limited function can be
recovered from an equidistant sampling of its values.
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THEOREM 2.1.9. If f € LP(R) N C(R) for some p € [1,00) and supp f C [=\, A], then
we have (with the convention (sin0)/0 =1)

sin(Az — mk)
2.1.2 .
(2.1.28) Zf Th/N———— @€ER

Before the proof we observe that (2.1.28) is valid when x = wk/\, k € Z. Also note that
the function f(z) = sin Az has the Fourier transform mi(6_) — d)) and that f(7k/\) =0,
k € Z, so the statement would not be true for p = co. However, when f € LP and p < oo
then the sum in (2.1.28) is absolutely convergent by (2.1.25).

PROOF OF THEOREM 2.1.9. Assume at first that supp f C (=X, A). As usual we then
define a distribution with period 2\ equal to f in (—A, \) by

F =) f(-—2X)
The Fourier coefficients of F' are

(k) = (20) " f(e™m /) = (@) flxhk/A) = (x/A)f (~7h/A).

Hence

= 5 Y Fmk/N)em R,

If p € C§°((—A, A)) is equal to 1 in a neighborhood of supp f, it follows that
£ m = —mik-
:XZf(Wk/)\)SOG i

with convergence in &”’. Inversion of the Fourier transformation gives
1 & .
(2.1.29) @) =5 > F(wk/N)@(nk/X — x).

We can take a sequence of functions ¢; € C§°((—A\, \)) converging to 1 in (—A, A) such
that

/(I%(ﬁﬂ + A[@5(§)]) d§ < 4X,  hence [§;(x)] < 4\, [2¢;(x)] < 4.

Since >_ | f(mk/N)|(1+]k|)~! < oo this gives a summable majorant for the series in (2.1.29)
with ¢ replaced by ¢;, and since f_A)\ e~ d¢ = 2(sin(\x))/x we conclude when j — oo
that (2.1.28) is valid. If we only know that supp fc [—A, A] we can apply this formula
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with A replaced by p > A and then let u — \; the detailed proof that this yields (2.1.28)
is an exercise for the reader.

REMARK. If f € .7 and supp f is compact, f(7k/A) = 0 for k € Z, then f(z)/sin(\z)
is an entire function so it follows from the theorem of supports proved below that the convex
hull of supp f must contain an interval of length 2\. If supp f C (—=A,A) it is therefore
clear that f is determined by the values at wZ/A. An explicit form of this conclusion is
given by the interpolation formula (2.1.29) with ¢ € C$°((=A, A)) equal to 1 near supp f.
Since f(z) = O(|z|") for some N (by Theorem 2.1.6) and ¢ € . the series in (2.1.29) is
rapidly convergent. The somewhat delicate point in Theorem 2.1.9 is that £\ may be in
supp f , and then the growth of f must be restricted.

In signal theory Theorem 2.1.9 is known as Shannon’s theorem (cf. Daubechies [1, p.
18]), but its mathematical roots are much older.

To prove the theorem of supports announced above we have to combine Theorem 2.1.6
with a classical result in analytic function theory:

LEMMA 2.1.10. If F is an entire function in C satisfying (2.1.23) then

I log | F'(
(2.1.30)  log|F(¢)] = by Im ¢ + m(/ o8 | dt+Zlog‘< ., Im¢ >0,

|t =2

where a < by < b and z; are the zeros of F' in the open upper half plane, repeated according
to their multiplicities.

PrOOF. First assume that F' satisfies (2.1.23) with C = 1, 4 = 0 and b = 0. Let
v € Cop, log|F(t)] < ¢(t) <0, and let M be a finite subset of the index set My for the
zeros of F' in the open upper half plane. Then

G(0) = F(Q)exp ( - %/R%dt) I
jEM J

is analytic in the upper half plane, and |G(¢)| < 1 there. In fact, by hypothesis |F({)| <1
in the upper half plane. The absolute value of the product is equal to 1 on the real axis,
and the real part of the exponent is the Poisson integral

Im ¢ o(t) 1 ©(Re( +tIm()
e /R|t—<|2dt__¥/f{ 14 t2 dt

which is < —p(Re() + o(1) as Im{ — 0. Hence it follows from the maximum principle
that |G(¢)| < 1 in the upper half plane. Taking sequences ¢; | log |F| and M; 1 M, we
conclude since |G;| <1 for the corresponding functions G; that

~Im¢ [ log|F(t)
/ |t —¢J?

v is the limit of harmonic functions so v is harmonic. We can choose the sequence ¢; so
that it is equal to 1 for large j7 on any compact subset K of R containing no zeros of F,

v(¢) = log[F(C)

dt—Zlog)C:—?’ <0, Im¢>0.
J
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and since G is continuous up to K with boundary values 0 it follows that v is continuous
with boundary values 0 at K. This is also true at a zero A € R of F', for the Poisson
integral of log [t — A| is log |¢ — A|. Thus v is harmonic and < 0 in the upper half plane and
continuous in the closure with boundary values 0. We shall prove in a moment that this
implies v(¢) = by Im ¢ for some real number b;. We have by < 0 = b, and it is clear that
b1 > a for otherwise Theorem 2.1.6 would prove that F' is the Fourier-Laplace transform
of a distribution with support {c} for every ¢ with b; < ¢ < a which is absurd.

By the Schwarz reflection principle we can extend v to a harmonic function in C by

defining v(¢) = —v({). We can express v in terms of the values on a large circle by the
Poisson integral

1 T 1- R|? ,
00 =5r | el ipetre) b, B>

(This follows from the mean value property for z — v(R(z—()/(R%—(z)) which is harmonic
when |z| < R.) In our case v(Re') is an odd function of 6, and since

IC/R—e % —|¢/R — €"|? = 4sin0Im /R,

we obtain
_ 2Im¢ [T

- v(Re?)sin@ dh(1 + O(1/R))

v(¢)

using the positivity of the integrand. When R — oo it follows that v(¢) = by Im ¢ for some
b.

It remains to remove the hypotheses C' = 1, p = 0 and b = 0 made above. Multiplication
of F by C~1e?¢ removes the hypotheses C = 1 and b = 0. If N is a positive integer >
then

Fe(¢) = F(¢)(sin(e¢) /e0)™
satisfies (2.1.23) with p replaced by 0 and h(n) replaced by h(n) + Ne|n| , if € > 0.

Subtracting the same identity with F' = 1 we obtain (2.1.30) for some by € [a — 2Ne, b +
2Ne¢|. Since by is uniquely determined by (2.1.30) we have by € [a, b).

There is of course a formula corresponding to (2.1.30) in the lower half plane. Note
that it follows from (2.1.23) and (2.1.30) that |F(¢)| < C'|¢ + i[#eP*™¢ Tm ¢ > 0, for the

Poisson integral of ¢ — log(1+2) is 2log | 4+4|. If F = f as in Theorem 2.1.6 we conclude
that by = sup{z;x € supp f}. Hence we obtain:

THEOREM 2.1.11. If f,g € &'(R) and [a,b] (resp. [c,d]) are the smallest intervals
containing the supports, then [a + ¢,b + d] is the smallest interval containing the support

of f*g.
This is the famous theorem of supports due to Titchmarsh.
2.2. The higher-dimensional case. We set out in Section 2.1 to study functions in

R, its closed subgroups and the quotients by the closed subgroups. In R" there are many
more closed subgroups:
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PROPOSITION 2.2.1. If G C R" is a closed subgroup then there is a linear subspace Vy
of R™ and elements g1, ..., g, € G, which are linearly independent modulo Vy, such that

(2.2.1) G=1{>_ kigj+go;k; € Z,go € Vo}.
1

Conversely, (2.2.1) defines a closed subgroup of G.

Proor. The last statement is obvious if we introduce coordinates such that ¢1,..., g,
are the first r basis vectors and Vy C {x € R";2; = --- = x, = 0}. To prove that G
must be of the form (2.2.1) we first observe that if two vector spaces are subsets of G
then their sum is also a subset of G. Hence there is a vector space Vy C G containing
all other vector spaces C G. Passing to the quotient R"™/Vy we may assume that G does
not contain any vector space. Then G is discrete, that is, there is some £ > 0 such that
z € G, |z| < ¢ implies = 0. In fact, otherwise there would exist a sequence z; € G
with 0 # x; — 0. Passing to a subsequence we may assume that x;/|z;| converges to a
limit y # 0 as j — oo. If t € R\ 0 and [t/|z,]|] is the largest integer < ¢/|x;| it follows
that G > [t/|zj|]xr; — ty as j — oo, and since G is closed it follows that Ry C G, which
is a contradiction. Thus G is discrete. Let g; be any element # 0 in G which is not a
multiple of another element in GG, for example an element of minimal norm. Changing the
coordinates we may assume that g; = (1,0,...,0). Let G’ = {2’ € R"7L;(t,2) € G} for
some t € R. It is obvious that G’ is a subgroup of R"~!. To prove that G’ is closed we
consider a sequence z,, € G with z,, — 2’. By the definition of G’ we can choose t, € R
with (¢,,2)) € G, and since (1,0,...,0) € G we can choose t, € [—%, %) If ¢ is a limit
point of the sequence t, it follows that (¢,2') € G, so 2’ € G'. It 0 # !, but 2/’ =0
we obtain ¢ = 0, which is a contradiction with the discreteness of G, so G’ is discrete.
If the proposition has already been proved for lower dimensions it follows that there are
elements g; = (t;,9;) € G, j = 2,...,r such that gj,...,g, are linearly independent and

G' = {32, kjg}; kj € Z}. Thus G = {37 k;g;; k; € Z}, which proves (2.2.1).

To avoid notational complications we shall only discuss the case where G = R™ (Fourier
integrals) and the case where G = TZ",R"/G = R"/TZ" (Fourier series). This is no
serious loss of generality, but there are some cases such as the Schrodinger equation in a
crystal lattice where one has to respect a Euclidean geometry and work with a lattice in a
general position.

We shall use the notation a = («1,...,q,) for a multi-index, a vector in Z" with
non-negative coordinates, and we shall write

ol =) a;, al=]Jagt 0" =]](0/0x)*, D*=]](~idjow;)™.
1 1 1 !

ProprosITION 2.2.2. If f € CH(R™) is TZ"™ periodic, that is, f(x + Tk) = f(x) if
x € R" and k € Z", then the Fourier coefficients
1

(2.2.9) k) = 7 / F@)e 2 @RI 4o ez,
R"/TZn
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have the bound

(0% 1 (6%
(2.2.3) |2k /T)% (k)| < 77 /Rn/TZn D% f(z)|dz, |af < p.
If p > n then
(224) f(il?') — Z C<k)e27ri<m,k>/T
kezn

with absolute and uniform convergence, and Parseval’s formula

(225) ~ F@)Pdr =3 (k)P

Rn/TZn keZn

is valid. Conversely, if c(k) € C is given, k € Z™, and |k|*c(k) is bounded, then (2.2.4)
defines a TZ™ periodic function f € CF=""YR"™) if u >n+1, and (2.2.2) holds.

The notation g, Tz Y (z) dx where ¢ is a TZ"™ periodic function stands for [, ¢ (x) dx
where F' is a measurable fundamental domain, that is, a set such that R"™ is the disjoint
union of the translates F' + Tk with k € Z", that is, >, ,n x(z + Tk) = 1 (almost
everywhere) if x is the characteristic function of F. More generally, if ¢ € L{ (R"™) is
TZ"™ periodic then we define

(2.2.6) / Y(x)dr = Y(z)x(z) de,
R /TZ" R"
where x is any bounded measurable function of compact support such that
(2.2.7) Z X(x+Tk) =1 almost everywhere.
keZn

The definition (2.2.6) is then independent of the choice of x. In fact, if x; is another
bounded measurable function of compact support satisfying (2.2.7) then

w ) dx = Z (z)x1(z + Tk) dx

keZn

=3 [ e -Thn@dr= | s

keZn
by the periodicity of .

PROOF OF PROPOSITION 2.2.2. Interpreting fRn/TZn as the integral over I = {x €
R";0<uz; <T,j=1,...,n}, we obtain by partial integration

1 ‘
o [ s@)e e T dn, k2, ] <,
I

(2k/T) c(k) = —
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for the contributions at the boundary cancel by the periodicity. This proves (2.2.3), which
implies that |c(k)||k|* is bounded. If p > n it follows that the Fourier series (2.2.4)
converges absolutely and uniformly to a continuous function g. Let ¢1,...,¢, € C*(R)
be periodic with period T'. Then it follows from Proposition 2.1.1 that

n

. 17 Comin ks
[Te@)=> 62m<m’k>/THT/O o(y;)e 2wkl T gy

1 keZn 1

hence with the notation ®(z) = [} ¢(x;)

7 [ F@R@de = 3 ey [ STy = o oG

Hence fRn/Tzn(f(x) — g(x))®(z)dx = 0 for every choice of T'Z periodic functions ¢;,
j=1,...,n. Choose ¢ € Cg°(R) with [ ¥ (t)dt =1 and set for y € R" and ¢ > 0

pj(w;) = % > w((z; —y; — Tk)/e).

Then ¢; € C*°(R) is TZ periodic. When ¢ — 0 it follows that f(y) = ¢(y), which
proves (2.2.4). Parseval’s formula follows if we multiply (2.2.4) by f(z) and integrate,
interchanging the order of integration and summation. The proof of the converse statement
is obvious and is left for the reader (who should be aware of the fact that > o4 zn [k 77

converges if and only if v > n).

REMARK. Another sufficient condition for uniform and absolute convergence of the
Fourier series is that D%g is continuous when «; <1, for j = 1,...,n. Weaker sufficient
conditions will be given later on.

The definition of fRn/TZn by (2.2.6), (2.2.7) can also be used to define (f, ®)gn pzn~ if

feZ'(R") and & € C*°(R") are TZ" periodic. In fact, we can choose x € C§°(R") so
that (2.2.7) holds (see the corresponding discussion of (2.1.17)) and set

(2.2.6)’ (f, ®)rn /T2 = (f, X D).

If x1 is another function in C§°(R™) satisfying (2.2.7) then

<f7Xq» = jg: «val('+_k73X¥D>:: j{: (fﬂXlX('_'kjjq» ::<f7X1q»

keZn keZn

by the periodicity of f and ®. This identifies TZ"™ periodic distributions with continuous
linear forms on TZ" periodic C* functions.
The Fourier coefficients of a TZ"™ periodic distribution f can now be defined by

(2.2.2) c(k) =T "(f,e ™M g jpgn, k€27,
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and we have
(2.2.3) le(k)| < C(1+ |k, keZm,

if f is of order . As in the one-dimensional case it follows from the smooth case in
Proposition 2.2.2 that

(2.2.4) F=Y" c(k)e* R/,
keZn

with convergence in 2’(R™). We leave for the reader to supply the details of the proof
of this and other statements in the following theorem which is completely analogous to
Theorem 2.1.3:

THEOREM 2.2.3. If f € 2'(R™) is TZ"™ periodic then the Fourier coefficients defined
by (2.2.2)" have the polynomial bound (2.2.3)", and the Fourier series (2.2.4)" converges to
fin 2'(R™). Conversely, if c(k) € C is given, k € Z", and (2.2.3) is fulfilled then the
series (2.2.4)" converges in 2'(R™) to a TZ"™ periodic distribution with Fourier coefficients

c(k).

As in the one-dimensional case we have obtained an isomorphism between T'Z"™ periodic
distributions and functions of polynomial growth on Z". We pass now to a discussion of
the Fourier transformation in n dimensions.

DEFINITION 2.2.4. By . or .#(R") we shall denote the space consisting of all ¢ €
C>(R") such that 2°0%¢(z) is bounded for arbitrary multi-indices o and £3.

As when n = 1 it is clear that the Schwartz space . is a Fréchet space with the
seminorms
7 3 s sup |2 0%(z)|.

Since C§°(R™) is a dense subspace of ./(R™) it follows that the dual space .#/(R"™) of
temperate distributions can be identified with a subspace of 2'(R"), in fact #/(R"™) C
75 (R"), the space of distributions of finite order.

For f € /(R™) and 1 < k < n we define the partial Fourier transform f(k) by

(2.2.8) f(k)(f/,l’”) _ f(:z:’,:l;")e_i(’”/:é’> d$/7
RF

"

where 2’ = (21,...,2), 2" = (Tra1, ..., 2,) and & = (&1,..., &) are real variables. The

map f — f(r) is an isomorphism of .(R"™) with inverse

(229) fla',a") = (2m) " /R (€2 ag,

and Parseval’s formula is valid,

(2.2.10) / /R MR i de = (2m) / o (€22 de’ da”.

RExRn7—k
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It is sufficient to verify this when k& = 1 and then it is an immediate consequence of the
case k = n = 1 discussed in Section 2.1. When k = n we shall use the notation f instead
of f(n) for the Fourier transform defined by

(2.2.11) f© =] fla)e™™de, fe.sRY,
Rn
with inverse given by Fourier’s inversion formula

(2.2.12) flx)=@2m)™" [ f(&e™® de,

Rn
~
"

that is, f(z) = 2n)"f(—x). If f € L*(R™) the Fourier transform can still be defined by
(2.2.11), and we obtain

(2.2.13) (f.o)=(f,0), ¢€Z,

if we multiply (2.2.11) by (&) and integrate, inverting the order of integration in the right-
hand side. We can therefore again extend the definition of the Fourier transformation to
arbitrary f € /(R"™) by (2.2.13), for the right-hand side is a continuous linear function
of p € S (R™).

THEOREM 2.2.5. The Fourier transformation defined by (2.2.13) is an isomorphism

of Z!(R™), and Fourier’s inversion formula is valid, that is, f = (27)"f where f is the
reflection in the origin defined by

(foo)=(f0), eI R"), @x)=p(-2).

We have f € L2(R"™) if and only if f e L2 (R™), and Parseval’s formula
(2.214) | t@Pde=en [ iR

is then valid. When f € .’ the Fourier transform of 2 D* f is equal to (—D)ﬁﬁaf where
z (resp. €) denotes the variable where f (resp. f) lives. The Fourier transform of f(-+h)
18 ei<h">f, and if a : R™ — R"™ is a linear bijection then the Fourier transform of f oa is
|deta| ™1 f ota™t.

The proof differs only marginally from that of Theorem 2.1.5 so it is left as an exercise.
We give a few examples, leaving the details of verification as an exercise.

ExAMPLES. 1. The Fourier transform of §,, a € R", is € — e~"%€)_  The Fourier
transform of & — e*{*€) is (27)"d,. In particular, the Fourier transform of a constant C' is
(271')”060 .

2. The Fourier transform of Pr = Y, 5. 07 where T' > 0 is equal to (27/T)" Py .
This follows from the one dimensional case. Explicitly this means that

(2.2.15) > @(Tk)=2n/T)" > ¢(@2nk/T), ¢e. SR,

keZn kezZn
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which is known as Poisson’s summation formula.
3. If f € Z'(R"™) is TZ" periodic, then f € ./(R"), and if the Fourier coefficients are
defined by (2.2.2)" then
f=0m)" Z (k)02 /T

keZnr

This follows from Example 1 above since f is the limit in ./ of the partial sums of the
Fourier series. Note that Example 2 is a special case.

4. For the Gaussian g(z) = exp(—3(z,)) the Fourier transform is §(¢) = (2m)27g(£).
This follows at once from the one-dimensional case. If a is a real linear bijection in R", it
follows that the Fourier transform of z — exp(—1 (Az, z)) is

€+ (2m) 2" (det A) 7% exp(— (A7 1z, z)),

where A = taa is an arbitrary positive definite real symmetric matrix. More generally,
this is true for all A in the set H of complex symmetric n X n matrices such that Re A is
positive definite. This follows by analytic continuation of the formula

(2.2.16) /6_%<A$’I>gb(x) dz = (27)2"(det A) 2 /e—%““lé@so(é) ¢, e

Note that if Re A is positive definite then Re(Az, zZ) > 0 when z € C™\ {0}, so A is injective
in C”, hence det A # 0, which makes the square root uniquely defined in the convex set
H when it is chosen positive for A = Id. Replacing z by A~!z, we also see that Re A~! is
positive definite when A € H, so both sides of (2.2.16) are analytic in H and the formula
follows since it is valid when A is real, which suffices to calculate the derivatives at the
identity for example. The limiting case where Re A is positive semidefinite and det A # 0
can be handled as a limit of A4 ¢Id when ¢ — +0. We refer to Hérmander [1, p. 85] for
the limit of (det A)~2 then.

Recall that if K C R” is a compact set then the supporting function Hg of K is defined
by

(2.2.17) Hg (&) = sup(z,§), £€R”,
zeK

and if ch K is the convex hull of K then

(2.2.18) x€chK < (x,8) < Hk(£),Vé € R™.

(See Hormander [1, pp. 105-106].) The supporting function H is convex and positively
homogeneous of degree 1; conversely every such function is the supporting function of
exactly one convex compact set K.

THEOREM 2.2.6. If f € &'(R"™) then the Fourier transform is the C™° function

(2.2.19) F(&) = (fo e =8y, ¢ e R,
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where f, means that f acts as a distribution in the x variable. The Fourier transform f
can be extended to an entire analytic function in C™, the Fourier-Laplace transform of f,
by letting £ € C™ in (2.2.19). If supp f C K where K C R"™ is a compact set, and f is of
order i, then F(€) = f(€) has a bound

(2.2.20) F(Q)| < C(1+[¢])* exp H (ImC), ¢ € C™.

Conversely, if F is an entire analytic function such that (2.2.20) is valid, then F = f
where f € & has support in ch K and order < max(0,u+n+1). If g € &' (R"™) then the
Fourier transform of the convolution f x g is fg.

PROOF. That the C* function (2.2.19) defines f and is extended to an entire function
by letting & be complex follows just as in the case n = 1. At the same time one finds that
the Fourier-Laplace transform of f x g is f g.

We can choose a cutoff function x5 € C§°(Ks), K5 = {x + y;z € K, |y| < 6}, such that
x5 = 1 in a neighborhood of K and [0%y;s| < C6~!®l when |a| < p. If ¢ € C®°(R") and
0 < 9 < 1 it follows that

[(f, o) = {fixsp)| < C Z sup [D%xsp| < C' Z Sup|D0‘gp]5|a‘_“.

K
la|<p la|<p 0

A~

Taking 6 = 1/(1 4 |¢]) and ¢(z) = exp(—i(z,()) we conclude that F'(¢) = f(¢) has the
bound (2.2.20), for (z,Im () < Hx(Im ) + 1 when z € K.
Assume now given an entire analytic function F' satisfying (2.2.20) with g < —n. Then

Fa,m) = / F(¢ + i) @EHm de, 2 € R", 5 € R,

is a continuously differentiable function, and
0F (o) oy = [ i0(F (€ -+ in)e! =) fog, de =,

so f(x,n) is independent of n. When z ¢ ch K we can choose 7 so that (z,n) > Hgk(n)
and obtain when ¢ > 0

|f(2,0)| = |f(z,tn)| < C Rn(l + [€])" exp(t(Hk (n) — (x,m))) d&.
When t — 400 it follows that f(z,0) = 0. Thus f = f(-,0) has support in K and
Fourier transform F', which proves that F' is the Fourier-Laplace transform of a function in
Co(ch K) when (2.2.20) is valid with p < —n. For F satisfying (2.2.20) with an arbitrary
1 we conclude exactly as in the proof of Theorem 2.1.6 that F' is the Fourier-Laplace
transform of some f € &’ (K) of order max(0,n + 1 + u), which completes the proof.

The characterization (2.2.20) of the Fourier-Laplace transform of &’(K) when K is
convex and compact is called the Paley- Wiener-Schwartz theorem. The theorem of supports
is also easily extended from the one-dimensional to the n-dimensional case.



THE HIGHER-DIMENSIONAL CASE 33

THEOREM 2.2.7. If f,g € &' (R™) then

(2.2.21) chsupp(f *g) = chsupp f 4 chsuppg = {x + y;x € chsupp f, y € chsupp g}.

PROOF. Since supp(f * g) C supp f + suppg C chsupp f + chsuppg, it is clear that
the left-hand side of (2.2.21) is a subset of the right-hand side. It suffices to prove the
opposite inclusion when f,g € C§°. In fact, if x € C§°(R™) has support in the unit ball
B, [ xdx =1, and x.(z) = e ™x(x/e), then this special case gives

supp(f * @< ) + supp(g * pe) C chsupp(f * g * e * @.) C chsupp(f = g) + 2eB.
When ¢ — 0 it follows that supp f + suppg C chsupp(f * g) which implies that the
right-hand side of (2.2.21) is a subset of the left-hand side.

Assume now that f,g € C§°(R™), set h = f % g and introduce the partial Fourier
transforms

F(g/’xn) :/ e*i<m”§/>f(l_/’xn) dm/, G(Slyxn) :/ €7i<m”£/>g(’r/7xn) dl'/,
Rn—l Rn—l
H( ) = / e h(a! ) da.
Rn—l
Then
H(E  xn) = / e‘“x"é/)/ f@" =y 20 —yn)g(y's yn) dy' dyn
Rnfl n
= / F(gla Tp — yn)G(gla yn) dyp .
R

For fized &' it follows from Theorem 2.1.11 that

sup{x,; H(¢', x,,) # 0} = sup{x,; F(&,x,) # 0} + sup{zn; G(¢', x,) # 0}.

Since F', G, H are analytic in &, the suprema are for almost all £’ equal to the suprema
when ¢’ is also allowed to vary, for if say F(&',2%) # 0 for one ¢ then this is true except
for ¢’ in a null set. Now F(¢',2,) = 0 for all ¢ € R*! if and only if f(2/,z,) = 0 for all
2’ € R" !, and similarly for g and h. Hence

sup{an; (2, zn) € supp h} = sup{z,; (z’, x,) € supp f} + sup{z,; (z',z,) € suppg}.

This means that Hguppr(§) = Hsupp () + Hsupp ¢(§) if £ = (0,...,0,1). By a change of
coordinates we conclude that this is true for every &, which means precisely that (2.2.21)
holds. The proof is complete.

The last statement in Theorem 2.2.6 can be extended as follows:
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THEOREM 2.2.8. If f € S'(R™) and g € &' (R™) then fxg € .'(R"™) and the Fourier
transform is equal to fg. If p € % then f*p € " and the Fourier transform is equal to

fé.
Note that the products f g and f@ are defined since g € C*° and ¢ € ..
Proor. If ¢ € C3°(R™) then

(fxg,0)=(f,g*¢)

by the definition of convolution. The right-hand side is a continuous linear form on .#, for
if g is of order p and |y| < M when y € supp g then

S swplat D)@l = Y supla’g(D(n + )

ot BI<N ja+BI<N
<C Y supsup [@PD%(z+y)|<C > 2" D%(x)|.
a+Bl<N+p T 1YI<M |a-+B]<N-+u

This proves that f*g e 7. If f; € " and f; — f in ./ (with the weak topology) then
fixg— fx* *gin in .. Taklng f; with compact support we conclude using Theorem 2.2.6
that f]g = f‘7 *x g — f x g, and since fj — f in .’ we obtain f *x g = fg The proof of the
statement on f * ¢ when ¢ € .7 is just a repetition of the proof of Theorem 2.1.7 and it
is left as an exercise.

The spectrum of a distribution f € %’ is by definition the support of the Fourier
transform f. When the spectrum is compact it follows from Theorem 2.2.6 that f € C°.
The following inequality of Bernstein (see Theorem 2.1.8) is sometimes useful to estimate
the derivatives of a distribution with compact spectrum.

THEOREM 2.2.9. If f € LP(R™) for some p € [1,00] and f has compact support, then
(2.2.22) 1P({a, 0)) fllLr < [PEH(a)[[ fllr, a€R™,
where P(T) is any polynomial in one variable with only real zeros and

(2.2.23) H(a)= sup [{a,§).
gesupp f

ProoOF. It suffices to prove the estimate (2.2.22) when P is linear and a = (1,0, ...,0).
Set A = H(a) and C = |P(i\)|. Then P(i\) = Ce'® = C(isina + cos a) for some a € R,
so P(1) = C(rsina/\ + cos o) and the theorem states that

/ |8f(x)/8xlsinoz/)\+f(m)cosa|pdm§/ |f(x)|P dex,
Rn

n

if |£1] < X\ when & € supp f. Then the Fourier transform of f(x1, 29, ..., 2,) with respect
to x; for fixed zs,...,x, has support in [—A\, A], so the estimate follows at once from
Theorem 2.1.8.
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2.3. The Fourier transform of L? spaces. If f € L2(R") then f € L2(R") and
Ifll2 = (27)"/2| f||2 by Parseval’s formula. If f € L'(R") then f € L=(R")NC(R") and
I fllse < IIf]l1. From these facts it follows that if f € LP(R™) for some p € (1,2), then
f € L*(R™) + L>*°(R™) C L\ (R™), for we can write f = g + h with ¢ € LY(R") and

h € L?*(R") for example by taking h = f when |f| < 1 and g = f when |f| > 1. We shall
now prove a much more precise result:

THEOREM 2.3.1 (HAUSDORFF-YOUNG). If f € LP(R™) and 1 < p < 2, then f €
LY (R™) and

(2.3.1) £l < @m)" /2| fllps  where 1/p+1/p' = 1.

The proof is an easy consequence of the Riesz-Thorin interpolation theorem:

THEOREM 2.3.2. IfT is a linear map from LP* N LP? to L9 N L9 where p;,q; € [1,00],
such that

(232) ||Tf||(Ig S MJHprg? ] = 17 27 f S LN Lp27
and if 1/p=t/p1+ (1 —=1)/p2, 1/q=1t/q1 + (1 —t)/q2 for somet € (0,1), then
(2.3.3) ITflly < MIMy " | fllp, € LP* N LP2.

For a proof we refer to Héormander [1, Theorem 7.1.12].

PROOF OF THEOREM 2.3.1. From Theorem 2.3.2 it follows that (2.3.1) is valid when
f e LY(R™) N L3(R™). This is a dense subset of LP(R") so the map L'(R™) N L*(R") 5
f— fe L’ (R") extends uniquely to a linear map 7" from LP(R™) to L' (R™) with norm
< M!M;~t. Since the map LP(R™) 3 f — fe ' (R™) is continuous, it must be equal to
T which proves the theorem.

The constant in (2.3.1) is not the best possible when 1 < p < 2. We obtain a lower
bound for the possible constants by taking f(z) = e~ale1’/2 for some a > 0. Then f(f) =
(27 /a)"/2e~ 161 /20 56 we have

/hmwm=/eMW”m=wwww,/vwwﬁzmmwﬁwwmm.
R” R"

R”
Hence || f]lp/||f]l, = C where

(2.3.4) C = (27T)n/p/ (pl/P/pll/p’)n/Q‘

(2.3.4) is in fact the best possible constant in (2.3.1) by a theorem of Beckner [1]. For a
proof we refer to Lieb [1] where it is proved that for arbitrary operators with Gaussians
kernels, such as the Fourier transformation, the best possible constants in LP, L9 estimates
can be found from the action on Gaussian functions. (The improvement of the constant
(2.3.4) over the constant (27)™"/?" in (2.3.1) is at most ~ 0.8635"/2 which occurs for p ~
1.19. However, it is of course also interesting to know the extremals f.)

The Fourier transformation is not continuous in any L?, L? spaces apart from the cases
given in Theorem 2.3.1:
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PROPOSITION 2.3.3. If f € LP(R™) implies f € LY(R") then1 < p < 2 and % +% =1.

PROOF. Since LP(R") 3 f — f € .#/(R") is continuous, the hypothesis means that
this is a closed map into L?(R™). Hence it is continuous by the closed graph theorem, that
is,

(2.3.5) I1fllg < CIfllps  f € LP(R™).
If we replace f(x) by f(x/t) where ¢t > 0 then f(f‘) is replaced by t”f(tﬁ), so (2.3.5) gives
"D fllg < CEVP| fllp,  f € LP(R™), £>0,

which implies 1/p+1/g = 1.

As an example of the remarks after the proof of Theorem 2.3.1 on the importance of
Gaussians we shall now prove that p < 2 by checking (2.3.5) for Gaussians. Of course
it does not suffice to use real Gaussians since they are all equivalent under changes of
coordinates, so we take

f(z) = exp(=alal?/2),  f(€) = (2n/a)"/? exp(—|z[* /20),
where Rea > 0. As above we obtain
If15 = (2n/pRea)™?, ||f||§ = (27la*/qgRea)"/?(2n/|a])"¥/?,
so (2.3.5) requires that

C > (27T>n(1+1/q*1/p)/2(pl/p/ql/q)n/Q(Re a)n(l/pfl/Q)/Q|a|n(1/q*1/2)7 Rea > 0.

For reasons of homogeneity we see again that this implies 1/p+1/¢g = 1, and when Rea — 0
while |a| = 1 we find that ¢ > p, which proves the statement.

The Fourier transform of a function in L? is usually not even in L{ when p > 2:

THEOREM 2.3.4. If k is an integer with 0 < k < n/2 then one can find f such that
f e LP(R)NC(R™) for every p € (2,00] with k < n(1/2—1/p) and f is not a distribution
of order k in any open subset of R™. On the other hand, f 1s of order k for every f € LP
if k >n(1/2 —1/p).

PROOF. The intersection .# of C'(R"™) and all LP(R™) with £k < n(1/2 —1/p) is a
Fréchet space with the seminorms f — || f||, for p € (2n/(n —2k), co]. The first statement
will follow if we prove that for every ball 2 C R"™ with rational center and rational radius
the set Mg of all f € .F with f of order k in € is of the first category. In fact, the union of
Mg, for all such balls €2 is then of the first category, and all other f € .# have the required
property.

If Mg is not of the first category it follows from Banach’s theorem that the map % >
f = fla is continuous from .% to the Fréchet space 2'%(Q). If K is a compact subset of
), with interior points, it follows that

(2.3.6) [(f, @)l < CkN(f) ) sup|D%|, ¢ € C(K),

|| <k
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where N(f) is a seminorm in #, so N(f) < C(||f|l, + ||fllec) for some p with k <
n(1/2 —1/p). Choose g € . \ {0} so that g € C§°(K), and define f; € .77, ¢ € C(K)
for t > 0 by

fi(6) = (&)™l 2 0, (€) = fi(6).
Then it follows that
ot = / GO dE, S sup D] = O(t") ast - +oo.
| <k

. . He2/ - /2 —ilzl?
The inverse Fourier transform of ¢ — e™é17/2 is a2 — ct—7/2e =17 /2t

which is not essential now. Thus

—n —i|z—y|?
file) = et / ey 2t g ) dy

with a constant ¢ # 0

which implies that |f(2)| < |c[t~"/2||g||1. By Parseval’s formula ||f;||2 = ||g||2, hence
1Felly < (LFNBNfelIBS )P < Ctn/P=tD = o(t™*) as t — oo

if & < n(1/2 —1/p). Thus the left-hand side of (2.3.6) with f = f; and ¢ = ¢ is
independent of ¢ while the right-hand side — 0 as ¢ — oco. This is a contradiction which
completes the proof of the first statement.

The second statement is much weaker than the Hausdorff-Young theorem unless p > 2,
which we assume now. If f € LP(R") and ¢ € .(R") then

(2.3.7) [(Fo o)l = 1 &) < NIl

where 1/p + 1/p’ = 1. By Hélder’s inequality with exponents 2/p’ and ¢, 1/qg+p'/2 =1,
we have

(239 ety < ([ a+lePiip@Pde)’,

for [(1+|&[2)~*r'a/2 d¢ < oo since kp//n > (1/p — 1/2)p’ = 1/q. By Parseval’s formula

1

(239) ([ a+iepripe@pd)’ <c 3 10l

lo| <k

The estimates (2.3.7), (2.3.8), (2.3.9) imply that f is of order < k.

We note in particular that when k = 0 the theorem gives a function in LP(R")NC(R")
for every p > 2 such that f is not even a measure in any open subset of R™. A minor
modification of the proof, which we leave as an exercise, shows that we can choose f so
that in addition f € C'"*° and all derivatives are bounded. Thus it is only the insufficient
decrease at infinity which is responsible for the lack of regularity of the Fourier transform.

The proof of the second part of the theorem relied on the equality (2.3.9), which can be
extended to an equivalence between the two sides. We have here encountered the simplest
Sobolev spaces:
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DEFINITION 2.3.5. If s is a real number then H () (R") denotes the space of all u €
Z'(R™) such that 4 € L*(R", (1 + |£|*)%d¢/(2m)™), with the norm

1
2

Julloy = (20 [ la©F 1+ gy de)

From Parseval’s formula it follows at once that Hp)(R™) = L*(R"). We have u €
Hs41)(R") if and only if u € H,)(R") and Dju € H(,)(R") for j = 1,...,n, and then
we have

(2.3.10) ullfessy = lullfy + D ID;ullty.
1

Repeated use of this observation shows that H(s) (R™) consists of all u with D*u € L*(R™)
when |a] <s, if s is a positive integer, and this is what (2.3.9) expressed in part. We can
also work in the other direction: u € H(,)(R") if and only if u has a representation
u = w9+ Y1 Djv; where v; € H,41)(R"), j =0,1,...,n; it can be chosen so that

(2.3.11) lulltey = > 1105l1Eet1y-
0

In fact, we can take 6o(&) = 4(€)/(14|¢]?) and 0;(€) = @(€)&;/(1+]€|*). Roughly speaking,
Hs)(R™) consists for negative integer s of distributions which are sums of derivatives of
order < —s of functions in L?. If we describe the functions in H (s)(R") for 0 < s < 1
without reference to the Fourier transformation we shall obtain a similar description of all
spaces H s (R"). First note that for 0 < s <1

(2.3.12) lulltsy < (2W)_”/R [a(€)1*(1 + [¢%*) d€ < 2||ullf,).-
This is equivalent to the inequalities
(14 €% < T+ ¢ <20+ [¢P)°, 0<s<1,

The second is trivial and the first follows since 1 > (1+4|£]?)*~1 and |£[** > [£|2(1+]€]?)* L.
For 0 < s < 1 there is a constant A such that

(2313) (2m)" / @R+ I de= [ fu(e)P do

Rn

4 A, / / (e + 1) — u(@) Py "2 de dy.
R"xR"

Thus H(s)(R™) consists when 0 < s < 1 of all uw € L*(R™) such that the right-hand side
of (2.3.13) is finite; this is a kind of Holder condition in an L? sense. To prove (2.3.13) we
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note that since the Fourier transform of z — u(z + y) — u(x) is € — (*¥€) — 1)a(€) the
identity is equivalent to

(2.3.14) As/!e“y’g) — 1Pyl dy = [¢)*°.

