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PREFACE

These lectures, given during the academic year 1994–1995, are intended as an
introductory course in harmonic analysis for graduate students. The prerequisites
assumed are some familiarity with distribution theory, Lebesgue integration and
functional analysis. It should be possible to read most of the notes without know-
ing distribution theory by concentrating on the study of smooth functions and
the L2 theory of the Fourier transformation. However, I have chosen to build on
distribution theory since it makes many arguments simpler and more transparent.

The very short Chapter I is intended to present the algebraic contents of commu-
tative harmonic analysis in a context which is almost free of analysis. It contains
in particular a discussion of the fast Fourier transform. Chapter II develops the
basic facts on Fourier analysis in Rn starting from approximation of Rn/Zn by
finite groups and of Rn by such torus groups. There is a substantial overlap with
my book [1], where many of the topics are dealt with in greater depth.

In Chapter III the basic principles of Fourier analysis are illustrated by a study
of wavelets, with an emphasis on wavelets of compact support. For applications
and additional results the reader should turn to Daubechies [1] and Meyer [1], [2].
Chapter IV then returns to more traditional harmonic analysis. It is centered on Lp

estimates for singular integral operators and the related study of the Hardy space
H 1 and the space BMO of functions of bounded mean oscillation. The methods
developed are also applied to prove that wavelets with compact support give bases
in Lp spaces and the Hardy space. A much more extensive discussion of these
matters can be found in E. M. Stein [1].

The final Chapter V is devoted to the study of multipliers on the Fourier trans-
form of Lp, in particular convergence and summability of the Fourier expansion of
functions in Lp. In spite of much progress in the last few decades this is an area
where many problems remain open.

The choice of topics for a course such as this is of course in no way uniquely
determined. A guiding principle here has been to cover results and methods which
are essential in the study of linear and non-linear differential equations. So far the
study of wavelets may not qualify in that respect, but it gives excellent illustrations
of the tools of Fourier analysis and is important in signal theory.

Lund in February 1995

Lars Hörmander
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CHAPTER I

FOURIER ANALYSIS ON FINITE ABELIAN GROUPS

1.1. The structure of finite abelian groups. Let G be a finite abelian group,
with |G| elements and with group operation denoted by +. Let us recall some elementary
facts:

a) For every a ∈ G \ {0} there exists some integer n ̸= 0 with na = 0, for otherwise
all elements na ∈ G, n ∈ Z, would be different. If n is minimal then a generates a cyclic
subgroup

Ga = {νa; 0 ≤ ν < n} ∼= Z/nZ = Zn

of G, and n is called the period of a. Since |G| = |Ga||G/Ga| = n|G/Ga| it follows that n
divides |G| so |G|a = 0 for every a ∈ G.

b) If p is a prime then G(p) = {a ∈ G; pνa = 0 for some ν} is a subgroup of G. It is
trivial unless p divides |G|. If |G| =

∏ν
1 p

mj

j with different primes pj and mj ≥ 1, then

G(pj) = {a ∈ G; p
mj

j a = 0}. We have

(1.1.1) G ∼= G(p1)× · · · ×G(pν).

In fact, we can find integers γ1, . . . , γν such that
ν∑
µ=1

γµ
∏
j ̸=µ

p
mj

j = 1,

since the products have no common factor. If a ∈ G it follows that

a =

ν∑
1

aµ, where aµ = γµ
∏
j ̸=µ

p
mj

j a, hence pmµ
µ aµ = 0.

Such a decomposition is unique, for assume that
ν∑
1

aµ = 0, pmµ
µ aµ = 0, µ = 1, . . . , ν.

Then it follows for 1 ≤ ϱ ≤ ν that

aϱ =
ν∑
1

γµ
∏
j ̸=µ

p
mj

j aϱ = γϱ
∏
j ̸=ϱ

p
mj

j aϱ = γϱ
∏
j ̸=ϱ

p
mj

j

ν∑
1

aµ = 0.

Since (1.1.1) implies that |G| = |G(p1)| . . . |G(pν)| and we shall see in a moment that |G(p)|
is a power of p, it follows that |G(pj)| = p

mj

j .

The subgroups G(p) can in general be decomposed further. Since the decomposition is
not unique the proof is somewhat harder than the proof of (1.1.1).

1



2 I. FOURIER ANALYSIS ON FINITE ABELIAN GROUPS

Theorem 1.1.1. Let G be a finite p group where p is a prime, that is, assume that
pmG = {0} for some m. Then one can find integers r1 ≥ r2 ≥ · · · ≥ rσ ≥ 1 such that

(1.1.2) G ∼= Zpr1 × · · · × Zprσ .

The sequence r1, . . . , rσ is uniquely determined although the decomposition is not.

Proof. Let r1 be the smallest positive integer m such that pmG = 0, and choose
a ∈ G with pr1−1a ̸= 0. Recall that the corresponding cyclic group Ga is then isomorphic
to Zpr1 . If 0 ̸= b̄ ∈ G/Ga then the period pr of b̄ is ≤ pr1 since every element b in the
residue class b̄ has period ≤ pr1 . We claim that b can be chosen so that b also has period
pr. In fact, if prb = na it follows that 0 = pr1b = pr1−rna, so n must be divisible by pr.
Then b′ = b− (n/pr)a is in the residue class b̄ and prb′ = 0.

By induction with respect to |G| we may assume that the quotient G/Ga is the product
of cyclic groups of order pr2 ≥ pr3 ≥ · · · ≥ prσ generated by b̄2, . . . , b̄σ. For each of these
generators we choose an element bj ∈ G with period prj in the residue class b̄j . Then

(1.1.2)′ G ∼= Ga ×Gb2 × · · · ×Gbσ .

In fact, if g ∈ G there are integers γ2, . . . , γσ uniquely determined modulo pr2 , . . . , prσ such
that g −

∑σ
2 γjbj ∈ Ga, which proves (1.1.2)′, hence (1.1.2).

We can also prove the uniqueness of r1, . . . , rσ by induction. In fact, since

pG ∼= Zpr1−1 × · · · × Zprσ−1

the numbers rj which are > 1 are determined, and since |G| = pr1+···+rσ the number of
exponents equal to 1 can then be calculated.

Note that the only subgroups of Zpr are pjZpr ∼= Zpr−j , where 0 ≤ j ≤ r. By the
uniqueness in Theorem 1.1.1 it is not possible to decompose Zpr into the product of two
groups.

Exercise 1.1.1. How many non-isomorphic abelian groups of order 128 are there?

In what follows we shall avoid using the structure of G provided by (1.1.1) and (1.1.2),
but it is useful to keep in mind that finite abelian groups are not more general than direct
products of cyclic groups, which can even be taken of prime power order.

1.2. The dual of a finite abelian group and Fourier expansion. With G still
denoting a finite abelian group we shall study the group algebra CG consisting of complex
valued functions f : G → C. This is a finite dimensional complex vector space with a
natural positive definite hermitian symmetric form

(1.2.1) (f, g) =
∑
x∈G

f(x)g(x); f, g ∈ CG.

With τy denoting the translation operator

(τyf)(x) = f(x− y); x ∈ G, y ∈ G,
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it is clear that (f, g) is translation invariant, that is,

(τyf, τyg) = (f, g); f, g ∈ CG, y ∈ G.

Since τyτz = τy+z = τzτy the unitary operators τy commute. Every linear operator
T : CG → CG commuting with τy for every y ∈ G is a linear combination of these
operators,

T =
∑
y∈G

c(y)τy, that is, (Tf)(x) =
∑
y∈G

f(x− y)c(y).

In fact, the linear form CG ∋ f 7→ (Tf)(0) can be written

(Tf)(0) =
∑
y∈G

c(y)f(−y), f ∈ CG,

which implies that

(Tf)(z) = (τ−zTf)(0) = (Tτ−zf)(0) =
∑
y∈G

c(y)f(z − y) = (
∑
y∈G

c(y)τyf)(z),

which proves the claim.
The commuting unitary operators τy, y ∈ G, have a common complete orthonormal

system of eigenvectors. If χ is an eigenvector for all τy, with eigenvalue λy, then

τyχ = λyχ, that is, χ(x− y) = λyχ(x); x, y ∈ G.

If χ(0) = 0 it follows that χ ≡ 0. Otherwise we can normalize χ so that χ(0) = 1, which
gives χ(−y) = λy, so χ(x− y) = χ(x)χ(−y), or more symmetrically

(1.2.2) χ(x+ y) = χ(x)χ(y); x, y ∈ G; χ(0) = 1.

A function χ satisfying (1.2.2) is called a group character. Note that if nx = 0 then it
follows that 1 = χ(nx) = χ(x)n, so χ(x) is an nth root of unity, hence a |G|th root of unity.
In particular,

(1.2.3) χ(x)−1 = χ(−x) = χ(x), x ∈ G.

If χ1 is also a group character then χχ1 is another and so is 1/χ, so the characters form

an abelian group Ĝ, the dual group of G, with the character which is identically one as
neutral element. Since

(χ, χ1) = (τyχ, τyχ1) = χ(−y)χ1(−y)(χ, χ1), y ∈ G,

we have (χ, χ1) = 0 unless χ(−y)χ1(y) ≡ 1, that is, χ = χ1. Different characters are thus
orthogonal, so we have proved:
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Theorem 1.2.1. The characters on G form an abelian group Ĝ. The elements of Ĝ

divided by
√
|G| are an orthonormal basis for CG, so |Ĝ| = |G|.

For every f ∈ CG we have

f(x) =
∑
χ∈Ĝ

χ(x)(f, χ)/|G| =
∑
χ∈Ĝ

∑
y∈G

χ(x)f(y)χ(y)/|G|,

which means that

f̂(χ) =
∑
x∈G

f(x)χ(x) =
∑
x∈G

f(x)χ(−x) implies

f(x) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(x).

This is Fourier’s inversion formula. For the convolution (f ∗ g)(x) =
∑
y∈G f(x − y)g(y)

where f, g ∈ CG we have f̂ ∗ g(χ) = f̂(χ)ĝ(χ), so the Fourier transformation diagonalizes
all translation invariant linear operators in CG. If we multiply the inversion formula by
g(x) and sum over x, we obtain Parseval’s formula

(f, g) =
∑
x∈G

f(x)g(x) =
1

|G|
∑
χ∈Ĝ

f̂(χ)ĝ(χ) = (f̂ , ĝ)/|G|, f, g ∈ CG,

which means that the linear map f 7→ |G|− 1
2 f̂ is unitary. By the definition of the group

operation in Ĝ the map Ĝ ∋ χ 7→ χ(x), x ∈ G, is a character on Ĝ, so these functions form

an orthonormal basis in CĜ after division by

√
|Ĝ|. Thus we have a complete symmetry

between G and Ĝ apart from the fact that we have written the group operation in Ĝ
multiplicatively (and the usual change of sign in Fourier’s inversion formula).

Remark. If all the characters χ ∈ Ĝ are real then χ only takes the values ±1 so χ2 = 1.

By Theorem 1.1.1 it follows that Ĝ is then isomorphic to Zn2 for some positive integer n,

which implies that G is also isomorphic to Zn2 . Representing the elements of G and Ĝ by
x ∈ Zn and ξ ∈ Zn and writing ⟨x, ξ⟩ =

∑n
1 xjξj we can write ξ(x) = (−1)⟨x,ξ⟩ and obtain

if f is a complex valued function on Zn2

f̂(ξ) =
∑
x∈Zn

2

(−1)⟨x,ξ⟩f(x), f(x) = 2−n
∑
ξ∈Zn

2

(−1)⟨x,ξ⟩f̂(ξ).

The calculation of f̂ seems to require 2n(2n − 1) additions and subtractions. However, if
we do it one variable at a time we find that only 2nn such operations are then required. In
Section 1.3 we shall see that a similar improvement is possible for the group Z2n although
it is far less obvious.
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If G = G1×G2 is a direct product, then it is clear that Ĝ can be identified with Ĝ1×Ĝ2,

for if χj ∈ Ĝj then

G = G1 ×G2 ∋ (x1, x2) 7→ χ1(x1)χ2(x2)

is a character on G and all characters are of this form. To make the preceding discussion
completely explicit it is therefore sufficient to discuss the cyclic group G = Zn of order n,
not necessarily a prime power. Let ω = e2πi/n. If ξ ∈ Z then

Z ∋ x 7→ ωxξ = e2πixξ/n

defines a character on G. This identifies Ĝ with Zn, so that for a function f on Zn

(1.2.4)

f̂(ξ) =
n−1∑
x=0

f(x)ω−xξ =
n−1∑
x=0

f(x)e−2πixξ/n,

f(x) =
1

n

n−1∑
ξ=0

f̂(ξ)ωxξ =
1

n

n−1∑
ξ=0

f̂(ξ)e2πixξ/n.

This inversion formula is completely elementary: it follows from the fact that

n−1∑
ξ=0

e2πizξ/n = nδz0, z = 0, . . . , n− 1,

where δjk is the Kronecker delta, equal to 1 when j = k and 0 otherwise. We shall see
in Chapter II that it is easy to pass from (1.2.4) to the basic facts on Fourier series and
Fourier transforms.

As pointed out above the dual group of G1 ×G2 is Ĝ1 × Ĝ2, which reduces the Fourier
analysis in G = G1×G2 to Fourier analysis in G1 and in G2. As a preparation for Section
1.3 we shall now study the more general case where we only have a subgroup H of the
finite abelian group G. An example is G = Zpk and H = pjG with 0 < j < k.

Theorem 1.2.2. If H is a subgroup of the finite abelian group G then the characters

which are equal to 1 on H form a subgroup H⊥ of Ĝ which is the dual group of G/H. The

dual group of H is Ĝ/H⊥.

Proof. Let f be a function on G/H lifted to G, that is, let f ∈ CG and τyf = f for

y ∈ H. If χ ∈ Ĝ then

(f, χ) = (τyf, χ) = (f, τ−yχ) = χ(y)(f, χ), y ∈ H,

which proves that (f, χ) = 0 unless χ(y) = 1 for every y ∈ H, that is, χ ∈ H⊥. Hence

(1.2.5) f =
1

|G|
∑
χ∈H⊥

(f, χ)χ,
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which proves that H⊥ is equal to the dual group of G/H and not only a subgroup, which
is obvious. Hence

|Ĝ| = |G| = |G/H||H| = |H⊥||H|,

which implies that |H| = |Ĝ/H⊥| and proves that Ĝ/H⊥ is the dual group of H, for it is
obviously a subgroup since a character χ on G restricts to a character on H which is not
trivial unless χ ∈ H⊥.

We saw in (1.2.5) that if f ∈ CG and τyf = f for every y ∈ H, then f̂ vanishes in

Ĝ \ H⊥, and the restriction to H⊥ is |H| times the Fourier transform of the function

induced in G/H. (Note that the scalar product
∑
x∈G f(x)χ(x) is equal to |H| times the

sum with only one x chosen in each residue class mod H.)
Every f ∈ CG can be uniquely written in the form

(1.2.6) f =
1

|H|
∑

ν∈Ĝ/H⊥

fν , fν =
|H|
|G|

∑
χ∈ν

(f, χ)χ.

Note that τyfν = ν(y)fν if y ∈ H. Here ν(y) is defined since ν is a character on H. We

have f̂ν(χ) = |H|f̂(χ) when χ ∈ ν and f̂ν(χ) = 0 when χ /∈ ν, and

(1.2.7) fν =
∑
y∈H

ν(y)τyf, that is, fν(x) =
∑
y∈H

f(x+ y)ν(y), x ∈ G,

for ∑
y∈H

ν(y)τyf =
1

|H|
∑

µ∈Ĝ/H⊥

∑
y∈H

ν(y)τyfµ =
∑

µ∈Ĝ/H⊥

1

|H|
∑
y∈H

ν(y)µ(y)fµ = fν .

Thus fν(x) are for fixed x the Fourier coefficients of f in the fiber x+H of G/H, identified
with H by the map H ∋ h 7→ x+ h.

If we choose ν̂ ∈ Ĝ in the residue class ν ∈ Ĝ/H⊥, then f̃ν(x) = fν(x)ν̂(−x) is invariant
under the translations τy with y ∈ H, for

̂̃
fν(χ) = |H|f̂(χν̂) if χ ∈ H⊥ and

̂̃
fν(χ) = 0 if

χ ∈ Ĝ \H⊥. Thus it follows that

(1.2.8)

f̂(χ) = f̂ν(χ)/|H| = 1

|H|
∑
x∈G

fν(x)χ(x)

=
̂̃
fν(χ/ν̂)/|H| = 1

|H|
∑
x∈G

f̃ν(x)ν̂(x)χ(x), χ ∈ ν ∈ Ĝ/H⊥.

The division by |H| disappears if only one x in each residue class mod H is taken in the

sums, which corresponds to taking the Fourier transform of f̃ν as a function in G/H.
Summing up, we can calculate the Fourier transform of f by

(i) computing fν using (1.2.7) for one x in each coset in G/H, that is, calculating the
Fourier transform of |G/H| functions in the group H;

(ii) calculating the Fourier transforms of the |H| functions f̃ν in G/H, or equivalently,
apply (1.2.8).
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The importance of this remark is as follows. Computing f̂ from first principles means
letting a |G| × |G| matrix act on a vector with |G| (complex) components, which requires
(|G| − 1|)2 multiplications and |G|(|G| − 1) additions, since all elements in one row and
one column of the matrix are equal to 1. If instead we divide the task into two steps as
above, we need |G/H||H|(|H| − 1) = |G|(|H| − 1) multiplications and additions in step
(i). In step (ii) we need at most |H||G/H|2 multiplications and additions, or altogether
at most |G|(|H| − 1 + |G/H|) operations of each kind. Here 2 ≤ |H| ≤ |G|/2 so this is
≤ |G|(1 + |G|/2). There is a more drastic saving if we have a ladder of subgroups

(1.2.9) {0} = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ HN = G.

In the first step, with H = H1 we have to make |G|(|H1|−1) operations, and are essentially
left with |H1| functions in G/H1. To compute their Fourier transforms we use the subgroup
H2/H1 and find that step (i) requires |H1||G/H1|(|H2/H1| − 1) = |G|(|H2|/|H1| − 1)
operations. Continuing in this way until we reach HN = G so that no step (ii) is required,
the number of operations used becomes altogether

(1.2.10) |G|
N∑
1

(γj − 1), γj = |Hj |/|Hj−1|.

Here γj ≥ 2, and we have γ ≤ 2γ−1 when γ ≥ 2. Since
∏N

1 γj = |G| the bound in (1.2.10)
is ≥ |G| log2 |G|, with strict inequality unless γj = 2 for every j, that is, G is a 2 group.
(The case of the group ZN2 is fairly trivial and was discussed in a remark after Theorem
1.2.1. The more interesting case of the group Z2N will be discussed below.) The bound
|G| log2 |G| for the number of operations is of course much better than the bound (|G|−1)2

if |G| is large, which is the reason for the importance of the fast Fourier transform using
the group Z2N , which will be discussed more explicitly in the next section.

When the group G and the subgroup H are cyclic, the calculation of the Fourier trans-
form of f ∈ CG using (1.2.7) and (1.2.8) can be described explicitly as follows. Let

G = ZN where N = ab for some integers a, b ≥ 2, and let H = aZN . We identify Ĝ with
ZN , defining the characters by ZN ∋ x 7→ exp(2πixξ/N) when ξ ∈ ZN . Then H⊥ = bZN ,

we represent G and Ĝ by integers x and ξ in [0, N − 1], and write

x = ay + z, 0 ≤ z < a, 0 ≤ y < b; ξ = bη + ζ, 0 ≤ ζ < b, 0 ≤ η < a.

Then exp(2πixξ/N) = exp(2πizζ/N) exp(2πiyζ/b) exp(2πizη/a), hence

(1.2.11) f̂(bη + ζ) =

a−1∑
z=0

e−2πizη/a
(
e−2πizζ/N

b−1∑
y=0

f(ay + z)e−2πiyζ/b
)
.

With our earlier notation the inner sum in (1.2.11) is the Fourier transform inH calculating

fζ(z) in (1.2.7). The product by e−2πizζ/N is f̃ζ(z), and the outer sum in (1.2.11) calculates
its Fourier transform in G/H as in (1.2.8). Thus formula (1.2.11) describes in the cyclic
case precisely the same procedure as before, but with the conceptual background removed.
(I owe this observation to C. Bennewitz.)
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1.3. The fast Fourier transform. In this section we shall examine in detail the
Fourier transform of functions on the group G = Z2N = Z/2NZ following the pattern
outlined at the end of Section 1.2. Let Hj be the subgroups

(1.3.1) Hj = 2N−jG, 0 ≤ j ≤ N.

We have as in (1.2.9)

(1.3.2) {0} = H0 ⊂ H1 ⊂ · · · ⊂ HN = G, Hj/Hj−1
∼= Z2, 1 ≤ j ≤ N.

We can parametrize G by {0, 1}N using binary digits,

{0, 1}N ∋ (r1, . . . , rN ) 7→
N∑
1

rj2
j−1 ∈ Z → Z2N ,

and we parametrize the dual Ĝ ∼= Z2N similarly by (ϱ1, . . . , ϱN ). Then the character

G× Ĝ ∋ (x, ξ) 7→ exp(2πixξ/2N ) becomes

exp(2πi
∑

j,k≥1,j+k≤N+1

rjϱk2
j+k−2−N ).

The subgroup Hj consisting of all x ∈ Z2N with 2jx ≡ 0 is defined by r1 = · · · = rN−j = 0,
so G/Hj is parametrized by (r1, . . . , rN−j). Since H

⊥
j is defined by ϱ1 = · · · = ϱj = 0 the

quotient Ĝ/H⊥
j is parametrized by ϱ1, . . . , ϱj .

Let f ∈ CG. With H = H1 the first step in the calculation of f̂ is to decompose f by
the two characters on H1 = Z2,

f0(x) = f(x) + f(x+ 2N−1), f1(x) = f(x)− f(x+ 2N−1).

Here f0(x + 2N−1) = f0(x) but f1(x + 2N−1) = −f1(x). The non-trivial character which

gave rise to f1 corresponds to the coset of Ĝ/H⊥
1 defined by ϱ1 = 1, and we choose in it

the character in Ĝ corresponding to ϱ = (1, 0, . . . , 0). Then f1 is modified to

f̃1(x) = (f(x)− f(x+ 2N−1))e−2πix/2N .

To simplify notation we drop the tilde and define now

(1.3.3) fϱ1(x) = (f(x) + (−1)ϱ1f(x+ 2N−1))e−2πixϱ1/2
N

, ϱ1 = 0, 1.

These two functions are now defined in Z2N−1 . The Fourier transform of fϱ1 as a function

in Z2N−1 at
∑N−1

2 ϱj2
j−2 will be the Fourier transform of f at

∑N−1
1 ϱj2

j−1.
It is now clear how to continue the algorithm. When fϱ1...ϱk(x) has been defined as a

function in Z2N−k for ϱ1, . . . , ϱk = 0, 1, we define if k < N , for ϱk+1 = 0, 1,

(1.3.4) fϱ1...ϱk+1
(x) = (fϱ1...ϱk(x) + (−1)ϱk+1fϱ1...,ϱk(x+ 2N−k−1))e−2πixϱk+1/2

N−k

,
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which are functions in Z2N−k−1 . The last functions fϱ1...ϱN are defined in Z1, that is,
constants, and

(1.3.5) f̂
( N∑

1

ϱj2
j−1

)
= fϱ1...ϱN .

Assuming that the exponentials e−2πiν/2N and the binary representation of integers in
[0, 2N ) have been precomputed, we have here made 2N−1 multiplications and 2N additions
or subtractions in each step, for a total of N2N−1 multiplications and N2N additions or
subtractions. Parametrizing x ∈ G by the binary digits r1, . . . , rN we see that fϱ1...ϱk(x)
is parametrized by r1 . . . rN−k, ϱk . . . ϱ1 which shows that the function values calculated in
each step can be naturally stored at the same places as those in the preceding step which
makes the algorithm fast and easy to program.

The algorithm is often presented in a somewhat different way which is independent of
the general scheme described in Section 1.2. Let n = 2N . The task is to calculate the
polynomial

p(z) =
n−1∑
0

f(j)zj

at the nth roots of unity, or equivalently, to calculate the residue classes modulo z − ωj

for j = 0, . . . , n − 1 where ω = exp(2πi/n). Since n is even the nth roots of unity can be
divided up into solutions of the equations zn/2 = 1 and zn/2 = −1. For roots of the first
kind we can first reduce p modulo zn/2− 1 and for the second type we first reduce modulo
zn/2 + 1. Since n is a power of 2 the procedure can be continued. After j < N steps we
have 2j polynomials q of degree 2N−j − 1 the values of which we want to calculate at the

zeros of z2
N−j − ω2N−jν where ν is an integer. Thus we have to compute the values of q

at the zeros of z2
N−j−1 ∓ ω2N−j−1ν after reducing q modulo these polynomials. For the

lower sign we replace ν by ν +2j to preserve the structure. After N steps we are left with

2N polynomials of degree 0 to evaluate at ων where ν =
∑N

1 ϱj2
j−1 and ϱj = 0 if the

minus sign is chosen in the jth step of the construction, ϱj = 1 otherwise. Now reducing

a polynomial
∑2µ−1

0 ajz
j modulo zµ ∓ c gives the polynomials

µ−1∑
0

(aj ± aj+µc)z
j

which means that µ multiplications and 2µ additions or subtractions are required to cal-
culate the new coefficients. The total computational effort is of course the same as in the
first description of the algorithm.



CHAPTER II

BASIC FOURIER ANALYSIS OF (PERIODIC) FUNCTIONS IN Rn

2.1. The one-dimensional case. In this section we shall study functions on R, its
closed subgroups TZ with T > 0, and the quotient groups R/TZ (the circle group). We
start with the latter case.

Thus let f be a continuous function on R with period T . For an arbitrary integer ν > 0
we can restrict f to a function fν on Zν = Z/νZ defined by

(2.1.1) fν(j) = f(Tj/ν), j ∈ Z,

and apply the Fourier inversion formula (1.2.4) for Zν to fν . The Fourier coefficients of fν
are

cν(k) =
ν−1∑
j=0

f(Tj/ν)e−2πijk/ν , k ∈ Z,

and the inversion formula states that

(2.1.2) f(Tj/ν) =
1

ν

∑
−ν/2≤k<ν/2

cν(k)e
2πijk/ν .

When ν → ∞ we have by the definition of the Riemann integral cν(k)/ν → c(k) where

(2.1.3) c(k) =

∫ 1

0

f(Tx)e−2πikx dx =
1

T

∫ T

0

f(x)e−2πikx/T dx.

From (2.1.2) we would obtain

(2.1.4) f(x) =
∞∑
−∞

c(k)e2πikx/T ,

if it is legitimate to pass to the limit when ν → ∞ and Tj/ν → x. We shall now prove that
this is permissible if f ∈ C2, thanks to the precaution of shifting the summation index k in
(2.1.2) so that k/ν does not come close to any integer ̸= 0. To estimate cν(k) we observe
that

cν(k)e
±2πik/ν =

ν−1∑
j=0

f(T (j ± 1)/ν)e−2πijk/ν , hence

cν(k)(2− e2πik/ν − e−2πik/ν) =

ν−1∑
j=0

(
2f(Tj/ν)− f(T (j + 1)/ν)− f(T (j − 1)/ν)

)
e−2πijk/ν .

10
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The parenthesis in the left-hand side is −(eπik/ν − e−πik/ν)2 = 4 sin2(πk/ν) ≥ 16(k/ν)2

when |k| ≤ ν/2, for | sin(πx)| ≥ 2|x| when |x| ≤ 1/2 by the concavity of the sin function in
[0, π/2]. The second difference of f on the right is bounded by (T/ν)2 sup |f ′′|, so we have

|cν(k)/ν| ≤ (T 2/16k2) sup |f ′′|, k ̸= 0; |cν(0)/ν| ≤ sup |f |.

Thus |cν(k)/ν| is majorized by a convergent series which proves that the inversion formula
(2.1.4) is valid.

Proposition 2.1.1. If f ∈ Cµ(R) where µ is an integer ≥ 0, and f is periodic with
period T > 0 then the Fourier coefficients c(k) defined for k ∈ Z by (2.1.3) have the bound

(2.1.5) |(2πk/T )µc(k)| ≤ 1

T

∫ T

0

|f (µ)(x)| dx ≤ sup |f (µ)|.

If µ ≥ 2 then (2.1.4) is valid with absolute and uniform convergence, and Parseval’s formula

(2.1.6)

∫ T

0

|f(x)|2 dx = T
∞∑
−∞

|c(k)|2

is valid. Conversely, if c(k), k ∈ Z, is a given sequence ∈ C such that kµc(k) is bounded
then (2.1.4) defines a function f ∈ Cµ−2(R) with period T if µ ≥ 2, and (2.1.3) is valid.

Proof. We have just proved that (2.1.4) is valid if f ∈ C2, and (2.1.6) follows if

we multiply by f(x) and integrate, interchanging the integration and the summation. If
f ∈ Cµ(R) then we obtain by µ partial integrations in (2.1.3)

(2πik/T )µc(k) =
1

T

∫ T

0

f (µ)(x)e−2πikx/T dx,

which proves (2.1.5). On the other hand, if c(k) is given with |c(k)| ≤ Ck−µ, µ ≥ 2,
then (2.1.4) converges to a function f ∈ Cµ−2 with period T , for the series is uniformly
convergent and remains so after at most µ−2 differentiations. The Fourier coefficients of f
can be calculated by termwise integration which gives (2.1.3) in view of the orthogonality
relations

1

T

∫ T

0

e2πi(j−k)x/T dx = δjk.

Remark. Note that the functions χ(x) = exp(2πikx/T ) with k ∈ Z are bounded
continuous characters on R/TZ, that is, χ(x + y) = χ(x)χ(y) for x, y ∈ R. We leave
as an exercise to prove that all bounded continuous characters are of this form. (Hint:
Prove first by integration with respect to y that a continuous character is continuously
differentiable and derive a differential equation for it to prove that it is an exponential.)

If f is a C2 function on R which is not periodic but has compact support, we can define
a function fT ∈ C2 with period T by pushforward of f to the quotient space R/TZ, that
is,

fT (x) =
∞∑

k=−∞

f(x+ kT ).
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The Fourier coefficients of fT are

cT (k) =
1

T

∫ T

0

fT (x)e
−2πikx/T dx =

1

T

∫ ∞

−∞
f(x)e−2πikx/T dx =

1

T
f̂(2πk/T ),

where f̂ denotes the Fourier transform

(2.1.7) f̂(ξ) =

∫
R

f(x)e−ixξ dx.

By (2.1.4) we have

(2.1.8) fT (x) =
∞∑
−∞

cT (k)e
2πikx/T =

1

T

∞∑
−∞

f̂(2πk/T )e2πixk/T dx.

When T → ∞ the left-hand side converges to f(x); in fact on any compact set it is equal
to f(x) when T is large enough. To find the limit of the sum in the right-hand side of
(2.1.8) we note that partial integration gives

ξ2f̂(ξ) = −
∫
f ′′(x)e−ixξ dx, hence (1 + ξ2)|f̂(ξ)| ≤

∫
(|f ′′(x)|+ |f(x)|) dx.

We can regard the sum in (2.1.8) as the integral of the function of ξ which is equal to

f̂(2πk/T )e2πixk/T when |ξ − k/T | < 1/2T . It is bounded by C/(1 + ξ2) for every T > 1
so the dominated convergence theorem gives

(2.1.9) f(x) =

∫
R

f̂(2πξ)e2πixξ dξ =
1

2π

∫
R

f̂(ξ)eixξ dξ, x ∈ R.

Proposition 2.1.2. If f ∈ Cµ(R) and xjf (k)(x) is bounded for 0 ≤ j ≤ µ, 0 ≤ k ≤ ν,

where µ ≥ 2, then the Fourier transform f̂ of f defined by (2.1.7) is in Cµ−2(R), and

(2.1.10) |ξj f̂ (k)(ξ)| ≤
∫
R

|(d/dx)j(xkf(x))| dx ≤ π−1 sup(1 + x2)|(d/dx)j(xkf(x))|,

when k ≤ µ−2 and j ≤ ν. If ν ≥ 2 also then f̂ is integrable, the Fourier inversion formula
(2.1.9) is valid, and so are Parseval’s formula

(2.1.11)

∫
R

|f(x)|2 dx =
1

2π

∫
R

|f̂(ξ)|2 dξ,

and Poisson’s summation formula

(2.1.12)
∞∑
−∞

f(kT ) =
1

T

∞∑
−∞

f̂(2πk/T ).
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Proof. If k ≤ µ− 2 then we may differentiate (2.1.7) k times under the integral sign,
which gives

f̂ (k)(ξ) =

∫
R

f(x)(−ix)ke−ixξ dx,

for the integral remains uniformly convergent. If j ≤ ν we can multiply by ξj and integrate
by parts j times to get

ξj f̂ (k)(ξ) =

∫
R

(
(−id/dx)j(f(x)(−ix)k)

)
e−ixξ dx,

which proves (2.1.10). In particular, if ν ≥ 2 and µ ≥ 2 the proof of the inversion formula
given above for f ∈ C2 of compact support remains valid, for fT (x) → f(x) as T → ∞
since µ ≥ 2, and the determination of the limit of the right-hand side of (2.1.8) used only

a special case of (2.1.10). Parseval’s formula (2.1.11) follows if we multiply (2.1.9) by f(x)
and integrate, interchanging the orders of integration in the right-hand side. Poisson’s
summation formula (2.1.12) is the special case of (2.1.8) with x = 0.

The gap between the periodic and the non-periodic case can be bridged as follows. Let
f again be as in Proposition 2.1.2. Then we have used that

fT (x) =

∞∑
−∞

f(x+ kT )

is periodic with period T , but fT only preserves information on the spectrum of f at
2πZ/T . To avoid this loss of information one can premultiply by the character e−ixξ and
define

fT,ξ(x)e
−ixξ =

∞∑
−∞

f(x+ kT )e−i(x+kT )ξ, that is,

fT,ξ(x) =

∞∑
−∞

f(x+ kT )e−ikTξ.(2.1.13)

(Compare this with (1.2.6) and (1.2.7).) Then F (x, ξ) = fT,ξ(x) is continuous in R2 and

(2.1.14) F (x, ξ + 2π/T ) = F (x, ξ), F (x+ T, ξ) = eiTξF (x, ξ).

The Fourier coefficients of F as a periodic function of ξ are f(x−kT ), so Parseval’s formula
for Fourier series gives ∫ 2π/T

0

|F (x, ξ)|2 dξ = 2π

T

∞∑
−∞

|f(x− kT )|2,

and integration with respect to x yields

(2.1.15)

∫ T

0

dx

∫ 2π/T

0

|F (x, ξ)|2 dξ = 2π

T

∫
R

|f(x)|2 dx.
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Conversely, let F ∈ C2(R×R) satisfy the periodicity conditions (2.1.14) and set

(2.1.16) f(x) =
T

2π

∫ 2π/T

0

F (x, ξ) dξ.

Then f ∈ C2, and since for 0 ̸= ν ∈ Z

f(x+ νT ) =
T

2π

∫ 2π/T

0

eiνTξF (x, ξ) dξ = − T

2π
(νT )−2

∫ 2π/T

0

eiνTξ∂2F (x, ξ)/∂ξ2 dξ,

it follows that xjf(x) is bounded for j ≤ 2. Fourier series expansion of F gives with the
Fourier coefficients just calculated

F (x, ξ) =

∞∑
−∞

f(x− νT )eiνTξ = fT,ξ(x),

so (2.1.16) and (2.1.13) are inverse transformations. In particular, using (2.1.15) we con-

clude that the map from f to [0, T ] × [0, 2π/T ] ∋ (x, ξ) 7→
√
T/2πfT,ξ(x) extends to a

unitary map from L2(R) to L2([0, T ]× [0, 2π/T ]). It is sometimes called the Zak transform
(see Daubechies [1]), and sometimes called expansion in Bloch waves.

The preceding two propositions are precisely analogous to the Fourier analysis for finite
abelian groups in Chapter I, with (2π/T )Z as dual group of R/TZ and R as its own dual
group. However, the local and global hypotheses are too strong in both of them and they
will be relaxed later on. Before doing so we shall discuss an extension of Propositions 2.1.1
and 2.1.2 to distributions.

Distributions f ∈ D ′(R) with period T can be identified with continuous linear forms
on the C∞ functions on R with period T . In fact, let L be such a linear form. We can
define a distribution f ∈ D ′(R) by setting

(2.1.17) f(φ) = L(Φ), φ ∈ C∞
0 (R), where Φ(x) =

∞∑
−∞

φ(x− kT ),

for Φ ∈ C∞(R) is periodic with period T . We leave as an exercise to verify that f is
a distribution. It is periodic since Φ does not change if φ(x) is replaced by φ(x − T ).
Conversely, assume given f ∈ D ′(R) with period T . We want to define L(Φ) for Φ ∈
C∞(R) of period T so that (2.1.17) is valid when φ ∈ C∞

0 (R). This is a unique definition,
for if φ ∈ C∞

0 (R) and
∑∞

−∞ φ(x− kT ) ≡ 0 then

φ1(x) =
0∑

−∞
φ(x− kT ) = −

∞∑
1

φ(x− kT )

is in C∞
0 (R) and φ(x) = φ1(x) − φ1(x + T ), so f(φ) = f(φ1) − f(φ1(· + T )) = 0 by the

periodicity of f . On the other hand, we can choose ψ ∈ C∞
0 (R) so that

∑∞
−∞ ψ(x−kT ) ≡

1, for if ψ1 ∈ C∞
0 (R) and ψ1 ≥ 0 with strict inequality in [0, T ], then we can take
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ψ(x) = ψ1(x)/
∑∞

−∞ ψ1(x− kT ). For any Φ ∈ C∞(R) it follows that we can take φ = ψΦ
in (2.1.17), so L(Φ) = f(ψΦ) is defined and is obviously a continuous linear form on
periodic Φ ∈ C∞. If f ∈ L1(R/TZ), that is, f is a locally integrable function with period
T , it is clear that

(2.1.18) L(Φ) =

∫
R

f(x)φ(x) dx =

∫ T

0

f(x)

∞∑
−∞

φ(x− kT ) dx =

∫ T

0

f(x)Φ(x) dx.

Thus L(Φ) should be thought of as fΦ integrated over a period, and we shall usually write

⟨f,Φ⟩R/TZ or even ⟨f,Φ⟩[0,T ] or
∫ T
0
fΦ dx instead of L(Φ).

In particular, the Fourier coefficients c(k) can be defined for every f ∈ D ′(R) with
period T by

(2.1.3)′ c(k) =
1

T
⟨f, e−2πik·/T ⟩R/TZ.

If f is of order µ it follows that

(2.1.19) |c(k)| ≤ C(1 + |k|)µ.

If Φ ∈ C∞(R/TZ) has Fourier coefficients Φk, then it follows from Proposition 2.1.1 that

Φ(x) =
∞∑
−∞

Φke
−2πikx/T

where the Fourier series converges in C∞. Hence we obtain the polarized version of Par-
seval’s formula

⟨f,Φ⟩R/TZ = T
∞∑
−∞

ckΦk.

It proves that f = 0 if all the Fourier coefficients of f vanish. Now (2.1.19) implies that
the Fourier series

(2.1.20) F =
∞∑
−∞

c(k)e2πikx/T

converges in D ′, for the series

∞∑
−∞

c(k)(ki+ 1)−Ne2πikx/T

converges absolutely and uniformly ifN is an integer> µ+1, and if we apply the differential
operator ((T/2π)∂/∂x + 1)N , which is continuous in D ′, it follows that (2.1.20) is also
convergent. That the Fourier coefficients of F defined by (2.1.20) are equal to c(k) follows
as in the proof of Proposition 2.1.1. Thus we have proved:
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Theorem 2.1.3. If f ∈ D ′(R) is periodic with period T , then the Fourier coefficients
defined by (2.1.3)′ have the polynomial bound (2.1.19) and the Fourier series (2.1.4) con-
verges to f in D ′(R). Conversely, for every sequence c(k) satisfying (2.1.19) the series
(2.1.20) converges in D ′(R) to a distribution F which is periodic with period T and has
Fourier coefficients c(k).

Summing up, taking Fourier coefficients gives an isomorphism between periodic distri-
butions and sequences of at most polynomial growth.

Theorem 2.1.3 was based on the duality between C∞ periodic functions and periodic
distributions on one hand, and between rapidly decreasing and polynomially bounded
sequences on the other. Theorem 2.1.2 suggests introducing a class of test functions giving
an analogue for distributions on R.

Definition 2.1.4. By S or S (R) we shall denote the space consisting of all φ ∈
C∞(R) such that xjφ(k)(x) is bounded for arbitrary j and k.

S is called the Schwartz space. The boundedness of xj(d/dx)kφ for all j and k implies
that any product of multiplication by x and differentiation with respect to x applied to
φ(x) gives a bounded function, for the commutation relation

(
d

dx
x− x

d

dx
)ψ = ψ

allows us to change the order of the factors, introducing only new terms with fewer factors
x and d/dx. The space S is a Fréchet space with the seminorms

S ∋ φ 7→ sup |xjφ(k)(x)|,

and C∞
0 (R) is a dense subspace of S . We leave the proof as an exercise. (See Hörmander

[1, Lemma 7.1.8] if necessary. Note that S (R) is dense in Lp(R) for 1 ≤ p < ∞ for even
C∞

0 (R) is dense.) This implies that the dual space S ′(R) of temperate distributions can
be identified with a subspace of the space D ′(R) of distributions on R; the restriction of a
continuous linear form L on S (R) to C∞

0 (R) is obviously a distribution, and if it is equal
to 0 then L = 0 since C∞

0 (R) is dense in S (R).
The importance of the space S is due to the fact that by Proposition 2.1.2 the Fourier

transformation f 7→ f̂ is continuous from S to S . Since
̂̂
f(x) = 2πf(−x) by the Fourier

inversion formula (2.1.9), it is a surjective map with continuous inverse. If f ∈ L1(R) so

that the Fourier transform f̂(ξ) can be defined by (2.1.7), then we obtain∫
f̂(ξ)φ(ξ) dξ =

∫
f(x)φ̂(x) dx, φ ∈ S ,

if we multiply (2.1.7) by φ(ξ) and integrate, interchanging the order of integration in the
right-hand side. We can therefore extend the definition of the Fourier transformation to
arbitrary f ∈ S ′ by defining

(2.1.21) ⟨f̂ , φ⟩ = ⟨f, φ̂⟩, φ ∈ S ,

for S ∋ φ 7→ ⟨f, φ̂⟩ is a continuous linear form on S since the maps S ∋ φ 7→ φ̂ ∈ S
and S ∋ φ̂ 7→ ⟨f, φ̂⟩ are continuous.
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Theorem 2.1.5. The Fourier transformation defined by (2.1.21) is an isomorphism

S ′(R) → S ′(R), and Fourier’s inversion formula is valid, that is,
̂̂
f = 2πf̌ where f̌ is

the reflection in the origin defined by

⟨f̌ , φ⟩ = ⟨f, φ̌⟩, φ ∈ S (R); φ̌(x) = φ(−x).

We have f ∈ L2(R) if and only if f̂ ∈ L2(R), and Parseval’s formula (2.1.11) is then

valid. When f ∈ S ′ the Fourier transform of −idf/dx (resp. xf) is ξf̂ (resp. idf̂/dξ),

where x (resp. ξ) denotes the variable where f (resp. f̂) lives. The Fourier transform of

f(·+h) is eih·f̂ , and the Fourier transform of eih·f is f̂(· −h) if h ∈ R. When 0 ̸= a ∈ R

the Fourier transform of f(a·) is |a|−1f̂(·/a).

Proof. If f ∈ S ′ and φ ∈ S then

⟨ ̂̂f, φ⟩ = ⟨f̂ , φ̂⟩ = ⟨f, ̂̂φ⟩ = 2π⟨f, φ̌⟩ = 2π⟨f̌ , φ⟩

by Fourier’s inversion formula for S , so it is inherited by S ′. The same is true for the
other rules of computation; for example,

⟨−idf/dx, φ̂⟩ = ⟨f, idφ̂/dx⟩, ⟨xf, φ̂⟩ = ⟨f, xφ̂⟩,

and the proof of Proposition 2.1.2 contains a proof that idφ̂(x)/dx is the Fourier transform
of ξ 7→ ξφ(ξ) and that xφ̂(x) is the Fourier transform of ξ 7→ −idφ(ξ)/dξ. Hence

⟨−idf/dx, φ̂⟩ = ⟨f̂ , ξφ(ξ)⟩ = ⟨ξf̂ , φ⟩, ⟨xf, φ̂⟩ = ⟨f̂ ,−iφ′⟩ = ⟨if̂ ′, φ⟩.

The verification of the other rules is left as an exercise. If f ∈ L2 then

|⟨f̂ , φ⟩| = |⟨f, φ̂⟩| ≤ ∥f∥L2∥φ̂∥L2 = ∥f∥L2

√
2π∥φ∥L2 , φ ∈ S .

Since S is dense in L2 and every continuous linear form on L2 is the scalar product by a

function in L2 it follows that f̂ ∈ L2 and that ∥f̂∥L2 ≤
√
2π∥f∥L2 . Hence

∥ ̂̂f∥L2 ≤
√
2π∥f̂∥L2 ≤ 2π∥f∥L2 ,

and since
̂̂
f = 2πf̌ it follows that there is equality throughout, so f 7→ f̂/

√
2π is a unitary

operator in L2.

We give a few important examples, leaving for the reader to fill in the details.

Examples. 1. The Fourier transform of δa, a ∈ R, is ξ 7→ e−iaξ. Hence the Fourier
transform of ξ 7→ eiaξ is 2πδa. In particular the Fourier transform of the function which is
identically 1 is 2πδ0.

2. The Fourier transform of the characteristic function of R± is ∓i(ξ ∓ i0)−1, for it is
the limit as ε → ±0 of the Fourier transform of the product by e−εx. Hence the Fourier
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transform of x 7→ sgnx is −2i vp(1/ξ), that is, the limit in S ′ of ξ 7→ −2iξ/(ξ2 + ε2) as
ε→ 0. The Fourier transform of vp(1/x) is ξ 7→ −iπ sgn ξ.

3. The Fourier transform of Pa =
∑∞

−∞ δka where a > 0 is equal to (2π/a)P2π/a, for
Poisson’s summation formula (2.1.12) gives

⟨PT , φ⟩ = T−1⟨P2π/T , φ̂⟩, φ ∈ S ,

which means that the Fourier transform of P2π/T is equal to TPT .
4. If f ∈ D ′(R) is periodic with period T , then f ∈ S ′(R), and if the Fourier coefficients

are defined by (2.1.3)′ then

f̂ = 2π

∞∑
−∞

c(k)δ2πk/T .

This follows from Example 1 above since f is the limit in S ′ of the partial sums of the
Fourier series. Note that Example 3 is a special case.

5. For the Gaussian g(x) = e−x
2/2 we have by Cauchy’s integral formula

ĝ(ξ) =

∫
R

e−x
2/2−ixξ dξ = e−ξ

2/2

∫
R

e−(x−iξ)2/2 dx = cg(ξ), c =

∫
R

e−x
2/2 dx > 0.

By Fourier’s inversion formula 2πg(−x) = ˆ̂g(x) = cĝ(x) = c2g(x), so c =
√
2π. Hence∫

e−x
2/2−ixξ dx =

√
2πe−ξ

2/2, ξ ∈ R.

Replacing x by x
√
a and ξ by ξ/

√
a, a > 0, we obtain∫

e−ax
2/2−ixξ dx =

√
2π/ae−ξ

2/2a,

for a > 0 and ξ ∈ R. The integral is well defined for arbitrary a, ξ ∈ C with Re a > 0, so
by analytic continuation the formula remains valid then, with the square root chosen in the
right half plane. Hence the Fourier transform of the general Gaussian x 7→ exp(−ax2/2 +
bx) is ξ 7→

√
2π/a exp(−(ξ + ib)2/2a) for arbitrary a, b ∈ C with Re a > 0.

For further important examples see Hörmander [1, Lemma 7.1.17].

Since S (R) is continuously embedded in C∞(R), we have E ′(R) ⊂ S ′(R); in fact, the
obvious map E ′ → S ′ is injective since the composition with the injection S ′ → D ′ is
the usual injection of E ′ in D ′ (see Hörmander [1, Theorem 2.3.1]).

Theorem 2.1.6. If f ∈ E ′(R) then the Fourier transform is the C∞ function

(2.1.22) f̂(ξ) = ⟨fx, e−ixξ⟩, ξ ∈ R,

where fx means that f acts as a distribution in the x variable. We can extend f̂ to an
entire analytic function in C, the Fourier-Laplace transform, by letting ξ ∈ C in (2.1.22).

If supp f ⊂ [a, b] where a ≤ b, and f is of order µ, then F (ζ) = f̂(ζ) has a bound

(2.1.23) |F (ζ)| ≤ C(1 + |ζ|)µ exph(Im ζ), ζ ∈ C; h(η) = max(aη, bη).
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Conversely, if F is an entire analytic function such that (2.1.23) is valid, then F = f̂ where
f ∈ E ′ has support in [a, b] and order ≤ max(0, µ + 2). If g ∈ E ′(R) then the Fourier

transform of the convolution f ∗ g is ξ 7→ f̂(ξ)ĝ(ξ).

Proof. If φ ∈ C∞
0 (R) then

φ̂(ξ) = lim
ε→0

ε

∞∑
−∞

φ(εk)e−iεkξ

where |k| ≤ C/ε in the sum and the convergence is uniform for ξ in any compact set and
remains so after any number of differentiations with respect to ξ under the summation
sign. Hence

⟨f̂ , φ⟩ = ⟨f, φ̂⟩ = lim
ε→0

ε
∞∑
−∞

φ(εk)F (εk),

where F (ζ) = ⟨f, eζ⟩ and eζ(x) = e−ixζ , ζ ∈ C. Since the map C ∋ ζ 7→ eζ ∈ C∞(R) is
continuous, it follows that F is continuous in C, hence the Riemann sums converge and

we obtain ⟨f̂ , φ⟩ =
∫
φ(ξ)F (ξ) dξ, φ ∈ C∞

0 (R), which means that f̂ = F in R. Since the
power series expansion

e−ixζ =
∞∑
0

(−ixζ)j/j!

converges in C∞(R) as a function of x, uniformly for ζ in any compact subset of C, it
follows that

F (ζ) =
∞∑
0

(−iζ)j⟨f, xj⟩/j!, ζ ∈ C,

which proves that F is an entire analytic function. The definition of the convolution shows
that

f ∗ eζ(x) = fy(eζ(x− y)) = eζ(x)fy(eζ(−y)) = f̂(ζ)eζ(x), ζ ∈ C, x ∈ R.