The integral on the left-hand side converges at 0 since s < 1 and at oo since s > 0. An
orthogonal transformation of y proves that it is a function of |£| only, and replacing y by
ty for some t > 0 proves that it is homogeneous in |£| of degree 2s, which proves (2.3.14).
(It is not hard to calculate Ay in terms of the I' function. Even without doing that it is
easy to see that 2(1 — s)/A, converges to the volume of the unit ball when s — 1 and that
s/As converges to the area of the unit sphere when s — 0.)

The spaces H(,)(R") are . modules, that is, ¢ € . and f € H(,)(R") implies ¢f €
H)(R"™). This is an easy consequence of the fact that the Fourier transform of ¢f is
(2m) 7" * f. However, we shall prove a much more precise result.

LEMMA 2.3.6. If x is a bounded Lipschitz continuous function in R™ and f € H4(R")
for some s € 0,1}, then xf € H5)(R") and

(2.3.15) Ixflls) < v2sup(Ix? + XIS Nl s)-

PROOF. The statement is obvious when s = 0, and when s = 1 it follows since D;(xf) =
(Djx).f +xD;f, hence

ISP+ D 1D 0P < 20 + IX PSP+ D 1D f1P).
1 1

When 0 < s < 1 we shall use a complex interpolation argument close to the proof of the
Riesz-Thorin interpolation theorem. For s € C we shall denote by (1+ |D|?)® f the inverse

Fourier transform of & — (14 [€|2)% (&), which is a function in . if f € .% and is analytic
as a function of s. With f,g € .%/ we form

®(s) = ((1+ [DI))**x(1 + D)=/, 9).
This is a bounded analytic function for 0 < Res < 1, and
B(s)] < { sup |x||[fll2llgll2, ?f Res =0,
VZsup(IX[2 + DI ll2llgll2, if Res = 1.
This is obvious when Res = 0 for (1 4+ |D|?)%/2 is then a unitary operator in L?. Since
I+ D)2 flay = Ifll 1L+ D) Pwllo = w]la), if Res =1,

the estimate follows when Res = 1. By the maximum principle applied to ®(s)/(1 + €s)
for € > 0 we obtain when ¢ — 0 that

()] < v2sup(Ix[2 + X' fllzllgll2, 0 <Res<1.

Taking s real we obtain

Ix(1+ D) fll(sy < V/2sup(Ix? + X P12
which proves (2.3.15) when f is replaced by (1 4 |D|?)*/2f. The lemma is proved.
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PROPOSITION 2.3.7. If x € C*(R™) and the derivatives of order < k are bounded, then
xf € Hi(R") if f € H)(R"™) and |s| < k; we have

(2.3.16) IxFllsy < Cr Y sup DX flls)-
jal<k

PROOF. Lemma 2.3.6 proves the statement when £ =1 and 0 < s < 1. Using (2.3.10)
we obtain inductively that it is true for every positive integer k£ when 0 < s < k. If
—k<s<0and f €. then

IxXfllsy = sup [xf.9)/llgll—s) = sup [{F, x)l/llgll(—s)
0#£g€es 0#£g€es

< sup ||l Ixgll=s)/l9ll =) < Il Cr > sup|[D*x],
g€ o <k

which completes the proof.

The theorem just proved or already the simple special case where y € Cg°(R") leads

us to define H %‘;)C(Q) for any open subset Q2 of R™ as

(2.3.17) HS(Q) = {f € 2'(Q); x[f € Hy(R") if x € C5°(Q)}.

Here xf € &'(f) is regarded as an element in &' (R™). It follows from Proposition 2.3.7
that H,)(R") C H%‘;)C(R”) If Q1 C Q9 then the restriction of H%‘;’)C(Qg) to 4 is in
Hg‘;)c(Ql) Iffe H%‘;;(Q) then there is for every x € Q some f, € H(,)(R") with f, = fina
neighborhood of z, for we can choose f, = x f with x € C5°(€2) equal to 1 in a neighborhood
of x. Conversely, every f with this property is in H %‘;’)C(Q) In fact, if x € C§°(2) we can
for every x € supp x choose f, € H(,)(R") equal to f in a neighborhood O, C € of . By
the Borel-Lebesgue lemma supp x is covered by finitely many neighborhoods O, , ..., O .
We can choose x; € C5°(Oy,), j = 1,...,N, so that Zfl X; = 1 in supp x and conclude
using Proposition 2.3.7 that

N

X =>_x(x;f) € Hy(R"),

1

which means that f € H %‘;;(Q) Thus H %23:(9) is indeed the space of distributions in 2
which are locally in H,)(R").

Instead of using the order of a distribution f as a measure of its regularity, as in Theorem
2.3.4, it is usually better to describe it by regularity conditions of the form f € H %‘;)C This
gives a continuous scale of regularity conditions with s ranging from —oo to 400, and
the fact that L? conditions are exactly translated by the Fourier transformation leads to
precise statements. As an example we reformulate Theorem 2.3.4 with our new notions.
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THEOREM 2.3.8. If 1 < q < 2 then the Fourier transform of H(R"™) is contained
in LYR™) if and only if s > n(1/q —1/2). If 2 < p < oo then the Fourier transform of
LP(R™) is contained in H(_g if and only if s > n(1/2 —1/p).

PROOF. The Fourier transform of H 4 (R") is L?(R™, (1 + [¢|*)® d€) by definition. By
Holder’s inequality with exponents 2/q and 2/(2 — q)

2—q
2

[ n@ras<ar( [ ir©Pa+ierrae)’ a= ([ @i )

M is the best possible constant in this estimate, and if M = 4oc then there is some
f e L2R", (2r) (1 + |£]?)® d€) such that f ¢ L9. Now M is finite if and only if sq/(2 —
q) > n/2, that is, s > n(1/q — 1/2), which proves the first statement. The second one is
dual: If u € LP(R™) and ¢ € .Y (R"™) we have with 1/p+1/¢ =1

(@, )| = [{u, @) < Nlullpl@llg < Null,MY92m)" 2| 0lls).

This proves that & € H_ ) (R") if s > n(1/q¢—1/2) =n(1/2 - 1/p).
Conversely, if & € H_4) (R") for all u € LP(R") it follows from Banach’s theorem that
lall(—s) < Cllullp, w e LP(R™), hence

[{u, @) = [, 0)| < [l —s)llells) < Cllullpllelis), ¢ € (R"),

so [|¢llg < C|l@ll(s).- This implies that the Fourier transform of H . (R"™) is contained in
L1(R™), so the first part of the proof gives s > n(1/¢—1/2) =n(1/2—1/p). The proof is
complete.

In particular we note that f € LY(R™) if f € Hs(R™) for some s > n/2, so Fourier’s
inversion formula
fw) = 2m ™ [ 9 f) de
is then absolutely convergent and proves that f is continuous, f(z) — 0 as © — oo. Note
that this improves Proposition 2.1.2 a great deal. There is a corresponding improvement
of Proposition 2.2.2: The Fourier series of a periodic function in H%‘;)C(R") converges
absolutely if s > n/2. This is essentially a theorem of S. Bernstein.

2.4. The method of stationary phase. The core of the proof of Theorem 2.3.4
was the explicit form of the Fourier transform of a Gaussian. We shall now discuss more
systematically the role of Gaussians in the study of oscillatory integrals. First we shall
motivate why they occur.

THEOREM 2.4.1. Letu € &' (K), where K C R™ is compact, and assume that D®u € L
when |a| < k. If ¢ € C¥*L in a neighborhood of K and  is real valued, ¢’ # 0 on K, then

(2.4.1) ‘/ ue'™? dm‘ < Otk Z /|Do‘u|dx, 7> 0.
K

|| <k
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PROOF. First assume that ¢(z) = z1. Then

/(D’fu)eiw’ dr = (—T)k /ue”“@ dz,

which proves (2.4.1) in this case. (This is just the same argument as in (2.1.10) for example
which we have used to prove that the Fourier transform of a smooth function is rapidly
decreasing.) If k > 1 the implicit function theorem shows that for any 2° € K one can
find new local coordinates y = ®(z) in a neighborhood w such that ®;(z) = p(z). If
X € C§°(w) and ¥ = &1 then

/Xue”‘p dr = /(Xu) o W(y)e V| det W' (y)| dy

has a bound of the form (2.4.1) by the first part of the proof. Using a partition of unity
we complete the proof.

Occasionally it is useful to have control of how the constant Cj ., in (2.4.1) depends on
©, so we shall elaborate this point in the following theorem where we also allow ¢ not to
be real:

THEOREM 2.4.1". Let u € &'(K) where K is a compact subset of R™, and assume that
Dy € L' when |a| < k. If ¢ € C*¥* in a neighborhood of K and Imp >0, ¢’ #0 in K,
then

(2.4.1) )/ ue'™ dx| < Cr " Z /]Do‘u||<,0'\|0‘|_2ka_|a| dx, 1>0,
K
|l <k
where
(2.4.2) N; = Z DY |- -+ |DY .

|t |4+ e | =25,1< | auq |yeees 1< vy |

PrROOF. We shall prove (2.4.1)" by induction with respect to k. When k£ = 0 the
statement is trivial. Assume that £ > 0 and that it has already been proved with k
replaced by k£ — 1, and write

n n
ue'™ = uy [0;0%le'|2eT = Y u(9;p)|e'|T0;e T i,
1

1

An integration by parts gives now

T ¢ - = - iT
/ue Ydr = ;21:/8j(u(8j90)|<p'| 2)e'™¢ da.
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If we apply the inductive hypothesis, with k replaced by k — 1 in (2.4.1)’, it follows that

| e ai] < i 3y [1070,(u@50)1 121112 N1

i=1|a|<k-1

Letting 0%9; act here gives a sum of terms where 9° acts on u and 97 acts on 9;¢/|¢’|?,
where |3| 4+ |v| = |a] + 1. The induction will be successful if we can prove that

7 (821|122 N1 1oy < Ol P72 Ny g,
that is, since |a| — 2k +2 — |B| + 2k = |y| + 1

107((9;0) &' "D I N1 151 < CNi_japs 1Bl + 7] < E.

By the definition of NV it is sufficient to prove this when |y| + || = k, that is, prove that
7 (82l < CNy.

Now it is clear that
'[P o7 ((9;0) ¢ 72)

is a homogeneous polynomial of degree 1+ 2|y| in ¢ = ¢’ and ¢ and their derivatives, with
the total order of differentiation in each term equal to |y|. Hence 1 + || factors are not
differentiated, and the product of the other |y| is bounded by N|,|. The proof is complete.

REMARK. It is clear that one can say much more where Imyp > 0. We refer to
Hormander [1, Theorem 7.7.1] for a precise estimate which takes this into account.

When examining the asymptotic properties of an oscillatory integral f ue!™? with u of
compact support, ¢ real valued, and very smooth u and ¢, we know from Theorem 2.4.1
that the main contributions will come from points where (2.4.1) is not applicable, that is,
where ¢’ = 0. The method of stationary phase which is the subject of this section consists
of a study of the contributions from such points. For the sake of simplicity we shall not
insist on minimal regularity conditions in what follows. The first step is to examine how
much it is possible to simplify a stationary point by a change of coordinates as we did in
the proof of Theorem 2.4.1.

LEMMA 2.4.2 (MORSE). If ¢ is a real valued C™ function in a neighborhood of x° € R™
such that o' (2°) = 0 but @ (%) # 0, then there is a diffeomorphism 1) of a neighborhood
of the origin on a neighborhood of x° such that ¥(0) = 2% and

(2.4.3) e(W(Y) = () £ y7 + o(y2, - -, Yn)-

PROOF. It is no restriction to assume that ¢(z°) = 0, and by a preliminary affine
transformation we can achieve that z° = 0 and that 82¢(0) # 0. By the implicit function
theorem the equation 01 (z1,2’) = 0 has a unique C'*° solution x; = ¥(z’) with ¢(0) =
when 2’ = (2, ...,x,) is close to the origin in R"~!. Taking x; — ¥ (2’) as a new variable
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instead of x; we reduce the proof to the case where 0;¢(0,2") = 0 in a neighborhood of
the origin. By Taylor’s formula

o(z) = p(0,2') + 22q(x), q(z) = / (03¢) (txr, 2')(1 — t) dt.

Here ¢ € C™ in a neighborhood of the origin and ¢(0) = $87¢(0). Taking y1 = z1+/]q(z)]

and y' = 2’ we obtain p(x) = ¢(0,9’) £ 4? as claimed in (2.4.3).

The lemma can again be applied to the error term g if ¢”’(0) # 0. In particular, when
det ¢”(2°) # 0 we can continue until we have obtained a change of variables making
©(¥(y)) equal to a non-degenerate quadratic form A in a neighborhood of the origin.
We shall then say that z° is a non-degenerate critical point. Since A(y) = 5¢" (¥'(0)y),
it has the same signature as ¢ but there is no other condition since all non-degenerate
quadratic forms with the same signature are equivalent under linear transformations. Note
that non-degenerate critical points are isolated by the implicit function theorem.

Next we shall formalize a part of Example 5 given after Theorem 2.1.5 and Example 4
given after Theorem 2.2.5.

LEMMA 2.4.3. If A is a real symmetric n X n matriz with det A # 0, then the Fourier
transform of the Gaussian R™ 5 x — exp(i(Ax,x)/2) is

R" > ¢ (2m)% | det A| "2 %8 A exp(—i(A71E,€)/2),

where sgn A is the number of positive eigenvalues minus the number of negative eigenvalues.

PRrOOF. First assume that n = 1. Then Example 5 after Theorem 2.1.5 gives for € > 0
that the Fourier transform of x — exp((iA — ¢)x?)/2) is

£ \/2m/(e —iA)exp((iA — )12 /2)

with the square root in the right half plane in C. When £ — 0 the square root converges to
V27 /| Al exp(Z sgn A) and the exponential converges boundedly to exp(—iA~1£2/2), so
the lemma is true when n = 1. Hence it follows if A is a diagonal matrix. We can always
choose a linear bijection T': R™ — R™ such that x — (ATx, Tx) has diagonal form. Then
the Fourier transform of = — exp(i(ATx,Tx)) is

¢ (2m)% | det A~ 2| det T|'e® " A exp(—i(A~ T L¢P T 1¢)),

because T~ A~1*T~! is the inverse of *T'AT', which proves the lemma in view of Theorem
2.2.5.

If u € .7 it follows from Lemma 2.4.3 and Fourier’s inversion formula that
(2.4.4)

/ w(@)e AT 2 (9n7) 3| det A3 % s A / exp(—i(A~LE, €) /27)i(€) dE, T > 0.
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The advantage of this formula is that for large 7 we can make a Taylor expansion of
the exponential in the right-hand side, using the fact that by Taylor’s formula, for every
positive integer k,

et =ty /il < |1l /Rl tER.
i<k
Hence we obtain using Fourier’s inversion formula
‘ /u( )e'T AT /2 gy — (27 /1) % | det A| e T AN " ((AT'D, D) /2i7) u(0)/5!

i<k

< (2rr) ¥l det Al H @) [ 1476, M ale)) de v
We can estimate the right-hand side by means of Theorem 2.3.8 which gives:

PROPOSITION 2.4.4. If A is a non-singular symmetric n X n matriz and v € ., 7 >0
and s is an integer > n/2, we have for every integer k > 0

(2.4.5) ‘ / w(@)e ™A )2 4y — (27 /r)F | det A|2eT =24 ((A71D, D) /2ir) (0)/j!‘
i<k

< Crat 2% Y |IDulf2.
|a| <s+2k

The statement remains true for s = n/2 if n is even. For a proof and extensions of most
results in this section we refer to Hormander [1, Sections 7.6 and 7.7].

We can now state the main result of this section. For the sake of simplicity we do not
make minimal smoothness assumptions.

THEOREM 2.4.5. Let K C R™ be a compact set and let ¢ be a real valued C*° function

in a neighborhood of K. If every critical point of ¢ in K is non-degenerate, then they form
a finite set C, and if u € C3°(K) then

(2.4.6)
’/ mp(l’) dr — Z eiw(x)Jr%isgnw”(I)(Qw/T) 3 det ¢ (x ZT ]L me: ‘
zeC, i<k
<Cr :*k Z sup [D%u|, 7> 0.
la|< 24142k

Here Lj is a differential operator of order 2j depending on ¢, and Lo = 1.

PROOF. As already pointed out, non-degenerate critical points are isolated so C,, is
finite. We can choose a finite partition of unity 1 = ) x, in a neighborhood of K such
that there is at most one critical point in the support of each x,, and if there is one then
the support is so small that Lemma 2.4.2 can be used there to change the coordinates so
that ¢ becomes a quadratic form in the new variables. Then the theorem follows from
Theorem 2.4.1 and Proposition 2.4.4.

As an example we shall study the Fourier transform of a smooth density on a hypersur-
face in R"™! which has total curvature # 0. This application will be important in Chapter
V.
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THEOREM 2.4.6. Let K C R™ be a compact set and let 1) be a real valued C* func-
tion in a neighborhood X of K such that dety”(z) # 0 when x € K. If a € C§°(K),
then the asymptotics of the Fourier transform of the density a(x)dx on the hypersurface
{(z,¢(2));z € X} C R,

P& &ni1) = / e~ @OFHE@Ent) (1) da,
s given by

(24.7)  |[€ns1 /2|3 F(€, &ns1) — Y al@)] det ) (z)|72eF T sen v () emillOti(@)en))|

xT

< C/(¢] + 1€n+1l),

where the sum is taken over the finitely many v € K such that & + &, 419" (x) =0, and +
is the sign of £,41-

PROOF. Note that there are no such points if |, +1|supg [¢'| < [£]/2, say. In that case
the estimate follows from Theorem 2.4.1. Otherwise the estimate is for fixed £/&,41 =7 a
consequence of Theorem 2.4.5 with 7 = |£,,+1| and ¢(z) = F((z,n) + ¥(z)). The proof of
Theorem 2.4.5 shows that the estimate obtained will be uniform in 7 when |n| < 2 supy |9/,
which completes the proof.

The terms in (2.4.7) have a clear geometrical meaning. The equation &+ &,11¢'(x) =0
means that (£,£,41) is in the direction of the normal at (z,4(x)). The total curvature
A of the hypersurface is there equal to (det ¢ (z))/(1 + |’ (x)|?)(+2)/2, and the surface
measure is dzy/1 + |¢'(z)|?. The absolute value of the main term in (2.4.7) multiplied by
(L+€12/€2 )™ = (14 ¢/ (z)|2)™/4 is therefore |#'|~2 multiplied by the density divided
by the surface measure. The number of curvatures at (x,(x)) pointing in the direction
(&,&n+1) minus the number pointing in the opposite direction is +sgn ¢’ (x).

Another important example is the solution of the initial value problem for the Schro-
dinger equation in R+,

Ou(t, ) /0t = LAzu(t, z); u(0,-) = f € S(R").

Using Fourier transforms we obtain the solution
u(t,o) = (2m) " [ FO=OHIP de = el 2t (am) [ fe v e dg

Choose x € C§°(R"™) equal to 1 in the unit ball. If a factor x () is inserted in the integrand
we can use Proposition 2.4.4, and if we insert a factor 1 — x(&) then the proof of Theorem
2.4.1' gives that the integral is O(t™") for every v. Hence

ult, ) = ellol /2T 9 =n/2(f(x /t) + O(1/1)),

which can be refined to a complete asymptotic series. This reflects the quantum mechanical
interpretation of the dual variable £ as the velocity of the “particle”.



CHAPTER III

WAVELETS

3.1. Multiresolution analysis. The key to the discussion of the fast Fourier trans-
form in Section 1.3 was that the Fourier transform of a function defined in Z,~ was
successively reduced to the Fourier transform of functions in the subspaces V;, 0 < j < N
of functions which are lifted from Zyn~-;, that is, only depend on the residue class modulo
2N=J 1f f € V; then z — f(2x) is in V4. The situation is similar to the following notion
of a multiresolution analysis but the fact that x — 2z is not bijective on Z,~ makes an
essential difference. In particular, the spaces V; will then increase with j:

DEFINITION 3.1.1. An orthonormal multiresolution analysis of L?(R"™) is a sequence
of closed subspaces V}, j € Z, such that
(i) V; C Vj4q forall j € Z;!
(i) N>, V; = {0}, and U™, Vj is dense in L*(R™);
(iii) f e V;if and only if vf € Vj 1 where (vf)(z) = f(22);
(iv) f € Vy implies f(- — k) € Vy if k € Z™;
v) There is a function ¢ € Vj such that the functions x — ¢(x — k), k € Z", are an
orthonormal basis for Vj.

Since 2"/2v is a unitary map in L?(R"), it follows from (iii), (iv) and (v) that

(iii) f € V; if and only if v~/ f € Vp;

(iv)" f € V; implies f(- — k/Qj) eVjifkeZm

(v)" The functions z +— 2™/2((27x — k) with k € Z" are an orthonormal basis for V;.

To clarify the meaning of these conditions we shall first discuss the most classical case,
the Haar basis in one dimension. Let Vj be the set of functions in L?(R) which are constant
a.e. (almost everywhere) in every interval {z € R;k < x < k+ 1} bounded by consecutive
integers, and define V; so that (iii)’ is valid. This means that V; consists of the functions
which are constant a.e. in the dyadic intervals

(3.1.1) Liry={reR;k<2x<k+1}, keZ
The intervals are divided in half when j is increased by 1, so it is clear that Vj increases

with j. Since step functions of compact support are dense in L? and we can choose the
points of discontinuity as rational numbers with a power of 2 as denominator, the union

We follow the notation of Meyer [2]. In Daubechies [1] there is a change of sign for the indices so that
the spaces V) decrease instead.

47
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of the spaces V; is dense in L?. The intersection of all V; consists of L? functions which
are constant on the positive and on the negative half axis, hence equal to 0. Thus (ii) is
fulfilled, and (v) is valid with ¢ equal to the characteristic function of [0, 1].

For this example the orthogonal complement Wy = Vi3 & V) of Vy in Vi consists of
functions which are constant in the intervals I; ; and have integral 0 over the intervals
Iy ;.- Hence an orthonormal basis is given by the functions x — ¢ (x — k), k € Z, where

1, fo<z<i,
0, ifx <0orx>1.

By condition (i)’ it follows that the functions z + 2//2¢(272 — k), k € Z, are an or-
thonormal basis in W; = V; 41 © V;. Since L*(R) = @™, W; by condition (ii), it follows
that the functions

Yin(z) =222 k), jE€Z kecZ,

form an orthonormal basis for L?(R). It is called the Haar basis, and 1 is called the Haar
wavelet.

Actually this is slightly incorrect historically, for the Haar basis is a basis for L?(0,1).
However, we can regard L?(0, 1) as the subspace of L?(R) consisting of functions vanishing
outside (0,1). Then (f,1;%) =0 unless 0 < k < 27. If j < 0 and k = 0 then

1
(F50) =27 [ (@) da =204 f )
0
Since Z:io 27+l = 2 we obtain

F= Y Wialfiin) + 20 10(f¥-10)-

0<j,0<k<2i

Thus the functions v; ; in the sum and v/2_; o = 1 are an orthonormal basis for L2(0, 1),
which is the original Haar basis. (See Haar [1].)

After this motivating example we shall now return to Definition 3.1.1 and examine the
consequences of the conditions there, beginning with (v).

PROPOSITION 3.1.2. If p € L2(R™) then the functions x — p(x — k), k € Z", are an
orthonormal system in L?>(R™) if and only if

(3.1.2) d o leE+2mk)> =1 ae.
keZn

PrRoOOF. The orthonormality means that

(3.1.3) / ) o(x — k)o(x)dr = 0po, ke Zm™



MULTIRESOLUTION ANALYSIS 49

The Fourier transform of = +— p(z — k) is & — e **€$(€), so (3.1.3) can be rewritten as
follows using Parseval’s formula

(3.1.3) 2n) " [ BP0 de = b,

The left-hand side is a Fourier coeflicient of the function

(3.1.4) (&) = ) |p(&+2m)),
jezZn

which is 27Z" periodic. Hence (3.1.3)" means precisely that ®(£) = 1 as a distribution,
that is, almost everywhere as a function.

Given a function ¢ € L?(R") satisfying (3.1.2) we can define Vj as the closed linear hull
of the orthonormal functions ¢(- — k), k € Z", and then define V; by condition (iii)’. The
condition (i) will then be fulfilled if and only if V_; C Vj, that is, x — ¢(x/2) is in V.

PROPOSITION 3.1.3. Let ¢ satisfy (3.1.2). Then x — p(x/2) is in the closed linear hull
Vo in L?(R™) of the functions (- — k), k € Z™, if and only if

(3.1.5) ¢(28) = mo(§)@(8),

where mg s a 2wZ"™ periodic function in L™ and

(3.1.6) > imeE+ k)P =1 ae.

ke{0,1}»

PROOF. The scalar product oy of ¢(z/2) with the orthonormal functions ¢(z — k)
which span Vj can be calculated by Parseval’s formula,

(B.17)  ap = / (/2o — R da = (2m)" / 2 p(26) @) de, k€ Z"

n

If x — ¢(x/2) is in V then

p(x/2) = ) arp(z — k)

keZn

with convergence in L?. By Parseval’s formula this is equivalent to

2"p(28) = Y are " TER(),

kezZn

also with L? convergence. Since Y |ax|? < oo the Fourier series

mo(§) =27" Z ape k8

keZn
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converges in L2(R"/27Z"), which proves (3.1.5). Replacing £ by (£ + 2mk)/2 we obtain
|P(€ + 2mk)[* = |mo((€ + 2mk) /2)*|@((€ + 27k)/2)%, K € Z".

We sum over k£ using (3.1.2) and the fact that each residue class of (2Z")/Z" contains
precisely one element in {0, 1}", which proves (3.1.6).

Assuming now that (3.1.5) and (3.1.6) are fulfilled we shall prove that = — ¢(z/2) is in
Vo. To do so we observe that (3.1.7) and (3.1.5) give in view of (3.1.2) and the periodicity
of mg

an= (207" [ 2mp(@IpOPe I de = 2m T [ 2mole)e 9 de,

R" /27 Z"

so it follows from Parseval’s formula (for Fourier series now) that

e Y Joxf? = / 27 mo(6)]? de.

By (3.1.6) we have
2 [ fmo() d = (2n)"
R"/2nZ"

so it follows that

S Jogl2 =2 = / (/2 de,

keZn R®
which proves that z — ¢(z/2) is in V.

We have now seen that the equations (3.1.2), (3.1.5), (3.1.6) express the conditions (i),
(iii), (iv), (v) completely when V; is defined by (v) and Vj is then defined by (iii)’. It
remains to examine the condition (ii).

PROPOSITION 3.1.4. Let ¢ satisfy (3.1.2), define V; by (v) and (iii)’, and denote the
orthogonal projection L?*(R™) — V; by P;. Then P; — 0 strongly as j — —oo, hence
N~ V; ={0}. When j — oo we have P; — Id strongly if and only if one of the following
equivalent conditions is fulfilled:

(1) |p(e&)]? = 1 in 2'(R™) ase — 0;

(2) @(£§)|* = 1 in Ly, (R") as € = 0;

(3) If we define |¢(0)| = 1 then 0 is a Lebesgue point for |@|?.

They imply that \J™,_ V; is dense in L*(R™), and the converse is true if (i) is fulfilled.

PRrROOF. To prove the first statement we must verify that ||P;f||p2 — 0 as j — —oo for
all f in a dense subset of L2(R™), say f € Co(R"). We have

P2 = S Jagnl?, o= /R J(2)27/2 5@z — k) da.

kezZn
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If |f| < M and B is a ball containing supp f, then

agel? < 42m(B) [ 2lp@n WP de = Mm(B) [ et iy
B y+k€29 B

so we have

1P, £ < MPm(B) / w)2dy, B = |J ({k}+2'B).

Ej A

The sets E; decrease to the null set Z" as j — —o0 so the integral converges to 0 then.

Since || f||2: = ||Pjfl|32 + || f — Pjfl|32, we have P; — Id strongly as j — oo if and
only if |[P; f||3: — ||f||32 for f in a dense subset of L?(R™). This time we choose f with
f € C°(R™) and rewrite o, using Parseval’s formula

~

oge = (2m)7" | f(€)27 2p(279€)e! MO/ dg = (2m) 7" @2 de,

which can be viewed as the Fourier coefficients of the 27rZ™ periodic function

> F(2(€ + 2ml))27 /2 5(€ + 2nl).

lezZn

If supp f C {&; €] < R} then the terms in the sum have disjoint supports if 2727 > 2R.
Then the square of the absolute value of the sum is the sum of the squares of the absolute
values of the terms, and we obtain using Parseval’s formula for Fourier series

2m)"[PiflIZe = (2m)" Y lanl? =/ F(276)[2277|p (&) de
k R”
— [ 1©PIeETeP i
This converges to (2m)"(|f||72 = [g» |/(€)|2 d¢ as j — oo if and only if
(3.18) | IFOPA 100 d 0. asj - .

Since the integrand is non-negative by (3.1.2) and we can choose f € C$°(R") equal to
1 on any given compact set, this implies that |p(e€)[* — 1 in L as e — 0, for we can
always choose j so that 27771 < ¢ < 277, thus j — oo when ¢ — 0. The condition (2)
above is therefore necessary, and it implies (3) which implies (1). Since (1) implies (3.1.8)

when f € C§°, the proof is complete.

Summing up, the conditions (3.1.2), (3.1.5), (3.1.6) and the very mild equivalent con-
ditions in Proposition 3.1.4 are necessary and sufficient for the scale function (or “father
wavelet”) ¢ to generate a multiresolution analysis.
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If we know the projection in V; of a function f € L?(R™), it is clear that we can calculate
the projection in V;_; C Vj, for it can be obtained by first projecting f to V. To derive a
formula for this passage to a coarser resolution we assume to simplify notation that j =0

and consider a finite sum
folz) = Z crp(x — k).

To compute the projection in V_; we must calculate the scalar products with the basis
functions 27"/2p(x/2 — 1), 1 € Z", in V_;. We have by Parseval’s formula

| o= o2 R s = (2m) 7 [ (e Oz T ag

n

—m [ 2 g (e PR de

where we have used (3.1.5). In view of (3.1.2) this is equal to 2"/2u (2] — k) where u(k)
denote the Fourier coefficients of the 27Z"™ periodic function mqg. Thus the projection f_;
of fo in V_1 is

(3.1.9) foa(z) =D (Te)2 " Pe(x/2 1), (Tc)=2"2>" pl—k)ey

We have now proved:

PROPOSITION 3.1.5. If my is the function in (3.1.5) then the components ci and cj,
k € Z", of the projection of a function f € L*>(R™) in Vy resp. V_1 are related by ¢’ = Tc
where T is the contraction operator defined by (3.1.9) when only finitely many cx are
different from 0. Here u(k) are the Fourier coefficients of the 2mwZ™ periodic function my
n (3.1.5).

3.2. The wavelets associated with a multiresolution analysis. Assume given an
orthonormal multiresolution analysis of L?(R"™) (see Definition 3.1.1). As in the example
of the Haar basis we want now to examine the quotient spaces W; = V;;1 © V. Note that

Vie =V, 0W,; @0 Wjp1, 0<ke€Z; V;=PWi, L*R")= @Wk
k<j

From condition (iii)’ it follows that W; = 49 Wjy, and we shall now discuss the properties
of Wy, which will lead to the desired wavelets.

PROPOSITION 3.2.1. A function f € L*>(R™) is in Wy if and only if

(32.1) f(&) = Alg/2)2(¢/2),
where A(€) is a 272" periodic function in LE . with
(3.2.2) > A€+ mk)mo(€+ k) = 0.

ke{0,1}m
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Here my is the function in (3.1.5). We have

(3.2.3) 1#1E == [ A©PdE fe W
R"/27Z™

ProoFr. That f € Vi means precisely that z — f(x/2) is in Vj, and we know from the
beginning of the proof of Proposition 3.1.3 that this is equivalent to

A~

f(28) = A(€)¢(8),

where A is a 27Z™ periodic function. This proves (3.2.1). By Parseval’s formula and
(3.1.2)

n

(2m)" | 12 = /

R

FOPde =2 / A©)B(©)? de =2 / A©)P.

R"/27Z"

which proves (3.2.3). That f € Wy means that f is orthogonal to ¢(- —1) for every [ € Z",
that is,

/ JAE/2E/eO T de = | AE/2mo(E/DNPE/DP 0 de =0, 1e 2,

where we have used (3.1.5). Interpreting these integrals as Fourier coefficients of a 27Z"
periodic function we conclude that this is equivalent to

> A(E/2+ mkYmo(E/2 + Tk)|@(£/2 + Tk)[> =0, £€R™
kezZn

We replace £ by 2§ and note that every residue class in Z"/2Z" contains precisely one
element in {0,1}™. This gives

> > A+ kA 2wl)mo(§ + 7k + 2al)|G(€ + 7wk + 27D = 0.
ke{0,1}n lezZn

Since A and mg are 2nZ™ periodic we can use (3.1.2) to calculate the sum over [ and are
left with the equation (3.2.2). The proof is complete.

Recall that by (3.1.6) the equation (3.2.2) means that the 2" vector (A({+mk))reqo,1}n
must be orthogonal to the corresponding unit vector in C2" defined by mg. For every &
the equation (3.2.2) has therefore 2" — 1 linearly independent solutions. Before discussing
the higher dimensional case we shall examine the much more elementary one-dimensional
case. Then the equation (3.2.2) reads

A(§)mo (&) + A(§ + m)mo(§ +7) = 0,
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which means that

(3.2.2)' (A(£), A(§ +m)) = A&)(mo(§ +7), =m0 (£))

for some complex valued function A\ with period 27w. Replacing £ by £ 4+ m in the second
component of this equation we obtain the equivalent equations

A(E) = AME)mo(§ +m) = =A(§ + m)mo(§ + 7).

This requires that A(§) = —A( + 7), for m(§) and mo(§ + m) are not both equal to 0.
Conversely, this condition implies that A(£) = A(§)mo(§ + 7) is a 27 periodic solution of
(3.2.2). A particular solution is given by

(3.2.4) m1(€) = e“mo(E + ),
and it is normalized so that
(3.2.5) Im1(O)? + Ima(E+m))* = 1.

The general solution of (3.2.2)" is now of the form A(§) = B(§)m; (&) where B has period
7. Thus (3.2.1) can be written

£(&) = B(&/2)ma(€/2)$(£/2),

where B(£/2) has period 27. The equation (3.2.3) takes the form

271 T
2 7_(_—1 2 2 _ 71'_1 2
1f1Z> = /0 |B(E)]7Ima(8)[” d§ /0 [B(§)|” dg

where we have used (3.2.5) and that B has period m. We have now proved the following
basic theorem on wavelets in one dimension:

THEOREM 3.2.2. Given an orthonormal multiresolution analysis of L?>(R), let ¢ €
L?(R) be the wavelet defined by

(3.2.6) B(€) = 2 mo (/2 + m)p(£/2)

with mqg as in Proposition 3.1.3. Then the functions x — (x — k) with k € Z form an
orthonormal basis for Wy = Vi © Vy; the functions x v+ 29/?¢(272 — k), k € Z, form an
orthonormal basis for W; = V11 ©V; when j € Z is fized, and they form an orthonormal
basis in L?(R) when j is also allowed to vary in Z.

In Section 3.3 we shall give a detailed discussion of wavelets in L?(R) with compact
support, in particular their regularity properties, but we shall now return to the higher
dimensional case to complete the discussion of the equation (3.2.2). It is inevitably a more
difficult problem for higher dimensions since the solution is much less determined then.
We could argue quite brutally by extending the unit vector (mg(§ + mk))geqo,13» to an
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orthonormal basis for C2" by the Gram-Schmidt procedure for every ¢ with 0 < § < m,
Jj=1,...,n, and extend the definition of the other vectors so obtained when 0 < ¢; < 27
to a 2wZ"™ periodic function. However, even if mg is a smooth function this would introduce
very bad singularities, so we shall proceed more gently.

The set {0,1}™ in (3.2.2) is clearly identified with the group G = Z%, identified in turn
with the subgroup 7Z"/27Z"™ of the torus R"/27Z", and (3.2.2) is a summation over a
coset with respect to this subgroup. To obtain an orthonormal basis for the solutions of
(3.2.2) we must find 27Z" periodic functions m,.(§) also for r € G \ {0} so that for every
¢ € R™ the vectors (m,.(§ + mk))keq with r € G is a complete orthonormal system in C©.
Taking the Fourier transform in G, normalized to be unitary, we introduce the functions
on G = @ defined by

M o(€) =272 mp(&+7k)(-1)*2, roeG,
keG

where we have used the explicit form of the characters on Z3 given in a remark after
Theorem 1.2.1.2 We have

g€ +7l) =272 Y " m, (€ 4wk + 1) (=1) "¢

keG
= (—1)lbeig=n/2 Z m, (& + mk)(—1) %2 = (=)0, ,(6).
keG
Hence
(3.2.7) M, (&) = e @9m, ,(£)

are mZ" periodic functions. The matrix (m,(§ + 7k)), keq is unitary if and only if the
matrix (M, ,(€))r peq is unitary, for the normalized Fourier transform in G is unitary. This
is also equivalent to unitarity of the matrix (M, ,(£)), eq, for it differs only by a factor
of absolute value 1 in each column.

Conversely, if (M, ,(€))r0ec is a TZ™ periodic unitary matrix then (3.2.7) defines a
2nZ™ periodic unitary matrix, and inverting the Fourier transform in G we obtain the
unitary matrix

My (€) =272 iy (-1, 1k eG.

0€G

Now

Mpo(§+ k) =272 " iy (E+ k) =272 iy, (€)(—1) 9 = my i (€),

0€G 0€G

so the 2wZ™ periodic functions m, ¢(&) has the desired properties if mg 1 (§) = mo(§ + k).
The problem has now been reduced to finding a unitary matrix (M, ,(£))r ,ec when one
row Mo (&) = (Mo ,(§)) e of unit length is given. When n = 1 so that Z% has only two

2Note that introducing these functions is a case of the decomposition in (1.2.6), (1.2.7).



56 ITI. WAVELETS

elements we used that for z = (21, z2) in the unit sphere in C? the matrix (;1 z; ) is
2 —Z1

unitary. This is very exceptional, for if z = (21, ..., zy) is the first row of a unitary matrix
U(z) depending continuously on z when z € C¥ has length 1, then iz together with the
other rows and their products by ¢ would be an orthonormal basis for the tangent space
of the 2N — 1 sphere which is not possible unless N = 2 or N = 4.3 It is therefore not
possible to give a universal formula for m; like that in (3.2.6). However, we recall that the
reason for the present discussion was that we wanted to preserve regularity properties of
mo, and when mg has some regularity the following simple lemma will show that there is
no difficulty in making a construction adapted to my.