If g is another distribution in E ′ it follows that

(f ∗ g) ∗ eζ = f ∗ (g ∗ eζ) = f̂(ζ)ĝ(ζ)eζ , ζ ∈ C,

which proves that f̂ ĝ is the Fourier-Laplace transform of f ∗ g.
To prove that (2.1.23) is valid for F = f̂ we note that

|f(φ)| ≤ C sup
a≤x≤b

µ∑
0

|φ(j)(x)|, φ ∈ Cµ(R),

for we can redefine φ outside [a, b] by the Taylor expansions of order µ at a and b without
changing f(φ). (See Hörmander [1, Theorem 2.3.3].) Hence

|f̂(ζ)| ≤ C(1 + |ζ|)µ exp( sup
a≤x≤b

x Im ζ),
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which proves (2.1.23).
Now assume given an entire analytic function F satisfying (2.1.23). At first we assume

that µ < −1. Then

F̂ (x) =

∫
R

F (ξ)e−ixξ dx, x ∈ R,

is a bounded continuous function. By Cauchy’s integral formula applied to a rectangle
with corners at ±R and ±R+ iη we find when R→ ∞ that for any η ∈ R

F̂ (x) =

∫
R

F (ξ + iη)e−ix(ξ+iη) dx.

Hence

|F̂ (x)| ≤ C sup(xη + h(η)), η ∈ R.

When η → +∞ this proves that F̂ (x) = 0 if x + b < 0, and when η → −∞ it follows

that F̂ (x) = 0 if x + a > 0. Hence supp F̂ ⊂ [−b,−a], so F̂ is continuous with compact

support. By Fourier’s inversion formula we conclude that F = f̂ where f(x) = F̂ (−x)/2π
is a continuous function with support in [a, b].

To complete the proof we choose φ ∈ C∞
0 (R) with suppφ ⊂ [−1, 1] and

∫
φdx = 1;

then φ̂(0) = 1 and

|ζjφ̂(ζ)| ≤ e| Im ζ|
∫

|φ(j)(x)| dx.

If F satisfies (2.1.23) it follows that F (ζ)φ̂(εζ) satisfies (2.1.23) with a, b replaced by
a− ε, b+ ε and µ replaced by any real number. Hence the Fourier transform has support
in [−b − ε,−a + ε]. When ε → 0 it follows that the Fourier transform of F has support
in [−b,−a], so f = F̌ /2π has support in [a, b] and Fourier transform F . If N is a non-
negative integer > µ+ 1, then ξ 7→ (iξ + 1)−NF (ξ) is integrable so the Fourier transform
is a continuous function. Applying the differential operator (−d/dx + 1)N to the Fourier

transform we conclude that F̂ is of order N , which completes the proof.

The characterization of the Fourier transform of E ′ in Theorem 2.1.6 is a variant of
the Paley-Wiener theorem due to Schwartz. The last statement in Theorem 2.1.6 has
also several variants worth mentioning. A classical version is that if f, g ∈ L1(R) then
(f ∗ g)(x) =

∫
f(x − y)g(y) dy is defined almost everywhere and belongs to L1(R); the

Fourier transform is f̂ ĝ. The proof follows at once from the Lebesgue-Fubini theorem and
is left as an exercise for the reader, but we shall prove:

Theorem 2.1.7. If φ,ψ ∈ S (R) then (φ ∗ ψ)(x) =
∫
φ(x− y)ψ(y) dy = (ψ ∗ φ)(x) is

in S (R) and the bilinear map S × S ∋ (φ,ψ) 7→ φ ∗ ψ ∈ S is continuous. If f ∈ S ′

and φ ∈ S then f ∗ φ ∈ S ′ is defined by

(2.1.24) ⟨f ∗ φ,ψ⟩ = ⟨f, ψ ∗ φ̌⟩, ψ ∈ S ,

and the Fourier transform is f̂ φ̂.
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Proof. Derivatives of φ ∗ ψ can be calculated by differentiating either factor, and if
k ≥ 0 then

(1 + |x|)k|(φ ∗ ψ)(x)| ≤ sup
y

|φ(x− y)|(1 + |x− y|)k
∫

(1 + |y|)k|ψ(y)| dy

since 1+|x| ≤ (1+|x−y|)(1+|y|) by the triangle inequality. This proves that φ∗ψ ∈ S and
that (φ,ψ) 7→ φ ∗ ψ is continuous in S . Hence (2.1.24) defines a distribution f ∗ φ ∈ S ′,
and the map S ∋ φ 7→ f ∗ φ ∈ S ′ is continuous. Since the Fourier transformation is

continuous in S ′ and the Fourier transform of f ∗ φ is f̂ φ̂ if φ is in the dense subspace
C∞

0 of S , it follows that this is true for every φ ∈ S .

We shall now discuss some properties of distributions f ∈ S ′ with f̂ ∈ E ′; they are
called band limited in signal theory. By Theorem 2.1.6 f is the restriction to R of an

entire function; in particular f ∈ C∞. Let supp f̂ ⊂ [−λ, λ] and choose an even function

φ ∈ C∞
0 (R) which is equal to 1 in [−λ, λ]. Then f̂ = f̂φ, and since φ is the Fourier

transform of φ̂/(2π) ∈ S , it follows from Theorem 2.1.7 that f = f ∗ φ̂/(2π). When
differentiating the right-hand side we can let all derivatives fall on φ̂, so all derivatives are
in Lp ∩ L∞ ∩ C∞ if f ∈ Lp for some p ∈ [1,∞]. Hölder’s inequality gives if p <∞

2π|f(x)| ≤
∫

|f(x− y)||φ̂(y)| dy ≤
(∫

|f(x− y)|p|φ̂(y)| dy
) 1

p
(∫

|φ̂(y)| dy
)1− 1

p

.

Hence f(x) → 0 as x→ ∞, and

∞∑
−∞

|2πf(kx)|p ≤
(∫

|f(y)|p
∞∑
−∞

|φ̂(y + kx)|dy
)
∥φ̂∥p−1

L1 ,

which proves that

(2.1.25)
(
|x|/(1 + |x|)

∞∑
−∞

|f(kx)|p
)1/p

≤ Cλ∥f∥Lp .

Thus (f(kx))k∈Z ∈ lp if x ̸= 0.
A modification of the preceding argument yields a classical inequality due to S. Bernstein

and some of its generalizations, with exact constants:

Theorem 2.1.8. If f ∈ Lp(R) for some p ∈ [1,∞] and supp f̂ ⊂ [−λ, λ] then

(2.1.26) ∥f ′ sinα/λ+ f cosα∥Lp ≤ ∥f∥Lp , α ∈ R.

Proof. Changing scales we note that the support of the Fourier transform of g(x) =
f(x/λ) is contained in [−1, 1] and that (2.1.26) is equivalent to

∥h∥Lp ≤ ∥g∥Lp , if h = g′ sinα+ g cosα.
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At first we assume that supp ĝ ⊂ (−1, 1). We have ĥ(ξ) = (iξ sinα+cosα)ĝ(ξ). We would
like to continue the function [−1, 1] ∋ ξ 7→ iξ sinα + cosα to a function with period 2 on
the real axis, but that would lead to a discontinuity at ±2. However,

Φ(ξ) = (iξ sinα+ cosα)e−iαξ, −1 ≤ ξ ≤ 1,

is a better choice since Φ(±1) = 1, and for the extension of Φ with period 2 we have the
Fourier coefficients

c(k) =
1

2

∫ 1

−1

(iξ sinα+ cosα)e−iαξ−πikξ dξ = (−1)k
sin2 α

(α+ πk)2
,

where (sin2 α)/α2 should be read as 1 when α = 0. Thus the Fourier series of Φ is
absolutely and uniformly convergent, 1 = Φ(1) =

∑∞
−∞ sin2 α/(α+ kπ)2. If g ∈ L1 then ĝ

is continuous, and we have

ĥ(ξ) = Φ(ξ)eiαξ ĝ(ξ) =
∞∑
−∞

(−1)k
sin2 α

(α+ kπ)2
ei(α+πk)ξ ĝ(ξ)

where the series converges uniformly, hence in S ′. This proves that

(2.1.27) h(x) =
∞∑
−∞

(−1)k
sin2 α

(α+ πk)2
g(x+ α+ πk).

If g is not in L1 but just in L∞ we can apply (2.1.27) to g(x) sin2(εx)/(εx)2 when ε is so
small that supp ĝ ⊂ (−1 + 2ε, 1 − 2ε). When ε → 0 it follows by dominated convergence
that (2.1.26) is valid for g. If we only assume that g is bounded and that supp ĝ ⊂ [−1, 1]
we can apply (2.1.27) to x 7→ g(tx) when 0 < t < 1, and when t → 1 we conclude that
(2.1.27) is valid without restriction for such functions g. Hence Minkowski’s inequality
yields

∥h∥Lp ≤ ∥g∥Lp

∞∑
−∞

sin2 α

(α+ πk)2
= ∥g∥LpΦ(1) = ∥g∥Lp .

When p = ∞ there is equality when g(x) = sin(x − α) and h(x) = sinx. For p < ∞
equality is never attained but the constant is best possible then too, an exercise for the
reader, who might also wish to prove that if P is any polynomial with only real zeros, then
(2.1.26) can be generalized to

(2.1.26)′ ∥P (d/dx)f∥Lp ≤ |P (λi)|∥f∥Lp ,

for the same f as in Theorem 2.1.8.

A very similar argument will now be used to show how a band limited function can be
recovered from an equidistant sampling of its values.
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Theorem 2.1.9. If f ∈ Lp(R) ∩C(R) for some p ∈ [1,∞) and supp f̂ ⊂ [−λ, λ], then
we have (with the convention (sin 0)/0 = 1)

(2.1.28) f(x) =

∞∑
−∞

f(πk/λ)
sin(λx− πk)

λx− πk
, x ∈ R.

Before the proof we observe that (2.1.28) is valid when x = πk/λ, k ∈ Z. Also note that
the function f(x) = sinλx has the Fourier transform πi(δ−λ − δλ) and that f(πk/λ) = 0,
k ∈ Z, so the statement would not be true for p = ∞. However, when f ∈ Lp and p < ∞
then the sum in (2.1.28) is absolutely convergent by (2.1.25).

Proof of Theorem 2.1.9. Assume at first that supp f̂ ⊂ (−λ, λ). As usual we then

define a distribution with period 2λ equal to f̂ in (−λ, λ) by

F =
∞∑
−∞

f̂(· − 2λj).

The Fourier coefficients of F are

c(k) = (2λ)−1f̂(e−πik·/λ) = (2λ)−1 ̂̂f(πk/λ) = (π/λ)f(−πk/λ).

Hence

F =
π

λ

∞∑
−∞

f(−πk/λ)eπik·/λ.

If φ ∈ C∞
0 ((−λ, λ)) is equal to 1 in a neighborhood of supp f̂ , it follows that

f̂ =
π

λ

∞∑
−∞

f(πk/λ)φe−πik·/λ

with convergence in E ′. Inversion of the Fourier transformation gives

(2.1.29) f(x) =
1

2λ

∞∑
−∞

f(πk/λ)φ̂(πk/λ− x).

We can take a sequence of functions φj ∈ C∞
0 ((−λ, λ)) converging to 1 in (−λ, λ) such

that ∫
(|φj(ξ)|+ λ|φ′

j(ξ)|) dξ ≤ 4λ, hence |φ̂j(x)| ≤ 4λ, |xφ̂j(x)| ≤ 4.

Since
∑

|f(πk/λ)|(1+ |k|)−1 <∞ this gives a summable majorant for the series in (2.1.29)

with φ replaced by φj , and since
∫ λ
−λ e

−ixξ dξ = 2(sin(λx))/x we conclude when j → ∞
that (2.1.28) is valid. If we only know that supp f̂ ⊂ [−λ, λ] we can apply this formula
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with λ replaced by µ > λ and then let µ → λ; the detailed proof that this yields (2.1.28)
is an exercise for the reader.

Remark. If f ∈ S ′ and supp f̂ is compact, f(πk/λ) = 0 for k ∈ Z, then f(x)/ sin(λx)
is an entire function so it follows from the theorem of supports proved below that the convex

hull of supp f̂ must contain an interval of length 2λ. If supp f̂ ⊂ (−λ, λ) it is therefore
clear that f is determined by the values at πZ/λ. An explicit form of this conclusion is

given by the interpolation formula (2.1.29) with φ ∈ C∞
0 ((−λ, λ)) equal to 1 near supp f̂ .

Since f(x) = O(|x|N ) for some N (by Theorem 2.1.6) and φ̂ ∈ S the series in (2.1.29) is
rapidly convergent. The somewhat delicate point in Theorem 2.1.9 is that ±λ may be in

supp f̂ , and then the growth of f must be restricted.
In signal theory Theorem 2.1.9 is known as Shannon’s theorem (cf. Daubechies [1, p.

18]), but its mathematical roots are much older.
To prove the theorem of supports announced above we have to combine Theorem 2.1.6

with a classical result in analytic function theory:

Lemma 2.1.10. If F is an entire function in C satisfying (2.1.23) then

(2.1.30) log |F (ζ)| = b1 Im ζ +
Im ζ

π

∫
R

log |F (t)|
|t− ζ|2

dt+
∑

log
∣∣∣ζ − zj
ζ − z̄j

∣∣∣, Im ζ > 0,

where a ≤ b1 ≤ b and zj are the zeros of F in the open upper half plane, repeated according
to their multiplicities.

Proof. First assume that F satisfies (2.1.23) with C = 1, µ = 0 and b = 0. Let
φ ∈ C0, log |F (t)| ≤ φ(t) ≤ 0, and let M be a finite subset of the index set M+ for the
zeros of F in the open upper half plane. Then

G(ζ) = F (ζ) exp
(
− 1

πi

∫
R

φ(t)

t− ζ
dt
) ∏
j∈M

ζ − z̄j
ζ − zj

is analytic in the upper half plane, and |G(ζ)| ≤ 1 there. In fact, by hypothesis |F (ζ)| ≤ 1
in the upper half plane. The absolute value of the product is equal to 1 on the real axis,
and the real part of the exponent is the Poisson integral

− Im ζ

π

∫
R

φ(t)

|t− ζ|2
dt = − 1

π

∫
R

φ(Re ζ + t Im ζ)

1 + t2
dt

which is ≤ −φ(Re ζ) + o(1) as Im ζ → 0. Hence it follows from the maximum principle
that |G(ζ)| ≤ 1 in the upper half plane. Taking sequences φj ↓ log |F | and Mj ↑ M+ we
conclude since |Gj | ≤ 1 for the corresponding functions Gj that

v(ζ) = log |F (ζ)| − Im ζ

π

∫
log |F (t)|
|t− ζ|2

dt−
∑

log
∣∣∣ζ − zj
ζ − z̄j

∣∣∣ ≤ 0, Im ζ > 0.

v is the limit of harmonic functions so v is harmonic. We can choose the sequence φj so
that it is equal to 1 for large j on any compact subset K of R containing no zeros of F ,
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and since Gj is continuous up to K with boundary values 0 it follows that v is continuous
with boundary values 0 at K. This is also true at a zero λ ∈ R of F , for the Poisson
integral of log |t−λ| is log |ζ−λ|. Thus v is harmonic and ≤ 0 in the upper half plane and
continuous in the closure with boundary values 0. We shall prove in a moment that this
implies v(ζ) = b1 Im ζ for some real number b1. We have b1 ≤ 0 = b, and it is clear that
b1 ≥ a for otherwise Theorem 2.1.6 would prove that F is the Fourier-Laplace transform
of a distribution with support {c} for every c with b1 < c < a which is absurd.

By the Schwarz reflection principle we can extend v to a harmonic function in C by
defining v(ζ̄) = −v(ζ). We can express v in terms of the values on a large circle by the
Poisson integral

v(ζ) =
1

2π

∫ π

−π

1− |ζ/R|2

|ζ/R− eiθ|2
v(Reiθ) dθ, R > |ζ|.

(This follows from the mean value property for z 7→ v(R(z−ζ)/(R2−ζ̄z)) which is harmonic
when |z| ≤ R.) In our case v(Reiθ) is an odd function of θ, and since

|ζ/R− e−iθ|2 − |ζ/R− eiθ|2 = 4 sin θ Im ζ/R,

we obtain

v(ζ) =
2 Im ζ

πR

∫ π

0

v(Reiθ) sin θ dθ(1 +O(1/R))

using the positivity of the integrand. When R→ ∞ it follows that v(ζ) = b1 Im ζ for some
b1.

It remains to remove the hypotheses C = 1, µ = 0 and b = 0 made above. Multiplication
of F by C−1eibζ removes the hypotheses C = 1 and b = 0. If N is a positive integer > µ
then

Fε(ζ) = F (ζ)(sin(εζ)/εζ)N

satisfies (2.1.23) with µ replaced by 0 and h(η) replaced by h(η) + Nε|η| , if ε > 0.
Subtracting the same identity with F ≡ 1 we obtain (2.1.30) for some b1 ∈ [a − 2Nε, b +
2Nε]. Since b1 is uniquely determined by (2.1.30) we have b1 ∈ [a, b].

There is of course a formula corresponding to (2.1.30) in the lower half plane. Note
that it follows from (2.1.23) and (2.1.30) that |F (ζ)| ≤ C ′|ζ + i|µeb1 Im ζ , Im ζ > 0, for the

Poisson integral of t 7→ log(1+ t2) is 2 log |ζ+ i|. If F = f̂ as in Theorem 2.1.6 we conclude
that b1 = sup{x;x ∈ supp f}. Hence we obtain:

Theorem 2.1.11. If f, g ∈ E ′(R) and [a, b] (resp. [c, d]) are the smallest intervals
containing the supports, then [a + c, b + d] is the smallest interval containing the support
of f ∗ g.

This is the famous theorem of supports due to Titchmarsh.

2.2. The higher-dimensional case. We set out in Section 2.1 to study functions in
R, its closed subgroups and the quotients by the closed subgroups. In Rn there are many
more closed subgroups:
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Proposition 2.2.1. If G ⊂ Rn is a closed subgroup then there is a linear subspace V0
of Rn and elements g1, . . . , gr ∈ G, which are linearly independent modulo V0, such that

(2.2.1) G = {
r∑
1

kjgj + g0; kj ∈ Z, g0 ∈ V0}.

Conversely, (2.2.1) defines a closed subgroup of G.

Proof. The last statement is obvious if we introduce coordinates such that g1, . . . , gr
are the first r basis vectors and V0 ⊂ {x ∈ Rn;x1 = · · · = xr = 0}. To prove that G
must be of the form (2.2.1) we first observe that if two vector spaces are subsets of G
then their sum is also a subset of G. Hence there is a vector space V0 ⊂ G containing
all other vector spaces ⊂ G. Passing to the quotient Rn/V0 we may assume that G does
not contain any vector space. Then G is discrete, that is, there is some ε > 0 such that
x ∈ G, |x| < ε implies x = 0. In fact, otherwise there would exist a sequence xj ∈ G
with 0 ̸= xj → 0. Passing to a subsequence we may assume that xj/|xj | converges to a
limit y ̸= 0 as j → ∞. If t ∈ R \ 0 and [t/|xj |] is the largest integer ≤ t/|xj | it follows
that G ∋ [t/|xj |]xj → ty as j → ∞, and since G is closed it follows that Ry ⊂ G, which
is a contradiction. Thus G is discrete. Let g1 be any element ̸= 0 in G which is not a
multiple of another element in G, for example an element of minimal norm. Changing the
coordinates we may assume that g1 = (1, 0, . . . , 0). Let G′ = {x′ ∈ Rn−1; (t, x′) ∈ G} for
some t ∈ R. It is obvious that G′ is a subgroup of Rn−1. To prove that G′ is closed we
consider a sequence x′ν ∈ G with x′ν → x′. By the definition of G′ we can choose tν ∈ R
with (tν , x

′
ν) ∈ G, and since (1, 0, . . . , 0) ∈ G we can choose tν ∈ [− 1

2 ,
1
2 ). If t is a limit

point of the sequence tν it follows that (t, x′) ∈ G, so x′ ∈ G′. If 0 ̸= x′ν but x′ = 0
we obtain t = 0, which is a contradiction with the discreteness of G, so G′ is discrete.
If the proposition has already been proved for lower dimensions it follows that there are
elements gj = (tj , g

′
j) ∈ G, j = 2, . . . , r such that g′2, . . . , g

′
r are linearly independent and

G′ = {
∑r

2 kjg
′
j ; kj ∈ Z}. Thus G = {

∑r
1 kjgj ; kj ∈ Z}, which proves (2.2.1).

To avoid notational complications we shall only discuss the case where G = Rn (Fourier
integrals) and the case where G = TZn,Rn/G = Rn/TZn (Fourier series). This is no
serious loss of generality, but there are some cases such as the Schrödinger equation in a
crystal lattice where one has to respect a Euclidean geometry and work with a lattice in a
general position.

We shall use the notation α = (α1, . . . , αn) for a multi-index, a vector in Zn with
non-negative coordinates, and we shall write

|α| =
n∑
1

αj , α! =
n∏
1

αj !, ∂α =
n∏
1

(∂/∂xj)
αj , Dα =

n∏
1

(−i∂/∂xj)αj .

Proposition 2.2.2. If f ∈ Cµ(Rn) is TZn periodic, that is, f(x + Tk) = f(x) if
x ∈ Rn and k ∈ Zn, then the Fourier coefficients

(2.2.2) c(k) =
1

Tn

∫
Rn/TZn

f(x)e−2πi⟨x,k⟩/T dx, k ∈ Zn,
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have the bound

(2.2.3) |(2πk/T )αc(k)| ≤ 1

Tn

∫
Rn/TZn

|Dαf(x)| dx, |α| ≤ µ.

If µ > n then

(2.2.4) f(x) =
∑
k∈Zn

c(k)e2πi⟨x,k⟩/T

with absolute and uniform convergence, and Parseval’s formula

(2.2.5)
1

Tn

∫
Rn/TZn

|f(x)|2 dx =
∑
k∈Zn

|c(k)|2

is valid. Conversely, if c(k) ∈ C is given, k ∈ Zn, and |k|µc(k) is bounded, then (2.2.4)
defines a TZn periodic function f ∈ Cµ−n−1(Rn) if µ ≥ n+ 1, and (2.2.2) holds.

The notation
∫
Rn/TZn ψ(x) dx where ψ is a TZn periodic function stands for

∫
F
ψ(x) dx

where F is a measurable fundamental domain, that is, a set such that Rn is the disjoint
union of the translates F + Tk with k ∈ Zn, that is,

∑
k∈Zn χ(x + Tk) = 1 (almost

everywhere) if χ is the characteristic function of F . More generally, if ψ ∈ L1
loc(R

n) is
TZn periodic then we define

(2.2.6)

∫
Rn/TZn

ψ(x) dx =

∫
Rn

ψ(x)χ(x) dx,

where χ is any bounded measurable function of compact support such that

(2.2.7)
∑
k∈Zn

χ(x+ Tk) = 1 almost everywhere.

The definition (2.2.6) is then independent of the choice of χ. In fact, if χ1 is another
bounded measurable function of compact support satisfying (2.2.7) then∫

Rn

ψ(x)χ(x) dx =
∑
k∈Zn

∫
Rn

ψ(x)χ(x)χ1(x+ Tk) dx

=
∑
k∈Zn

∫
Rn

ψ(x)χ(x− Tk)χ1(x) dx =

∫
Rn

ψ(x)χ1(x) dx,

by the periodicity of ψ.

Proof of Proposition 2.2.2. Interpreting
∫
Rn/TZn as the integral over I = {x ∈

Rn; 0 ≤ xj ≤ T, j = 1, . . . , n}, we obtain by partial integration

(2πk/T )αc(k) =
1

Tn

∫
I

(Dαf(x))e−2πi⟨x,k⟩/T dx, k ∈ Zn, |α| ≤ µ,
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for the contributions at the boundary cancel by the periodicity. This proves (2.2.3), which
implies that |c(k)||k|µ is bounded. If µ > n it follows that the Fourier series (2.2.4)
converges absolutely and uniformly to a continuous function g. Let φ1, . . . , φn ∈ C2(R)
be periodic with period T . Then it follows from Proposition 2.1.1 that

n∏
1

φ(xj) =
∑
k∈Zn

e2πi⟨x,k⟩/T
n∏
1

1

T

∫ T

0

φ(yj)e
−2πiyjkj/T dyj ,

hence with the notation Φ(x) =
∏n

1 φ(xj)

1

Tn

∫
I

f(x)Φ(x) dx =
∑
k∈Zn

c(k)
1

Tn

∫
I

Φ(y)e2πi⟨y,k⟩/T dy =
1

Tn

∫
I

g(y)Φ(y) dy.

Hence
∫
Rn/TZn(f(x) − g(x))Φ(x) dx = 0 for every choice of TZ periodic functions φj ,

j = 1, . . . , n. Choose ψ ∈ C∞
0 (R) with

∫
R
ψ(t) dt = 1 and set for y ∈ Rn and ε > 0

φj(xj) =
1

ε

∑
k∈Z

ψ((xj − yj − Tk)/ε).

Then φj ∈ C∞(R) is TZ periodic. When ε → 0 it follows that f(y) = g(y), which

proves (2.2.4). Parseval’s formula follows if we multiply (2.2.4) by f(x) and integrate,
interchanging the order of integration and summation. The proof of the converse statement
is obvious and is left for the reader (who should be aware of the fact that

∑
0̸=k∈Zn |k|−γ

converges if and only if γ > n).

Remark. Another sufficient condition for uniform and absolute convergence of the
Fourier series is that Dαg is continuous when αj ≤ 1, for j = 1, . . . , n. Weaker sufficient
conditions will be given later on.

The definition of
∫
Rn/TZn by (2.2.6), (2.2.7) can also be used to define ⟨f,Φ⟩Rn/TZn if

f ∈ D ′(Rn) and Φ ∈ C∞(Rn) are TZn periodic. In fact, we can choose χ ∈ C∞
0 (Rn) so

that (2.2.7) holds (see the corresponding discussion of (2.1.17)) and set

(2.2.6)′ ⟨f,Φ⟩Rn/TZn = ⟨f, χΦ⟩.

If χ1 is another function in C∞
0 (Rn) satisfying (2.2.7) then

⟨f, χΦ⟩ =
∑
k∈Zn

⟨f, χ1(·+ kT )χΦ⟩ =
∑
k∈Zn

⟨f, χ1χ(· − kT )Φ⟩ = ⟨f, χ1Φ⟩

by the periodicity of f and Φ. This identifies TZn periodic distributions with continuous
linear forms on TZn periodic C∞ functions.

The Fourier coefficients of a TZn periodic distribution f can now be defined by

(2.2.2)′ c(k) = T−n⟨f, e−2πi⟨·,k⟩/T ⟩Rn/TZn , k ∈ Zn,
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and we have

(2.2.3)′ |c(k)| ≤ C(1 + |k|)µ, k ∈ Zn,

if f is of order µ. As in the one-dimensional case it follows from the smooth case in
Proposition 2.2.2 that

(2.2.4)′ F =
∑
k∈Zn

c(k)e2πi⟨·,k⟩/T ,

with convergence in D ′(Rn). We leave for the reader to supply the details of the proof
of this and other statements in the following theorem which is completely analogous to
Theorem 2.1.3:

Theorem 2.2.3. If f ∈ D ′(Rn) is TZn periodic then the Fourier coefficients defined
by (2.2.2)′ have the polynomial bound (2.2.3)′, and the Fourier series (2.2.4)′ converges to
f in D ′(Rn). Conversely, if c(k) ∈ C is given, k ∈ Zn, and (2.2.3)′ is fulfilled then the
series (2.2.4)′ converges in D ′(Rn) to a TZn periodic distribution with Fourier coefficients
c(k).

As in the one-dimensional case we have obtained an isomorphism between TZn periodic
distributions and functions of polynomial growth on Zn. We pass now to a discussion of
the Fourier transformation in n dimensions.

Definition 2.2.4. By S or S (Rn) we shall denote the space consisting of all φ ∈
C∞(Rn) such that xβ∂αφ(x) is bounded for arbitrary multi-indices α and β.

As when n = 1 it is clear that the Schwartz space S is a Fréchet space with the
seminorms

S ∋ φ 7→ sup |xβ∂αφ(x)|.

Since C∞
0 (Rn) is a dense subspace of S (Rn) it follows that the dual space S ′(Rn) of

temperate distributions can be identified with a subspace of D ′(Rn), in fact S ′(Rn) ⊂
D ′
F (R

n), the space of distributions of finite order.

For f ∈ S (Rn) and 1 ≤ k ≤ n we define the partial Fourier transform f̂(k) by

(2.2.8) f̂(k)(ξ
′, x′′) =

∫
Rk

f(x′, x′′)e−i⟨x
′,ξ′⟩ dx′,

where x′ = (x1, . . . , xk), x
′′ = (xk+1, . . . , xn) and ξ

′ = (ξ1, . . . , ξk) are real variables. The

map f 7→ f̂(k) is an isomorphism of S (Rn) with inverse

(2.2.9) f(x′, x′′) = (2π)−k
∫
Rk

f̂(k)(ξ
′, x′′)ei⟨x

′,ξ′⟩ dξ′,

and Parseval’s formula is valid,

(2.2.10)

∫∫
Rk×Rn−k

|f(x′, x′′)|2 dx′ dx′′ = (2π)−k
∫
Rk×Rn−k

|f̂(k)(ξ′, x′′)|2 dξ′ dx′′.
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It is sufficient to verify this when k = 1 and then it is an immediate consequence of the

case k = n = 1 discussed in Section 2.1. When k = n we shall use the notation f̂ instead

of f̂(n) for the Fourier transform defined by

(2.2.11) f̂(ξ) =

∫
Rn

f(x)e−i⟨x,ξ⟩ dx, f ∈ S (Rn),

with inverse given by Fourier’s inversion formula

(2.2.12) f(x) = (2π)−n
∫
Rn

f̂(ξ)ei⟨x,ξ⟩ dξ,

that is,
̂̂
f(x) = (2π)nf(−x). If f ∈ L1(Rn) the Fourier transform can still be defined by

(2.2.11), and we obtain

(2.2.13) ⟨f̂ , φ⟩ = ⟨f, φ̂⟩, φ ∈ S ,

if we multiply (2.2.11) by φ(ξ) and integrate, inverting the order of integration in the right-
hand side. We can therefore again extend the definition of the Fourier transformation to
arbitrary f ∈ S ′(Rn) by (2.2.13), for the right-hand side is a continuous linear function
of φ ∈ S (Rn).

Theorem 2.2.5. The Fourier transformation defined by (2.2.13) is an isomorphism

of S ′(Rn), and Fourier’s inversion formula is valid, that is,
̂̂
f = (2π)nf̌ where f̌ is the

reflection in the origin defined by

⟨f̌ , φ⟩ = ⟨f, φ̌⟩, φ ∈ S (Rn), φ̌(x) = φ(−x).

We have f ∈ L2(Rn) if and only if f̂ ∈ L2(Rn), and Parseval’s formula

(2.2.14)

∫
Rn

|f(x)|2 dx = (2π)−n
∫
Rn

|f̂(ξ)|2 dξ,

is then valid. When f ∈ S ′ the Fourier transform of xβDαf is equal to (−D)βξαf̂ where

x (resp. ξ) denotes the variable where f (resp. f̂) lives. The Fourier transform of f(·+h)
is ei⟨h,·⟩f̂ , and if a : Rn → Rn is a linear bijection then the Fourier transform of f ◦ a is

| det a|−1f̂ ◦ ta−1.

The proof differs only marginally from that of Theorem 2.1.5 so it is left as an exercise.
We give a few examples, leaving the details of verification as an exercise.

Examples. 1. The Fourier transform of δa, a ∈ Rn, is ξ 7→ e−i⟨a,ξ⟩. The Fourier
transform of ξ 7→ ei⟨a,ξ⟩ is (2π)nδa. In particular, the Fourier transform of a constant C is
(2π)nCδ0.

2. The Fourier transform of PT =
∑
k∈Zn δTk where T > 0 is equal to (2π/T )nP2π/T .

This follows from the one dimensional case. Explicitly this means that

(2.2.15)
∑
k∈Zn

φ̂(Tk) = (2π/T )n
∑
k∈Zn

φ(2πk/T ), φ ∈ S (Rn),
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which is known as Poisson’s summation formula.
3. If f ∈ D ′(Rn) is TZn periodic, then f ∈ S ′(Rn), and if the Fourier coefficients are

defined by (2.2.2)′ then

f̂ = (2π)n
∑
k∈Zn

c(k)δ2πk/T .

This follows from Example 1 above since f is the limit in S ′ of the partial sums of the
Fourier series. Note that Example 2 is a special case.

4. For the Gaussian g(x) = exp(−1
2 ⟨x, x⟩) the Fourier transform is ĝ(ξ) = (2π)

1
2ng(ξ).

This follows at once from the one-dimensional case. If a is a real linear bijection in Rn, it
follows that the Fourier transform of x 7→ exp(−1

2 ⟨Ax, x⟩) is

ξ 7→ (2π)
1
2n(detA)−

1
2 exp(− 1

2 ⟨A
−1x, x⟩),

where A = taa is an arbitrary positive definite real symmetric matrix. More generally,
this is true for all A in the set H of complex symmetric n× n matrices such that ReA is
positive definite. This follows by analytic continuation of the formula

(2.2.16)

∫
e−

1
2 ⟨Ax,x⟩φ̂(x) dx = (2π)

1
2n(detA)−

1
2

∫
e−

1
2 ⟨A

−1ξ,ξ⟩φ(ξ) dξ, φ ∈ S .

Note that if ReA is positive definite then Re⟨Az, z̄⟩ > 0 when z ∈ Cn\{0}, so A is injective
in Cn, hence detA ̸= 0, which makes the square root uniquely defined in the convex set
H when it is chosen positive for A = Id. Replacing z by A−1z, we also see that ReA−1 is
positive definite when A ∈ H, so both sides of (2.2.16) are analytic in H and the formula
follows since it is valid when A is real, which suffices to calculate the derivatives at the
identity for example. The limiting case where ReA is positive semidefinite and detA ̸= 0
can be handled as a limit of A+ ε Id when ε→ +0. We refer to Hörmander [1, p. 85] for

the limit of (detA)−
1
2 then.

Recall that if K ⊂ Rn is a compact set then the supporting function HK of K is defined
by

(2.2.17) HK(ξ) = sup
x∈K

⟨x, ξ⟩, ξ ∈ Rn,

and if chK is the convex hull of K then

(2.2.18) x ∈ chK ⇐⇒ ⟨x, ξ⟩ ≤ HK(ξ), ∀ξ ∈ Rn.

(See Hörmander [1, pp. 105–106].) The supporting function HK is convex and positively
homogeneous of degree 1; conversely every such function is the supporting function of
exactly one convex compact set K.

Theorem 2.2.6. If f ∈ E ′(Rn) then the Fourier transform is the C∞ function

(2.2.19) f̂(ξ) = ⟨fx, e−i⟨x,ξ⟩⟩, ξ ∈ Rn,
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where fx means that f acts as a distribution in the x variable. The Fourier transform f̂
can be extended to an entire analytic function in Cn, the Fourier-Laplace transform of f ,
by letting ξ ∈ Cn in (2.2.19). If supp f ⊂ K where K ⊂ Rn is a compact set, and f is of

order µ, then F (ξ) = f̂(ξ) has a bound

(2.2.20) |F (ζ)| ≤ C(1 + |ζ|)µ expHK(Im ζ), ζ ∈ Cn.

Conversely, if F is an entire analytic function such that (2.2.20) is valid, then F = f̂
where f ∈ E ′ has support in chK and order ≤ max(0, µ+ n+ 1). If g ∈ E ′(Rn) then the

Fourier transform of the convolution f ∗ g is f̂ ĝ.

Proof. That the C∞ function (2.2.19) defines f̂ and is extended to an entire function
by letting ξ be complex follows just as in the case n = 1. At the same time one finds that

the Fourier-Laplace transform of f ∗ g is f̂ ĝ.
We can choose a cutoff function χδ ∈ C∞

0 (Kδ), Kδ = {x+ y;x ∈ K, |y| ≤ δ}, such that
χδ = 1 in a neighborhood of K and |∂αχδ| ≤ Cδ−|α| when |α| ≤ µ. If φ ∈ C∞(Rn) and
0 < δ < 1 it follows that

|⟨f, φ⟩| = |⟨f, χδφ⟩| ≤ C
∑
|α|≤µ

sup |Dαχδφ| ≤ C ′
∑
|α|≤µ

sup
Kδ

|Dαφ|δ|α|−µ.

Taking δ = 1/(1 + |ζ|) and φ(x) = exp(−i⟨x, ζ⟩) we conclude that F (ζ) = f̂(ζ) has the
bound (2.2.20), for ⟨x, Im ζ⟩ ≤ HK(Im ζ) + 1 when x ∈ Kδ.

Assume now given an entire analytic function F satisfying (2.2.20) with µ < −n. Then

f(x, η) =

∫
Rn

F (ξ + iη)ei⟨x,ξ+iη⟩ dξ, x ∈ Rn, η ∈ Rn,

is a continuously differentiable function, and

∂f(x, η)/∂ηj =

∫
Rn

i∂(F (ξ + iη)ei⟨x,ξ+iη⟩)/∂ξj dξ = 0,

so f(x, η) is independent of η. When x /∈ chK we can choose η so that ⟨x, η⟩ > HK(η)
and obtain when t > 0

|f(x, 0)| = |f(x, tη)| ≤ C

∫
Rn

(1 + |ξ|)µ exp(t(HK(η)− ⟨x, η⟩)) dξ.

When t → +∞ it follows that f(x, 0) = 0. Thus f = f(·, 0) has support in K and
Fourier transform F , which proves that F is the Fourier-Laplace transform of a function in
C0(chK) when (2.2.20) is valid with µ < −n. For F satisfying (2.2.20) with an arbitrary
µ we conclude exactly as in the proof of Theorem 2.1.6 that F is the Fourier-Laplace
transform of some f ∈ E ′(K) of order max(0, n+ 1 + µ), which completes the proof.

The characterization (2.2.20) of the Fourier-Laplace transform of E ′(K) when K is
convex and compact is called the Paley-Wiener-Schwartz theorem. The theorem of supports
is also easily extended from the one-dimensional to the n-dimensional case.
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Theorem 2.2.7. If f, g ∈ E ′(Rn) then

(2.2.21) ch supp(f ∗ g) = ch supp f + ch supp g = {x+ y;x ∈ ch supp f, y ∈ ch supp g}.

Proof. Since supp(f ∗ g) ⊂ supp f + supp g ⊂ ch supp f + ch supp g, it is clear that
the left-hand side of (2.2.21) is a subset of the right-hand side. It suffices to prove the
opposite inclusion when f, g ∈ C∞

0 . In fact, if χ ∈ C∞
0 (Rn) has support in the unit ball

B,
∫
χdx = 1, and χε(x) = ε−nχ(x/ε), then this special case gives

supp(f ∗ φε) + supp(g ∗ φε) ⊂ ch supp(f ∗ g ∗ φε ∗ φε) ⊂ ch supp(f ∗ g) + 2εB.

When ε → 0 it follows that supp f + supp g ⊂ ch supp(f ∗ g) which implies that the
right-hand side of (2.2.21) is a subset of the left-hand side.

Assume now that f, g ∈ C∞
0 (Rn), set h = f ∗ g and introduce the partial Fourier

transforms

F (ξ′, xn) =

∫
Rn−1

e−i⟨x
′,ξ′⟩f(x′, xn) dx

′, G(ξ′, xn) =

∫
Rn−1

e−i⟨x
′,ξ′⟩g(x′, xn) dx

′,

H(ξ′, xn) =

∫
Rn−1

e−i⟨x
′,ξ′⟩h(x′, xn) dx

′.

Then

H(ξ′, xn) =

∫
Rn−1

e−i⟨x
′,ξ′⟩

∫
Rn

f(x′ − y′, xn − yn)g(y
′, yn) dy

′ dyn

=

∫
R

F (ξ′, xn − yn)G(ξ
′, yn) dyn.

For fixed ξ′ it follows from Theorem 2.1.11 that

sup{xn;H(ξ′, xn) ̸= 0} = sup{xn;F (ξ′, xn) ̸= 0}+ sup{xn;G(ξ′, xn) ̸= 0}.

Since F , G, H are analytic in ξ′, the suprema are for almost all ξ′ equal to the suprema
when ξ′ is also allowed to vary, for if say F (ξ′, x0n) ̸= 0 for one ξ′ then this is true except
for ξ′ in a null set. Now F (ξ′, xn) = 0 for all ξ′ ∈ Rn−1 if and only if f(x′, xn) = 0 for all
x′ ∈ Rn−1, and similarly for g and h. Hence

sup{xn; (x′, xn) ∈ supph} = sup{xn; (x′, xn) ∈ supp f}+ sup{xn; (x′, xn) ∈ supp g}.

This means that Hsupph(ξ) = Hsupp f (ξ) +Hsupp g(ξ) if ξ = (0, . . . , 0, 1). By a change of
coordinates we conclude that this is true for every ξ, which means precisely that (2.2.21)
holds. The proof is complete.

The last statement in Theorem 2.2.6 can be extended as follows:
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Theorem 2.2.8. If f ∈ S ′(Rn) and g ∈ E ′(Rn) then f ∗ g ∈ S ′(Rn) and the Fourier

transform is equal to f̂ ĝ. If φ ∈ S then f ∗ φ ∈ S ′ and the Fourier transform is equal to

f̂ φ̂.

Note that the products f̂ ĝ and f̂ φ̂ are defined since ĝ ∈ C∞ and φ̂ ∈ S .

Proof. If φ ∈ C∞
0 (Rn) then

⟨f ∗ g, φ⟩ = ⟨f, ǧ ∗ φ⟩

by the definition of convolution. The right-hand side is a continuous linear form on S , for
if g is of order µ and |y| < M when y ∈ supp g then∑

|α+β|≤N

sup |xβDα(ǧ ∗ φ)(x)| =
∑

|α+β|≤N

sup |xβg(Dαφ(x+ ·))|

≤ C
∑

|α+β|≤N+µ

sup
x

sup
|y|<M

|xβDαφ(x+ y)| ≤ C ′
∑

|α+β|≤N+µ

|xβDαφ(x)|.

This proves that f ∗ g ∈ S ′. If fj ∈ S ′ and fj → f in S ′ (with the weak topology) then
fj ∗ g → f ∗ g in S ′. Taking fj with compact support we conclude using Theorem 2.2.6

that f̂j ĝ = f̂j ∗ g → f̂ ∗ g, and since f̂j → f̂ in S ′ we obtain f̂ ∗ g = f̂ ĝ. The proof of the
statement on f ∗ φ when φ ∈ S is just a repetition of the proof of Theorem 2.1.7 and it
is left as an exercise.

The spectrum of a distribution f ∈ S ′ is by definition the support of the Fourier

transform f̂ . When the spectrum is compact it follows from Theorem 2.2.6 that f ∈ C∞.
The following inequality of Bernstein (see Theorem 2.1.8) is sometimes useful to estimate
the derivatives of a distribution with compact spectrum.

Theorem 2.2.9. If f ∈ Lp(Rn) for some p ∈ [1,∞] and f̂ has compact support, then

(2.2.22) ∥P (⟨a, ∂⟩)f∥Lp ≤ |P (iH(a))|∥f∥Lp , a ∈ Rn,

where P (τ) is any polynomial in one variable with only real zeros and

(2.2.23) H(a) = sup
ξ∈supp f̂

|⟨a, ξ⟩|.

Proof. It suffices to prove the estimate (2.2.22) when P is linear and a = (1, 0, . . . , 0).
Set λ = H(a) and C = |P (iλ)|. Then P (iλ) = Ceiα = C(i sinα + cosα) for some α ∈ R,
so P (τ) = C(τ sinα/λ+ cosα) and the theorem states that∫

Rn

|∂f(x)/∂x1 sinα/λ+ f(x) cosα|p dx ≤
∫
Rn

|f(x)|p dx,

if |ξ1| ≤ λ when ξ ∈ supp f̂ . Then the Fourier transform of f(x1, x2, . . . , xn) with respect
to x1 for fixed x2, . . . , xn has support in [−λ, λ], so the estimate follows at once from
Theorem 2.1.8.
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2.3. The Fourier transform of Lp spaces. If f ∈ L2(Rn) then f̂ ∈ L2(Rn) and

∥f̂∥2 = (2π)n/2∥f∥2 by Parseval’s formula. If f ∈ L1(Rn) then f̂ ∈ L∞(Rn)∩C(Rn) and

∥f̂∥∞ ≤ ∥f∥1. From these facts it follows that if f ∈ Lp(Rn) for some p ∈ (1, 2), then

f̂ ∈ L2(Rn) + L∞(Rn) ⊂ L1
loc(R

n), for we can write f = g + h with g ∈ L1(Rn) and
h ∈ L2(Rn) for example by taking h = f when |f | < 1 and g = f when |f | ≥ 1. We shall
now prove a much more precise result:

Theorem 2.3.1 (Hausdorff-Young). If f ∈ Lp(Rn) and 1 < p < 2, then f̂ ∈
Lp

′
(Rn) and

(2.3.1) ∥f̂∥p′ ≤ (2π)n/p
′
∥f∥p, where 1/p+ 1/p′ = 1.

The proof is an easy consequence of the Riesz-Thorin interpolation theorem:

Theorem 2.3.2. If T is a linear map from Lp1 ∩Lp2 to Lq1 ∩Lq2 where pj , qj ∈ [1,∞],
such that

(2.3.2) ∥Tf∥qj ≤Mj∥f∥pj , j = 1, 2, f ∈ Lp1 ∩ Lp2 ,

and if 1/p = t/p1 + (1− t)/p2, 1/q = t/q1 + (1− t)/q2 for some t ∈ (0, 1), then

(2.3.3) ∥Tf∥q ≤M t
1M

1−t
2 ∥f∥p, f ∈ Lp1 ∩ Lp2 .

For a proof we refer to Hörmander [1, Theorem 7.1.12].

Proof of Theorem 2.3.1. From Theorem 2.3.2 it follows that (2.3.1) is valid when
f ∈ L1(Rn) ∩ L2(Rn). This is a dense subset of Lp(Rn) so the map L1(Rn) ∩ L2(Rn) ∋
f 7→ f̂ ∈ Lp

′
(Rn) extends uniquely to a linear map T from Lp(Rn) to Lp

′
(Rn) with norm

≤M t
1M

1−t
2 . Since the map Lp(Rn) ∋ f 7→ f̂ ∈ S ′(Rn) is continuous, it must be equal to

T which proves the theorem.

The constant in (2.3.1) is not the best possible when 1 < p < 2. We obtain a lower

bound for the possible constants by taking f(x) = e−a|x|
2/2 for some a > 0. Then f̂(ξ) =

(2π/a)n/2e−|ξ|2/2a so we have∫
Rn

|f(x)|p dx =

∫
Rn

e−pa|x|
2/2 dx = (2π/pa)n/2,

∫
Rn

|f̂(ξ)|p
′
dξ = (2π/a)np

′/2(2πa/p′)n/2.

Hence ∥f̂∥p′/∥f∥p = C where

(2.3.4) C = (2π)n/p
′
(p1/p/p′

1/p′
)n/2.

(2.3.4) is in fact the best possible constant in (2.3.1) by a theorem of Beckner [1]. For a
proof we refer to Lieb [1] where it is proved that for arbitrary operators with Gaussians
kernels, such as the Fourier transformation, the best possible constants in Lp, Lq estimates
can be found from the action on Gaussian functions. (The improvement of the constant

(2.3.4) over the constant (2π)n/p
′
in (2.3.1) is at most ∼ 0.8635n/2 which occurs for p ∼

1.19. However, it is of course also interesting to know the extremals f .)
The Fourier transformation is not continuous in any Lp, Lq spaces apart from the cases

given in Theorem 2.3.1:
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Proposition 2.3.3. If f ∈ Lp(Rn) implies f̂ ∈ Lq(Rn) then 1 ≤ p ≤ 2 and 1
p +

1
q = 1.

Proof. Since Lp(Rn) ∋ f 7→ f̂ ∈ S ′(Rn) is continuous, the hypothesis means that
this is a closed map into Lq(Rn). Hence it is continuous by the closed graph theorem, that
is,

(2.3.5) ∥f̂∥q ≤ C∥f∥p, f ∈ Lp(Rn).

If we replace f(x) by f(x/t) where t > 0 then f̂(ξ) is replaced by tnf̂(tξ), so (2.3.5) gives

tn(1−1/q)∥f̂∥q ≤ Ctn/p∥f∥p, f ∈ Lp(Rn), t > 0,

which implies 1/p+ 1/q = 1.
As an example of the remarks after the proof of Theorem 2.3.1 on the importance of

Gaussians we shall now prove that p ≤ 2 by checking (2.3.5) for Gaussians. Of course
it does not suffice to use real Gaussians since they are all equivalent under changes of
coordinates, so we take

f(x) = exp(−a|x|2/2), f̂(ξ) = (2π/a)n/2 exp(−|x|2/2a),

where Re a > 0. As above we obtain

∥f∥pp = (2π/pRe a)n/2, ∥f̂∥qq = (2π|a|2/qRe a)n/2(2π/|a|)nq/2,

so (2.3.5) requires that

C ≥ (2π)n(1+1/q−1/p)/2(p1/p/q1/q)n/2(Re a)n(1/p−1/q)/2|a|n(1/q−1/2), Re a > 0.