LEMMA 3.2.3. If f is a map from a cube I C R™ to RN, where N > n, then the range
of f has measure 0 if f is Hélder continuous of some order o € (n/N, 1), that is,

lf(x) = f(y)| < Clz —y|* z,yel.

Proor. Dividing each side of I into v equal pieces we decompose I into v™ cubes, with
diameter < C'/v. The range of f restricted to such a cube is contained in a cube in RY with
measure < C'(v~*)N. The outer measure of the range of f is therefore < C'v"~*N — (
as v — Q.

If My is Holder continuous of order > n/(2%2" —1), it follows from Lemma 3.2.3 that the
range of M, is not the whole unit sphere in C?". Then there is no difficulty in finding a
unitary matrix extension, for we have:

LEMMA 3.2.4. If q is a given point on the unit sphere S = {z € CN;ZiV |z;|* = 1}

then there is an orthonormal basis Vo(2),...,Vn_1(z) for CN depending real analytically
on z € S\ {q}, such that Vo(z) = (21,...,2N).

PROOF. If U is a unitary mapping in C and the vector fields V; satisfy the conditions
listed in the theorem, then the vector fields z — UV;(U~'z) also satisfy them if ¢ is
replaced by Ugq. It is therefore sufficient to prove the lemma for a special choice such as
qg=(0,...,0,—1). Then we note that the differential of the “stereographic projection”

S\{q} > (z1,...,25) = (21,...,2n_1)/(2xy +1) € CV !

gives an analytic bijection of the complex tangent plane of S at z defined by Zf[ Zjdzj =
0 on CN~!. Thus the inverse images vi(2),...,vn_1(2) of the basis vectors in CN~!
form a complex basis in the complex tangent plane of S at z. Together with the vector
vo(2) = (21,...,2n) they form a basis for CV, depending analytically on z € S\ {q}.
If we orthonormalize using the Gram-Schmidt procedure, starting with V[, we obtain
an orthonormal basis Vy(2),...,Vy_1(z) with Vo(z) = vo(2) = (21,...,2n) which also
depends real analytically on z € S\ {q}, which proves the lemma.

31t is probably known but not to me if in the case N = 4 there is such a unitary matrix; that the
tangent space is parallelizable is a weaker property.
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If ¢ is a point in the unit sphere of C& which is not in the range of My, we can now
choose

(M;(€))occ = Vi (Mo(£)),

for Vo(Mo(€)) = Mp(&) then. Since V, is real analytic this will preserve all reasonable
regularity properties of Wy. The passage from mg to My and from (M, ,) back to (m, ,)
does not affect the regularity either, so we have now proved:

THEOREM 3.2.5. If n > 1 and mq is Hélder continuous of order > n/(2*" — 1), then
there exist 2wZ™ periodic functions m,(§) in R™, r € {0,1}™ \ {0} which are real analytic
functions of mo(€ + k), k € {0,1}", such that

(3.2.8) Z m (& + wk)mg (€ + k) = 65, 1,8 € {0,1}".
ke{0,1}»

In any case one can find bounded measurable m,. with these properties.

For an arbitrary 27Z"™ periodic solution of (3.2.2) it follows from (3.2.8) that there are
uniquely determined coefficients B,.(£), r € {0,1}"™ \ {0} such that

AC+rk)= Y Bu(Om(E+7k), ke {0,1}".
re{0,1}»\{0}

In view of the 27Z" periodicity this is then true for all £k € Z", and since the coefficients
B,.(£) are unique it follows that they are wZ"™ periodic. (If the functions involved are not
continuous all statements should be understood to hold a.e..) Now it follows from (3.2.1)
that

FO= > Bu(&/2m.(£/2)p(£/2).
re{0,1}7\{0}

The equation (3.2.3) takes the form

=) | Y B©m©
R™ /212" e (0,1)7\ {0}

o /R > | Y BOmE+mh

M/TET pefo,13n re{0,137\{0}

_ _—n 2
Skl D DRGNS

re{0,1}»\{0}

2
g
‘2

dg

Here we have used that B,.(£) is 7Z" periodic and that the vectors (m,(§{+mk))reqo,1)» are
orthonormal. Hence we have proved an analogue of Theorem 3.2.2 in higher dimensions:

THEOREM 3.2.6. Given an orthonormal multiresolution analysis of L?>(R™), let m, be
defined as in Theorem 3.2.5 for r € {0,1}"\ {0}, and define 1. € L>(R") by

(3.2.9) b () = m.(£/2)p(£/2).
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Then the functions x — . (x — k) with k € Z™ and r € {0,1}™\ {0} form an orthonormal
basis for Wy = V16Vy; the functions x +— 2™/%4),.(27x—k) with k € Z™ and r € {0,1}"\{0}
form an orthonormal basis for W; = V11 ©V; when j € Z is fized, and they form an
orthonormal basis in L2(R™) when j is also allowed to vary in Z.

REMARK. Taking r = 0 we obtain in view of (3.1.5) that )9 = ¢. With this definition
the functions 277/24,.(27x — k) with k € Z™ and arbitrary r € {0, 1}" form an orthonormal
basis for Vj;i. The wavelets v, with r # 0 provide the additional information which
occurs in a refinement of the analysis.

The appearance of 2" — 1 wavelets in Theorem 3.2.6 is very natural for a multireso-
lution analysis in R™ which is constructed from one in R by tensor products as follows.
For any multiresolution analysis of L*(R), with subspaces V; and scaling function ¢, a
multiresolution analysis of L?(R") is given by

(3.2.10) v =Vie---0V

that is, the closed linear hull of products u(z) = []} u,(z,) where u, € V;. Since the
functions x + 27/2¢(27x — k), k € Z, are an orthonormal basis for V}, the functions

(3.2.11) R" >z 22 [ o(@a, — k), k=(k,....k,)€Z",
v=1
are an orthonormal basis for Vj(n). In other words, ™ (z) =[]} ¢(z.), © = (z1,..., ),

is a scaling function for this multiresolution analysis.

Since V1 = V;@Wj it follows that Vj(f:l is the orthogonal direct sum of tensor products
Wj(;f), where r = (r1,...,7,) € {0,1}" and Wj(’z) is the tensor product obtained when V;

is replaced by W; at the v*® position in (3.2.10) when 7, = 1. For example,
2
Vih = (Vev)e (e W) e (W, o V) e (W; e W),

where the spaces correspond in order to r equal to (0,0), (0,1), (1,0), (1,1). We have al-
ways Wj(,%) = Vj(n). If 1) is a wavelet such that z +— 27/24(272—k), k € Z, is an orthonormal

basis for W}, then an orthonormal basis for Wj(z) is given by x +— 2"j/2¢r(2jx— k), keZ",
where

(3.2.12) Ur(@) =[] @) [] ).

r,=0 r,=1

This gives very explicit wavelets with the properties in Theorem 3.2.6. Combined with
the results of Section 3.3 we obtain multidimensional wavelets of compact support with as
many derivatives and vanishing moments as we wish.
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3.3. Compactly supported orthogonal wavelets in one dimension. For ap-
plications of wavelets a number of properties of the scaling function ¢ and the wavelets
1) are desirable such as fast decrease, vanishing moments for 1) and smoothness. Priori-
ties depend on the applications. We shall here confine ourselves to a study of wavelets of
compact support in one dimension. The interest of compactness is of course that it makes
the coefficients in the wavelet expansion locally determined and the refinement algorithm
(3.1.9) finite. The Haar basis already has this property, but it is not even continuous.

At first we assume that we are given a multiresolution analysis of L*(R) with scaling
function ¢ of compact support. Using the results proved in Sections 3.1 and 3.2 we can
immediately draw some useful conclusions:

1. The Fourier transform ¢ can be extended to an entire analytic function, and |$(0)| =
1 by Proposition 3.1.4. We can multiply ¢ by a constant of absolute value 1 so it is no
restriction to assume in what follows that ¢(0) = 1.

2. By the proof of Proposition 3.1.3 the function mg in (3.1.5) is given by

£=73 Z are” "y = /@(x/Q)cp(x —k)dz,

keZ

and if a < x < b when z € supp ¢, then o, = 0 unless the intersection [2a, 2b]N[a+k, b+ k]
has interior points, that is, 2a — b < k < 2b — a. Hence my is a trigonometric polynomial,
mo(0) = 1 by (3.1.5) so mo(w) = 0 by (3.1.6), and |mg(£)|? is a trigonometric polynomial
of degree < 3b — 3a. If ¢ is real valued, then ay are real and |mg(&)|? = mo(&)mo(—£) is
even.

3. The wavelet 1) has also compact support; in fact, ¢(x/2) is a finite linear combination

of integer translates of ¢ in view of (3.2.6), which also gives ¢)(0) = 0, that is, Jr ¥(z)de =
0. This statement is strengthened by regularity properties of 1):

PROPOSITION 3.3.1. If ¢ € Cl'(R) where p is an integer > 0, then
(3.3.1) /w(a:):c” dr =0, that is, 12(”)(0) =0, if 0<v <y,

which implies that mg has a zero of order p+ 1 at 7.

PRroOF. For arbitrary integers k and 7 > 0 we have

0—2]/¢ V(29x — k dw—/¢2jy+2 Tk)ab(y) dy.
By Taylor’s formula

Y@y +277k) =3 (27 Ty)” v+ o(2771),
v<p
uniformly when y € supp . Hence

) (9—J —jv Voo vl = o2~k
S w2 [ )yt = o2

v<p
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as j — +oo. Choose a point z¢ with 9 (z¢) # 0 and then a sequence k; € Z such that
277k; — 9. Then it follows that ¥ (xo) [ (y) dy = 0, which of course we already knew
without any regularity assumption. Assume that we have already proved (3.3.1) when
0 < v < o where 0 < 0 < p. If we then choose z( so that ¥(?)(z() # 0, it follows in the

same way that [ 274 (y) dy = 0, which proves (3.3.1) inductively.

COROLLARY 3.3.2. If the scaling function is compactly supported then it cannot be in
Cc=.

Proor. If ¢ € C§° then ¢y € C§° and the analytic function ¥ has a zero of infinite
order at the origin by Proposition 3.3.1. This implies v = 0 which is a contradiction.

REMARK. It is easy to see that (3.3.1) follows from the somewhat weaker assumption
that v € C*~1 and that ¢(*~1) is Lipschitz continuous. We leave the proof as an exercise.

Let N be the order of the zero of mg at m; by Proposition 3.3.1 and (3.2.6) we know
that N > pu+ 1 if o € C*, and even without any regularity assumptions we know that
N > 1. Then it follows that

mo(€)/(1 + e~ )N

is a trigonometric polynomial. In fact, mg(£) can be written as a power of e times a
polynomial in e~ with a zero of order N at —1, so it is divisible by (1 + %)V as a
polynomial in e~%. From now on we assume that ¢ is real valued. Then the Fourier
coefficients ay, of mg are real, so mo(—¢§) = mo(&) and it follows that

(3.3.2) My (€) = [mo(€)|* = (cos*(3) L(¢),

where L is a polynomial in cos{ = 2cos?(3£) — 1 =1 — 2sin®(1€), so we can write

(3.3.3) Mo(§) = (1= y)"P(y), y=sin’(3).

Here P is a polynomial, of degree < 3b — 3a — N if supp ¢ C [a,b]. The condition (3.1.6)
can be written

(3.3.4) 1—y)NP(y) +y¥NP1 —y) =1

LEMMA 3.3.3. There is a unique polynomial Py of degree < N satisfying (3.3.4), and
it 1is given by

(3.3.5) Pn(y) = Jg (N _kl + k) T

Every solution can be written P(y) = Pn(y) +yY R(3 — y) where R is an odd polynomial.

PROOF. Since the polynomials 3V and (1 —y)" have no common factor, the Euclidean
algorithm gives that there exist polynomials ()1 and ()2 such that

(1—-y)NQ1(y) + ¥V Qa(y) = 1.
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We can write Q1(y) = ¢1(y) +y~ r(y) with uniquely determined polynomials ¢; and r such
that qi(y) is of degree < N. Writing ¢2(y) = Q2(y) + (1 — y)Vr(y) we obtain

=) Va@) +yVe) =1,

which proves that g5 is also of degree < N. There are no other polynomials of degree < N
with this property. Replacing y by 1 — y gives

YWal-y+0-y)Nel-y) =1,

and we conclude that ¢1(y) = ¢2(1 — y) so Pn(y) = ¢1(y) is a solution of (3.3.4) of degree
< N, and the only one. Since (3.3.4) implies

Py(y)=(1—-y) N +0@u"), asy—0,

it follows that Py is the (N — 1)st partial sum of the Taylor expansion of (1 — y)~%

which gives (3.3.5). The general solution can be written P(y) = Pn(y) + y¥r(y) where
r(y) + r(1 — y) = 0, which means that r(y) = R(y — 1) with an odd polynomial R. The
proof is complete.

The polynomial Py is obviously > 1 in [0,1], but for the general solution of (3.3.4)
non-negativity in [0, 1] is a restriction which implies that R for a given degree p must
belong to a a convex compact neighborhood of the origin in the space of odd polynomials
of degree p.

To return to the function mg and ultimately to the scaling function ¢ we must first find

1

a trigonometric polynomial with absolute value squared equal to P(sin®(1¢)).

LEMMA 3.3.4. If P is a polynomial of degree p which is non-negative in [0, 1], then
there is a polynomial B of the same degree with real coefficients such that

(3.3.6) P(sin®(38)) = |B(e™)*.

PROOF. Since sin®(1¢) = (1 — cos &) we can write P(sin®*(3€)) = Q(cos&) where Q) is

a polynomial of degree p which is non-negative in [—1,1]. We can factor @) as a product
of polynomials of the form Q(x) = (z + A\)sgn A with A € R and |A\| > 1 or (z — {)(z — ()
with ( € C, so it suffices to verify the lemma for these two cases.

a) In the first case we write

(cos€+ A)sgn A = %(ei5 +e % 4 2\)sgn )\ = %e_iﬁ(e%S 42X + 1) sgn A
=L1e7% (e +a)(e" +1/a)sgn X = (" +a)(e™ ™ +a)/|a|
where a = A+ VA2 — 1 is real and has the same sign as A\. We can therefore take B(x) =

(z+a)//2]a].

b) In the second case we write
(cos€ — ()(cosé — () = ie‘mg(e%€ —2Ce™ +1)(e*€ —20e +1)
= e (e =) (e = = Q) =G
= 3(e* =) = Q)e™™ =)™ = ¢)/IG )
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so we can take B(z) = 2 (z — (1) (z — G1)/| G-

In the second case the factorisation is not unique: we can replace (; by 1/(1, so each
of the polynomials given by Lemma 3.3.3 which is non-negative in [0, 1] yields a finite
number of candidates for the function mg, in addition to a factor e**¢ with k € Z. For
each choice it remains to see if there is a corresponding scale function satisfying (3.1.5)
and the other conditions established in Section 3.1. (Since (3.1.5) does not change if both
mo(€) and $(€) are multiplied by e**¢, multiplication of mg(¢) by €**¢ just implies that
$(€) is multiplied by e?*¢, which means an integer translation of ¢.) From (3.1.5) and the
conditions ¢(0) = mg(0) = 1 it follows that once mg has been chosen we must necessarily
have ¢ = ® where

(3.3.7) o(¢) = [[mo(¢/2"). ¢eR.

The product is convergent even for all £ € C since mg(£/2F) = 1+ O(27F) for € in a
bounded subset of C, so ® extends to an entire analytic function. Since

mo(§) =% > age™™
ko <k<k,
and |mo(€)| < 1 when £ € R (by the condition (3.1.6) which is fulfilled by our choice of
mp) it follows from the maximum principle applied to $ - a2z 7%+ for |z| > 1 and |2| < 1
respectively that
Imo(¢)] < eF+Mm¢ ¢ e C, £Im¢ >0,

which implies that
|B(Q)| < eF+mC (e C, +Tm( > 0.

By the Paley-Wiener-Schwartz theorem it follows that ® is in fact the Fourier-Laplace
transform of a distribution ¢ € &'([k_,ky]). (If ap, # 0 it follows from the theorem
of supports that [k_, k] is the smallest interval containing supp ¢.) What remains is to
decide if ¢ satisfies (3.1.2) and to determine the regularity properties of .
To prove that ® € L?(R) we denote the partial products (3.3.7) by ®; and note that
ok ok+1

/ B()]? de = B (€)[2 de

_okg

:/o B ()P (Imo(27H ) + mo (278 + m)?) d

2k1

2k i
= ®)_1(9)]*d o A== Do (¢)* d
| we@ra= [ ie@Pd == [ oo@Pd

where we have first used the periodicity of mg and then (3.1.6). By Fatou’s lemma it
follows that ® € L? and that

/ D)2 de < / B (€)[2 de = 27,
R —T

for &y = 1. (Since the convergence is locally uniform this is quite elementary; one just
has to consider the integral over a compact interval first.) Note that (3.1.2) implies that
|¢]132 = 2m. However, (3.1.2) is not always fulfilled.
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ExampLE. If
mo({f) _ %(1 n e—z{)(l . e—i§ + e—2i§) — %(1 + 6—31'5) — e—3i§/2 COS(%f)

then (3.1.6) is fulfilled and

p(&) = e ¥/ ?sin(3€)/(3¢) = —i(1 — e7%%) /3¢

for the right-hand side equals 1 at 0 and (3.1.5) is satisfied since (1 — e™3%)(1 + e=3%) =
1 — e75%. Hence we have ¢(z) = 3 in [0,3] and ¢(z) = 0 elsewhere. This resembles the
Haar system but ¢(- — k), k € Z, is not an orthonormal system because of its redundancy.

Before we tackle the problem to decide when (3.1.2) is valid, we note that in any case
the corresponding wavelets will always be complete in a very strong sense:

THEOREM 3.3.5. With a trigonometric polynomial mqy and a corresponding ¢ € L?
defined as above so that (3.1.6) and (3.1.5) are valid, with ¢ defined by (3.2.6) and

pin(r) = 2202w — k), Yix(x) =27/ 222 — k),

we have for f € L*(R)

(3.3.8) Z| Frovi)lP+ D0 D 1Rl =D urrn)l,
k

v<j<upm k
(3.3.9) D)l = 1172
ik
Moreover, |[¢|[r2 = [l¢llrz <1, and
(3.3.10) 9(&) = Y 1@(¢ +2xl)|?
leZ

18 a trigonometric polynomial such that
(3.3.11) 9(&) = Imo(5€)*9(38) + [mo(5€ + m)g(5€ + ).

PrOOF. 1t is sufficient to prove (3.3.8) when y = v = 0. Then

(o £) = o [ POFQ " de (o d) = 5 [ ST de.

can be considered as Fourier coefficients of 27 periodic functions. Hence the left-hand side
of (3.3.8) with v = = 0 is equal to 027T(|A(£)|2 + |B(&)|?) d¢ /27 where

A©) = mo(Re + m)p(Le + ml) f(€ + 2xl),

leZ

=2y (=1)'mo(3€ + 7l +1)@(5€ + ) f(€ + 2n),

leZ
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where we have used (3.1.5) and (3.2.6) respectively. With the notation

= 3" G(4¢ + 2ml) f(€ + 4ml)

leZ

we have since mg has period 27
A(&) = mo(38)C(E) + mo(5¢ + m)C(€ + 2),
B(&) = e*/2(mo (3¢ + m)C(€) — mo(36)C(€ + 2)).
Hence it follows from (3.1.6) that
AP + [BE))? = [CE)I +1C(€ +2m) 2,

which gives o 2 2 . 2
3 | AR+ 1BOR) &= 5 / )P de.

(o1, f) = / VIR F(€)e ™/ g

can be considered as the Fourier coefficients of the 47 periodic function v/2C(¢), so the
right-hand side of (3.3.8) is equal to fo |C(€)|?/27, which completes the proof of (3.3.8).

With the notation of the proof of Proposition 3.1.4 the right-hand side of (3.3.8) is
>p laus1 k), and since $(0) = 1 we proved then without using (3.1.2) that it converges to
1 £]132 as p — oo if f € C°(R). Hence it follows from (3.3.8) that Sul(fevi)? < IfI12e
for every v and for every f in this dense subset of L?. Restricting first to finite sums we
conclude that this inequality is true for every f € L? and every v. Hence it follows for
every f € L? that the right-hand side of (3.3.8) converges to || f||?> as 4 — +o0 and that
the first sum on the left converges to 0 as v — —o0, for each of these statements is true in
a dense subset of L? by the proof of Proposition 3.1.4. This proves (3.3.9).

We have already proved that ||¢||; 2 < 1. Using (3.1.5), (3.1.6) and (3.2.6) we obtain

/R<| (O + 1)) de = /rmog 2 4 mo(L6 + m)|2)|G(L6) 2 de

— [1eGord =2 [ 1o
R R

which proves that ||| L2 = [[1]|L2. Since the Fourier coefficients of g are the scalar products
(p(- —n), ) it is clear that g is almost everywhere equal to a trigonometric polynomial.
Now it follows from the arguments used to prove (2.1.25) that the series (3.3.10) is lo-
cally uniformly convergent, so g is continuous and everywhere equal to a trigonometric
polynomial. When (3.3.10) is entered, the right-hand side of (3.3.11) becomes

mo(3E)2 S 1(5¢ + 2n) 2 + [mo (56 +m)[2 > |@(4¢ + 2l + )|
l€Z leZ

=" Imo(3€ + m)Ple(ke + mD)2 =D (€ + 2m) 2,

leZ l€Z
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by (3.1.5), and this is equal to the left-hand side. The proof is complete.

Many equivalent necessary and sufficient conditions for the validity of (3.1.2) are given
by the following theorem:

THEOREM 3.3.6. With a trigonometric polynomial mqg and ¢ defined as above the fol-
lowing conditions are equivalent:

(i) The functions x + o(z — k) with k € Z are orthonormal in L*(R);
(i) [Jellze =1;
(iii) @rx(-/2%) — ¢ in L2(R) as k — oo if x is the characteristic function of (—m, )
and ®y, are the partial products in (3.3.7);
Sez P +2nl)|> =1 for every € € R;

)
) Sez @€ +2ml)|> > 0 for every € € R;
(vi) For every & € R there is some | € Z such that $(§ + 2wl) # 0;
i)
)

The projection of {£ € R; (&) # 0} in R/27Z is surjective;
There is a function x € C3°(R) such that $(§) # 0 when & € suppx, X =1 in a
neighborhood of the origin, and ., X(§ + 2nl) = 1.
(ix) Ewery trigonometric polynomial with period 2w satisfying (3.3.11) is a constant.
(x) There is no trigonometrical polynomial g satisfying (3.3.11) with period 27 and
ming = 0, g(0) > 0.
(xi) There is no non-trival cycle in {€ € R/2wZ; |mo(€)| = 1} for the doubling map
£ 2.

ProoOF. (i) == (ii) is trivial. We proved above that the L? norm of ®;x(-/2%) is
equal to /27, and this sequence converges locally uniformly, hence weakly, to ¢. Norm
convergence is then equivalent to convergence of the norms which proves the equivalence
of (i) and (iii). From Proposition 3.1.2 and its proof we recall that (i) is equivalent to (iv)
and to the conditions on the Fourier coefficients

(3.3.12) / G(€)2e= " de = 26,0, nC Z.

To prove that (3.3.12) follows from (iii) we note that ®(&) = mo(£/2%)®x_1(€) and use
an argument similar to the proof that ® € L2,

(3.3.13) / |k ()P x(¢/27)e ™ de = 2 / | (25€) 12X (€)e 2" dg
=2 [ ol Pl a2 S e

—Tr

- 2k/0 (Imo(€)[ + mo (€ + )[2)] @y -1 (28€) Pe "¢ dg

T Qkﬂ'
— o / By (256) e 2 € de = / By (6)[2e ¢ de
0 0

:/|‘I>k:-1(§)|2><(§/2k_1)6_mE d€ =--- = /X(ﬁ)e_mf d€ = 27y 0.
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If ®px(-/2F) — ® in L? then |®;|?x(-/2%) — |®|? in L' which proves (3.3.12), hence (iv).
The equivalence of the first four conditions is now established. and it is trivial that (iv)
= (v) = (vi) = (vii). If (vii) is fulfilled it follows from the Borel-Lebesgue
lemma that we can find a finite number of open sets O; C R where ¢ # 0 such that the
projection g : R — R/27Z is bijective in each O; and UgO; = R/27Z. Choose a partition
of unity x; € C§°(¢O;) in the circle and let x; = x; 0c¢q in O;, x; = 0in R\ O;. Then
Xj € Cg°(R), and if x = > x; then ¢ # 0 insupp x and ), 5 X(§+27l) = > x;0q(§) = 1.
Since ¢(0) = 1 we could take one of the sets O; as a neighborhood of the origin and the
corresponding x; equal to 1 in a neighborhood of the origin to attain that x = 1 in a
neighborhood of the origin, which proves (viii).

Next we prove that (viii) implies (iv), that is, that (3.3.12) is valid. To do so we can
essentially repeat the proof that (iii) == (iv). In fact, for any function f of period 27

we have [ X(€)f(&)dE = fozﬁ f(&) d€. Replacing x by x in (3.3.13) we thus obtain

/ |4 (87 %(&/2F) e d¢ = / e ME dE = 276, 0.
If C = mingegupp i |9(€)], which is > 0 by condition (viii), we have

D4 (E)] = [2(9)1/18(€/2%)| < |@(&)|/C, if £/2F € supp x.

Since |¢|? € L' and x(£/2%) — 1 as k — oo, we conclude by dominated convergence that
(3.3.12) holds.

Since the sum ¢ defined in (3.3.10) satisfies (3.3.11) it follows from (ix) that this sum is
a constant, and it is not equal to 0 since $(0) = 1, so (v) follows. We also have (x) =
(ix), for assume that g is a non-constant solution of (3.3.11). It is no restriction to assume
that g is real valued, and since g may be replaced by —g we may assume that 0 is not a
minimum point. By (3.1.6) every constant satisfies (3.3.11), so subtracting the minimum
of g from g we obtain a solution of (3.11) with minimum equal to 0 which is positive at
the origin. This would contradict (x). The proof will be complete if we can establish that
(v) = xi) = (x).

Assume that (x) is false so that there is a trigonometric polynomial g with period 27
satisfying (3.3.11) with ming = 0 and g(0) > 0. Let N = {€ € R/21Z; g(§) = 0} which is
a finite set. If £ € N then £ # 0 and it follows from (3.3.11) that there is some 7 € R/27Z
with 2n = ¢ such that g(n) = 0, thus ne N. Repeating the argument we get a sequence
51,52,53, ... with & = £ and 2§j+1 éj Since N is finite there must be some repetition,
that is, & = &, for some j and some r > 0. But then we have & = 2/71¢; = 2171, =
ér+1. If  is chosen minimal it follows that we have an invariant cycle &,&,, ..., &, &
for the map § > 2£ . Different cycles are disjoint since a cycle is uniquely determined by
any one of its elements, so N is a union of such cycles, and in particular invariant under
multiplication by 2. If £ € N then £ +# ¢ N, for since 26 = 2(£ 4+ 7) they would otherwise
be in the same cycle, of period r, so £=2r¢ =29r (§+7T) £ + 7 which is impossible. Since

= 9(28) = Imo()29(&) + Imo(§ + 7)|2g(§ + ) = [mo(€ +7)[*g(€ + 7)
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it follows that mg(€ +7) = 0, hence |mq(€)| = 1. Each of the cycles which constitute N is
therefore one of the forbidden cycles in (xi), so (xi) = (x).

Finally we prove that (v) = (xi). Assume that (xi) is false, and let &, & =
261,....& = 2771 be a cycle of period precisely » > 1 on which |mg| = 1. Since
r > 1 these elements in R/27Z are not 0. Hence there is a unique x; € (0,1) such that
2mx; is in the class of §J We have a periodic binary expansion x1 = .dy...d,dy...dy ...,

hence
CL’j:.dj...drdl...drdl...dr....

Both digits 0 and 1 will occur in these periodic expansions. By (3.1.6) we have mq(r;) =0
if 7); = &; + 7, which is the class of 27y; where

yj:.d;-dj+1...drd1...dr...

with the notation d’ = 1 — d for the complementary digit. Now we claim that ¢(£) = 0 for
every ¢ in the residue class & . Assume to the contrary that ¢(§) # 0 for some such &,
and write the binary expansion

6/27’(' == ---Dka—l ...Dl.dldg...drdl dr

which is finite to the left of the binary point and equal to x; after it. That ¢(£) # 0 means
that mo(27%¢) # 0 for all k > 1. Now 27%¢/27 is obtained by moving the binary point k
steps to the left. The digits after the new position will determine the value of mg(27%¢).
When £ = 1 we must not have the digits of y,, so it follows that D; = d,.. Repeating the
argument we then conclude when k = 2 that D, = d,._1, and continuing in this way we see
that the digits d; ...d, must be indefinitely repeated to the left. This is a contradiction
proving that (v) is not fulfilled. The proof is complete.

COROLLARY 3.3.7. If mg # 0 in [—7/3,7/3] then the conditions in Theorem 3.3.6 are
satisfied.

ProoF. It suffices to verify condition (xi). Since mg # 0 in [—n/3,7/3] we have
Imo(€)| # 1 when ||| —7| < 7/3. Suppose that S is a cycle as in condition (xi) and identify
S with a subset of (—m,7]. Then S C (—2n/3,27/3), and since 25 C (—27/3,27/3) we
have S C (—n/3,7/3). Iterating this argument we obtain S C (—27%7/3,27"7/3) for
every integer v > 0, so S = {0}, which is a trivial cycle. Hence (xi) is fulfilled.

Note that the example given before Theorem 3.3.5 shows that 7/3 cannot be replaced
by any smaller number in Corollary 3.3.7. The result would be trivial with 7/3 replaced
by 7/2. Even that condition is fulfilled when mg is obtained from the polynomials Py
in Lemma 3.3.3, so we have obtained a large family of compactly supported orthonormal

wavelets. Our next goal is to examine their regularity.
Recall that with a positive integer N we have then

(3.3.14) mo(§) = (1 +e7%)/2)M.2(¢),
where Z(§) is a trigonometric polynomial with period 27 and

(3.3.15) 2 (€)]* = P (sin®(56)),
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where Py is the unique polynomial of degree N — 1 satisfying (3.3.4), given by (3.3.5). In
particular, Z(0) = Pn(0) = 1. We have

(3.3.16) Hmo T =(1-e) iV [[ 22

for [I°((1 + e~%/2")/2) = (1 — e~#%)/i€. An instructive proof of this classical product
formula is obtained by noting that the product for j from 1 to k is the Fourier transform
of the measure

(G0 4 01) % (S0 +01) %+ % (60 + 6a-k) =27F > 5, o0

0<v<2k

Acting on a test function it gives a Riemann sum for the integral from 0 to 1, and when
k — oo it follows that the measure converges as a distribution to the characteristic function
of (0,1), so the Fourier transform converges to (1 — e~%)/i.

Using only (3.3.14) and (3.3.16) we shall now give a lower bound for the decay of ¢ at
infinity. We do not assume (3.3.15) but just that £ (0) =

ProrosiTioN 3.3.7. If 51, e ,Sr € R/27Z is a non-trivial cycle for the doubling map
& — 2¢, then there is a constant C' > 0 such that for every & € R with residue class & in
the cycle and every integer v > 0

(3.3.17) p(276)| > Clep©)l2 "V KY, K =[]12E)l"
1

PRrROOF. Since the cycle is non-trivial we have fj #0forj=1,...,r, hence |1 — eiéj\ >
Cy>0,7=1,...,r, which implies

(1= em2) fi27g|V > o2~ Mg~
If p is the largest integer < v/r then

[z~ oI=x" 1] 2@l

pur+1

There are at most r — 1 factors with pur < j < v, and since the residue class of 2v77¢
is then in the cycle, we have lower bounds for them. (We may assume that K > 0 for
(3.3.17) is trivial when K = 0.) By (3.3.16)

(o) <2Vl [ 1z e,

ji>v
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so we have proved that
[9(279)| > CY 2 Mg TV K Cy [ [ 2(2777¢) > O 27NN Gl p(€) | K7
I>v
where Cy is the minimum of products of the values |.Z(&;)|/K for different j € [1,7]. The
proof is complete.

An important example of a cycle already encountered several times consists of the
residue classes of +£27/3. If £ is defined by (3.3.15) we have K = PN(%)% then. The
following proposition gives an upper bound for ¢ which is closely related to the lower
bound in (3.3.17).

PROPOSITION 3.3.8. Suppose that there is an integer r such that for every £ € R

(3.3.18) min |.Z2(€)[V/e... |2 (20 )| Ve < K.

1<o<r
Then there is a constant C such that

(3.3.19) [B(E)] < C(1 + [¢g])~Hoe2 K,

PROOF. We may assume that |£| > 1 and that K < sup|.Z|. By (3.3.16)
@) <2V N [ [l @79, [¢ > 1.
1

Since .Z(0) = 1 we have |.Z(£)| <1+ C|¢| < eCl¢l for some C. If j is the smallest integer
such that 277|¢| < 1 it follows that

o0

[Tz ol < e[ 12 ).

1

The hypothesis (3.3.18) applied to 277¢ proves that
2 (277¢) - 2(2¢71 ) < K¢

for some integer o € [1,r]|. If j > r it follows that

[l ol < ke [[12@ ")

We can repeat this argument as long as there are r factors left in the product, which gives

[Tz *o) < Kie® sup|2/K]".

1
Since 279|¢| > £ we have KJ < |2¢['°82 K which completes the proof.

We shall now prove that Propositions 3.3.7 and 3.3.8 suffice to determine the decay of
@ when & satisfies (3.3.15). This requires some preliminaries on the polynomials Py .
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LEMMA 3.3.9. Py(z) and ((1 — )™ — Px(x))/2N are increasing on (0,1), and
Py (z)x'=% is decreasing. We have

(3.3.20) Py(0)=1, Pny(i)=2""1 Py1)=(CN")=213))>4""1/VN,
(3.3.21) (1—z) N —LU)VN <Py(z)<(1—-2)", 0<z<3,
(3.3.22) (42)N1/VN < Py(z) < (do)1, L<az <1,

_ 1—-2)71, ifo<z<i

im Py(z /N _ 2
(3.3.23) Jim Py () { Lo, fles<l,
(3.3.24) Py (z) = N(Py(z) — Py (DN 1) /(1 — ).

PrROOF. The first statements follow since power series with positive coefficients are
increasing for positive arguments. From (3.3.5) we know that Py(0) = 1, and when y = 2
it follows from (3.3.4) that Py(3) =2"~!. Hence

—N N 2N —1
(1—2)N = Py(a)/a¥ <2¥ 1, 0<a<l,

for the left-hand side is increasing and there is equality when x = % This proves (3.3.21),
which implies (3.3.23) when 0 < z < 3. Since Py(z)/az"V ™! < Py(3)2N "1 = 4N~ the
upper bound in (3.3.22) holds, and the lower bound follows in the same way when we have
proved the last part of (3.3.20). To do so we use Pascal’s triangle

YR = O+ VY, =0 N -,

where the last term should be omitted when j = N — 1. Summation gives

hence P;(1) = 1 and Pn4+1(1)/Pn(1) = (AN +2)/(N + 1) > 4\/N/(N + 1) because
(2N +1)2 > 4AN(N + 1), so the last inequality in (3.3.20) follows by induction. (3.3.23)
follows from (3.3.22) when 1 <z < 1. To prove (3.3.24) finally we use that

Py(z)1—-2)N =1+0@=") = Py)(1-2)Y = NPy(x)(1 -2V =0V,

Hence the difference between the two sides of (3.3.24) is a polynomial of degree < N — 2
which is O(z¥ 1) as z — 0, so it is equal to 0.

REMARK. From (3.3.21) it follows that Py () is asymptotic to (1 —2z)™" if 0 <z < 3.
Using Stirling’s formula to deduce the asymptotics of the highest coefficients in Py one
obtains for 3 < z <1 that Py(x) is asymptotic to (mN)~22z(2z — 1)~ (4z)N L.

We can now prove the properties of Py required to apply Proposition 3.3.9 with r = 2.

Note that if sin*(3¢) = z then sin®* ¢ = 4a(1 — z).
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LEMMA 3.3.10. For every positive integer N we have

(3.3.25) 0<Pn(z)<Pn(3), 0<z<3
(3.3.26) Py(z)Py(4z(1 —2)) < Py(3)?, 2 <z <1

PROOF. (3.3.25) is obvious since Py is increasing. To prove (3.3.26) we set
f(z) = Pn(2)Pn(y(z)), y(z)=42(l - ).

Since y/(z) = 4(1 — 22) and 1 — y(x) = (1 — 22)?, it follows from (3.3.24) that

f(@)1 —2)(2z —1)/N

= (Pn(z) — Px(1)a™ 1) (22 = 1)Pn(y) — 4(1 — ) Py (z)(Pn(y) — Pn()y™ )
= Pn(2)Pn(y) (62 —5) — Py (1)((22 — 1) Py (y)2™ = +4(z — 1) Py (z)yN 7 1).
Now Py (z)yV =1 < Py(y)x¥~! since y < z, so the right-hand side is bounded above by
(62 — 5)Pn(y)(Pn(z) — 2V "'Py(1)) <0, if 62 —5<0.

This proves (3.3.26) when 2 <z < 3.

Now assume that 2 <z < 1. Since Py(z) < (4z/3)N 1Py (3/4) the inequality (3.3.26)

follows if
(42/3)Y "' Py (y) < Pn(3/4).

We have Py(y) < (1—y)™" = (20— 1)7>¥, and Py(3/4) = (3/4)" ' Py(1) 2 371 /VN
by (3.3.20). Hence (3.3.26) follows if
(z/(2c — 1))V 2t < (9/9N VN, S<az<l,

Since z/(2z — 1)? is decreasing for 2 < x < 1 we only have to verify this inequality when

5

x = g, and then it requires that

(5/6)N~1 < 4/(9VN),

which is true when N > 13.
We may now also assume that 1 < N < 12. At first we require that % < x < xo where

zo = (2+ V/2)/4, which means that y > 1. Then we have by (3.3.22)
Py(y) < (45)™" = (162(1 — 2))¥ 1,
and since Py (z) < (62/5)Y 1Py (5/6) it follows that for 2 <z <z
Py (x)Pn(y) < (6/5)" Py (5/6)(162*(1 — 2))¥ 1 < (20/9)Y "' Pn (5/6).