For reasons of homogeneity we see again that this implies 1/p+1/q = 1, and when Re a→ 0
while |a| = 1 we find that q ≥ p, which proves the statement.

The Fourier transform of a function in Lp is usually not even in L1
loc when p > 2:

Theorem 2.3.4. If k is an integer with 0 ≤ k < n/2 then one can find f such that

f ∈ Lp(Rn)∩C(Rn) for every p ∈ (2,∞] with k < n(1/2−1/p) and f̂ is not a distribution

of order k in any open subset of Rn. On the other hand, f̂ is of order k for every f ∈ Lp

if k > n(1/2− 1/p).

Proof. The intersection F of C(Rn) and all Lp(Rn) with k < n(1/2 − 1/p) is a
Fréchet space with the seminorms f 7→ ∥f∥p for p ∈ (2n/(n− 2k),∞]. The first statement
will follow if we prove that for every ball Ω ⊂ Rn with rational center and rational radius

the set MΩ of all f ∈ F with f̂ of order k in Ω is of the first category. In fact, the union of
MΩ for all such balls Ω is then of the first category, and all other f ∈ F have the required
property.

If MΩ is not of the first category it follows from Banach’s theorem that the map F ∋
f 7→ f̂ |Ω is continuous from F to the Fréchet space D ′k(Ω). If K is a compact subset of
Ω, with interior points, it follows that

(2.3.6) |⟨f̂ , φ⟩| ≤ CKN(f)
∑
|α|≤k

sup |Dαφ|, φ ∈ C∞
0 (K),
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where N(f) is a seminorm in F , so N(f) ≤ C(∥f∥p + ∥f∥∞) for some p with k <
n(1/2 − 1/p). Choose g ∈ S \ {0} so that ĝ ∈ C∞

0 (K), and define ft ∈ S , φt ∈ C∞
0 (K)

for t > 0 by

f̂t(ξ) = ĝ(ξ)eit|ξ|
2/2, φt(ξ) = f̂t(ξ).

Then it follows that

⟨f̂t, φt⟩ =
∫

|ĝ(ξ)|2 dξ,
∑
|α|≤k

sup |Dαφt| = O(tk) as t→ +∞.

The inverse Fourier transform of ξ 7→ eit|ξ|
2/2 is x 7→ ct−n/2e−i|x|

2/2t with a constant c ̸= 0
which is not essential now. Thus

ft(x) = ct−n/2
∫
e−i|x−y|

2/2tg(y) dy

which implies that |ft(x)| ≤ |c|t−n/2∥g∥1. By Parseval’s formula ∥ft∥2 = ∥g∥2, hence

∥ft∥p ≤ (∥ft∥22∥ft∥p−2
∞ )1/p ≤ Ctn(1/p−1/2) = o(t−k) as t→ ∞

if k < n(1/2 − 1/p). Thus the left-hand side of (2.3.6) with f = ft and φ = φt is
independent of t while the right-hand side → 0 as t → ∞. This is a contradiction which
completes the proof of the first statement.

The second statement is much weaker than the Hausdorff-Young theorem unless p > 2,
which we assume now. If f ∈ Lp(Rn) and φ ∈ S (Rn) then

(2.3.7) |⟨f̂ , φ⟩| = |⟨f, φ̂⟩| ≤ ∥f∥p∥φ̂∥p′ ,

where 1/p+ 1/p′ = 1. By Hölder’s inequality with exponents 2/p′ and q, 1/q + p′/2 = 1,
we have

(2.3.8) ∥φ̂∥p′ ≤ C
(∫

Rn

(1 + |ξ|2)k|φ̂(ξ)|2 dξ
) 1

2

,

for
∫
(1 + |ξ|2)−kp′q/2 dξ <∞ since kp′/n > (1/p′ − 1/2)p′ = 1/q. By Parseval’s formula

(2.3.9)
(∫

Rn

(1 + |ξ|2)k|φ̂(ξ)|2 dξ
) 1

2 ≤ C
∑
|α|≤k

∥Dαφ∥2.

The estimates (2.3.7), (2.3.8), (2.3.9) imply that f̂ is of order ≤ k.

We note in particular that when k = 0 the theorem gives a function in Lp(Rn)∩C(Rn)

for every p > 2 such that f̂ is not even a measure in any open subset of Rn. A minor
modification of the proof, which we leave as an exercise, shows that we can choose f so
that in addition f ∈ C∞ and all derivatives are bounded. Thus it is only the insufficient
decrease at infinity which is responsible for the lack of regularity of the Fourier transform.

The proof of the second part of the theorem relied on the equality (2.3.9), which can be
extended to an equivalence between the two sides. We have here encountered the simplest
Sobolev spaces:
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Definition 2.3.5. If s is a real number then H(s)(R
n) denotes the space of all u ∈

S ′(Rn) such that û ∈ L2(Rn, (1 + |ξ|2)sdξ/(2π)n), with the norm

∥u∥(s) =
(
(2π)−n

∫
|û(ξ)|2(1 + |ξ|2)s dξ

) 1
2

.

From Parseval’s formula it follows at once that H(0)(R
n) = L2(Rn). We have u ∈

H(s+1)(R
n) if and only if u ∈ H(s)(R

n) and Dju ∈ H(s)(R
n) for j = 1, . . . , n, and then

we have

(2.3.10) ∥u∥2(s+1) = ∥u∥2(s) +
n∑
1

∥Dju∥2(s).

Repeated use of this observation shows that H(s)(R
n) consists of all u with Dαu ∈ L2(Rn)

when |α| ≤ s, if s is a positive integer, and this is what (2.3.9) expressed in part. We can
also work in the other direction: u ∈ H(s)(R

n) if and only if u has a representation

u = v0 +
∑n

1 Djvj where vj ∈ H(s+1)(R
n), j = 0, 1, . . . , n; it can be chosen so that

(2.3.11) ∥u∥2(s) =
n∑
0

∥vj∥2(s+1).

In fact, we can take v̂0(ξ) = û(ξ)/(1+|ξ|2) and v̂j(ξ) = û(ξ)ξj/(1+|ξ|2). Roughly speaking,
H(s)(R

n) consists for negative integer s of distributions which are sums of derivatives of

order ≤ −s of functions in L2. If we describe the functions in H(s)(R
n) for 0 < s < 1

without reference to the Fourier transformation we shall obtain a similar description of all
spaces H(s)(R

n). First note that for 0 < s < 1

(2.3.12) ∥u∥2(s) ≤ (2π)−n
∫
Rn

|û(ξ)|2(1 + |ξ|2s) dξ ≤ 2∥u∥2(s).

This is equivalent to the inequalities

(1 + |ξ|2)s ≤ 1 + |ξ|2s ≤ 2(1 + |ξ|2)s, 0 < s < 1.

The second is trivial and the first follows since 1 ≥ (1+|ξ|2)s−1 and |ξ|2s ≥ |ξ|2(1+|ξ|2)s−1.
For 0 < s < 1 there is a constant As such that

(2.3.13) (2π)−n
∫
Rn

|û(ξ)|2(1 + |ξ|2s) dξ =
∫
Rn

|u(x)|2 dx

+As

∫∫
Rn×Rn

|u(x+ y)− u(x)|2|y|−n−2s dx dy.

Thus H(s)(R
n) consists when 0 < s < 1 of all u ∈ L2(Rn) such that the right-hand side

of (2.3.13) is finite; this is a kind of Hölder condition in an L2 sense. To prove (2.3.13) we
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note that since the Fourier transform of x 7→ u(x + y) − u(x) is ξ 7→ (ei⟨y,ξ⟩ − 1)û(ξ) the
identity is equivalent to

(2.3.14) As

∫
|ei⟨y,ξ⟩ − 1|2|y|−n−2s dy = |ξ|2s.

The integral on the left-hand side converges at 0 since s < 1 and at ∞ since s > 0. An
orthogonal transformation of y proves that it is a function of |ξ| only, and replacing y by
ty for some t > 0 proves that it is homogeneous in |ξ| of degree 2s, which proves (2.3.14).
(It is not hard to calculate As in terms of the Γ function. Even without doing that it is
easy to see that 2(1− s)/As converges to the volume of the unit ball when s→ 1 and that
s/As converges to the area of the unit sphere when s→ 0.)

The spaces H(s)(R
n) are S modules, that is, φ ∈ S and f ∈ H(s)(R

n) implies φf ∈
H(s)(R

n). This is an easy consequence of the fact that the Fourier transform of φf is

(2π)−nφ̂ ∗ f̂ . However, we shall prove a much more precise result.

Lemma 2.3.6. If χ is a bounded Lipschitz continuous function in Rn and f ∈ H(s)(R
n)

for some s ∈ [0, 1], then χf ∈ H(s)(R
n) and

(2.3.15) ∥χf∥(s) ≤
√
2 sup(|χ|2 + |χ′|2)∥f∥(s).

Proof. The statement is obvious when s = 0, and when s = 1 it follows sinceDj(χf) =
(Djχ)f + χDjf , hence

|χf |2 +
n∑
1

|Dj(χf)|2 ≤ 2(|χ|2 + |χ′|2)(|f |2 +
n∑
1

|Djf |2).

When 0 < s < 1 we shall use a complex interpolation argument close to the proof of the
Riesz-Thorin interpolation theorem. For s ∈ C we shall denote by (1+ |D|2)sf the inverse

Fourier transform of ξ 7→ (1+ |ξ|2)sf̂(ξ), which is a function in S if f ∈ S and is analytic
as a function of s. With f, g ∈ S we form

Φ(s) = ⟨(1 + |D|2)s/2χ(1 + |D|2)−s/2f, g⟩.
This is a bounded analytic function for 0 ≤ Re s ≤ 1, and

|Φ(s)| ≤
{

sup |χ|∥f∥2∥g∥2, if Re s = 0,√
2 sup(|χ|2 + |χ′|2)∥f∥2∥g∥2, if Re s = 1.

This is obvious when Re s = 0 for (1 + |D|2)s/2 is then a unitary operator in L2. Since

∥(1 + |D|2)−s/2f∥(1) = ∥f∥2, ∥(1 + |D|2)s/2w∥2 = ∥w∥(1), if Re s = 1,

the estimate follows when Re s = 1. By the maximum principle applied to Φ(s)/(1 + εs)
for ε > 0 we obtain when ε→ 0 that

|Φ(s)| ≤
√
2 sup(|χ|2 + |χ′|2)∥f∥2∥g∥2, 0 < Re s < 1.

Taking s real we obtain

∥χ(1 + |D|2)−s/2f∥(s) ≤
√
2 sup(|χ|2 + |χ′|2)∥f∥2

which proves (2.3.15) when f is replaced by (1 + |D|2)s/2f . The lemma is proved.
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Proposition 2.3.7. If χ ∈ Ck(Rn) and the derivatives of order ≤ k are bounded, then
χf ∈ H(s)(R

n) if f ∈ H(s)(R
n) and |s| ≤ k; we have

(2.3.16) ∥χf∥(s) ≤ Ck
∑
|α|≤k

sup |Dαχ|∥f∥(s).

Proof. Lemma 2.3.6 proves the statement when k = 1 and 0 ≤ s ≤ 1. Using (2.3.10)
we obtain inductively that it is true for every positive integer k when 0 ≤ s ≤ k. If
−k ≤ s < 0 and f ∈ S then

∥χf∥(s) = sup
0̸=g∈S

|⟨χf, g⟩|/∥g∥(−s) = sup
0̸=g∈S

|⟨f, χg⟩|/∥g∥(−s)

≤ sup
g∈S

∥f∥(s)∥χg∥(−s)/∥g∥(−s) ≤ ∥f∥(s)Ck
∑
|α|≤k

sup |Dαχ|,

which completes the proof.

The theorem just proved or already the simple special case where χ ∈ C∞
0 (Rn) leads

us to define H loc
(s) (Ω) for any open subset Ω of Rn as

(2.3.17) H loc
(s) (Ω) = {f ∈ D ′(Ω);χf ∈ H(s)(R

n) if χ ∈ C∞
0 (Ω)}.

Here χf ∈ E ′(Ω) is regarded as an element in E ′(Rn). It follows from Proposition 2.3.7
that H(s)(R

n) ⊂ H loc
(s) (R

n). If Ω1 ⊂ Ω2 then the restriction of H loc
(s) (Ω2) to Ω1 is in

H loc
(s) (Ω1). If f ∈ H loc

(s) (Ω) then there is for every x ∈ Ω some fx ∈ H(s)(R
n) with fx = f in a

neighborhood of x, for we can choose fx = χf with χ ∈ C∞
0 (Ω) equal to 1 in a neighborhood

of x. Conversely, every f with this property is in H loc
(s) (Ω). In fact, if χ ∈ C∞

0 (Ω) we can

for every x ∈ suppχ choose fx ∈ H(s)(R
n) equal to f in a neighborhood Ox ⊂ Ω of x. By

the Borel-Lebesgue lemma suppχ is covered by finitely many neighborhoods Ox1 , . . . , OxN
.

We can choose χj ∈ C∞
0 (Oxj ), j = 1, . . . , N , so that

∑N
1 χj = 1 in suppχ and conclude

using Proposition 2.3.7 that

χf =
N∑
1

χ(χjf) ∈ H(s)(R
n),

which means that f ∈ H loc
(s) (Ω). Thus H loc

(s) (Ω) is indeed the space of distributions in Ω

which are locally in H(s)(R
n).

Instead of using the order of a distribution f as a measure of its regularity, as in Theorem
2.3.4, it is usually better to describe it by regularity conditions of the form f ∈ H loc

(s) . This

gives a continuous scale of regularity conditions with s ranging from −∞ to +∞, and
the fact that L2 conditions are exactly translated by the Fourier transformation leads to
precise statements. As an example we reformulate Theorem 2.3.4 with our new notions.
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Theorem 2.3.8. If 1 ≤ q < 2 then the Fourier transform of H(s)(R
n) is contained

in Lq(Rn) if and only if s > n(1/q − 1/2). If 2 < p ≤ ∞ then the Fourier transform of
Lp(Rn) is contained in H(−s) if and only if s > n(1/2− 1/p).

Proof. The Fourier transform of H(s)(R
n) is L2(Rn, (1 + |ξ|2)s dξ) by definition. By

Hölder’s inequality with exponents 2/q and 2/(2− q)∫
Rn

|f(ξ)|q dξ ≤M
(∫

Rn

|f(ξ)|2(1 + |ξ|2)s dξ
) q

2

, M =
(∫

Rn

(1 + |ξ|2)−sq/(2−q) dξ
) 2−q

2

.

M is the best possible constant in this estimate, and if M = +∞ then there is some
f ∈ L2(Rn, (2π)−n(1 + |ξ|2)s dξ) such that f /∈ Lq. Now M is finite if and only if sq/(2−
q) > n/2, that is, s > n(1/q − 1/2), which proves the first statement. The second one is
dual: If u ∈ Lp(Rn) and φ ∈ S (Rn) we have with 1/p+ 1/q = 1

|⟨û, φ⟩| = |⟨u, φ̂⟩| ≤ ∥u∥p∥φ̂∥q ≤ ∥u∥pM1/q(2π)n/2∥φ∥(s).

This proves that û ∈ H(−s)(R
n) if s > n(1/q − 1/2) = n(1/2− 1/p).

Conversely, if û ∈ H(−s)(R
n) for all u ∈ Lp(Rn) it follows from Banach’s theorem that

∥û∥(−s) ≤ C∥u∥p, u ∈ Lp(Rn), hence

|⟨u, φ̂⟩| = |⟨û, φ⟩| ≤ ∥û∥(−s)∥φ∥(s) ≤ C∥u∥p∥φ∥(s), φ ∈ S (Rn),

so ∥φ̂∥q ≤ C∥φ∥(s). This implies that the Fourier transform of H(s)(R
n) is contained in

Lq(Rn), so the first part of the proof gives s > n(1/q− 1/2) = n(1/2− 1/p). The proof is
complete.

In particular we note that f̂ ∈ L1(Rn) if f ∈ H(s)(R
n) for some s > n/2, so Fourier’s

inversion formula

f(x) = (2π)−n
∫
Rn

ei⟨x,ξ⟩f̂(ξ) dξ

is then absolutely convergent and proves that f is continuous, f(x) → 0 as x → ∞. Note
that this improves Proposition 2.1.2 a great deal. There is a corresponding improvement
of Proposition 2.2.2: The Fourier series of a periodic function in H loc

(s) (R
n) converges

absolutely if s > n/2. This is essentially a theorem of S. Bernstein.

2.4. The method of stationary phase. The core of the proof of Theorem 2.3.4
was the explicit form of the Fourier transform of a Gaussian. We shall now discuss more
systematically the role of Gaussians in the study of oscillatory integrals. First we shall
motivate why they occur.

Theorem 2.4.1. Let u ∈ E ′(K), where K ⊂ Rn is compact, and assume that Dαu ∈ L1

when |α| ≤ k. If φ ∈ Ck+1 in a neighborhood of K and φ is real valued, φ′ ̸= 0 on K, then

(2.4.1)
∣∣∣ ∫
K

ueiτφ dx
∣∣∣ ≤ Ck,φτ

−k
∑
|α|≤k

∫
|Dαu| dx, τ > 0.
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Proof. First assume that φ(x) = x1. Then∫
(Dk

1u)e
iτφ dx = (−τ)k

∫
ueiτφ dx,

which proves (2.4.1) in this case. (This is just the same argument as in (2.1.10) for example
which we have used to prove that the Fourier transform of a smooth function is rapidly
decreasing.) If k ≥ 1 the implicit function theorem shows that for any x0 ∈ K one can
find new local coordinates y = Φ(x) in a neighborhood ω such that Φ1(x) = φ(x). If
χ ∈ C∞

0 (ω) and Ψ = Φ−1 then∫
χueiτφ dx =

∫
(χu) ◦Ψ(y)eiτy1 | detΨ′(y)| dy

has a bound of the form (2.4.1) by the first part of the proof. Using a partition of unity
we complete the proof.

Occasionally it is useful to have control of how the constant Ck,φ in (2.4.1) depends on
φ, so we shall elaborate this point in the following theorem where we also allow φ not to
be real:

Theorem 2.4.1′. Let u ∈ E ′(K) where K is a compact subset of Rn, and assume that
Dαu ∈ L1 when |α| ≤ k. If φ ∈ Ck+1 in a neighborhood of K and Imφ ≥ 0, φ′ ̸= 0 in K,
then

(2.4.1)′
∣∣∣ ∫
K

ueiτφ dx| ≤ Ckτ
−k

∑
|α|≤k

∫
|Dαu||φ′||α|−2kNk−|α| dx, τ > 0,

where

(2.4.2) Nj =
∑

|α1|+···+|αj |=2j,1≤|α1|,...,1≤|αj |

|Dα1φ| · · · |Dαjφ|.

Proof. We shall prove (2.4.1)′ by induction with respect to k. When k = 0 the
statement is trivial. Assume that k > 0 and that it has already been proved with k
replaced by k − 1, and write

ueiτφ = u

n∑
1

|∂jφ|2|φ′|−2eiτφ =

n∑
1

u(∂jφ̄)|φ′|−2∂je
iτφ/iτ.

An integration by parts gives now

∫
ueiτφ dx =

i

τ

n∑
1

∫
∂j
(
u(∂jφ̄)|φ′|−2

)
eiτφ dx.
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If we apply the inductive hypothesis, with k replaced by k − 1 in (2.4.1)′, it follows that

τk
∣∣∣ ∫ ueiτφ dx

∣∣∣ ≤ Ck−1

n∑
j=1

∑
|α|≤k−1

∫
|∂α∂j(u(∂jφ̄)|φ′|−2)||φ′||α|−2k+2Nk−1−|α| dx.

Letting ∂α∂j act here gives a sum of terms where ∂β acts on u and ∂γ acts on ∂jφ̄/|φ′|2,
where |β|+ |γ| = |α|+ 1. The induction will be successful if we can prove that

|∂γ((∂jφ̄)|φ′|−2)||φ′||α|−2k+2Nk−1−|α| ≤ C|φ′||β|−2kNk−|β|,

that is, since |α| − 2k + 2− |β|+ 2k = |γ|+ 1

|∂γ((∂jφ̄)|φ′|−2)||φ′||γ|+1Nk−|γ|−|β| ≤ CNk−|β|, |β|+ |γ| ≤ k.

By the definition of Nl it is sufficient to prove this when |γ|+ |β| = k, that is, prove that

|∂γ((∂jφ̄)|φ′|−2)||φ′||γ|+1 ≤ CN|γ|.

Now it is clear that
|φ′|2+2|γ|∂γ

(
(∂jφ̄)|φ′|−2

)
is a homogeneous polynomial of degree 1+2|γ| in ψ = φ′ and ψ̄ and their derivatives, with
the total order of differentiation in each term equal to |γ|. Hence 1 + |γ| factors are not
differentiated, and the product of the other |γ| is bounded by N|γ|. The proof is complete.

Remark. It is clear that one can say much more where Imφ > 0. We refer to
Hörmander [1, Theorem 7.7.1] for a precise estimate which takes this into account.

When examining the asymptotic properties of an oscillatory integral
∫
ueiτφ with u of

compact support, φ real valued, and very smooth u and φ, we know from Theorem 2.4.1
that the main contributions will come from points where (2.4.1) is not applicable, that is,
where φ′ = 0. The method of stationary phase which is the subject of this section consists
of a study of the contributions from such points. For the sake of simplicity we shall not
insist on minimal regularity conditions in what follows. The first step is to examine how
much it is possible to simplify a stationary point by a change of coordinates as we did in
the proof of Theorem 2.4.1.

Lemma 2.4.2 (Morse). If φ is a real valued C∞ function in a neighborhood of x0 ∈ Rn

such that φ′(x0) = 0 but φ′′(x0) ̸= 0, then there is a diffeomorphism ψ of a neighborhood
of the origin on a neighborhood of x0 such that ψ(0) = x0 and

(2.4.3) φ(ψ(y)) = φ(x0)± y21 + ϱ(y2, . . . , yn).

Proof. It is no restriction to assume that φ(x0) = 0, and by a preliminary affine
transformation we can achieve that x0 = 0 and that ∂21φ(0) ̸= 0. By the implicit function
theorem the equation ∂1φ(x1, x

′) = 0 has a unique C∞ solution x1 = ψ(x′) with ψ(0) = 0,
when x′ = (x2, . . . , xn) is close to the origin in Rn−1. Taking x1 −ψ(x′) as a new variable
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instead of x1 we reduce the proof to the case where ∂1φ(0, x
′) = 0 in a neighborhood of

the origin. By Taylor’s formula

φ(x) = φ(0, x′) + x21q(x), q(x) =

∫ 1

0

(∂21φ)(tx1, x
′)(1− t) dt.

Here q ∈ C∞ in a neighborhood of the origin and q(0) = 1
2∂

2
1φ(0). Taking y1 = x1

√
|q(x)|

and y′ = x′ we obtain φ(x) = φ(0, y′)± y21 as claimed in (2.4.3).

The lemma can again be applied to the error term ϱ if ϱ′′(0) ̸= 0. In particular, when
detφ′′(x0) ̸= 0 we can continue until we have obtained a change of variables making
φ(ψ(y)) equal to a non-degenerate quadratic form A in a neighborhood of the origin.
We shall then say that x0 is a non-degenerate critical point. Since A(y) = 1

2φ
′′(ψ′(0)y),

it has the same signature as φ′′ but there is no other condition since all non-degenerate
quadratic forms with the same signature are equivalent under linear transformations. Note
that non-degenerate critical points are isolated by the implicit function theorem.

Next we shall formalize a part of Example 5 given after Theorem 2.1.5 and Example 4
given after Theorem 2.2.5.

Lemma 2.4.3. If A is a real symmetric n× n matrix with detA ̸= 0, then the Fourier
transform of the Gaussian Rn ∋ x 7→ exp(i⟨Ax, x⟩/2) is

Rn ∋ ξ 7→ (2π)
n
2 | detA|− 1

2 e
πi
4 sgnA exp(−i⟨A−1ξ, ξ⟩/2),

where sgnA is the number of positive eigenvalues minus the number of negative eigenvalues.

Proof. First assume that n = 1. Then Example 5 after Theorem 2.1.5 gives for ε > 0
that the Fourier transform of x 7→ exp((iA− ε)x2)/2) is

ξ 7→
√
2π/(ε− iA) exp((iA− ε)−1ξ2/2)

with the square root in the right half plane in C. When ε→ 0 the square root converges to√
2π/|A| exp(πi4 sgnA) and the exponential converges boundedly to exp(−iA−1ξ2/2), so

the lemma is true when n = 1. Hence it follows if A is a diagonal matrix. We can always
choose a linear bijection T : Rn → Rn such that x 7→ ⟨ATx, Tx⟩ has diagonal form. Then
the Fourier transform of x 7→ exp(i⟨ATx, Tx⟩) is

ξ 7→ (2π)
n
2 | detA|− 1

2 | detT |−1e
πi
4 sgnA exp(−i⟨A−1tT−1ξ,t T−1ξ⟩),

because T−1A−1tT−1 is the inverse of tTAT , which proves the lemma in view of Theorem
2.2.5.

If u ∈ S it follows from Lemma 2.4.3 and Fourier’s inversion formula that
(2.4.4)∫

u(x)eiτ⟨Ax,x⟩/2 = (2πτ)−
n
2 | detA|− 1

2 e
πi
4 sgnA

∫
exp(−i⟨A−1ξ, ξ⟩/2τ)û(ξ) dξ, τ > 0.
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The advantage of this formula is that for large τ we can make a Taylor expansion of
the exponential in the right-hand side, using the fact that by Taylor’s formula, for every
positive integer k,

|eit −
∑
j<k

(it)j/j!| ≤ |t|k/k!, t ∈ R.

Hence we obtain using Fourier’s inversion formula∣∣∣ ∫ u(x)eiτ⟨Ax,x⟩/2 dx− (2π/τ)
n
2 |detA|− 1

2 e
πi
4 sgnA

∑
j<k

(⟨A−1D,D⟩/2iτ)ju(0)/j!
∣∣∣

≤ (2πτ)−
n
2 | detA|− 1

2 (2τ)−k
∫

|⟨A−1ξ, ξ⟩|k|û(ξ)| dξ/k!.

We can estimate the right-hand side by means of Theorem 2.3.8 which gives:

Proposition 2.4.4. If A is a non-singular symmetric n× n matrix and u ∈ S , τ > 0
and s is an integer > n/2, we have for every integer k > 0

(2.4.5)
∣∣∣ ∫ u(x)eiτ⟨Ax,x⟩/2 dx− (2π/τ)

n
2 | detA|− 1

2 e
πi
4 sgnA

∑
j<k

(⟨A−1D,D⟩/2iτ)ju(0)/j!
∣∣∣

≤ Ck,Aτ
−n

2 −k
∑

|α|≤s+2k

∥Dαu∥2.

The statement remains true for s = n/2 if n is even. For a proof and extensions of most
results in this section we refer to Hörmander [1, Sections 7.6 and 7.7].

We can now state the main result of this section. For the sake of simplicity we do not
make minimal smoothness assumptions.

Theorem 2.4.5. Let K ⊂ Rn be a compact set and let φ be a real valued C∞ function
in a neighborhood of K. If every critical point of φ in K is non-degenerate, then they form
a finite set Cφ and if u ∈ C∞

0 (K) then

(2.4.6)∣∣∣ ∫ u(x)eiτφ(x) dx−
∑
x∈Cφ

eiτφ(x)+
πi
4 sgnφ′′(x)(2π/τ)

n
2 |detφ′′(x)|− 1

2

∑
j<k

τ−jLju(x)
∣∣∣

≤ Cτ−
n
2 −k

∑
|α|≤n

2 +1+2k

sup |Dαu|, τ > 0.

Here Lj is a differential operator of order 2j depending on φ, and L0 = 1.

Proof. As already pointed out, non-degenerate critical points are isolated so Cφ is
finite. We can choose a finite partition of unity 1 =

∑
χν in a neighborhood of K such

that there is at most one critical point in the support of each χν , and if there is one then
the support is so small that Lemma 2.4.2 can be used there to change the coordinates so
that φ becomes a quadratic form in the new variables. Then the theorem follows from
Theorem 2.4.1 and Proposition 2.4.4.

As an example we shall study the Fourier transform of a smooth density on a hypersur-
face in Rn+1 which has total curvature ̸= 0. This application will be important in Chapter
V.
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Theorem 2.4.6. Let K ⊂ Rn be a compact set and let ψ be a real valued C∞ func-
tion in a neighborhood X of K such that detψ′′(x) ̸= 0 when x ∈ K. If a ∈ C∞

0 (K),
then the asymptotics of the Fourier transform of the density a(x) dx on the hypersurface
{(x, ψ(x));x ∈ X} ⊂ Rn+1,

F (ξ, ξn+1) =

∫
e−i(⟨x,ξ⟩+ψ(x)ξn+1)a(x) dx,

is given by

(2.4.7)
∣∣|ξn+1/2π|

n
2 F (ξ, ξn+1)−

∑
x

a(x)| detψ′′(x)|− 1
2 e∓

πi
4 sgnψ′′(x)e−i(⟨x,ξ⟩+ψ(x)ξn+1)

∣∣
≤ C/(|ξ|+ |ξn+1|),

where the sum is taken over the finitely many x ∈ K such that ξ + ξn+1ψ
′(x) = 0, and ±

is the sign of ξn+1.

Proof. Note that there are no such points if |ξn+1| supK |ψ′| < |ξ|/2, say. In that case
the estimate follows from Theorem 2.4.1. Otherwise the estimate is for fixed ξ/ξn+1 = η a
consequence of Theorem 2.4.5 with τ = |ξn+1| and φ(x) = ∓(⟨x, η⟩+ ψ(x)). The proof of
Theorem 2.4.5 shows that the estimate obtained will be uniform in η when |η| ≤ 2 supK |ψ′|,
which completes the proof.

The terms in (2.4.7) have a clear geometrical meaning. The equation ξ+ ξn+1ψ
′(x) = 0

means that (ξ, ξn+1) is in the direction of the normal at (x, ψ(x)). The total curvature
K of the hypersurface is there equal to (detψ′′(x))/(1 + |ψ′(x)|2)(n+2)/2, and the surface

measure is dx
√

1 + |ψ′(x)|2. The absolute value of the main term in (2.4.7) multiplied by

(1+ |ξ|2/ξ2n+1)
n/4 = (1+ |ψ′(x)|2)n/4 is therefore |K |− 1

2 multiplied by the density divided
by the surface measure. The number of curvatures at (x, ψ(x)) pointing in the direction
(ξ, ξn+1) minus the number pointing in the opposite direction is ± sgnψ′′(x).

Another important example is the solution of the initial value problem for the Schrö-
dinger equation in R1+n,

∂u(t, x)/∂t = i
2∆xu(t, x); u(0, ·) = f ∈ S (Rn).

Using Fourier transforms we obtain the solution

u(t, x) = (2π)−n
∫
f̂(ξ)ei(⟨x,ξ⟩−

1
2 t|ξ|

2) dξ = ei|x|
2/2t(2π)−n

∫
f̂(ξ + x/t)e−it|ξ|

2/2 dξ.

Choose χ ∈ C∞
0 (Rn) equal to 1 in the unit ball. If a factor χ(ξ) is inserted in the integrand

we can use Proposition 2.4.4, and if we insert a factor 1−χ(ξ) then the proof of Theorem
2.4.1′ gives that the integral is O(t−ν) for every ν. Hence

u(t, x) = ei|x|
2/2t−πin/4(2πt)−n/2(f̂(x/t) +O(1/t)),

which can be refined to a complete asymptotic series. This reflects the quantum mechanical
interpretation of the dual variable ξ as the velocity of the “particle”.



CHAPTER III

WAVELETS

3.1. Multiresolution analysis. The key to the discussion of the fast Fourier trans-
form in Section 1.3 was that the Fourier transform of a function defined in Z2N was
successively reduced to the Fourier transform of functions in the subspaces Vj , 0 ≤ j ≤ N
of functions which are lifted from Z2N−j , that is, only depend on the residue class modulo
2N−j . If f ∈ Vj then x 7→ f(2x) is in Vj+1. The situation is similar to the following notion
of a multiresolution analysis but the fact that x 7→ 2x is not bijective on Z2N makes an
essential difference. In particular, the spaces Vj will then increase with j:

Definition 3.1.1. An orthonormal multiresolution analysis of L2(Rn) is a sequence
of closed subspaces Vj , j ∈ Z, such that

(i) Vj ⊂ Vj+1 for all j ∈ Z;1

(ii)
∩∞

−∞ Vj = {0}, and
∪∞

−∞ Vj is dense in L2(Rn);
(iii) f ∈ Vj if and only if γf ∈ Vj+1 where (γf)(x) = f(2x);
(iv) f ∈ V0 implies f(· − k) ∈ V0 if k ∈ Zn;
(v) There is a function φ ∈ V0 such that the functions x 7→ φ(x − k), k ∈ Zn, are an

orthonormal basis for V0.

Since 2n/2γ is a unitary map in L2(Rn), it follows from (iii), (iv) and (v) that

(iii)′ f ∈ Vj if and only if γ−jf ∈ V0;
(iv)′ f ∈ Vj implies f(· − k/2j) ∈ Vj if k ∈ Zn;

(v)′ The functions x 7→ 2nj/2φ(2jx− k) with k ∈ Zn are an orthonormal basis for Vj .

To clarify the meaning of these conditions we shall first discuss the most classical case,
the Haar basis in one dimension. Let V0 be the set of functions in L

2(R) which are constant
a.e. (almost everywhere) in every interval {x ∈ R; k ≤ x ≤ k+1} bounded by consecutive
integers, and define Vj so that (iii)′ is valid. This means that Vj consists of the functions
which are constant a.e. in the dyadic intervals

(3.1.1) Ij,k = {x ∈ R; k ≤ 2jx ≤ k + 1}, k ∈ Z.

The intervals are divided in half when j is increased by 1, so it is clear that Vj increases
with j. Since step functions of compact support are dense in L2 and we can choose the
points of discontinuity as rational numbers with a power of 2 as denominator, the union

1We follow the notation of Meyer [2]. In Daubechies [1] there is a change of sign for the indices so that
the spaces Vj decrease instead.

47



48 III. WAVELETS

of the spaces Vj is dense in L2. The intersection of all Vj consists of L2 functions which
are constant on the positive and on the negative half axis, hence equal to 0. Thus (ii) is
fulfilled, and (v) is valid with φ equal to the characteristic function of [0, 1].

For this example the orthogonal complement W0 = V1 ⊖ V0 of V0 in V1 consists of
functions which are constant in the intervals I1,k and have integral 0 over the intervals
I0,k. Hence an orthonormal basis is given by the functions x 7→ ψ(x− k), k ∈ Z, where

ψ(x) =


1, if 0 ≤ x < 1

2 ,

−1, if 1
2 ≤ x < 1,

0, if x < 0 or x ≥ 1.

By condition (iii)′ it follows that the functions x 7→ 2j/2ψ(2jx − k), k ∈ Z, are an or-
thonormal basis in Wj = Vj+1 ⊖ Vj . Since L

2(R) =
⊕∞

−∞Wj by condition (ii), it follows
that the functions

ψj,k(x) = 2j/2ψ(2jx− k), j ∈ Z, k ∈ Z,

form an orthonormal basis for L2(R). It is called the Haar basis, and ψ is called the Haar
wavelet.

Actually this is slightly incorrect historically, for the Haar basis is a basis for L2(0, 1).
However, we can regard L2(0, 1) as the subspace of L2(R) consisting of functions vanishing
outside (0, 1). Then (f, ψj,k) = 0 unless 0 ≤ k < 2j . If j < 0 and k = 0 then

(f, ψj,0) = 2j/2
∫ 1

0

f(x) dx = 2(j+1)/2(f, ψ−1,0).

Since
∑−1

−∞ 2j+1 = 2 we obtain

f =
∑

0≤j,0≤k<2j

ψj,k(f, ψj,k) + 2ψ−1,0(f, ψ−1,0).

Thus the functions ψj,k in the sum and
√
2ψ−1,0 ≡ 1 are an orthonormal basis for L2(0, 1),

which is the original Haar basis. (See Haar [1].)
After this motivating example we shall now return to Definition 3.1.1 and examine the

consequences of the conditions there, beginning with (v).

Proposition 3.1.2. If φ ∈ L2(Rn) then the functions x 7→ φ(x − k), k ∈ Zn, are an
orthonormal system in L2(Rn) if and only if

(3.1.2)
∑
k∈Zn

|φ̂(ξ + 2πk)|2 = 1 a.e..

Proof. The orthonormality means that

(3.1.3)

∫
Rn

φ(x− k)φ(x) dx = δk,0, k ∈ Zn.
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The Fourier transform of x 7→ φ(x− k) is ξ 7→ e−i⟨k,ξ⟩φ̂(ξ), so (3.1.3) can be rewritten as
follows using Parseval’s formula

(3.1.3)′ (2π)−n
∫
Rn

|φ̂(ξ)|2e−i⟨k,ξ⟩ dξ = δk,0.

The left-hand side is a Fourier coefficient of the function

(3.1.4) Φ(ξ) =
∑
j∈Zn

|φ̂(ξ + 2πj)|2,

which is 2πZn periodic. Hence (3.1.3)′ means precisely that Φ(ξ) = 1 as a distribution,
that is, almost everywhere as a function.

Given a function φ ∈ L2(Rn) satisfying (3.1.2) we can define V0 as the closed linear hull
of the orthonormal functions φ(· − k), k ∈ Zn, and then define Vj by condition (iii)′. The
condition (i) will then be fulfilled if and only if V−1 ⊂ V0, that is, x 7→ φ(x/2) is in V0.

Proposition 3.1.3. Let φ satisfy (3.1.2). Then x 7→ φ(x/2) is in the closed linear hull
V0 in L2(Rn) of the functions φ(· − k), k ∈ Zn, if and only if

(3.1.5) φ̂(2ξ) = m0(ξ)φ̂(ξ),

where m0 is a 2πZn periodic function in L∞ and

(3.1.6)
∑

k∈{0,1}n

|m0(ξ + πk)|2 = 1 a.e..

Proof. The scalar product αk of φ(x/2) with the orthonormal functions φ(x − k)
which span V0 can be calculated by Parseval’s formula,

(3.1.7) αk =

∫
Rn

φ(x/2)φ(x− k) dx = (2π)−n
∫
Rn

2nφ̂(2ξ)φ̂(ξ)ei⟨k,ξ⟩ dξ, k ∈ Zn.

If x 7→ φ(x/2) is in V0 then

φ(x/2) =
∑
k∈Zn

αkφ(x− k)

with convergence in L2. By Parseval’s formula this is equivalent to

2nφ̂(2ξ) =
∑
k∈Zn

αke
−i⟨k,ξ⟩φ̂(ξ),

also with L2 convergence. Since
∑

|αk|2 <∞ the Fourier series

m0(ξ) = 2−n
∑
k∈Zn

αke
−i⟨k,ξ⟩
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converges in L2(Rn/2πZn), which proves (3.1.5). Replacing ξ by (ξ + 2πk)/2 we obtain

|φ̂(ξ + 2πk)|2 = |m0((ξ + 2πk)/2)|2|φ̂((ξ + 2πk)/2)|2, k ∈ Zn.

We sum over k using (3.1.2) and the fact that each residue class of (2Zn)/Zn contains
precisely one element in {0, 1}n, which proves (3.1.6).

Assuming now that (3.1.5) and (3.1.6) are fulfilled we shall prove that x 7→ φ(x/2) is in
V0. To do so we observe that (3.1.7) and (3.1.5) give in view of (3.1.2) and the periodicity
of m0

αk = (2π)−n
∫
Rn

2nm0(ξ)|φ̂(ξ)|2ei⟨k,ξ⟩ dξ = (2π)−n
∫
Rn/2πZn

2nm0(ξ)e
i⟨k,ξ⟩ dξ,

so it follows from Parseval’s formula (for Fourier series now) that

(2π)n
∑
k∈Zn

|αk|2 =

∫
Rn/2πZn

|2nm0(ξ)|2 dξ.

By (3.1.6) we have

2n
∫
Rn/2πZn

|m0(ξ)|2 dξ = (2π)n,

so it follows that ∑
k∈Zn

|αk|2 = 2n =

∫
Rn

|φ(x/2)|2 dx,

which proves that x 7→ φ(x/2) is in V0.

We have now seen that the equations (3.1.2), (3.1.5), (3.1.6) express the conditions (i),
(iii), (iv), (v) completely when V0 is defined by (v) and Vj is then defined by (iii)′. It
remains to examine the condition (ii).

Proposition 3.1.4. Let φ satisfy (3.1.2), define Vj by (v) and (iii)′, and denote the
orthogonal projection L2(Rn) → Vj by Pj. Then Pj → 0 strongly as j → −∞, hence∩∞

−∞ Vj = {0}. When j → ∞ we have Pj → Id strongly if and only if one of the following
equivalent conditions is fulfilled:

(1) |φ̂(εξ)|2 → 1 in D ′(Rn) as ε→ 0;
(2) |φ̂(εξ)|2 → 1 in L1

loc(R
n) as ε→ 0;

(3) If we define |φ̂(0)| = 1 then 0 is a Lebesgue point for |φ̂|2.
They imply that

∪∞
−∞ Vj is dense in L2(Rn), and the converse is true if (i) is fulfilled.

Proof. To prove the first statement we must verify that ∥Pjf∥L2 → 0 as j → −∞ for
all f in a dense subset of L2(Rn), say f ∈ C0(R

n). We have

∥Pjf∥2 =
∑
k∈Zn

|αjk|2, αjk =

∫
Rn

f(x)2nj/2φ(2jx− k) dx.
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If |f | ≤M and B is a ball containing supp f , then

|αjk|2 ≤M2m(B)

∫
B

2nj |φ(2jx− k)|2 dx =M2m(B)

∫
y+k∈2jB

|φ(y)|2 dy,

so we have

∥Pjf∥2 ≤M2m(B)

∫
Ej

|φ(y)|2 dy, Ej =
∪
k∈Zn

({k}+ 2jB).

The sets Ej decrease to the null set Zn as j → −∞ so the integral converges to 0 then.
Since ∥f∥2L2 = ∥Pjf∥2L2 + ∥f − Pjf∥2L2 , we have Pj → Id strongly as j → ∞ if and

only if ∥Pjf∥2L2 → ∥f∥2L2 for f in a dense subset of L2(Rn). This time we choose f with

f̂ ∈ C∞
0 (Rn) and rewrite αjk using Parseval’s formula

αjk = (2π)−n
∫
Rn

f̂(ξ)2−nj/2φ̂(2−jξ)ei⟨k,ξ⟩/2
j

dξ = (2π)−n
∫
Rn

f̂(2jξ)2nj/2φ̂(ξ)ei⟨k,ξ⟩ dξ,

which can be viewed as the Fourier coefficients of the 2πZn periodic function∑
l∈Zn

f̂(2j(ξ + 2πl))2nj/2φ̂(ξ + 2πl).

If supp f̂ ⊂ {ξ; |ξ| ≤ R} then the terms in the sum have disjoint supports if 2π2j > 2R.
Then the square of the absolute value of the sum is the sum of the squares of the absolute
values of the terms, and we obtain using Parseval’s formula for Fourier series

(2π)n∥Pjf∥2L2 = (2π)n
∑
k

|αjk|2 =

∫
Rn

|f̂(2jξ)|22nj |φ̂(ξ)|2 dξ

=

∫
Rn

|f̂(ξ)|2|φ̂(2−jξ)|2 dξ.

This converges to (2π)n∥f∥2L2 =
∫
Rn |f̂(ξ)|2 dξ as j → ∞ if and only if

(3.1.8)

∫
Rn

|f̂(ξ)|2(1− |φ̂(2−jξ)|2) dξ → 0, as j → ∞.

Since the integrand is non-negative by (3.1.2) and we can choose f̂ ∈ C∞
0 (Rn) equal to

1 on any given compact set, this implies that |φ̂(εξ)|2 → 1 in L1
loc as ε → 0, for we can

always choose j so that 2−j−1 ≤ ε ≤ 2−j , thus j → ∞ when ε → 0. The condition (2)
above is therefore necessary, and it implies (3) which implies (1). Since (1) implies (3.1.8)

when f̂ ∈ C∞
0 , the proof is complete.

Summing up, the conditions (3.1.2), (3.1.5), (3.1.6) and the very mild equivalent con-
ditions in Proposition 3.1.4 are necessary and sufficient for the scale function (or “father
wavelet”) φ to generate a multiresolution analysis.
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If we know the projection in Vj of a function f ∈ L2(Rn), it is clear that we can calculate
the projection in Vj−1 ⊂ Vj , for it can be obtained by first projecting f to Vj . To derive a
formula for this passage to a coarser resolution we assume to simplify notation that j = 0
and consider a finite sum

f0(x) =
∑

ckφ(x− k).

To compute the projection in V−1 we must calculate the scalar products with the basis
functions 2−n/2φ(x/2− l), l ∈ Zn, in V−1. We have by Parseval’s formula∫

Rn

φ(x− k)2−n/2φ(x/2− l) dx = (2π)−n
∫
Rn

φ̂(ξ)e−i⟨k,ξ⟩2n/2φ̂(2ξ)ei⟨2l,ξ⟩ dξ

= (2π)−n
∫
Rn

2n/2m0(ξ)|φ̂(ξ)|2ei⟨2l−k,ξ⟩ dξ,

where we have used (3.1.5). In view of (3.1.2) this is equal to 2n/2µ(2l − k) where µ(k)
denote the Fourier coefficients of the 2πZn periodic function m0. Thus the projection f−1

of f0 in V−1 is

(3.1.9) f−1(x) =
∑
l∈Zn

(Tc)l2
−n/2φ(x/2− l), (Tc)l = 2n/2

∑
k∈Zn

µ(2l − k)ck.

We have now proved:

Proposition 3.1.5. If m0 is the function in (3.1.5) then the components ck and c′k,
k ∈ Zn, of the projection of a function f ∈ L2(Rn) in V0 resp. V−1 are related by c′ = Tc
where T is the contraction operator defined by (3.1.9) when only finitely many ck are
different from 0. Here µ(k) are the Fourier coefficients of the 2πZn periodic function m0

in (3.1.5).

3.2. The wavelets associated with a multiresolution analysis. Assume given an
orthonormal multiresolution analysis of L2(Rn) (see Definition 3.1.1). As in the example
of the Haar basis we want now to examine the quotient spaces Wj = Vj+1 ⊖Vj . Note that

Vj+k = Vj ⊕Wj ⊕ · · · ⊕Wj+k−1, 0 < k ∈ Z; Vj =
⊕
k<j

Wk, L2(Rn) =
∞⊕
−∞

Wk.

From condition (iii)′ it follows that Wj = γjW0, and we shall now discuss the properties
of W0, which will lead to the desired wavelets.

Proposition 3.2.1. A function f ∈ L2(Rn) is in W0 if and only if

(3.2.1) f̂(ξ) = A(ξ/2)φ̂(ξ/2),

where A(ξ) is a 2πZn periodic function in L2
loc with

(3.2.2)
∑

k∈{0,1}n

A(ξ + πk)m0(ξ + πk) = 0.
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Here m0 is the function in (3.1.5). We have

(3.2.3) ∥f∥2L2 = π−n
∫
Rn/2πZn

|A(ξ)|2 dξ, f ∈W0.

Proof. That f ∈ V1 means precisely that x 7→ f(x/2) is in V0, and we know from the
beginning of the proof of Proposition 3.1.3 that this is equivalent to

f̂(2ξ) = A(ξ)φ̂(ξ),

where A is a 2πZn periodic function. This proves (3.2.1). By Parseval’s formula and
(3.1.2)

(2π)n∥f∥2L2 =

∫
Rn

|f̂(ξ)|2 dξ = 2n
∫
Rn

|A(ξ)φ̂(ξ)|2 dξ = 2n
∫
Rn/2πZn

|A(ξ)|2,

which proves (3.2.3). That f ∈W0 means that f is orthogonal to φ(·− l) for every l ∈ Zn,
that is,∫

Rn

A(ξ/2)φ̂(ξ/2)φ̂(ξ)ei⟨l,ξ⟩ dξ =

∫
Rn

A(ξ/2)m0(ξ/2)|φ̂(ξ/2)|2ei⟨l,ξ⟩ dξ = 0, l ∈ Zn,

where we have used (3.1.5). Interpreting these integrals as Fourier coefficients of a 2πZn

periodic function we conclude that this is equivalent to∑
k∈Zn

A(ξ/2 + πk)m0(ξ/2 + πk)|φ̂(ξ/2 + πk)|2 = 0, ξ ∈ Rn.

We replace ξ by 2ξ and note that every residue class in Zn/2Zn contains precisely one
element in {0, 1}n. This gives∑

k∈{0,1}n

∑
l∈Zn

A(ξ + πk + 2πl)m0(ξ + πk + 2πl)|φ̂(ξ + πk + 2πl)|2 = 0.

Since A and m0 are 2πZn periodic we can use (3.1.2) to calculate the sum over l and are
left with the equation (3.2.2). The proof is complete.

Recall that by (3.1.6) the equation (3.2.2) means that the 2n vector (A(ξ+πk))k∈{0,1}n

must be orthogonal to the corresponding unit vector in C2n defined by m0. For every ξ
the equation (3.2.2) has therefore 2n − 1 linearly independent solutions. Before discussing
the higher dimensional case we shall examine the much more elementary one-dimensional
case. Then the equation (3.2.2) reads

A(ξ)m0(ξ) +A(ξ + π)m0(ξ + π) = 0,
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which means that

(3.2.2)′ (A(ξ), A(ξ + π)) = λ(ξ)(m0(ξ + π),−m0(ξ))

for some complex valued function λ with period 2π. Replacing ξ by ξ + π in the second
component of this equation we obtain the equivalent equations

A(ξ) = λ(ξ)m0(ξ + π) = −λ(ξ + π)m0(ξ + π).

This requires that λ(ξ) = −λ(ξ + π), for m0(ξ) and m0(ξ + π) are not both equal to 0.