Numerical calculation shows that the right-hand side is < Py (3/4)2 for 1 < N < 12.
If 79 <2 <1 we have y < 1 and Py(y) < (1 —y)~" = (22 — 1)72N by (3.3.21). Since
Py (z) < (x/20)N 1 Py(z0) it follows that

Pr ()P (y) < 2V Py (o) (2/ (22 = 1)%) "2~ < 2V Py (o),

for x /(22 —1)? is decreasing in [xg, 1] and equal to 229 when x = 5. Numerical calculation
shows that this is < Py (3/4)? for 5 < N < 12. The cases where 1 < N < 4 are settled
by calculating the zeros of (Py(z)Py(4x(1 — z)) — Pn(3/4)?)/(z — 3/4) numerically; the
degree of this polynomial is 3(N — 1) — 1 < 8. (See Daubechies [1, p. 225].)
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THEOREM 3.3.11. If the scale function ¢ is defined by (3.3.16) with £ satisfying
(3.3.15), then

(3.3.27) )] < CL+[e) Nrlos v, geR,

and there is no such estimate with a smaller exponent.

PROOF. The estimate (3.3.27) follows from Proposition 3.3.8 and Lemma 3.3.10, and
Proposition 3.3.7 with the cycle consisting of the residue classes of £27/3 proves that the
estimate is optimal.

By the remark after Lemma 3.3.9 the exponent of (1+4|£])™! in (3.3.27) is asymptotically
N(1—1log,3) + 1logy(Nm) +1+o(1).

For N = 2,...,10 the numerical values are 1.3390, 1.6360, 1.9125, 2.1766, 2.4322, 2.6817,
2.9265, 3.1676, 3.4057. These are upper bounds for the Holder class of ¢ and 1, and
subtracting 1+ ¢ with € > 0 gives a lower bound. The precise determination of the Holder
class will not be discussed here. Note that asymptotically the exponent is only about
0.21N although the length of the support of ¢ is 2N — 1. We have N vanishing moments
for ¢/, many more than the regularity of ¢ implies by Proposition 3.3.1. Using polynomials
R # 0 in Lemma 3.3.3 one can increase the regularity while decreasing the number of
vanishing moments, keeping the length of the support fixed. However, we shall not discuss
these matters here.



CHAPTER IV

SINGULAR INTEGRAL OPERATORS

4.1. The conjugate function. A basic question in the study of Fourier series is to
decide in what sense the partial sums converge. In Proposition 2.1.1 and Theorem 2.1.3 we
saw that the Fourier series of a periodic C* or L%  function or distribution f converges

to f in C*, L% _ or 9’ respectively. In this section we shall discuss the convergence

problem when f € L} (R). However, we shall first discuss the analogue for non-periodic
functions f € LP(R) since the formulas are more transparent then. The question is thus
if the inverse Fourier transform f,; of the product of the Fourier transform of f by the
characteristic function of [a,b] converges to f in LP as a — —oo and b — +oo. The
product is well defined at least if 1 < p < 2, by Theorem 2.3.1, but even then it is not a
priori clear that f,; is in LP. The proof of that is a major part of our task, which is not
present in the case of Fourier series. The passage from f to f,; can be made in two steps,
multiplying the Fourier transform first by the characteristic function of [a, o] and then by
the characteristic function of [—o00,b]. The first step is equivalent to multiplication of the
Fourier transform of z — f(z)e’®® by the Heaviside function H, the characteristic function
of the positive real axis, followed by the inverse Fourier transformation and multiplication
by e~%*. The second step is similar. Thus we can reduce to the study of the operator
consisting of multiplication of the Fourier transform by H(§) = (1 + sgn&)/2; for reasons
of symmetry and tradition we shall discuss sgn ¢ instead of H (§).

The inverse Fourier transform of £ — sgn ¢ is the distribution (i/7) vp(1/z) (see Exam-
ple 2 after Theorem 2.1.5). If f € CS°(R) it follows that f(£)sgn € is the Fourier transform

of if () where f is the conjugate function defined by the convolution

~ 1 f(t) ) 1 f(t) . 1 flx—1t)
4.1.1 z)=vp— | —%-dt= lim — dt = lim — — ~ dt.
( ) f( ) pﬂ' / x—t1 /| /|t|>s

0T Jipg>e T —1 e—=+0 T t

This is a C*° function and
~ 1
(4.1.2) f(x) = —/ f@)dt+0(z™?) asz — oo,
T R

so f € LP if p > 1 but not if p = 1 unless [ f(t) dt = 0.

The Fourier transform of Fy(z) = f(x) & if(z) vanishes on the negative or positive
real axis respectively, so FL can be extended to an analytic function in the half plane
{z € C;£Imz > 0}. This is made explicit by the formula

= +i / f(t) +i flx—1t)
R

) — 1 dt = lim = [ 128,
flax) £if(x) e g T +ie —t i r txie
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which follows since 4-i/(t & ic) = it /(t? + €2) +¢/(t* + £2) and

fl@—1)e [z —et)
Rt2+—52dt_ R 24+1 dt = f(z),
tflx—t) [T t(flz—t)— flx+1)) flx—t)— f(z+1)
Liazfﬁ—/ 72 2 = / i “
- t, [ B b= i)

when ¢ — +0. Thus
t

1

is analytic when +Im z > 0 and has boundary values f 41 f on the real axis. We assume
now that f is real valued, which implies that f is the real part of the boundary values.
To estimate f we shall use the fact that

(4.1.3) 2z pl|Re Fye(2)|P — (p— V| Fe(2)]P

is subharmonic when £Imz > 0 if 1 < p < 2. This follows since subharmonicity is
invariant under composition with analytic maps and

(4.1.4) C>wwr p|Rew? — (p—1)|wf?
is subharmonic, because the Laplacian in the sense of distribution theory is the function
2 p—2 p—2
w e p(p = 1)(| Rew]” 2 — [w]"2) > 0.

When z = x + iy, £y > 0, then the integral of (4.1.3) with respect to x exists by (4.1.2)
and is a continuous function Iy (y) which — 0 at £o0. As a limit of the Riemann sums at
the points z 4+ €Z with ¢ — 0 it is clear that [ is subharmonic as a function of z, hence a
convex function of y. Since I+ (y) — 0 at infinity it is a decreasing function of |y|, which
proves that I (0) > 0, that is,

/R<p|f<x)|p —(p = D|f(z) £if(z)[) d > 0.
This means that

If £ifllp < /0= ID)YPU Ny 1Flls < /(0= 1)VP 1 f s

where the second inequality follows from the first and the triangle inequality.
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THEOREM 4.1.1. If f € C3°(R) then the conjugate function f satisfies (4.1.2) and

PP\ fllp, ifl<p<2,
PN fllps if2 < p < oo

(4.1.5) £l < {

Here 1/p+1/p' = 1. The map f — f extends to a continuous map LP(R) — LP(R) for
every p € (1,00).

PRrROOF. We have already proved (4.1.5) when 1 < p < 2. The other case follows by
duality, for if g € C§°(R) and p > 2 then

fremn - [ 12 = f e

| [ F@gt@)ds| =| [ £@iata)da] <1711l < 1l lglop "

so the converse of Holder’s inequality gives the second part of (4.1.5).

hence

REMARK. Apart from the size of the constant the estimate (4.1.5) is due to M. Riesz
[1]. The proof given here is due to P. Stein [1] and is a prototype for much later work,
by E. M. Stein and others. Essén [1] has obtained optimal constants by modifying the
function (4.1.4). The constant in (4.1.5) is reasonably good though. If we take for f the
characteristic function of (—1,1), then 7 f(x) = log((z + 1)/(z — 1)) > 2/x when = > 1,
and we obtain Hng/Hng > 2P /(p — 1). This proves that the best possible constant is at
least % times that in (4.1.5).

Next we shall prove that for the operator theoretically defined extension of f in Theo-
rem 4.1.1 the equation (4.1.1) remains valid almost everywhere. To do so we need the one
dimensional case of the Hardy-Littlewood maximal theorem, which is particularly elemen-
tary to prove in that case. If f € L{ _(R) then the Hardy-Littlewood maximal function
frip, 1s defined by

(4.16) fin ) = s / ()| di/m(1)

where [ is an interval with measure m(I) > 0. Since [, |f(t)|dt is a continuous function
of the end points of I, it is clear that fi; (x) does not change if we require I to be open,
hence

1 é
qL(x) = su x+t)|dt
finla)= s s [ it

is a lower semi-continuous function. A useful version of (4.1.6) is that

(4.1.6) |11+ 0le)dt < finfa) [ otan

R

if o > 0 is increasing for ¢ < 0 and decreasing for ¢ > 0. In fact, (4.1.6) means precisely that
[, (x) is the smallest number such that this is true when p is the characteristic function
of an interval containing 0, and this implies (4.1.6)" if o is piecewise constant, hence in
general.
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THEOREM 4.1.2. If € L}(R) then
(4.1.7) m{w; fi(x) > a} <2[/fli/a, > 0.
If 1 < p < oo then

(4.1.8) Il < @) Y2 fllp,  f € LP(R).

PRrOOF. To prove (4.1.7) we introduce two additional maximal functions

fi(x —sup/ |f(z£1t)|dt/e.
e>0

It is clear that fj; = max(f}, f*), so (4.1.7) follows if we prove the corresponding estimate

for fi with half the constant. Of course it suffices to examine f}. If we set

4nu»:/ FO)|dt—az, O={zcRiy>z, Faly)> Fa(z)}
the statement is that m(O) < || f|l1/a. Let I = (a,b) be a component of the open set O.
It cannot be an infinite interval for if xg € I then a maximum point y for F, in [z, 00)
cannot be in O, and F,(z) < F,(y) for z € I. In fact, this is true if z € [ and = > =z
and the infimum of all z € I with F,(x) < F,(y) cannot belong to I. It is now clear
that b is the smallest maximum point for F,, in [zg,00), and that F,(a) = F,(b). Hence
J;1f@®)]dt = a(b—a) and am(0) = [, |f(t)|dt < ||f|1, which proves (4.1.7).
To prove (4.1.8) we write for an arbitrary s > 0

fr i lfl < s/2,

—u+h wh _
f=g+h whereg {Qﬁm>yz

It is obvious that gf;;, < s/2, and since f{;, < gf, + hiy, it follows that hj, > s/2 in
Es = {z; fii.(x) > s}. Hence (4.1.7) gives m(E;) < 4[|h||1/s, and

[ il = [ sratmiz) = [ e

—4p/ s“/ 2)|da = 21/ p—l)/lf(w)lpdrn,
f(l‘)|>5/2 R

where the last equality follows by changing the order of integration. This completes the
proof.

REMARK. The proof of (4.1.7) can be interpreted as a determination of the points on
the graph of z — f f(t)| dt where one cannot see the sun if it is at infinity to the right
in the direction Wlth slope a, so it is often called the rising sun lemma. The constant
in (4.1.7) is optimal as follows immediately by letting f approach the Dirac measure at
0. Taking for f the characteristic function of (—1,1) it is easy to see that the constant
in (4.1.8) cannot be improved by a factor greater than 3; in particular it has the right
magnitude as p — 1. The proof of (4.1.8) is our first encounter with the Marcinkiewicz
interpolation method which will be presented in generality later on.
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ExXAMPLE. The maximal theorem 4.1.2 also yields estimates for transformations where
(4.1.6)" is not directly applicable. An example is a classical potential estimate of Hardy
and Littlewood: If 1 < p < g < oo and 1/qg=1/p —~, then

- / fl@ - wlyP " dy
R

exists for almost all z € R if f € LP(R), and ||fy]l; < Cpqllfllp- Since y — |yt is
not integrable at infinity we apply (4.1.6)" to the integral when |y| < R for some R to be
chosen later and apply Hélder’s inequality when |y| > R. With 1/p + 1/p’ = 1 we obtain

-1 * -1 p'(v=1) v
L=ty < ) [l a1 o ay)
lyl<R ly|>R

Y

Here p’(y—1) = —1—p'/q so the second integral converges, which proves that f,(x) exists
when ffj; (z) < oo and that

[f3(@)] < Cpg(far ()R~ a + |[fll,B).
When RYP = || f|l,/ fii.(z) it follows that
* 2 1_5
[ (@)] < 2Cpq frn (@) <[ fl»

1— .
Fin B 157 and (4.1.8) gives || llg < Cp gl fllp-

Later on in this section we shall need a variant of Theorem 4.1.2 with essentially the
same proof, so we pause to prove it now. The issue is the maximal function

Hence va”q < 2Cp,

(4.1.6)" nL(z,s) = sup / |[f()dt/m(I), ze€R, s>0,
(z—s,z+s)CIJI

which also takes the size of the interval I into account. The point of this function is that
in analogy to (4.1.6)’

(4.1.6)" [ 15+ 0let)dt < fiifws) [ oty

if o > 0 is increasing for ¢ < 0, decreasing for ¢ > 0 and constant in (—s, s). The following
result is essentially due to L. Carleson:

THEOREM 4.1.2". Let dv be a positive measure in {(x,s) € R?;s > 0} and assume that
v(I x (0,|1])) < |I| for every interval I C R. Then it follows that

(4.1.7) (z,8); fitt (xz,8) > a}) <4||f|li/o, a>0, feL'(R),

/p
e // i@ op ) < @), e P®R)
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PROOF. As in the proof of Theorem 4.1.2 we introduce corresponding left and right
maximal functions

fi(x, —sup/ = 1)dt /.

E>s
If fig,(z,s) > o then fi*(x,s) > aor f**(x,s) > a, so to prove (4.1.7)" it suffices to prove
that

(4.1.7)" v({(z,8); [ (2, 8) > o) <2 fll1/ex,

for this gives a similar bound for f**. Now f1*(z,s) > o implies [} (x) > a, so  belongs to
one of the intervals I = (a, b) in the proof of Theorem 4.1.2; we keep the notation used there.
Since F,(z) < F,(a) when = > a, we have ffH |f(y)]dy < ff“ If(y)]dy < a(z+t—a),
hence

T (x,s) < igga(m—a—{—t)/t =alx—a+s)/s<a(m(l)+s)/s < 2a,

if # € I and s > m([). This means that {(x,s); fi*(z,s) > 2a} C |JI x (0, |I]), with the
union taken over the disjoint components of the open set O, which proves (4.1.7)"” with «
replaced by 2a. The proof that (4.1.7)" implies (4.1.8) is a repetition of the proof that
(4.1.7) implies (4.1.8) and is left for the reader; it is our second case of Marcinkiewicz’
interpolation method. (See Theorem 4.2.4.)

We return now to the study of the principal value integral (4.1.1) and introduce another
maximal function

—t
0<e<d ' Je<|t|<b

To estimate f¢, we first assume that f € C§°(R). Choose a fixed x € C§°(R) with
Jg x(t) dt = 1 such that x(z) is a decreasing function of |z|. By (4.1.2)

X(2) = 1/mz| < C/a?,

and Y € C*. With the notation x.(z) = x(z/¢)/e we have f*x. = f*Xe = f * Xe, hence
(4.1.10) [ (e = X6)(@)] < [ # xe (@) + |+ xs(2)] < 2ffiw (),
by (4.1.6)". Let K. s(x) = 1/mx when € < |z| < § and K, s(z) = 0 otherwise. Then

C(e +98)/|z|?, if |z > 4,

[Xe(z) = Xo(x) = Kes(2)] < § Ce/lal* +[Xs(2)], ife <z <0,

Xe(@)| + [Xs(2)], if o] <e,
because |Ye(z) — 1/7z| < Ce/x2. By (4.1.6)" again it follows that
(4.1.11) [f o Xe(@) = [ Xs(x) = [+ Ko s(2)] < 4(C + max |X]) frr, (2)-

Combining (4.1.11) with (4.1.10) and (4.1.5), (4.1.8) we obtain the estimate in the following
theorem:
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THEOREM 4.1.3. When 1 < p < oo there is a constant Cp, such that the mazimal
function (4.1.9) has the bound

(4.1.12) lfezlly < Collfllps € LP(R).

When f € LP(R) the limit f(z) = lim. 0500 f8<|t|<5 flx —t)dt/nt exists for almost
every = € R, and is in LP(R). The map LP(R) > f — f € LP(R) is continuous.

PROOF. So far we have only proved (4.1.12) when f € C§°(R), but the general state-
ment follows at once since this is a dense subset of LP(R). To prove that the principal
values exist almost everywhere we introduce

Fz)= Im ’/ —f(x_t>dt—/ Tet)
€,e’—0,5,8’ — 00 e<|t|<s t e’ <|t| <’ t

It follows from (4.1.12) that
11y < 2C [ £ll-

Now F, does not change if we replace f by f — g where ¢ € C§°(R). Hence ||F|, <
20,11 f = gllp, g € C5°(R), so we conclude that F' = 0 almost everywhere which proves the
pointwise existence of the principal value. The map f — f with this pointwise definition
of f is a continuous linear map in LP so it agrees with the extension defined after Theorem
4.1.1.

Thus we now have an unambigous definition of f when f € LP (R) and 1 < p < oc.
Returning to the discussion at the beginning of the section we define f,; as the function
in LP(R) with Fourier transform equal to f(¢€) when a < ¢ < b and 0 elsewhere, when
f € LP(R) N L' (R), say. It follows from (4.1.5) that f,, € LP(R) and that

[ faplly < Cpllfllp,  f e LP(R).

Since || fap — flly = 0 as a — —oo and b — +oo provided that f € C§°(R), and such
functions are dense in .’(R), hence in LP(R), we obtain:

COROLLARY 4.1.4. If f € LP(R) where 1 < p < oo then the partial inverse Fourier
transforms fqp converge to f in LP(R) as a — —oo and b — +o0.

We started the section with discussing the Fourier series of a periodic function. If
f € L (R) is periodic with period T we define the conjugate function f as above by
multiplying the Fourier transform by —isgn ¢ defined as 0 when £ = 0, that is, multiplying
the coefficient of €2™***/T in the Fourier series by —isgnk, thus dropping the constant
term. It follows at once from Proposition 2.1.1 that f € C™ if f € C*°. We could extend
the estimate (4.1.5) by repeating the proof, but instead of doing that we shall prove that
the estimate in the non-periodic case carries over to the periodic case. This is a principle
which is useful in other contexts as well. Choose ¢ € .\ {0} so that supp¢p C (—1,1),

and form for a given f € C*°(R) with period T

fe(a) = pea) f(a) = Y ene®™ /T (ex)

keZ
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where ¢ are the Fourier coefficients of f. It is clear that f. € ., and the Fourier transform
is

¢ S ap(( — 2nk/T)/e) .

kEZ

The term with index k has support in {&; | —27k/T| < €}. If Te < m and ¢¢ = 0 it follows
that the conjugate function of f. is

fe(a) = p(ex) f(x).
With the notation C), for the constant in (4.1.5) we obtain

T

/O F@P S (el + TP da < C7 / F@P S (el + TP da.

JEZ 0 JEZ
After multiplication by T the sums converge to [ |p(y)|P dy as ¢ — 0, so we obtain

£l e ryrz) < Coll FllLovyrz)s

provided that ¢y = 0. Now the LP norm in R/TZ of the mean value ¢y cannot exceed that
of f, so it follows that

1fllrr/7z) < 2Cp| fllir(r)/72)5

when f is periodic with period T, first when f € C'°° and then by approximation when
f € LP(R/TZ). Hence we have proved:

COROLLARY 4.1.5. If f € LP(R/TZ) and 1 < p < oo, then the partial sums s, =
> ikl<n cre?™k2/T of the Fourier series converge to f in LP(R/TZ) as n — oo.

REMARK. Note that it is not claimed that there is convergence for an arbitrary order
of summation of the terms. Nor is it stated in Corollaries 4.1.4 and 4.1.5 that there is
pointwise convergence almost everywhere which is true but much more difficult to prove.

If f € L'(R) we can still define a conjugate distribution f as the inverse Fourier trans-
form of the function & — f(€)sgné&, and LY(R) > f — f € .7”(R) is continuous. However,
it was clear already from (4.1.2) that f is usually not in L' even if f € C$°(R). The
problem is not only that f may be too large at infinity, as seen from (4.1.2), but there is
a problem with local regularity too:

PROPOSITION 4.1.6. For all f € L*(R) outside a certain set of first category the con-
jugate distribution f is of positive order in every open subset of R.

PROOF. Let I = (xg — a,z9 + a) be a bounded open non-empty interval C R, and
denote by B the set of all f € L'(R) such that the restriction of f to I is a bounded
measure. B is a Banach space with || f||p equal to the sum of ||f]|; and the total mass of
fin I. If the range of the obvious injection B — L*(R) is not of the first category, then
it follows from Banach’s theorem that the injection is an isomorphism, hence that there is

a constant C such that

(4.1.13) /ny\ dz < C/Ryf\da:,
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if f € L'(R) and f € L'(R). With ¢ € C*(R), [pdx = 1, we apply (4.1.13) to
fo(x) = o((x — 20) /) /e. Then f.(x) = ¢((x — x0)/e)/e, and it follows from (4.1.2) that

R a aje

/\fg(x)|dx:/ \gé(x/e)|dx/€:/ |p(z)|de = —(2/m)loge + O(1), ase — 0.
I —a —aje

Since [g |f-(x)|dz = [|¢|1 is independent of € this contradicts (4.1.13), so the set of all

f € LY(R) such that f is a bounded measure in [ is of the first category. Taking the union
of these sets for all I with xy and a rational proves the proposition.

A sufficient condition for f to be in L _ is given by the following proposition, where we

use the standard notation log™ z = logz when = > 1, log™ = 0 when z < 1.

PROPOSITION 4.1.7. If f € LY(R) and |f|log™ |f] € L*(R), then of € L*(R) if o €
L1(R) N L*(R) for some q < co.
PROOF. Let Ey = {r € R;|f(z)| < 1} and E, = {z € R;2*"! < |f(2)] < 2F} for

k=1,2,...; define fi(z) = f(x) when = € E) and fr(x) =0if x ¢ Ej. Then f € LP for
p € [1,00], and if 1 < p < 2 we have by (4.1.5)

1Felly < Co = 1) I fullp < Clp — 1)~ 2" m(Ey) VP

Without restriction we may assume that ¢ > 2. If 1 < p < ¢/(¢ — 1) it follows from
Holder’s inequality that

/R [fe(@)lle(2)] dz < C(llelle + llellg) (0 — 1)~ 2 m(Ey) /7.

The hypothesis means that Y " (k + 1)2"m(E)) < oo, so to estimate the sum of the
preceding integrals we must aim for this sum. Thus we choose 1/p=1—1/(¢(k+ 1)) and
write the preceding estimate in the form

[ 1@lle@lds < ol + el a2 (k-4 127) 7 (G4 128m(52))
R

where we have used that 2¢(1/p=1) = 9-k/(a(k+1)) > 9-1/¢ By the inequality between
geometric and arithmetic means, with weights 1 —1/p and 1/p it follows that

/R [fe(@)lle(@)ldz < Cllelloo + llell)g2*/*(27* /g + (k + 1)25m(Ey)).

Hence 3¢ fi, converges in L, so f = 3.0° fx € Ll and fo € L'. The proof is complete.

loc?

Looking for substitutes for the estimate (4.1.5) when p = 1 may seem to be of marginal
interest at first sight. However, it has played an important role in the development of
harmonic analysis during the past 30 years and led to important techniques which cannot
be ignored. We shall therefore pursue the matter further in the one dimensional case as
an introduction to the case of higher dimension in the following sections.
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DEFINITION 4.1.8. The Hardy space 7#*(R) is the space of all f € L'(R) with fe
L'(R).

PROPOSITION 4.1.9. s#'(R) is a Banach space with the norm || f||m = || fllor +1.f]l 1,
and it is invariant under the map f — f and complex conjugation, both of which preserve
the norm. When f € 1 (R) the analytic functions

f(t)

RZ—t

(4.1.14) Fu(z) ==+~ dt, +Imz> 0,
T

have boundary values f +if in the L' sense,
(4.1.15)

i, [ Pt in) — f@ Fif@lde =0, [ |Palariplde < If £l 2y >0

y—r

If f € LY(R) and f has compact support not containing the origin, then f € 1 (R).
Such functions in /(R) are dense in 1 (R), and the closure of 71 (R) in L'(R) is the

hyperplane {f € L'(R); f(0) = 0}.

PROOF. Since the map L'(R) > f — f € ./(R) is continuous, it follows that 7' (R)
is complete, for if f; — f and fj — g in L'(R), then g = f.Iffe HTR) thenf = —f,
so f € #'(R) and ||f||jf1 = |Ifllser. Since the map f — f commutes with complex
conjugation we have f € A1 and Hf”jfl = [[fllsen if f € Y R). If f € ' (R) then
£(€) and —if(€) sgn ¢ are continuous, so f(0) = 0, that is, Jr [ dxz =0. On the other hand,
if f € L*(R) and supp f is a compact subset of R\ {0} then we can choose ¢ € .% so that
¢ € C°(R) and $(€) = —isgné in a neighborhood of supp f. Then f = ¢ * f € L'(R),
so f € #'(R). Thus the condition for a function in L*(R) to be in ##(R) is only a

restriction on the behavior of f at 0 and at oo.
Choose x € . (R) so that x € C§°(R) and x = 1 in a neighborhood of the origin, and
set xe(x) = ex(ex). Then

(4.1.16) lim ||xe * f|lpr = yf(())yHXHLl, lm ||xe* f— fllzx =0, fe€ Ll(R).
e—0 t—o00

Since || xex fllr < ||fllz ||X||L1 it is sufficient to prove (4.1.16) for all f in a dense subset of

L'suchasall f € . with f € C°(R). The Fourier transform of x,* f is R(£/t) f(€) = f(€)
for large ¢, so the second part of (4.1.16) is trivial then. To prove the first part we write
the Fourier transform of x. * f as

X(E/e)f (&) = R(€/e) f(0) + 6=(£),  §=(&) = (/) (f(&) — £(0)),

and conclude that [ |g-(€)|* d€ < Ce3, [ |dg.(£)/d€|? d¢ < Ce, which by Parseval’s formula
and Cauchy-Schwarz gives

/ (1 + £20%) g (2)? de < C= . / ge(2)] dz < VO,
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and proves (4.1.16).

If f € L'(R) and f(0) = 0 it follows with f, . = x¢*(f —xe * f) that || fr.c — fll .2 — 0 as
t — oo and € — 0. The Fourier transform & — x(£/t)(1 — x(€/¢))f(€) of f,. has compact
support in R\ {0}, so f;. € ##1(R). This proves that the closure of #(R) in L'(R)
consists of all f € L*(R) with f(0) = 0. (It is an easy exercise to prove this using the
Hahn-Banach theorem.) If f € L'(R) then (f),. is the conjugate function of f,. and
1(H)ee = fllzr — 0, hence f,. — f in ' as e — 0 and t — co. To achieve fast decrease
at infinity we choose ¢ € .#(R) with ¢(0) = 1 and ¢ € C§°, and set ©’(x) = p(éx).
The Fourier transform of ¢° f; . is then the convolution of $(£/8)/276 and ft’s, and since
® € C§°(R) the support of the convolution does not contain the origin for small §. To
multiply the convolution by sgn ¢ is then equivalent to multiplying ftyg(f) by sgn & before
the convolution, that is, the conjugate function of go‘sft,g is go‘sft,g, SO gp‘sft,g — fte in
HL(R) as 6 — 0. Since ¢°f; . € . (R) and the Fourier transform has compact support
in R\ {0}, this proves the density statement in the proposition.

When f € Cg°(R\ {0}) the Fourier transform of  — Fi (z +iy) where £y > 0 is equal
to

FOL £sgn)e ™ — f(&) (1 £sgné) = f(€) £i(—if(¢)sgné) in .7 asy — £0.

This proves the first part of (4.1.15) for f in a dense subset of 71 (R), and the second part
is then a consequence. In fact, if ¢ € C5°(R), [¢| < 1, then [ Fiy(z+ x)y(x) dz is analytic
when £1Im z > 0, continuous in the closed half plane with boundary values bounded by
|f £ if||51, and tends to 0 at co. Hence it follows from the maximum principle that it is
always bounded by ||f £ f|| .1, which proves the second part of (4.1.15) for all f in a dense
subset of ##1(R). The bound follows by continuity for all f € s#!(R), and the first part
of (4.1.15) also follows then for all f € 5#1(R). The proof is complete.

The following lemma gives an important subset of .1. The simple proof was already
used to prove (4.1.16).

LEMMA 4.1.10. If f € L*(R) then
(4.1.17)

/(1+x2/52)|f(m)|2dx:M2<oo, / f@)de =0 = fe A, |fllw <2MVon.
R R

PROOF. Cauchy-Schwarz’ inequality gives ||f||1 < M+v/dm, and by Parseval’s formula f
and df /d¢ are in L? and

or [(FOP +1dfe) g /o) d = M*

For g = f we have §(€) = —isgn&f(€), and since f(0) = 0 it follows that dg(¢)/d¢ =
—isgnédf(€)/dé. (Otherwise there would have been additional term —2if(0)d.) Hence
Parseval’s formula again gives [, (14 22/0%)|g(x)]* dz = M?, so 171lx = llgll < Mo,
which proves (4.1.17).
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If L is a continuous linear form on 1 (R), it follows from Lemma 4.1.10 that L restricts
to a continuous linear form on {f € L*(R, (1 + 2*/6%)dx); [g fdx = 0} with norm <
2\/%”[/”(%1)/. By Proposition 4.1.9 this is a dense subset of J#1(R). We extend the
restriction uniquely to L?(R, (1 + 22/6%) dz) so that the extension is equal to 0 for x
(1 + 2%/6%)~1, which does not increase the norm. In view of the translation invariance of
' (R) it follows that for arbitrary 6 > 0 and y € R there exists a function ¢, s € L2 (R)
such that

2
5/ M dr < 47THL||?,%01)/7
(4.1.18) ROl

L) = [ bus(e) @) da. it f € LR (1 4% da), f(0) =0,

Here 1, s was uniquely determined by the condition fR Vys(z)de /(6% + (z — y)?) = 0.
However, it is usually more convenient to use another normalisation which involves only the

values of ¢, 5 in the interval (y —d,y+9). If ¢y 5 = y‘yj; Yy 5(z)/26 then @02’5 = Uy.6 —Cy.s

also defines L, the mean value over (y — d,y + d) vanishes, and

1

y+4
(4.1.19) 2_6/y_5 |9y 5(2) 1 da < Ax||LIIE sy

DEFINITION 4.1.11. A function ¢ € L2 (R) is said to be in BMO(R) if there is a

loc

constant B such that for y € R and § > 0

1 y+4 ) ) 1 y+9
(4.1.20) % lo(x) — ¢y 5]"de < B*,  where ¢, 5 = 2_6/ ©(t) dt.
y—o y—o

Thus we have proved that every continuous linear form on s#(R) is defined by a
function in BMO(R); the converse will be proved below. It may seem strange that in
(4.1.20) we have dropped the global information contained in (4.1.18), but that is only
apparent since it can be recovered from (4.1.20):

ProprosITION 4.1.12. BMO(R)/C is a Banach space with norm equal to the smallest
constant B such that (4.1.20) is valid, and (4.1.20) implies

_ 2
(4.1.20)’ 5/ |(9"(“")y);"i";2 dr < 210B2, yeR, 6> 0.
(@

PRrOOF. For fixed y and § let ¢, = 27k~ 1571 f|x_y|<2k590(:v) dr, k = 0,1,..., thus
co = py,5. By (4.1.20) applied with d replaced by 2¥t14

1

lo(2) — cpqr|?de < 2B%,  hence | — cpy1| < V2B,
2k+14 |z—y|<2k§
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which implies that |c; — co| < v/2kB. By the triangle inequality it follows that

/ lp(z) — co|* do < 2B (2816 + 2k228F15) = B22R+25(1 + 282).
|z—y|<2k§

Summing up we obtain

5/ —00\2d<1/ () |d-|-§:2%/ 24
i = — Co X —C() X
2402 ) le—y|<é |x— y|<2’“5

<2B%(1 +822 (14 2k2)) = 210B2.

This proves (4.1.20)". It is obvious that the minimal B in (4.1.20) is a norm ||¢|/Bmo
in BMO(R)/C. To prove completeness we consider a Cauchy sequence ¢; € BMO(R).

Without restriction we may assume that f_ll @;(x)dr = 0 for every j. Then it follows

from (4.1.20)" applied to ¢; — ¢, that we have a Cauchy sequence in L*(R,dz/(1 + z?)).
The limit ¢ there is obviously in BMO(R), and ||¢ — ¢;|lsmo < limg_ oo [l0k — ©4lBMO,
which completes the proof.

To prove that conversely every ¢ € BMO(R) defines a continuous linear form on .7
we shall study the Poisson integral

(4.1.21) B(t, z) = E/R(y&dy: l/FLM@,

s — )2 + 2 T y?+1

which is harmonic in {(t,z) € R?*¢t > 0} and continuous in the closed half space with
boundary values ¢ when ¢ is continuous. When ¢ is a constant ¢ then ® = ¢, and since
we are interested in BMO /C it is natural to focus attention on the derivatives of ® rather
than on ® to remove constant terms.

LEMMA 4.1.13. If ¢ € L?>(R) and ® is the Poisson integral (4.1.21) then
@iz 2 [ deeoPded= el @0 < ol
t>0

Here |®'(t,z)|? = |0®(t, z)/0t]? + |0®(t,2)/0x|. If p(x) = xp(x) where ¢ € L?, then
(4.1.23) @ (t,2)* < [DlI3(a* + ) /mt’.

If o € BMO(R) then fory € R and 6 > 0

(4.1.24) // {0/ (£, 2) 2 da dt < 60350 Bagos Ty = {(6,2);0 < ¢ < 26, | — y| < 5}.
Ty.s

PROOF. We may assume that ¢ is real valued. It suffices to prove (4.1.22) when ¢ €
C§°. Then it is obvious that ®(t,z) is in C* for ¢t > 0 with ®(0,x) = ¢(x). At infinity
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O(t,z) = O(t/(z* + t?)) and the derivatives of ®(¢,z) are O(1/(t* + 2?)). Since AP = 0
we obtain by partial integration

// t|®' (t, x)|? do dt = —/ 0P (t,x)/0t®(t,x) de dt = %/ (0, z) > dz = L]|3.
t>0 R

t>0
From the fact that

1
O(t,z) =Im — &),dy,
TJrRY—T—it

it follows that

0D, z) )0t + i0D(t, ) /O — % /R % dy,

so Cauchy-Schwarz’ inequality gives
5 d lll3 dy
& (t, )2 < el / Yy _ 2 / < 2 /43
| ( CII)| = 12 R ((y _ QZ')2 +t2)2 243 R (yg + 1)2 — ||90||2/7r

This proves (4.1.22). If p(x) = z¢(z) with ¢ € C§° we just replace ¢(y) by yy(y) above
before using the Cauchy-Schwarz inequality, and obtain

2 2 2 2 2 2 2
wap < WB [ Pa I [0t (1
72 Jr ((y — )2 +2)2 w2 Jr (y? +t2)? ™ \t 3

which proves (4.1.23). Note that when ¢ — 0 this bound is much better if z = 0, and this
is the only case that we shall use.

By the translation invariance of BMO(R) it suffices to prove (4.1.24) when y = 0. Write
o(x) = @o,25 + o(z) + ¢1(x) where g 25 is the mean value of ¢ in (—26,20) and

o(x) — po,25, when |x| < 26, 0, when |z| < 24,
p1(z) =
0, when |z| > 24 ,

eolt) = o(x) — po,25, when |z]| > 20.

By (4.1.20) and (4.1.20)" we have, with B = ||¢||smo,

1
—/ lpo(2)|? dx < B2, 5/ o1 ()] /2? do < 105B2.
16 Jr n

The Poisson integral of ¢ 25 is a constant which does not contribute to (4.1.24). Let ®q
and ®; be the Poisson integrals of ¢y and ¢;. By (4.1.22) we have

// t|@y(t, z)|* dz dt < 20B2.
To,s

If |y| < & then § [ [p1(x +y)|?/a? doe < 420B2, and it follows from (4.1.23) that

420 B2 1680
@) (t,y)* < , |yl <d; hence // t|®'(t,2)|* do dt < ——5B>.
T To.s T

The triangle inequality completes the proof of (4.1.24).
We have now arrived at the final step in the proof that BMO(R) is the dual of 7.
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PROPOSITION 4.1.14. Let ¢ € L*(R,dx/(1 + 2?)), and assume that for the Poisson
integral ® defined by (4.1.21) we have

(4.1.25) // t|®' (t,z)|? dedt < 24%5, ye€R, § >0,
Ty,s
where T, 5 is defined by (4.1.24). Then it follows that

(4.1.26) || o da| < 164171 i Fe 7 f € CRRA (O

so ¢ defines a continuous linear form on 1 with norm < 16A.

PROOF. We may assume that ¢ and f are real valued. Polarization of (4.1.22) gives if
p € L*(R)

(4.1.27) /w do = 2//t>0t(<I>’(t,x),F'(t, 2)) da dt,

where F is the Poisson integral of f. When ¢ is bounded in L?*(R,dz/(1 + z?)) we can
write p(x) = @o(x) + zp1(z) with ¢g and p; bounded in L? and conclude from Lemma
4.1.13 that |®'(t,2)| = O((1 + |z| + [t|)t~3/?). Since |F'(t,z)| = O(e~°(1 + z?)~N) for
some ¢ > 0 and all N, because f € C°(R\ {0}), it follows that both sides of (4.1.27) are
continuous functions of ¢ € L?(R,dx/(1+ x?)), so the formula follows for such ¢ from the
case where p € L?(R).

The Poisson integral Fy (t,x) of f+i f is an analytic function of z -+ it in the upper half
plane with real part F', so Cauchy-Schwarz’ inequality and (4.1.27) give

(4.1.28) ‘/g@fdac‘<2‘// "(t,z), Fi(t,x)) dxdt‘
>0

<o [ awwnrieoaa)’([[ areopie et )’
t>0 t>0

The second factor can be simplified since |F', (¢, z)|* = |Fy (¢, z)|A|F4 (¢, z)|, which follows
from the analyticity of Fy and fact that for the function C 3 w — |w| we have |w|A|w| =1
by the expression for A in polar coordinates. (It suffices to observe that this is true when
Fy(t,z) # 0, for zeros are discrete. Note that A|F, | is bounded except at simple zeros
of F\ where it may grow as the reciprocal of the distance to the zero.) Thus the second

parenthesis in (4.1.28) is equal to
// N
>0

A formal integration by parts gives that this is equal to

/R F,(0,2)] de < | f + 17l = [F]]es.
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To argue rigorously we choose x € C§°(R?) so that x > 0, [ x(t,z)dzdt =1 and x(t,z)
only depends on t? + 2. Set x.(t,2) = e~ 2x(t/e,x/¢). Since F (t,z) is an entire function
of x + it which is rapidly decreasing when ¢ > —1, say, it follows that y. x |F| is in C*°
and rapidly decreasing for ¢ > 0 when ¢ is small enough. Hence

//Dot((A’FJrD*Xe)dﬂ?dt://t>0tA(!F+I*Xg)dxdt:/R(]F+|*XE)(0,x)dx.

The integrand in the right-hand side decreases to |Fy(0,x)| as € | 0, because |F.| is
subharmonic. The integrand on the left is non-negative so Fatou’s lemma gives

(4.1.29) / / (A, | de dt < / Py (0,2)|dz < || fller.
t>0 R

To estimate the first factor in the right-hand side of (4.1.28) we note that

VIFS (6,2)] = exp(L log | Py (1,))

is subharmonic and — 0 at co. Hence +/|F (¢, z)| < G(t,z) where G is the Poisson integral

of g(z) = \/|F+(0,z)|. If the Poisson kernel y ~ t/(m(y* + t2)) is replaced by the value
1/t at the origin for |y| < ¢ then the integral is < 2, so it follows from (4.1.6)" that
G(t,z) < 2g3% (z,t). By (4.1.25) the measure ¢|®’(t,z)|?/A? satisfies the hypotheses of
Theorem 4.1.2'. With p = 2 in (4.1.8)" the first parenthesis in (4.1.28) can be estimated
by 2°||Ag||3 = 2°A2||F(0,-)||1 < 25A2||f]| 1. In view of (4.1.29) this completes the proof
of (4.1.26).

We shall now sum up the results obtained on the duality of s#1(R) and BMO(R):

THEOREM 4.1.15. The restriction of a continuous linear form L on 1(R) to the
dense subset {f € .77; f € C°(R\{0})} is of the form L(f) = [ fodx where ¢ is uniquely
determined in BMO(R)/C and

(4.1.30) 1Ll /278 < gllmsto < 4Ll ey
Every ¢ € BMO(R) defines a continuous linear form in 1 (R).

PROOF. The upper bound in (4.1.30) follows from (4.1.19), and the lower bound is a
combination of (4.1.24) and (4.1.26), for 164/603/2 < 278.

The duality established in Theorem 4.1.15 can be rephrased as the “atomic decomposi-
tion” of /! (R). To state it we need a definition.

DEFINITION 4.1.16. An atom in Z'(R) is a function a € L?(R) with support in a
compact interval I such that

(4.1.31) m(1) /I la(z)|?dx < 1, /Ia(:c) dr = 0.

By the Cauchy-Schwarz inequality (4.1.31) implies ||a||; < 1, and it follows from Lemma
4.1.10 that ||al| s: < 4. In fact, by the translation invariance of /! we may assume that
I =[-0,0], and then we have

/(1 + 22/6%)|a(x)2 dz < 1/6,
so |la]| e < 2y < 4.
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COROLLARY 4.1.17. If B is the closed convez hull of the atoms in 1 (R) then
(4132)  {f € AR |l < 1/278} € B C {f € A (R ||f | < 4},

Every f € 1 (R) has an atomic decomposition

[e.e]

(4.1.33) F= N, YN <2791 fller,
1

1

where a; are atoms in S ; we have || f|l e <457 |\

PROOF. We have already proved that || f|,»: < 4 if f is an atom, so this is also true
in B. By the Hahn-Banach theorem we can describe B as the polar of the polar of the
atoms. Thus let L € (1)’ and assume that |L(a)| < 1 for all atoms a. If o € BMO(R)
defines L this means that

’/Ia(x)#?(x) de| <1, if /Ia(m) dr = 0 and m(I)/I|a(x)|2dx <1, that is,

1 2 ; _L x)dr
W/jw(ag)—gpﬂ de <1, if SOI—m(I)/IQO( ) dx.

Thus [|¢||Bmo < 1, and it follows from Theorem 4.1.15 that ||L|( 1) < 278, s0 [L(f)] <1
if || f]| s < 1/278. This proves (4.1.32).
Let 0 < e < 1. Given f € #"' we can choose Aq,...,\; € C and atoms ay,...,a; so

that

j J
1 =D Malloer < el e, Dl <278 flle
1

1

We can repeat this argument with f replaced by the remainder f — 231 Ava,. After an
infinite number of iterations we obtain the decomposition (4.1.33) with

DN 2T fler (L e+ +..0) = 278|| fller /(1 = &)
1

With ¢ = 1/279 we obtain (4.1.33).

COROLLARY 4.1.18. Let ® = {p € CY(R); (1 +22)(Jo(z)| + |¢'(x)]) < 1}. Set pi(z) =
o(z/t)/t and f* = SUD, e SUDs0 |f * @¢| for f € LY(R). Then

(4.1.34) 1F111 < 6000] fll ey, if £ € 7 (R).

PROOF. First assume that f is an atom a; we may assume that suppa C [—4, 4], that
[a(z)dz =0 and that 26 [ |a(z)|? dz < 1, thus [ |a(z)|dz < 1. Since |p(z)| < 1/(1 + 2?)
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it follows from (4.1.6)" that a*(z) < maly (), hence ||a*||s < 47/v/25 by (4.1.8). This

gives an estimate for the L! norm on a finite interval, say
(4.1.35) / a*(x) de < 4mV/2.
|z| <26

Now assume that |z| > 2J. To estimate
1 5
(@ e)@) = [ atwella =)/ dy
we first use the bound |o((z — y)/t)| < 1/(1 + |z/2t]?), |y| < 6, and obtain

‘< 4t < 40 t <
S SR S

(@ @1)(x)

For t = |z|/2 we would just get the bound 1/|z| which is not integrable at infinity. However,
we can exploit the fact that [a(z)dz = 0 by subtracting a term independent of y from
o((x — y)/t) and using that when |z| > 26 and |y| < § then

| 1
—y)/t) — Hl<d =
el = )/0) — ol < W
by the hypothesis on ¢’. This gives

’< 40 < 10 t>
S S e T

(@ @ (x)

Since f‘$|>25 46 dx/(46% + x?) = 7, we have proved that [|a*||; < 7(1 +4v/2) < 21. For

an atomic decomposition f = >’ Aja; we have f* < 3 [)\;jla}, so (4.1.34) follows from
Corollary 4.1.17. The proof is complete.

The maximal function estimate in Corollary 4.1.18 is much more subtle than that in
Theorem 4.1.2, for it takes cancellations into account whereas the Hardy-Littlewood max-
imal function only examines absolute values. There is an inverse of Corollary 4.1.18: If
(4.1.34) is valid for a single fixed ¢ with [ p(z)dz # 0, then f € #'. This is interesting
since it shows that the space S#! has a significance beyond the study of problems from
analytic function theory. However, we shall not give the proof here and refer instead to
Fefferman-Stein [1], Stein [2], and the references given there.

We introduced J#! as the largest subspace of L'(R) which is invariant under the map
f— f consisting of multiplying the Fourier transform by —isgn &. The space #! obtained
admits a much larger class of such multipliers. For a function m € L>°(R) and f € L*(R)
we shall denote by m(D)f the inverse Fourier transform of & — m(&)f(€). It is clear
that m(D) is continuous from L!(R) to .#’(R). Homogeneous functions m are linear
combinations of the form ¢y + c¢;sgné with constants cg,cy, but we shall now discuss

non-homogeneous functions with similar qualitative behavior.
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COROLLARY 4.1.19. If m € CYR\ {0}) and |m(&)| < 1, [¢]|m/(&)] < 1 when € # 0,
then m(D) is continuous from 1 (R) to s (R) and

(4.1.36) Im(D) fller < 3400[| [l 2, f €2 (R).

PROOF. If f is an atom corresponding to the interval [—d, §] then (4.1.17) is valid with
M? < 1/6, hence

or [(FOF +1af)/de/5%) g < 176

For G(€) = m(&)f(€) we have |G(¢)| < [f(§)] and |G'(€)| < |df(&)/dé| + |f(€)]/|¢] when
¢ #0. Since f(0) = 0 it follows from Hardy’s inequality that

/ FOPR/€ de < 4 / df(€))de]? de.
R R

The proof is obtained by an integration by parts,

/ F©P/€ de < —2Re /_ Fe)jeaieas e

-T

followed by an application of Cauchy-Schwarz’ inequality, cancellation of one factor and
letting T — oo. (One could also note that f(£)/¢ = h(§) where supph C [—0,d] and
—ih/(x) = f(x). Partial integration of [ |h|? dzx gives the same conclusion.) By the triangle

inequality ||G'||2 < 3||f’||2, hence

o [(GEF +IG P/ de < /5

It follows from Lemma 4.1.10 that G = § where ||g|| s < 6y/7 < 12. Thus ||m(D)a|| 1 <
12 if a is an atom in #!. Since m(D) is continuous from L! to . it follows if f = \;a;,
STIN;] <279 f]| 1, is an atomic decomposition of f € 1 that m(D)f = > A\;m(D)a;
in ./, and since the series also converges in ' we have m(D)f € ' and

Im(D)fler <Y IllIm(D)agl e < 3400]|f | e

by (4.1.33).

Parseval’s formula proves that m(D) maps L?(R) to L?(R) with norm < 1 if m satisfies
the hypotheses in Corollary 4.1.19. From an interpolation theorem which will be proved in
Section 4.4 it follows that m(D) is a continuous map from LP(R) to LP(R) for 1 < p < 2;
by duality the same result follows for 2 < p < oo and we also get a continuous map in
BMO(R)/C. The result, for 1 < p < oo, is known as Mihlin’s theorem. It can be proved
directly with arguments which we have to use anyway in the proof of the interpolation
theorem just quoted. However, it is appealing to have an end point result with such an
easy proof as Corollary 4.1.19 and move the rest of the argument to a general theorem
with no relation to the specific situation.
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4.2. Singular integrals in higher dimensions. In Section 4.1 we motivated the
study of the conjugate function by questions on LP convergence of partial sums of Fourier
series and the analogue for Fourier integrals. There are many higher dimensional analogues
of this, depending on how one groups terms into partial sums. However, we shall postpone
discussion of such questions to Chapter V and instead study the formal analogue of the
conjugate function, homogeneous multipliers on Fourier transforms of L? functions. Such
operators occur naturally in the study of elliptic differential operators P(D) where P is
a homogeneous polynomial of degree p in D = —id/0x and P(§) # 0 for 0 # £ € R™: If
P(D)u = f and u € . then the Fourier transform of D%u is (£%/P(€))f(€). If |a| = p
then £*/P(€) is a homogeneous function of degree 0 in C*°(R™ \ {0}).

Let m € C>°(R"™ \ {0}) be positively homogeneous of degree 0 in the sense that

(4.2.1) m(te) = m(€), €eR™\ {0}, t > 0.

We regard m as an element in L>°(R™). When n = 1 all such functions are linear com-
binations of the constant function and the sign function, but when n > 1 they form an
infinite dimensional space as shown by functions such as & — £“/|£|* with any multiindex
a. We shall pay particular attention to those with |a| =0 or |a| = 1.

LEMMA 4.2.1. If M is the inverse Fourier transform of a function m € C°(R™\ {0})
which is positively homogeneous of degree O then the restriction to R™\ {0} is in C*°, and
it 1is positively homogeneous of degree —n,

(4.2.2) M(t€) =t "M(€), €eR™\ {0}, t> 0.

For every bounded neighborhood §2 of O there is a constant aq such that

(4.2.3) M(p) = aap(0) + gl_% o M(z)p(x)dz, ¢ e L (R").

PROOF. 5/3D‘gm(£) is in L' outside a compact set if || > n + |3|, hence DPx*M is
then a continuous function. This proves that M is a C'*° function outside the origin. If
@ € . then the Fourier transform of ¢.(x) = t"p(tz) is & — $(£/t) when t > 0, hence

(4.24)  M(p) = /m(é“)@(é) g = /m(ﬁ)wt@) d§ = M((-/t), @€ t>0,

which proves (4.2.2) when ¢ € C§°(R"™ \ {0}). Choosing ¢ as a decreasing function of |z|
which is equal to 1 in the unit ball B we also conclude that

(4.2.5) M(zx)dS(z) =0,

|z|=1

where dS is the surface measure on the unit sphere. If {2 is the unit ball, it follows that
the limit in (4.2.3) exists, for the integral is independent of ¢ for small ¢ if ¢ = 1 in a
neighborhood of the origin, and the integral over R is absolutely convergent if ¢(0) = 0.
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The difference between M () and this limit is thus a distribution with support at the
origin satisfying (4.2.4) so it is a multiple of the Dirac measure at the origin which proves
(4.2.3) when 2 = B. The formula follows in general with

aq = ap + M (z) dx
Q\rB

when r > 0 is so small that »B C .

If M is given in C°(R™ \ {0}) and satisfies (4.2.2) and (4.2.5), then the proof of
Lemma 4.2.1 shows that the limit in (4.2.3) exists and defines a distribution with M () =
M(p(-/t)) when ¢ € .. The Fourier transform m is homogeneous of degree 0 and C* in
R"™ \ {0} so all such functions M can occur in Lemma 4.2.1. The constant aq in (4.2.3)
gives rise to a constant term in m. If € is the unit ball then ag is the mean value of m on

a sphere {&; [£] = 7}

The representation (4.2.3) of the kernel of the convolution operator m(D) is the reason
why m(D) is called a singular integral operator. The homogeneity is on the borderline
where the kernel just fails to be integrable both at 0 and at oo.

The proof of Lemma 4.2.1 gives with no change that if m € C"2(R"™ \ {0}) and

(4.2.6) €] Dom(€)| <1, €€ R"\ {0}, |a] <n+2,

then the inverse Fourier transform M is in C1(R™ \ {0}) and |M(z)| < C, |M'(z)| < C
when |z| = 1 with C independent of m. If ¢ > 0 then £ — m(§/t) also satisfies (4.2.6), and
the inverse Fourier transform is x — t" M (tx) in R™ \ {0}, so we conclude that

(M (x)] < Cla|™",  |M'(2)| < Clz|7"7!, w e R"\ {0},

In the following extension of Theorem 4.1.1 we define m(D)f when f € L'(R") as the
inverse Fourier transform of mf. If f € L*(R™)NL?*(R") it is clear that m(D)f € L*(R")
and that [m(D)fll2 < || fll2 if |m| < 1.

THEOREM 4.2.2. There is a constant C' depending only on n such that for every m €
C"T2(R™\ 0) satisfying (4.2.6) we have
(4.2.7) mp({z;|m(D)f(z)| > a}) < C|flli/a, for f € LY(R™)N L*(R"),
Cp' P\ fllps if1<p<2,

) or f € LY'(R™)N L®(R").
CpP | flls if2<p< oo, [T EERINLTRY

(4.2.8) [lm(D)fllp < {

Here 1/p+1/p’ =1, and my, denotes the Lebesgue measure.
For the proof we need the Calderén-Zygmund decomposition lemma:

LEMMA 4.2.3. Let f € L'(I) where I is a cube in R™, and let s > [,|f(x)|dz/m(I),
where m s the Lebesgue measure. Then we can write

(4.2.9) f=v+ Z W,
1
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where all terms are in L*(I), wg(z) = 0 when x € I\ I}, for certain cubes Iy C I with
disjoint interiors, and

(4.2.10) / (@) + 3 fww(@)]) de < 3 / f(@)|de,

(4.2.11)
1
v(z) = / fly)dy and wi(x) = f(z) —v(x), if x € Ii, thus / wi(z)dr =0,
m(Ik) Ik Ik
(4.2.12) lv(z)| <s almost everywhere in I\ Uly,
1
4.2.13 §< ——— flx)|dx < 2"s, which implies
(1213) 5 )} @)
(4.2.13) o(@)] < 2% in ULy, 53 m(l) §/|f(x)]dx.
l I

The lemma remains valid when I = R™.

Proor. We divide I into 2" cubes J,, 1 < v < 2", by halving each side. For each of
these cubes we have

1 on .
i [t < 25 [l <o

If the mean value on the left is > s, then J, is included among the cubes [, and we define
wg and v by (4.2.11) in ;. It is clear that (4.2.10) is then valid for the integrals over Ij.
For the other cubes J,, for which fJV |f(x)| dz/m(J,) < s, the same procedure is again
applied and so on. This gives a possibly finite sequence of cubes Ij. If x € I\ Ul then
the mean value of |f| is < s over arbitrarily small cubes containing x, so |f(x)| < s if x is
a Lebesgue point. With v = f in I \ Ul, the lemma is proved when I is a finite cube. If
I = R™ we first divide R™ into a mesh of cubes of measure 2|/ f||;/s and can then apply
the result already proved to each of them.

PROOF OF THEOREM 4.2.2. We decompose f € L'(R™) N L?(R") using Lemma 4.2.3
with I = R™ and s = a. By (4.2.12), (4.2.13)" and (4.2.10)

lvllz < 2"allvlls < 3-2"al flls,
which implies ||m(D)v||3 < 32"« f]1, hence
(30)*mr({z; [m(D)v(w)| > 50}) < 3-2"a|f]1.

Since the terms wy have supports in the cubes I with disjoint interiors, it follows that
S0° wy, converges in L?, so m(D) Y 77wy, = >.7° m(D)wy, with convergence in L?, hence
in L . Let y;, and sj, be the center and the side of I}, and let 21, be the cube with center

loc*

yx and side 2sy. If © ¢ 21 then

(m(D)w)(w) = | M@=yl dy = / (M(z — y) — M(z — ) () dy.
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Since |[M'(z)| < C|xz|~"~! by the remarks before the statement of Theorem 4.2.2 we have
for y € Iy,

(4.2.14) / IM(x —y) — M(x —yi)| dz < C'sk/ |z —yp| " Hde = O,
C21, C21,

where C” is independent of the cube I, by homogeneity and translation invariance. Hence
it follows that

(4.2.14Y /C (D)) da < " /I lwow ()] d.

The measure of E = U(2I}) is at most 2"||f||1/c, by (4.2.13)’, and

/ S |m(Dywr(x) | dz < 3|1

by (4.2.14)" and (4.2.10), so it follows that

c{a; Y Im(D)wi(@)| > ga}) < m(E) +6C"||f|l1/e < 2"(| |1 /e + 6C" | f]|1 /.

Summing up, we have proved that
my,({z; |m(D) f(z)| > a}) < (3-2"2 + 2" +6C")|| |1 /e,

which proves (4.2.7).

The estimate (4.2.8) for 2 < p < oo follows by duality from the estimate for 1 < p < 2.
In that case it is a consequence of (4.2.7) and the estimate ||m(D)fl|l2 < ||f||2, which
implies

a?my({z; [m(D) f(x)| > o}) < || f]3,

for we can apply the Marcinkiewicz interpolation theorem:

THEOREM 4.2.4. Let X andY be two locally compact spaces with positive Radon mea-
sures du and dv, and let T be a sublinear map from L'(X,du) N L>(X,du) to L (Y, dv),
that is,

T(g+h) < [T(@) + TR, g,h € LN(X,d) 0 L=(X, du).

If p1,p2 € [1,00) and T is of weak type (p;,p;) for j =1,2, that is,
(4.2.15)

Py € Vi |THw)| > 5)) < C, /X @ dp(e),  f € LNX, du) N L (X, dp),

for 3 =1,2, then it follows that for po < p < p1

([1mswraw) <o, [ 1r@pa)’. e oo n e
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If p1 = 0o and the hypothesis (4.2.15) is replaced by || T f|lococ < Cool|fllooc when j =1, then
the same conclusion holds for ps < p < co.
PrROOF. Let f = g5 + hs where

(S fl@l<s g0 i) <s
gs<x"{o, it @) s’ {f@:), i /()] > s

Since |T'f| < |Tgs| + |Ths| we have

N(s) =v({y;|Tf(w)| > s}) <v({y; |Tgs(y)| > £5}) + v({y; |Ths(y)| > s})

< (2/s)"Ch [f (@) [P du(z) + (2/5)P2Cy / | ()2 dp(z),
(@)l <s £ (@)]2s

by (4.2.15) if p; < co. Hence

ITfI5 :p/o sP7IN(s)ds < p(?plCl //|f(x)<s sP17PL| £ ()P dp(x) ds
D2 p—1—p2 D2
v, | /|f<m>|zf £() P du(w) ds)
= D2 (01— ) AC 4 2 p = pa) ) [ @) du(o)

This proves the theorem for p; < oco. When p; = oo we can reduce the proof to the case
where ||Tf|l < %]/ fllc. Then |Tgs| < s above so N(s) < v{y;|Ths(y)| > 1s}, and the
proof proceeds as before with one term less.

REMARK. There is a more general version of Marcinkiewicz’ interpolation theorem
which deals with maps from LP to LY when p # ¢g. The proof is similar but somewhat
more complicated and can be found in Zygmund [1].

Next we extend the Hardy-Littlewood maximal theorem to n dimensions. If f €

LL (R™) we define the maximal function by

loc

* = su !
(1216) finla) = sup —z [ 17 d,

where B is a ball with respect to a fixed norm in R™. It does not matter which norm is
chosen, so we can use cubes as well as Euclidean balls, but it is important that the shape
is fixed. If o(z) is a positive decreasing function of |x|, then the proof of (4.1.6)" gives

(4.2.16) / f -+ )let)dt < fi (o) / oft) dt.

n

The maximal theorem takes the form:
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THEOREM 4.2.5. If f € L*(R") then

3n
(42.17) mifes fin(o) > ) < 5 [ |f@)lde, s> 0
where m s the Lebesque measure. If 1 < p < oo then
(4.2.18) I finlle < (372°0) 7 (| f ], f € LP(R™).

PROOF. The set Ey = {z; f{y,(x) > s} is the union of all open balls B such that the
mean value of |f| over B exceeds s. For every compact set K C F there is a finite family
Fk of such balls which contains K. We shall prove that there is a subset .#;, C Zk
consisting of disjoint balls such that

(4.2.19) |J Bc (] 3B

BeJ gk BeZ .

where 3B is the ball with the same center as B but three times larger radius. This implies

that
mK)< 3 mEB) =3" Y mB) <35 Y /\f )| dx,

BeZ}, BeZF}, BeZF},

which implies (4.2.17) since the balls in %}, are disjoint and K is an arbitrary compact
subset of E.

To select the balls .# - we first choose a ball By € %k with maximal radius. Among
the balls in .# which do not intersect B; we then choose a ball By with maximal radius
and continue so that B; is always a ball in .#k with maximal radius not intersecting
By, ...,Bj_1. The selection breaks off since .# is finite. If a ball B € .#k has not been
chosen it must intersect one of the chosen ones. If B; N B # () and j is minimal, then the
radius of Bj is at least as large as that of B since B should otherwise have been chosen
instead of B;. By the triangle inequality it follows that B C 3B;, which proves (4.2.19) and
(4.2.17). The estimate (4.2.18) is now a consequence of the Marcinkiewicz interpolation
theorem, with some constant. The constant in (4.2.18) is obtained if one repeats the proof
of (4.1.8) which is left for the reader to do.

EXERCISE 4.2.1. a) Prove for the Hardy-Littlewood maximal function (4.2.16) that

m({z; fiL(z) > s}) <2-3"s7 /|f( oo [f(z)|dz, f€ L (R"), s>0.

b) Prove that if o € C*(R), ¢(0) = 0 and ¢’ > 0 then
[tz <23 [17() 70

o<t<2|f(z)| U

) Prove that when ¢ > 0 then

/f )L+ fii(x)C da

< 2-3”((1+51)/

|f(x)|dac+/ ]f(m)|(1—|—€+€71+10g|2f(m)|)da:>.
If(z)I<1 2[f(z)|>1
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EXERCISE 4.2.2. Prove with the notation in Lemma 4.2.3, I = R", that if J is an axis
parallel cube with J N I; # (0 but J ¢ 2I; then I; C 5J, and deduce that

1 ny -
—J)/J|f(y)|dy§s(1—|—10 ) if J ¢ URL,), s > 0.

Use this to give another proof of (4.2.17) (with 3™ replaced by a larger constant).

EXERCISE 4.2.3. With f}j; defined using the norm |z| = max;<;<, |z;|, z € R",
a) prove that

m({z; fin (2) > s}) > 277570 / (@) da

|f(z)[>s
b) prove that if o € C1(R), ¢(0) = 0 and ¢’ > 0 then

!
o(frp(z)) dx > 27 n/| / gO(t)dt;
t<|f@)] ¢

c¢) prove that when 0 < ¢ < 1 then

[ Fin @1+ Fi ) o
—n—1(/1 , —1 211 do 2t +e 110 x)|)dz).
2o (e [ @it e [ @I ol )

Later on we shall also need an analogue of Theorem 4.1.2" for the maximal function

(4.2.16)" gr(x,t) = sup / lf(y)|dy, xeR" t>0,

z€B,r(B)>t m(B

which also takes the radius r(B) of the ball B into account. We can replace fjj; (z) by
ii(x,t) in (4.2.16)" if o(y) is constant when |y| < t.

THEOREM 4.2.5". Let v be a positive measure in R™ x Ry such that for every ball
B CR"

(4.2.20) v(B x (0,7(B)) < m(B),
where m s the Lebesque measure in R™. Then it follows that
3n
@211y ot i > o) <% [If@lde feL®, s>

If 1 < p < oo then

/ 1
(1.2.18) ([ 15t tpartan) < @)l 1@
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PRrROOF. For any compact subset K of the open set where ffii (z,t) > s we can find a
finite family .Z of balls B such that [ |f(y)|dy > sm(B) and

Kc |J Bx(0,r(B)).
BC %k
As in the proof of Theorem 4.2.5 we choose a finite disjoint sequence By, Bo,--- € g
with r(B;) decreasing such that for every B € Zx we have r(B) < r(B;) if BN By =0
for k < j and BN Bj # () for some j. When BN B; # () and j is minimal it follows that

B x (0,7(B)) C (3B;) x (0,7(B;)) C (3B;) x (0,7(3B;))
which gives K C |J(3B;) x (0,7(3B;)), hence by (4.2.20)

1)< Yomisn) =5 Y m(5) <5 Y [ 1swlasfs <30 51/s

This proves the weak type estimate (4.2.17)", and as before it implies (4.2.18)" by the
Marcinkiewicz interpolation theorem.

With m and M as in Lemma 4.2.1 we can form a maximal function

fau(@) = sup ‘/ flz— )M(y)dy‘-
0<e<d <|z|<é

The proof of (4.1.12) gives with no essential change apart from substitution of Theorems
4.2.2 and 4.2.5 for Theorems 4.1.1 and 4.1.2

1ol < Cullfllp, feLP(R), 1<p<oo.
This implies that

lim flx—y)M(y)dy = (m(D)f)(x) —apf(xz) for almost all x € R"
e—0,0—00 e<|z|<s
where m(D) f is defined by continuous extension of m(D) from . to LP(R™) and B is the
unit ball. We leave the repetition of the details for the reader. The analogue of Proposition
4.1.6 for functions in R"™ is obvious, for it suffices to consider products of functions of one
variable, and Proposition 4.1.7 also carries over to the n-dimensional case with the same
proof.

Thus we arrive at the discussion of Hardy spaces, which will elucidate the failure of
Theorem 4.2.2 for p = 1. When n > 1 we have an infinite dimensional supply of operators
m(D) to choose from, but at first we shall only consider n of them, chosen so that the
proof of Theorem 4.1.15 can be extended. The others will be controlled afterwards.

Let |¢| = (&2 -4 £2)2 be the Buclidean norm now, and set

(4.2.21) R;(&) =—i&/lEl, i=1,...,n.

The corresponding convolution operators R;(D) are called the Riesz operators. Since the
inverse Fourier transform of £ — 1/[| is a constant times the function x +— |z|1™", for
reasons of homogeneity and orthogonal invariance, it follows by differentiation that the
kernel of the convolution operator R;(D) is x — cxj|xz|~"~! for some constant ¢ which will
be determined in a moment. Since R; is odd the constant ap in the representation (4.2.3)

of the inverse Fourier transform of R; must vanish. Sometimes we shall use the notation
Ry =1, so that Ro(D) = Id, the identity operator.
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DEFINITION 4.2.6. The Hardy space 7 (R") is the space of all f € L*(R") such that
R;(D)f € LY(R"™) for j =1,...,n.

Before stating an analogue of Proposition 4.1.9 we must make some preliminary remarks
on the Poisson kernel Py in R'*". It is the kernel giving the unique bounded solution of
the Laplace equation in Rf" = {(t,x);t > 0, € R™} with given boundary values
f € L*°R")NCYR"), say, when ¢t = 0. If E is the fundamental solution of the Laplacian
in R'*™, then

(4.2.22) Po(t, z) = 20E(t, z)/0t = 2t(|z|* + )"V /e, 0, (t,2) € RY™,

where ¢, ;1 is the area of the unit sphere S™ C R"*!. The Fourier transform of Py(t,x)
with respect to x is & — e~ t€l, for it is continuous and uniformly bounded, — 1 as t — 0
and is annihilated by 8% /0t — |¢|? since P, is harmonic. The kernel

(4.2.23) Pj(t,z) = 20E(t,x)/0x; = 2x;(|z)> +t2) "2 Je,y, () € REF™,

is also harmonic, and the distribution limit when ¢ — 0 is the inverse Fourier trans-
form of R;, which is thus equal to vp 2z;|z|~" ! /c,4+1. In fact, the Fourier transform of
OP;(t,x)/0t = OPy(t,r)/0x; with respect to z is & — i¢;e ¢l and the Fourier transform
of P; tends to 0 in .’ as t — 400, so it is the integral & s —i&;[¢|te el = R;(&)e e
vanishing when ¢ — 4o00. Thus the Fourier transform of P;(¢,x) with respect to z is
Rj(&)e el for j =0,...,n.

We can now state and prove an analogue of Proposition 4.1.9. To simplify notation we
shall sometimes use the notation z¢ =t, dy = 9/0t, 0; = 0/0x; when j =1,...,n.

PROPOSITION 4.2.7. s (R") is a Banach space with the norm || f||z1 = > ¢ 1R, fll 1,
and it is invariant under compler conjugation which even preserves the morm. When

f € AL (R™) then the functions
(4.2.24) (P f)(t,x) = /Pj(tw —yfly)dy, j=0,....n,

are conjugate harmonic in Rf”, in the sense that O, P;f = 0;P,f, 3,k = 0,...,n, and
>0 0;P;jf = 0. They have boundary values R;f in the L' sense,

[ B D) do < [Ryflls, >0,
(4.2.25) "’
Jim (P f)(t,z) — R;(D)f(z)|dx =0, fe"R").
—+0 Rn
If f € LY(R") and f has compact support not containing the origin, then f € S*(R").
Such functions in . (R™) are dense in S (R™), and the closure of 1 (R™) in L'(R™)
is { € L'(R"); f(0) = 0}.
PROOF. Since R;(D) is continuous from L'(R") to ./(R") it follows that J#1(R") is
complete, hence a Banach space, and since the kernel of R;(D) is real valued it is clear
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that ' (R") is invariant under complex conjugation. If f € s (R™) then R;(£)f(£) is
continuous for j = 0,...,n, which implies f(O) = 0, that is, fRn f(x)dx = 0. If f € L
and supp f is a compact subset of R™ \ 0 it follows as in the one dimensional case that
f e A (R").

Choose x € ./ (R") so that x € C§°(R") and x = 1 in a neighborhood of the origin.
With x.(z) = e™x(ex) we claim that

(4.2.26)  lim [lxe * fllze = [FO) Nz, Jlim [xo* f = fllee =0, f € L'(R™).

As for (4.1.16) it suffices to prove this when f € C§°(R"), and the second part is trivial

~

then. To prove the first part we write the Fourier transform of g. = x. * f — x-f(0) as

3:(6) = x(&/)(f(&) = (0)),
and conclude that
[P de < Coe?

for every a. By Parseval’s formula it follows for every positive integer N that
[+ )Y@ do < Cxem,

so Cauchy-Schwarz’ inequality gives ||gc||,1 < C’e, which proves (4.2.26).

If f e LY(R") and f(0) = 0 it follows that fi. = x; % (f — xe * f) — f in L' as
t — oo and € — 0, and the Fourier transform of f;. has compact support in R™ \ {0}
so fi. € 1(R™). This proves that the closure of #!(R") in L'(R"™) consists of all
f € LY(R™) with f(0) = 0. Since R;(D)fi. = (R;(D)f)te we have fi. — f in " (R") if
f € A (R"). If we regularize f; . to ¢°f,. € .(R") as in the proof of Proposition 4.1.9,
then ¢° ft.e = fiein LY as § — 0, and the support of the Fourier transform is contained in
a fixed compact set K C R™\ {0} for small 6. We can choose r; € . so that #; = R; in a
neighborhood of K, and then R;(D)(¢°fic) = 7; * (¢° fi.c) for small . This converges in
L' to rj* fre = Rj(D)ft as 6 = 0, which completes the proof of the density statement
in the proposition.

When f € C°(R™\ {0}) then the Fourier transform of (P;f)(t, ) with respect to x is
€ — e MEIR;(€)f(€), so (P;f)(t,x) is the Poisson integral of R;f. This proves (4.2.25) for
f in a dense subset of #*(R™), and by continuity it follows for all f € J#1(R").

The following lemma is analogous to Lemma 4.1.10 but it is slightly harder to prove
when n is even. We state it in somewhat greater generality than needed right now to
prepare for an analogue of Corollary 4.1.19, but to simplify the proof we restrict ourselves
to functions which will become atoms in ! (R™). (See also Lemma 4.4.3.)

LEMMA 4.2.8. Let f € L*(R™) have support in a ball B and assume that [ f(x)dz = 0.
Let m € CY(R™\ {0}) for some v > n/2, and assume that

(4.2.27) [l Dm(§)] <1, f0#EER”, |a <.
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Then it follows that |m(D)f|l1 < Cur/|B||Ifl2- In particular, f € Y (R™) and || f|| 1 <
(n+1)Cy+/|B]||fll2. Here |B| is the Lebesgue measure of B.

ProOOF. Without restriction we may assume that the center of B is at the origin. If
the radius is & then g(z) = 6" f(dz) has support in the unit ball, §(¢) = f(£/8) and
m(€)f(€) = m(€)§(€) = ms(6€)§(¢) where ms(€) = m(£/5) also satisfies (4.2.27). Thus
m(D)f = 67"(ms(D)g)(-/é), so [Im(D)f]x = |lms(D)gll1. Since 6"/2|[fllz = |lgllz the
proof has now been reduced to the case where B is the unit ball, which we assume from

now on.
Cauchy-Schwarz’ inequality gives at once that || f|l1 < /|Bl|/f|l2, and by Parseval’s
formula

em [ iR de = [ et st de < £,

for arbitrary a. Choose 1 € C5°(R") so that ¥(§) = 1 when || < 1 and ¥ () = 0 when
€] > 2, and set m = my + ma where my = ¥ym and mg = (1 — ¢)m. Since || > 1 when
& € supp me, the derivatives of mq of order < v are bounded, and we obtain

| et ma(D)f @) o = @) [ 1D ma() FO) d < Call 13

n

when |a] < v. Hence
[+ o) Ima(D) 1) do < €l

and by Cauchy-Schwarz’ inequality this implies ||m2(D)f]l1 < C|f||2, with another con-
stant C, because 2v > n.

When ¢ € suppm; we have || < 2, and \Daf(.{)] < Cullfll2 for every a when [¢| < 2,
but we only have bounds for [£|*D%m4(&). Let v be the smallest integer > n/2, thus
(n+1)/2 <v < (n+2)/2. Since

D*(m1(€)f(€)) — (D*m1(€)) f(€)

only contains derivatives of my of order |a| — 1 and |f(&)| = |f(€) — £(0)| < C||f]|2]€], we
have

D% (ma () F )] < Cale I fll2s ol < v.

If n is even then v — 1 = n/2 so this bound is not in L? when |¢] < 2. However, if 1 < p < 2
we have [|[D*(mif)||, < Cpllfll2 when |a| < v, and it follows from the Hausdorff-Young
inequality that with 1/p+1/p’ =1

(/ [2m (D) f (x)” daz)”l' < Gyl fll2-

Thus we have a bound for the norm of (1+|z|)”|my(D)f(z)| in L (R™). When (1+ |z|)~"
isin LP, that is, n/v < p < 2, it follows from Hélder’s inequality that ||mq (D) f]l1 < C|| fl|2;
we can for example take p = (2n 4+ 1)/(n + 1). This completes the proof of the lemma.
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If L is a continuous linear form on J#1(R") it follows from Lemma 4.2.8 that L for
every ball B restricts to a continuous linear form on {f € L*(B); [5 fdx = 0}. Hence
there is a unique function &5 € L*(B) with [ ®pdz = 0 such that

L(f):/f(x)CI)B(x)dx, if fe L? supp f C B, /f(a:)da:zO,

and [ |®p(z)|* dx < C{Lm(B)HLHi%l),. If By C By then ®p, — ®p, is a constant cp, B,
in B, and ®p, — cp,p, extends Pp, to Bz. From the sequence ®p, where B; = {z €
R"; |z| < j} we obtain a function ¢ € L (R") equal to ®5, — cp,p, in B;. For every

ball B we have ®p = ¢ — ¢p where pp = [, ¢ dx/m(B), and

(4.2.28) L(f) = /f(w)so(x) dx

for every f € L?(R™) with compact support and Jgn f(x)dx = 0. This is a dense subset of

A1 (R™). In fact, by Proposition 4.2.7 functions f € .% with f € C5°(R™\ {0}) are dense.
If f is such a function and 0 < ¢ € C§°, ¢ = 1 in a neighborhood of 0 and [¢ dz =1, it
follows from Lemma 4.2.8 that

fi(z) =927 2) f(2) — (277 @)
is in 271 (R™) if the integral is 0, that is,

=2 [ (i) fayde =277 [(6(20) - 1)f(e) da

Thus ¢; = O(27%7) for every v, and it follows from Lemma 4.2.8 that ||f; — fit1ller =
O(27"7) for every v, since this is true for the L? norm. Since f; — f it follows that
|f = filler = O(27%7) for every v, so we have proved (4.2.28) for a dense subset of 7.
In a moment we shall see that ¢ € ./, and since f; — f in .7 this will prove that (4.2.28)
is valid when f € C$°(R™ \ {0}).

We have now been led to introduce an analogue of Definition 4.1.11:

DEFINITION 4.2.9. A function f € L2 _(R") is said to be in BMO(R") if there is a

loc

constant K such that for every ball B C R"

1 1
4.2.29 —/fx—fBdegKQ, iffB:—/fydy.
(4:2.29) iy @ = s i W)

EXAMPLE. f(z) = log|z| is in BMO(R™) but not even locally bounded. Since f(tz) =
logt + log |x| when ¢ > 0 it suffices to verify (4.2.29) for balls B of radius 1. If || < 3
when x € B then

/Blf(ac)—fBl de/BIf(w)l de/x|S3|f(m)| iz < .