Conversely, this condition implies that A(ξ) = λ(ξ)m0(ξ + π) is a 2π periodic solution of
(3.2.2). A particular solution is given by

(3.2.4) m1(ξ) = eiξm0(ξ + π),

and it is normalized so that

(3.2.5) |m1(ξ)|2 + |m1(ξ + π)|2 = 1.

The general solution of (3.2.2)′ is now of the form A(ξ) = B(ξ)m1(ξ) where B has period
π. Thus (3.2.1) can be written

f̂(ξ) = B(ξ/2)m1(ξ/2)φ̂(ξ/2),

where B(ξ/2) has period 2π. The equation (3.2.3) takes the form

∥f∥2L2 = π−1

∫ 2π

0

|B(ξ)|2|m1(ξ)|2 dξ = π−1

∫ π

0

|B(ξ)|2 dξ

where we have used (3.2.5) and that B has period π. We have now proved the following
basic theorem on wavelets in one dimension:

Theorem 3.2.2. Given an orthonormal multiresolution analysis of L2(R), let ψ ∈
L2(R) be the wavelet defined by

(3.2.6) ψ̂(ξ) = eiξ/2m0(ξ/2 + π)φ̂(ξ/2)

with m0 as in Proposition 3.1.3. Then the functions x 7→ ψ(x − k) with k ∈ Z form an
orthonormal basis for W0 = V1 ⊖ V0; the functions x 7→ 2j/2ψ(2jx − k), k ∈ Z, form an
orthonormal basis for Wj = Vj+1 ⊖ Vj when j ∈ Z is fixed, and they form an orthonormal
basis in L2(R) when j is also allowed to vary in Z.

In Section 3.3 we shall give a detailed discussion of wavelets in L2(R) with compact
support, in particular their regularity properties, but we shall now return to the higher
dimensional case to complete the discussion of the equation (3.2.2). It is inevitably a more
difficult problem for higher dimensions since the solution is much less determined then.
We could argue quite brutally by extending the unit vector (m0(ξ + πk))k∈{0,1}n to an



THE WAVELETS ASSOCIATED WITH A MULTIRESOLUTION ANALYSIS 55

orthonormal basis for C2n by the Gram-Schmidt procedure for every ξ with 0 ≤ ξj < π,
j = 1, . . . , n, and extend the definition of the other vectors so obtained when 0 ≤ ξj < 2π
to a 2πZn periodic function. However, even ifm0 is a smooth function this would introduce
very bad singularities, so we shall proceed more gently.

The set {0, 1}n in (3.2.2) is clearly identified with the group G = Zn2 , identified in turn
with the subgroup πZn/2πZn of the torus Rn/2πZn, and (3.2.2) is a summation over a
coset with respect to this subgroup. To obtain an orthonormal basis for the solutions of
(3.2.2) we must find 2πZn periodic functions mr(ξ) also for r ∈ G \ {0} so that for every
ξ ∈ Rn the vectors (mr(ξ+ πk))k∈G with r ∈ G is a complete orthonormal system in CG.
Taking the Fourier transform in G, normalized to be unitary, we introduce the functions

on Ĝ ∼= G defined by

m̂r,ϱ(ξ) = 2−n/2
∑
k∈G

mr(ξ + πk)(−1)⟨k,ϱ⟩, r, ϱ ∈ G,

where we have used the explicit form of the characters on Zn2 given in a remark after
Theorem 1.2.1.2 We have

m̂r,ϱ(ξ + πl) = 2−n/2
∑
k∈G

mr(ξ + π(k + l))(−1)⟨k,ϱ⟩

= (−1)⟨l,ϱ⟩2−n/2
∑
k∈G

mr(ξ + πk)(−1)⟨k,ϱ⟩ = (−1)⟨l,ϱ⟩m̂r,ϱ(ξ).

Hence

(3.2.7) Mr,ϱ(ξ) = e−i⟨ϱ,ξ⟩m̂r,ϱ(ξ)

are πZn periodic functions. The matrix (mr(ξ + πk))r,k∈G is unitary if and only if the
matrix (m̂r,ϱ(ξ))r,ϱ∈G is unitary, for the normalized Fourier transform in G is unitary. This
is also equivalent to unitarity of the matrix (Mr,ϱ(ξ))r,ϱ∈G, for it differs only by a factor
of absolute value 1 in each column.

Conversely, if (Mr,ϱ(ξ))r,ϱ∈G is a πZn periodic unitary matrix then (3.2.7) defines a
2πZn periodic unitary matrix, and inverting the Fourier transform in G we obtain the
unitary matrix

mr,k(ξ) = 2−n/2
∑
ϱ∈G

m̂r,ϱ(ξ)(−1)⟨k,ϱ⟩, r, k ∈ G.

Now

mr,0(ξ + πk) = 2−n/2
∑
ϱ∈G

m̂r,ϱ(ξ + πk) = 2−n/2
∑
ϱ∈G

m̂r,ϱ(ξ)(−1)⟨k,ϱ⟩ = mr,k(ξ),

so the 2πZn periodic functions mr,0(ξ) has the desired properties if m0,k(ξ) = m0(ξ+πk).
The problem has now been reduced to finding a unitary matrix (Mr,ϱ(ξ))r,ϱ∈G when one

row M0(ξ) = (M0,ϱ(ξ))ϱ∈G of unit length is given. When n = 1 so that Zn2 has only two

2Note that introducing these functions is a case of the decomposition in (1.2.6), (1.2.7).
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elements we used that for z = (z1, z2) in the unit sphere in C2 the matrix

(
z1 z2
z̄2 −z̄1

)
is

unitary. This is very exceptional, for if z = (z1, . . . , zN ) is the first row of a unitary matrix
U(z) depending continuously on z when z ∈ CN has length 1, then iz together with the
other rows and their products by i would be an orthonormal basis for the tangent space
of the 2N − 1 sphere which is not possible unless N = 2 or N = 4.3 It is therefore not
possible to give a universal formula for mj like that in (3.2.6). However, we recall that the
reason for the present discussion was that we wanted to preserve regularity properties of
m0, and when m0 has some regularity the following simple lemma will show that there is
no difficulty in making a construction adapted to m0.

Lemma 3.2.3. If f is a map from a cube I ⊂ Rn to RN , where N > n, then the range
of f has measure 0 if f is Hölder continuous of some order α ∈ (n/N, 1), that is,

|f(x)− f(y)| ≤ C|x− y|α, x, y ∈ I.

Proof. Dividing each side of I into ν equal pieces we decompose I into νn cubes, with
diameter ≤ C/ν. The range of f restricted to such a cube is contained in a cube inRN with
measure ≤ C ′(ν−α)N . The outer measure of the range of f is therefore ≤ C ′νn−αN → 0
as ν → ∞.

If M0 is Hölder continuous of order > n/(22n−1), it follows from Lemma 3.2.3 that the
range of M0 is not the whole unit sphere in C2n . Then there is no difficulty in finding a
unitary matrix extension, for we have:

Lemma 3.2.4. If q is a given point on the unit sphere S = {z ∈ CN ;
∑N

1 |zj |2 = 1}
then there is an orthonormal basis V0(z), . . . , VN−1(z) for CN depending real analytically
on z ∈ S \ {q}, such that V0(z) = (z1, . . . , zN ).

Proof. If U is a unitary mapping in CN and the vector fields Vj satisfy the conditions
listed in the theorem, then the vector fields z 7→ UVj(U

−1z) also satisfy them if q is
replaced by Uq. It is therefore sufficient to prove the lemma for a special choice such as
q = (0, . . . , 0,−1). Then we note that the differential of the “stereographic projection”

S \ {q} ∋ (z1, . . . , zN ) 7→ (z1, . . . , zN−1)/(zN + 1) ∈ CN−1

gives an analytic bijection of the complex tangent plane of S at z defined by
∑N

1 z̄jdzj =
0 on CN−1. Thus the inverse images v1(z), . . . , vN−1(z) of the basis vectors in CN−1

form a complex basis in the complex tangent plane of S at z. Together with the vector
v0(z) = (z1, . . . , zN ) they form a basis for CN , depending analytically on z ∈ S \ {q}.
If we orthonormalize using the Gram-Schmidt procedure, starting with V0, we obtain
an orthonormal basis V0(z), . . . , VN−1(z) with V0(z) = v0(z) = (z1, . . . , zN ) which also
depends real analytically on z ∈ S \ {q}, which proves the lemma.

3It is probably known but not to me if in the case N = 4 there is such a unitary matrix; that the
tangent space is parallelizable is a weaker property.
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If q is a point in the unit sphere of CG which is not in the range of M0, we can now
choose

(Mr,ϱ(ξ))ϱ∈G = Vr(M0(ξ)),

for V0(M0(ξ)) = M0(ξ) then. Since Vr is real analytic this will preserve all reasonable
regularity properties of W0. The passage from m0 to M0 and from (Mr,ϱ) back to (mr,ϱ)
does not affect the regularity either, so we have now proved:

Theorem 3.2.5. If n > 1 and m0 is Hölder continuous of order > n/(22n − 1), then
there exist 2πZn periodic functions mr(ξ) in Rn, r ∈ {0, 1}n \ {0} which are real analytic
functions of m0(ξ + πk), k ∈ {0, 1}n, such that

(3.2.8)
∑

k∈{0,1}n

mr(ξ + πk)ms(ξ + πk) = δrs, r, s ∈ {0, 1}n.

In any case one can find bounded measurable mr with these properties.

For an arbitrary 2πZn periodic solution of (3.2.2) it follows from (3.2.8) that there are
uniquely determined coefficients Br(ξ), r ∈ {0, 1}n \ {0} such that

A(ξ + πk) =
∑

r∈{0,1}n\{0}

Br(ξ)mr(ξ + πk), k ∈ {0, 1}n.

In view of the 2πZn periodicity this is then true for all k ∈ Zn, and since the coefficients
Br(ξ) are unique it follows that they are πZn periodic. (If the functions involved are not
continuous all statements should be understood to hold a.e..) Now it follows from (3.2.1)
that

f̂(ξ) =
∑

r∈{0,1}n\{0}

Br(ξ/2)mr(ξ/2)φ̂(ξ/2).

The equation (3.2.3) takes the form

∥f∥2L2 = π−n
∫
Rn/2πZn

∣∣∣ ∑
r∈{0,1}n\{0}

Br(ξ)mr(ξ)
∣∣∣2 dξ

= π−n
∫
Rn/πZn

∑
k∈{0,1}n

∣∣∣ ∑
r∈{0,1}n\{0}

Br(ξ)mr(ξ + πk)
∣∣∣2 dξ

= π−n
∫
Rn/πZn

∑
r∈{0,1}n\{0}

|Br(ξ)|2 dξ.

Here we have used that Br(ξ) is πZ
n periodic and that the vectors (mr(ξ+πk))k∈{0,1}n are

orthonormal. Hence we have proved an analogue of Theorem 3.2.2 in higher dimensions:

Theorem 3.2.6. Given an orthonormal multiresolution analysis of L2(Rn), let mr be
defined as in Theorem 3.2.5 for r ∈ {0, 1}n \ {0}, and define ψr ∈ L2(Rn) by

(3.2.9) ψ̂r(ξ) = mr(ξ/2)φ̂(ξ/2).
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Then the functions x 7→ ψr(x− k) with k ∈ Zn and r ∈ {0, 1}n \ {0} form an orthonormal
basis forW0 = V1⊖V0; the functions x 7→ 2nj/2ψr(2

jx−k) with k ∈ Zn and r ∈ {0, 1}n\{0}
form an orthonormal basis for Wj = Vj+1 ⊖ Vj when j ∈ Z is fixed, and they form an
orthonormal basis in L2(Rn) when j is also allowed to vary in Z.

Remark. Taking r = 0 we obtain in view of (3.1.5) that ψ0 = φ. With this definition
the functions 2nj/2ψr(2

jx−k) with k ∈ Zn and arbitrary r ∈ {0, 1}n form an orthonormal
basis for Vj+1. The wavelets ψr with r ̸= 0 provide the additional information which
occurs in a refinement of the analysis.

The appearance of 2n − 1 wavelets in Theorem 3.2.6 is very natural for a multireso-
lution analysis in Rn which is constructed from one in R by tensor products as follows.
For any multiresolution analysis of L2(R), with subspaces Vj and scaling function φ, a
multiresolution analysis of L2(Rn) is given by

(3.2.10) V
(n)
j = Vj ⊗ · · · ⊗ Vj ,

that is, the closed linear hull of products u(x) =
∏n

1 uν(xν) where uν ∈ Vj . Since the

functions x 7→ 2j/2φ(2jx− k), k ∈ Z, are an orthonormal basis for Vj , the functions

(3.2.11) Rn ∋ x 7→ 2nj/2
n∏
ν=1

φ(2jxν − kν), k = (k1, . . . , kν) ∈ Zn,

are an orthonormal basis for V
(n)
j . In other words, φ(n)(x) =

∏n
1 φ(xν), x = (x1, . . . , xn),

is a scaling function for this multiresolution analysis.

Since Vj+1 = Vj⊕Wj it follows that V
(n)
j+1 is the orthogonal direct sum of tensor products

W
(n)
j,r , where r = (r1, . . . , rn) ∈ {0, 1}n and W

(n)
j,r is the tensor product obtained when Vj

is replaced by Wj at the ν
th position in (3.2.10) when rν = 1. For example,

V
(2)
j+1 = (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj),

where the spaces correspond in order to r equal to (0, 0), (0, 1), (1, 0), (1, 1). We have al-

waysW
(n)
j,0 = V

(n)
j . If ψ is a wavelet such that x 7→ 2j/2ψ(2jx−k), k ∈ Z, is an orthonormal

basis forWj , then an orthonormal basis forW
(n)
j,r is given by x 7→ 2nj/2ψr(2

jx−k), k ∈ Zn,
where

(3.2.12) ψr(x) =
∏
rν=0

φ(xν)
∏
rν=1

ψ(xν).

This gives very explicit wavelets with the properties in Theorem 3.2.6. Combined with
the results of Section 3.3 we obtain multidimensional wavelets of compact support with as
many derivatives and vanishing moments as we wish.
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3.3. Compactly supported orthogonal wavelets in one dimension. For ap-
plications of wavelets a number of properties of the scaling function φ and the wavelets
ψ are desirable such as fast decrease, vanishing moments for ψ and smoothness. Priori-
ties depend on the applications. We shall here confine ourselves to a study of wavelets of
compact support in one dimension. The interest of compactness is of course that it makes
the coefficients in the wavelet expansion locally determined and the refinement algorithm
(3.1.9) finite. The Haar basis already has this property, but it is not even continuous.

At first we assume that we are given a multiresolution analysis of L2(R) with scaling
function φ of compact support. Using the results proved in Sections 3.1 and 3.2 we can
immediately draw some useful conclusions:

1. The Fourier transform φ̂ can be extended to an entire analytic function, and |φ̂(0)| =
1 by Proposition 3.1.4. We can multiply φ by a constant of absolute value 1 so it is no
restriction to assume in what follows that φ̂(0) = 1.

2. By the proof of Proposition 3.1.3 the function m0 in (3.1.5) is given by

m0(ξ) =
1
2

∑
k∈Z

αke
−ikξ, αk =

∫
φ(x/2)φ(x− k) dx,

and if a ≤ x ≤ b when x ∈ suppφ, then αk = 0 unless the intersection [2a, 2b]∩ [a+k, b+k]
has interior points, that is, 2a− b < k < 2b− a. Hence m0 is a trigonometric polynomial,
m0(0) = 1 by (3.1.5) so m0(π) = 0 by (3.1.6), and |m0(ξ)|2 is a trigonometric polynomial
of degree < 3b− 3a. If φ is real valued, then αk are real and |m0(ξ)|2 = m0(ξ)m0(−ξ) is
even.

3. The wavelet ψ has also compact support; in fact, ψ(x/2) is a finite linear combination

of integer translates of φ in view of (3.2.6), which also gives ψ̂(0) = 0, that is,
∫
R
ψ(x) dx =

0. This statement is strengthened by regularity properties of ψ:

Proposition 3.3.1. If ψ ∈ Cµ0 (R) where µ is an integer > 0, then

(3.3.1)

∫
ψ(x)xν dx = 0, that is, ψ̂(ν)(0) = 0, if 0 ≤ ν ≤ µ,

which implies that m0 has a zero of order µ+ 1 at π.

Proof. For arbitrary integers k and j > 0 we have

0 = 2j
∫
R

ψ(x)ψ(2jx− k) dx =

∫
R

ψ(2−jy + 2−jk)ψ(y) dy.

By Taylor’s formula

ψ(2−jy + 2−jk) =
∑
ν≤µ

ψ(ν)(2−jk)(2−jy)ν/ν! + o(2−jµ),

uniformly when y ∈ suppψ. Hence∑
ν≤µ

ψ(ν)(2−jk)2−jν
∫
R

yνψ(y) dy/ν! = o(2−jµ)
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as j → +∞. Choose a point x0 with ψ(x0) ̸= 0 and then a sequence kj ∈ Z such that

2−jkj → x0. Then it follows that ψ(x0)
∫
ψ(y) dy = 0, which of course we already knew

without any regularity assumption. Assume that we have already proved (3.3.1) when
0 ≤ ν < σ where 0 < σ ≤ µ. If we then choose x0 so that ψ(σ)(x0) ̸= 0, it follows in the

same way that
∫
xσψ(y) dy = 0, which proves (3.3.1) inductively.

Corollary 3.3.2. If the scaling function is compactly supported then it cannot be in
C∞.

Proof. If φ ∈ C∞
0 then ψ ∈ C∞

0 and the analytic function ψ̂ has a zero of infinite

order at the origin by Proposition 3.3.1. This implies ψ̂ = 0 which is a contradiction.

Remark. It is easy to see that (3.3.1) follows from the somewhat weaker assumption
that ψ ∈ Cµ−1 and that ψ(µ−1) is Lipschitz continuous. We leave the proof as an exercise.

Let N be the order of the zero of m0 at π; by Proposition 3.3.1 and (3.2.6) we know
that N ≥ µ + 1 if φ ∈ Cµ, and even without any regularity assumptions we know that
N ≥ 1. Then it follows that

m0(ξ)/(1 + e−iξ)N

is a trigonometric polynomial. In fact, m0(ξ) can be written as a power of eiξ times a
polynomial in e−iξ with a zero of order N at −1, so it is divisible by (1 + e−iξ)N as a
polynomial in e−iξ. From now on we assume that φ is real valued. Then the Fourier
coefficients αk of m0 are real, so m0(−ξ) = m0(ξ) and it follows that

(3.3.2) M0(ξ) = |m0(ξ)|2 = (cos2( 12ξ))
NL(ξ),

where L is a polynomial in cos ξ = 2 cos2( 12ξ)− 1 = 1− 2 sin2( 12ξ), so we can write

(3.3.3) M0(ξ) = (1− y)NP (y), y = sin2( 12ξ).

Here P is a polynomial, of degree < 3b− 3a−N if suppφ ⊂ [a, b]. The condition (3.1.6)
can be written

(3.3.4) (1− y)NP (y) + yNP (1− y) = 1.

Lemma 3.3.3. There is a unique polynomial PN of degree < N satisfying (3.3.4), and
it is given by

(3.3.5) PN (y) =
N−1∑
k=0

(
N − 1 + k

k

)
yk.

Every solution can be written P (y) = PN (y) + yNR( 12 − y) where R is an odd polynomial.

Proof. Since the polynomials yN and (1− y)N have no common factor, the Euclidean
algorithm gives that there exist polynomials Q1 and Q2 such that

(1− y)NQ1(y) + yNQ2(y) = 1.
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We can write Q1(y) = q1(y)+y
Nr(y) with uniquely determined polynomials q1 and r such

that q1(y) is of degree < N . Writing q2(y) = Q2(y) + (1− y)Nr(y) we obtain

(1− y)Nq1(y) + yNq2(y) = 1,

which proves that q2 is also of degree < N . There are no other polynomials of degree < N
with this property. Replacing y by 1− y gives

yNq1(1− y) + (1− y)Nq2(1− y) = 1,

and we conclude that q1(y) = q2(1− y) so PN (y) = q1(y) is a solution of (3.3.4) of degree
< N , and the only one. Since (3.3.4) implies

PN (y) = (1− y)−N +O(yN ), as y → 0,

it follows that PN is the (N − 1)st partial sum of the Taylor expansion of (1 − y)−N

which gives (3.3.5). The general solution can be written P (y) = PN (y) + yNr(y) where
r(y) + r(1 − y) = 0, which means that r(y) = R(y − 1

2 ) with an odd polynomial R. The
proof is complete.

The polynomial PN is obviously ≥ 1 in [0, 1], but for the general solution of (3.3.4)
non-negativity in [0, 1] is a restriction which implies that R for a given degree µ must
belong to a a convex compact neighborhood of the origin in the space of odd polynomials
of degree µ.

To return to the function m0 and ultimately to the scaling function φ we must first find
a trigonometric polynomial with absolute value squared equal to P (sin2( 12ξ)).

Lemma 3.3.4. If P is a polynomial of degree µ which is non-negative in [0, 1], then
there is a polynomial B of the same degree with real coefficients such that

(3.3.6) P (sin2( 12ξ)) = |B(eiξ)|2.

Proof. Since sin2( 12ξ) =
1
2 (1− cos ξ) we can write P (sin2( 12ξ)) = Q(cos ξ) where Q is

a polynomial of degree µ which is non-negative in [−1, 1]. We can factor Q as a product
of polynomials of the form Q(x) = (x+ λ) sgnλ with λ ∈ R and |λ| ≥ 1 or (x− ζ)(x− ζ̄)
with ζ ∈ C, so it suffices to verify the lemma for these two cases.

a) In the first case we write

(cos ξ + λ) sgnλ = 1
2 (e

iξ + e−iξ + 2λ) sgnλ = 1
2e

−iξ(e2iξ + 2λeiξ + 1) sgnλ

= 1
2e

−iξ(eiξ + a)(eiξ + 1/a) sgnλ = 1
2 (e

iξ + a)(e−iξ + a)/|a|

where a = λ+
√
λ2 − 1 is real and has the same sign as λ. We can therefore take B(x) =

(x+ a)/
√
2|a|.

b) In the second case we write

(cos ξ − ζ)(cos ξ − ζ̄) = 1
4e

−2iξ(e2iξ − 2ζeiξ + 1)(e2iξ − 2ζ̄eiξ + 1)

= 1
4e

−2iξ(eiξ − ζ1)(e
iξ − ζ−1

1 )(eiξ − ζ̄1)(e
iξ − ζ̄−1

1 )

= 1
4 (e

iξ − ζ1)(e
iξ − ζ̄1)(e

−iξ − ζ̄1)(e
−iξ − ζ1)/|ζ1|2
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so we can take B(x) = 1
2 (x− ζ1)(x− ζ̄1)/|ζ1|.

In the second case the factorisation is not unique: we can replace ζ1 by 1/ζ1, so each
of the polynomials given by Lemma 3.3.3 which is non-negative in [0, 1] yields a finite
number of candidates for the function m0, in addition to a factor eikξ with k ∈ Z. For
each choice it remains to see if there is a corresponding scale function satisfying (3.1.5)
and the other conditions established in Section 3.1. (Since (3.1.5) does not change if both
m0(ξ) and φ̂(ξ) are multiplied by eikξ, multiplication of m0(ξ) by eikξ just implies that
φ̂(ξ) is multiplied by eikξ, which means an integer translation of φ.) From (3.1.5) and the
conditions φ̂(0) = m0(0) = 1 it follows that once m0 has been chosen we must necessarily
have φ̂ = Φ where

(3.3.7) Φ(ξ) =

∞∏
1

m0(ξ/2
k), ξ ∈ R.

The product is convergent even for all ξ ∈ C since m0(ξ/2
k) = 1 + O(2−k) for ξ in a

bounded subset of C, so Φ extends to an entire analytic function. Since

m0(ξ) =
1
2

∑
k−≤k≤k+

αke
−ikξ

and |m0(ξ)| ≤ 1 when ξ ∈ R (by the condition (3.1.6) which is fulfilled by our choice of
m0) it follows from the maximum principle applied to 1

2

∑
αkz

k−k± for |z| > 1 and |z| < 1
respectively that

|m0(ζ)| ≤ ek± Im ζ , ζ ∈ C, ± Im ζ ≥ 0,

which implies that
|Φ(ζ)| ≤ ek± Im ζ , ζ ∈ C, ± Im ζ ≥ 0.

By the Paley-Wiener-Schwartz theorem it follows that Φ is in fact the Fourier-Laplace
transform of a distribution φ ∈ E ′([k−, k+]). (If αk± ̸= 0 it follows from the theorem
of supports that [k−, k+] is the smallest interval containing suppφ.) What remains is to
decide if φ satisfies (3.1.2) and to determine the regularity properties of φ.

To prove that Φ ∈ L2(R) we denote the partial products (3.3.7) by Φk and note that∫ 2kπ

−2kπ

|Φk(ξ)|2 dξ =
∫ 2k+1π

0

|Φk(ξ)|2 dξ

=

∫ 2kπ

0

|Φk−1(ξ)|2(|m0(2
−kξ)|2 + |m0(2

−kξ + π)|2) dξ

=

∫ 2kπ

0

|Φk−1(ξ)|2 dξ =
∫ 2k−1π

−2k−1π

|Φk−1(ξ)|2 dξ = · · · =
∫ π

−π
|Φ0(ξ)|2 dξ,

where we have first used the periodicity of m0 and then (3.1.6). By Fatou’s lemma it
follows that Φ ∈ L2 and that∫

R

|Φ(ξ)|2 dξ ≤
∫ π

−π
|Φ0(ξ)|2 dξ = 2π,

for Φ0 = 1. (Since the convergence is locally uniform this is quite elementary; one just
has to consider the integral over a compact interval first.) Note that (3.1.2) implies that
∥φ̂∥2L2 = 2π. However, (3.1.2) is not always fulfilled.
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Example. If

m0(ξ) =
1
2 (1 + e−iξ)(1− e−iξ + e−2iξ) = 1

2 (1 + e−3iξ) = e−3iξ/2 cos( 32ξ)

then (3.1.6) is fulfilled and

φ̂(ξ) = e−3iξ/2 sin( 32ξ)/(
3
2ξ) = −i(1− e−3iξ)/3ξ

for the right-hand side equals 1 at 0 and (3.1.5) is satisfied since (1− e−3iξ)(1 + e−3iξ) =
1 − e−6iξ. Hence we have φ(x) = 1

3 in [0, 3] and φ(x) = 0 elsewhere. This resembles the
Haar system but φ(· − k), k ∈ Z, is not an orthonormal system because of its redundancy.

Before we tackle the problem to decide when (3.1.2) is valid, we note that in any case
the corresponding wavelets will always be complete in a very strong sense:

Theorem 3.3.5. With a trigonometric polynomial m0 and a corresponding φ ∈ L2

defined as above so that (3.1.6) and (3.1.5) are valid, with ψ defined by (3.2.6) and

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k),

we have for f ∈ L2(R)∑
k

|(f, φν,k)|2 +
∑

ν≤j≤µ

∑
k

|(f, ψj,k)|2 =
∑
k

|(f, φµ+1,k)|2,(3.3.8)

∑
j,k

|(f, ψj,k)|2 = ∥f∥2L2 .(3.3.9)

Moreover, ∥ψ∥L2 = ∥φ∥L2 ≤ 1, and

(3.3.10) g(ξ) =
∑
l∈Z

|φ̂(ξ + 2πl)|2

is a trigonometric polynomial such that

(3.3.11) g(ξ) = |m0(
1
2ξ)|

2g( 12ξ) + |m0(
1
2ξ + π)|2g( 12ξ + π).

Proof. It is sufficient to prove (3.3.8) when µ = ν = 0. Then

(φ0,n, f) =
1

2π

∫
φ̂(ξ)f̂(ξ)e−inξ dξ, (ψ0,n, f) =

1

2π

∫
ψ̂(ξ)f̂(ξ)e−inξ dξ,

can be considered as Fourier coefficients of 2π periodic functions. Hence the left-hand side

of (3.3.8) with ν = µ = 0 is equal to
∫ 2π

0
(|A(ξ)|2 + |B(ξ)|2) dξ/2π where

A(ξ) =
∑
l∈Z

m0(
1
2ξ + πl)φ̂( 12ξ + πl)f̂(ξ + 2πl),

B(ξ) = eiξ/2
∑
l∈Z

(−1)lm0(
1
2ξ + π(l + 1))φ̂( 12ξ + πl)f̂(ξ + 2πl),
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where we have used (3.1.5) and (3.2.6) respectively. With the notation

C(ξ) =
∑
l∈Z

φ̂( 12ξ + 2πl)f̂(ξ + 4πl)

we have since m0 has period 2π

A(ξ) = m0(
1
2ξ)C(ξ) +m0(

1
2ξ + π)C(ξ + 2π),

B(ξ) = eiξ/2(m0(
1
2ξ + π)C(ξ)−m0(

1
2ξ)C(ξ + 2π)).

Hence it follows from (3.1.6) that

|A(ξ)|2 + |B(ξ)|2 = |C(ξ)|2 + |C(ξ + 2π)|2,

which gives
1

2π

∫ 2π

0

(|A(ξ)|2 + |B(ξ)|2) dξ = 1

2π

∫ 4π

0

|C(ξ)|2 dξ.

Now

(φ1,k, f) =
1

4π

∫ √
2φ̂( 12ξ)f̂(ξ)e

−ikξ/2 dξ

can be considered as the Fourier coefficients of the 4π periodic function
√
2C(ξ), so the

right-hand side of (3.3.8) is equal to
∫ 4π

0
|C(ξ)|2/2π, which completes the proof of (3.3.8).

With the notation of the proof of Proposition 3.1.4 the right-hand side of (3.3.8) is∑
k |αµ+1,k|2, and since φ̂(0) = 1 we proved then without using (3.1.2) that it converges to

∥f∥2L2 as µ→ ∞ if f̂ ∈ C∞
0 (R). Hence it follows from (3.3.8) that

∑
k |(f, φν,k)|2 ≤ ∥f∥2L2

for every ν and for every f in this dense subset of L2. Restricting first to finite sums we
conclude that this inequality is true for every f ∈ L2 and every ν. Hence it follows for
every f ∈ L2 that the right-hand side of (3.3.8) converges to ∥f∥2 as µ → +∞ and that
the first sum on the left converges to 0 as ν → −∞, for each of these statements is true in
a dense subset of L2 by the proof of Proposition 3.1.4. This proves (3.3.9).

We have already proved that ∥φ∥L2 ≤ 1. Using (3.1.5), (3.1.6) and (3.2.6) we obtain∫
R

(|φ̂(ξ)|2 + |ψ̂(ξ)|2) dξ =
∫
R

(|m0(
1
2ξ)|

2 + |m0(
1
2ξ + π)|2)|φ̂( 12ξ)|

2 dξ

=

∫
R

|φ̂( 12ξ)|
2 dξ = 2

∫
R

|φ̂(ξ)|2 dξ,

which proves that ∥φ∥L2 = ∥ψ∥L2 . Since the Fourier coefficients of g are the scalar products
(φ(· − n), φ) it is clear that g is almost everywhere equal to a trigonometric polynomial.
Now it follows from the arguments used to prove (2.1.25) that the series (3.3.10) is lo-
cally uniformly convergent, so g is continuous and everywhere equal to a trigonometric
polynomial. When (3.3.10) is entered, the right-hand side of (3.3.11) becomes

|m0(
1
2ξ)|

2
∑
l∈Z

|φ̂( 12ξ + 2πl)|2 + |m0(
1
2ξ + π)|2

∑
l∈Z

|φ̂( 12ξ + 2πl + π)|2

=
∑
l∈Z

|m0(
1
2ξ + πl)|2|φ̂( 12ξ + πl)|2 =

∑
l∈Z

|φ̂(ξ + 2πl)|2,
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by (3.1.5), and this is equal to the left-hand side. The proof is complete.

Many equivalent necessary and sufficient conditions for the validity of (3.1.2) are given
by the following theorem:

Theorem 3.3.6. With a trigonometric polynomial m0 and φ defined as above the fol-
lowing conditions are equivalent:

(i) The functions x 7→ φ(x− k) with k ∈ Z are orthonormal in L2(R);
(ii) ∥φ∥L2 = 1;
(iii) Φkχ(·/2k) → φ̂ in L2(R) as k → ∞ if χ is the characteristic function of (−π, π)

and Φk are the partial products in (3.3.7);
(iv)

∑
l∈Z |φ̂(ξ + 2πl)|2 = 1 for every ξ ∈ R;

(v)
∑
l∈Z |φ̂(ξ + 2πl)|2 > 0 for every ξ ∈ R;

(vi) For every ξ ∈ R there is some l ∈ Z such that φ̂(ξ + 2πl) ̸= 0;
(vii) The projection of {ξ ∈ R; φ̂(ξ) ̸= 0} in R/2πZ is surjective;
(viii) There is a function χ̃ ∈ C∞

0 (R) such that φ̂(ξ) ̸= 0 when ξ ∈ supp χ̃, χ̃ = 1 in a
neighborhood of the origin, and

∑
l∈Z χ̃(ξ + 2πl) ≡ 1.

(ix) Every trigonometric polynomial with period 2π satisfying (3.3.11) is a constant.
(x) There is no trigonometrical polynomial g satisfying (3.3.11) with period 2π and

min g = 0, g(0) > 0.

(xi) There is no non-trival cycle in {ξ̇ ∈ R/2πZ; |m0(ξ̇)| = 1} for the doubling map

ξ̇ 7→ 2ξ̇.

Proof. (i) =⇒ (ii) is trivial. We proved above that the L2 norm of Φkχ(·/2k) is

equal to
√
2π, and this sequence converges locally uniformly, hence weakly, to φ̂. Norm

convergence is then equivalent to convergence of the norms which proves the equivalence
of (ii) and (iii). From Proposition 3.1.2 and its proof we recall that (i) is equivalent to (iv)
and to the conditions on the Fourier coefficients

(3.3.12)

∫
|φ̂(ξ)|2e−inξ dξ = 2πδn,0, n ∈ Z.

To prove that (3.3.12) follows from (iii) we note that Φk(ξ) = m0(ξ/2
k)Φk−1(ξ) and use

an argument similar to the proof that Φ ∈ L2,

(3.3.13)

∫
|Φk(ξ)|2χ(ξ/2k)e−inξ dξ = 2k

∫
|Φk(2kξ)|2χ(ξ)e−in2

kξ dξ

= 2k
∫ π

−π
|m0(ξ)|2|Φk−1(2

kξ)|2e−in2
kξ dξ

= 2k
∫ π

0

(|m0(ξ)|2 + |m0(ξ + π)|2)|Φk−1(2
kξ)|2e−in2

kξ dξ

= 2k
∫ π

0

|Φk−1(2
kξ)|2e−in2

kξ dξ =

∫ 2kπ

0

|Φk−1(ξ)|2e−inξ dξ

=

∫
|Φk−1(ξ)|2χ(ξ/2k−1)e−inξ dξ = · · · =

∫
χ(ξ)e−inξ dξ = 2πδn,0.
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If Φkχ(·/2k) → Φ in L2 then |Φk|2χ(·/2k) → |Φ|2 in L1 which proves (3.3.12), hence (iv).
The equivalence of the first four conditions is now established. and it is trivial that (iv)
=⇒ (v) =⇒ (vi) =⇒ (vii). If (vii) is fulfilled it follows from the Borel-Lebesgue
lemma that we can find a finite number of open sets Oj ⊂ R where φ̂ ̸= 0 such that the
projection q : R → R/2πZ is bijective in each Oj and ∪qOj = R/2πZ. Choose a partition
of unity χj ∈ C∞

0 (qOj) in the circle and let χ̃j = χj ◦ q in Oj , χj = 0 in R \ Oj . Then
χ̃j ∈ C∞

0 (R), and if χ̃ =
∑
χ̃j then φ̂ ̸= 0 in supp χ̃ and

∑
l∈Z χ̃(ξ+2πl) =

∑
χj◦q(ξ) ≡ 1.

Since φ̂(0) = 1 we could take one of the sets Oj as a neighborhood of the origin and the
corresponding χj equal to 1 in a neighborhood of the origin to attain that χ̃ = 1 in a
neighborhood of the origin, which proves (viii).

Next we prove that (viii) implies (iv), that is, that (3.3.12) is valid. To do so we can
essentially repeat the proof that (iii) =⇒ (iv). In fact, for any function f of period 2π

we have
∫
R
χ̃(ξ)f(ξ) dξ =

∫ 2π

0
f(ξ) dξ. Replacing χ by χ̃ in (3.3.13) we thus obtain∫

|Φk(ξ)|2χ̃(ξ/2k)e−inξ dξ =
∫
χ̃(ξ)e−inξ dξ = 2πδn,0.

If C = minξ∈supp χ̃ |φ̂(ξ)|, which is > 0 by condition (viii), we have

|Φk(ξ)| = |φ̂(ξ)|/|φ̂(ξ/2k)| ≤ |φ̂(ξ)|/C, if ξ/2k ∈ supp χ̃.

Since |φ̂|2 ∈ L1 and χ̃(ξ/2k) → 1 as k → ∞, we conclude by dominated convergence that
(3.3.12) holds.

Since the sum g defined in (3.3.10) satisfies (3.3.11) it follows from (ix) that this sum is
a constant, and it is not equal to 0 since φ̂(0) = 1, so (v) follows. We also have (x) =⇒
(ix), for assume that g is a non-constant solution of (3.3.11). It is no restriction to assume
that g is real valued, and since g may be replaced by −g we may assume that 0 is not a
minimum point. By (3.1.6) every constant satisfies (3.3.11), so subtracting the minimum
of g from g we obtain a solution of (3.11) with minimum equal to 0 which is positive at
the origin. This would contradict (x). The proof will be complete if we can establish that
(v) =⇒ (xi) =⇒ (x).

Assume that (x) is false so that there is a trigonometric polynomial g with period 2π

satisfying (3.3.11) with min g = 0 and g(0) > 0. Let N = {ξ̇ ∈ R/2πZ; g(ξ̇) = 0} which is

a finite set. If ξ̇ ∈ N then ξ̇ ̸= 0 and it follows from (3.3.11) that there is some η̇ ∈ R/2πZ

with 2η̇ = ξ̇ such that g(η̇) = 0, thus η̇ ∈ N . Repeating the argument we get a sequence

ξ̇1, ξ̇2, ξ̇3, . . . with ξ̇1 = ξ̇ and 2ξ̇j+1 = ξ̇j . Since N is finite there must be some repetition,

that is, ξ̇j = ξ̇j+r for some j and some r > 0. But then we have ξ̇1 = 2j−1ξ̇j = 2j−1ξ̇j+r =

ξ̇r+1. If r is chosen minimal it follows that we have an invariant cycle ξ̇1, ξ̇r, . . . , ξ̇2, ξ̇1
for the map ξ̇ 7→ 2ξ̇. Different cycles are disjoint since a cycle is uniquely determined by
any one of its elements, so N is a union of such cycles, and in particular invariant under
multiplication by 2. If ξ̇ ∈ N then ξ̇+ π̇ /∈ N , for since 2ξ̇ = 2(ξ̇+ π̇) they would otherwise

be in the same cycle, of period r, so ξ̇ = 2r ξ̇ = 2r(ξ̇+ π̇) = ξ̇+ π̇ which is impossible. Since

0 = g(2ξ̇) = |m0(ξ̇)|2g(ξ̇) + |m0(ξ̇ + π̇)|2g(ξ̇ + π̇) = |m0(ξ̇ + π̇)|2g(ξ̇ + π̇)
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it follows that m0(ξ̇+ π̇) = 0, hence |m0(ξ̇)| = 1. Each of the cycles which constitute N is
therefore one of the forbidden cycles in (xi), so (xi) =⇒ (x).

Finally we prove that (v) =⇒ (xi). Assume that (xi) is false, and let ξ̇1, ξ̇2 =

2ξ̇1, . . . , ξ̇r = 2r−1ξ̇1 be a cycle of period precisely r > 1 on which |m0| = 1. Since
r > 1 these elements in R/2πZ are not 0. Hence there is a unique xj ∈ (0, 1) such that

2πxj is in the class of ξ̇j . We have a periodic binary expansion x1 = .d1 . . . drd1 . . . dr . . . ,
hence

xj = .dj . . . drd1 . . . drd1 . . . dr . . . .

Both digits 0 and 1 will occur in these periodic expansions. By (3.1.6) we have m0(η̇j) = 0

if η̇j = ξ̇j + π̇, which is the class of 2πyj where

yj = .d′jdj+1 . . . drd1 . . . dr . . .

with the notation d′ = 1− d for the complementary digit. Now we claim that φ̂(ξ) = 0 for

every ξ in the residue class ξ̇1 . Assume to the contrary that φ̂(ξ) ̸= 0 for some such ξ,
and write the binary expansion

ξ/2π = ...DkDk−1 . . . D1.d1d2 . . . drd1 . . . dr . . .

which is finite to the left of the binary point and equal to x1 after it. That φ̂(ξ) ̸= 0 means
that m0(2

−kξ) ̸= 0 for all k ≥ 1. Now 2−kξ/2π is obtained by moving the binary point k
steps to the left. The digits after the new position will determine the value of m0(2

−kξ).
When k = 1 we must not have the digits of yr, so it follows that D1 = dr. Repeating the
argument we then conclude when k = 2 that D2 = dr−1, and continuing in this way we see
that the digits d1 . . . dr must be indefinitely repeated to the left. This is a contradiction
proving that (v) is not fulfilled. The proof is complete.

Corollary 3.3.7. If m0 ̸= 0 in [−π/3, π/3] then the conditions in Theorem 3.3.6 are
satisfied.

Proof. It suffices to verify condition (xi). Since m0 ̸= 0 in [−π/3, π/3] we have
|m0(ξ)| ̸= 1 when

∣∣|ξ|−π∣∣ ≤ π/3. Suppose that S is a cycle as in condition (xi) and identify
S with a subset of (−π, π]. Then S ⊂ (−2π/3, 2π/3), and since 2S ⊂ (−2π/3, 2π/3) we
have S ⊂ (−π/3, π/3). Iterating this argument we obtain S ⊂ (−2−νπ/3, 2−νπ/3) for
every integer ν > 0, so S = {0}, which is a trivial cycle. Hence (xi) is fulfilled.

Note that the example given before Theorem 3.3.5 shows that π/3 cannot be replaced
by any smaller number in Corollary 3.3.7. The result would be trivial with π/3 replaced
by π/2. Even that condition is fulfilled when m0 is obtained from the polynomials PN
in Lemma 3.3.3, so we have obtained a large family of compactly supported orthonormal
wavelets. Our next goal is to examine their regularity.

Recall that with a positive integer N we have then

(3.3.14) m0(ξ) = ((1 + e−iξ)/2)NL (ξ),

where L (ξ) is a trigonometric polynomial with period 2π and

(3.3.15) |L (ξ)|2 = PN (sin2( 12ξ)),
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where PN is the unique polynomial of degree N − 1 satisfying (3.3.4), given by (3.3.5). In
particular, L (0) = PN (0) = 1. We have

(3.3.16) φ̂(ξ) =
∞∏
1

m0(2
−jξ) = ((1− e−iξ)/iξ)N

∞∏
1

L (2−jξ),

for
∏∞

1 ((1 + e−iξ/2
j

)/2) = (1 − e−iξ)/iξ. An instructive proof of this classical product
formula is obtained by noting that the product for j from 1 to k is the Fourier transform
of the measure

2−k(δ0 + δ 1
2
) ∗ (δ0 + δ 1

4
) ∗ · · · ∗ (δ0 + δ2−k) = 2−k

∑
0≤ν<2k

δν/2k .

Acting on a test function it gives a Riemann sum for the integral from 0 to 1, and when
k → ∞ it follows that the measure converges as a distribution to the characteristic function
of (0, 1), so the Fourier transform converges to (1− e−iξ)/iξ.

Using only (3.3.14) and (3.3.16) we shall now give a lower bound for the decay of φ̂ at
infinity. We do not assume (3.3.15) but just that L (0) = 1.

Proposition 3.3.7. If ξ̇1, . . . , ξ̇r ∈ R/2πZ is a non-trivial cycle for the doubling map

ξ̇ 7→ 2ξ̇, then there is a constant C > 0 such that for every ξ ∈ R with residue class ξ̇ in
the cycle and every integer ν > 0

(3.3.17) |φ̂(2νξ)| ≥ C|φ̂(ξ)|2−νNKν , K =
r∏
1

|L (ξ̇j)|
1
r .

Proof. Since the cycle is non-trivial we have ξ̇j ̸= 0 for j = 1, . . . , r, hence |1− eiξ̇j | ≥
C1 > 0, j = 1, . . . , r, which implies

|(1− e−i2
νξ)/i2νξ|N ≥ CN1 2−νN |ξ|−N .

If µ is the largest integer ≤ ν/r then

|
∞∏
1

L (2ν−jξ)| = Kµr
∞∏

µr+1

|L (2ν−jξ)|.

There are at most r − 1 factors with µr < j ≤ ν, and since the residue class of 2ν−jξ
is then in the cycle, we have lower bounds for them. (We may assume that K > 0 for
(3.3.17) is trivial when K = 0.) By (3.3.16)

|φ̂(ξ)| ≤ 2N |ξ|−N
∏
j>ν

|L (2ν−jξ)|,
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so we have proved that

|φ̂(2νξ)| ≥ CN1 2−νN |ξ|−NKνC2

∏
j>ν

L (2ν−jξ) ≥ CN1 2−N2−νNC2|φ̂(ξ)|Kν

where C2 is the minimum of products of the values |L (ξ̇j)|/K for different j ∈ [1, r]. The
proof is complete.

An important example of a cycle already encountered several times consists of the
residue classes of ±2π/3. If L is defined by (3.3.15) we have K = PN ( 34 )

1
2 then. The

following proposition gives an upper bound for φ̂ which is closely related to the lower
bound in (3.3.17).

Proposition 3.3.8. Suppose that there is an integer r such that for every ξ ∈ R

(3.3.18) min
1≤ϱ≤r

|L (ξ)|1/ϱ . . . |L (2ϱ−1ξ)|1/ϱ ≤ K.

Then there is a constant C such that

(3.3.19) |φ̂(ξ)| ≤ C(1 + |ξ|)−N+log2K .

Proof. We may assume that |ξ| ≥ 1 and that K ≤ sup |L |. By (3.3.16)

|φ̂(ξ)| ≤ 2N |ξ|−N
∞∏
1

|L (2−kξ)|, |ξ| ≥ 1.

Since L (0) = 1 we have |L (ξ)| ≤ 1 +C|ξ| ≤ eC|ξ| for some C. If j is the smallest integer
such that 2−j |ξ| ≤ 1 it follows that

∞∏
1

|L (2−kξ)| ≤ eC
j∏
1

|L (2−kξ)|.

The hypothesis (3.3.18) applied to 2−jξ proves that

|L (2−jξ) · · ·L (2ϱ−1−jξ)| ≤ Kϱ

for some integer ϱ ∈ [1, r]. If j > r it follows that

j∏
1

|L (2−kξ)| ≤ Kϱ

j−ϱ∏
1

|L (2−kξ)|.

We can repeat this argument as long as there are r factors left in the product, which gives

∞∏
1

|L (2−kξ)| ≤ KjeC sup |L /K|r.

Since 2−j |ξ| ≥ 1
2 we have Kj ≤ |2ξ|log2K , which completes the proof.

We shall now prove that Propositions 3.3.7 and 3.3.8 suffice to determine the decay of
φ̂ when L satisfies (3.3.15). This requires some preliminaries on the polynomials PN .
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Lemma 3.3.9. PN (x) and ((1 − x)−N − PN (x))/xN are increasing on (0, 1), and
PN (x)x1−N is decreasing. We have

PN (0) = 1, PN ( 12 ) = 2N−1, PN (1) =
(
2N−1
N

)
= 1

2

(
2N
N

)
≥ 4N−1/

√
N,(3.3.20)

(1− x)−N − 1
2 (4x)

N ≤ PN (x) ≤ (1− x)−N , 0 ≤ x ≤ 1
2 ,(3.3.21)

(4x)N−1/
√
N ≤ PN (x) ≤ (4x)N−1, 1

2 ≤ x ≤ 1,(3.3.22)

lim
N→∞

PN (x)1/N =

{
(1− x)−1, if 0 ≤ x ≤ 1

2

4x, if 1
2 ≤ x ≤ 1,

(3.3.23)

P ′
N (x) = N(PN (x)− PN (1)xN−1)/(1− x).(3.3.24)

Proof. The first statements follow since power series with positive coefficients are
increasing for positive arguments. From (3.3.5) we know that PN (0) = 1, and when y = 1

2

it follows from (3.3.4) that PN ( 12 ) = 2N−1. Hence

((1− x)−N − PN (x))/xN ≤ 22N−1, 0 < x ≤ 1
2 ,

for the left-hand side is increasing and there is equality when x = 1
2 . This proves (3.3.21),

which implies (3.3.23) when 0 ≤ x < 1
2 . Since PN (x)/xN−1 ≤ PN ( 12 )2

N−1 = 4N−1 the
upper bound in (3.3.22) holds, and the lower bound follows in the same way when we have
proved the last part of (3.3.20). To do so we use Pascal’s triangle(

2N−j−1
N

)
=

(
2N−j−2
N−1

)
+
(
2N−j−2

N

)
, j = 0, . . . , N − 1,

where the last term should be omitted when j = N − 1. Summation gives

PN (1) =

N−1∑
0

(
2N−j−2
N−1

)
=

(
2N−1
N

)
,

hence P1(1) = 1 and PN+1(1)/PN (1) = (4N + 2)/(N + 1) ≥ 4
√
N/(N + 1) because

(2N + 1)2 ≥ 4N(N + 1), so the last inequality in (3.3.20) follows by induction. (3.3.23)
follows from (3.3.22) when 1

2 ≤ x ≤ 1. To prove (3.3.24) finally we use that

PN (x)(1− x)N = 1 +O(xN ) =⇒ P ′
N (x)(1− x)N −NPN (x)(1− x)N−1 = O(xN−1).

Hence the difference between the two sides of (3.3.24) is a polynomial of degree ≤ N − 2
which is O(xN−1) as x→ 0, so it is equal to 0.

Remark. From (3.3.21) it follows that PN (x) is asymptotic to (1−x)−N if 0 ≤ x < 1
2 .

Using Stirling’s formula to deduce the asymptotics of the highest coefficients in PN one
obtains for 1

2 < x ≤ 1 that PN (x) is asymptotic to (πN)−
1
2 2x(2x− 1)−1(4x)N−1.

We can now prove the properties of PN required to apply Proposition 3.3.9 with r = 2.
Note that if sin2( 12ξ) = x then sin2 ξ = 4x(1− x).
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Lemma 3.3.10. For every positive integer N we have

0 ≤ PN (x) ≤ PN ( 34 ), 0 ≤ x ≤ 3
4 ,(3.3.25)

PN (x)PN (4x(1− x)) ≤ PN ( 34 )
2, 3

4 ≤ x ≤ 1.(3.3.26)

Proof. (3.3.25) is obvious since PN is increasing. To prove (3.3.26) we set

f(x) = PN (x)PN (y(x)), y(x) = 4x(1− x).

Since y′(x) = 4(1− 2x) and 1− y(x) = (1− 2x)2, it follows from (3.3.24) that

f ′(x)(1− x)(2x− 1)/N

= (PN (x)− PN (1)xN−1)(2x− 1)PN (y)− 4(1− x)PN (x)(PN (y)− PN (1)yN−1)

= PN (x)PN (y)(6x− 5)− PN (1)((2x− 1)PN (y)xN−1 + 4(x− 1)PN (x)yN−1).

Now PN (x)yN−1 ≤ PN (y)xN−1 since y ≤ x, so the right-hand side is bounded above by

(6x− 5)PN (y)(PN (x)− xN−1PN (1)) ≤ 0, if 6x− 5 ≤ 0.

This proves (3.3.26) when 3
4 ≤ x ≤ 5

6 .

Now assume that 5
6 ≤ x ≤ 1. Since PN (x) ≤ (4x/3)N−1PN (3/4) the inequality (3.3.26)

follows if
(4x/3)N−1PN (y) ≤ PN (3/4).

We have PN (y) ≤ (1− y)−N = (2x− 1)−2N , and PN (3/4) ≥ (3/4)N−1PN (1) ≥ 3N−1/
√
N

by (3.3.20). Hence (3.3.26) follows if(
x/(2x− 1)2

)N
x−1 ≤ (9/4)N−1/

√
N, 5

6 ≤ x ≤ 1.

Since x/(2x− 1)2 is decreasing for 5
6 ≤ x ≤ 1 we only have to verify this inequality when

x = 5
6 , and then it requires that

(5/6)N−1 ≤ 4/(9
√
N),

which is true when N ≥ 13.
We may now also assume that 1 ≤ N ≤ 12. At first we require that 5

6 ≤ x ≤ x0 where

x0 = (2 +
√
2)/4, which means that y ≥ 1

2 . Then we have by (3.3.22)

PN (y) ≤ (4y)N−1 = (16x(1− x))N−1,

and since PN (x) ≤ (6x/5)N−1PN (5/6) it follows that for 5
6 ≤ x ≤ x0

PN (x)PN (y) ≤ (6/5)N−1PN (5/6)(16x2(1− x))N−1 ≤ (20/9)N−1PN (5/6).

Numerical calculation shows that the right-hand side is ≤ PN (3/4)2 for 1 ≤ N ≤ 12.
If x0 ≤ x ≤ 1 we have y ≤ 1

2 and PN (y) ≤ (1− y)−N = (2x− 1)−2N by (3.3.21). Since

PN (x) ≤ (x/x0)
N−1PN (x0) it follows that

PN (x)PN (y) ≤ x1−N0 PN (x0)
(
x/(2x− 1)2

)N
x−1 ≤ 2NPN (x0),

for x/(2x−1)2 is decreasing in [x0, 1] and equal to 2x0 when x = x0. Numerical calculation
shows that this is ≤ PN (3/4)2 for 5 ≤ N ≤ 12. The cases where 1 ≤ N ≤ 4 are settled
by calculating the zeros of (PN (x)PN (4x(1− x))− PN (3/4)2)/(x− 3/4) numerically; the
degree of this polynomial is 3(N − 1)− 1 ≤ 8. (See Daubechies [1, p. 225].)
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Theorem 3.3.11. If the scale function φ is defined by (3.3.16) with L satisfying
(3.3.15), then

(3.3.27) |φ̂(ξ)| ≤ C(1 + |ξ|)−N+ 1
2 log2 PN ( 3

4 ), ξ ∈ R,

and there is no such estimate with a smaller exponent.

Proof. The estimate (3.3.27) follows from Proposition 3.3.8 and Lemma 3.3.10, and
Proposition 3.3.7 with the cycle consisting of the residue classes of ±2π/3 proves that the
estimate is optimal.

By the remark after Lemma 3.3.9 the exponent of (1+|ξ|)−1 in (3.3.27) is asymptotically

N(1− 1
2 log2 3) +

1
4 log2(Nπ) + 1 + o(1).

For N = 2, . . . , 10 the numerical values are 1.3390, 1.6360, 1.9125, 2.1766, 2.4322, 2.6817,
2.9265, 3.1676, 3.4057. These are upper bounds for the Hölder class of φ and ψ, and
subtracting 1+ ε with ε > 0 gives a lower bound. The precise determination of the Hölder
class will not be discussed here. Note that asymptotically the exponent is only about
0.21N although the length of the support of φ is 2N − 1. We have N vanishing moments
for ψ, many more than the regularity of φ implies by Proposition 3.3.1. Using polynomials
R ̸≡ 0 in Lemma 3.3.3 one can increase the regularity while decreasing the number of
vanishing moments, keeping the length of the support fixed. However, we shall not discuss
these matters here.



CHAPTER IV

SINGULAR INTEGRAL OPERATORS

4.1. The conjugate function. A basic question in the study of Fourier series is to
decide in what sense the partial sums converge. In Proposition 2.1.1 and Theorem 2.1.3 we
saw that the Fourier series of a periodic C∞ or L2

loc function or distribution f converges
to f in C∞, L2

loc or D ′ respectively. In this section we shall discuss the convergence
problem when f ∈ Lploc(R). However, we shall first discuss the analogue for non-periodic
functions f ∈ Lp(R) since the formulas are more transparent then. The question is thus
if the inverse Fourier transform fa,b of the product of the Fourier transform of f by the
characteristic function of [a, b] converges to f in Lp as a → −∞ and b → +∞. The
product is well defined at least if 1 ≤ p ≤ 2, by Theorem 2.3.1, but even then it is not a
priori clear that fa,b is in L

p. The proof of that is a major part of our task, which is not
present in the case of Fourier series. The passage from f to fa,b can be made in two steps,
multiplying the Fourier transform first by the characteristic function of [a,∞] and then by
the characteristic function of [−∞, b]. The first step is equivalent to multiplication of the
Fourier transform of x 7→ f(x)eiax by the Heaviside function H, the characteristic function
of the positive real axis, followed by the inverse Fourier transformation and multiplication
by e−iax. The second step is similar. Thus we can reduce to the study of the operator
consisting of multiplication of the Fourier transform by H(ξ) = (1 + sgn ξ)/2; for reasons
of symmetry and tradition we shall discuss sgn ξ instead of H(ξ).

The inverse Fourier transform of ξ 7→ sgn ξ is the distribution (i/π) vp(1/x) (see Exam-

ple 2 after Theorem 2.1.5). If f ∈ C∞
0 (R) it follows that f̂(ξ) sgn ξ is the Fourier transform

of if̃(x) where f̃ is the conjugate function defined by the convolution

(4.1.1) f̃(x) = vp
1

π

∫
f(t)

x− t
dt = lim

ε→+0

1

π

∫
|x−t|>ε

f(t)

x− t
dt = lim

ε→+0

1

π

∫
|t|>ε

f(x− t)

t
dt.

This is a C∞ function and

(4.1.2) f̃(x) =
1

πx

∫
R

f(t) dt+O(x−2) as x→ ∞,

so f̃ ∈ Lp if p > 1 but not if p = 1 unless
∫
R
f(t) dt = 0.

The Fourier transform of F±(x) = f(x) ± if̃(x) vanishes on the negative or positive
real axis respectively, so F± can be extended to an analytic function in the half plane
{z ∈ C;± Im z > 0}. This is made explicit by the formula

f(x)± if̃(x) = lim
ε→+0

±i
π

∫
R

f(t)

x± iε− t
dt = lim

ε→+0

±i
π

∫
R

f(x− t)

t± iε
dt,

74
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which follows since ±i/(t± iε) = ±it/(t2 + ε2) + ε/(t2 + ε2) and

1

π

∫
R

f(x− t)ε

t2 + ε2
dt =

1

π

∫
R

f(x− εt)

t2 + 1
dt→ f(x),∫

R

tf(x− t)

t2 + ε2
dt =

∫ ∞

0

t(f(x− t)− f(x+ t))

t2 + ε2
dt→

∫ ∞

0

f(x− t)− f(x+ t)

t
dt

= lim
ε→+0

∫ ∞

ε

f(x− t)− f(x+ t)

t
dt = πf̃(x),

when ε→ +0. Thus

F±(z) = ± i

π

∫
R

f(t)

z − t
dt

is analytic when ± Im z > 0 and has boundary values f ± if̃ on the real axis. We assume
now that f is real valued, which implies that f is the real part of the boundary values.

To estimate f̃ we shall use the fact that

(4.1.3) z 7→ p|ReF±(z)|p − (p− 1)|F±(z)|p

is subharmonic when ± Im z > 0 if 1 < p ≤ 2. This follows since subharmonicity is
invariant under composition with analytic maps and

(4.1.4) C ∋ w 7→ p|Rew|p − (p− 1)|w|p

is subharmonic, because the Laplacian in the sense of distribution theory is the function

w 7→ p2(p− 1)(|Rew|p−2 − |w|p−2) ≥ 0.

When z = x + iy, ±y > 0, then the integral of (4.1.3) with respect to x exists by (4.1.2)
and is a continuous function I±(y) which → 0 at ±∞. As a limit of the Riemann sums at
the points z+ εZ with ε→ 0 it is clear that I± is subharmonic as a function of z, hence a
convex function of y. Since I±(y) → 0 at infinity it is a decreasing function of |y|, which
proves that I±(0) ≥ 0, that is,∫

R

(p|f(x)|p − (p− 1)|f(x)± if̃(x)|p) dx ≥ 0.

This means that

∥f ± if̃∥p ≤ (p/(p− 1))1/p∥f∥p, ∥f̃∥p ≤ (p/(p− 1))1/p∥f∥p,

where the second inequality follows from the first and the triangle inequality.
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Theorem 4.1.1. If f ∈ C∞
0 (R) then the conjugate function f̃ satisfies (4.1.2) and

(4.1.5) ∥f̃∥p ≤

{
p′1/p∥f∥p, if 1 < p ≤ 2,

p1/p
′∥f∥p, if 2 ≤ p <∞.

Here 1/p + 1/p′ = 1. The map f 7→ f̃ extends to a continuous map Lp(R) → Lp(R) for
every p ∈ (1,∞).

Proof. We have already proved (4.1.5) when 1 < p ≤ 2. The other case follows by
duality, for if g ∈ C∞

0 (R) and p > 2 then∫
f̃(x)g(x) dx = lim

ε→0

∫∫
|x−t|>ε

f(t)g(x)

x− t
dx dt = −

∫
f(x)g̃(x) dx,

hence ∣∣∣ ∫ f̃(x)g(x) dx
∣∣∣ = ∣∣∣ ∫ f(x)g̃(x) dx

∣∣∣ ≤ ∥f∥p∥g̃∥p′ ≤ ∥f∥p∥g∥p′p1/p
′
,

so the converse of Hölder’s inequality gives the second part of (4.1.5).

Remark. Apart from the size of the constant the estimate (4.1.5) is due to M. Riesz
[1]. The proof given here is due to P. Stein [1] and is a prototype for much later work,
by E. M. Stein and others. Essén [1] has obtained optimal constants by modifying the
function (4.1.4). The constant in (4.1.5) is reasonably good though. If we take for f the

characteristic function of (−1, 1), then πf̃(x) = log((x + 1)/(x − 1)) > 2/x when x > 1,

and we obtain ∥f̃∥pp/∥f∥pp ≥ 2p/(p − 1). This proves that the best possible constant is at

least 1
2 times that in (4.1.5).

Next we shall prove that for the operator theoretically defined extension of f̃ in Theo-
rem 4.1.1 the equation (4.1.1) remains valid almost everywhere. To do so we need the one
dimensional case of the Hardy-Littlewood maximal theorem, which is particularly elemen-
tary to prove in that case. If f ∈ L1

loc(R) then the Hardy-Littlewood maximal function
f∗HL is defined by

(4.1.6) f∗HL(x) = sup
x∈I

∫
I

|f(t)| dt/m(I)

where I is an interval with measure m(I) > 0. Since
∫
I
|f(t)| dt is a continuous function

of the end points of I, it is clear that f∗HL(x) does not change if we require I to be open,
hence

f∗HL(x) = sup
ε>0,δ>0

1

ε+ δ

∫ δ

−ε
|f(x+ t)| dt

is a lower semi-continuous function. A useful version of (4.1.6) is that

(4.1.6)′
∫
R

|f(x+ t)|ϱ(t) dt ≤ f∗HL(x)

∫
R

ϱ(t) dt,

if ϱ ≥ 0 is increasing for t < 0 and decreasing for t > 0. In fact, (4.1.6) means precisely that
f∗HL(x) is the smallest number such that this is true when ϱ is the characteristic function
of an interval containing 0, and this implies (4.1.6)′ if ϱ is piecewise constant, hence in
general.
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Theorem 4.1.2. If ∈ L1(R) then

(4.1.7) m{x; f∗HL(x) > α} ≤ 2∥f∥1/α, α > 0.

If 1 < p <∞ then

(4.1.8) ∥f∗HL∥p ≤ (2p+1p′)1/p∥f∥p, f ∈ Lp(R).

Proof. To prove (4.1.7) we introduce two additional maximal functions

f∗±(x) = sup
ε>0

∫ ε

0

|f(x± t)| dt/ε.

It is clear that f∗HL = max(f∗+, f
∗
−), so (4.1.7) follows if we prove the corresponding estimate

for f∗± with half the constant. Of course it suffices to examine f∗+. If we set

Fα(x) =

∫ x

−∞
|f(t)| dt− αx, O = {x ∈ R; ∃y > x, Fα(y) > Fα(x)}

the statement is that m(O) ≤ ∥f∥1/α. Let I = (a, b) be a component of the open set O.
It cannot be an infinite interval for if x0 ∈ I then a maximum point y for Fα in [x0,∞)
cannot be in O, and Fα(x) < Fα(y) for x ∈ I. In fact, this is true if x ∈ I and x ≥ x0
and the infimum of all x ∈ I with Fα(x) < Fα(y) cannot belong to I. It is now clear
that b is the smallest maximum point for Fα in [x0,∞), and that Fα(a) = Fα(b). Hence∫
I
|f(t)| dt = α(b− a) and αm(O) =

∫
O
|f(t)| dt ≤ ∥f∥1, which proves (4.1.7).

To prove (4.1.8) we write for an arbitrary s > 0

f = g + h where g =

{
f, if |f | ≤ s/2,

0, if |f | > s/2.

It is obvious that g∗HL ≤ s/2, and since f∗HL ≤ g∗HL + h∗HL it follows that h∗HL ≥ s/2 in
Es = {x; f∗HL(x) > s}. Hence (4.1.7) gives m(Es) ≤ 4∥h∥1/s, and∫

R

|f∗HL|p dx =

∫ ∞

0

spd(−m(Es)) =

∫ ∞

0

m(Es)d(s
p)

= 4p

∫ ∞

0

sp−2

∫
|f(x)|>s/2

|f(x)| dx = 2p+1p/(p− 1)

∫
R

|f(x)|p dx,

where the last equality follows by changing the order of integration. This completes the
proof.

Remark. The proof of (4.1.7) can be interpreted as a determination of the points on
the graph of x 7→

∫ x
−∞ |f(t)| dt where one cannot see the sun if it is at infinity to the right

in the direction with slope α, so it is often called the rising sun lemma. The constant
in (4.1.7) is optimal as follows immediately by letting f approach the Dirac measure at
0. Taking for f the characteristic function of (−1, 1) it is easy to see that the constant
in (4.1.8) cannot be improved by a factor greater than 3; in particular it has the right
magnitude as p → 1. The proof of (4.1.8) is our first encounter with the Marcinkiewicz
interpolation method which will be presented in generality later on.
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Example. The maximal theorem 4.1.2 also yields estimates for transformations where
(4.1.6)′ is not directly applicable. An example is a classical potential estimate of Hardy
and Littlewood: If 1 < p < q <∞ and 1/q = 1/p− γ, then

fγ(x) =

∫
R

f(x− y)|y|γ−1 dy

exists for almost all x ∈ R if f ∈ Lp(R), and ∥fγ∥q ≤ Cp,q∥f∥p. Since y 7→ |y|γ−1 is
not integrable at infinity we apply (4.1.6)′ to the integral when |y| < R for some R to be
chosen later and apply Hölder’s inequality when |y| > R. With 1/p+ 1/p′ = 1 we obtain∫

R

|f(x− y)||y|γ−1 dy ≤ f∗HL(x)

∫
|y|<R

|y|γ−1 dy + ∥f∥p
(∫

|y|>R
|y|p

′(γ−1) dy
) 1

p′
.

Here p′(γ−1) = −1−p′/q so the second integral converges, which proves that fγ(x) exists
when f∗HL(x) <∞ and that

|fγ(x)| ≤ Cp,q(f
∗
HL(x)R

1
p−

1
q + ∥f∥pR− 1

q ).

When R1/p = ∥f∥p/f∗HL(x) it follows that

|fγ(x)| ≤ 2Cp,qf
∗
HL(x)

p
q ∥f∥1−

p
q

p .

Hence ∥fγ∥q ≤ 2Cp,q∥f∗HL∥
p/q
p ∥f∥1−p/qp and (4.1.8) gives ∥fγ∥q ≤ C ′

p,q∥f∥p.

Later on in this section we shall need a variant of Theorem 4.1.2 with essentially the
same proof, so we pause to prove it now. The issue is the maximal function

(4.1.6)′′ f∗∗HL(x, s) = sup
(x−s,x+s)⊂I

∫
I

|f(t)| dt/m(I), x ∈ R, s > 0,

which also takes the size of the interval I into account. The point of this function is that
in analogy to (4.1.6)′

(4.1.6)′′′
∫
R

|f(x+ t)|ϱ(t) dt ≤ f∗∗HL(x, s)

∫
R

ϱ(t) dt,

if ϱ ≥ 0 is increasing for t < 0, decreasing for t > 0 and constant in (−s, s). The following
result is essentially due to L. Carleson:

Theorem 4.1.2′. Let dν be a positive measure in {(x, s) ∈ R2; s > 0} and assume that
ν(I × (0, |I|)) ≤ |I| for every interval I ⊂ R. Then it follows that

ν({(x, s); f∗∗HL(x, s) > α}) ≤ 4∥f∥1/α, α > 0, f ∈ L1(R),(4.1.7)′ (∫∫
s>0

|f∗∗HL(x, s)|p dν(x, s)
)1/p

≤ (2p+2p′)1/p∥f∥p, f ∈ Lp(R).(4.1.8)′
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Proof. As in the proof of Theorem 4.1.2 we introduce corresponding left and right
maximal functions

f∗∗± (x, s) = sup
ε>s

∫ ε

0

|f(x± t)|dt/ε.

If f∗∗HL(x, s) > α then f∗∗+ (x, s) > α or f∗∗− (x, s) > α, so to prove (4.1.7)′ it suffices to prove
that

(4.1.7)′′ ν({(x, s); f∗∗+ (x, s) > α}) ≤ 2∥f∥1/α,

for this gives a similar bound for f∗∗− . Now f∗∗+ (x, s) > α implies f∗+(x) > α, so x belongs to
one of the intervals I = (a, b) in the proof of Theorem 4.1.2; we keep the notation used there.

Since Fα(x) ≤ Fα(a) when x ≥ a, we have
∫ x+t
x

|f(y)| dy ≤
∫ x+t
a

|f(y)| dy ≤ α(x+ t− a),
hence

f∗∗+ (x, s) ≤ sup
t>s

α(x− a+ t)/t = α(x− a+ s)/s ≤ α(m(I) + s)/s ≤ 2α,

if x ∈ I and s ≥ m(I). This means that {(x, s); f∗∗+ (x, s) > 2α} ⊂
∪
I × (0, |I|), with the

union taken over the disjoint components of the open set O, which proves (4.1.7)′′ with α
replaced by 2α. The proof that (4.1.7)′ implies (4.1.8)′ is a repetition of the proof that
(4.1.7) implies (4.1.8) and is left for the reader; it is our second case of Marcinkiewicz’
interpolation method. (See Theorem 4.2.4.)

We return now to the study of the principal value integral (4.1.1) and introduce another
maximal function

(4.1.9) f∗CZ(x) = sup
0<ε<δ

∣∣∣ ∫
ε<|t|<δ

f(x− t)

t
dt
∣∣∣.

To estimate f∗CZ we first assume that f ∈ C∞
0 (R). Choose a fixed χ ∈ C∞

0 (R) with∫
R
χ(t) dt = 1 such that χ(x) is a decreasing function of |x|. By (4.1.2)

|χ̃(x)− 1/πx| ≤ C/x2,

and χ̃ ∈ C∞. With the notation χε(x) = χ(x/ε)/ε we have f̃ ∗χε = f ∗ χ̃ε = f ∗ χ̃ε, hence

(4.1.10) |f ∗ (χ̃ε − χ̃δ)(x)| ≤ |f̃ ∗ χε(x)|+ |f̃ ∗ χδ(x)| ≤ 2f̃∗HL(x),

by (4.1.6)′. Let Kε,δ(x) = 1/πx when ε < |x| < δ and Kε,δ(x) = 0 otherwise. Then

|χ̃ε(x)− χ̃δ(x)−Kε,δ(x)| ≤


C(ε+ δ)/|x|2, if |x| > δ,

Cε/|x|2 + |χ̃δ(x)|, if ε < |x| < δ,

|χ̃ε(x)|+ |χ̃δ(x)|, if |x| < ε,

because |χ̃ε(x)− 1/πx| ≤ Cε/x2. By (4.1.6)′ again it follows that

(4.1.11) |f ∗ χ̃ε(x)− f ∗ χ̃δ(x)− f ∗Kε,δ(x)| ≤ 4(C +max |χ̃|)f∗HL(x).

Combining (4.1.11) with (4.1.10) and (4.1.5), (4.1.8) we obtain the estimate in the following
theorem:
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Theorem 4.1.3. When 1 < p < ∞ there is a constant Cp such that the maximal
function (4.1.9) has the bound

(4.1.12) ∥f∗CZ∥p ≤ Cp∥f∥p, f ∈ Lp(R).

When f ∈ Lp(R) the limit f̃(x) = limε→0,δ→∞
∫
ε<|t|<δ f(x − t) dt/πt exists for almost

every x ∈ R, and is in Lp(R). The map Lp(R) ∋ f 7→ f̃ ∈ Lp(R) is continuous.

Proof. So far we have only proved (4.1.12) when f ∈ C∞
0 (R), but the general state-

ment follows at once since this is a dense subset of Lp(R). To prove that the principal
values exist almost everywhere we introduce

F (x) = lim
ε,ε′→0,δ,δ′→∞

∣∣∣ ∫
ε<|t|<δ

f(x− t)

t
dt−

∫
ε′<|t|<δ′

f(x− t)

t
dt
∣∣∣.

It follows from (4.1.12) that
∥F∥p ≤ 2Cp∥f∥p.

Now Fp does not change if we replace f by f − g where g ∈ C∞
0 (R). Hence ∥F∥p ≤

2Cp∥f − g∥p, g ∈ C∞
0 (R), so we conclude that F = 0 almost everywhere which proves the

pointwise existence of the principal value. The map f 7→ f̃ with this pointwise definition
of f̃ is a continuous linear map in Lp so it agrees with the extension defined after Theorem
4.1.1.

Thus we now have an unambigous definition of f̃ when f ∈ Lp(R) and 1 < p < ∞.
Returning to the discussion at the beginning of the section we define fa,b as the function

in Lp(R) with Fourier transform equal to f̂(ξ) when a ≤ ξ ≤ b and 0 elsewhere, when
f ∈ Lp(R) ∩ L1(R), say. It follows from (4.1.5) that fa,b ∈ Lp(R) and that

∥fa,b∥p ≤ Cp∥f∥p, f ∈ Lp(R).

Since ∥fa,b − f∥p → 0 as a → −∞ and b → +∞ provided that f̂ ∈ C∞
0 (R), and such

functions are dense in S (R), hence in Lp(R), we obtain:

Corollary 4.1.4. If f ∈ Lp(R) where 1 < p < ∞ then the partial inverse Fourier
transforms fa,b converge to f in Lp(R) as a→ −∞ and b→ +∞.

We started the section with discussing the Fourier series of a periodic function. If
f ∈ Lploc(R) is periodic with period T we define the conjugate function f̃ as above by
multiplying the Fourier transform by −i sgn ξ defined as 0 when ξ = 0, that is, multiplying
the coefficient of e2πikx/T in the Fourier series by −i sgn k, thus dropping the constant
term. It follows at once from Proposition 2.1.1 that f̃ ∈ C∞ if f ∈ C∞. We could extend
the estimate (4.1.5) by repeating the proof, but instead of doing that we shall prove that
the estimate in the non-periodic case carries over to the periodic case. This is a principle
which is useful in other contexts as well. Choose φ ∈ S \ {0} so that supp φ̂ ⊂ (−1, 1),
and form for a given f ∈ C∞(R) with period T

fε(x) = φ(εx)f(x) =
∑
k∈Z

cke
2πikx/Tφ(εx)
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where ck are the Fourier coefficients of f . It is clear that fε ∈ S , and the Fourier transform
is

ξ 7→
∑
k∈Z

ckφ̂((ξ − 2πk/T )/ε)/ε.

The term with index k has support in {ξ; |ξ−2πk/T | < ε}. If Tε < π and c0 = 0 it follows
that the conjugate function of fε is

f̃ε(x) = φ(εx)f̃(x).

With the notation Cp for the constant in (4.1.5) we obtain∫ T

0

|f̃(x)|p
∑
j∈Z

|φ(ε(x+ jT ))|p dx ≤ Cpp

∫ T

0

|f(x)|p
∑
j∈Z

|φ(ε(x+ jT ))|p dx.

After multiplication by εT the sums converge to
∫
|φ(y)|p dy as ε→ 0, so we obtain

∥f̃∥Lp(R/TZ) ≤ Cp∥f∥Lp(R/TZ),

provided that c0 = 0. Now the Lp norm in R/TZ of the mean value c0 cannot exceed that
of f , so it follows that

∥f̃∥Lp(R/TZ) ≤ 2Cp∥f∥Lp(R/TZ),

when f is periodic with period T , first when f ∈ C∞ and then by approximation when
f ∈ Lp(R/TZ). Hence we have proved:

Corollary 4.1.5. If f ∈ Lp(R/TZ) and 1 < p < ∞, then the partial sums sn =∑
|k|≤n cke

2πikx/T of the Fourier series converge to f in Lp(R/TZ) as n→ ∞.

Remark. Note that it is not claimed that there is convergence for an arbitrary order
of summation of the terms. Nor is it stated in Corollaries 4.1.4 and 4.1.5 that there is
pointwise convergence almost everywhere which is true but much more difficult to prove.

If f ∈ L1(R) we can still define a conjugate distribution f̃ as the inverse Fourier trans-

form of the function ξ 7→ f̂(ξ) sgn ξ, and L1(R) ∋ f 7→ f̃ ∈ S ′(R) is continuous. However,

it was clear already from (4.1.2) that f̃ is usually not in L1 even if f ∈ C∞
0 (R). The

problem is not only that f̃ may be too large at infinity, as seen from (4.1.2), but there is
a problem with local regularity too:

Proposition 4.1.6. For all f ∈ L1(R) outside a certain set of first category the con-

jugate distribution f̃ is of positive order in every open subset of R.

Proof. Let I = (x0 − a, x0 + a) be a bounded open non-empty interval ⊂ R, and

denote by B the set of all f ∈ L1(R) such that the restriction of f̃ to I is a bounded
measure. B is a Banach space with ∥f∥B equal to the sum of ∥f∥1 and the total mass of

f̃ in I. If the range of the obvious injection B → L1(R) is not of the first category, then
it follows from Banach’s theorem that the injection is an isomorphism, hence that there is
a constant C such that

(4.1.13)

∫
I

|f̃ | dx ≤ C

∫
R

|f | dx,
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if f ∈ L1(R) and f̃ ∈ L1(R). With φ ∈ C∞
0 (R),

∫
φdx = 1, we apply (4.1.13) to

fε(x) = φ((x− x0)/ε)/ε. Then f̃ε(x) = φ̃((x− x0)/ε)/ε, and it follows from (4.1.2) that∫
I

|f̃ε(x)| dx =

∫ a

−a
|φ̃(x/ε)| dx/ε =

∫ a/ε

−a/ε
|φ̃(x)| dx = −(2/π) log ε+O(1), as ε→ 0.

Since
∫
R
|fε(x)| dx = ∥φ∥1 is independent of ε this contradicts (4.1.13), so the set of all

f ∈ L1(R) such that f̃ is a bounded measure in I is of the first category. Taking the union
of these sets for all I with x0 and a rational proves the proposition.

A sufficient condition for f̃ to be in L1
loc is given by the following proposition, where we

use the standard notation log+ x = log x when x > 1, log+ x = 0 when x ≤ 1.

Proposition 4.1.7. If f ∈ L1(R) and |f | log+ |f | ∈ L1(R), then ϱf̃ ∈ L1(R) if ϱ ∈
Lq(R) ∩ L∞(R) for some q <∞.

Proof. Let E0 = {x ∈ R; |f(x)| < 1} and Ek = {x ∈ R; 2k−1 ≤ |f(x)| < 2k} for
k = 1, 2, . . . ; define fk(x) = f(x) when x ∈ Ek and fk(x) = 0 if x /∈ Ek. Then fk ∈ Lp for
p ∈ [1,∞], and if 1 < p ≤ 2 we have by (4.1.5)

∥f̃k∥p ≤ C(p− 1)−1∥fk∥p ≤ C(p− 1)−12km(Ek)
1/p.

Without restriction we may assume that q ≥ 2. If 1 < p ≤ q/(q − 1) it follows from
Hölder’s inequality that∫

R

|f̃k(x)||ϱ(x)| dx ≤ C(∥ϱ∥∞ + ∥ϱ∥q)(p− 1)−12km(Ek)
1/p.

The hypothesis means that
∑∞

0 (k + 1)2km(Ek) < ∞, so to estimate the sum of the
preceding integrals we must aim for this sum. Thus we choose 1/p = 1− 1/(q(k+ 1)) and
write the preceding estimate in the form∫

R

|f̃k(x)||ϱ(x)| dx ≤ C(∥ϱ∥∞ + ∥ϱ∥q)q22/q
(
(k + 1)2−k

)1− 1
p
(
(k + 1)2km(Ek)

)1/p

where we have used that 2k(1/p−1) = 2−k/(q(k+1)) ≥ 2−1/q. By the inequality between
geometric and arithmetic means, with weights 1− 1/p and 1/p it follows that∫

R

|f̃k(x)||ϱ(x)| dx ≤ C(∥ϱ∥∞ + ∥ϱ∥q)q22/q
(
2−k/q + (k + 1)2km(Ek)

)
.

Hence
∑∞

0 f̃k converges in L1
loc, so f̃ =

∑∞
0 f̃k ∈ L1

loc and f̃ϱ ∈ L1. The proof is complete.

Looking for substitutes for the estimate (4.1.5) when p = 1 may seem to be of marginal
interest at first sight. However, it has played an important role in the development of
harmonic analysis during the past 30 years and led to important techniques which cannot
be ignored. We shall therefore pursue the matter further in the one dimensional case as
an introduction to the case of higher dimension in the following sections.
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Definition 4.1.8. The Hardy space H 1(R) is the space of all f ∈ L1(R) with f̃ ∈
L1(R).

Proposition 4.1.9. H 1(R) is a Banach space with the norm ∥f∥H1 = ∥f∥L1+∥f̃∥L1 ,

and it is invariant under the map f 7→ f̃ and complex conjugation, both of which preserve
the norm. When f ∈ H 1(R) the analytic functions

(4.1.14) F±(z) = ± i

π

∫
R

f(t)

z − t
dt, ± Im z > 0,

have boundary values f ± if̃ in the L1 sense,
(4.1.15)

lim
y→±0

∫
R

|F±(x+ iy)− f(x)∓ if̃(x)| dx = 0,

∫
R

|F±(x+ iy)| dx ≤ ∥f ± if̃∥, ±y > 0.

If f ∈ L1(R) and f̂ has compact support not containing the origin, then f ∈ H 1(R).
Such functions in S (R) are dense in H 1(R), and the closure of H 1(R) in L1(R) is the

hyperplane {f ∈ L1(R); f̂(0) = 0}.

Proof. Since the map L1(R) ∋ f 7→ f̃ ∈ S ′(R) is continuous, it follows that H 1(R)

is complete, for if fj → f and f̃j → g in L1(R), then g = f̃ . If f ∈ H 1(R) then
˜̃
f = −f ,

so f̃ ∈ H 1(R) and ∥f̃∥H 1 = ∥f∥H 1 . Since the map f 7→ f̃ commutes with complex
conjugation we have f̄ ∈ H 1 and ∥f̄∥H 1 = ∥f∥H 1 if f ∈ H 1(R). If f ∈ H 1(R) then

f̂(ξ) and −if̂(ξ) sgn ξ are continuous, so f̂(0) = 0, that is,
∫
R
f dx = 0. On the other hand,

if f ∈ L1(R) and supp f̂ is a compact subset of R \ {0} then we can choose φ ∈ S so that

φ̂ ∈ C∞
0 (R) and φ̂(ξ) = −i sgn ξ in a neighborhood of supp f̂ . Then f̃ = φ ∗ f ∈ L1(R),

so f ∈ H 1(R). Thus the condition for a function in L1(R) to be in H 1(R) is only a

restriction on the behavior of f̂ at 0 and at ∞.
Choose χ ∈ S (R) so that χ̂ ∈ C∞

0 (R) and χ̂ = 1 in a neighborhood of the origin, and
set χε(x) = εχ(εx). Then

(4.1.16) lim
ε→0

∥χε ∗ f∥L1 = |f̂(0)|∥χ∥L1 , lim
t→∞

∥χt ∗ f − f∥L1 = 0, f ∈ L1(R).

Since ∥χt∗f∥L1 ≤ ∥f∥L1∥χ∥L1 , it is sufficient to prove (4.1.16) for all f in a dense subset of

L1 such as all f ∈ S with f̂ ∈ C∞
0 (R). The Fourier transform of χt∗f is χ̂(ξ/t)f̂(ξ) = f̂(ξ)

for large t, so the second part of (4.1.16) is trivial then. To prove the first part we write
the Fourier transform of χε ∗ f as

χ̂(ξ/ε)f̂(ξ) = χ̂(ξ/ε)f̂(0) + ĝε(ξ), ĝε(ξ) = χ̂(ξ/ε)(f̂(ξ)− f̂(0)),

and conclude that
∫
|ĝε(ξ)|2 dξ ≤ Cε3,

∫
|dĝε(ξ)/dξ|2 dξ ≤ Cε, which by Parseval’s formula

and Cauchy-Schwarz gives∫
(1 + ε2x2)|gε(x)|2 dx ≤ Cε3/π,

∫
|gε(x)| dx ≤

√
Cε,
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and proves (4.1.16).

If f ∈ L1(R) and f̂(0) = 0 it follows with ft,ε = χt ∗(f−χε ∗f) that ∥ft,ε−f∥L1 → 0 as

t→ ∞ and ε→ 0. The Fourier transform ξ 7→ χ̂(ξ/t)(1− χ̂(ξ/ε))f̂(ξ) of ft,ε has compact
support in R \ {0}, so ft,ε ∈ H 1(R). This proves that the closure of H 1(R) in L1(R)

consists of all f ∈ L1(R) with f̂(0) = 0. (It is an easy exercise to prove this using the

Hahn-Banach theorem.) If f̃ ∈ L1(R) then (f̃)t,ε is the conjugate function of ft,ε and

∥(f̃)t,ε − f̃∥L1 → 0, hence ft,ε → f in H 1 as ε → 0 and t → ∞. To achieve fast decrease
at infinity we choose φ ∈ S (R) with φ(0) = 1 and φ̂ ∈ C∞

0 , and set φδ(x) = φ(δx).

The Fourier transform of φδft,ε is then the convolution of φ̂(ξ/δ)/2πδ and f̂t,ε, and since
φ̂ ∈ C∞

0 (R) the support of the convolution does not contain the origin for small δ. To

multiply the convolution by sgn ξ is then equivalent to multiplying f̂t,ε(ξ) by sgn ξ before

the convolution, that is, the conjugate function of φδft,ε is φδ f̃t,ε, so φδft,ε → ft,ε in
H 1(R) as δ → 0. Since φδft,ε ∈ S (R) and the Fourier transform has compact support
in R \ {0}, this proves the density statement in the proposition.

When f̂ ∈ C∞
0 (R\{0}) the Fourier transform of x 7→ F±(x+ iy) where ±y > 0 is equal

to

f̂(ξ)(1± sgn ξ)e−yξ → f̂(ξ)(1± sgn ξ) = f̂(ξ)± i(−if̂(ξ) sgn ξ) in S as y → ±0.

This proves the first part of (4.1.15) for f in a dense subset of H 1(R), and the second part
is then a consequence. In fact, if ψ ∈ C∞

0 (R), |ψ| ≤ 1, then
∫
F±(z+x)ψ(x) dx is analytic

when ± Im z > 0, continuous in the closed half plane with boundary values bounded by
∥f ± if̃∥L1 , and tends to 0 at ∞. Hence it follows from the maximum principle that it is

always bounded by ∥f± if̃∥L1 , which proves the second part of (4.1.15) for all f in a dense
subset of H 1(R). The bound follows by continuity for all f ∈ H 1(R), and the first part
of (4.1.15) also follows then for all f ∈ H 1(R). The proof is complete.

The following lemma gives an important subset of H 1. The simple proof was already
used to prove (4.1.16).

Lemma 4.1.10. If f ∈ L2(R) then
(4.1.17)∫

R

(1 + x2/δ2)|f(x)|2 dx =M2 <∞,

∫
R

f(x) dx = 0 =⇒ f ∈ H 1, ∥f∥H 1 ≤ 2M
√
δπ.

Proof. Cauchy-Schwarz’ inequality gives ∥f∥1 ≤M
√
δπ, and by Parseval’s formula f̂

and df̂/dξ are in L2 and

1

2π

∫
(|f̂(ξ)|2 + |df̂(ξ)/dξ|2/δ2) dξ =M2.

For g = f̃ we have ĝ(ξ) = −i sgn ξf̂(ξ), and since f̂(0) = 0 it follows that dĝ(ξ)/dξ =

−i sgn ξdf̂(ξ)/dξ. (Otherwise there would have been additional term −2if̂(0)δ0.) Hence

Parseval’s formula again gives
∫
R
(1 + x2/δ2)|g(x)|2 dx = M2, so ∥f̃∥1 = ∥g∥1 ≤ M

√
δπ,

which proves (4.1.17).
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If L is a continuous linear form on H 1(R), it follows from Lemma 4.1.10 that L restricts
to a continuous linear form on {f ∈ L2(R, (1 + x2/δ2) dx);

∫
R
f dx = 0} with norm ≤

2
√
δπ∥L∥(H 1)′ . By Proposition 4.1.9 this is a dense subset of H 1(R). We extend the

restriction uniquely to L2(R, (1 + x2/δ2) dx) so that the extension is equal to 0 for x 7→
(1 + x2/δ2)−1, which does not increase the norm. In view of the translation invariance of
H 1(R) it follows that for arbitrary δ > 0 and y ∈ R there exists a function ψy,δ ∈ L2

loc(R)
such that

(4.1.18)

δ

∫
R

|ψy,δ(x)|2

δ2 + |x− y|2
dx ≤ 4π∥L∥2(H 1)′ ,

L(f) =

∫
R

ψy,δ(x)f(x) dx, if f ∈ L2(R, (1 + x2) dx), f̂(0) = 0.

Here ψy,δ was uniquely determined by the condition
∫
R
ψy,δ(x) dx/(δ

2 + (x − y)2) = 0.
However, it is usually more convenient to use another normalisation which involves only the

values of ψy,δ in the interval (y− δ, y+ δ). If cy,δ =
∫ y+δ
y−δ ψy,δ(x)/2δ then ψ

0
y,δ = ψy,δ− cy,δ

also defines L, the mean value over (y − δ, y + δ) vanishes, and

(4.1.19)
1

2δ

∫ y+δ

y−δ
|ψ0
y,δ(x)|2 dx ≤ 4π∥L∥2(H 1)′ .

Definition 4.1.11. A function φ ∈ L2
loc(R) is said to be in BMO(R) if there is a

constant B such that for y ∈ R and δ > 0

(4.1.20)
1

2δ

∫ y+δ

y−δ
|φ(x)− φy,δ|2 dx ≤ B2, where φy,δ =

1

2δ

∫ y+δ

y−δ
φ(t) dt.

Thus we have proved that every continuous linear form on H 1(R) is defined by a
function in BMO(R); the converse will be proved below. It may seem strange that in
(4.1.20) we have dropped the global information contained in (4.1.18), but that is only
apparent since it can be recovered from (4.1.20):

Proposition 4.1.12. BMO(R)/C is a Banach space with norm equal to the smallest
constant B such that (4.1.20) is valid, and (4.1.20) implies

(4.1.20)′ δ

∫
R

|φ(x)− φy,δ|2

(x− y)2 + δ2
dx ≤ 210B2, y ∈ R, δ > 0.

Proof. For fixed y and δ let ck = 2−k−1δ−1
∫
|x−y|<2kδ

φ(x) dx, k = 0, 1, . . . , thus

c0 = φy,δ. By (4.1.20) applied with δ replaced by 2k+1δ

1

2k+1δ

∫
|x−y|<2kδ

|φ(x)− ck+1|2 dx ≤ 2B2, hence |ck − ck+1| ≤
√
2B,
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which implies that |ck − c0| ≤
√
2kB. By the triangle inequality it follows that∫

|x−y|<2kδ

|φ(x)− c0|2 dx ≤ 2B2(2k+1δ + 2k22k+1δ) = B22k+2δ(1 + 2k2).

Summing up we obtain

δ

∫
R

|φ(x)− c0|2

(x− y)2 + δ2
dx ≤ 1

δ

∫
|x−y|<δ

|φ(x)− c0|2 dx+
∞∑
1

22−2k

δ

∫
|x−y|<2kδ

|φ(x)− c0|2 dx

≤ 2B2(1 + 8
∞∑
1

2−k(1 + 2k2)) = 210B2.

This proves (4.1.20)′. It is obvious that the minimal B in (4.1.20) is a norm ∥φ∥BMO

in BMO(R)/C. To prove completeness we consider a Cauchy sequence φj ∈ BMO(R).

Without restriction we may assume that
∫ 1

−1
φj(x) dx = 0 for every j. Then it follows

from (4.1.20)′ applied to φj − φk that we have a Cauchy sequence in L2(R, dx/(1 + x2)).
The limit φ there is obviously in BMO(R), and ∥φ − φj∥BMO ≤ limk→∞ ∥φk − φj∥BMO,
which completes the proof.

To prove that conversely every φ ∈ BMO(R) defines a continuous linear form on H 1

we shall study the Poisson integral

(4.1.21) Φ(t, x) =
t

π

∫
R

φ(y)

(y − x)2 + t2
dy =

1

π

∫
R

φ(x+ ty)

y2 + 1
dy,

which is harmonic in {(t, x) ∈ R2; t > 0} and continuous in the closed half space with
boundary values φ when φ is continuous. When φ is a constant c then Φ = c, and since
we are interested in BMO /C it is natural to focus attention on the derivatives of Φ rather
than on Φ to remove constant terms.

Lemma 4.1.13. If φ ∈ L2(R) and Φ is the Poisson integral (4.1.21) then

(4.1.22) 2

∫∫
t>0

t|Φ′(t, x)|2 dx dt = ∥φ∥22, |Φ′(t, x)|2 ≤ ∥φ∥22/πt3.

Here |Φ′(t, x)|2 = |∂Φ(t, x)/∂t|2 + |∂Φ(t, x)/∂x|2. If φ(x) = xψ(x) where ψ ∈ L2, then

(4.1.23) |Φ′(t, x)|2 ≤ ∥ψ∥22(x2 + t2)/πt3.

If φ ∈ BMO(R) then for y ∈ R and δ > 0

(4.1.24)

∫∫
Ty,δ

t|Φ′(t, x)|2 dx dt ≤ 603δ∥φ∥2BMO, Ty,δ = {(t, x); 0 < t < 2δ, |x− y| < δ}.

Proof. We may assume that φ is real valued. It suffices to prove (4.1.22) when φ ∈
C∞

0 . Then it is obvious that Φ(t, x) is in C∞ for t ≥ 0 with Φ(0, x) = φ(x). At infinity
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Φ(t, x) = O(t/(x2 + t2)) and the derivatives of Φ(t, x) are O(1/(t2 + x2)). Since ∆Φ = 0
we obtain by partial integration∫∫

t>0

t|Φ′(t, x)|2 dx dt = −
∫∫

t>0

∂Φ(t, x)/∂tΦ(t, x) dx dt = 1
2

∫
R

|Φ(0, x)|2 dx = 1
2∥φ∥

2
2.

From the fact that

Φ(t, x) = Im
1

π

∫
R

φ(y)

y − x− it
dy,

it follows that

∂Φ(t, x)/∂t+ i∂Φ(t, x)/∂x =
1

π

∫
R

φ(y)

(y − x− it)2
dy,

so Cauchy-Schwarz’ inequality gives

|Φ′(t, x)|2 ≤ ∥φ∥22
π2

∫
R

dy

((y − x)2 + t2)2
=

∥φ∥22
π2t3

∫
R

dy

(y2 + 1)2
≤ ∥φ∥22/πt3.

This proves (4.1.22). If φ(x) = xψ(x) with ψ ∈ C∞
0 we just replace φ(y) by yψ(y) above

before using the Cauchy-Schwarz inequality, and obtain

|Φ′(t, x)|2 ≤ ∥ψ∥22
π2

∫
R

y2 dy

((y − x)2 + t2)2
=

∥ψ∥22
π2

∫
R

(y2 + x2) dy

(y2 + t2)2
≤ ∥ψ∥22

π

(1
t
+
x2

t3

)
,

which proves (4.1.23). Note that when t→ 0 this bound is much better if x = 0, and this
is the only case that we shall use.

By the translation invariance of BMO(R) it suffices to prove (4.1.24) when y = 0. Write
φ(x) = φ0,2δ + φ0(x) + φ1(x) where φ0,2δ is the mean value of φ in (−2δ, 2δ) and

φ0(x) =

{
φ(x)− φ0,2δ, when |x| < 2δ,

0, when |x| ≥ 2δ ,
φ1(x) =

{
0, when |x| < 2δ,

φ(x)− φ0,2δ, when |x| ≥ 2δ.

By (4.1.20) and (4.1.20)′ we have, with B = ∥φ∥BMO,

1

4δ

∫
R

|φ0(x)|2 dx ≤ B2, δ

∫
R

|φ1(x)|2/x2 dx ≤ 105B2.

The Poisson integral of φ0,2δ is a constant which does not contribute to (4.1.24). Let Φ0

and Φ1 be the Poisson integrals of φ0 and φ1. By (4.1.22) we have∫∫
T0,δ

t|Φ′
0(t, x)|2 dx dt ≤ 2δB2.

If |y| < δ then δ
∫
R
|φ1(x+ y)|2/x2 dx ≤ 420B2, and it follows from (4.1.23) that

t|Φ′
1(t, y)|2 ≤ 420B2

πδ
, |y| < δ; hence

∫∫
T0,δ

t|Φ′(t, x)|2 dx dt ≤ 1680

π
δB2.

The triangle inequality completes the proof of (4.1.24).

We have now arrived at the final step in the proof that BMO(R) is the dual of H 1.
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Proposition 4.1.14. Let φ ∈ L2(R, dx/(1 + x2)), and assume that for the Poisson
integral Φ defined by (4.1.21) we have

(4.1.25)

∫∫
Ty,δ

t|Φ′(t, x)|2 dx dt ≤ 2A2δ, y ∈ R, δ > 0,

where Ty,δ is defined by (4.1.24). Then it follows that

(4.1.26)
∣∣∣ ∫

R

φf dx
∣∣∣ ≤ 16A∥f∥H 1 , if f ∈ S , f̂ ∈ C∞

0 (R \ {0}),

so φ defines a continuous linear form on H 1 with norm ≤ 16A.

Proof. We may assume that φ and f are real valued. Polarization of (4.1.22) gives if
φ ∈ L2(R)

(4.1.27)

∫
φf dx = 2

∫∫
t>0

t(Φ′(t, x), F ′(t, x)) dx dt,

where F is the Poisson integral of f . When φ is bounded in L2(R, dx/(1 + x2)) we can
write φ(x) = φ0(x) + xφ1(x) with φ0 and φ1 bounded in L2 and conclude from Lemma
4.1.13 that |Φ′(t, x)| = O((1 + |x| + |t|)t−3/2). Since |F ′(t, x)| = O(e−ct(1 + x2)−N ) for

some c > 0 and all N , because f̂ ∈ C∞
0 (R \ {0}), it follows that both sides of (4.1.27) are

continuous functions of φ ∈ L2(R, dx/(1+x2)), so the formula follows for such φ from the
case where φ ∈ L2(R).