If || > 1 when 2 € B then |f'(x)| < 1 when x € B, hence |f(x) — fp| < 2 if z € B, and
S5 |f(x) = fB]? dz < 4m(B) which proves that f € BMO(R"). More generally it follows
that f(z) = [log|z — yldu(y) is in BMO(R™) if dp is a measure in R™ with finite total
mass [ |dpu|.
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PROPOSITION 4.2.10. BMO(R™)/C is a Banach space with norm equal to the smallest
constant K such that (4.2.29) is valid. With B = {x € R";|y — z| < d§} it follows from
(4.2.29) that

2
p(z) —
(4.2.29)’ 5/Rn (|5L—(y)| +5SL+1 dz < CullllBmo-

PROOF. Let By = {x € R";|z — y| < 26} for k = 0,1,..., and set cx = pp, =
[, e dz/m(By). If |¢llsmo = 1 then

1

—_ lo(x) — cpq1]®dr < 1, hence |cp — cpyr]® <27,
m(By+1) /Bk+1

because m(Byy1)/m(By) = 2". By the triangle inequality |cx — co| < 2%/2k and

/ o) — cof? de < 2/ (@) — el + e — col?) da
By By

< 2(1 + 2"k?)m(By) = 2(1 + 2"k?)25"m(By).

Hence it follows that
S22t [ (o) - o di < Cm(By),
0 By

which gives

(@) = col?
<
? /R (= gl 5 1yt 4= CmiB)

and proves (4.2.29)" for another constant C,,. The rest of the proof is exactly the same as
that of Proposition 4.1.12.

As in Section 4.1 we must now study the Poisson integral of a function ¢ € BMO(R"),
defined by (4.2.22), and prove an analogue of Lemma 4.1.13.

LEMMA 4.2.11. If ¢ € L*(R"™) and ® is the Poisson integral Pyp of @, then

(4.2.30) 2 [ de(e)P ded = ol
t>0

where |®'(t,z)|? = |0®(t,x)/0t]* + S 1 |0®(t,x)/0x;)*. If p(x) = 0 when |z| < & and
o(x)/|z|"tV/2 € L2 then

(4.2.31) @ (£,0)[2 < Co(t +5)~! / (@) Plz| " da.
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If ¢ € BMO(R™) then we have for y € R™ and § > 0

(4.2.32) // ! (6, 2) 2 dedt < Cod™ (|9l Bam0s Tys = {(t 2); e —y| < 8,0 < ¢ < 6.
Ty 5

PROOF. The proof of (4.2.30) is the same as that of the first part of (4.1.22), which is
independent of the dimension. To prove (4.2.31) we note that |P{(t,z)| < C(t + |z]) !
for reasons of homogeneity. Since ®'(t,z) = [ P(t,z —y)¢(y) dy we obtain using Cauchy-
Schwarz’ inequality

0P <C [ Pl [ e ) dy

ly| >4

n

In the last integral we estimate ¢ + |y| below by 1 (¢+ 0+ |y|). The integral over the whole
of R™ is then convergent and equal to a constant times (¢ + 6)~!, which proves (4.2.31).
The estimate (4.2.32) follows then as in the proof of Lemma 4.1.13 by writing ¢ as the
sum of the mean value over the ball {z;|y — x| < 26}, a function supported by this ball
and one which vanishes in it. The repetition is left as an exercise.

In the following analogue of Proposition 4.1.14 special properties of the Riesz operators
will be essential.

PROPOSITION 4.2.12. Let ¢ € L*(R"™,dz/(1+]|z|)" ™) and assume that for the Poisson
integral ® of ¢ we have

(4.2.33) / t|®' (t, x)|* dov dt < A*6™, yeR"™ §>0,
Ty.s

where T, 5 is defined by (4.2.32). Then it follows that
(4.2.34) ‘ / of d:c‘ < CoAllfller, iffe, feCe®m\{0}),

so @ defines a continuous linear form on S (R™).

PrOOF. We may assume that ¢ and f are real valued. As in the proof of Proposition
4.1.14 it follows from (4.2.30) that

(4.2.35) /R pfdr=2 / /t @ (t2). Fy(t.a)) da,

where Fy = Pyf is the Poisson integral of f. As in the proof of (4.1.28) we shall also
consider the harmonic functions F; = P;f and the vector F= (Fo,. .., F,) which is the
gradient of a harmonic function. The reason is that as will be verified in a moment

(4.2.36) [F'> = " [0;Fl* < (n+1)|F|A|F|, when F # 0.
4,k=0
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Here 0; = 0/0x; when j = 1,...,n and 0y = 0/0t. Since |Fj| < |F'| it follows from
(4.2.35) that

(4.2.37) ‘/gpfdm‘ §2// t|<1>’(t,x)||ﬁ’(t,x)|dmdt
t>0

1
<o // 1 (¢, 2) P F(t, )| de ) // (4, 0) P F(t2)| dedi)
t>0

Using (4.2.36) we obtain

// HE (t, 2) 2B ()| "L da dt < (n+1) // LA|F da dt
t>0

< <n+1>/|ﬁ<o,x>|da: < (n+ DIf e

exactly as in the proof of (4.1.26). In a moment we shall prove that (4.2.36) means that
|F4 is subharmonic when ¢ = n/(n + 1). Accepting this for a moment we have |F|? < G
where G is the Poisson integral of g(x) = |F(0,)|9. Thus G(t,z) < Cgif (x,t), so we
have |F| < CPg*(x,t)? if p = 1/q. Hence it follows from (4.2.33) and Theorem 4.2.5,
with p = 1/g, that the first parenthesis in (4.2.37) can be estimated by CA?|g||p =

C||F(0,-)||1, which completes the proof of (4.2.34) apart from the verification of (4.2.36)
and the subharmonicity of |F'|9.
Differentiation of the equation |F|? = S FZ2 gives

|Flow|F| =) F,F, k=0,....n,
where F,, = O F, is symmetric in v and k. Since AF,, = 0 another differentiation gives

|F|A|F] —|—Z Ol F|)? Z FZ%., hence
k,v=0

FIAIF| = 3 B2 - Z(ZFku) JIFP2.

k,v=0

We claim that the right-hand side is > Y7, _; Fi2./(n 4 1). By the orthogonal invariance

of the Hilbert-Schmidt norm it suffices to prove this when Fis along a coordinate axis,
say the z,, axis. Then the inequality (4.2.36) becomes

n n—1 n
Yo FL<(n+1)) ) F
k,v=0 v=0 k=0

This is obvious for the off diagonal terms because of the symmetry, since n + 1 > 2, and
for the diagonal terms this means that F2, < n) ;= ' F2  which follows from the fact

vy
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that the trace is equal to 0, that is, F,, = — g_l F,,. This equation which is also

orthogonally invariant comes from the fact that F is the gradient of a harmonic function,
the Newton potential of 2f ® ().
When F # 0 we have

A|F|? = g FI" A[F| + qlq = DI 2 F))? = gl FJ12(F P/ (n+ 1) + (g = DIFP),

by (4.2.36). Since |F|0y|F| = >, Fi, F,, we have |F|'| < |F'| and it follows that A|F|? >0
if F#£0and g—1+1/(n+1) > 0, that is, ¢ > n/(n + 1). This implies that |F|? is
subharmonic and completes the proof.

Summing up, we have now extended Theorem 4.1.15 to several variables:

THEOREM 4.2.13. The restriction of a continuous linear form L on 71 (R™) to the
dense subset {f € .7; f € C5°(R™)\{0}} is of the form L(f) = [ fodx where ¢ is uniquely
determined in BMO(R™)/C. The norm of L in the dual space of 71 (R™) is equivalent to
the norm of ¢ in BMO(R")/C, and every ¢ € BMO(R")/C defines a continuous linear
form in T (R™).

We leave for the reader to assemble the proof using the preceding results, and pass to
introducing n-dimensional atoms:

DEFINITION 4.2.14. An atom in s#*(R") is a function a € L*(R"™) with support in a
ball B such that

(4.2.38) m(B) /B la(x)|? dr < 1, /Ba(x) dx = 0.

From Lemma 4.2.8 it follows that the atoms form a bounded subset of J#!(R"), and
Theorem 4.2.13 gives the other half of the following corollary:

COROLLARY 4.2.15. If A is the closed convex hull of the atoms in *(R™) then there
are positive constants C,, C) such that

(4.2.39) {fe AR )| fllr <CLY CAC{f € AR ||l <O}

If C! > 1/C! then every f € A1 (R™) has an atomic decomposition
(4.2.40) f="Na Y I <Ol
1 1

where a; are atoms in A (R™); we have || f|| 212 < CI S|l

The proof is left as an exercise since it is a repetition of that of Corollary 4.1.17. We
also leave as an exercise to prove the following extension of Corollary 4.1.18 to the n-
dimensional case:
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COROLLARY 4.2.16. Let ® = {p € CH(R"); (1 + |z))""(|o(z)| + |¢'(x)|) < 1}. Set
@i(x) = @(x/t)/t" and f* = sup,cq sup;so |f * | for f € L'(R™). Then

(4.2.41) 1£° 1 < Cull sy, if £ € 2 (RY).
However, we shall prove a consequence of this result and Exercise 4.2.3, due to Stein
[3]:

COROLLARY 4.2.17. If f € Y (R™) and f > 0 in an open set Q@ C R™, then
|f|10g+ |f| S Lloc(Q)

PROOF. Let p € C3°(2) and 0 < p < 1, and choose ¢ € ® with support in the unit
ball, ¢ > 0, and ¢(0) > 0. (We keep the notation in Corollary 4.2.16.) Then 0 < g = of,
and g¢f;;, < Cf* in a neighborhood K € Q of suppp. In fact, ¢(x) > %(p(()) > 0 when
|z| < ¢, hence

0< / g(z —y)dy < / F@ — ) dy < 2670(0) " (f * 05) (&) < 26™(0) 1 £ (x),
lyl<éc ly|<dc

if z € K and max(dc, §) is smaller than the distance from K to CQ. This implies gi; < Cf*
in K for some C, and it is clear that gjy; (z) < C/(1+ |z|)", x € CK, for some C. Thus

[ i@+ g () dr <

if ¢ > 0, and it follows from Exercise 4.2.3 that |g|log™ |g| € L.

The result should be compared to the n dimensional version of Proposition 4.1.7. Next
we prove an extension of Corollary 4.1.19:

COROLLARY 4.2.18. If m € C”(R™ \ {0}) satisfies (4.2.27) for some v > n/2 then
m(D) is continuous from 1 (R™) to 1 (R™) and

(4.2.42) Im(D)fller < Cullfloer,  f €A RT).

PRrROOF. First we prove the weaker result
(4.2.43) lm(D)fllzr < Cullfller, | € AHRY).

It is sufficient to verify this when f is an atom, and then it was proved in Lemma 4.2.8. In
particular, (4.2.43) is true when f € C§°(R™\{0}), and then it is clear that R;(D)m(D)f =
m;(D)f where m; = R;m satisfies (4.2.27) after division by a suitable constant. Hence

|m(D) fl| 1 = ZHR D)f|lpr = an] )l < N fll e,

for all f in a dense subset of J#1(R™), which completes the proof.

Corollary 4.2.16 justifies the claim made earlier that nothing was lost by just including
the Riesz operators R; in the definition of J#1(R").
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4.3. Wavelets as bases in L? and in .%'. Let us first recall basic definitions and
facts concerning bases in separable Banach spaces.

DEFINITION 4.3.1. A Schauder basis in a Banach space B is a sequence e; € B, j =
1,2,... such that every x € B has a unique representation as a sum

oo n
x:ijej, that is, Ha:—Z:z:jejH — 0, as n — oo.
1 1

Here x; are real or complex depending on whether B is a real or a complex Banach
space.

PROPOSITION 4.3.2. If (e;)1° is a Schauder basis in B then there is a constant C' such
that

(43.) sup | Y wjesll < Cllall, ifz =3 aje;.
n 1 1

In particular, |z;||le;|| < 2C||z||, so the linear forms > (" zje; — x;|le;|| in B are uniformly

bounded. Conversely, if e; € B\ {0} and the finite linear combinations of e, ea,... are

dense in B, then (e;){° is a Schauder basis in B if there is a constant C' such that

n N
(4.3.2) 1Y " zjell < CI1Y - xjejll,  whenn < N.
1 1

Here x; are arbitrary scalars.

PROOF. Assume first that (e;)° is a Schauder basis, and set

n o0
llzll = sup | Y " wje;ll, itz =" wzje;.
n 1 1

This is a new norm with ||z|| < |||z|||, z € B, and we shall prove that B is complete also
with this norm. By Banach’s theorem this will imply that |||z|| < C|/z||, which is the
inequality (4.3.1). To prove the completeness we first observe that

oo
zjlllesll < 2llzll, ifz = wjse,
1

so the map x + |z;| is continuous for this larger norm. If ¥ =Y [ 2¥ej, and |||z¥ —zH||| —
0 as v, u — o0, it follows that x7] —:BZ — 0, hence lim, _, x} = x}, exists for every k. Since

n
I (k= afexll <l — 2,
1
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we have for every ¢ > 0

n

1D (af —eerll < lim [[la” — ||| <e
T HU—>00

if v > v.. Hence

m m
I Z$k€k” < Zx%ekﬂ +26 <3, n<m,
n+1 n+1

if n and m are large enough, so Y [ xre, = x exists and |||z — z||| < & when v > v.. This
completes the proof of the first part.
Now assume that (4.3.2) is valid. Then

N
mex lz;|]le;|| <2C ;xjejl|7

which proves that the elements e; are linearly independent and that the map Zf{ xrje; —
zj|le;]| extends from the set E of finite linear combinations of the elements e; to a linear
form L; on B with norm < 2C. We have

sup | > Li(z)e;/llejllll < Cllzll, x € E.
n 1

Since the maps B 2 = — > | L;j(z)e;/|lej|| € B are uniformly bounded and converge
to the identity when x € FE, it follows that they converge strongly to the identity, so
z =0 Li(x)e;j/|e;|l for every z € B. If 3" z;e; = 0 then

n N
I msesl < Jim 13 asesl =0

which proves that z; = 0 for every j. Thus (e;)7° is a Schauder basis.

The useful property of a Schauder basis is that with the notation in the proof the pro-
jections & — > 7 Lj(x)e;j/|lej|| on the linear span of the first n elements have a uniformly
bounded norm. This allows approximation of arbitrary bounded operators by operators of
finite rank with uniformly bounded norm.

A series Y " y; with y; € B is said to converge unconditionally to y € B if for every
e > 0 there is a finite subset [ of N = {1,2,...} such that || >, ;y; —y|| < ¢ for all finite
subsets J of N containing I. This implies that > ;" y; = y and that this remains true for
an arbitrary rearrangement of the terms; conversely, if the convergence is independent of
the ordering then the series converges unconditionally.

DEFINITION 4.3.3. A Schauder basis (€;)$° in B is called unconditional if every z € B
has a unique representation z = Y 1" xje; and the series is unconditionally convergent.
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PROPOSITION 4.3.4. If (e;)7° is an unconditional Schauder basis in B then there is a
constant C such that

(4.3.3) sup | >_wjesl| < Cllzll, - ifw =3 aje.
1

jeJ

Here J is an arbitrary finite subset of N. Conversely, if e; € B\ {0} and the finite linear
combinations are dense in B, then (e;)7° is an unconditional Schauder basis if there is a
constant C' such that

(4.3.4) 1Y “zjesll < CINDY miesl, if JC I

jed il
where I is any finite subset of N and x; are scalars.

The proof is essentially a repetition of the proof of Proposition 4.3.2, now with

[e.@)
llzll = sup | Y wje;ll, if z =Y wzje;,
J 1

JjedJ

so we leave it as an exercise.
The inequality (4.3.4) is equivalent to

(4.3.4) 1Y " Nimiei| < CID wedl|, H0< N <1, i€l
i€l el

In fact, (4.3.4) means that this is true for all A\ € {0,1}!, while (4.3.4)" states that this
is true for all A in the cube with these vertices, which follows from the convexity of the
norm. From (4.3.4)" it follows that

(4.3.4)" 1Y Nimiel| <200 wiell, if —1< M\ <1, i€l
i€l 1€l

and even for complex scalars \; we obtain

(4.3.4)" 1Y Nimied| <4C|D wiedl|, i [N <1, i€ 1.
1€l i€l

We can take any one of these conditions as a criterion for unconditional Schauder bases.
Roughly speaking they mean that the norm of a linear combination of the basis elements
is essentially determined by the absolute values of the coefficients, independently of the
arguments (or signs).

It is known that there is no unconditional Schauder basis in L!(R"), but wavelets
provide such bases in the LP spaces which have one:
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THEOREM 4.3.5. Let ., r € {0,1}™\ {0} be orthonormal wavelets in C(R™), as in
Theorem 3.2.6. Then the orthonormal basis

Urjw(@) =272, (27x — k), 0#re€{0,1}", j€Z, keZ"
in L?(R™) is an unconditional basis in LP(R™) when 1 < p < oco. If 1, € CZ(R") it is
also an unconditional basis in 1 (R™).

The theorem remains true with much weaker assumptions on smoothness and for wave-
lets which just decay sufficiently fast at infinity, but the hypotheses made here are con-
venient in the proof and we know from Chapter III that such wavelets exist. Since
[r(x)dz = 0 (see Proposition 3.3.1 for the one-dimensional case) we know that
273/ 24),. .+ 1. /C is an atom in #1(R™) for some constant C, and it is clear that 1, €
LP(R™) for 1 < p < oo. The first step in the proof of Theorem 4.3.5 is to establish
completeness of the wavelets.

LEMMA 4.3.6. If f € C5°(R™) then the wavelet expansion Y Yy ; i(f,¥r k) converges
to fin LP for 1 <p < oo. If [g. f(x)dx =0 it converges to f in HL(RM).

PRrROOF. We know already that the series converges to f in L?*(R™). It is therefore
sufficient to prove that it converges in LP (resp. '), for the sum must then be equal to
f. To estimate the coefficients

fron= [ F@psa@)de =29 [ f@), @0~ k) ds
we first assume j > 0. Since [ 1), (x)dz = 0 we have
i =297 [ (5(0) = F/2))0 (P2 — ) da,
and since |f(z) — f(k/29)] < C|z — k/27], we obtain

| frjik

< 2”3'/20/ |z — k)2 || (2 — k)| de < C'27 /27,

Hence ||¢)y j k fr.jkllco < C277, and since only a bounded number of supports can overlap
for fixed j this proves uniform convergence of the sum for j > 0. We have (¢, j i fr.j k|l 21 <
C277=" and since f,;, = 0 unless |27z — k| < C for some x € supp f, the number of
terms is O(2™) which proves 5! convergence too. Thus there is convergence in LP for
1<p< oo

Now assume that 7 < 0. Then there is a fixed bound for the number of non-zero coeffi-
cients f,;x with the same j, and | f,.; x| < C2™9/2. Since ||ty j k|, = 27/ 27YP) |3, |,, we
have ||y .k frjkll, < C27=1/P) which proves LP convergence of the sum for j < 0 when
p>1. When [ f(z)dz =0 and f(y)¢,(27y — k) # 0 for some y we have

mmm:um”/f@xw@%—k%ﬂmew—k»M|

< conil? / ()2 |2 — y| dw < C'279/24
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Since 27/ szr,j,k has bounded norm in 7! it follows that

19r .t gkl er < C27,

and we get convergence of the sum for j < 0 in J#* too.

The second part of the proof of Theorem 4.3.5 is to verify an estimate of the form (4.3.4).
Thus we must prove for any finite subset J of {(r,7,k);0 # r € {0,1}",j € Z,k € Z"}
that the norm of the operator

(4.3.5) Ay = D k(i tein)

(rg, k)€

in LP(R"), 1 < p < 0o, and in #*(R™) has a bound independent of J. The kernel of %}
1s

(4.3.6) Ky(zy)= Y 2M9¢ (2 — k) (27y — k).
(r,g,k)eJ

The norm of the orthogonal projection operator J#7 in L? is < 1, and we shall estimate the
norm in the other spaces by modifying the study of singular integral operators in Section

4.2. First we prove a substitute for the regularity property of the convolution kernel M
given by (4.2.14).

LEMMA 4.3.7. If K is defined by (4.3.6) with a finite subset J of ({0,1}"\{0}) xZxZ"
then
(4.3.7) Ky (z,y)| < Clz —y|™", 0K, (z,y)/0(z,y)| < Clz —y[" 7,

where C' is independent of J. For the operator J£; with kernel K j we have

(4.3.8) m({z; | f(z)| > a}) < C||f|l1/e,  f € LYR")NL*(R"),
CY'YP|fllp, ifl<p<2,

) or f € LY(R™)N L®(R").
CpP | flls if2<p<oo, [T EERINLTRY

(4.3.9) (251l < {

PRrROOF. If |z| < R when z € supp, then |27z — k| < R and |27y — k| < R in the
support of the terms in (4.3.6). This implies 27|z — y| < 2R. For fixed (z,y) and r, j the
number of such terms is at most equal to the largest number N of lattice points in a ball
of radius R. Hence

Ky(z,y) <CY ) 2Ysupy? <20 sup¢?(2R/|x —y|)"

T 2i|z—y|<2R

which proves the first estimate in (4.3.7). Differentiation with respect to x or y contributes
another factor 27 which gives the second estimate (4.3.7).
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If I € R" is a cube with center z and side s, and 21 is the cube with center z and side
2s, it follows from the second part of (4.3.7) that

/ \Kj(z,y) — Kj(x,2)|dx < C’s/ lz— 2" tde =C", yel,
Cor Cor

where C” is independent of I. Hence

(4.3.10) / | 5w (z)|dr < C”/ lw(y)|dy, ifwe Ll,/wdy =0, suppw C I,
vg2l I I

for we have

Hyu(z) = / (K (2, y) — K, 2)uly) dy.

Now the estimates (4.3.8) and (4.3.9) follow from the proof of Theorem 4.2.2, for (4.3.10)
is a substitute for (4.2.14)" there, and K; has norm < 1 in L*(R").

With this lemma we have completed the proof of the statement on L? spaces in Theorem
4.3.5. Tt is also very easy to see that

(4.3.11) 125 fllr < ClIflloer s

for by Corollary 4.2.15 it suffices to prove this for an atom f. If f has support in a cube
I and /m(I)||f]l2 <1, [ fdx =0, then || f]; <1 and it follows from (4.3.10) that

[ swlar<c
x¢2I
Since /m(I)||-# f|l2 <1 we have

/ (@) do < 2,
21

which gives || £ f|l1 < C + 2™ and proves (4.3.11) with another C.
To estimate || # f|| »1 we must also estimate ||R,. % f||1 where R, is one of the Riesz
operators. The kernel of R,. % is

(4.3.6)’ KY(z,y) = > 2702w — k), (2y — k),
(r,g,k)ed

where 17 = R,,, for the Riesz operators commute with translations and scale changes.
Since [ 4,(z)dz = 0 we have ¢¥(x) = O(|z|~"~!) as  — oo, and the derivatives decrease
even faster. We have with a constant c

() = ¢ / (W@ — y) — (@) ly " dy
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with absolute and uniform convergence since 1, € C}. Assuming that ¢, € C2 we can
differentiate under the integral sign and conclude that % € C*.
We are now ready to prove that

(4.3.7)' (K5 (z,y) < Cle —y|™",  |0K](2,y)/0(z,y)] < Clo —y| ™",

where C' is independent of J. The proof does not differ much from the proof of (4.3.7) and
we keep the notation used there. For fixed j,r we only have N non-zero terms to consider,
since |27y — k| < R, and we have

2o —y| <290 — k| + |27y — k| < |22 — K|+ R
then. Since ¥%(2/x — k)(1 + |27x — k|)"! is bounded, it follows that
[K5(,y)| <CY 291+ 2w —y) ™"

The sum when 27|z — y| < 1 was estimated in the proof of (4.3.7), and the sum when
27|z —y| > 11is at most |z — y|~""1(2|z — y|) = 2|z — y|~™. This proves the first estimate
(4.3.7)', and the second follows in the same way since differentiation of K% (z,y) only
contributes a factor 2/ to the estimates. However, now we need the estimate

(L + )" 2 ([wy ()] + [0y () /0x]) < C,

which follows since [ 2“1, (x)dz =0 when |a] < 1. (See Proposition 3.3.1.)
From (4.3.7)" it follows by repetition of the proof of (4.3.11) that

(4.3.12) 15 flloer = > 17 flln < Cllflloer
v=0

which completes the proof of Theorem 4.3.5.

4.4. More on s#' atoms and on BMO. The use of L? norms in the defining
property (4.2.29) of BMO(R"™) may seem surprising since after all BMO is a space closely
related to L*°. By duality we obtained the defining property (4.2.38) of atoms in J#1(R")
which also involved L? norms although #! is closely related to L'. We shall now prove
that L? actually has no special role in these contexts although it was convenient in the
developments in Section 4.2.

If I is a cube in R™ we shall denote by I the set of all cubes C I obtained when I is
first divided into 2" equal cubes, and the process is repeated indefinitely for the cubes so
obtained.

THEOREM 4.4.1 (JOHN-NIRENBERG). Let f € L(Iy) where Iy is a cube in R™, and
assume that there is a constant K such that for every cube I € I

1 1
(4.4.1) e / @)= fildn < K, fi= / £() dy.
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Then it follows that

(4.4.2) m({z € I; |f — | > 0}) <ee /Em(ly), o >0,

S =

(4.4.3) — f1, P d:c) <a lepK,

where a = 27 "e" 1.

Before the proof we make a few observations.
1. If instead of (4.4.1) we had only assumed that

(4.4.1) ﬁ /[ |f(x) —c|dx < K for some ¢,

then (4.4.1) would have been fulfilled with K replaced by 2K. In fact, (4.4.1)" implies that
|fr —¢c| < K, hence [, |f(z) — fr|dx/m(I) < 2K. Thus ¢ = fr is always a good choice
although it is not always exactly minimizing except in the L? norm.

2. Since ([, |f(x)—fr|? dxz/m(I))/? is an increasing function of p € [1, 00), the condition
(4.4.1) is for a fixed I weaker than the corresponding LP condition. However, (4.4.3) shows
that apart from the size of the constants such LP conditions posed for all I € I are in fact
independent of p.

PROOF OF THEOREM 4.4.1. Replacing f by f/K we may assume that K = 1, which
simplifies the notation. In particular, ro |f(x) — fr,|dz < m(ly). Denote by F(o) the
smallest constant such that

(4.4.4) m({z € lo; [f(x) = f1,| > o0}) < F(o)m(lo)

for all f satisfying the hypotheses of Theorem 4.4.1 with K = 1. Note that F'(o) <1 and
that F'(o) is obviously invariant under translation and scale changes so it is independent
of Iy. Using the Calderén-Zygmund decomposition (Lemma 4.2.3) we shall prove that

(4.4.5) F(o+2"s) < F(0)/s, ifo>0, s> 1.

We apply the lemma to f(z) — fr, with s > ro |f(x) — f1,| dz/m(ly), in particular any
s > 1. In the decomposition f — fr, = v+ Y 7" wx we have |v| < 2"s almost everywhere,

and the cubes I, are in I by the proof of Lemma 4.2.3. If | f(x) — f1,| > 04 2"s it follows
that = € I and that |wg(z)| > o, for some k. (We ignore null sets throughout.) Hence

m({x € Ip; |f(z) — f1,| >0 +2"s} < Zm({x € I;wi(x) > o})
k
o) Y _m(ly) < Fo) | |f(x) = fr|dz/s < F(o)s™ m(lo),
k Io

where the second inequality follows from the definition of F', applied to [x, and the third
follows from (4.2.13)’.
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When s = e it follows from (4.4.5) that
(4.4.6) F(o+2") < F(o)e™*, ifo>0.

Since F' < 1 we have F(0) < ee™* when 0 < ¢ < 2"¢ if 2"ea = 1, and then it follows
inductively from (4.4.6) that

(4.4.7) F(o)<ee *, o>0,

which proves (4.4.2).
Since

(4.4.8) . |f(x) — fr,|P de = /0 po?*m({x € Io; |f(x) — f1,| > o} do
< em(Iy) /00 po? e " do = a Pem(Io)T'(p + 1),
0

and el'(p + 1) < (ep)? when p > 1, the estimate (4.4.3) follows.
COROLLARY 4.4.2. If f € LL (R") and for every axis parallel cube I C R"

loc

1 1
(4.4.9) i i@ = nlde <k = [

then f € BMO(R") and ||f|lsmo < CK. We have f € LY (R™) for every p € [1,00).

loc

PRrOOF. By Theorem 4.4.1 it follows from (4.4.9) that

(4.4.10) <ﬁ/llf(x) - f[|2dx>l/2 < CK.

Every ball B is contained in a cube I such that m(I) < C,m(B), so we may replace
the cube in (4.4.10) by a ball if the constant is replaced by +/C,,C. This means that our
definition (4.2.29) is fulfilled. From Theorem 4.4.1 it follows also that f € LP in every
cube, which completes the proof.

REMARK. We can of course replace cubes by balls also in the hypothesis (4.4.9).
To prepare for the next corollary we prove a lemma:

LEMMA 4.4.3. Let 1 < p < oco. If f € LP(R™) and supp f C B where B is a ball in
R", and if [ fdz =0, then f € 1 (R") and

(4.4.11) 1Lz < Cp(p = 1)~ m(B) 2| £,

where C only depends on n.

PRrOOF. Since m(B)~Y?||f|l, > m(B)~/2||f|l when p > 2, the statement follows from
Lemma 4.2.8 then, so we assume that 1 < p < 2. As in the proof of Lemma 4.2.8 we may
also assume that B is the unit ball. By Theorem 4.2.2 we have for the Riesz transforms

1R fllo < ClFll/ (2 = 1),
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hence by Holder’s inequality
/| - |R; f(x)| dz < C2"m(B) P fllp/(p = 1)

Since

R =] [ 5wl =y el
Yy
Sﬂﬂ”l/‘lﬂwM% if || > 2,
ly|<1

it follows that
| S @lde < Ul < Il
x|>2

which proves the lemma.

REMARK. The same proof gives Lemma 4.2.8 at once if we assume that m satisfies
(4.2.6).

In the following corollary of Theorem 4.4.1 we shall call a function f € LP(R™) an 71
atom of type p, p > 1, if there is a ball B C R” such that supp f C B, [ f(¢)dz =0 and
m(B)*~1/?||f|l, < 1. Thus the atoms in Definition 4.2.14 are of type 2.

COROLLARY 4.4.4. For every p € (1,0q] there are positive constants Cy,, and C}}, such
that

(4.4.12) {f € 2R [Iflloer < Crp} € Ap C{f € AR [ flloer < C7

where A, is the closed convex hull in ' (R™) of the atoms of type p. If C}', > 1/C},,
then every f € 1 (R™) has an atomic decomposition

oo

(4.4.13) f= Z)\jajv Z Al < Crpllflloen
1

1

where a; are atoms of type p in T (R™); we have || f|| 1 < Chp ST

The proof is again a repetition of that of Corollary 4.1.17 and we leave it as an exercise.
The most precise atomic decomposition is of course the one with p = oo.

We shall now prove a result closely related to Theorem 4.4.1 which proves that also LP
spaces have a characterization similar to that of BMO. This will be useful in the proof of
interpolation theorems. We keep the notation ]A:O in Theorem 4.4.1.

THEOREM 4.4.5. Let f € L*(Iy) where Iy is a cube in R™, and set

(4.4.14) fi@)= sup —— u@—ﬁm%.hzﬁ%[ﬂw@.

zelely m(I) Jy
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If f* € LP(Iy) and 1 < p < oo it follows that f € LP(Iy) and that

(4.4.15) 1f = Frollzecoy < ClF Lo (ro).s

where C' only depends on p and n.

Proor. To simplify notation we assume that fr, = 0 and that

1

- Bla)IP dgy —
(4.4.16) T / PP dy = 1.

Since f*(z) > [} |f(y)|dy/m(Io) this implies that

1

(4.4.17) o) /. [f(y)ldy <1,

which allows us to make a Calderén-Zygmund decomposition of f according to Lemma
4.2.3, for every s > 1. Let I}, v* and w; denote the cubes and functions in this decompo-
sition, and set

(4.4.18) p(s) =Y _ m(I}).
k

The proof of Lemma 4.2.3 shows that if s; < so then each cube I;* is contained in a cube
I3, so p(s) is decreasing. We claim that

(4.4.19) u(s) <m({x € In; f(z) > As}) +24p(27 " ts), s>2"T1 A >0.

Let s’ = 27"~ !5, thus s’ > 1. For every cube I} we can find a cube ]J‘?, with I} C Ij/. If
f*(z) < As for some x € I]‘?/ = I then

1
T / (@) — frldx < As.

Since |fr| < 2"s" = s/2, by (4.2.13) with s replaced by s’, we obtain using (4.2.13) once
more

F(@) = frl da > / F(@)| do — | frm(I3) > Lsm(I}).
Iy Iy

Hence

35> ml}) < /I |f(x) = fr]dz < m(I)As,

IsCI
which proves that

(4.4.20) > m(I}) < 24m(I3).

cry’
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Since all cubes I} contained in a cube IJ‘?/ where f* > As are contained in {z; f*(z) > As},
we have proved (4.4.19).
From (4.4.19) it follows for S > 2"+ that

S 5 o
p/ s pu(s) ds < p/ s"~'m({x € Io; f*(x) > As})ds + 2Ap/ sPu(27" 7 s) ds.
2 0 2

n+1 n—+1

The first term in the right-hand side is bounded by
pA_p/ m({z € Ip; f(z) > s})ds = AP [ |f*(2)|P du.
0 Io

The second term in the right-hand side is equal to
2-n-lg
2Ap2(”+1)p/ sP~1p(s) ds.
1

If we choose 1/A = 4 - 2("+1VP it follows that
2n+1

S
p / P 1p(s)ds < 2477 [ |fH@)P dr+p / #u(s) ds,
2 Ig 1

n—+1

and when S — +o00 we obtain using (4.4.16)

(4.4.21) p/ooo P u(s) ds < Cm(o),

because u(s) < m(1p).
It remains to connect the integral on the left to the LP norm of f. To do so we shall
examine the maximal function

. 1
F@)= sp / )l dy,

wvelel, M
which is > | f(z)| almost everywhere. We shall estimate the measure of
E(s) ={x € Iy; f*(x) > s},

which is the union of the intervals I € I such that [y [f()|dy/m(I) > s.
For every I € Iy and s > 1 we have

/I\f<y>|dy=ij/w|f<y>|dy+/ ) dy.

I\UI;
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In the last integral we have |f(y)| < s by (4.2.12), and when I} C I we have fp
2"sm(I}) by (4.2.13), hence

y)|dy <

/I F)ldy < 2 sm(1)

unless I C I} for some k. In fact, two cubes in fo have either disjoint interiors or else one
is contained in the other. Thus we conclude that E(2"s) C UI};, hence

m(E(2"s)) < p(s), if s> 1.

This proves that
f@rde< [ 1F@Pde=p [ 9 im(Es) ds
Io Io 0
=2"p / sPTim(B(2"s)) ds < 2"Pp / sPp(s) ds + 2"Pm(I),
0 1

and by (4.4.21) this gives ro |f(z)|P de < Cm(I) and completes the proof.
COROLLARY 4.4.6. Let f € LL (R™) and set

(4.4.22) f*(x) = sup

1
p — /|f _ il da ffzm/lﬂy)dy,

where I runs over dyadic cubes, defined by 0 < 29z, —k, <1, 1 < v <n, where k € Z"
and j € Z. If f# € LP(R") and 1 < p < oo it follows that f —c € LP(R™) for some
constant ¢, and that

(4.4.23) If = cllze@ny < Cpll fHl Lo @m)-
We have ¢ = limy,(g) 00 [ f(x) dz/m(E) for arbitrary measurable sets E, and ¢ = 0 if
f € L1 for some q € [1,00).

PROOF. If we apply Theorem 4.4.5 to the cube Iy defined by |z,| < N forv=1,...,n,
it follows that

If —enllrory) < ClfFry), N = fry-

This implies that [cx41 — en|m(In)? < 2C| f*|| s ®n), s0 ey has a limit ¢ as N — oo
which has the desired property. The last statement follows since

1

/]f ) —c|dz/m(E /|f ) —c|P dz/m(E ))5—>O, when m(E) — oo,

which also proves that ¢ = 0 if f € L4 for some ¢ € [1, 00).

An inequality in the sense opposite to (4.4.23) is an obvious consequence of Theorem
4.2.5, for f# < 2(f — ¢)fyy, for every c. The space BMO(R™) has a similar characterization
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with p = co. However, the essential difference is that while the constant term is uniquely
determined in LP(R™) 4+ C when 1 < p < oo there is no natural way to factor out C from
BMO.

In what follows we define f#(x) by (4.4.22) with arbitrary cubes I. The definition is
not changed if we require I to be open, and (4.4.23) remains valid since f¥ can only be
increased by this change. It is then clear that f#(x) is a lower semicontinuous function. If
Y e Co(I) and [;¢dx =0, 1] <1, then

1 1
— / Flaita) o < — / (@) — fi| da.

If the left-hand side is < M for all such ¢, it follows from the Hahn-Banach theorem that
for some measure du with support in I and total mass < M we have

#I)/f(a;)zp(a;) dr = /w(x)du(a:), if v € Co(1 /wd:ﬂ =0,

which means that du(x) = (f(x) — ¢)/m(I) for some constant c. As already observed this
implies [; |f(x) — ¢|dx/m(I) < M, hence |f; —c¢| < M, so [, |f(x) — fr|de/m(I) < 2M.
Hence

(4.4.24) Lit(z) <

2 d$<fﬁ()

where the supremum is taken over all open cubes I with z € I and all ¢ € Cy(I) with
J¥(y)dy =0 and [| < 1.

Assume that f € Ll _is not a constant. Then f#(z) > 0 for every . If 0 < ¢ < %fﬁ and
v € Cy(R™), it follows from (4.4.24) and the Borel-Lebesgue lemma that we can choose
finitely many open cubes I;, functions ¢; € Co(I;) with [¢;(y)dy = 0 and |¢;] < 1, and
functions x; € Cy(I;) With Xg >0and ) x; <1 such that

<Y () [ fwsmdymz), « R
The right-hand side is bounded by f*(z). Hence
(4.4.25) 3llFllp < sup || fllp < 1£¥]lp,  f € Liges  where
(1.4.26) Uf (@) = [ Wa.)f )y, V(o) = 3 @050 /m(l). oy € R

Here the sum is finite, I; denotes open cubes, and x;,v; € Co(I;) are as described above.
If f € L9 for some q € (1 00) then it follows from Corollary 4. 4 6 that || f||, is equivalent
to supy ||V f||,. This gives the following interpolation theorem already announced above:
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THEOREM 4.4.7. Let 1 < p < oo and let T' be a linear operator from LP(R™)N L>*(R™)
to LP(R™) N BMO(R™) such that

(4.4.27) ITfllp < Cllfllp. € LP(R™) N L= (R"),
h ITfl[evo < Cllfllee,  f € LP(R™) N L*(R™).
Then it follows that

(4.4.28) ITfllqg < CCllfllg, e LPR")NLF(R"), p<q< oo,

so the closure of T in L1(R"™) is a bounded operator.
PROOF. With U as in (4.4.25), (4.4.26) we have by (4.4.27)
T fll, < Clifllps VT flloo < Clifllee,  f € LP(R™) N LT (RT),

for [OTf|, < (T, < CITFlp, and |¥Tf|loo < CTf|lBMo- Hence it follows from
the Riesz-Thorin convexity theorem (Theorem 2.3.2) applied to ¥T that

ICTfllg < Cllfllgy fELPNL™®, p<q< oo,

and we conclude using (4.4.26) and Corollary 4.4.6 that (4.4.28) is valid. The proof is
complete.

COROLLARY 4.4.8. Let 1 < p < oo and let T be a linear operator from LP(R™) N
HL(R™) to LP(R™) N LY(R™) such that

ITfllp < Clfllp,  fe€LPR")NAH(R),
(4.4.29) n 1L qn
ITflly < Cllfller,  fe€LP(R")NA(R").

Then it follows that
(4.4.30) ITfllq < CCll fllq, fe€LPR™)N %I(Rn)a 1 <q<p,

so the closure of T in L1(R™) is a bounded operator (defined in L4(R™)).
PROOF. T is densely defined in LP(R™) and has a bounded adjoint T* : L¥ (R") —
LP (R™) where 1/p+1/p' = 1. If g € LP (R")NL>®°(R") and f € L?(R™) N (R™) then
(T"g, /)l = Kg, TH < Nlgllo 1T Fllx < Cliglloo [ 1] 2

By Theorem 4.2.13 this proves that | T*g|lsmo < CC'||gl|eo, for LP(R™) N A1 (R™) is a
dense subset of 1 (R"). Now it follows from Theorem 4.4.7 that

IT%glly < CCyllgllys g € LT (R™) N LT (RY).

Hence

(g, TH = [{T"g, /)| < CCyllgllg I flla;

and since LP (R") N L(R™) is dense in L7 (R") the estimate (4.4.30) follows and the
corollary is proved.



CHAPTER V

CONVERGENCE AND SUMMABILITY
OF THE FOURIER EXPANSION

5.1. The role of multipliers. In Section 4.1 our motivation was the question on
LP convergence of the Fourier series of a function in L?(R) and the analogous question for
Fourier transforms. However, the n-dimensional results of Section 4.2 were instead related
to estimates of derivatives of potentials. We shall now return to the convergence problem.
For the case of Fourier integrals the question is whether the inverse Fourier transform
Xv(D)f of x,f converges to f in LP(R™) when f € LP(R™) and Y, is the characteristic
function of a subset of R" increasing to R™. This formulation is not quite adequate unless
1 < p < 2 so this will be assumed for a moment.

DEFINITION 5.1.1. A measurable function x in R" is called a multiplier on the Fourier

transform of LP(R™), where 1 < p < 2, if x f is the Fourier transform of a function
x(D)f € LP(R"™) for every f € LP(R™). The set of such multipliers is denoted by .#,(R"™).

If x € #,(R™) then the map
(5.1.1) LP(R™) > f— x(D)f € L(R")

is closed, for if f, — 0 in LP(R") and x(D)f, — g in LP(R"), then f, — 0 in L¥ (R™)
and x f, — ¢ in L’ (R™) if 1/p+1/p’ = 1. This implies convergence almost everywhere for
a suitable subsequence, so it follows that ¢ = 0 almost everywhere. Thus (5.1.1) is closed
and it follows from the closed graph theorem that for some constant C'

(5.1.2) IX(D)fllp < Cllfllp,  f € LP(RT).

In particular, (5.1.2) is valid for all f € #(R"). Conversely, if (5.1.2) is true when
f e ZR"), then x € LY (R™) and x € #,(R"™), for if S(R™) > f, — f in LP(R")

loc
then x(D)f, converges to a limit g € LP(R"), so f, — f and xf, — ¢ in Lp/(R”) which
implies that § = xf. We can therefore extend the definition of multipliers to all p € [1, o0]
as follows:

1
loc

DEFINITION 5.1.17. A function xy € L
transform of LP(R"™), where 1 < p < oo, if x f is the Fourier transform of a function
X(D)f € LP(R™) for every f € #(R™) and (5.1.2) is valid when f € .(R"™). The set of
such multipliers is denoted by .#,(R"), and ||x||.#, is defined to be the best constant C
for which (5.1.2) is valid when f € .(R").

(R™) is called a multiplier on the Fourier
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PROPOSITION 5.1.2. #,(R") is a Banach algebra contained in #>(R™) = L>®(R").
If x € M(R™) then x € My(R™) when [1/q—1/2| < |1/p—1/2|, and

(5.1.3) I, < Il i X € Ap(R™) and |2 — 1] <L 1]

If x € #,(R™) and p € S (R") then ox € LY(R™) when 1/q < |1/p—1/2|+1/2.
PrOOF. By Hélder’s inequality (5.1.2) implies

(5.1.2)’ (X(D) 9| < Clifllpllgllrs  fr9 € ' (RT).
Since (x(D)f,g) = (f,x(—D)g) it follows that

Ix(=D)gllp < Cllgllpr, g €L (R").

There is a slight complication when p = oo for then we only obtain that x(—D)g is a
measure with total mass < Clg|l;. However, if § € C§° then x(—D)g is a continuous
function so it is in L' and (5.1.2)" holds. Every g € . is the limit in .% of a sequence
in C§°, which proves (5.1.2)" in general when p’ = 1 also. If we replace g by ¢ where
g(z) = g(—x) it follows that

Ix(D)gllyr < Cligllys g € L(R"),

so x € M,y and ||x|| i,y < I x||.#,- Replacing p by p’ we conclude that there is equality.

Thus the map
S 2 f=x(D)f

is continuous in the LP norm and in the LP" norm. If 1 < p < oo the closure is therefore
a continuous map in LP(R"™) N L¥ (R™) satisfying the hypotheses of the Riesz-Thorin
convexity theorem (Theorem 2.3.2), so it follows that

IX(D)fllg < Cllfllg 315 =31 <15 =3l fe LR

P
If p =1 or p = oo there is again a slight complication since the closure of . (R") in
LY(R™) N L>°(R™) consists of continuous integrable functions converging to 0 at co. How-
ever, the proof of Theorem 2.3.2 shows that this is sufficient for the conclusion.

When p = 2 then the estimate (5.1.2) is equivalent to

IXFll2 < C|IF|l2, F e L*®R"),
and this is true if and only if |x| < C almost everywhere. Thus .#Z5(R") = L*>°(R"), and
A(R™) C L*(R") for 1 < p < oo.

If 1 <p<2and x € #,(R") then (5.1.2) is well defined and valid for all f € LP(R"),
so it follows at once that x1x2 € .#}, and that ||x1x2|/.z, < |Ix1ll.2,x2ll.2, if X1, X2 € A,
If x,, v =1,2,... is a Cauchy sequence in .#,(R") then Xvf converges in L¥ (R™) for
every f € Z(R™), so x, converges to a limit y € Lﬁ;c(R”) which is in ., with norm
< limy S0 || X0l Hence [|X — xpullz, < limy oo ||Xy — Xull.#,, and when p — oo we
conclude that x,, — x in .#), so .#,, is complete.

When proving the last statement we may assume that p < 2. Since xy € L (R") we
have py € L'(R™) so g} € L™(R™), and since ¢ = 1) where ¢ € .#(R") C LP(R") we
have x¢ = U where ¥ € LP(R™), which proves that Y € LP(R"). Hence x € L(R")
when p < ¢ < 0o as claimed.

Multipliers are invariant under linear operations:
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PROPOSITION 5.1.3. IfT : R™ — R™ is an affine surjective map and x € #,(R™),
then X © T e %p(Rn> and HX o T“%p(Rn) = HXH//fp(Rm)'

PROOF. First assume that n = m. If (5.1.2) is valid then replacing f by fe"? where
0 € R" gives ||x(D + 0)fl, < C|lfllp, for x(D)(fei) = 0 x(D + 0) f. This proves

the statement when 7T is a translation. If A is a linear bijection in R™ and fy = fo A
then fa(€) = |det A7 f(tA71¢), so

X(E)Fa(€) = | det A" x(*An) f(n), n="'A""¢.

Thus x(D)fa = (x(*AD) f) 4, which proves the statement when T = A~
What remains is to prove the statement when m < n and

T(&rs-- -y 6n) = (&150 5 Em)-

Then x7(§) = (xoT)(§) = X(&1, - - -+ &m), 50 xr (D) f(x) = x(D') f (x) where x(D') operates
on f as a function of 2’ = (z1,...,2,,) when 2’ = (z,,41,...,2,) is fixed. If (5.1.2) is

valid for x(D’) in R™ and 1 < p < 2, it follows that

/ r(D)f(a )P do’ < CP / (! 2™)P da’

for fixed «”, and integration with respect to 2" gives ||x7(D)f|, < C| fllp,- Conversely, if
this is true we can choose f(x) = g(x')h(x”) with a fixed h € (R ")\ {0} and conclude
that (5.1.2) is valid for x (D). This completes the proof.

The hypothesis that 7" is surjective made in Proposition 5.1.3 is essential, for y o T" may
not even be a measurable function otherwise since it only depends on the values of x in a
null set. However, under conditions which make x o T" meaningful there is a valid version
of Proposition 5.1.3:

PROPOSITION 5.1.4. If T : R™ — R™ is an affine map and x € #,(R"™) then xoT €
Myp(R"™) and ||x o T|| g,y < [IX|.z,®m) if the points in TR™ which are not Lebesgue
points for x have Lebesque measure 0 in TR™.

PrROOF. We may assume that 1 < p < 2. By Proposition 5.1.3 we may also assume
that n < m and that

Tg:(gla-"7€n707'-'70>7 éeRn

We shall denote the variable in R™ by (z,y) or (§,n) where z,£ € R™ and y,n € R™™".
Since (&,m) — x(&,en) is a multiplier with the same norm M for every € > 0, an application
of (5.1.2) to (x,y) — f(x)g(y) gives for e > 0

([[ heteypdway)” < aisllgl, 1 e 7@, ge 2R,

he(z,y) = (2m)" / / SO F(e)g () (€, en) dé dn.
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Since |x| < M almost everywhere it follows that |x(&,0)] < M when (&,0) is a Lebesgue
point for x, hence for almost every £ € R™ by hypothesis, and since

x(8.0) _ggr(l)//’|<€|'n|<5 €+ dgdn///£|<€n<8 &' dy

for almost all £ € R™ and the integral here is a continuous function of &, it follows that
€ — x(&,0) is a measurable function. Let f € Cg°(R"), g € C§°(R™~™). We have

|he(z,y) — ho(z,y)| < (27)~ / |f MIx(E, en) — x(€,0)| d dn
= f[[ Vit ramin+egon - xte <€ 0l ey

The integral with respect to (¢',n) is bounded by a constant and tends to 0 when ¢ — 0
if (£,0) is a Lebesgue point for y and & is a Lebesgue point for x(-,0), hence h.(z,y) —
ho(x,y) as € — 0. By Fatou’s lemma we obtain

(/] ol dedy)” < £l gl

and since ho(z,y) = (x(D,0)f)g we conclude that ||x(D,0)f|l, < M| fllp, which proves
the proposition.

By Theorem 4.1.1 we know that the characteristic function of {t € R;¢ > 0} is in
A»(R) for 1 < p < co. Hence it follows from Proposition 5.1.3 that the characteristic
function of any half space in R™ is in .#,(R") for 1 < p < oo, and since .Z,(R") is a
Banach algebra we conclude that the characteristic function of any polyhedron in R" is in

A (R™).
THEOREM 5.1.5. If x € A4,(R"™) then

(5.1.4) Ix(D/t)f — fllg =0 ast— oo,
if f € LY(R") and\ — 1< ]ll) 2] or 2 < q=p < oo, provided that
(5.1.5) / (€)= 1[dE/e" =0, &0,

1€l<e

that is, 0 is a Lebesgque point for x and x(0) = 1.

PROOF. Since ||x(-/t)||.#, is independent of it suffices to prove that (5.1.4) follows from

(5.1.5) when f € Cg°, for such functions are dense in .%(R™), hence in L9 for 1 < ¢ < co.
Now

X(E/FE) = F(&) = (x(&/t) — 1) f(&)
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is uniformly bounded, and if |¢| < R when f(€) # 0 we have by (5.1.5)

/m&m—mﬂM%sc/

IEI<R

W@M—H%=Cﬂ/ () — 1] dE — 0, £ — 0o,

I§I<R/t

Hence the L? norm converges to 0 so ||x(D/t)f — f|la — 0 as t — oo. Since the LY norm
is bounded when |% -3 < |% — 2] it follows from Hélder’s inequality that it converges to
0 when there is strict inequality. By the Hausdorff-Young inequality this is also true when

there is equality and ¢ > 2, which proves the statement.

REMARK. If y € Hé;’)c in a neighborhood of the origin for some s > n|% — 1], then it
11

follows from Theorem 2.3.8 that (5.1.4) is also valid when |% — 1= |5 — 3l and ¢ < 2.
In particular it follows from Theorem 5.1.5 that x(D)f — f in LP(R™) if 1 < p < o©

and y is the characteristic function of a polyhedron with the origin in its interior. We

shall now show that the situation is quite different for characteristic functions of sets with

smooth boundaries.

THEOREM 5.1.6. Let x be the characteristic function of an open set @ C R"™, and
assume that x € My(R™) for some p # 2. If 9Q is a C? hypersurface in a neighborhood of
a point €0 € 09 and QUON is not a neighborhood of £°, then O is a subset of a hyperplane
in a neighborhood of £°.

PROOF. By Proposition 5.1.3 we may assume that £&° = 0 and that QN U is defined by
& > (E) where &' = (&1,...,&n_1), ¥ € C? and ¥(0) = 0, ¥’ (0) = 0. We must prove that
1" = 0 in a neighborhood of the origin. Let ¢ € C§°(U) be equal to 1 in a neighborhood
Uy of the origin. Then ¢x € #,(R™) for some p # 2, and all points where &, # (') are
Lebesgue points. Hence it follows from Proposition 5.1.4 that (£1,&2) — (¢ox)(&1a + b, &2)
is in #,(R?) if 0 # a € R" ! and b € R""!. If the theorem has been proved in the
two-dimensional case it follows that 1" (b) vanishes in the direction a if (b, (b)) € Uy, so
¥"” =0 in a neighborhood of the origin.

Thus it suffices to prove Theorem 5.1.6 when n = 2, that is, to prove that if » € C*(R)
and pxy € My(R?) for some p # 2, where ¢ € C{°(R?) and x is the characteristic
function of {x € R?;& > (&1}, then " (£1) = 0 if (&1, (&1)) # 0. This will require
some preparations. The first is a lemma explaining how (¢xy)(D) operates on functions
with support oblong in the direction of a normal of the curve {(£1,v(&1));& € R} and
with the corresponding frequency. The second is a famous construction in measure theory,
the Besicovitch solution of the so-called Kakeya needle problem. The proof of the two-
dimensional case of Theorem 5.1.6 will be given after that. (Theorem 5.1.6 was proved by
Fefferman [1] for the unit ball in R™. The general case is not essentially different, but the
proof is more transparent then.)

LEMMA 5.1.7. Let u € C§°(R?) and set fort € R and € > 0
(5.1.6) U e (21, T0) = u(e(zy 4+ ' (t)x2), e2xg) el tB1T¥(OT2)
Then (pxy)(D)ut . = vt where

(5.1.7) Ut (@1,02) = Vi (@1 + 0/ (1)), 225 02+ (072),
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Vie(x) = Vi(x) locally uniformly in (t,x) when € — 0,

(5.1.8) Vi(€) = @(t, (1)) xe (£)a(€).

Here x; is the characteristic function of {£& € R?; & > ¢ (t)€3/2}. If a < w9 < b when
(z1,72) € suppu, then Vy(z) is real analytic for xo < a and for x3 > b, and if [z, u(z) dx #
0 then Vi #Z 0 in these half planes when ¢(t,1(t)) # 0.

PROOF. Set A.(z1,22) = (e(z1 + ¢ (t)z2),e%x5) and 6 = (t,9(t)). Then

Ut,e = (u © A€)€i<.’9>7 Vte = (V;f,e o As)€i<.’9>7
(x) (D)ur.e = €0 (oxy) (D +0)(uo As) = eV, L0 A,

The Fourier transform of uo A, is & — |det A.|~'a(*AZ1€), so the Fourier transform of
(oxu)(D +0)(uo A.) is

& = [ det A (oxy) (€ + 0)a(*AT1E) = | det Ac| ™ (oxy) (‘A 'AZTE + 0)a (AT 1E),

which means that -
Vie(n) = (oxp) (“Acn + 0)a(n).

The right-hand side is uniformly bounded by || sup |p|, and ¢(*A.n+0) — p(0) as e — 0.
Since ‘A.n = (e, e’ (t)m +e2n2) the factor xy (*Aen + 0) is the characteristic function of

{n € R* ey (t)m + *nz + () > th(em +t)}

which converges to {n € R?;ny > ¢"(t)n?/2} when ¢ — 0. This proves that V; . converges
to V4 as defined by (5.1.8).
The inverse Fourier transform of y; is

z— (2m) 72 / / el(@181+2282) e, e,
E2>9" (1)€7 /2

= (27-()_2 /ei(l’1§1+¢”(t)9025f/2) d&l/ 7282 dés
£2>0

with the integrals taken in the sense of distribution theory. This follows at once if we first
introduce a convergence factor e %16 * and then let § — 0. The integral with respect to
& is i/(x9 4+ i0), and the integral with respect to & is 2wy if ¥”(t) = 0 and otherwise
it is the Gaussian +/27i /v (t)zo exp(—ix3/2¢" (t)x2). Thus it is analytic when zy # 0
which proves the stated analyticity. If " (t) = 0 then the convolution with u is asymp-
totic to i/2mxs [u(x1,y2)dy> when zy — oo, and when 9" (t) # 0 it is asymptotic to
ci|m2|73/2 [u(y) dy when x5 — +oo, where ci # 0. This completes the proof.

We shall now discuss the construction of a Besicovitch set in R2. For a triangle ABC
with base AB, of length [, and height A from the vertex C' we form two new triangles
ADA’ and BDB’ where D is the midpoint on AB and C divides AA’ (resp. BB’) in the
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ratio h to d for some d > 0. Thus the bases AD and BD of the triangles have length %l,
and the heights from A’ and B’ are h 4+ d. The union of the triangles ADA’ and BDB’
consists of ABC and two additional triangles A’CA” and B'CB”. (Draw a figure!) The
triangle A’C'A” is homothetic with respect to A’ to A’A"" D where A" is the midpoint of
AC', and the ratio is d to d + %h. Thus

m(A'CA") = m(A'A"D)d?/(d + +h)?,
m(A’A" D) = m(A’AD) — m(AA"' D) = I(h+ d)/4 — Ih/8 = I(h + 2d) /8.

Hence m(A'CA") = 1d?/(4d + 2h), and m(ADA’ UBDB') = lh/2 +1d?/(2d + h). Now we
fix d = 1, and starting with h = 1 we repeat the construction k times ending up with 2*
triangles R;, j = 1,..., 2k with bases of length 271 and height k + 1,

2k
(5.1.9) m(|JR;) < %l+lZ—<llog(kz+l)
j=1

If 5;15 denotes the union of the half lines with one end point at C' intersecting AB,

—_—~—

with CAB removed, then A’AD and B’BD are disjoint subsets of CAB. If we define ﬁj

similarly it follows that all Ej are disjoint. This means that if ﬁj is the part of Ej at
distance < k + 1 from the line through A and B, then

m(JRyj) =D m(R;) =3 m(R;) =3Ik +1)/2

which according to (5.1.9) is larger than the measure of UR; by a factor (k+1)/log(k+1).
This is the essence of the “sprouting” construction.

Before using the construction to finish the proof of Theorem 5.1.6 we shall digress
to discuss its consequences for the definition of maximal functions. Suppose that for

f €L _(R?) we define

loc

(@ —sup/lf )| dy/m(K)

zeK

where K is an arbitrary bounded open convex set C R2. (It would make no essential
difference if we required K to be a rectangle or to be the interior of an ellipse.) If there
is an estimate ||f*||, < C|f]|, then it follows by a scale change that ¢ = p. Now take for

f the characteristic function of UR;. In the sets }A2j we find by taking K = R; U }A?,j that
f*>1/4. Hence

[fllp < (llog(k+1))%7 Al £, > 31k + 1 )/2)%

and since k can be chosen arbitrarily large it follows that no L? estimate is possible.

END OF PROOF OF THEOREM 5.1.6. It remains to prove the two dimensional statement
in the form given in slanted text at the end of the first part of the proof. Assuming
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that ¢”(0) # 0 we shall derive a contradiction. To do so we start from the Besicovitch
construction above with a triangle ABC' whose base AB is on the x-axis and top C' is on
the line x5 = 1, chosen so that the range of (—’(t), 1) for ¢ so small that ¢(¢,1(t)) = 1

covers all vectors D? with D between A and B. In the construction we choose a large
number £ of iterations. Let

(5.1.10) e=2""/(k+1)

be the ratio between the base and the height of the triangles R;, and let (—¢’(¢;),1) be
the direction of the median in R;, the line from the midpoint m; of the base to the top.
Choose

(5.1.11) ue CP({r e R, —1 <2 <0,|21| < 3(1—22)}),

and consider uy, . as defined by (5.1.6). The support lies in the triangle R if R is the
triangle with vertices e_l(j:%, 0) and e~2(—v'(¢;), 1), which is similar to R; with the ratio
27F] /et = £2(k+1). Thus the support of ug, . (- —rm;) is in /—fﬁj where k = 1/(e?(k+1)).
Let

2k
fo= Zewﬂ'utjvg(- —rmj), 0; €R,
j=1

and write T = (pxy)(D), E = U(kR;). Then

/]Tf9|2d:v22/ ]Tutjyg(-—ﬁmj)lzd:z:
E —JE

for a suitable choice of 6, for if we expand the left-hand side and take the mean value over
0, the cross products drop out so the mean value is equal to the right-hand side. Since
E D kR; it follows from Lemma 5.1.7 when ¢ is small enough that for some ¢ > 0

kSN

e < [ e ([ i) ome)-

where we have also used Holder’s inequality, assuming that 2 < p < oo. If T' is bounded
in LP? norm then

TSl < Cllfolly = C Y Mg, e (- — wmy) | < C'2%e™
j

for the sets }/%j are disjoint. Hence
2ke=3 < C"m(E) < C"k*llog(k + 1)

and since 2k 73x72 = 2%¢(k+1)? = [(k+1) we get a contradiction when k is so large that
k+1> C"log(k +1). The proof is complete.



THE ROLE OF MULTIPLIERS 133

Note that the point in the proof was that the L? norm of fy is bounded by the norm of
a term times the number of terms raised to the power 1/p, since the supports are disjoint,
whereas the L? norm of T'fy in E involved the number of terms raised to the power 1/2
only. The discrepancy between L? and LP norm could be overcome by Holder’s inequality
since the terms in T fy were all large in the same set E of not too large measure. It is this
focussing effect which is the main point in the proof.

Theorem 5.1.6 proves in particular that for p # 2 and n > 1 the characteristic function
x of the unit ball in R™ is not in .#,, so spherical summation of the Fourier expansion
is not possible. The difficulty stems from the discontinuity of x at the unit sphere and
disappears if y is replaced by a cutoff function in C§°(R™). We shall now study how
smooth it has to be, in particular examine when

(L= gP)e, iffgl <1

) 6Rn7
0, if [€|>1 ¢

(5.1.12) Ro(€) = {

is in .#,(R™). When R, € .#,(R") it follows from Theorem 5.1.5 that the Riesz-Bochner
means R, (D/t)f converge to f in LP(R™) when t — oo, for all f € LP(R"). The following
theorem gives a necessary condition which is actually much more elementary than that in
Theorem 5.1.6.

THEOREM 5.1.8. Let o € C°(R"™) be real valued, n > 1, and define o, = max(p,0).
Assume that o has a zero €2 € R™ such that ¢'(€°) # 0 and " (%)t # 0 if 0 #t € R®
and o' (€9)t = 0, that is, the zeros of o form a hypersurface with total curvature # 0 at £°.
Then

(5.1.13) =3 <an+ 2 if X0 € A,

for some x € C§° with x(£°) # 0.

PRrROOF. In view of Proposition 5.1.2 it suffices to prove the statement when p < 2, that
is, prove that 1/p —1/2 < 1/2n + a/n. By Proposition 5.1.3 it is no restriction to assume
that €Y = 0 and that ¢'(£°) = (0,...,0,1). Write £ = (¢/,&,) where & = (&1,...,&0-1).
Then the equation o(¢’,&,) = 0 has a unique solution &, = ¥(§’) in a neighborhood of 0,
and ¥(0) = 0, ¥'(0) = 0 and det "’ (£') # 0. The quotient 0(£)/(&, — ¥(£')) is in C*° in
a neighborhood of 0 and equal to 1 at 0. If a € C§°(R™™ 1) and b € C5°(R) have support
sufficiently close to the origin, it follows that

m(&) = a(€)b(&n — P(€)) (& — Y(E))F = w(Ex(§)o+(§)7,

where (&) = a(€)b(&n — ¥ (€))((&n — ¥(€))/0(€))" /x(€) is in C5°. If x0 € 4,(R")
it follows that m € .#,(R™) and by Proposition 5.1.2 that m € LP(R™). A change of
variables gives

(5.1.14)

m(z) = A(z)B(z,), A(z)= / e~ N+t g (e de! ) Blxy) = /0 h e~ ()™ dt.
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The method of stationary phase (see Theorem 2.4.6) gives that if a(0) # 0 then |A(z)| >
C|2,|~ (=172 at infinity in a conic neighborhood of the x,, axis, for some C > 0, for the

equation ' + x,v' (') = 0 for the critical point has a unique solution £ near 0 when
& /| is small, since 1'(0) = 0 and det " (0) # 0. The Fourier transform of ¢ is

7= D4 1)(r +0)"7 L =T(a + 1)|r| 7@ e~ 5 (et Dsenr

for it is the limit as € — +0 of the Fourier transform
[e.e] oo o0
/ tre I gt = / tee tEHT) gt = (e 4 i7) 71 / t*e~t dt.
0 0 0

The last integral is I'(a + 1), and the second equality follows from Cauchy’s integral

formula. The Fourier transform B is the convolution with b/2x, which is in .%(R.) and has
the integral b(0). Hence

|B(z)||2n|* T — T'(a+1)[b(0)|, as x, — oco.
If b(0) # 0 it follows that for some C” > 0
()] 2 C'lay| =307
at infinity in a conic neighborhood of the xz,, axis. Since m € LP(R™) it follows that

p(%(n—1)+a+1)>n, that is,%<%+%+

3L

which proves (5.1.13).

It is not known whether in general the necessary conditions o > 0 in Theorem 5.1.6 and
(5.1.13) in Theorem 5.1.8 are sufficient to guarantee that say R, € .#,. An exception is
the two-dimensional case which will be studied in Section 5.2. When n > 2 the sufficiency
will be proved in Section 5.3 when |1/p — 1/2] > 1/(n + 1). It is actually known in a
slightly wider range, but the proofs are then much more difficult and we shall only give
some references to the literature for such results.

5.2. The two-dimensional case. The proof of Theorem 5.1.8 showed that after
appropriate localization the operator ¢% (D) in R™ is essentially a convolution with the
product of a function which is homogeneous of degree —%(n + 1) — « at infinity and an
oscillatory factor e'® with ® homogeneous of degree 1, which comes from the phase factor in
(2.4.7). To study such operators we shall begin with a modification of the Hausdorff-Young
inequality (Theorem 2.3.1) which is valid in any dimension.

THEOREM 5.2.1. Let a € C°(R?™), let ¢ € C(R>?™) be real valued, and assume that
det(0%p(x,y)/0xdy) # 0 when (z,y) € suppa. Set

(5.2.1) Tyu(z) = / NPTV a2, yuly) dy, € LL,(R™).
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If1<p<2and1l/p+1/p’' =1, then
(5.2.2) NP || Tyully < Cllull,, we LP(R™), N > 0.

Note that if 1/p+ 1/p’ =1 then p < 2 is equivalent to p’ > p.

PROOF. By the Riesz-Thorin convexity theorem (Theorem 2.3.2) we only have to prove
the estimate for p = 1 and for p = 2, and it is trivial for p = 1. To prove it when p = 2 we
write

Tyl = [ [ axto,2)utwu) dy iz

an(y.2) = [ NP, )iz, 2] da.

If det ¢!/, # 0 at (z°,y") then it follows from Taylor’s formula that

ol (2, y) — i (x,2)| = @, (z,9) (y — 2)| + O(ly — 2[*) > cly — 2]

for some ¢ > 0 if |z — 2% + |y — ¢°| + |z — ¥°] is sufficiently small. If this is true when
(x,y) € suppa and (z,2) € suppa we can apply Theorem 2.4.1" with the phase function
x> (p(z,y) —p(x,2))/|ly — 2| and 7 = N|y — z| and obtain

lan(y,2)| < Cr(1+ Ny — z)7"

for any positive integer k. When k = n + 1 it follows that

ITwul® < Coss / / (1+ Ny — 2))" u(y)lu(z)| dy dz
< Coallal? [ (14 Nlyl) ™" dy = ON " ul?”,

which proves (5.2.2) when suppa is sufficiently close to (z°,4"). By hypothesis we can
always choose a partition of unity 1 = Zf X; in a neighborhood of suppa so that (5.2.2)
is valid with a replaced by xja, j = 1,...,J. Hence the estimate follows for a = Zf X ;-

The hypothesis det 3, # 0 in Theorem 5.2.1 is quite essential. In fact, assume for
(;xample that a(0,0) # 0 and that (5.2.2) is valid. With A = ¢}, (0,0) we have by Taylor’s
ormula

p(x,y) = ¢(z,0) + ¢(0,y) = ©(0,0) + (z, Ay) + O(|z[* + |y ).
If we choose v € C§°(R") and set u.(y) = v(y/e)e *N*(OY) | then

(Twu.)(ex) = / N PERD) =00 (e ey )o(y)e™ dy

— N0 00)zn [ NE AN O a(0,0) + O))oly) dy,
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With e = 1/v/N the integral converges to a(0, 0)9(— ‘Az) uniformly on compact sets. Since

Tl = [ 1T ee)'e" da,
it follows that

lim | Tvue e P > [a(0,0)[[[0(—"A-) [l = a(0, 0)[] det A|~ V7' [v]|,.

N—o0

We have ||uc||, = |[v],e™/? and en(1H1/P)—n/p = c2n/p" = N=7/P' 56 the estimate (5.2.2)
implies that |a(0,0)|||8], < C|det A|*?'||v]|,. When v is fixed this gives a positive lower
bound for |det A| where |a| has a positive lower bound. In addition we see that the
Hausdorff-Young inequality is a consequence of Theorem 5.2.2.

However, a weakened version of (5.2.2) is always valid:

THEOREM 5.2.1". Let a € C°(R"™ x R™), let p € C°(R™ x R™) be real valued, and
let v be the minimum rank of 8*¢(x,y)/02dy when (z,y) € suppa. Set

(5.2.1) Tyu(z) = /eiN“P(x’y)a(:p,y)u(y) dy, wu€ L. (R™).

If1<p<2and1l/p+1/p' =1, then

(5.2.2)’ NP || Tyully < Cllully, we LP(R™), N > 0.

PROOF. It is sufficient to prove this when p = 2. For arbitrary (z°,4°) € supp a we can
label the coordinates so that det(9?p(x, Y)/0z;0yk)" =y # 0 at (2°,99). Set

1

- (xV-f—l? s ,$n), ?J’ = (?Jb .. 'ayl/>7 y// = (yl/—l-b vee ;ym)7

Swu(z,y’) = / NN (e uly) dy's @ = (22, y = ().

¥ =(x1,...,m,), ¥

It supp a is sufficiently close to (2, y°) it follows from Theorem 5.2.1 that
N [ 1Swutay )P da’ < €2 [ lutyy") P dy

Integration with respect to 2’ and y"” gives (5.2.2)', for Tyu(x) = [ Sy (z,y”) dy” implies
Tyu(z)]? < C [|Snu(x,y”)|?dy” since y” is bounded in the support, and z” is also
bounded there.

We shall actually need an estimate similar to (5.2.2), but with different L? norms and
other powers of N when ¢ does not satisfy the assumption in Theorem 5.2.1. We shall
begin with a quite degenerate case where n = 2 and ¢ is independent of one of the y
variables. A statement which is closer to Theorem 5.2.1 will be given afterwards.



THE TWO-DIMENSIONAL CASE 137

THEOREM 5.2.2. Leta € C§°(R?xR), let ¢ € C°(R? xR) be real valued, and assume
that

0?p(x,t)/0tdr1  *p(x,t)/0tdxs

(5.2.3) det (6390(x,t)/8t28m1 83gp(x,t)/6t28x2) #0, if (x,t) € suppa.

Here x = (x1,72) € R? and t € R. Set
(5.2.4) Tnf(z) = / eNe@ o (x, t)f(t)dt, fe Ll (R), zeR2

Then it follows that

(5.25) |Tnflly < CN"29q/(q= ) [fl,. FEL'(R), ifqg>4and?+1=1,

Note that if 3/¢+ 1/r = 1 then ¢ > 4 is equivalent to g > r.
PRrROOF. Attempting to apply Theorem 5.2.1 we form

Fy(2) = (T f(a))? = [ [ N0 2D a(a, ae, ) (0)1(5) dst.
However, the hypotheses on the phase function are not fulfilled since the determinant

dot 0?p(x,t)/0x10t 0*¢(x,5)/0x10s
0%p(x,t) /0220t 0*p(x,5) /01205

vanishes when t = s. Subtracting the first column from the second we get by Taylor’s
formula that

dot 0?p(x,t)/0x10t 0*p(x,s)/0x10s
0?¢(x,t) /0120t  0?¢(x,8) /01205

— 8290(1’, t)/axlat 8330($, t)/axlat2 2

= (s —#)det (82(,0(1‘, t)/0x20t  3p(x,t)/0x20t> +O(s =)

so the absolute value is bounded below by c|t — s| for a positive constant ¢ in the support
of a(z,t)a(z, s) if supp a is sufficiently close to a point (z°,°) where (5.2.3) is valid. Now
o(z,t)+p(x, s) is a symmetric function in s, ¢ so it can be regarded as a function of (z, u, v)
near (2°,2t°,0), where u = t + s and v = t — s, which is even in v. Hence there is a O
function ®(x,u,w) in a neighborhood of (x°,2tY,0) such that ¢(z,t) + (z,s) = ®(z, u, w)
if u=t+sand w = (t — s)2 Similarly a(z,t)a(z,s) = A(z,u,w) where A € C* and
supp A4 is close to (z%,2t%,0). The Jacobian D(u,w)/D(t,s) is equal to 4(s — t), and the
map (s,t) — (u,w) is a double cover of the half plane where w > 0, so we obtain

Pxa) =} [ e A0 f(@) £ ()t~ o dud
w>
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where ¢ = 1(u + /w) and s = (u F /w). Now & satisfies the hypotheses of Theorem
5.2.1 in a neighborhood of (z9,2t%,0), so Theorem 5.2.1 gives for 1 < p < 2

1

IS8y = WEwlly < ONZ ([ 5@ )Pl = of 7 dudw)

w>0
= on=2 (2 [ [P Pl - st v as i)

We can estimate the right-hand side using the classical Hardy-Littlewood inequality proved
in an example following Theorem 4.1.2 which states that

(5:26) [ 15 =t 15 lo®] ds e < Cprpall ol

if 1/p1+1/po=14+~v>1and 1<p; <oo. Withy=2—-pand1/py =1/ps=(3—p)/2
we obtain

( / FOFEPls— ' Pdsdt)” < C@=p) VP fByp, 1<P<2

for inspection of the proof of (5.2.6) gives Cp, p, < C/v = C/(2 — p). We leave the
verification as an exercise. Hence

||TNf||2p’ < CN_I/pl(z _p)_1/2p||f||2p/(3—p)'

With the notation 2p’ = ¢ and 2p/(3 —p) =r we have 1/r+3/q=3/2p—1/2+3/2p' =1,
and p <2 means ¢ >4,2—p=(¢—4)/(¢—2). Since 1/2p < 1/4 the inequality (5.2.5) is
now proved if supp a is sufficiently close to a point where (5.2.3) is valid. As in the proof
of Theorem 5.2.1 a partition of unity completes the proof.

The condition (5.2.3) means that the first and second derivatives of dp(z,t)/0z with
respect to t are linearly independent. Thus t +— Op(x,t)/0x € R? defines a smooth
immersed curve with curvature different from 0. In the special case where ¢ is linear in =z,
the curve is independent of x and we are led to the following;:

COROLLARY 5.2.3. Let I be an open interval on R, and let I >t — ®(t) € R? be an
immersion of I as a curve I' with curvature # 0. Set

(5.2 St(a) = [ =D aft)dt, f € L(R), o € R,
where a € C§°(I). Then it follows that

(5.2.8) 1SFllq < Cla/(q — )| fllr, fEL'(R), ifqg>4

QW

+1=1
With § denoting the Fourier transform of g € L*(R?) N LY(R?) we have

(5.2.9) la(go @)|Lray < CA=39) Tlglly, f1<q<$, 2+1=3
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PRrROOF. The function ¢(z,t) = (x, ®(t)) satisfies (5.2.3) in every compact subset of
R? x I. Choose b € C§°(R?) with b(0) = 1 and apply Theorem 5.2.2 with a replaced by
b(z)a(t). This gives

N ( / ba)(SH(Na) | dw ) < Cla/(a =) £l

If we introduce Nz as a new integration variable in the left-hand side and let N — oo, the
estimate (5.2.8) follows. The estimate (5.2.9) is dual: We have

(@(go0).1) = [[ 2O gw)ae) f(t) dwdt = [ (S)(-a)glo)

so Holder’s inequality and (5.2.8) gives

[(a(g o @), /)] < 1S fllollglle < Cla/(a = D)1 £ ]l lglla-

Since 3/¢' + 1/r" = 3 and q/(q —4) = ¢'/(4 — 3¢’) the inequality (5.2.9), with ¢ and r
replaced by ¢’ and r’, follows from the converse of Holder’s inequality.