The Poisson integral F+(t, x) of f + if̃ is an analytic function of x+ it in the upper half
plane with real part F , so Cauchy-Schwarz’ inequality and (4.1.27) give

(4.1.28)
∣∣∣ ∫

R

φf dx
∣∣∣ ≤ 2

∣∣∣ ∫∫
t>0

t(Φ′(t, x), F ′
+(t, x)) dx dt

∣∣∣
≤ 2

(∫∫
t>0

t|Φ′(t, x)|2|F+(t, x)| dx dt
) 1

2
(∫∫

t>0

t|F ′
+(t, x)|2|F+(t, x)|−1 dx dt

) 1
2

.

The second factor can be simplified since |F ′
+(t, x)|2 = |F+(t, x)|∆|F+(t, x)|, which follows

from the analyticity of F+ and fact that for the function C ∋ w 7→ |w| we have |w|∆|w| = 1
by the expression for ∆ in polar coordinates. (It suffices to observe that this is true when
F+(t, x) ̸= 0, for zeros are discrete. Note that ∆|F+| is bounded except at simple zeros
of F+ where it may grow as the reciprocal of the distance to the zero.) Thus the second
parenthesis in (4.1.28) is equal to ∫∫

t>0

t∆|F+(t, x)| dx.

A formal integration by parts gives that this is equal to∫
R

|F+(0, x)| dx ≤ ∥f∥1 + ∥f̃∥1 = ∥f∥H 1 .
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To argue rigorously we choose χ ∈ C∞
0 (R2) so that χ ≥ 0,

∫
χ(t, x) dx dt = 1 and χ(t, x)

only depends on t2+x2. Set χε(t, x) = ε−2χ(t/ε, x/ε). Since F+(t, x) is an entire function
of x + it which is rapidly decreasing when t > −1, say, it follows that χε ∗ |F+| is in C∞

and rapidly decreasing for t ≥ 0 when ε is small enough. Hence∫∫
t>0

t((∆|F+|) ∗ χε) dx dt =
∫∫

t>0

t∆(|F+| ∗ χε) dx dt =
∫
R

(|F+| ∗ χε)(0, x) dx.

The integrand in the right-hand side decreases to |F+(0, x)| as ε ↓ 0, because |F+| is
subharmonic. The integrand on the left is non-negative so Fatou’s lemma gives

(4.1.29)

∫∫
t>0

t∆|F+| dx dt ≤
∫
R

|F+(0, x)| dx ≤ ∥f∥H 1 .

To estimate the first factor in the right-hand side of (4.1.28) we note that√
|F+(t, x)| = exp( 12 log |F+(t, x)|)

is subharmonic and→ 0 at ∞. Hence
√

|F+(t, x)| ≤ G(t, x) where G is the Poisson integral

of g(x) =
√
|F+(0, x)|. If the Poisson kernel y 7→ t/(π(y2 + t2)) is replaced by the value

1/πt at the origin for |y| < t then the integral is < 2, so it follows from (4.1.6)′′′ that
G(t, x) ≤ 2g∗∗HL(x, t). By (4.1.25) the measure t|Φ′(t, x)|2/A2 satisfies the hypotheses of
Theorem 4.1.2′. With p = 2 in (4.1.8)′ the first parenthesis in (4.1.28) can be estimated
by 25∥Ag∥22 = 25A2∥F+(0, ·)∥1 ≤ 25A2∥f∥H 1 . In view of (4.1.29) this completes the proof
of (4.1.26).

We shall now sum up the results obtained on the duality of H 1(R) and BMO(R):

Theorem 4.1.15. The restriction of a continuous linear form L on H 1(R) to the

dense subset {f ∈ S ; f̂ ∈ C∞
0 (R\{0})} is of the form L(f) =

∫
fφ dx where φ is uniquely

determined in BMO(R)/C and

(4.1.30) ∥L∥(H1)′/278 ≤ ∥φ∥BMO ≤ 4∥L∥(H 1)′ .

Every φ ∈ BMO(R) defines a continuous linear form in H 1(R).

Proof. The upper bound in (4.1.30) follows from (4.1.19), and the lower bound is a

combination of (4.1.24) and (4.1.26), for 16
√
603/2 < 278.

The duality established in Theorem 4.1.15 can be rephrased as the “atomic decomposi-
tion” of H 1(R). To state it we need a definition.

Definition 4.1.16. An atom in H 1(R) is a function a ∈ L2(R) with support in a
compact interval I such that

(4.1.31) m(I)

∫
I

|a(x)|2 dx ≤ 1,

∫
I

a(x) dx = 0.

By the Cauchy-Schwarz inequality (4.1.31) implies ∥a∥1 ≤ 1, and it follows from Lemma
4.1.10 that ∥a∥H 1 ≤ 4. In fact, by the translation invariance of H 1 we may assume that
I = [−δ, δ], and then we have ∫

(1 + x2/δ2)|a(x)|2 dx ≤ 1/δ,

so ∥a∥H 1 ≤ 2
√
π < 4.
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Corollary 4.1.17. If B is the closed convex hull of the atoms in H 1(R) then

(4.1.32) {f ∈ H 1(R); ∥f∥H 1 ≤ 1/278} ⊂ B ⊂ {f ∈ H 1(R); ∥f∥H 1 ≤ 4}.

Every f ∈ H 1(R) has an atomic decomposition

(4.1.33) f =

∞∑
1

λjaj ,

∞∑
1

|λj | ≤ 279∥f∥H 1 ,

where aj are atoms in H 1; we have ∥f∥H 1 ≤ 4
∑∞

1 |λj |.

Proof. We have already proved that ∥f∥H 1 ≤ 4 if f is an atom, so this is also true
in B. By the Hahn-Banach theorem we can describe B as the polar of the polar of the
atoms. Thus let L ∈ (H 1)′ and assume that |L(a)| ≤ 1 for all atoms a. If φ ∈ BMO(R)
defines L this means that

∣∣∣ ∫
I

a(x)φ(x) dx
∣∣ ≤ 1, if

∫
I

a(x) dx = 0 and m(I)

∫
I

|a(x)|2 dx ≤ 1, that is,

1

m(I)

∫
I

|φ(x)− φI |2 dx ≤ 1, if φI =
1

m(I)

∫
I

φ(x) dx.

Thus ∥φ∥BMO ≤ 1, and it follows from Theorem 4.1.15 that ∥L∥(H 1)′ ≤ 278, so |L(f)| ≤ 1
if ∥f∥H 1 ≤ 1/278. This proves (4.1.32).

Let 0 < ε < 1. Given f ∈ H 1 we can choose λ1, . . . , λj ∈ C and atoms a1, . . . , aj so
that

∥f −
j∑
1

λνaν∥H 1 ≤ ε∥f∥H 1 ,

j∑
1

|λν | ≤ 278∥f∥H 1 .

We can repeat this argument with f replaced by the remainder f −
∑j

1 λνaν . After an
infinite number of iterations we obtain the decomposition (4.1.33) with

∞∑
1

|λν | ≤ 278∥f∥H 1(1 + ε+ ε2 + . . . ) = 278∥f∥H 1/(1− ε).

With ε = 1/279 we obtain (4.1.33).

Corollary 4.1.18. Let Φ = {φ ∈ C1(R); (1 + x2)(|φ(x)|+ |φ′(x)|) ≤ 1}. Set φt(x) =
φ(x/t)/t and f∗ = supφ∈Φ supt>0 |f ∗ φt| for f ∈ L1(R). Then

(4.1.34) ∥f∗∥1 ≤ 6000∥f∥H 1(R), if f ∈ H 1(R).

Proof. First assume that f is an atom a; we may assume that supp a ⊂ [−δ, δ], that∫
a(x) dx = 0 and that 2δ

∫
|a(x)|2 dx ≤ 1, thus

∫
|a(x)| dx ≤ 1. Since |φ(x)| ≤ 1/(1 + x2)
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it follows from (4.1.6)′ that a∗(x) ≤ πa∗HL(x), hence ∥a∗∥2 ≤ 4π/
√
2δ by (4.1.8). This

gives an estimate for the L1 norm on a finite interval, say

(4.1.35)

∫
|x|<2δ

a∗(x) dx ≤ 4π
√
2.

Now assume that |x| > 2δ. To estimate

(a ∗ φt)(x) =
1

t

∫ δ

−δ
a(y)φ((x− y)/t) dy

we first use the bound |φ((x− y)/t)| ≤ 1/(1 + |x/2t|2), |y| < δ, and obtain

|(a ∗ φt)(x)| ≤
4t

4t2 + |x|2
≤ 4δ

4δ2 + |x|2
, t ≤ δ.

For t = |x|/2 we would just get the bound 1/|x| which is not integrable at infinity. However,
we can exploit the fact that

∫
a(x) dx = 0 by subtracting a term independent of y from

φ((x− y)/t) and using that when |x| ≥ 2δ and |y| < δ then

|φ((x− y)/t)− φ(x/t)| ≤ |y|
t

1

1 + |x/2t|2

by the hypothesis on φ′. This gives

|(a ∗ φt(x)| ≤
4δ

4t2 + |x|2
≤ 4δ

4δ2 + |x|2
, t ≥ δ.

Since
∫
|x|>2δ

4δ dx/(4δ2 + x2) = π, we have proved that ∥a∗∥1 ≤ π(1 + 4
√
2) < 21. For

an atomic decomposition f =
∑
λjaj we have f∗ ≤

∑
|λj |a∗j , so (4.1.34) follows from

Corollary 4.1.17. The proof is complete.

The maximal function estimate in Corollary 4.1.18 is much more subtle than that in
Theorem 4.1.2, for it takes cancellations into account whereas the Hardy-Littlewood max-
imal function only examines absolute values. There is an inverse of Corollary 4.1.18: If
(4.1.34) is valid for a single fixed φ with

∫
φ(x) dx ̸= 0, then f ∈ H 1. This is interesting

since it shows that the space H 1 has a significance beyond the study of problems from
analytic function theory. However, we shall not give the proof here and refer instead to
Fefferman-Stein [1], Stein [2], and the references given there.

We introduced H 1 as the largest subspace of L1(R) which is invariant under the map

f 7→ f̃ consisting of multiplying the Fourier transform by −i sgn ξ. The space H 1 obtained
admits a much larger class of such multipliers. For a function m ∈ L∞(R) and f ∈ L1(R)

we shall denote by m(D)f the inverse Fourier transform of ξ 7→ m(ξ)f̂(ξ). It is clear
that m(D) is continuous from L1(R) to S ′(R). Homogeneous functions m are linear
combinations of the form c0 + c1 sgn ξ with constants c0, c1, but we shall now discuss
non-homogeneous functions with similar qualitative behavior.
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Corollary 4.1.19. If m ∈ C1(R \ {0}) and |m(ξ)| ≤ 1, |ξ||m′(ξ)| ≤ 1 when ξ ̸= 0,
then m(D) is continuous from H 1(R) to H 1(R) and

(4.1.36) ∥m(D)f∥H 1 ≤ 3400∥f∥H 1 , f ∈ H 1(R).

Proof. If f is an atom corresponding to the interval [−δ, δ] then (4.1.17) is valid with
M2 ≤ 1/δ, hence

1

2π

∫
(|f̂(ξ)|2 + |df̂(ξ)/dξ|2/δ2) dξ ≤ 1/δ.

For G(ξ) = m(ξ)f̂(ξ) we have |G(ξ)| ≤ |f̂(ξ)| and |G′(ξ)| ≤ |df̂(ξ)/dξ| + |f̂(ξ)|/|ξ| when
ξ ̸= 0. Since f̂(0) = 0 it follows from Hardy’s inequality that∫

R

|f̂(ξ)|2/ξ2 dξ ≤ 4

∫
R

|df̂(ξ)/dξ|2 dξ.

The proof is obtained by an integration by parts,∫ T

−T
|f̂(ξ)|2/ξ2 dξ ≤ −2Re

∫ T

−T
f̂(ξ)/ξdf̂(ξ)/dξ dξ,

followed by an application of Cauchy-Schwarz’ inequality, cancellation of one factor and

letting T → ∞. (One could also note that f̂(ξ)/ξ = ĥ(ξ) where supph ⊂ [−δ, δ] and
−ih′(x) = f(x). Partial integration of

∫
|h|2 dx gives the same conclusion.) By the triangle

inequality ∥G′∥2 ≤ 3∥f̂ ′∥2, hence

1

2π

∫
(|G(ξ)|2 + |G′(ξ)|2/δ2) dξ ≤ 9/δ.

It follows from Lemma 4.1.10 that G = ĝ where ∥g∥H 1 ≤ 6
√
π < 12. Thus ∥m(D)a∥H 1 ≤

12 if a is an atom in H 1. Sincem(D) is continuous from L1 to S ′ it follows if f =
∑
λjaj ,∑

|λj | ≤ 279∥f∥H 1 , is an atomic decomposition of f ∈ H 1 that m(D)f =
∑
λjm(D)aj

in S ′, and since the series also converges in H 1 we have m(D)f ∈ H 1 and

∥m(D)f∥H 1 ≤
∑

|λj |∥m(D)aj∥H 1 ≤ 3400∥f∥H 1

by (4.1.33).

Parseval’s formula proves that m(D) maps L2(R) to L2(R) with norm ≤ 1 if m satisfies
the hypotheses in Corollary 4.1.19. From an interpolation theorem which will be proved in
Section 4.4 it follows that m(D) is a continuous map from Lp(R) to Lp(R) for 1 < p ≤ 2;
by duality the same result follows for 2 ≤ p < ∞ and we also get a continuous map in
BMO(R)/C. The result, for 1 < p < ∞, is known as Mihlin’s theorem. It can be proved
directly with arguments which we have to use anyway in the proof of the interpolation
theorem just quoted. However, it is appealing to have an end point result with such an
easy proof as Corollary 4.1.19 and move the rest of the argument to a general theorem
with no relation to the specific situation.
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4.2. Singular integrals in higher dimensions. In Section 4.1 we motivated the
study of the conjugate function by questions on Lp convergence of partial sums of Fourier
series and the analogue for Fourier integrals. There are many higher dimensional analogues
of this, depending on how one groups terms into partial sums. However, we shall postpone
discussion of such questions to Chapter V and instead study the formal analogue of the
conjugate function, homogeneous multipliers on Fourier transforms of Lp functions. Such
operators occur naturally in the study of elliptic differential operators P (D) where P is
a homogeneous polynomial of degree µ in D = −i∂/∂x and P (ξ) ̸= 0 for 0 ̸= ξ ∈ Rn: If

P (D)u = f and u ∈ S then the Fourier transform of Dαu is (ξα/P (ξ))f̂(ξ). If |α| = µ
then ξα/P (ξ) is a homogeneous function of degree 0 in C∞(Rn \ {0}).

Let m ∈ C∞(Rn \ {0}) be positively homogeneous of degree 0 in the sense that

(4.2.1) m(tξ) = m(ξ), ξ ∈ Rn \ {0}, t > 0.

We regard m as an element in L∞(Rn). When n = 1 all such functions are linear com-
binations of the constant function and the sign function, but when n > 1 they form an
infinite dimensional space as shown by functions such as ξ 7→ ξα/|ξ|α with any multiindex
α. We shall pay particular attention to those with |α| = 0 or |α| = 1.

Lemma 4.2.1. If M is the inverse Fourier transform of a function m ∈ C∞(Rn \ {0})
which is positively homogeneous of degree 0 then the restriction to Rn \ {0} is in C∞, and
it is positively homogeneous of degree −n,

(4.2.2) M(tξ) = t−nM(ξ), ξ ∈ Rn \ {0}, t > 0.

For every bounded neighborhood Ω of 0 there is a constant aΩ such that

(4.2.3) M(φ) = aΩφ(0) + lim
ε→0

∫
{εΩ

M(x)φ(x) dx, φ ∈ S (Rn).

Proof. ξβDα
ξm(ξ) is in L1 outside a compact set if |α| > n + |β|, hence DβxαM is

then a continuous function. This proves that M is a C∞ function outside the origin. If
φ ∈ S then the Fourier transform of φt(x) = tnφ(tx) is ξ 7→ φ̂(ξ/t) when t > 0, hence

(4.2.4) M(φ̂) =

∫
m(ξ)φ(ξ) dξ =

∫
m(ξ)φt(ξ) dξ =M(φ̂(·/t)), φ ∈ S , t > 0,

which proves (4.2.2) when φ ∈ C∞
0 (Rn \ {0}). Choosing φ̂ as a decreasing function of |x|

which is equal to 1 in the unit ball B we also conclude that

(4.2.5)

∫
|x|=1

M(x) dS(x) = 0,

where dS is the surface measure on the unit sphere. If Ω is the unit ball, it follows that
the limit in (4.2.3) exists, for the integral is independent of ε for small ε if φ = 1 in a
neighborhood of the origin, and the integral over Rn is absolutely convergent if φ(0) = 0.
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The difference between M(φ) and this limit is thus a distribution with support at the
origin satisfying (4.2.4) so it is a multiple of the Dirac measure at the origin which proves
(4.2.3) when Ω = B. The formula follows in general with

aΩ = aB +

∫
Ω\rB

M(x) dx

when r > 0 is so small that rB ⊂ Ω.

If M is given in C∞(Rn \ {0}) and satisfies (4.2.2) and (4.2.5), then the proof of
Lemma 4.2.1 shows that the limit in (4.2.3) exists and defines a distribution with M(φ̂) =
M(φ̂(·/t)) when φ ∈ S . The Fourier transform m is homogeneous of degree 0 and C∞ in
Rn \ {0} so all such functions M can occur in Lemma 4.2.1. The constant aΩ in (4.2.3)
gives rise to a constant term in m. If Ω is the unit ball then aΩ is the mean value of m on
a sphere {ξ; |ξ| = r}.

The representation (4.2.3) of the kernel of the convolution operator m(D) is the reason
why m(D) is called a singular integral operator. The homogeneity is on the borderline
where the kernel just fails to be integrable both at 0 and at ∞.

The proof of Lemma 4.2.1 gives with no change that if m ∈ Cn+2(Rn \ {0}) and

(4.2.6) |ξ||α||Dαm(ξ)| ≤ 1, ξ ∈ Rn \ {0}, |α| ≤ n+ 2,

then the inverse Fourier transform M is in C1(Rn \ {0}) and |M(x)| ≤ C, |M ′(x)| ≤ C
when |x| = 1 with C independent of m. If t > 0 then ξ 7→ m(ξ/t) also satisfies (4.2.6), and
the inverse Fourier transform is x 7→ tnM(tx) in Rn \ {0}, so we conclude that

|M(x)| ≤ C|x|−n, |M ′(x)| ≤ C|x|−n−1, x ∈ Rn \ {0}.

In the following extension of Theorem 4.1.1 we define m(D)f when f ∈ L1(Rn) as the

inverse Fourier transform of mf̂ . If f ∈ L1(Rn)∩L2(Rn) it is clear that m(D)f ∈ L2(Rn)
and that ∥m(D)f∥2 ≤ ∥f∥2 if |m| ≤ 1.

Theorem 4.2.2. There is a constant C depending only on n such that for every m ∈
Cn+2(Rn \ 0) satisfying (4.2.6) we have

mL({x; |m(D)f(x)| > α}) ≤ C∥f∥1/α, for f ∈ L1(Rn) ∩ L2(Rn),(4.2.7)

∥m(D)f∥p ≤

{
Cp′1/p∥f∥p, if 1 < p ≤ 2,

Cp1/p
′∥f∥p, if 2 ≤ p <∞,

for f ∈ L1(Rn) ∩ L∞(Rn).(4.2.8)

Here 1/p+ 1/p′ = 1, and mL denotes the Lebesgue measure.

For the proof we need the Calderón-Zygmund decomposition lemma:

Lemma 4.2.3. Let f ∈ L1(I) where I is a cube in Rn, and let s >
∫
I
|f(x)| dx/m(I),

where m is the Lebesgue measure. Then we can write

(4.2.9) f = v +
∞∑
1

wk,
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where all terms are in L1(I), wk(x) = 0 when x ∈ I \ Ik for certain cubes Ik ⊂ I with
disjoint interiors, and ∫

I

(|v(x)|+
∞∑
1

|wk(x)|) dx ≤ 3

∫
I

|f(x)| dx,(4.2.10)

v(x) =
1

m(Ik)

∫
Ik

f(y) dy and wk(x) = f(x)− v(x), if x ∈ Ik, thus

∫
Ik

wk(x) dx = 0,

(4.2.11)

|v(x)| ≤ s almost everywhere in I \ ∪Ik,(4.2.12)

s ≤ 1

m(Ik)

∫
Ik

|f(x)| dx < 2ns, which implies(4.2.13)

|v(x)| < 2ns in ∪ Ik, s
∞∑
1

m(Ik) ≤
∫
I

|f(x)| dx.(4.2.13)′

The lemma remains valid when I = Rn.

Proof. We divide I into 2n cubes Jν , 1 ≤ ν ≤ 2n, by halving each side. For each of
these cubes we have

1

m(Jν)

∫
Jν

|f(x)| dx ≤ 2n

m(I)

∫
I

|f(x)| dx < 2ns.

If the mean value on the left is ≥ s, then Jν is included among the cubes Ik, and we define
wk and v by (4.2.11) in Ik. It is clear that (4.2.10) is then valid for the integrals over Ik.
For the other cubes Jν , for which

∫
Jν

|f(x)| dx/m(Jν) < s, the same procedure is again

applied and so on. This gives a possibly finite sequence of cubes Ik. If x ∈ I \ ∪Ik then
the mean value of |f | is < s over arbitrarily small cubes containing x, so |f(x)| ≤ s if x is
a Lebesgue point. With v = f in I \ ∪Ik, the lemma is proved when I is a finite cube. If
I = Rn we first divide Rn into a mesh of cubes of measure 2∥f∥1/s and can then apply
the result already proved to each of them.

Proof of Theorem 4.2.2. We decompose f ∈ L1(Rn) ∩ L2(Rn) using Lemma 4.2.3
with I = Rn and s = α. By (4.2.12), (4.2.13)′ and (4.2.10)

∥v∥22 ≤ 2nα∥v∥1 ≤ 3 · 2nα∥f∥1,

which implies ∥m(D)v∥22 ≤ 3 · 2nα∥f∥1, hence

( 12α)
2mL({x; |m(D)v(x)| > 1

2α}) ≤ 3 · 2nα∥f∥1.

Since the terms wk have supports in the cubes Ik with disjoint interiors, it follows that∑∞
1 wk converges in L2, so m(D)

∑∞
1 wk =

∑∞
1 m(D)wk with convergence in L2, hence

in L1
loc. Let yk and sk be the center and the side of Ik, and let 2Ik be the cube with center

yk and side 2sk. If x /∈ 2Ik then

(m(D)wk)(x) =

∫
Ik

M(x− y)wk(y) dy =

∫
Ik

(M(x− y)−M(x− yk))wk(y) dy.



96 IV. SINGULAR INTEGRAL OPERATORS

Since |M ′(x)| ≤ C|x|−n−1 by the remarks before the statement of Theorem 4.2.2 we have
for y ∈ Ik

(4.2.14)

∫
{2Ik

|M(x− y)−M(x− yk)| dx ≤ C ′sk

∫
{2Ik

|x− yk|−n−1 dx = C ′′,

where C ′′ is independent of the cube Ik by homogeneity and translation invariance. Hence
it follows that

(4.2.14)′
∫
{2Ik

|m(D)wk(x)| dx ≤ C ′′
∫
Ik

|wk(y)| dy.

The measure of E = ∪(2Ik) is at most 2n∥f∥1/α, by (4.2.13)′, and∫
{E

∑
|m(D)wk(x)| dx ≤ 3C ′′∥f∥1

by (4.2.14)′ and (4.2.10), so it follows that

mL({x;
∑

|m(D)wk(x)| > 1
2α}) ≤ m(E) + 6C ′′∥f∥1/α ≤ 2n∥f∥1/α+ 6C ′′∥f∥1/α.

Summing up, we have proved that

mL({x; |m(D)f(x)| > α}) ≤ (3 · 2n+2 + 2n + 6C ′′)∥f∥1/α,

which proves (4.2.7).
The estimate (4.2.8) for 2 < p <∞ follows by duality from the estimate for 1 < p < 2.

In that case it is a consequence of (4.2.7) and the estimate ∥m(D)f∥2 ≤ ∥f∥2, which
implies

α2mL({x; |m(D)f(x)| > α}) ≤ ∥f∥22,

for we can apply the Marcinkiewicz interpolation theorem:

Theorem 4.2.4. Let X and Y be two locally compact spaces with positive Radon mea-
sures dµ and dν, and let T be a sublinear map from L1(X, dµ)∩L∞(X, dµ) to L1

loc(Y, dν),
that is,

|T (g + h)| ≤ |T (g)|+ |T (h)|, g, h ∈ L1(X, dµ) ∩ L∞(X, dµ).

If p1, p2 ∈ [1,∞) and T is of weak type (pj , pj) for j = 1, 2, that is,
(4.2.15)

spjν({y ∈ Y ; |Tf(y)| > s}) ≤ Cj

∫
X

|f(x)|pj dµ(x), f ∈ L1(X, dµ) ∩ L∞(X, dµ),

for j = 1, 2, then it follows that for p2 < p < p1(∫
Y

|Tf(y)|p dν(y)
) 1

p ≤ Cp

(∫
X

|f(x)|p dµ(x)
) 1

p

, f ∈ L1(X, dµ) ∩ L∞(X, dµ).
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If p1 = ∞ and the hypothesis (4.2.15) is replaced by ∥Tf∥∞ ≤ C∞∥f∥∞ when j = 1, then
the same conclusion holds for p2 < p <∞.

Proof. Let f = gs + hs where

gs(x) =

{
f(x), if |f(x)| < s

0, if |f(x)| ≥ s
, hs(x) =

{
0, if |f(x)| < s

f(x), if |f(x)| ≥ s
.

Since |Tf | ≤ |Tgs|+ |Ths| we have

N(s) = ν({y; |Tf(y)| > s}) ≤ ν({y; |Tgs(y)| > 1
2s}) + ν({y; |Ths(y)| > 1

2s})

≤ (2/s)p1C1

∫
|f(x)|<s

|f(x)|p1 dµ(x) + (2/s)p2C2

∫
|f(x)|≥s

|f(x)|p2 dµ(x),

by (4.2.15) if p1 <∞. Hence

∥Tf∥pp = p

∫ ∞

0

sp−1N(s) ds ≤ p
(
2p1C1

∫∫
|f(x)|<s

sp−1−p1 |f(x)|p1 dµ(x) ds

+ 2p2C2

∫∫
|f(x)|≥s

sp−1−p2 |f(x)|p2 dµ(x) ds
)

= p(2p1(p1 − p)−1C1 + 2p2(p− p2)
−1C2)

∫
X

|f(x)|p dµ(x).

This proves the theorem for p1 < ∞. When p1 = ∞ we can reduce the proof to the case
where ∥Tf∥∞ < 1

2∥f∥∞. Then |Tgs| < 1
2s above so N(s) ≤ ν{y; |Ths(y)| > 1

2s}, and the
proof proceeds as before with one term less.

Remark. There is a more general version of Marcinkiewicz’ interpolation theorem
which deals with maps from Lp to Lq when p ̸= q. The proof is similar but somewhat
more complicated and can be found in Zygmund [1].

Next we extend the Hardy-Littlewood maximal theorem to n dimensions. If f ∈
L1
loc(R

n) we define the maximal function by

(4.2.16) f∗HL(x) = sup
x∈B

1

m(B)

∫
B

|f(y)| dy,

where B is a ball with respect to a fixed norm in Rn. It does not matter which norm is
chosen, so we can use cubes as well as Euclidean balls, but it is important that the shape
is fixed. If ϱ(x) is a positive decreasing function of |x|, then the proof of (4.1.6)′ gives

(4.2.16)′
∫
Rn

|f(x+ t)|ϱ(t) dt ≤ f∗HL(x)

∫
Rn

ϱ(t) dt.

The maximal theorem takes the form:
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Theorem 4.2.5. If f ∈ L1(Rn) then

(4.2.17) m({x; f∗HL(x) > s}) ≤ 3n

s

∫
Rn

|f(x)| dx, s > 0,

where m is the Lebesgue measure. If 1 < p <∞ then

(4.2.18) ∥f∗HL∥p ≤ (3n2pp′)
1
p ∥f∥p, f ∈ Lp(Rn).

Proof. The set Es = {x; f∗HL(x) > s} is the union of all open balls B such that the
mean value of |f | over B exceeds s. For every compact set K ⊂ Es there is a finite family
FK of such balls which contains K. We shall prove that there is a subset F ′

K ⊂ FK

consisting of disjoint balls such that

(4.2.19)
∪

B∈FK

B ⊂
∪

B∈F ′
K

3B

where 3B is the ball with the same center as B but three times larger radius. This implies
that

m(K) ≤
∑

B∈F ′
K

m(3B) = 3n
∑

B∈F ′
K

m(B) ≤ 3ns−1
∑

B∈F ′
K

∫
B

|f(x)| dx,

which implies (4.2.17) since the balls in F ′
K are disjoint and K is an arbitrary compact

subset of Es.
To select the balls F ′

K we first choose a ball B1 ∈ FK with maximal radius. Among
the balls in FK which do not intersect B1 we then choose a ball B2 with maximal radius
and continue so that Bj is always a ball in FK with maximal radius not intersecting
B1, . . . , Bj−1. The selection breaks off since FK is finite. If a ball B ∈ FK has not been
chosen it must intersect one of the chosen ones. If Bj ∩B ̸= ∅ and j is minimal, then the
radius of Bj is at least as large as that of B since B should otherwise have been chosen
instead of Bj . By the triangle inequality it follows that B ⊂ 3Bj , which proves (4.2.19) and
(4.2.17). The estimate (4.2.18) is now a consequence of the Marcinkiewicz interpolation
theorem, with some constant. The constant in (4.2.18) is obtained if one repeats the proof
of (4.1.8) which is left for the reader to do.

Exercise 4.2.1. a) Prove for the Hardy-Littlewood maximal function (4.2.16) that

m({x; f∗HL(x) > s}) ≤ 2 · 3ns−1

∫
|f(x)|>s/2

|f(x)| dx, f ∈ L1
loc(R

n), s > 0.

b) Prove that if φ ∈ C1(R), φ(0) = 0 and φ′ ≥ 0 then∫
φ(f∗HL(x)) dx ≤ 2 · 3n

∫
|f(x)|

∫
0<t<2|f(x)|

φ′(t)

t
dt.

c) Prove that when ε > 0 then∫
f∗HL(x)

ε+1(1 + f∗HL(x))
−ε dx

≤ 2 · 3n
(
(1 + ε−1)

∫
2|f(x)|<1

|f(x)| dx+

∫
2|f(x)|≥1

|f(x)|(1 + ε+ ε−1 + log |2f(x)|) dx
)
.
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Exercise 4.2.2. Prove with the notation in Lemma 4.2.3, I = Rn, that if J is an axis
parallel cube with J ∩ Ij ̸= ∅ but J ̸⊂ 2Ij then Ij ⊂ 5J , and deduce that

1

m(J)

∫
J

|f(y)| dy ≤ s(1 + 10n) if J ̸⊂ ∪(2Ij), s > 0.

Use this to give another proof of (4.2.17) (with 3n replaced by a larger constant).

Exercise 4.2.3. With f∗HL defined using the norm |x| = max1≤j≤n |xj |, x ∈ Rn,
a) prove that

m({x; f∗HL(x) ≥ s}) ≥ 2−ns−1

∫
|f(x)|>s

|f(x)| dx;

b) prove that if φ ∈ C1(R), φ(0) = 0 and φ′ ≥ 0 then

φ(f∗HL(x)) dx ≥ 2−n
∫

|f(x)|
∫
t<|f(x)|

φ′(t)

t
dt;

c) prove that when 0 < ε < 1 then∫
f∗HL(x)

ε+1(1 + f∗HL(x))
−ε dx

≥ 2−n−1
(
( 12 + ε−1)

∫
|f(x)<1

|f(x)|1+ε dx+

∫
|f(x)|>1

|f(x)|( 12 + ε−1 + log |f(x)|) dx
)
.

Later on we shall also need an analogue of Theorem 4.1.2′ for the maximal function

(4.2.16)′′ f∗∗HL(x, t) = sup
x∈B,r(B)>t

1

m(B)

∫
B

|f(y)| dy, x ∈ Rn, t > 0,

which also takes the radius r(B) of the ball B into account. We can replace f∗HL(x) by
f∗∗HL(x, t) in (4.2.16)′ if ϱ(y) is constant when |y| < t.

Theorem 4.2.5′. Let ν be a positive measure in Rn × R+ such that for every ball
B ⊂ Rn

(4.2.20) ν(B × (0, r(B)) ≤ m(B),

where m is the Lebesgue measure in Rn. Then it follows that

(4.2.17)′ ν({(x, t); f∗∗HL(x, t) > s}) ≤ 3n

s

∫
|f(x)| dx, f ∈ L1(Rn), s > 0.

If 1 < p <∞ then

(4.2.18)′
(∫

|f∗∗HL(x, t)|pdν(x, t)
)1/p

≤ (3n2pp′)
1
p ∥f∥p, f ∈ Lp(Rn).
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Proof. For any compact subset K of the open set where f∗∗HL(x, t) > s we can find a
finite family FK of balls B such that

∫
B
|f(y)| dy > sm(B) and

K ⊂
∪

B⊂FK

B × (0, r(B)).

As in the proof of Theorem 4.2.5 we choose a finite disjoint sequence B1, B2, · · · ∈ FK

with r(Bj) decreasing such that for every B ∈ FK we have r(B) ≤ r(Bj) if B ∩ Bk = ∅
for k < j and B ∩Bj ̸= ∅ for some j. When B ∩Bj ̸= ∅ and j is minimal it follows that

B × (0, r(B)) ⊂ (3Bj)× (0, r(Bj)) ⊂ (3Bj)× (0, r(3Bj))

which gives K ⊂
∪
(3Bj)× (0, r(3Bj)), hence by (4.2.20)

ν(K) ≤
∑

m(3Bj) = 3n
∑

m(Bj) ≤ 3n
∑∫

Bj

|f(y)| dy/s ≤ 3n∥f∥1/s.

This proves the weak type estimate (4.2.17)′, and as before it implies (4.2.18)′ by the
Marcinkiewicz interpolation theorem.

With m and M as in Lemma 4.2.1 we can form a maximal function

f∗M (x) = sup
0<ε<δ

∣∣∣ ∫
ε<|x|<δ

f(x− y)M(y) dy
∣∣∣.

The proof of (4.1.12) gives with no essential change apart from substitution of Theorems
4.2.2 and 4.2.5 for Theorems 4.1.1 and 4.1.2

∥f∗M∥p ≤ Cp∥f∥p, f ∈ Lp(R), 1 < p <∞.

This implies that

lim
ε→0,δ→∞

∫
ε<|x|<δ

f(x− y)M(y) dy = (m(D)f)(x)− aBf(x) for almost all x ∈ Rn

where m(D)f is defined by continuous extension of m(D) from S to Lp(Rn) and B is the
unit ball. We leave the repetition of the details for the reader. The analogue of Proposition
4.1.6 for functions in Rn is obvious, for it suffices to consider products of functions of one
variable, and Proposition 4.1.7 also carries over to the n-dimensional case with the same
proof.

Thus we arrive at the discussion of Hardy spaces, which will elucidate the failure of
Theorem 4.2.2 for p = 1. When n > 1 we have an infinite dimensional supply of operators
m(D) to choose from, but at first we shall only consider n of them, chosen so that the
proof of Theorem 4.1.15 can be extended. The others will be controlled afterwards.

Let |ξ| = (ξ21 + · · ·+ ξ2n)
1
2 be the Euclidean norm now, and set

(4.2.21) Rj(ξ) = −iξj/|ξ|, j = 1, . . . , n.

The corresponding convolution operators Rj(D) are called the Riesz operators. Since the
inverse Fourier transform of ξ 7→ 1/|ξ| is a constant times the function x 7→ |x|1−n, for
reasons of homogeneity and orthogonal invariance, it follows by differentiation that the
kernel of the convolution operator Rj(D) is x 7→ cxj |x|−n−1 for some constant c which will
be determined in a moment. Since Rj is odd the constant aB in the representation (4.2.3)
of the inverse Fourier transform of Rj must vanish. Sometimes we shall use the notation
R0 = 1, so that R0(D) = Id, the identity operator.
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Definition 4.2.6. The Hardy space H 1(Rn) is the space of all f ∈ L1(Rn) such that
Rj(D)f ∈ L1(Rn) for j = 1, . . . , n.

Before stating an analogue of Proposition 4.1.9 we must make some preliminary remarks
on the Poisson kernel P0 in R1+n. It is the kernel giving the unique bounded solution of
the Laplace equation in R1+n

+ = {(t, x); t > 0, x ∈ Rn} with given boundary values
f ∈ L∞(Rn)∩C0(Rn), say, when t = 0. If E is the fundamental solution of the Laplacian
in R1+n, then

(4.2.22) P0(t, x) = 2∂E(t, x)/∂t = 2t(|x|2 + t2)−
1
2 (n+1)/cn+1, (t, x) ∈ R1+n

+ ,

where cn+1 is the area of the unit sphere Sn ⊂ Rn+1. The Fourier transform of P0(t, x)
with respect to x is ξ 7→ e−t|ξ|, for it is continuous and uniformly bounded, → 1 as t → 0
and is annihilated by ∂2/∂t2 − |ξ|2 since P0 is harmonic. The kernel

(4.2.23) Pj(t, x) = 2∂E(t, x)/∂xj = 2xj(|x|2 + t2)−
1
2 (n+1)/cn+1, (t, x) ∈ R1+n

+ ,

is also harmonic, and the distribution limit when t → 0 is the inverse Fourier trans-
form of Rj , which is thus equal to vp 2xj |x|−n−1/cn+1. In fact, the Fourier transform of

∂Pj(t, x)/∂t = ∂P0(t, x)/∂xj with respect to x is ξ 7→ iξje
−t|ξ|, and the Fourier transform

of Pj tends to 0 in S ′ as t → +∞, so it is the integral ξ 7→ −iξj |ξ|−1e−t|ξ| = Rj(ξ)e
−t|ξ|

vanishing when t → +∞. Thus the Fourier transform of Pj(t, x) with respect to x is

Rj(ξ)e
−t|ξ| for j = 0, . . . , n.

We can now state and prove an analogue of Proposition 4.1.9. To simplify notation we
shall sometimes use the notation x0 = t, ∂0 = ∂/∂t, ∂j = ∂/∂xj when j = 1, . . . , n.

Proposition 4.2.7. H 1(Rn) is a Banach space with the norm ∥f∥H 1 =
∑n

0 ∥Rjf∥L1 ,
and it is invariant under complex conjugation which even preserves the norm. When
f ∈ H 1(Rn) then the functions

(4.2.24) (Pjf)(t, x) =

∫
Pj(t, x− y)f(y) dy, j = 0, . . . , n,

are conjugate harmonic in R1+n
+ , in the sense that ∂kPjf = ∂jPkf , j, k = 0, . . . , n, and∑n

0 ∂jPjf = 0. They have boundary values Rjf in the L1 sense,

(4.2.25)

∫
Rn

|(Pjf)(t, x)| dx ≤ ∥Rjf∥L1 , t > 0,

lim
t→+0

∫
Rn

|(Pjf)(t, x)−Rj(D)f(x)| dx = 0, f ∈ H 1(Rn).

If f ∈ L1(Rn) and f̂ has compact support not containing the origin, then f ∈ H 1(Rn).
Such functions in S (Rn) are dense in H 1(Rn), and the closure of H 1(Rn) in L1(Rn)

is {f ∈ L1(Rn); f̂(0) = 0}.

Proof. Since Rj(D) is continuous from L1(Rn) to S ′(Rn) it follows that H 1(Rn) is
complete, hence a Banach space, and since the kernel of Rj(D) is real valued it is clear
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that H 1(Rn) is invariant under complex conjugation. If f ∈ H 1(Rn) then Rj(ξ)f̂(ξ) is

continuous for j = 0, . . . , n, which implies f̂(0) = 0, that is,
∫
Rn f(x) dx = 0. If f ∈ L1

and supp f̂ is a compact subset of Rn \ 0 it follows as in the one dimensional case that
f ∈ H 1(Rn).

Choose χ ∈ S (Rn) so that χ̂ ∈ C∞
0 (Rn) and χ̂ = 1 in a neighborhood of the origin.

With χε(x) = εnχ(εx) we claim that

(4.2.26) lim
ε→0

∥χε ∗ f∥L1 = |f̂(0)|∥χ∥L1 , lim
t→∞

∥χt ∗ f − f∥L1 = 0, f ∈ L1(Rn).

As for (4.1.16) it suffices to prove this when f̂ ∈ C∞
0 (Rn), and the second part is trivial

then. To prove the first part we write the Fourier transform of gε = χε ∗ f − χεf̂(0) as

ĝε(ξ) = χ̂(ξ/ε)(f̂(ξ)− f̂(0)),

and conclude that

ε2|α|
∫
Rn

|Dαĝε(ξ)|2 dξ ≤ Cαε
n+2

for every α. By Parseval’s formula it follows for every positive integer N that∫
Rn

(1 + ε2|x|2)N |gε(x)|2 dx ≤ CNε
n+2,

so Cauchy-Schwarz’ inequality gives ∥gε∥L1 ≤ C ′ε, which proves (4.2.26).

If f ∈ L1(Rn) and f̂(0) = 0 it follows that ft,ε = χt ∗ (f − χε ∗ f) → f in L1 as
t → ∞ and ε → 0, and the Fourier transform of ft,ε has compact support in Rn \ {0}
so ft,ε ∈ H 1(Rn). This proves that the closure of H 1(Rn) in L1(Rn) consists of all

f ∈ L1(Rn) with f̂(0) = 0. Since Rj(D)ft,ε = (Rj(D)f)t,ε we have ft,ε → f in H 1(Rn) if
f ∈ H 1(Rn). If we regularize ft,ε to φ

δft,ε ∈ S (Rn) as in the proof of Proposition 4.1.9,
then φδft,ε → ft,ε in L

1 as δ → 0, and the support of the Fourier transform is contained in
a fixed compact set K ⊂ Rn \ {0} for small δ. We can choose rj ∈ S so that r̂j = Rj in a
neighborhood of K, and then Rj(D)(φδft,ε) = rj ∗ (φδft,ε) for small δ. This converges in
L1 to rj ∗ ft,ε = Rj(D)ft,ε as δ → 0, which completes the proof of the density statement
in the proposition.

When f̂ ∈ C∞
0 (Rn \ {0}) then the Fourier transform of (Pjf)(t, x) with respect to x is

ξ 7→ e−t|ξ|Rj(ξ)f̂(ξ), so (Pjf)(t, x) is the Poisson integral of Rjf . This proves (4.2.25) for
f in a dense subset of H 1(Rn), and by continuity it follows for all f ∈ H 1(Rn).

The following lemma is analogous to Lemma 4.1.10 but it is slightly harder to prove
when n is even. We state it in somewhat greater generality than needed right now to
prepare for an analogue of Corollary 4.1.19, but to simplify the proof we restrict ourselves
to functions which will become atoms in H 1(Rn). (See also Lemma 4.4.3.)

Lemma 4.2.8. Let f ∈ L2(Rn) have support in a ball B and assume that
∫
f(x) dx = 0.

Let m ∈ Cν(Rn \ {0}) for some ν > n/2, and assume that

(4.2.27) |ξ||α||Dαm(ξ)| ≤ 1, if 0 ̸= ξ ∈ Rn, |α| ≤ ν.
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Then it follows that ∥m(D)f∥1 ≤ Cn
√
|B|∥f∥2. In particular, f ∈ H 1(Rn) and ∥f∥H 1 ≤

(n+ 1)Cn
√
|B|∥f∥2. Here |B| is the Lebesgue measure of B.

Proof. Without restriction we may assume that the center of B is at the origin. If

the radius is δ then g(x) = δnf(δx) has support in the unit ball, ĝ(ξ) = f̂(ξ/δ) and

m(ξ)f̂(ξ) = m(ξ)ĝ(δξ) = mδ(δξ)ĝ(δξ) where mδ(ξ) = m(ξ/δ) also satisfies (4.2.27). Thus
m(D)f = δ−n(mδ(D)g)(·/δ), so ∥m(D)f∥1 = ∥mδ(D)g∥1. Since δn/2∥f∥2 = ∥g∥2 the
proof has now been reduced to the case where B is the unit ball, which we assume from
now on.

Cauchy-Schwarz’ inequality gives at once that ∥f∥1 ≤
√
|B|∥f∥2, and by Parseval’s

formula

(2π)−n
∫
Rn

|Dαf̂(ξ)|2 dξ =
∫
Rn

|xαf(x)|2 dx ≤ ∥f∥22,

for arbitrary α. Choose ψ ∈ C∞
0 (Rn) so that ψ(ξ) = 1 when |ξ| ≤ 1 and ψ(ξ) = 0 when

|ξ| ≥ 2, and set m = m1 +m2 where m1 = ψm and m2 = (1 − ψ)m. Since |ξ| ≥ 1 when
ξ ∈ suppm2, the derivatives of m2 of order ≤ ν are bounded, and we obtain∫

Rn

|xαm2(D)f(x)|2 dx = (2π)−n
∫
Rn

|Dα(m2(ξ)f̂(ξ))|2 dξ ≤ Cα∥f∥22,

when |α| ≤ ν. Hence ∫
(1 + |x|2)ν |m2(D)f(x)|2 dx ≤ C∥f∥2,

and by Cauchy-Schwarz’ inequality this implies ∥m2(D)f∥1 ≤ C∥f∥2, with another con-
stant C, because 2ν > n.

When ξ ∈ suppm1 we have |ξ| ≤ 2, and |Dαf̂(ξ)| ≤ Cα∥f∥2 for every α when |ξ| ≤ 2,
but we only have bounds for |ξ|αDαm1(ξ). Let ν be the smallest integer > n/2, thus
(n+ 1)/2 ≤ ν ≤ (n+ 2)/2. Since

Dα(m1(ξ)f̂(ξ))− (Dαm1(ξ))f̂(ξ)

only contains derivatives of m1 of order |α| − 1 and |f̂(ξ)| = |f̂(ξ)− f̂(0)| ≤ C∥f∥2|ξ|, we
have

|Dα(m1(ξ)f̂(ξ))| ≤ Cα|ξ|1−ν∥f∥2, |α| ≤ ν.

If n is even then ν−1 = n/2 so this bound is not in L2 when |ξ| < 2. However, if 1 < p < 2

we have ∥Dα(m1f̂)∥p ≤ Cp∥f∥2 when |α| ≤ ν, and it follows from the Hausdorff-Young
inequality that with 1/p+ 1/p′ = 1(∫

Rn

|xαm1(D)f(x)|p
′
dx

) 1
p′ ≤ Cp∥f∥2.

Thus we have a bound for the norm of (1+ |x|)ν |m1(D)f(x)| in Lp′(Rn). When (1+ |x|)−ν
is in Lp, that is, n/ν < p < 2, it follows from Hölder’s inequality that ∥m1(D)f∥1 ≤ C∥f∥2;
we can for example take p = (2n+ 1)/(n+ 1). This completes the proof of the lemma.
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If L is a continuous linear form on H 1(Rn) it follows from Lemma 4.2.8 that L for
every ball B restricts to a continuous linear form on {f ∈ L2(B);

∫
B
f dx = 0}. Hence

there is a unique function ΦB ∈ L2(B) with
∫
B
ΦB dx = 0 such that

L(f) =

∫
f(x)ΦB(x) dx, if f ∈ L2, supp f ⊂ B,

∫
f(x) dx = 0,

and
∫
B
|ΦB(x)|2 dx ≤ C ′

nm(B)∥L∥2(H 1)′ . If B1 ⊂ B2 then ΦB2
− ΦB1

is a constant cB2B1

in B1, and ΦB2 − cB2B1 extends ΦB1 to B2. From the sequence ΦBj where Bj = {x ∈
Rn; |x| < j} we obtain a function φ ∈ L2

loc(R
n) equal to ΦBj − cBjB1 in Bj . For every

ball B we have ΦB = φ− φB where φB =
∫
B
φdx/m(B), and

(4.2.28) L(f) =

∫
f(x)φ(x) dx

for every f ∈ L2(Rn) with compact support and
∫
Rn f(x) dx = 0. This is a dense subset of

H 1(Rn). In fact, by Proposition 4.2.7 functions f ∈ S with f̂ ∈ C∞
0 (Rn \{0}) are dense.

If f is such a function and 0 ≤ ψ ∈ C∞
0 , ψ = 1 in a neighborhood of 0 and

∫
ψ dx = 1, it

follows from Lemma 4.2.8 that

fj(x) = ψ(2−jx)f(x)− cjψ(2
−jx)

is in H 1(Rn) if the integral is 0, that is,

cj = 2−nj
∫
ψ(2−jx)f(x) dx = 2−nj

∫
(ψ(2−jx)− 1)f(x) dx.

Thus cj = O(2−νj) for every ν, and it follows from Lemma 4.2.8 that ∥fj − fj+1∥H 1 =
O(2−νj) for every ν, since this is true for the L2 norm. Since fj → f it follows that
∥f − fj∥H 1 = O(2−νj) for every ν, so we have proved (4.2.28) for a dense subset of H 1.
In a moment we shall see that φ ∈ S ′, and since fj → f in S this will prove that (4.2.28)

is valid when f̂ ∈ C∞
0 (Rn \ {0}).

We have now been led to introduce an analogue of Definition 4.1.11:

Definition 4.2.9. A function f ∈ L2
loc(R

n) is said to be in BMO(Rn) if there is a
constant K such that for every ball B ⊂ Rn

(4.2.29)
1

m(B)

∫
B

|f(x)− fB |2 dx ≤ K2, if fB =
1

m(B)

∫
B

f(y) dy.

Example. f(x) = log |x| is in BMO(Rn) but not even locally bounded. Since f(tx) =
log t + log |x| when t > 0 it suffices to verify (4.2.29) for balls B of radius 1. If |x| ≤ 3
when x ∈ B then∫

B

|f(x)− fB |2 dx ≤
∫
B

|f(x)|2 dx ≤
∫
|x|≤3

|f(x)|2dx <∞.

If |x| ≥ 1 when x ∈ B then |f ′(x)| ≤ 1 when x ∈ B, hence |f(x) − fB | ≤ 2 if x ∈ B, and∫
B
|f(x) − fB |2 dx ≤ 4m(B) which proves that f ∈ BMO(Rn). More generally it follows

that f(x) =
∫
log |x − y|dµ(y) is in BMO(Rn) if dµ is a measure in Rn with finite total

mass
∫
|dµ|.
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Proposition 4.2.10. BMO(Rn)/C is a Banach space with norm equal to the smallest
constant K such that (4.2.29) is valid. With B = {x ∈ Rn; |y − x| < δ} it follows from
(4.2.29) that

(4.2.29)′ δ

∫
Rn

|φ(x)− φB |2

(|x− y|+ δ|)n+1
dx ≤ Cn∥φ∥2BMO.

Proof. Let Bk = {x ∈ Rn; |x − y| < 2kδ} for k = 0, 1, . . . , and set ck = φBk
=∫

Bk
φdx/m(Bk). If ∥φ∥BMO = 1 then

1

m(Bk+1)

∫
Bk+1

|φ(x)− ck+1|2 dx ≤ 1, hence |ck − ck+1|2 ≤ 2n,

because m(Bk+1)/m(Bk) = 2n. By the triangle inequality |ck − c0| ≤ 2n/2k and∫
Bk

|φ(x)− c0|2 dx ≤ 2

∫
Bk

(|φ(x)− ck|2 + |ck − c0|2) dx

≤ 2(1 + 2nk2)m(Bk) = 2(1 + 2nk2)2knm(B0).

Hence it follows that

∞∑
0

2−k(n+1)

∫
Bk

|φ(x)− c0|2 dx ≤ Cm(B0),

which gives

2−n−1

∫
Rn

|φ(x)− c0|2

(|x− y|/δ + 1)n+1
dx ≤ Cm(B)

and proves (4.2.29)′ for another constant Cn. The rest of the proof is exactly the same as
that of Proposition 4.1.12.

As in Section 4.1 we must now study the Poisson integral of a function φ ∈ BMO(Rn),
defined by (4.2.22), and prove an analogue of Lemma 4.1.13.

Lemma 4.2.11. If φ ∈ L2(Rn) and Φ is the Poisson integral P0φ of φ, then

(4.2.30) 2

∫∫
t>0

t|Φ′(t, x)|2 dx dt = ∥φ∥22,

where |Φ′(t, x)|2 = |∂Φ(t, x)/∂t|2 +
∑n

1 |∂Φ(t, x)/∂xj |2. If φ(x) = 0 when |x| < δ and

φ(x)/|x|(n+1)/2 ∈ L2, then

(4.2.31) |Φ′(t, 0)|2 ≤ Cn(t+ δ)−1

∫
|φ(x)|2|x|−n−1 dx.
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If φ ∈ BMO(Rn) then we have for y ∈ Rn and δ > 0

(4.2.32)

∫∫
Ty,δ

t|Φ′(t, x)|2 dx dt ≤ Cnδ
n∥φ∥2BMO, Ty,δ = {(t, x); |x− y| < δ, 0 < t < δ}.

Proof. The proof of (4.2.30) is the same as that of the first part of (4.1.22), which is
independent of the dimension. To prove (4.2.31) we note that |P ′

0(t, x)| ≤ C(t+ |x|)−n−1

for reasons of homogeneity. Since Φ′(t, x) =
∫
P ′
0(t, x− y)φ(y) dy we obtain using Cauchy-

Schwarz’ inequality

|Φ′(t, 0)|2 ≤ C2

∫
Rn

|φ(y)|2|y|−n−1 dy

∫
|y|>δ

|y|n+1/(t+ |y|)2n+2 dy.

In the last integral we estimate t+ |y| below by 1
2 (t+ δ+ |y|). The integral over the whole

of Rn is then convergent and equal to a constant times (t + δ)−1, which proves (4.2.31).
The estimate (4.2.32) follows then as in the proof of Lemma 4.1.13 by writing φ as the
sum of the mean value over the ball {x; |y − x| < 2δ}, a function supported by this ball
and one which vanishes in it. The repetition is left as an exercise.

In the following analogue of Proposition 4.1.14 special properties of the Riesz operators
will be essential.

Proposition 4.2.12. Let φ ∈ L2(Rn, dx/(1+|x|)n+1) and assume that for the Poisson
integral Φ of φ we have

(4.2.33)

∫
Ty,δ

t|Φ′(t, x)|2 dx dt ≤ A2δn, y ∈ Rn, δ > 0,

where Ty,δ is defined by (4.2.32). Then it follows that

(4.2.34)
∣∣∣ ∫

Rn

φf dx
∣∣∣ ≤ CnA∥f∥H 1 , if f ∈ S , f̂ ∈ C∞

0 (Rn \ {0}),

so φ defines a continuous linear form on H 1(Rn).

Proof. We may assume that φ and f are real valued. As in the proof of Proposition
4.1.14 it follows from (4.2.30) that

(4.2.35)

∫
Rn

φf dx = 2

∫∫
t>0

t(Φ′(t, x), F ′
0(t, x)) dx,

where F0 = P0f is the Poisson integral of f . As in the proof of (4.1.28) we shall also

consider the harmonic functions Fj = Pjf and the vector F⃗ = (F0, . . . , Fn) which is the
gradient of a harmonic function. The reason is that as will be verified in a moment

(4.2.36) |F⃗ ′|2 =
n∑

j,k=0

|∂jFk|2 ≤ (n+ 1)|F⃗ |∆|F⃗ |, when F⃗ ̸= 0.



SINGULAR INTEGRALS IN HIGHER DIMENSIONS 107

Here ∂j = ∂/∂xj when j = 1, . . . , n and ∂0 = ∂/∂t. Since |F ′
0| ≤ |F⃗ ′| it follows from

(4.2.35) that

(4.2.37)
∣∣∣ ∫ φf dx

∣∣∣ ≤ 2

∫∫
t>0

t|Φ′(t, x)||F⃗ ′(t, x)| dx dt

≤ 2
(∫∫

t>0

t|Φ′(t, x)|2|F⃗ (t, x)| dx dt
) 1

2
(∫∫

t>0

t|F⃗ ′(t, x)|2|F⃗ (t, x)|−1 dx dt
) 1

2

.

Using (4.2.36) we obtain∫∫
t>0

t|F⃗ ′(t, x)|2|F⃗ (t, x)|−1 dx dt ≤ (n+ 1)

∫∫
t>0

t∆|F⃗ | dx dt

≤ (n+ 1)

∫
|F⃗ (0, x)| dx ≤ (n+ 1)∥f∥H 1 ,

exactly as in the proof of (4.1.26). In a moment we shall prove that (4.2.36) means that

|F⃗ |q is subharmonic when q = n/(n+ 1). Accepting this for a moment we have |F⃗ |q ≤ G

where G is the Poisson integral of g(x) = |F⃗ (0, x)|q. Thus G(t, x) ≤ Cg∗∗HL(x, t), so we

have |F⃗ | ≤ Cpg∗∗(x, t)p if p = 1/q. Hence it follows from (4.2.33) and Theorem 4.2.5′,
with p = 1/q, that the first parenthesis in (4.2.37) can be estimated by CA2∥g∥pp =

C∥F⃗ (0, ·)∥1, which completes the proof of (4.2.34) apart from the verification of (4.2.36)

and the subharmonicity of |F⃗ |q.
Differentiation of the equation |F⃗ |2 =

∑n
0 F

2
ν gives

|F⃗ |∂k|F⃗ | =
n∑
ν=0

FνFνk, k = 0, . . . , n,

where Fνk = ∂kFν is symmetric in ν and k. Since ∆Fν = 0 another differentiation gives

|F⃗ |∆|F⃗ |+
n∑
0

(∂k|F⃗ |)2 =
n∑

k,ν=0

F 2
νk, hence

|F⃗ |∆|F⃗ | =
n∑

k,ν=0

F 2
νk −

n∑
k=0

( n∑
ν=0

FνkFν

)2

/|F⃗ |2.

We claim that the right-hand side is ≥
∑n
k,ν=0 F

2
νk/(n+ 1). By the orthogonal invariance

of the Hilbert-Schmidt norm it suffices to prove this when F⃗ is along a coordinate axis,
say the xn axis. Then the inequality (4.2.36) becomes

n∑
k,ν=0

F 2
νk ≤ (n+ 1)

n−1∑
ν=0

n∑
k=0

F 2
νk.

This is obvious for the off diagonal terms because of the symmetry, since n + 1 ≥ 2, and
for the diagonal terms this means that F 2

nn ≤ n
∑n−1

0 F 2
νν , which follows from the fact
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that the trace is equal to 0, that is, Fnn = −
∑n−1

0 Fνν . This equation which is also

orthogonally invariant comes from the fact that F⃗ is the gradient of a harmonic function,
the Newton potential of 2f ⊗ δ(t).

When F⃗ ̸= 0 we have

∆|F⃗ |q = q|F⃗ |q−1∆|F⃗ |+ q(q − 1)|F⃗ |q−2||F⃗ |′|2 ≥ q|F⃗ |q−2(|F⃗ ′|2/(n+ 1) + (q − 1)||F⃗ |′|2),

by (4.2.36). Since |F⃗ |∂k|F⃗ | =
∑
ν FkνFν we have ||F⃗ |′| ≤ |F⃗ ′| and it follows that ∆|F⃗ |q ≥ 0

if F⃗ ̸= 0 and q − 1 + 1/(n + 1) ≥ 0, that is, q ≥ n/(n + 1). This implies that |F⃗ |q is
subharmonic and completes the proof.

Summing up, we have now extended Theorem 4.1.15 to several variables:

Theorem 4.2.13. The restriction of a continuous linear form L on H 1(Rn) to the

dense subset {f ∈ S ; f̂ ∈ C∞
0 (Rn)\{0}} is of the form L(f) =

∫
fφ dx where φ is uniquely

determined in BMO(Rn)/C. The norm of L in the dual space of H 1(Rn) is equivalent to
the norm of φ in BMO(Rn)/C, and every φ ∈ BMO(Rn)/C defines a continuous linear
form in H 1(Rn).

We leave for the reader to assemble the proof using the preceding results, and pass to
introducing n-dimensional atoms:

Definition 4.2.14. An atom in H 1(Rn) is a function a ∈ L2(Rn) with support in a
ball B such that

(4.2.38) m(B)

∫
B

|a(x)|2 dx ≤ 1,

∫
B

a(x) dx = 0.

From Lemma 4.2.8 it follows that the atoms form a bounded subset of H 1(Rn), and
Theorem 4.2.13 gives the other half of the following corollary:

Corollary 4.2.15. If A is the closed convex hull of the atoms in H 1(Rn) then there
are positive constants C ′

n, C
′′
n such that

(4.2.39) {f ∈ H 1(Rn); ∥f∥H 1 ≤ C ′
n} ⊂ A ⊂ {f ∈ H 1(Rn); ∥f∥H 1 ≤ C ′′

n}.

If C ′′′
n > 1/C ′

n then every f ∈ H 1(Rn) has an atomic decomposition

(4.2.40) f =
∞∑
1

λjaj ,
∞∑
1

|λj | ≤ C ′′′
n ∥f∥H 1 ,

where aj are atoms in H 1(Rn); we have ∥f∥H 1 ≤ C ′′
n

∑∞
1 |λj |.

The proof is left as an exercise since it is a repetition of that of Corollary 4.1.17. We
also leave as an exercise to prove the following extension of Corollary 4.1.18 to the n-
dimensional case:
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Corollary 4.2.16. Let Φ = {φ ∈ C1(Rn); (1 + |x|)n+1(|φ(x)| + |φ′(x)|) ≤ 1}. Set
φt(x) = φ(x/t)/tn and f∗ = supφ∈Φ supt>0 |f ∗ φt| for f ∈ L1(Rn). Then

(4.2.41) ∥f∗∥1 ≤ Cn∥f∥H 1(Rn), if f ∈ H 1(Rn).

However, we shall prove a consequence of this result and Exercise 4.2.3, due to Stein
[3]:

Corollary 4.2.17. If f ∈ H 1(Rn) and f ≥ 0 in an open set Ω ⊂ Rn, then
|f | log+ |f | ∈ L1

loc(Ω).

Proof. Let ϱ ∈ C∞
0 (Ω) and 0 ≤ ϱ ≤ 1, and choose φ ∈ Φ with support in the unit

ball, φ ≥ 0, and φ(0) > 0. (We keep the notation in Corollary 4.2.16.) Then 0 ≤ g = ϱf ,
and g∗HL ≤ Cf∗ in a neighborhood K b Ω of supp ϱ. In fact, φ(x) > 1

2φ(0) > 0 when
|x| < c, hence

0 ≤
∫
|y|<δc

g(x− y) dy ≤
∫
|y|<δc

f(x− y) dy ≤ 2δnφ(0)−1(f ∗ φδ)(x) ≤ 2δnφ(0)−1f∗(x),

if x ∈ K and max(δc, δ) is smaller than the distance fromK to {Ω. This implies g∗HL ≤ Cf∗

in K for some C, and it is clear that g∗HL(x) ≤ C/(1 + |x|)n, x ∈ {K, for some C. Thus∫
g∗HL(x)

ε+1/(1 + g∗HL(x))
ε dx <∞,

if ε > 0, and it follows from Exercise 4.2.3 that |g| log+ |g| ∈ L1.

The result should be compared to the n dimensional version of Proposition 4.1.7. Next
we prove an extension of Corollary 4.1.19:

Corollary 4.2.18. If m ∈ Cν(Rn \ {0}) satisfies (4.2.27) for some ν > n/2 then
m(D) is continuous from H 1(Rn) to H 1(Rn) and

(4.2.42) ∥m(D)f∥H 1 ≤ Cn∥f∥H 1 , f ∈ H 1(Rn).

Proof. First we prove the weaker result

(4.2.43) ∥m(D)f∥L1 ≤ Cn∥f∥H 1 , f ∈ H 1(Rn).

It is sufficient to verify this when f is an atom, and then it was proved in Lemma 4.2.8. In

particular, (4.2.43) is true when f̂ ∈ C∞
0 (Rn\{0}), and then it is clear that Rj(D)m(D)f =

mj(D)f where mj = Rjm satisfies (4.2.27) after division by a suitable constant. Hence

∥m(D)f∥H 1 =
n∑
0

∥Rj(D)m(D)f∥L1 =
n∑
0

∥mj(D)f∥L1 ≤ C ′∥f∥H 1 ,

for all f in a dense subset of H 1(Rn), which completes the proof.

Corollary 4.2.16 justifies the claim made earlier that nothing was lost by just including
the Riesz operators Rj in the definition of H 1(Rn).
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4.3. Wavelets as bases in Lp and in H 1. Let us first recall basic definitions and
facts concerning bases in separable Banach spaces.

Definition 4.3.1. A Schauder basis in a Banach space B is a sequence ej ∈ B, j =
1, 2, . . . such that every x ∈ B has a unique representation as a sum

x =
∞∑
1

xjej , that is, ∥x−
n∑
1

xjej∥ → 0, as n→ ∞.

Here xj are real or complex depending on whether B is a real or a complex Banach
space.

Proposition 4.3.2. If (ej)
∞
1 is a Schauder basis in B then there is a constant C such

that

(4.3.1) sup
n

∥
n∑
1

xjej∥ ≤ C∥x∥, if x =
∞∑
1

xjej .

In particular, |xj |∥ej∥ ≤ 2C∥x∥, so the linear forms
∑∞

1 xjej 7→ xj∥ej∥ in B are uniformly
bounded. Conversely, if ej ∈ B \ {0} and the finite linear combinations of e1, e2, . . . are
dense in B, then (ej)

∞
1 is a Schauder basis in B if there is a constant C such that

(4.3.2) ∥
n∑
1

xjej∥ ≤ C∥
N∑
1

xjej∥, when n ≤ N.

Here xj are arbitrary scalars.

Proof. Assume first that (ej)
∞
1 is a Schauder basis, and set

|||x||| = sup
n

∥
n∑
1

xjej∥, if x =
∞∑
1

xjej .

This is a new norm with ∥x∥ ≤ |||x|||, x ∈ B, and we shall prove that B is complete also
with this norm. By Banach’s theorem this will imply that |||x||| ≤ C∥x∥, which is the
inequality (4.3.1). To prove the completeness we first observe that

|xj |∥ej∥ ≤ 2|||x|||, if x =
∞∑
1

xjej ,

so the map x 7→ |xj | is continuous for this larger norm. If xν =
∑∞

1 xνkek and |||xν−xµ||| →
0 as ν, µ→ ∞, it follows that xνk−x

µ
k → 0, hence limν→∞ xνk = xk exists for every k. Since

∥
n∑
1

(xνk − xµk)ek∥ ≤ |||xν − xµ|||,
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we have for every ε > 0

∥
n∑
1

(xνk − xk)ek∥ ≤ lim
µ→∞

|||xν − xµ||| < ε

if ν > νε. Hence

∥
m∑
n+1

xkek∥ ≤ ∥
m∑
n+1

xνkek∥+ 2ε < 3ε, n < m,

if n and m are large enough, so
∑∞

1 xkek = x exists and |||xν − x||| ≤ ε when ν > νε. This
completes the proof of the first part.

Now assume that (4.3.2) is valid. Then

max
j≤N

|xj |∥ej∥ ≤ 2C∥
N∑
1

xjej∥,

which proves that the elements ej are linearly independent and that the map
∑N

1 xjej 7→
xj∥ej∥ extends from the set E of finite linear combinations of the elements ej to a linear
form Lj on B with norm ≤ 2C. We have

sup
n

∥
n∑
1

Lj(x)ej/∥ej∥∥ ≤ C∥x∥, x ∈ E.

Since the maps B ∋ x 7→
∑n

1 Lj(x)ej/∥ej∥ ∈ B are uniformly bounded and converge
to the identity when x ∈ E, it follows that they converge strongly to the identity, so
x =

∑∞
1 Lj(x)ej/∥ej∥ for every x ∈ B. If

∑∞
1 xjej = 0 then

∥
n∑
1

xjej∥ ≤ lim
N→∞

∥
N∑
1

xjej∥ = 0

which proves that xj = 0 for every j. Thus (ej)
∞
1 is a Schauder basis.

The useful property of a Schauder basis is that with the notation in the proof the pro-
jections x 7→

∑n
1 Lj(x)ej/∥ej∥ on the linear span of the first n elements have a uniformly

bounded norm. This allows approximation of arbitrary bounded operators by operators of
finite rank with uniformly bounded norm.

A series
∑∞

1 yj with yj ∈ B is said to converge unconditionally to y ∈ B if for every
ε > 0 there is a finite subset I of N = {1, 2, . . . } such that ∥

∑
j∈J yj − y∥ < ε for all finite

subsets J of N containing I. This implies that
∑∞

1 yj = y and that this remains true for
an arbitrary rearrangement of the terms; conversely, if the convergence is independent of
the ordering then the series converges unconditionally.

Definition 4.3.3. A Schauder basis (ej)
∞
1 in B is called unconditional if every x ∈ B

has a unique representation x =
∑∞

1 xjej and the series is unconditionally convergent.
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Proposition 4.3.4. If (ej)
∞
1 is an unconditional Schauder basis in B then there is a

constant C such that

(4.3.3) sup
J

∥
∑
j∈J

xjej∥ ≤ C∥x∥, if x =
∞∑
1

xjej .

Here J is an arbitrary finite subset of N. Conversely, if ej ∈ B \ {0} and the finite linear
combinations are dense in B, then (ej)

∞
1 is an unconditional Schauder basis if there is a

constant C such that

(4.3.4) ∥
∑
j∈J

xjej∥ ≤ C∥
∑
i∈I

xiei∥, if J ⊂ I,

where I is any finite subset of N and xi are scalars.

The proof is essentially a repetition of the proof of Proposition 4.3.2, now with

|||x||| = sup
J

∥
∑
j∈J

xjej∥, if x =
∞∑
1

xjej ,

so we leave it as an exercise.
The inequality (4.3.4) is equivalent to

(4.3.4)′ ∥
∑
i∈I

λixiei∥ ≤ C∥
∑
i∈I

xiei∥, if 0 ≤ λi ≤ 1, i ∈ I.

In fact, (4.3.4) means that this is true for all λ ∈ {0, 1}I , while (4.3.4)′ states that this
is true for all λ in the cube with these vertices, which follows from the convexity of the
norm. From (4.3.4)′ it follows that

(4.3.4)′′ ∥
∑
i∈I

λixiei∥ ≤ 2C∥
∑
i∈I

xiei∥, if − 1 ≤ λi ≤ 1, i ∈ I,

and even for complex scalars λi we obtain

(4.3.4)′′′ ∥
∑
i∈I

λixiei∥ ≤ 4C∥
∑
i∈I

xiei∥, if |λi| ≤ 1, i ∈ I.

We can take any one of these conditions as a criterion for unconditional Schauder bases.
Roughly speaking they mean that the norm of a linear combination of the basis elements
is essentially determined by the absolute values of the coefficients, independently of the
arguments (or signs).

It is known that there is no unconditional Schauder basis in L1(Rn), but wavelets
provide such bases in the Lp spaces which have one:
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Theorem 4.3.5. Let ψr, r ∈ {0, 1}n \ {0} be orthonormal wavelets in C1
0 (R

n), as in
Theorem 3.2.6. Then the orthonormal basis

ψr,j,k(x) = 2nj/2ψr(2
jx− k), 0 ̸= r ∈ {0, 1}n, j ∈ Z, k ∈ Zn,

in L2(Rn) is an unconditional basis in Lp(Rn) when 1 < p < ∞. If ψr ∈ C2
0 (R

n) it is
also an unconditional basis in H 1(Rn).

The theorem remains true with much weaker assumptions on smoothness and for wave-
lets which just decay sufficiently fast at infinity, but the hypotheses made here are con-
venient in the proof and we know from Chapter III that such wavelets exist. Since∫
ψr(x) dx = 0 (see Proposition 3.3.1 for the one-dimensional case) we know that

2nj/2ψr,j,k/C is an atom in H 1(Rn) for some constant C, and it is clear that ψr,j,k ∈
Lp(Rn) for 1 ≤ p ≤ ∞. The first step in the proof of Theorem 4.3.5 is to establish
completeness of the wavelets.

Lemma 4.3.6. If f ∈ C∞
0 (Rn) then the wavelet expansion

∑
ψr,j,k(f, ψr,j,k) converges

to f in Lp for 1 < p ≤ ∞. If
∫
Rn f(x) dx = 0 it converges to f in H 1(Rn).

Proof. We know already that the series converges to f in L2(Rn). It is therefore
sufficient to prove that it converges in Lp (resp. H 1), for the sum must then be equal to
f . To estimate the coefficients

fr,j,k =

∫
f(x)ψr,j,k(x) dx = 2nj/2

∫
f(x)ψr(2

jx− k) dx

we first assume j ≥ 0. Since
∫
ψr(x) dx = 0 we have

fr,j,k = 2nj/2
∫

(f(x)− f(k/2j))ψr(2
jx− k) dx,

and since |f(x)− f(k/2j)| ≤ C|x− k/2j |, we obtain

|fr,j,k| ≤ 2nj/2C

∫
|x− k/2j ||ψr(2jx− k)| dx ≤ C ′2−nj/2−j .

Hence ∥ψr,j,kfr,j,k∥∞ ≤ C2−j , and since only a bounded number of supports can overlap
for fixed j this proves uniform convergence of the sum for j ≥ 0. We have ∥ψr,j,kfr,j,k∥H 1 ≤
C2−j−nj , and since fr,j,k = 0 unless |2jx − k| ≤ C for some x ∈ supp f , the number of
terms is O(2nj) which proves H 1 convergence too. Thus there is convergence in Lp for
1 ≤ p ≤ ∞.

Now assume that j < 0. Then there is a fixed bound for the number of non-zero coeffi-
cients fr,j,k with the same j, and |fr,j,k| ≤ C2nj/2. Since ∥ψr,j,k∥p = 2nj(1/2−1/p)∥ψr∥p we

have ∥ψr,j,kfr,j,k∥p ≤ C2nj(1−1/p) which proves Lp convergence of the sum for j < 0 when
p > 1. When

∫
f(x) dx = 0 and f(y)ψr(2

jy − k) ̸= 0 for some y we have

|fr,j,k| = |2nj/2
∫
f(x)(ψr(2

jx− k)− ψr(2
jy − k)) dx|

≤ C2nj/2
∫

|f(x)|2j |x− y| dx ≤ C ′2nj/2+j .
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Since 2nj/2ψr,j,k has bounded norm in H 1 it follows that

∥ψr,j,kfr,j,k∥H 1 ≤ C2j ,

and we get convergence of the sum for j < 0 in H 1 too.

The second part of the proof of Theorem 4.3.5 is to verify an estimate of the form (4.3.4).
Thus we must prove for any finite subset J of {(r, j, k); 0 ̸= r ∈ {0, 1}n, j ∈ Z, k ∈ Zn}
that the norm of the operator

(4.3.5) KJ : f 7→
∑

(r,j,k)∈J

ψr,j,k(f, ψr,j,k)

in Lp(Rn), 1 < p <∞, and in H 1(Rn) has a bound independent of J . The kernel of KJ

is

(4.3.6) KJ(x, y) =
∑

(r,j,k)∈J

2njψr(2
jx− k)ψr(2

jy − k).

The norm of the orthogonal projection operator KJ in L2 is ≤ 1, and we shall estimate the
norm in the other spaces by modifying the study of singular integral operators in Section
4.2. First we prove a substitute for the regularity property of the convolution kernel M
given by (4.2.14).

Lemma 4.3.7. If KJ is defined by (4.3.6) with a finite subset J of ({0, 1}n\{0})×Z×Zn

then

(4.3.7) |KJ(x, y)| ≤ C|x− y|−n, |∂KJ(x, y)/∂(x, y)| ≤ C|x− y|−n−1,

where C is independent of J . For the operator KJ with kernel KJ we have

m({x; |KJf(x)| > α}) ≤ C∥f∥1/α, f ∈ L1(Rn) ∩ L2(Rn),(4.3.8)

∥KJf∥p ≤

{
Cp′1/p∥f∥p, if 1 < p ≤ 2,

Cp1/p
′∥f∥p, if 2 ≤ p <∞,

for f ∈ L1(Rn) ∩ L∞(Rn).(4.3.9)

Proof. If |x| ≤ R when x ∈ suppψr then |2jx − k| ≤ R and |2jy − k| ≤ R in the
support of the terms in (4.3.6). This implies 2j |x − y| ≤ 2R. For fixed (x, y) and r, j the
number of such terms is at most equal to the largest number N of lattice points in a ball
of radius R. Hence

|KJ(x, y)| ≤ C
∑
r

∑
2j |x−y|≤2R

2nj supψ2
r ≤ 2C

∑
r

supψ2
r(2R/|x− y|)n

which proves the first estimate in (4.3.7). Differentiation with respect to x or y contributes
another factor 2j which gives the second estimate (4.3.7).
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If I ⊂ Rn is a cube with center z and side s, and 2I is the cube with center z and side
2s, it follows from the second part of (4.3.7) that∫

{2I
|KJ(x, y)−KJ(x, z)| dx ≤ C ′s

∫
{2I

|x− z|−n−1 dx = C ′′, y ∈ I,

where C ′′ is independent of I. Hence

(4.3.10)

∫
x/∈2I

|KJw(x)| dx ≤ C ′′
∫
I

|w(y)| dy, if w ∈ L1,

∫
I

w dy = 0, suppw ⊂ I,

for we have

KJw(x) =

∫
I

(KJ(x, y)−KJ (x, z))w(y) dy.

Now the estimates (4.3.8) and (4.3.9) follow from the proof of Theorem 4.2.2, for (4.3.10)
is a substitute for (4.2.14)′ there, and KJ has norm ≤ 1 in L2(Rn).

With this lemma we have completed the proof of the statement on Lp spaces in Theorem
4.3.5. It is also very easy to see that

(4.3.11) ∥KJf∥1 ≤ C∥f∥H 1 ,

for by Corollary 4.2.15 it suffices to prove this for an atom f . If f has support in a cube
I and

√
m(I)∥f∥2 ≤ 1,

∫
f dx = 0, then ∥f∥1 ≤ 1 and it follows from (4.3.10) that∫

x/∈2I

|KJf(x)| dx ≤ C.

Since
√
m(I)∥KJf∥2 ≤ 1 we have∫

2I

|KJf(x)| dx ≤ 2n,

which gives ∥KJf∥1 ≤ C + 2n and proves (4.3.11) with another C.
To estimate ∥KJf∥H 1 we must also estimate ∥RνKJf∥1 where Rν is one of the Riesz

operators. The kernel of RνKJ is

(4.3.6)′ Kν
J (x, y) =

∑
(r,j,k)∈J

2njψνr (2
jx− k)ψr(2

jy − k),

where ψνr = Rνψr, for the Riesz operators commute with translations and scale changes.
Since

∫
ψr(x) dx = 0 we have ψνr (x) = O(|x|−n−1) as x→ ∞, and the derivatives decrease

even faster. We have with a constant c

ψνr (x) = c

∫
(ψr(x− y)− ψr(x))yν |y|−n−1 dy
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with absolute and uniform convergence since ψr ∈ C1
0 . Assuming that ψr ∈ C2

0 we can
differentiate under the integral sign and conclude that ψνr ∈ C1.

We are now ready to prove that

(4.3.7)′ |Kν
J (x, y)| ≤ C|x− y|−n, |∂Kν

J (x, y)/∂(x, y)| ≤ C|x− y|−n−1,

where C is independent of J . The proof does not differ much from the proof of (4.3.7) and
we keep the notation used there. For fixed j, r we only have N non-zero terms to consider,
since |2jy − k| ≤ R, and we have

2j |x− y| ≤ |2jx− k|+ |2jy − k| ≤ |2jx− k|+R

then. Since ψνr (2
jx− k)(1 + |2jx− k|)n+1 is bounded, it follows that

|Kν
J (x, y)| ≤ C

∑
2nj(1 + 2j |x− y|)−n−1.

The sum when 2j |x − y| ≤ 1 was estimated in the proof of (4.3.7), and the sum when
2j |x− y| > 1 is at most |x− y|−n−1(2|x− y|) = 2|x− y|−n. This proves the first estimate
(4.3.7)′, and the second follows in the same way since differentiation of Kν

J (x, y) only
contributes a factor 2j to the estimates. However, now we need the estimate

(1 + |x|)n+2(|ψνr (x)|+ |∂ψνr (x)/∂x|) ≤ C,

which follows since
∫
xαψr(x) dx = 0 when |α| ≤ 1. (See Proposition 3.3.1.)

From (4.3.7)′ it follows by repetition of the proof of (4.3.11) that

(4.3.12) ∥KJf∥H 1 =

n∑
ν=0

∥K ν
J f∥1 ≤ C∥f∥H 1 ,

which completes the proof of Theorem 4.3.5.

4.4. More on H 1 atoms and on BMO. The use of L2 norms in the defining
property (4.2.29) of BMO(Rn) may seem surprising since after all BMO is a space closely
related to L∞. By duality we obtained the defining property (4.2.38) of atoms in H 1(Rn)
which also involved L2 norms although H 1 is closely related to L1. We shall now prove
that L2 actually has no special role in these contexts although it was convenient in the
developments in Section 4.2.

If I is a cube in Rn we shall denote by Ĩ the set of all cubes ⊂ I obtained when I is
first divided into 2n equal cubes, and the process is repeated indefinitely for the cubes so
obtained.

Theorem 4.4.1 (John-Nirenberg). Let f ∈ L1(I0) where I0 is a cube in Rn, and

assume that there is a constant K such that for every cube I ∈ Ĩ0

(4.4.1)
1

m(I)

∫
I

|f(x)− fI | dx ≤ K, fI =
1

m(I)

∫
I

f(y) dy.
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Then it follows that

m({x ∈ I0; |f(x)− fI0 | > σ}) ≤ ee−aσ/Km(I0), σ > 0,(4.4.2) ( 1

m(I0)

∫
I0

|f(x)− fI0 |p dx
) 1

p ≤ a−1epK,(4.4.3)

where a = 2−ne−1.

Before the proof we make a few observations.
1. If instead of (4.4.1) we had only assumed that

(4.4.1)′
1

m(I)

∫
I

|f(x)− c| dx ≤ K for some c,

then (4.4.1) would have been fulfilled with K replaced by 2K. In fact, (4.4.1)′ implies that
|fI − c| ≤ K, hence

∫
I
|f(x) − fI | dx/m(I) ≤ 2K. Thus c = fI is always a good choice

although it is not always exactly minimizing except in the L2 norm.
2. Since (

∫
I
|f(x)−fI |p dx/m(I))1/p is an increasing function of p ∈ [1,∞), the condition

(4.4.1) is for a fixed I weaker than the corresponding Lp condition. However, (4.4.3) shows

that apart from the size of the constants such Lp conditions posed for all I ∈ Ĩ are in fact
independent of p.

Proof of Theorem 4.4.1. Replacing f by f/K we may assume that K = 1, which
simplifies the notation. In particular,

∫
I0
|f(x) − fI0 | dx ≤ m(I0). Denote by F (σ) the

smallest constant such that

(4.4.4) m({x ∈ I0; |f(x)− fI0 | > σ}) ≤ F (σ)m(I0)

for all f satisfying the hypotheses of Theorem 4.4.1 with K = 1. Note that F (σ) ≤ 1 and
that F (σ) is obviously invariant under translation and scale changes so it is independent
of I0. Using the Calderón-Zygmund decomposition (Lemma 4.2.3) we shall prove that

(4.4.5) F (σ + 2ns) ≤ F (σ)/s, if σ > 0, s > 1.

We apply the lemma to f(x) − fI0 with s >
∫
I0
|f(x) − fI0 | dx/m(I0), in particular any

s > 1. In the decomposition f − fI0 = v +
∑∞

1 wk we have |v| ≤ 2ns almost everywhere,

and the cubes Ik are in Ĩ0 by the proof of Lemma 4.2.3. If |f(x)− fI0 | > σ+2ns it follows
that x ∈ Ik and that |wk(x)| > σ, for some k. (We ignore null sets throughout.) Hence

m({x ∈ I0; |f(x)− fI0 | > σ + 2ns} ≤
∑
k

m({x ∈ Ik;wk(x) > σ})

≤ F (σ)
∑
k

m(Ik) ≤ F (σ)

∫
I0

|f(x)− fI0 | dx/s ≤ F (σ)s−1m(I0),

where the second inequality follows from the definition of F , applied to Ik, and the third
follows from (4.2.13)′.
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When s = e it follows from (4.4.5) that

(4.4.6) F (σ + 2ne) ≤ F (σ)e−1, if σ > 0.

Since F ≤ 1 we have F (σ) ≤ ee−aσ when 0 < σ ≤ 2ne if 2nea = 1, and then it follows
inductively from (4.4.6) that

(4.4.7) F (σ) ≤ ee−aσ, σ > 0,

which proves (4.4.2).
Since

(4.4.8)

∫
I0

|f(x)− fI0 |p dx =

∫ ∞

0

pσp−1m({x ∈ I0; |f(x)− fI0 | > σ} dσ

≤ em(I0)

∫ ∞

0

pσp−1e−aσ dσ = a−pem(I0)Γ(p+ 1),

and eΓ(p+ 1) ≤ (ep)p when p ≥ 1, the estimate (4.4.3) follows.

Corollary 4.4.2. If f ∈ L1
loc(R

n) and for every axis parallel cube I ⊂ Rn

(4.4.9)
1

m(I)

∫
I

|f(x)− fI | dx ≤ K, fI =
1

m(I)

∫
I

f(y) dy,

then f ∈ BMO(Rn) and ∥f∥BMO ≤ CK. We have f ∈ Lploc(R
n) for every p ∈ [1,∞).

Proof. By Theorem 4.4.1 it follows from (4.4.9) that

(4.4.10)
( 1

m(I)

∫
I

|f(x)− fI |2 dx
)1/2

≤ CK.

Every ball B is contained in a cube I such that m(I) ≤ Cnm(B), so we may replace
the cube in (4.4.10) by a ball if the constant is replaced by

√
CnC. This means that our

definition (4.2.29) is fulfilled. From Theorem 4.4.1 it follows also that f ∈ Lp in every
cube, which completes the proof.

Remark. We can of course replace cubes by balls also in the hypothesis (4.4.9).
To prepare for the next corollary we prove a lemma:

Lemma 4.4.3. Let 1 < p ≤ ∞. If f ∈ Lp(Rn) and supp f ⊂ B where B is a ball in
Rn, and if

∫
f dx = 0, then f ∈ H 1(Rn) and

(4.4.11) ∥f∥H 1 ≤ Cp(p− 1)−1m(B)1−1/p∥f∥p,

where C only depends on n.

Proof. Since m(B)−1/p∥f∥p ≥ m(B)−1/2∥f∥2 when p ≥ 2, the statement follows from
Lemma 4.2.8 then, so we assume that 1 < p ≤ 2. As in the proof of Lemma 4.2.8 we may
also assume that B is the unit ball. By Theorem 4.2.2 we have for the Riesz transforms

∥Rjf∥p ≤ C∥f∥p/(p− 1),
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hence by Hölder’s inequality∫
|x|≤2

|Rjf(x)| dx ≤ C(2nm(B))1−1/p∥f∥p/(p− 1).

Since

|Rjf(x)| = c
∣∣∣ ∫

|y|<1

f(y)((xj − yj)|x− y|−n−1 − xj |x|−n−1) dy
∣∣∣

≤ C|x|−n−1

∫
|y|<1

|f(y)| dy, if |x| ≥ 2,

it follows that ∫
|x|≥2

|Rjf(x)| dx ≤ C ′∥f∥1 ≤ C ′′∥f∥p,

which proves the lemma.

Remark. The same proof gives Lemma 4.2.8 at once if we assume that m satisfies
(4.2.6).

In the following corollary of Theorem 4.4.1 we shall call a function f ∈ Lp(Rn) an H 1

atom of type p, p > 1, if there is a ball B ⊂ Rn such that supp f ⊂ B,
∫
B
f(x) dx = 0 and

m(B)1−1/p∥f∥p ≤ 1. Thus the atoms in Definition 4.2.14 are of type 2.

Corollary 4.4.4. For every p ∈ (1,∞] there are positive constants C ′
np and C ′′

np such
that

(4.4.12) {f ∈ H 1(Rn); ∥f∥H 1 ≤ C ′
np} ⊂ Ap ⊂ {f ∈ H 1(Rn); ∥f∥H 1 ≤ C ′′

np},

where Ap is the closed convex hull in H 1(Rn) of the atoms of type p. If C ′′′
n,p > 1/C ′

np

then every f ∈ H 1(Rn) has an atomic decomposition

(4.4.13) f =
∞∑
1

λjaj ,
∞∑
1

|λj | ≤ C ′′′
np∥f∥H 1 ,

where aj are atoms of type p in H 1(Rn); we have ∥f∥H 1 ≤ C ′′
np

∑∞
1 |λj |.

The proof is again a repetition of that of Corollary 4.1.17 and we leave it as an exercise.
The most precise atomic decomposition is of course the one with p = ∞.

We shall now prove a result closely related to Theorem 4.4.1 which proves that also Lp

spaces have a characterization similar to that of BMO. This will be useful in the proof of

interpolation theorems. We keep the notation Ĩ0 in Theorem 4.4.1.

Theorem 4.4.5. Let f ∈ L1(I0) where I0 is a cube in Rn, and set

(4.4.14) f ♯(x) = sup
x∈I∈Ĩ0

1

m(I)

∫
I

|f(y)− fI | dy; fI =
1

m(I)

∫
I

f(y) dy.
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If f ♯ ∈ Lp(I0) and 1 < p <∞ it follows that f ∈ Lp(I0) and that

(4.4.15) ∥f − fI0∥Lp(I0) ≤ C∥f ♯∥Lp(I0),

where C only depends on p and n.

Proof. To simplify notation we assume that fI0 = 0 and that

(4.4.16)
1

m(I0)

∫
I0

|f ♯(y)|p dy = 1.

Since f ♯(x) ≥
∫
I0
|f(y)| dy/m(I0) this implies that

(4.4.17)
1

m(I0)

∫
I0

|f(y)| dy ≤ 1,

which allows us to make a Calderón-Zygmund decomposition of f according to Lemma
4.2.3, for every s > 1. Let Isk, v

s and wsk denote the cubes and functions in this decompo-
sition, and set

(4.4.18) µ(s) =
∑
k

m(Isk).

The proof of Lemma 4.2.3 shows that if s1 < s2 then each cube Is2k is contained in a cube
Is1j , so µ(s) is decreasing. We claim that

(4.4.19) µ(s) ≤ m({x ∈ I0; f
♯(x) > As}) + 2Aµ(2−n−1s), s > 2n+1, A > 0.

Let s′ = 2−n−1s, thus s′ ≥ 1. For every cube Isk we can find a cube Is
′

j with Isk ⊂ Is
′

j . If

f ♯(x) ≤ As for some x ∈ Is
′

j = I then

1

m(I)

∫
I

|f(x)− fI | dx ≤ As.

Since |fI | ≤ 2ns′ = s/2, by (4.2.13) with s replaced by s′, we obtain using (4.2.13) once
more ∫

Isk

|f(x)− fI | dx ≥
∫
Isk

|f(x)| dx− |fI |m(Isk) ≥ 1
2sm(Isk).

Hence
1
2s

∑
Isk⊂I

m(Isk) ≤
∫
I

|f(x)− fI | dx ≤ m(I)As,

which proves that

(4.4.20)
∑
Isk⊂I

s′
j

m(Isk) ≤ 2Am(Is
′

j ).
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Since all cubes Isk contained in a cube Is
′

j where f ♯ > As are contained in {x; f ♯(x) > As},
we have proved (4.4.19).

From (4.4.19) it follows for S > 2n+1 that

p

∫ S

2n+1

sp−1µ(s) ds ≤ p

∫ S

0

sp−1m({x ∈ I0; f
♯(x) > As})ds+ 2Ap

∫ S

2n+1

sp−1µ(2−n−1s) ds.

The first term in the right-hand side is bounded by

pA−p
∫ ∞

0

m({x ∈ I0; f
♯(x) > s}) ds = A−p

∫
I0

|f ♯(x)|p dx.

The second term in the right-hand side is equal to

2Ap2(n+1)p

∫ 2−n−1S

1

sp−1µ(s) ds.

If we choose 1/A = 4 · 2(n+1)p it follows that

p

∫ S

2n+1

sp−1µ(s) ds ≤ 2A−p
∫
I0

|f ♯(x)|p dx+ p

∫ 2n+1

1

sp−1µ(s) ds,

and when S → +∞ we obtain using (4.4.16)

(4.4.21) p

∫ ∞

0

sp−1µ(s) ds ≤ Cm(I0),

because µ(s) ≤ m(I0).
It remains to connect the integral on the left to the Lp norm of f . To do so we shall

examine the maximal function

f∗(x) = sup
x∈I∈Ĩ0

1

m(I)

∫
I

|f(y)| dy,

which is ≥ |f(x)| almost everywhere. We shall estimate the measure of

E(s) = {x ∈ I0; f
∗(x) > s},

which is the union of the intervals I ∈ Ĩ0 such that
∫
I
|f(y)| dy/m(I) > s.

For every I ∈ Ĩ0 and s > 1 we have∫
I

|f(y)| dy =
∑
k

∫
Isk∩I

|f(y)| dy +
∫
I\∪Isk

|f(y)| dy.
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In the last integral we have |f(y)| ≤ s by (4.2.12), and when Isk ⊂ I we have
∫
Isk

|f(y)| dy ≤
2nsm(Isk) by (4.2.13), hence ∫

I

|f(y)| dy ≤ 2nsm(I)

unless I ⊂ Isk for some k. In fact, two cubes in Ĩ0 have either disjoint interiors or else one
is contained in the other. Thus we conclude that E(2ns) ⊂ ∪Isk, hence

m(E(2ns)) ≤ µ(s), if s ≥ 1.

This proves that∫
I0

|f(x)|p dx ≤
∫
I0

|f∗(x)|p dx = p

∫ ∞

0

sp−1m(E(s)) ds

= 2npp

∫ ∞

0

sp−1m(E(2ns)) ds ≤ 2npp

∫ ∞

1

sp−1µ(s) ds+ 2npm(I),

and by (4.4.21) this gives
∫
I0
|f(x)|p dx ≤ Cm(I) and completes the proof.

Corollary 4.4.6. Let f ∈ L1
loc(R

n) and set

(4.4.22) f ♯(x) = sup
x∈I

1

m(I)

∫
I

|f(x)− fI | dx; fI =
1

m(I)

∫
I

f(y) dy,

where I runs over dyadic cubes, defined by 0 ≤ 2jxν − kν ≤ 1, 1 ≤ ν ≤ n, where k ∈ Zn

and j ∈ Z. If f ♯ ∈ Lp(Rn) and 1 < p < ∞ it follows that f − c ∈ Lp(Rn) for some
constant c, and that

(4.4.23) ∥f − c∥Lp(Rn) ≤ Cp∥f ♯∥Lp(Rn).

We have c = limm(E)→∞
∫
E
f(x) dx/m(E) for arbitrary measurable sets E, and c = 0 if

f ∈ Lq for some q ∈ [1,∞).

Proof. If we apply Theorem 4.4.5 to the cube IN defined by |xν | ≤ N for ν = 1, . . . , n,
it follows that

∥f − cN∥Lp(IN ) ≤ C∥f ♯∥Lp(IN ), cN = fIN .

This implies that |cN+1 − cN |m(IN )1/p ≤ 2C∥f ♯∥Lp(Rn), so cN has a limit c as N → ∞
which has the desired property. The last statement follows since∫

E

|f(x)− c| dx/m(E) ≤
(∫

E

|f(x)− c|p dx/m(E)
) 1

p → 0, when m(E) → ∞,

which also proves that c = 0 if f ∈ Lq for some q ∈ [1,∞).

An inequality in the sense opposite to (4.4.23) is an obvious consequence of Theorem
4.2.5, for f ♯ ≤ 2(f − c)∗HL for every c. The space BMO(Rn) has a similar characterization
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with p = ∞. However, the essential difference is that while the constant term is uniquely
determined in Lp(Rn) +C when 1 < p <∞ there is no natural way to factor out C from
BMO.

In what follows we define f ♯(x) by (4.4.22) with arbitrary cubes I. The definition is
not changed if we require I to be open, and (4.4.23) remains valid since f ♯ can only be
increased by this change. It is then clear that f ♯(x) is a lower semicontinuous function. If
ψ ∈ C0(I) and

∫
I
ψ dx = 0, |ψ| ≤ 1, then

1

m(I)

∫
f(x)ψ(x) dx ≤ 1

m(I)

∫
I

|f(x)− fI | dx.

If the left-hand side is ≤M for all such ψ, it follows from the Hahn-Banach theorem that
for some measure dµ with support in I and total mass ≤M we have

1

m(I)

∫
f(x)ψ(x) dx =

∫
ψ(x)dµ(x), if ψ ∈ C0(I),

∫
ψ dx = 0,

which means that dµ(x) = (f(x)− c)/m(I) for some constant c. As already observed this
implies

∫
I
|f(x) − c| dx/m(I) ≤ M , hence |fI − c| ≤ M , so

∫
I
|f(x) − fI | dx/m(I) ≤ 2M .

Hence

(4.4.24) 1
2f

♯(x) ≤ sup
ψ,I

1

m(I)

∫
I

f(x)ψ(x) dx ≤ f ♯(x),

where the supremum is taken over all open cubes I with x ∈ I and all ψ ∈ C0(I) with∫
ψ(y) dy = 0 and |ψ| ≤ 1.

Assume that f ∈ L1
loc is not a constant. Then f ♯(x) > 0 for every x. If 0 ≤ φ < 1

2f
♯ and

φ ∈ C0(R
n), it follows from (4.4.24) and the Borel-Lebesgue lemma that we can choose

finitely many open cubes Ij , functions ψj ∈ C0(Ij) with
∫
ψj(y) dy = 0 and |ψj | ≤ 1, and

functions χj ∈ C0(Ij) with χj ≥ 0 and
∑
χj ≤ 1 such that

φ(x) ≤
∑

χj(x)

∫
Ij

f(y)ψj(y) dy/m(Ij), x ∈ Rn.

The right-hand side is bounded by f ♯(x). Hence

1
2∥f

♯∥p ≤ sup
Ψ

∥Ψf∥p ≤ ∥f ♯∥p, f ∈ L1
loc, where(4.4.25)

Ψf(x) =

∫
Ψ(x, y)f(y) dy, Ψ(x, y) =

∑
χj(x)ψj(y)/m(Ij), x, y ∈ Rn.(4.4.26)

Here the sum is finite, Ij denotes open cubes, and χj , ψj ∈ C0(Ij) are as described above.
If f ∈ Lq for some q ∈ (1,∞) then it follows from Corollary 4.4.6 that ∥f∥p is equivalent
to supΨ ∥Ψf∥p. This gives the following interpolation theorem already announced above:
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Theorem 4.4.7. Let 1 < p <∞ and let T be a linear operator from Lp(Rn)∩L∞(Rn)
to Lp(Rn) ∩ BMO(Rn) such that

(4.4.27)
∥Tf∥p ≤ C∥f∥p, f ∈ Lp(Rn) ∩ L∞(Rn),

∥Tf∥BMO ≤ C∥f∥∞, f ∈ Lp(Rn) ∩ L∞(Rn).

Then it follows that

(4.4.28) ∥Tf∥q ≤ CCq∥f∥q, f ∈ Lp(Rn) ∩ L∞(Rn), p < q <∞,

so the closure of T in Lq(Rn) is a bounded operator.

Proof. With Ψ as in (4.4.25), (4.4.26) we have by (4.4.27)

∥ΨTf∥p ≤ C∥f∥p, ∥ΨTf∥∞ ≤ C∥f∥∞, f ∈ Lp(Rn) ∩ L∞(Rn),

for ∥ΨTf∥p ≤ ∥(Tf)♯∥p ≤ C∥Tf∥p, and ∥ΨTf∥∞ ≤ C∥Tf∥BMO. Hence it follows from
the Riesz-Thorin convexity theorem (Theorem 2.3.2) applied to ΨT that

∥ΨTf∥q ≤ C∥f∥q, f ∈ Lp ∩ L∞, p < q <∞,

and we conclude using (4.4.26) and Corollary 4.4.6 that (4.4.28) is valid. The proof is
complete.