We shall now rephrase Theorem 5.2.2 in closer analogy to Theorem 5.2.1.

THEOREM 5.2.4. Let a € C§°(R? x R?), let p € C®°(R? x R?) be real valued, and
suppose that when (z,y) € supp a we have d*¢(z,y)/0xdy # 0 and

(5.2.10)  9*(t,0p(x,y)/0x)/0y* #0, if 0#teR? Ot dp(x,y)/dx)/dy = 0.
If Ty is defined by (5.2.1) with n = 2 then
(5211) |Tyull, < CN~¥%(g/(q = 4)3||ull., uw€L'(R®), ifg>dand ]+ ] =1

PROOF. Since ' = ¢/3 < ¢, thus r > ¢/, the estimate (5.2.10) follows from (5.2.2),
with n = 2 and p = ¢/, if det 9%p/0xdy # 0 in suppa. It is therefore sufficient to prove
(5.2.11) when suppa is in a small neigbhorhood of a point (z°,4°) where 8%p(x,y)/0xdy
has rank 1 and (5.2.10) is valid. After an affine change of x variables we may assume that

O = 0 and that 9%¢/9z,10y = 0 at (2°,1°). Then %@ /0220y # 0 and 93p/0x10y* # 0

t (z%,9°). After an affine change of y variables we may therefore assume that y° = 0
and that 0%p/0x20y; # 0, O3p/0110y? # 0 at (0,0). Since §%p/0x10y; = 0 at (0,0) it
follows that (x,t) — @(x,t,y2) satisfies (5.2.3) in a neighborhood of the origin when ys is
fixed and small, for the determinant is equal to —8%¢/0x20y193p/0x10y3 at the origin.
Writing

Fule,p) = [ VD alo, uly) dy
we have by (5.2.5) since Tnu(z) = [ Inu(x,y2) dys

| Tnullq 5/ dya|| Inu(-, y2) || La(r2) < CN_z/q(Q/(Q—‘l))‘l‘/ lu(, y2) |l (r) dy2,
K K

where K is a compact set such that a(x,y) = 0 if yo ¢ K. By Holder’s inequality the
integral in the right-hand side is < m(K)Y"||u||,, which completes the proof.
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COROLLARY 5.2.5. Let ® € C°(R?\ {0}) be real valued and positively homogeneous
of degree 1, and let A € C§°(R?\ {0}). Set

Suf(x) = / S Ae — ) f(y)dy, | € LL.(R?).

If " #£ 0 in supp A, it follows that

(5.2.12) 1Sefllp < Colfllp:  f € LP(R?), t>2, p>2, where
thg/p —4 i) ) > 4’

(5.2.13) () = I(M@ )) if p
Ct~z2(logt)2 7, if2<p<Ad.

PrROOF. The phase function ¢(z,y) = ®(z — y) satisfies the hypotheses of Theorem
5.2.4 when z — y € supp A. In fact, ®”(z)z = 0 since @’ is homogeneous of degree 0,
and since ®”(z) # 0 it follows that ®”(z2)t = 0 implies that ¢ is proportional to z, and
¢ (2)z = —®"(2) since ®” is homogeneous of degree —1.

Let 0 < x € C§°(R?), [ x*dz = 1. Then the hypotheses of Theorem 5.2.4 are fulfilled
if a(z,y) = A(x —y)x(y). If p > 4 it follows that

(5.2.14) 1S fllp < Co@®Ixfllps  f € LP(R?),

for r = p/(p — 3) < p. Theorem 5.2.1" gives the estimate (5.2.14) when p = 2. The Riesz-
Thorin interpolation theorem (Theorem 2.3.2) gives (5.2.14) for p < 2 < 4 if we apply it
between p; = 2 and p; =4+ 1/ logt.

By the translation invariance of S; it follows that for z € R?

(5.2.15) 102 Fllp < CoOlIXC = 2)fllps where Sp.f = Si(x(- — 2)2).

Since

S0 f(x) = / 1D Az — )3 (y — 2 f(y) dy,

the integral with respect to z is equal to S;f(x), and since A(z —y)x(y — z) # 0 implies a
bound for x — z, we have by Holder’s inequality

|Sef(z)|P < C’p/|5t’zf(3:)|p dz.

If we raise the estimate (5.2.15) to the power p and integrate with respect to z it follows
that

1Sefllp < CC @) lIxpll I
which completes the proof.

Since ® is homogeneous we have

(5.2.16)  (Sef)(x/t) = /e@(x_ty)A(ac/t —y)f(y)dy = /e@(m_y)A((I —y)/t)g(y) dy
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where g(y) = f(y/t)/t%, and (5.2.12) gives

1S /Ol = /PUSef I < P CoON fllp = 2 Co®)lgll,

If we multiply (5.2.16) by ¢t~!=* and integrate with respect to t from 2 to oo, it follows
that the operator

(5.2.17) Kyg(x) = /eiq)(x‘y)bx(x —y)g(y) dy,
(5.2.18) br(z) = /200 Az /)t~ 172 dt,

is bounded in L? provided that p > 2 and that

(5.2.19) /:o C, ()t~ dt < 0.

By (5.2.13) this condition is equivalent to

21—y, ifp>4
A > { 3( 2 _
5 if2<p<A4.
The function b defined by (5.2.18) is positively homogeneous of degree —\ when |z| is so
large that z/t € supp A implies ¢ > 2, for then we have b(z) = by(z) where

(5.2.20) bo(z) = /OO A(z/t)t~ 172 de.

Every by which is positively homogeneous of degree —A is of the form (5.2.20) with A(z) =
bo(2)o(z) where g € C5°(R?\ {0}) is chosen so that [ o(z/t)dt/t =1 for z # 0. This is
true for any non-negative C'°° function of |z| with support in (1, 2) after multiplication by
a suitable normalizing constant. This gives the following theorem when p > 2, and when
p < 2 it follows by duality.

THEOREM 5.2.6. Let ® € C°(R?\ {0}) be real valued and positively homogeneous of
degree 1, and let ag € C°(R?\ {0}) be positively homogeneous of degree —\. Assume that
®" () # 0 when ap(x) # 0, x # 0, and that

(5.2.21) A>max(3,2|1 — 3|+ 1).

If a € L _(R?) is equal to ag outside a compact set, then the operator f +— (e*®a) * f

loc

extends from L'(R?) N L>*°(R?) to a continuous operator in LP(R?).

In fact, we have just proved the continuity of this operator for some b € C'*° equal to
ag outside a compact set. Hence b —a € L, and f + (b — a) * f is continuous in LP for
every p.

Theorem 5.2.6 gives the sufficiency of the necessary conditions in Theorem 5.1.8:



142 V. CONVERGENCE AND SUMMABILITY OF THE FOURIER EXPANSION

THEOREM 5.2.7. Let o € C(R?) be real valued and negative outside a compact set,
and assume that ¢'(£) # 0 and that o" (&)t # 0 if € € R?, 9(&) = 0 and 0 # t € R?,
o' (&)t =0. Then 0% € MH(R?) if

(5.2.22) a>max (0,25 — 3| - 3)-

PROOF. The zeros of o form a compact set, so a partition of unity shows that it is
sufficient to prove that for every £° with 0(£%) # 0 there is some ¢ € C5° with p(£°) # 0
such that ¢o% € M,(R?). If we choose ¢ as in the proof of Theorem 5.1.8, keeping the
notation there, we find that it is sufficient to prove LP continuity of convolution with a
C*> kernel K such that outside a compact set K(z) — e’®@ag(z) = O(|z|~'=*) where
ag is homogeneous of degree —\ and A\ = 3/2 + a. Here ® is defined in suppag by
O (x) = x1t + x29(t) where ¢ is a C°° function of z, homogeneous of degree 0, determined
by the equation x1 + w21’ (t) = 0; ¥ (t) # 0. Thus &' (x) = (¢,7'(t)) and §*®(z)/0x? =
0t/0xy = —1/(x20"(t)) # 0. Since (5.2.22) is identical to (5.2.21), the theorem is proved.

The hypothesis in Theorem 5.2.7 that the curvature of {&; o(§) = 0} is not equal to
0 is superfluous. A fairly simple localization argument proves that the result remains
valid if there are no points which are flat of infinite order, and Sj6lin [1] has proved it for
arbitrary smooth curves. (However, the necessity proved in Theorem 5.1.8 requires a non-
zero curvature at some point.) This suggests that there should exist a more natural proof
which does not aim so directly at the kernel of the convolution operator corresponding to
the multiplier, but none seems to be known.

5.3. The higher dimensional case. Our first goal is to prove an analogue of
Theorem 5.2.2 which was the key to the results in Section 5.2. Thus let ¢ € C*°(R?"™1)
be real valued, let a € C$°(R?"~ 1), and consider the operator analogous to (5.2.4) defined
by

(5.3.1) Ty f(z) = / N oz, y) f(y)dy, | € L (R,

Here the variables in R?>"~! are denoted by (z,y) where z € R™ and y € R"~1. We shall
assume that

(5.3.2) rank(0%¢(x,y)/0x0y) =n —1 when (z,y) € suppa.

Then there is for every (x,y) € suppa a vector t € R™ \ {0}, uniquely determined up to
a constant factor, such that (9/0y)(0p(z,y)/0x,t) = 0. The analogue of the hypothesis
(5.2.3) is that for (x,y) € suppa
(5.3.3)

(0/0y)(0p(x,y)/0x,t) =0 = det(9?/0y*)(Op(x,y)/0x,t) #0, if0#tcR"

The conditions (5.3.2) and (5.3.3) do not change if we add a function of = or a function
of y to ¢ or change the x or the y coordinates, and this does not affect L"L? estimates of
the form (5.2.5) either, apart from the size of the constants. One can therefore simplify ¢
using the following lemma.
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LEMMA 5.3.1. If ¢ satisfies (5.3.2) at the origin, then there are new x and y coordinates
such that at the origin

(5.34)  (z,y) — ¢(x,0) = ¢(0,9) + »(0,0) Z%yﬂr 52 (AW)y, y) + Oz *|y[*),

where A(y) is a real symmetric n X n matriz which is a C*° function of y.

Proor. By Taylor’s formula applied first in the x variables and then in the y variables
we can write

n n—1

p(x,y) — o(x,0) = 0(0,9) +9(0,0) = > >~ ejulz, y)zjyn-

j=1k=1

The condition (5.3.2) at the origin means that ) ¢;%(0,0)z,y, = Z?_l L (x)yx where the
linear forms Lj are linearly independent. By a linear change of the z variables we can
achieve that Li(z) = z; which we assume now. Again by Taylor’s formula we can write

cin(@,y) = ¢;n(0,0) + > dir(@)ar + Y ejm(y)u + Rix(x,y)
=1 -

where Rji(z,y) = O(|z||y|). This gives

— n—1 n—1
o(x,y) = Z (90]+ Z diji(z xkﬂﬁz) (yj+ Z ejk:l(y>ykyl> +ap Z enkl(Y)Yryr + R(x,y)
Jj=1 k,l=1 k,l=1 =1

where R(z,y) = O(|z|?|y|?). This proves the lemma.

The condition (5.3.3) with (x,y) = (0,0) means that the matrix A(0) is non-singular,
so this is an invariant condition. When examining the conditions for the validity of an
L" L9 estimate of the form (5.2.5) for Ty we may assume that ¢(x,0) =0, ¢(0,y) = 0, for
otherwise ¢ may be replaced by the left-hand side of (5.3.4), and we assume that a = 1
in a neighborhood of the origin. Let f € C§°(R"™1) have so small support that a = 1 in
a neighborhood of {0} x supp f. To examine T f in a conic neighborhood of the z,, axis
close to the origin we set ' = (x1,...,2,_1) = 2,2 and note that with some ¢ € C*°

p(@,y) = o((Tnz, 20),y) = 2u((2,9) + 3{(AWY: ) + 209(2, 20, y))-
Hence y — ¢(x,y)/x, has a unique non-degenerate critical point close to the origin if z,,

and z are sufficiently small. If supp f is sufficiently small it follows from the method of
stationary phase, Theorem 2.4.5, that there are positive constants cy, ..., cs such that

TN f(Tnz,2n)| > c4(an)%(1_”)7 if |z| <e3, ¢1/N < zp, < Co.
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Hence, with another positive constant cs,

Cc2 . 1
/ | Tn f ()| dz > C5N§(1_”)q/ o V02 g,
C]_/N
Since (n —1)(1—3¢)+1= nq(% —t+5)and 3(1—n)g— (n—1)(1—3¢) — 1= —n, it
follows if we distinguish the cases where the integral on the right converges or diverges at
0 that

: 1(n—1 1 1 1 \—1 el 1 1 1
(5.3.5) Nhfio ITnfllNZD > O -3+ 55)77, if3—5<i<i,
5.3.6 im | Ty fll, N2 D(logN)"a >, ifl=1_1
— q q 2 2n
N—o00
(5.3.7) Jm ITnflNY? > C(5 -2 —35)7a, ifL<i—g

The exponent —1/¢ in (5.3.5) and (5.3.7) may of course be replaced by 1/2n —1/2. When
n = 2 we have therefore proved that the growth of the constant in (5.2.5) as ¢ — 4 cannot
be improved and also that no estimate of the form (5.2.5) is valid with ¢ < 4 no matter
how r is chosen. Also in the higher dimensional case we conclude that an estimate of the
form

(5.3.8) 1T fllg < CN~"/9|| f]|,

cannot be valid unless ¢ > 2n/(n — 1). To prove a necessary condition on r also we first
observe that since

(Tn f)(z/N) = /eiN¢($/N’y)f(y)dy—> /ei<"”’q’(y)>f(y) dy, N — oo,

where ®(y) = (y, 3(A(y)y,y)), it follows from (5.3.8) that

1571l < Cllfll,,  where Sf(z) = / 2w £ () dy.

Now we use a scaling argument. Let f € C°(R"™1)\ {0} and set f.(y) = f(y/e)e—)/"
with a small € > 0. Then ||f:||, is independent of € and

(Sf)(@ [e, 2 /e3)e ™/ = S, f(2) — Sof (x)
where 1/r + 1/r" =1 and S; is defined as S but with A(y) replaced by A(ey). Hence

lim £/ CDIYS g > S0,

e—0
which proves that (5.3.8) implies (n+1)/¢— (n—1)/r’ <0. Summing up, (5.3.8) requires
that

(5:3.9) <273 tepmgtrslh

When n = 2 these are precisely the conditions in (5.2.5).
However, when n > 2 the conditions (5.3.9) are not sufficient to guarantee that (5.3.8)
is valid. The following striking example is essentially due to Bourgain [1].
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EXAMPLE. Let n = 2k + 1 be odd and set

. k
(5.3.10) @(,y) =Y (325 +yj + Tnhss)’ + D _(Tjok — Tnl;)Yksj
1 1
. ok K 2%
= > (o] )+ Y wiyy + 2w Y yiykes 20 ) 0
1 1 1 k+1

Note that this corresponds to (A(y)y,y) = 4 Zlf Y;iYk+; with the notation in Lemma 5.3.1,
which means that A(y) is independent of y and has k positive and k negative eigenvalues.
If a € Cg°(R?71) and f € C5°(R?* 1), then the stationary phase method applied to the
integral (5.3.1) in the variables y1, ..., yx gives

k

Tnf(z) =N~ 3" /eXP (iNZ(xj+k — Ty )Yty A,y dy + O(N~2F1)
1

where 4" = (yr+1,...,y2x) and A(z,y”) = a(z,y)f(y) when y; = —znypr; — gz, for
j=1,...,k. We can choose a and f so that A(0,0) # 0. Then we obtain

TNf(fl?) = CN_%kA\(vaTD + O(N_%k_1)7 Ny = TnTj — Tjtk, .] = 17 .. '7k7

where A denotes the Fourier transform of A(z,y") in y’. Hence

1
tin [T N5 = el [ 1A 20 7)1 do)

N —o0

where ' = (z1,...,2;) and 2” = (Tk41,...,22;). The right-hand side is not 0, so an
estimate of the form (5.3.8) cannot hold even with r = oo unless k(5 + é) > 7, that is,

(5.3.11) q > nt2

= n—1"

The preceding example combined with (5.3.9) shows that if n is odd and no hypothesis
is made about ¢ beyond the conditions (5.3.2) and (5.3.3), then the best result which can
be proved is the following theorem of Stein [4]:

THEOREM 5.3.2. Let ¢ € C°(R* 1) be real valued, let a € C°(R?*" 1), and assume
that (5.3.2) and (5.3.3) are valid when (x,y) € suppa. Then there is a constant C such
that with Ty defined by (5.3.1)

(5312)  |Twfllg <ON""9||flly, fe LR, ifq> 282, mly

— n—-17 n-1

3=

<1

PROOF. Since f may be assumed to have support in a fixed compact set, the statement

is strongest when Z—ﬂé + % = 1. Since (5.3.12) is trivial when r = 1 and ¢ = oo, it
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follows from the Riesz-Thorin interpolation theorem (Theorem 2.3.2) that it suffices to
prove (5.3.12) when r = 2 and ¢ = (2n+2)/(n — 1). It is then more convenient to discuss
the equivalent dual estimate

(5.3.13) | Tullz < ONTO=D/CED )| 50 jnys),  w € LEMFD/ (R,

The square of the left-hand side is equal to (ITnT3%u,u) which by Holder’s inequality can
be estimated by |TNTNu| (2n42)/(n—1) 1%l (2n+2)/(n+3)- Hence (5.3.13) will follow if we can
prove that

(5.3.14)
TN TR ull2ns2y/(n-1) < CPNT DO | g0y sy, w € LEMF/ D (R™),

It is of course sufficient to prove (5.3.14) when ¢ has the form of the right-hand side in

(5.3.4) and the support of a is very close to the origin.
In the proof of (5.3.14) we shall single out the z,, variable and write

(T () (') = / N D (o ) fy)dy, | € LL (R,

Here 2’ = (z1,...,2n,—1). Then

Thu = /TN(S)*u(~,s) ds, u€ Llloc(R”),
(5.3.15) (TnTRu) (-, t) = /TN(t)TN(s)*u(~,s) ds.

To complete the proof we need an estimate for T (t)Tn(s)*:

LEMMA 5.3.3. When1<p<2andl/p+1/p' =1 then
(5.3.16)

TN ()T () fllp < CJt — o] DG N=(=DGH0 1 0 f e LP(R™Y), s A8

PrOOF. By Theorem 5.2.1 we have with a constant C independent of ¢
1Ty (&) fll2 < CN72D]|f] 5.
Since the same estimate is valid for the adjoint it follows that
ITn ()TN () flla < ONTC V| fla,
which is the estimate (5.3.16) for p = 2. By the Riesz-Thorin interpolation theorem

(Theorem 2.3.2) the estimate will follow for 1 < p < 2 if we can prove it when p = 1, that
is, prove that

1T ()T (s)* flloo < Ot — 5|72V N=20=D | £||
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Such a bound is equivalent to an estimate
(5.3.17) K slloo < CNE = s)720D),
where K s is the kernel of T (t)Tn(s)*, that is,

K, (2. 2) = eiN(‘p(x/’t’y) ”(z’s’y)a 2 ty)a(z, s d 2, zeRVL
t,S( ) ) LY ,S,Y)ay, 5
R—1

First assume that z = 0, s = 0, and that the coordinates have been chosen according to
Lemma 5.3.1. Then

a%(s&(fb’,t,y) — (2, 5,y)) = 2"+ t(A(y)y + O(ly>)) + Oz’ + [t1*)y]-

If |t| < |2'| and |y|, |2’| are sufficiently small, the norm is > |z’|/2, and all derivatives with
respect to y are O(|2’|). Hence it follows from Theorem 2.4.1 that

Ko, 0)] < Cu(N|')™" < Ce(Nt)™*, k>0,

if the support of a is sufficiently close to the origin. On the other hand, if |2’| < ¢ then

82

8_y2(90($/7t7y) - 50(27 S, y)) = t<A(y) + O(‘y‘ + |t’))7

so the absolute value of the determinant of the quotient by ¢ has a positive lower bound
if ¢ and y are small enough, and all derivatives of p(z’,t,y)/t with respect to y are also
uniformly bounded then. Hence it follows from Theorem 2.4.3 that

| K¢ o(z',0)| < C(N|t))~ 2=,

if the support of a is sufficiently close to the origin. For any other z and s close to the origin
the same conclusions are obtained after the change of coordinates achieved in Lemma 5.3.1,
which completes the proof.

END OF THE PROOF OF THEOREM 5.3.2. When p = (2n+ 2)/(n+ 3) and p’ = (2n +
2)/(n — 1) we obtain from (5.3.16) using (5.3.15) and Minkowski’s inequality

V(t) < C’/ [t — 5|~ (n=D/(n+D) y—n(n=D/(n+ D7 (5) ds,  where

V(t) = [(TNTxu) (D)l U(s) = [luls s)llp-

Since 1/p—1/p'=2/(n+1)=1—(n—1)/(n+ 1), it follows from the Hardy-Littlewood
potential estimate (see the example following Theorem 4.1.2) that

( / V()P dt)? < cN-W—l)/(n“)( / |U(s)|pds)5,
that is,
TN TRuly < ONZPO=D/ 0Dy,
which is the estimate (5.3.14). The proof is complete.

From this point on we can to a large extent repeat the arguments in Section 5.2. The
special case of Theorem 5.3.2 where ¢ is linear in x merits a special emphasis, as in
Corollary 5.2.3:
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COROLLARY 5.3.4. Let Y be an open subset of R"™1, n >3, and let Y >y ®(y) €
R"™ be an immersed hypersurface with total curvature # 0. Set

(5.3.18) Sf(z) = / e PWha(y) f(y)dy, f€ Li,(R"™), z € R",

where a € C§°(Y'). Then it follows that

(5.3.19) ISfllg < Cllflle,  feLTR™Y), if ¢=%4F and 35+ 5 < 1.

nlq

With § denoting the Fourier transform of g € L*(R"™) N L?(R™) we have

(5.3.20) la(go ®@)|, < Clgllg, f1<¢qg< 2”+2 and :‘f% [11 —|— > 1 _1

PRrROOF. The function ¢(z,y) = (x, ®(y)) satisfies (5.3.2), (5.3.3) when y € Y. In fact,
since ®'(y) is injective, the rank of 8%p(x,y)/0xdy = OP(y)/dy is n — 1. The condition
(0/0y)(®(y),t) = 0 means that t is orthogonal to the tangent plane at ®(y). Thus (5.3.2)
means that det(9%/0y?)(®(y),t) # 0 when t is a normal # 0, that is, that the total
curvature is not 0. Choose b € C§°(R"™) with b(0) = 1. If we apply Theorem 5.3.2 with
a(z,y) replaced by b(x)a(y) it follows that

1

o /\b (SP(Na)[?dr)" < Clfll, i g > 22 and 2114 1<,

Q|

+

S =

The estimate (5.3.19) follows if we let N — oo after introducing Nz as a new integration
variable. The estimate (5.3.20) is dual as in the proof of Corollary 5.2.3, and we do not
repeat the proof.

The estimate (5.3.20) is known as the restriction theorem. A weaker form was first
proved by Tomas [1]. It has been proved by Bourgain [1] that it is valid for a wider range
of ¢ but the precise range is not known. One should note that the motivation we gave
for the condition ¢ > (2n+2)/(n — 1) in Theorem 5.3.2 assumed that no information was
given on ¢ beyond conditions (5.3.2) and (5.3.3). Linearity in z is a strong additional
hypothesis which extends the permissible range.

Next we prove an analogue of Theorem 5.2.4:

THEOREM 5.3.5. Let a € C§°(R™ x R™), n >3, let p € C°(R"™ x R™) be real valued,
and assume that when (z,y) € suppa the rank of 0*¢(z,y)/0x0y is at least n —1 and that

(5.3.21) rank 0%(t, 0p(z,y)/0x)/0y* > n—1, if 0#tc R™ 9t 0p(z,y)/0x)/dy = 0.
If Ty is defined by (5.2.1) then

(5.3.22)  |[Tvullq < CN~™9ull,, we L"(R™), if ¢> 22 gpd 221+

S|

<1.

Q

PROOF. Since ' < g(n —1)/(n 4+ 1) < ¢, thus r > ¢/, the estimate (5.3.22) follows
from (5.2.2) with p = ¢ if det 9?¢(z,y)/0xdy # 0 in suppa. It is therefore sufficient
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to prove (5.3.22) when suppa is contained in a small neighborhood of a point (2°,y°)
where 0%p(x,y)/0xdy has rank n — 1 and (5.3.21) is applicable. Choose t € R™ \ {0} so
that (0/0y)(t,0p/0x) = 0 at (z",4°). Since the rank of (9%/0y?)(t,0p/0x) is > n — 1
at (22,9°) by (5.3.21), we can make an affine change of y coordinates preserving y° such
that in the new coordinates the rank of (82 (x,y)/0x; ﬁyk)k 1’ "1 s equal to n— 1 and
det (9 (t, 890/8m>/8y]8yk)j ooy 7 0 at (29¢4°). In fact, both. Condltlons are fulfilled for

a generic direction of the coordinate plane where y, = y°. Then Theorem 5.3.2 can be
applied for fixed y,, to

Trvu(, yn) = / NP, y)uly) dys ... dyn—r.

Since Tyu(z) = [ Inu(x,yn) dy, we obtain

| Tl < /K | T,y g dy < CN-/3 /K e ) e ) s

where K is a compact set C R such that a(z,y) = 0 when y,, ¢ K. By Holder’s inequality
the right-hand side is < m(K)"/" ||ul|,., which completes the proof.

COROLLARY 5.3.6. Let & € C>°(R"™ \ {0}) be real valued and positively homogeneous
of degree 1, n >3, and let A € C§°(R™\ {0}). Set

Suf(x) = / S A(r ) f(y)dy, | € L (R").

If ®"(x) has rank n — 1 for every x € supp A and n > 3, it follows that

(5.3.23) |Sefllp < Cp@)|| fllps  f € LP(R™), t>2, p>2, where
ct=/v, if p> 242
5329 Colt) = Ct(NGTR) i <p < 22

PROOF. The phase function ¢(z,y) = ®(x — y) satisfies the hypotheses of Theorem
5.3.5 when z — y € supp A. In fact, ®”(z)z = 0 since ¢’ is homogeneous of degree 0,
and since ®"/(z) is of rank n — 1 it follows that ®”(z)t = 0 implies that ¢ = cz, hence
" (2)t = —c®”(z) since ®” is homogeneous of degree —1. This is of rank n — 1 when
c# 0.

Let 0 < x € C5°(R™), [ x*dz = 1. Then the hypotheses of Theorem 5.3.5 are fulfilled
if a(z,y) = Az —y)x(y ) If p> (2n+2)/(n —1) it follows that

(5.3.25) 1S fllp < Co®lIxfllp.  f € LP(RT),

for 2n/(p(n — 1)) < n/(n+ 1) < 1. Theorem 5.2.1" gives the estimate (5.3.25) when
p = 2, and then it follows from the Riesz-Thorin interpolation theorem (Theorem 2.3.2)
for2<p<(2n+2)/(n—1).
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By the translation invariance of S; it follows that for z € R”
(5.3.26) 10 Fllp < Co@)lx(: = 2)flly, where Spaf = Si(x(- — 2)2f).

Since
S f(x) = / D a(z — y)x(y — 2)(y) dy,

the integral with respect to z is equal to S f(z), and since a(x — y)x(y — z) # 0 implies a
bound for x — z, we have by Holder’s inequality

S, (@) < CP / 1S, f(@)|P d.

If we raise the estimate (5.3.26) to the power p and integrate with respect to z it follows
that

1Sefllp < CC@)Ixpll Nl
which completes the proof.

Since ® is homogeneous we have

(5:327)  (Sif)(w/t) = /eiq’(x_ty)A(fc/t—y)f(y) dy = /eiq)(x‘y)A((w—y)/t)g(y) dy
where g(y) = f(y/t)/t", and (5.3.23) gives

1Se) /Ol = t/P1Sefllp < tPC O f 1l = " Co(®)lglly
If we multiply (5.3.27) by ¢t~1=* and integrate with respect to t from 2 to oo, it follows
that the operator

(5.3.28) Kg(z) = / P, (2 — y) f(y) dy,

(5.3.29) ba(2) = / A(z /)=,
2
is bounded in LP(R"™) provided that p > 2 and that
(5.3.30) / C,()t" 1 dt < 0.
2

By (5.3.24) this condition is equivalent to
A > n(l_%)a 1fp2%
3712—1_712_—1)1’ 1f2§p§2:_+12
The function b defined by (5.3.29) is positively homogeneous of degree —\ when |z| is so
large that z/t € supp A implies ¢ > 2, for then we have b(z) = by(z) where

(5.3.31) bo(z) = /OO A(z/ )t~ d.

For every by which is positively homogeneous of degree —\ we have (5.3.31) if A(z) =
bo(z)o(z) where ¢ € C5°(R™ \ {0}) is chosen so that [~ o(z/t)dt/t =1 for z # 0. This is
true for any non-negative C'*° function of |z| with support in (1, 2) after multiplication by
a suitable normalizing constant. This gives the following theorem when p > 2, and when
p < 2 it follows by duality.
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THEOREM 5.3.7. Let ® € C°(R™\ {0}) be real valued and positively homogeneous of
degree 1, n > 3, and let ag € C°(R™ \ {0}) be positively homogeneous of degree —\. If
®" () has rank n — 1 when ag(x) # 0 and

(5332 A max(22 |3~ 3+ 22l - 3]+ ),

and a € L (R™) is equal to ag outside a compact set, then the operator f — (e'®a) * f

extends from L*(R?) N L (R™) to a continuous operator in LP(R™).

In fact, we have just proved the continuity of this operator for some b € C'*° equal to
ag outside a compact set. Hence b —a € L', and f + (b — a) * f is continuous in LP for
every p.

Theorem 5.3.7 gives the sufficiency of the necessary conditions in Theorem 5.1.8 when
p > (2n+2)/(n — 1) but a weaker result otherwise:

THEOREM 5.3.8. Let o € C°(R"™) be real valued and negative outside a compact set,
n > 3, and assume that ¢’ (&) # 0 and that " ()t #0 if E € R™, o(§) =0 and 0 #t € R",
o' ()t =0. Then o% € M,(R") if

(5.3.33) a>max(”74|%—%},n‘%—%’—%).

PrRoOOF. The zeros of o form a compact set, so a partition of unity shows that it is
sufficient to prove that for every £° with o(£%) # 0 there is some ¢ € C§° with ¢(£°) # 0
such that po$ € .#,(R"). If we choose ¢ as in the proof of Theorem 5.1.8, keeping the
notation there, we find that it is sufficient to prove LP continuity of convolution with a
C* kernel K such that outside a compact set K(z) — e ®®ag(z) = O(|z|~'=*) where
ap is homogeneous of degree —\ and A = (n + 1)/2 + «. Here ® is defined in suppag
by ®(z) = (a',t) + z,(t) where t is a C°° function of x, homogeneous of degree 0,
determined by the equation z’ + x,v'(t) = 0; det¢”(t) # 0. Thus ®'(z) = (¢,¢'(t)) and
0?®(x) /02’02’ = 0t/0x' = —(x,0"(t))~! is non-singular. Since (5.3.33) is identical to
(5.3.32), the theorem is proved.



NOTES

Chapter I. The discussion of general finite commutative groups in Sections 1.1 and 1.2
is only intended to give the algebraic side of the motivation for Fourier analysis. Apart from
the simple explicit formulas (1.2.4) for Z,, it can be bypassed with no loss of continuity.
Alternatively one can find further results in a textbook on algebra such as Lang [1]. The
discussion of the fast Fourier transform follows Auslander and Tolmieri [1] to a large extent.
In this reference one can also find an interesting discussion of the eigenvalues of the finite
Fourier transform with applications to the quadratic reciprocity theorem. See also Strang
[1] for a discussion of the virtues of the fast Fourier transform in applications.

Chapter II. Most of the material in Section 2.1 is by now so classical that we shall
only give references to the origin of two of them. The Bernstein theorem (Th. 2.1.8) has
been treated here following Achieser [1]. The theorem of supports (Th.2.1.11) was first
proved by Titchmarsh [1].

The Hausdorff-Young theorem (Th. 2.3.1) was actually proved by these authors for
Fourier series while the extension to Fourier integrals is due to Titchmarsh. The proof
given here is that of M. Riesz [2] who proved a somewhat restricted version of Theorem
2.3.2 using real variable methods. The proof given here is due to Thorin [1]. The classical
background of Theorem 2.3.8 is another theorem of Bernstein stating that the Fourier
series of a function which is Holder continuous of order > % is absolutely convergent. We
shall not try to trace the deep historical roots of the method of stationary phase. Instead
we would like to refer to Hormander [1, Section 7.7] for a much more extensive study.

Chapter III. We have here followed Daubechies [1] to a very large extent, first in
discussing multiresolution analyses with scale functions which are only in L?. (Proposi-
tion 3.1.4 rounds off her results which only give sufficient conditions at that point.) The
construction of wavelets in several dimensions in Section 3.2 is mainly taken from Meyer
[2] though. Both Daubechies [1], Meyer [1], [2] and Meyer-Coifman [1] should be consulted
for further results on wavelets and their applications. Only the mathematical framework
is presented here.

Chapter IV. The estimate of the conjugate function (Th. 4.1.1) is due to M. Riesz
[1], but the proof we have chosen is due to P. Stein [1]. In the n-dimensional case studied
in Section 4.2 we follow the methods of Calderén and Zygmund [1]. The Hardy-Littlewood
maximal theorem is due to Hardy and Littlewood [1] but the proof of Theorem 4.1.2
is due to F. Riesz [1]. In the n-dimensional case in Section 4.2 we have instead used

covering theorems which can be found for example in Aronszajn and Smith [1]. The
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potential estimate in the following example comes from Hardy and Littlewood [2]. The
refined maximal theorem of Carleson in Theorem 4.1.2" originates from Carleson [1], [2].
A simplification and generalisation given in Hérmander [2] is used in Section 4.2 here and
has been adapted to the method of F. Riesz in the one-dimensional case. The proof of
Theorem 4.1.3 comes from Calderén and Zygmund [1]. Proposition 4.1.7 has mainly been
taken from Stein [4]. The discussion of the Hardy space s#' and the duality with BMO
in Sections 4.1 and 4.2 follows Fefferman and Stein [1]; see also Stein [2]. In both these
references there is also a discussion of the Hardy space P with 0 < p < 1. The Mihlin
theorem giving the LP analogue of Corollary 4.2.18 is due to Mihlin [1] under somewhat
more restrictive hypotheses and Hormander [3] in a somewhat stronger form. Actually
the result goes back to Marcinkiewicz [1]. His interpolation theorem first appeared in a
somewhat special form in Marcinkiewicz [2]. The general statement, containing that given
here, was published much later by Zygmund [1]. For examples of applications of the Hardy
space in the theory of non-linear differential equations one can consult Coifman, Lions,
Meyer and Semmes [1].

The proof in Section 4.3 that compactly supported wavelets give bases in LP and in
1 follows Daubechies [1] and Meyer [1,2]. They use weaker hypotheses which make the
proofs technically harder but the main points are the same as here.

The John-Nirenberg theorem (Th. 4.4.1) is the simplest of a number of related results
proved by John and Nirenberg [1]. Spanne [1] has proved the interpolation Theorem 4.4.7
using the more refined results from that paper. (At that time the duality between '
and BMO was not known.) Here we have instead used the properties of the function f*
due to Fefferman and Stein [1].

Chapter V. The basic facts on multipliers belong to the folklore which is hard to trace
back. The striking Theorem 5.1.6 is due to Fefferman [1], while the necessary condition
in Theorem 5.1.8 undoubtedly has many discoverers, for it is an immediate consequence
of the stationary phase theorem. The important results in Section 5.2 are due to Carleson
and Sjolin [1]. The proof given here is a simplification due to Hérmander [4], where The-
orem 5.2.1 has been taken. Questions concerning analogues of the crucial Theorem 5.2.2
for higher dimensions were also raised there, but the example (5.3.10) due to Bourgain [1]
proved that further conditions than anticipated in Hérmander [4] will be required then.
(See Bourgain [1], [2] for further improvements of the results in Section 5.3.) Theorem
5.3.2 is due to Stein [5]; a weaker form of the restriction theorem (Th. 5.3.4) was proved
before by Thomas [1]. The proof of Theorem 5.3.2 here follows Sogge [1] which is highly
recommended for further study of the topics in Chapter V. Estimates of the type dis-
cussed in Section 5.3 are essential for the study of low regularity to non-linear hyperbolic
differential equations.
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INDEX OF NOTATION

General notation
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sSupp u
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XeY
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Hs)
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Section 1.2

G
Section 4.1

f
s

HL
Iz
A (R)
BMO(R)
Section 4.2
fi

L,
Y
R;
A (R)
BMO(R™)

space of measurable functions with integrable pth power
the norm || ||L»

functions in X with continuous derivatives of order < k
functions in C*(X) with compact support
Schwartz distributions in X

Schwartz distributions in X with compact support
Schwartz space of rapidly decreasing C'*° functions
temperate distributions

convolution of f and g

support of u

singular support of u

closure of X is a compact subset of Y

complement of X (in some larger set)

boundary of X

usually a multiindex o = (aq,...,ay)

length a; + -+ + a, of

multifactorial aq!. .. a,,!

monomial z{* ...z%" in R"

partial derivative, 0; = 0/0x;

partial derivative, D; = —i0/0x;
Fourier(-Laplace) transform of f

Z/vZ where Z denotes the integers

Sobolev space of order s

norm in H )

dual group

conjugate function of f

Hardy-Littlewood maximal function (4.1.6)
the refined maximal function (4.1.6)"”
Calderén-Zygmund maximal function (4.1.9)
Hardy space in R

functions of bounded mean oscillation in R

Hardy-Littlewood maximal function (4.2.16)
the refined maximal function (4.2.16)"”

maximal function for a singular integral operator with kernel M

Riesz kernels (4.2.21)

Hardy space in R™

functions of bounded mean oscillation in R"
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Py

P;

Section 4.4
fﬂ

Section 5.1
My

Poisson kernel (4.2.22)
conjugates (4.2.23) of Poisson kernel

maximal function defined by (4.4.14)

multipliers on the Fourier transform of LP
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Critical point . . . . . . 44
Dual group . . . . . . . 3
Fast Fourier transform . . 8
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Partial Fourier transform . 29
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Riesz operators 100
Riesz-Thorin theorem . . . 35
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Schauder basis 110
Schwartz space 16, 29
Shannon’s theorem . . . . 24
Singular integral operator . 94
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