Corollary 4.4.8. Let 1 < p < ∞ and let T be a linear operator from Lp(Rn) ∩
H 1(Rn) to Lp(Rn) ∩ L1(Rn) such that

(4.4.29)
∥Tf∥p ≤ C∥f∥p, f ∈ Lp(Rn) ∩ H 1(Rn),

∥Tf∥1 ≤ C∥f∥H 1 , f ∈ Lp(Rn) ∩ H 1(Rn).

Then it follows that

(4.4.30) ∥Tf∥q ≤ CCq∥f∥q, f ∈ Lp(Rn) ∩ H 1(Rn), 1 < q < p,

so the closure of T in Lq(Rn) is a bounded operator (defined in Lq(Rn)).

Proof. T is densely defined in Lp(Rn) and has a bounded adjoint T ∗ : Lp
′
(Rn) →

Lp
′
(Rn) where 1/p+1/p′ = 1. If g ∈ Lp

′
(Rn)∩L∞(Rn) and f ∈ Lp(Rn)∩H 1(Rn) then

|⟨T ∗g, f⟩| = |⟨g, Tf⟩| ≤ ∥g∥∞∥Tf∥1 ≤ C∥g∥∞∥f∥H 1 .

By Theorem 4.2.13 this proves that ∥T ∗g∥BMO ≤ CC ′∥g∥∞, for Lp(Rn) ∩ H 1(Rn) is a
dense subset of H 1(Rn). Now it follows from Theorem 4.4.7 that

∥T ∗g∥q′ ≤ CCq∥g∥q′ , g ∈ Lq
′
(Rn) ∩ L∞(Rn).

Hence
|⟨g, Tf⟩| = |⟨T ∗g, f⟩| ≤ CCq∥g∥q′∥f∥q,

and since Lp
′
(Rn) ∩ L∞(Rn) is dense in Lq

′
(Rn) the estimate (4.4.30) follows and the

corollary is proved.



CHAPTER V

CONVERGENCE AND SUMMABILITY

OF THE FOURIER EXPANSION

5.1. The role of multipliers. In Section 4.1 our motivation was the question on
Lp convergence of the Fourier series of a function in Lp(R) and the analogous question for
Fourier transforms. However, the n-dimensional results of Section 4.2 were instead related
to estimates of derivatives of potentials. We shall now return to the convergence problem.
For the case of Fourier integrals the question is whether the inverse Fourier transform

χν(D)f of χν f̂ converges to f in Lp(Rn) when f ∈ Lp(Rn) and χν is the characteristic
function of a subset of Rn increasing to Rn. This formulation is not quite adequate unless
1 ≤ p ≤ 2 so this will be assumed for a moment.

Definition 5.1.1. A measurable function χ in Rn is called a multiplier on the Fourier

transform of Lp(Rn), where 1 ≤ p ≤ 2, if χf̂ is the Fourier transform of a function
χ(D)f ∈ Lp(Rn) for every f ∈ Lp(Rn). The set of such multipliers is denoted by Mp(R

n).

If χ ∈ Mp(R
n) then the map

(5.1.1) Lp(Rn) ∋ f 7→ χ(D)f ∈ Lp(Rn)

is closed, for if fν → 0 in Lp(Rn) and χ(D)fν → g in Lp(Rn), then f̂ν → 0 in Lp
′
(Rn)

and χf̂ν → ĝ in Lp
′
(Rn) if 1/p+1/p′ = 1. This implies convergence almost everywhere for

a suitable subsequence, so it follows that ĝ = 0 almost everywhere. Thus (5.1.1) is closed
and it follows from the closed graph theorem that for some constant C

(5.1.2) ∥χ(D)f∥p ≤ C∥f∥p, f ∈ Lp(Rn).

In particular, (5.1.2) is valid for all f ∈ S (Rn). Conversely, if (5.1.2) is true when

f ∈ S (Rn), then χ ∈ Lp
′

loc(R
n) and χ ∈ Mp(R

n), for if S (Rn) ∋ fν → f in Lp(Rn)

then χ(D)fν converges to a limit g ∈ Lp(Rn), so f̂ν → f̂ and χf̂ν → ĝ in Lp
′
(Rn) which

implies that ĝ = χf̂ . We can therefore extend the definition of multipliers to all p ∈ [1,∞]
as follows:

Definition 5.1.1′. A function χ ∈ L1
loc(R

n) is called a multiplier on the Fourier

transform of Lp(Rn), where 1 ≤ p ≤ ∞, if χf̂ is the Fourier transform of a function
χ(D)f ∈ Lp(Rn) for every f ∈ S (Rn) and (5.1.2) is valid when f ∈ S (Rn). The set of
such multipliers is denoted by Mp(R

n), and ∥χ∥Mp is defined to be the best constant C
for which (5.1.2) is valid when f ∈ S (Rn).

125
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Proposition 5.1.2. Mp(R
n) is a Banach algebra contained in M2(R

n) = L∞(Rn).
If χ ∈ Mp(R

n) then χ ∈ Mq(R
n) when |1/q − 1/2| ≤ |1/p− 1/2|, and

(5.1.3) ∥χ∥Mq ≤ ∥χ∥Mp if χ ∈ Mp(R
n) and | 1q −

1
2 | ≤ | 1p −

1
2 |.

If χ ∈ Mp(R
n) and φ ∈ S (Rn) then φ̂χ ∈ Lq(Rn) when 1/q ≤ |1/p− 1/2|+ 1/2.

Proof. By Hölder’s inequality (5.1.2) implies

(5.1.2)′ |⟨χ(D)f, g⟩| ≤ C∥f∥p∥g∥p′ , f, g ∈ S (Rn).

Since ⟨χ(D)f, g⟩ = ⟨f, χ(−D)g⟩ it follows that
∥χ(−D)g∥p′ ≤ C∥g∥p′ , g ∈ S (Rn).

There is a slight complication when p = ∞ for then we only obtain that χ(−D)g is a
measure with total mass ≤ C∥g∥1. However, if ĝ ∈ C∞

0 then χ(−D)g is a continuous
function so it is in L1 and (5.1.2)′ holds. Every g ∈ S is the limit in S of a sequence
in C∞

0 , which proves (5.1.2)′ in general when p′ = 1 also. If we replace g by ǧ where
ǧ(x) = g(−x) it follows that

∥χ(D)g∥p′ ≤ C∥g∥p′ , g ∈ S (Rn),

so χ ∈ Mp′ and ∥χ∥Mp′ ≤ ∥χ∥Mp . Replacing p by p′ we conclude that there is equality.
Thus the map

S ∋ f 7→ χ(D)f

is continuous in the Lp norm and in the Lp
′
norm. If 1 < p < ∞ the closure is therefore

a continuous map in Lp(Rn) ∩ Lp
′
(Rn) satisfying the hypotheses of the Riesz-Thorin

convexity theorem (Theorem 2.3.2), so it follows that

∥χ(D)f∥q ≤ C∥f∥q, if | 1q −
1
2 | ≤ | 1p −

1
2 |, f ∈ S (Rn).

If p = 1 or p = ∞ there is again a slight complication since the closure of S (Rn) in
L1(Rn)∩L∞(Rn) consists of continuous integrable functions converging to 0 at ∞. How-
ever, the proof of Theorem 2.3.2 shows that this is sufficient for the conclusion.

When p = 2 then the estimate (5.1.2) is equivalent to

∥χF∥2 ≤ C∥F∥2, F ∈ L2(Rn),

and this is true if and only if |χ| ≤ C almost everywhere. Thus M2(R
n) = L∞(Rn), and

Mp(R
n) ⊂ L∞(Rn) for 1 ≤ p ≤ ∞.

If 1 ≤ p ≤ 2 and χ ∈ Mp(R
n) then (5.1.2) is well defined and valid for all f ∈ Lp(Rn),

so it follows at once that χ1χ2 ∈ Mp and that ∥χ1χ2∥Mp ≤ ∥χ1∥Mp∥χ2∥Mp if χ1, χ2 ∈ Mp.

If χν , ν = 1, 2, . . . is a Cauchy sequence in Mp(R
n) then χν f̂ converges in Lp

′
(Rn) for

every f̂ ∈ S (Rn), so χν converges to a limit χ ∈ Lp
′

loc(R
n) which is in Mp with norm

≤ limν→∞ ∥χν∥Mp . Hence ∥χ − χµ∥Mp ≤ limν→∞ ∥χν − χµ∥Mp , and when µ → ∞ we
conclude that χµ → χ in Mp, so Mp is complete.

When proving the last statement we may assume that p ≤ 2. Since χ ∈ L∞(Rn) we

have φχ ∈ L1(Rn) so φ̂χ ∈ L∞(Rn), and since φ = ψ̂ where ψ ∈ S (Rn) ⊂ Lp(Rn) we

have χφ = Ψ̂ where Ψ ∈ Lp(Rn), which proves that χ̂φ ∈ Lp(Rn). Hence χ̂φ ∈ Lq(Rn)
when p ≤ q ≤ ∞ as claimed.

Multipliers are invariant under linear operations:
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Proposition 5.1.3. If T : Rn → Rm is an affine surjective map and χ ∈ Mp(R
m),

then χ ◦ T ∈ Mp(R
n) and ∥χ ◦ T∥Mp(Rn) = ∥χ∥Mp(Rm).

Proof. First assume that n = m. If (5.1.2) is valid then replacing f by fei⟨·,θ⟩ where
θ ∈ Rn gives ∥χ(D + θ)f∥p ≤ C∥f∥p, for χ(D)(fei⟨·,θ⟩) = ei⟨·,θ⟩χ(D + θ)f . This proves
the statement when T is a translation. If A is a linear bijection in Rn and fA = f ◦ A
then f̂A(ξ) = | detA|−1f̂(tA−1ξ), so

χ(ξ)f̂A(ξ) = |detA|−1χ(tAη)f̂(η), η = tA−1ξ.

Thus χ(D)fA = (χ(tAD)f)A, which proves the statement when T = tA−1.
What remains is to prove the statement when m < n and

T (ξ1, . . . , ξn) = (ξ1, . . . , ξm).

Then χT (ξ) = (χ◦T )(ξ) = χ(ξ1, . . . , ξm), so χT (D)f(x) = χ(D′)f(x) where χ(D′) operates
on f as a function of x′ = (x1, . . . , xm) when x′′ = (xm+1, . . . , xn) is fixed. If (5.1.2) is
valid for χ(D′) in Rm and 1 ≤ p ≤ 2, it follows that∫

|χT (D)f(x′, x′′)|p dx′ ≤ Cp
∫

|f(x′, x′′)|p dx′

for fixed x′′, and integration with respect to x′′ gives ∥χT (D)f∥p ≤ C∥f∥p. Conversely, if
this is true we can choose f(x) = g(x′)h(x′′) with a fixed h ∈ S (Rn−m)\{0} and conclude
that (5.1.2) is valid for χ(D). This completes the proof.

The hypothesis that T is surjective made in Proposition 5.1.3 is essential, for χ ◦T may
not even be a measurable function otherwise since it only depends on the values of χ in a
null set. However, under conditions which make χ ◦ T meaningful there is a valid version
of Proposition 5.1.3:

Proposition 5.1.4. If T : Rn → Rm is an affine map and χ ∈ Mp(R
m) then χ ◦ T ∈

Mp(R
n) and ∥χ ◦ T∥Mp(Rn) ≤ ∥χ∥Mp(Rm) if the points in TRn which are not Lebesgue

points for χ have Lebesgue measure 0 in TRn.

Proof. We may assume that 1 ≤ p ≤ 2. By Proposition 5.1.3 we may also assume
that n < m and that

Tξ = (ξ1, . . . , ξn, 0, . . . , 0), ξ ∈ Rn.

We shall denote the variable in Rm by (x, y) or (ξ, η) where x, ξ ∈ Rn and y, η ∈ Rm−n.
Since (ξ, η) 7→ χ(ξ, εη) is a multiplier with the same normM for every ε > 0, an application
of (5.1.2) to (x, y) 7→ f(x)g(y) gives for ε > 0

(∫∫
|hε(x, y)|p dx dy

) 1
p ≤M∥f∥p∥g∥p, f ∈ S (Rn), g ∈ S (Rm−n),

hε(x, y) = (2π)−m
∫∫

ei⟨x,ξ⟩+i⟨y,η⟩f̂(ξ)ĝ(η)χ(ξ, εη) dξ dη.
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Since |χ| ≤ M almost everywhere it follows that |χ(ξ, 0)| ≤ M when (ξ, 0) is a Lebesgue
point for χ, hence for almost every ξ ∈ Rn by hypothesis, and since

χ(ξ, 0) = lim
ε→0

∫∫
|ξ′|<ε,|η′|<ε

χ(ξ + ξ′, η′) dξ′dη′
/∫∫

|ξ′|<ε,|η′|<ε
dξ′ dη′

for almost all ξ ∈ Rn and the integral here is a continuous function of ξ, it follows that

ξ 7→ χ(ξ, 0) is a measurable function. Let f̂ ∈ C∞
0 (Rn), ĝ ∈ C∞

0 (Rm−n). We have

|hε(x, y)− h0(x, y)| ≤ (2π)−m
∫∫

|f̂(ξ)ĝ(η)||χ(ξ, εη)− χ(ξ, 0)| dξ dη

= C

∫∫∫
|ξ′|<1

|f̂(ξ + εξ′)ĝ(η)||χ(ξ + εξ′, εη)− χ(ξ + εξ′, 0)| dξ dη dξ′.

The integral with respect to (ξ′, η) is bounded by a constant and tends to 0 when ε → 0
if (ξ, 0) is a Lebesgue point for χ and ξ is a Lebesgue point for χ(·, 0), hence hε(x, y) →
h0(x, y) as ε→ 0. By Fatou’s lemma we obtain

(∫∫
|h0(x, y)|p dx dy

) 1
p ≤M∥f∥p∥g∥p,

and since h0(x, y) = (χ(D, 0)f)g we conclude that ∥χ(D, 0)f∥p ≤ M∥f∥p, which proves
the proposition.

By Theorem 4.1.1 we know that the characteristic function of {t ∈ R; t > 0} is in
Mp(R) for 1 < p < ∞. Hence it follows from Proposition 5.1.3 that the characteristic
function of any half space in Rn is in Mp(R

n) for 1 < p < ∞, and since Mp(R
n) is a

Banach algebra we conclude that the characteristic function of any polyhedron in Rn is in
Mp(R

n).

Theorem 5.1.5. If χ ∈ Mp(R
n) then

(5.1.4) ∥χ(D/t)f − f∥q → 0 as t→ ∞,

if f ∈ Lq(Rn) and | 1q −
1
2 | < | 1p −

1
2 | or 2 ≤ q = p <∞, provided that

(5.1.5)

∫
|ξ|<ε

|χ(ξ)− 1| dξ/εn → 0, ε→ 0,

that is, 0 is a Lebesgue point for χ and χ(0) = 1.

Proof. Since ∥χ(·/t)∥Mp is independent of t it suffices to prove that (5.1.4) follows from

(5.1.5) when f̂ ∈ C∞
0 , for such functions are dense in S (Rn), hence in Lq for 1 ≤ q <∞.

Now

χ(ξ/t)f̂(ξ)− f̂(ξ) = (χ(ξ/t)− 1)f̂(ξ)
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is uniformly bounded, and if |ξ| < R when f̂(ξ) ̸= 0 we have by (5.1.5)∫
|(χ(ξ/t)− 1)f̂(ξ)| dξ ≤ C

∫
|ξ|<R

|χ(ξ/t)− 1| dξ = Ctn
∫
|ξ|<R/t

|χ(ξ)− 1| dξ → 0, t→ ∞.

Hence the L2 norm converges to 0 so ∥χ(D/t)f − f∥2 → 0 as t → ∞. Since the Lq norm
is bounded when | 1q −

1
2 | ≤ | 1p −

1
2 | it follows from Hölder’s inequality that it converges to

0 when there is strict inequality. By the Hausdorff-Young inequality this is also true when
there is equality and q ≥ 2, which proves the statement.

Remark. If χ ∈ H loc
(s) in a neighborhood of the origin for some s > n| 1p − 1

2 |, then it

follows from Theorem 2.3.8 that (5.1.4) is also valid when | 1q −
1
2 | = | 1p −

1
2 | and q < 2.

In particular it follows from Theorem 5.1.5 that χ(D)f → f in Lp(Rn) if 1 < p < ∞
and χ is the characteristic function of a polyhedron with the origin in its interior. We
shall now show that the situation is quite different for characteristic functions of sets with
smooth boundaries.

Theorem 5.1.6. Let χ be the characteristic function of an open set Ω ⊂ Rn, and
assume that χ ∈ Mp(R

n) for some p ̸= 2. If ∂Ω is a C2 hypersurface in a neighborhood of
a point ξ0 ∈ ∂Ω and Ω∪∂Ω is not a neighborhood of ξ0, then ∂Ω is a subset of a hyperplane
in a neighborhood of ξ0.

Proof. By Proposition 5.1.3 we may assume that ξ0 = 0 and that Ω∩U is defined by
ξn > ψ(ξ′) where ξ′ = (ξ1, . . . , ξn−1), ψ ∈ C2 and ψ(0) = 0, ψ′(0) = 0. We must prove that
ψ′′ = 0 in a neighborhood of the origin. Let φ ∈ C∞

0 (U) be equal to 1 in a neighborhood
U0 of the origin. Then φχ ∈ Mp(R

n) for some p ̸= 2, and all points where ξn ̸= ψ(ξ′) are
Lebesgue points. Hence it follows from Proposition 5.1.4 that (ξ1, ξ2) 7→ (φχ)(ξ1a+ b, ξ2)
is in Mp(R

2) if 0 ̸= a ∈ Rn−1 and b ∈ Rn−1. If the theorem has been proved in the
two-dimensional case it follows that ψ′′(b) vanishes in the direction a if (b, ψ(b)) ∈ U0, so
ψ′′ = 0 in a neighborhood of the origin.

Thus it suffices to prove Theorem 5.1.6 when n = 2, that is, to prove that if ψ ∈ C2(R)
and φχψ ∈ Mp(R

2) for some p ̸= 2, where φ ∈ C∞
0 (R2) and χψ is the characteristic

function of {x ∈ R2; ξ2 > ψ(ξ1}, then ψ′′(ξ1) = 0 if φ(ξ1, ψ(ξ1)) ̸= 0. This will require
some preparations. The first is a lemma explaining how (φχψ)(D) operates on functions
with support oblong in the direction of a normal of the curve {(ξ1, ψ(ξ1)); ξ1 ∈ R} and
with the corresponding frequency. The second is a famous construction in measure theory,
the Besicovitch solution of the so-called Kakeya needle problem. The proof of the two-
dimensional case of Theorem 5.1.6 will be given after that. (Theorem 5.1.6 was proved by
Fefferman [1] for the unit ball in Rn. The general case is not essentially different, but the
proof is more transparent then.)

Lemma 5.1.7. Let u ∈ C∞
0 (R2) and set for t ∈ R and ε > 0

(5.1.6) ut,ε(x1, x2) = u(ε(x1 + ψ′(t)x2), ε
2x2)e

i(tx1+ψ(t)x2).

Then (φχψ)(D)ut,ε = vt,ε where

(5.1.7) vt,ε(x1, x2) = Vt,ε(ε(x1 + ψ′(t)x2), ε
2x2)e

i(tx1+ψ(t)x2),
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Vt,ε(x) → Vt(x) locally uniformly in (t, x) when ε→ 0,

(5.1.8) V̂t(ξ) = φ(t, ψ(t))χt(ξ)û(ξ).

Here χt is the characteristic function of {ξ ∈ R2; ξ2 > ψ′′(t)ξ21/2}. If a ≤ x2 ≤ b when
(x1, x2) ∈ suppu, then Vt(x) is real analytic for x2 < a and for x2 > b, and if

∫
R2 u(x) dx ̸=

0 then Vt ̸≡ 0 in these half planes when φ(t, ψ(t)) ̸= 0.

Proof. Set Aε(x1, x2) = (ε(x1 + ψ′(t)x2), ε
2x2) and θ = (t, ψ(t)). Then

ut,ε = (u ◦Aε)ei⟨·,θ⟩, vt,ε = (Vt,ε ◦Aε)ei⟨·,θ⟩,

(φχψ)(D)ut,ε = ei⟨·,θ⟩(φχψ)(D + θ)(u ◦Aε) = ei⟨·,θ⟩Vt,ε ◦Aε.

The Fourier transform of u ◦ Aε is ξ 7→ | detAε|−1û(tA−1
ε ξ), so the Fourier transform of

(φχψ)(D + θ)(u ◦Aε) is

ξ 7→ |detAε|−1(φχψ)(ξ + θ)û(tA−1
ε ξ) = | detAε|−1(φχψ)(

tAε
tA−1
ε ξ + θ)û(tA−1

ε ξ),

which means that
V̂t,ε(η) = (φχψ)(

tAεη + θ)û(η).

The right-hand side is uniformly bounded by |û| sup |φ|, and φ(tAεη+ θ) → φ(θ) as ε→ 0.
Since tAεη = (εη1, εψ

′(t)η1 + ε2η2) the factor χψ(
tAεη+ θ) is the characteristic function of

{η ∈ R2; εψ′(t)η1 + ε2η2 + ψ(t) > ψ(εη1 + t)}

which converges to {η ∈ R2; η2 > ψ′′(t)η21/2} when ε→ 0. This proves that Vt,ε converges
to Vt as defined by (5.1.8).

The inverse Fourier transform of χt is

x 7→ (2π)−2

∫∫
ξ2>ψ′′(t)ξ21/2

ei(x1ξ1+x2ξ2) dξ1 dξ2

= (2π)−2

∫
ei(x1ξ1+ψ

′′(t)x2ξ
2
1/2) dξ1

∫
ξ2>0

eix2ξ2 dξ2

with the integrals taken in the sense of distribution theory. This follows at once if we first

introduce a convergence factor e−δ|ξ|
2

and then let δ → 0. The integral with respect to
ξ2 is i/(x2 + i0), and the integral with respect to ξ1 is 2πδ0 if ψ′′(t) = 0 and otherwise

it is the Gaussian
√

2πi/ψ′′(t)x2 exp(−ix21/2ψ′′(t)x2). Thus it is analytic when x2 ̸= 0
which proves the stated analyticity. If ψ′′(t) = 0 then the convolution with u is asymp-
totic to i/2πx2

∫
u(x1, y2) dy2 when x2 → ∞, and when ψ′′(t) ̸= 0 it is asymptotic to

c±|x2|−3/2
∫
u(y) dy when x2 → ±∞, where c± ̸= 0. This completes the proof.

We shall now discuss the construction of a Besicovitch set in R2. For a triangle ABC
with base AB, of length l, and height h from the vertex C we form two new triangles
ADA′ and BDB′ where D is the midpoint on AB and C divides AA′ (resp. BB′) in the
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ratio h to d for some d > 0. Thus the bases AD and BD of the triangles have length 1
2 l,

and the heights from A′ and B′ are h + d. The union of the triangles ADA′ and BDB′

consists of ABC and two additional triangles A′CA′′ and B′CB′′. (Draw a figure!) The
triangle A′CA′′ is homothetic with respect to A′ to A′A′′′D where A′′′ is the midpoint of
AC, and the ratio is d to d+ 1

2h. Thus

m(A′CA′′) = m(A′A′′′D)d2/(d+ 1
2h)

2,

m(A′A′′′D) = m(A′AD)−m(AA′′′D) = l(h+ d)/4− lh/8 = l(h+ 2d)/8.

Hence m(A′CA′′) = ld2/(4d+2h), and m(ADA′ ∪BDB′) = lh/2+ ld2/(2d+ h). Now we
fix d = 1, and starting with h = 1 we repeat the construction k times ending up with 2k

triangles Rj , j = 1, . . . , 2k, with bases of length 2−kl and height k + 1,

(5.1.9) m
( 2k∪
j=1

Rj
)
≤ 1

2 l + l

k∑
1

1

j + 2
< l log(k + 1).

If C̃AB denotes the union of the half lines with one end point at C intersecting AB,

with CAB removed, then Ã′AD and B̃′BD are disjoint subsets of C̃AB. If we define R̃j
similarly it follows that all R̃j are disjoint. This means that if R̂j is the part of R̃j at
distance ≤ k + 1 from the line through A and B, then

m
( 2k∪

1

R̂j) =
2k∑
1

m(R̂j) = 3
2k∑
1

m(Rj) = 3l(k + 1)/2

which according to (5.1.9) is larger than the measure of ∪Rj by a factor (k+1)/ log(k+1).
This is the essence of the “sprouting” construction.

Before using the construction to finish the proof of Theorem 5.1.6 we shall digress
to discuss its consequences for the definition of maximal functions. Suppose that for
f ∈ L1

loc(R
2) we define

f∗(x) = sup
x∈K

∫
K

|f(y)| dy/m(K)

where K is an arbitrary bounded open convex set ⊂ R2. (It would make no essential
difference if we required K to be a rectangle or to be the interior of an ellipse.) If there
is an estimate ∥f∗∥q ≤ C∥f∥p then it follows by a scale change that q = p. Now take for

f the characteristic function of ∪Rj . In the sets R̂j we find by taking K = Rj ∪ R̂j that
f∗ ≥ 1/4. Hence

∥f∥p ≤ (l log(k + 1))
1
p , 4∥f∗∥p ≥ (3l(k + 1)/2)

1
p ,

and since k can be chosen arbitrarily large it follows that no Lp estimate is possible.

End of proof of Theorem 5.1.6. It remains to prove the two dimensional statement
in the form given in slanted text at the end of the first part of the proof. Assuming
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that ψ′′(0) ̸= 0 we shall derive a contradiction. To do so we start from the Besicovitch
construction above with a triangle ABC whose base AB is on the x-axis and top C is on
the line x2 = 1, chosen so that the range of (−ψ′(t), 1) for t so small that φ(t, ψ(t)) = 1

covers all vectors
−→
DC with D between A and B. In the construction we choose a large

number k of iterations. Let

(5.1.10) ε = 2−kl/(k + 1)

be the ratio between the base and the height of the triangles Rj , and let (−ψ′(tj), 1) be
the direction of the median in Rj , the line from the midpoint mj of the base to the top.
Choose

(5.1.11) u ∈ C∞
0 ({x ∈ R2;−1 < x2 < 0, |x1| < 1

2 (1− x2)}),

and consider utj ,ε as defined by (5.1.6). The support lies in the triangle R̂ if R is the

triangle with vertices ε−1(±1
2 , 0) and ε

−2(−ψ′(tj), 1), which is similar to Rj with the ratio

2−kl/ε−1 = ε2(k+1). Thus the support of utj ,ε(·−κmj) is in κR̂j where κ = 1/(ε2(k+1)).
Let

fθ =
2k∑
j=1

eiθjutj ,ε(· − κmj), θj ∈ R,

and write T = (φχψ)(D), E = ∪(κRj). Then∫
E

|Tfθ|2 dx ≥
∑
j

∫
E

|Tutj ,ε(· − κmj)|2 dx

for a suitable choice of θ, for if we expand the left-hand side and take the mean value over
θ, the cross products drop out so the mean value is equal to the right-hand side. Since
E ⊃ κRj it follows from Lemma 5.1.7 when ε is small enough that for some c > 0

c2kε−3 ≤
∫
E

|Tfθ|2 dx ≤
(∫

E

|Tfθ|p dx
) 2

p

(m(E))1−
2
p

where we have also used Hölder’s inequality, assuming that 2 < p < ∞. If T is bounded
in Lp norm then

∥Tfθ∥pp ≤ C∥fθ∥pp = C
∑
j

∥utj ,ε(· − κmj)∥pp ≤ C ′2kε−3

for the sets R̂j are disjoint. Hence

2kε−3 ≤ C ′′m(E) ≤ C ′′κ2l log(k + 1)

and since 2kε−3κ−2 = 2kε(k+1)2 = l(k+1) we get a contradiction when k is so large that
k + 1 > C ′′ log(k + 1). The proof is complete.
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Note that the point in the proof was that the Lp norm of fθ is bounded by the norm of
a term times the number of terms raised to the power 1/p, since the supports are disjoint,
whereas the L2 norm of Tfθ in E involved the number of terms raised to the power 1/2
only. The discrepancy between L2 and Lp norm could be overcome by Hölder’s inequality
since the terms in Tfθ were all large in the same set E of not too large measure. It is this
focussing effect which is the main point in the proof.

Theorem 5.1.6 proves in particular that for p ̸= 2 and n > 1 the characteristic function
χ of the unit ball in Rn is not in Mp, so spherical summation of the Fourier expansion
is not possible. The difficulty stems from the discontinuity of χ at the unit sphere and
disappears if χ is replaced by a cutoff function in C∞

0 (Rn). We shall now study how
smooth it has to be, in particular examine when

(5.1.12) Rα(ξ) =

{
(1− |ξ|2)α, if |ξ| < 1

0, if |ξ| ≥ 1
, ξ ∈ Rn,

is in Mp(R
n). When Rα ∈ Mp(R

n) it follows from Theorem 5.1.5 that the Riesz-Bochner
means Rα(D/t)f converge to f in Lp(Rn) when t→ ∞, for all f ∈ Lp(Rn). The following
theorem gives a necessary condition which is actually much more elementary than that in
Theorem 5.1.6.

Theorem 5.1.8. Let ϱ ∈ C∞(Rn) be real valued, n > 1, and define ϱ+ = max(ϱ, 0).
Assume that ϱ has a zero ξ0 ∈ Rn such that ϱ′(ξ0) ̸= 0 and ϱ′′(ξ0)t ̸= 0 if 0 ̸= t ∈ Rn

and ϱ′(ξ0)t = 0, that is, the zeros of ϱ form a hypersurface with total curvature ̸= 0 at ξ0.
Then

(5.1.13)
∣∣ 1
p −

1
2

∣∣ < 1
2n + α

n , if χϱα+ ∈ Mp,

for some χ ∈ C∞
0 with χ(ξ0) ̸= 0.

Proof. In view of Proposition 5.1.2 it suffices to prove the statement when p < 2, that
is, prove that 1/p− 1/2 < 1/2n+ α/n. By Proposition 5.1.3 it is no restriction to assume
that ξ0 = 0 and that ϱ′(ξ0) = (0, . . . , 0, 1). Write ξ = (ξ′, ξn) where ξ′ = (ξ1, . . . , ξn−1).
Then the equation ϱ(ξ′, ξn) = 0 has a unique solution ξn = ψ(ξ′) in a neighborhood of 0,
and ψ(0) = 0, ψ′(0) = 0 and detψ′′(ξ′) ̸= 0. The quotient ϱ(ξ)/(ξn − ψ(ξ′)) is in C∞ in
a neighborhood of 0 and equal to 1 at 0. If a ∈ C∞

0 (Rn−1) and b ∈ C∞
0 (R) have support

sufficiently close to the origin, it follows that

m(ξ) = a(ξ′)b(ξn − ψ(ξ′))(ξn − ψ(ξ′))α+ = φ(ξ)χ(ξ)ϱ+(ξ)
α,

where φ(ξ) = a(ξ′)b(ξn − ψ(ξ′))
(
(ξn − ψ(ξ′))/ϱ(ξ)

)α
/χ(ξ) is in C∞

0 . If χϱα+ ∈ Mp(R
n)

it follows that m ∈ Mp(R
n) and by Proposition 5.1.2 that m̂ ∈ Lp(Rn). A change of

variables gives
(5.1.14)

m̂(x) = A(x)B(xn), A(x) =

∫
e−i(⟨x

′,ξ′⟩+xnψ(ξ
′))a(ξ′) dξ′, B(xn) =

∫ ∞

0

e−ixntb(t)tα dt.
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The method of stationary phase (see Theorem 2.4.6) gives that if a(0) ̸= 0 then |A(x)| >
C|xn|−(n−1)/2 at infinity in a conic neighborhood of the xn axis, for some C > 0, for the
equation x′ + xnψ

′(ξ′) = 0 for the critical point has a unique solution ξ′ near 0 when
|x′/xn| is small, since ψ′(0) = 0 and detψ′′(0) ̸= 0. The Fourier transform of tα+ is

τ 7→ Γ(α+ 1)(iτ + 0)−α−1 = Γ(α+ 1)|τ |−α−1e−
πi
2 (α+1) sgn τ ,

for it is the limit as ε→ +0 of the Fourier transform∫ ∞

0

tαe−εt−iτt dt =

∫ ∞

0

tαe−t(ε+iτ) dt = (ε+ iτ)−α−1

∫ ∞

0

tαe−t dt.

The last integral is Γ(α + 1), and the second equality follows from Cauchy’s integral

formula. The Fourier transform B is the convolution with b̂/2π, which is in S (R) and has
the integral b(0). Hence

|B(xn)||xn|α+1 → Γ(α+ 1)|b(0)|, as xn → ∞.

If b(0) ̸= 0 it follows that for some C ′ > 0

|m̂(x)| ≥ C ′|xn|−
1
2 (n−1)−α−1

at infinity in a conic neighborhood of the xn axis. Since m̂ ∈ Lp(Rn) it follows that

p( 12 (n− 1) + α+ 1) > n, that is, 1
p <

1
2 + 1

2n + α
n

which proves (5.1.13).

It is not known whether in general the necessary conditions α > 0 in Theorem 5.1.6 and
(5.1.13) in Theorem 5.1.8 are sufficient to guarantee that say Rα ∈ Mp. An exception is
the two-dimensional case which will be studied in Section 5.2. When n > 2 the sufficiency
will be proved in Section 5.3 when |1/p − 1/2| > 1/(n + 1). It is actually known in a
slightly wider range, but the proofs are then much more difficult and we shall only give
some references to the literature for such results.

5.2. The two-dimensional case. The proof of Theorem 5.1.8 showed that after
appropriate localization the operator ϱα+(D) in Rn is essentially a convolution with the

product of a function which is homogeneous of degree − 1
2 (n + 1) − α at infinity and an

oscillatory factor eiΦ with Φ homogeneous of degree 1, which comes from the phase factor in
(2.4.7). To study such operators we shall begin with a modification of the Hausdorff-Young
inequality (Theorem 2.3.1) which is valid in any dimension.

Theorem 5.2.1. Let a ∈ C∞
0 (R2n), let φ ∈ C∞(R2n) be real valued, and assume that

det(∂2φ(x, y)/∂x∂y) ̸= 0 when (x, y) ∈ supp a. Set

(5.2.1) TNu(x) =

∫
eiNφ(x,y)a(x, y)u(y) dy, u ∈ L1

loc(R
n).
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If 1 ≤ p ≤ 2 and 1/p+ 1/p′ = 1, then

(5.2.2) Nn/p′∥TNu∥p′ ≤ C∥u∥p, u ∈ Lp(Rn), N ≥ 0.

Note that if 1/p+ 1/p′ = 1 then p ≤ 2 is equivalent to p′ ≥ p.

Proof. By the Riesz-Thorin convexity theorem (Theorem 2.3.2) we only have to prove
the estimate for p = 1 and for p = 2, and it is trivial for p = 1. To prove it when p = 2 we
write

∥TNu∥2 =

∫∫
aN (y, z)u(y)u(z) dy dz,

aN (y, z) =

∫
eiN(φ(x,y)−φ(x,z))a(x, y)a(x, z) dx.

If detφ′′
xy ̸= 0 at (x0, y0) then it follows from Taylor’s formula that

|φ′
x(x, y)− φ′

x(x, z)| = |φ′′
xy(x, y)(y − z)|+O(|y − z|2) ≥ c|y − z|

for some c > 0 if |x − x0| + |y − y0| + |z − y0| is sufficiently small. If this is true when
(x, y) ∈ supp a and (x, z) ∈ supp a we can apply Theorem 2.4.1′ with the phase function
x 7→ (φ(x, y)− φ(x, z))/|y − z| and τ = N |y − z| and obtain

|aN (y, z)| ≤ Ck(1 +N |y − z|)−k

for any positive integer k. When k = n+ 1 it follows that

∥TNu∥2 ≤ Cn+1

∫∫
(1 +N |y − z|)−n−1|u(y)||u(z)| dy dz

≤ Cn+1∥u∥2
∫
(1 +N |y|)−n−1 dy = CN−n∥u∥2,

which proves (5.2.2) when supp a is sufficiently close to (x0, y0). By hypothesis we can

always choose a partition of unity 1 =
∑J

1 χj in a neighborhood of supp a so that (5.2.2)

is valid with a replaced by χja, j = 1, . . . , J . Hence the estimate follows for a =
∑J

1 χjaj .

The hypothesis detφ′′
xy ̸= 0 in Theorem 5.2.1 is quite essential. In fact, assume for

example that a(0, 0) ̸= 0 and that (5.2.2) is valid. With A = φ′′
xy(0, 0) we have by Taylor’s

formula
φ(x, y) = φ(x, 0) + φ(0, y)− φ(0, 0) + ⟨x,Ay⟩+O(|x|3 + |y|3).

If we choose v ∈ C∞
0 (Rn) and set uε(y) = v(y/ε)e−iNφ(0,y), then

(TNuε)(εx) =

∫
eiN(φ(εx,εy)−φ(0,εy))a(εx, εy)v(y)εn dy

= eiN(φ(εx,0)−φ(0,0))εn
∫
eiNε

2⟨x,Ay⟩+O(Nε3)(a(0, 0) +O(ε))v(y) dy.
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With ε = 1/
√
N the integral converges to a(0, 0)v̂(− tAx) uniformly on compact sets. Since

∥TNuε∥p
′

p′ =

∫
|(TNu)(εx)|p

′
εn dx,

it follows that

lim
N→∞

∥TNuε∥p′ε−n(1+1/p′) ≥ |a(0, 0)|∥v̂(− tA·)∥p′ = |a(0, 0)|| detA|−1/p′∥v∥p′ .

We have ∥uε∥p = ∥v∥pεn/p and εn(1+1/p′)−n/p = ε2n/p
′
= N−n/p′ , so the estimate (5.2.2)

implies that |a(0, 0)|∥v̂∥p′ ≤ C| detA|1/p′∥v∥p. When v is fixed this gives a positive lower
bound for | detA| where |a| has a positive lower bound. In addition we see that the
Hausdorff-Young inequality is a consequence of Theorem 5.2.2.

However, a weakened version of (5.2.2) is always valid:

Theorem 5.2.1′. Let a ∈ C∞
0 (Rn ×Rm), let φ ∈ C∞(Rn ×Rm) be real valued, and

let ν be the minimum rank of ∂2φ(x, y)/∂x∂y when (x, y) ∈ supp a. Set

(5.2.1)′ TNu(x) =

∫
eiNφ(x,y)a(x, y)u(y) dy, u ∈ L1

loc(R
m).

If 1 ≤ p ≤ 2 and 1/p+ 1/p′ = 1, then

(5.2.2)′ Nν/p′∥TNu∥p′ ≤ C∥u∥p, u ∈ Lp(Rm), N ≥ 0.

Proof. It is sufficient to prove this when p = 2. For arbitrary (x0, y0) ∈ supp a we can
label the coordinates so that det(∂2φ(x, y)/∂xj∂yk)

ν
j,k=1 ̸= 0 at (x0, y0). Set

x′ = (x1, . . . , xν), x
′′ = (xν+1, . . . , xn), y

′ = (y1, . . . , yν), y
′′ = (yν+1, . . . , ym),

SNu(x, y
′′) =

∫
eiNφ(x,y)a(x, y)u(y) dy′, x = (x′, x′′), y = (y′, y′′).

It supp a is sufficiently close to (x0, y0) it follows from Theorem 5.2.1 that

Nν

∫
|SNu(x, y′′)|2 dx′ ≤ C2

∫
|u(y′, y′′)|2 dy′.

Integration with respect to x′′ and y′′ gives (5.2.2)′, for TNu(x) =
∫
SN (x, y′′) dy′′ implies

|TNu(x)|2 ≤ C
∫
|SNu(x, y′′)|2 dy′′ since y′′ is bounded in the support, and x′′ is also

bounded there.

We shall actually need an estimate similar to (5.2.2), but with different Lq norms and
other powers of N when φ does not satisfy the assumption in Theorem 5.2.1. We shall
begin with a quite degenerate case where n = 2 and φ is independent of one of the y
variables. A statement which is closer to Theorem 5.2.1 will be given afterwards.
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Theorem 5.2.2. Let a ∈ C∞
0 (R2×R), let φ ∈ C∞(R2×R) be real valued, and assume

that

(5.2.3) det

(
∂2φ(x, t)/∂t∂x1 ∂2φ(x, t)/∂t∂x2
∂3φ(x, t)/∂t2∂x1 ∂3φ(x, t)/∂t2∂x2

)
̸= 0, if (x, t) ∈ supp a.

Here x = (x1, x2) ∈ R2 and t ∈ R. Set

(5.2.4) TNf(x) =

∫
eiNφ(x,t)a(x, t)f(t) dt, f ∈ L1

loc(R), x ∈ R2.

Then it follows that

(5.2.5) ∥TNf∥q ≤ CN−2/q(q/(q − 4))
1
4 ∥f∥r, f ∈ Lr(R), if q > 4 and 3

q +
1
r = 1.

Note that if 3/q + 1/r = 1 then q > 4 is equivalent to q > r.

Proof. Attempting to apply Theorem 5.2.1 we form

FN (x) = (TNf(x))
2 =

∫∫
eiN(φ(x,t)+φ(x,s))a(x, t)a(x, s)f(t)f(s) ds dt.

However, the hypotheses on the phase function are not fulfilled since the determinant

det

(
∂2φ(x, t)/∂x1∂t ∂2φ(x, s)/∂x1∂s
∂2φ(x, t)/∂x2∂t ∂2φ(x, s)/∂x2∂s

)
vanishes when t = s. Subtracting the first column from the second we get by Taylor’s
formula that

det

(
∂2φ(x, t)/∂x1∂t ∂2φ(x, s)/∂x1∂s
∂2φ(x, t)/∂x2∂t ∂2φ(x, s)/∂x2∂s

)
= (s− t) det

(
∂2φ(x, t)/∂x1∂t ∂3φ(x, t)/∂x1∂t

2

∂2φ(x, t)/∂x2∂t ∂3φ(x, t)/∂x2∂t
2

)
+O(s− t)2,

so the absolute value is bounded below by c|t− s| for a positive constant c in the support
of a(x, t)a(x, s) if supp a is sufficiently close to a point (x0, t0) where (5.2.3) is valid. Now
φ(x, t)+φ(x, s) is a symmetric function in s, t so it can be regarded as a function of (x, u, v)
near (x0, 2t0, 0), where u = t + s and v = t − s, which is even in v. Hence there is a C∞

function Φ(x, u, w) in a neighborhood of (x0, 2t0, 0) such that φ(x, t)+φ(x, s) = Φ(x, u, w)
if u = t + s and w = (t − s)2. Similarly a(x, t)a(x, s) = A(x, u, w) where A ∈ C∞ and
suppA is close to (x0, 2t0, 0). The Jacobian D(u,w)/D(t, s) is equal to 4(s − t), and the
map (s, t) 7→ (u,w) is a double cover of the half plane where w > 0, so we obtain

FN (x) = 1
2

∫
w>0

eiNΦ(x,u,w)A(x, u, w)f(t)f(s)|t− s|−1 du dw
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where t = 1
2 (u ±

√
w) and s = 1

2 (u ∓
√
w). Now Φ satisfies the hypotheses of Theorem

5.2.1 in a neighborhood of (x0, 2t0, 0), so Theorem 5.2.1 gives for 1 ≤ p ≤ 2

∥TNf∥22p′ = ∥FN∥p′ ≤ CN−2/p′
(∫

w>0

|f(t)f(s)|p|t− s|−p du dw
) 1

p

= CN−2/p′
(
2

∫∫
|f(t)|p|f(s)|p|t− s|1−p ds dt

) 1
p

.

We can estimate the right-hand side using the classical Hardy-Littlewood inequality proved
in an example following Theorem 4.1.2 which states that

(5.2.6)

∫∫
|s− t|γ−1|f(s)||g(t)| ds dt ≤ Cp1,p2∥f∥p1∥g∥p2

if 1/p1 + 1/p2 = 1 + γ > 1 and 1 < pj <∞. With γ = 2− p and 1/p1 = 1/p2 = (3− p)/2
we obtain(∫∫

|f(t)f(s)|p|s− t|1−p ds dt
) 1

p ≤ C(2− p)−1/p∥f∥22p/(3−p), 1 ≤ p < 2,

for inspection of the proof of (5.2.6) gives Cp1,p2 ≤ C/γ = C/(2 − p). We leave the
verification as an exercise. Hence

∥TNf∥2p′ ≤ CN−1/p′(2− p)−1/2p∥f∥2p/(3−p).

With the notation 2p′ = q and 2p/(3− p) = r we have 1/r+3/q = 3/2p− 1/2+3/2p′ = 1,
and p < 2 means q > 4, 2− p = (q − 4)/(q − 2). Since 1/2p < 1/4 the inequality (5.2.5) is
now proved if supp a is sufficiently close to a point where (5.2.3) is valid. As in the proof
of Theorem 5.2.1 a partition of unity completes the proof.

The condition (5.2.3) means that the first and second derivatives of ∂φ(x, t)/∂x with
respect to t are linearly independent. Thus t 7→ ∂φ(x, t)/∂x ∈ R2 defines a smooth
immersed curve with curvature different from 0. In the special case where φ is linear in x,
the curve is independent of x and we are led to the following:

Corollary 5.2.3. Let I be an open interval on R, and let I ∋ t 7→ Φ(t) ∈ R2 be an
immersion of I as a curve Γ with curvature ̸= 0. Set

(5.2.7) Sf(x) =

∫
ei⟨x,Φ(t)⟩a(t)f(t) dt, f ∈ L1

loc(R), x ∈ R2,

where a ∈ C∞
0 (I). Then it follows that

(5.2.8) ∥Sf∥q ≤ C(q/(q − 4))
1
4 ∥f∥r, f ∈ Lr(R), if q > 4, 3

q +
1
r = 1.

With ĝ denoting the Fourier transform of g ∈ L1(R2) ∩ Lq(R2) we have

(5.2.9) ∥a(ĝ ◦ Φ)∥Lr(I) ≤ C(4− 3q)−
1
4 ∥g∥q, if 1 ≤ q < 4

3 ,
3
q +

1
r = 3.



THE TWO-DIMENSIONAL CASE 139

Proof. The function φ(x, t) = ⟨x,Φ(t)⟩ satisfies (5.2.3) in every compact subset of
R2 × I. Choose b ∈ C∞

0 (R2) with b(0) = 1 and apply Theorem 5.2.2 with a replaced by
b(x)a(t). This gives

N2/q
(∫

|b(x)(Sf)(Nx)|q dx
) 1

q ≤ C(q/(q − 4))
1
4 ∥f∥r.

If we introduce Nx as a new integration variable in the left-hand side and let N → ∞, the
estimate (5.2.8) follows. The estimate (5.2.9) is dual: We have

⟨a(ĝ ◦ Φ), f⟩ =
∫∫

e−i⟨x,Φ(t)⟩g(x)a(t)f(t) dx dt =

∫
(Sf)(−x)g(x) dx,

so Hölder’s inequality and (5.2.8) gives

|⟨a(ĝ ◦ Φ), f⟩| ≤ ∥Sf∥q∥g∥q′ ≤ C(q/(q − 4))
1
4 ∥f∥r∥g∥q′ .

Since 3/q′ + 1/r′ = 3 and q/(q − 4) = q′/(4 − 3q′) the inequality (5.2.9), with q and r
replaced by q′ and r′, follows from the converse of Hölder’s inequality.

We shall now rephrase Theorem 5.2.2 in closer analogy to Theorem 5.2.1.

Theorem 5.2.4. Let a ∈ C∞
0 (R2 × R2), let φ ∈ C∞(R2 × R2) be real valued, and

suppose that when (x, y) ∈ supp a we have ∂2φ(x, y)/∂x∂y ̸= 0 and

(5.2.10) ∂2⟨t, ∂φ(x, y)/∂x⟩/∂y2 ̸= 0, if 0 ̸= t ∈ R2, ∂⟨t, ∂φ(x, y)/∂x⟩/∂y = 0.

If TN is defined by (5.2.1) with n = 2 then

(5.2.11) ∥TNu∥q ≤ CN−2/q(q/(q − 4))
1
4 ∥u∥r, u ∈ Lr(R2), if q > 4 and 3

q +
1
r = 1.

Proof. Since r′ = q/3 < q, thus r > q′, the estimate (5.2.10) follows from (5.2.2),
with n = 2 and p = q′, if det ∂2φ/∂x∂y ̸= 0 in supp a. It is therefore sufficient to prove
(5.2.11) when supp a is in a small neigbhorhood of a point (x0, y0) where ∂2φ(x, y)/∂x∂y
has rank 1 and (5.2.10) is valid. After an affine change of x variables we may assume that
x0 = 0 and that ∂2φ/∂x1∂y = 0 at (x0, y0). Then ∂2φ/∂x2∂y ̸= 0 and ∂3φ/∂x1∂y

2 ̸= 0
at (x0, y0). After an affine change of y variables we may therefore assume that y0 = 0
and that ∂2φ/∂x2∂y1 ̸= 0, ∂3φ/∂x1∂y

2
1 ̸= 0 at (0, 0). Since ∂2φ/∂x1∂y1 = 0 at (0, 0) it

follows that (x, t) 7→ φ(x, t, y2) satisfies (5.2.3) in a neighborhood of the origin when y2 is
fixed and small, for the determinant is equal to −∂2φ/∂x2∂y1∂3φ/∂x1∂y21 at the origin.
Writing

TNu(x, y2) =

∫
eiNφ(x,y)a(x, y)u(y) dy1

we have by (5.2.5) since TNu(x) =
∫

TNu(x, y2) dy2

∥TNu∥q ≤
∫
K

dy2∥TNu(·, y2)∥Lq(R2) ≤ CN−2/q(q/(q − 4))
1
4

∫
K

∥u(·, y2)∥Lr(R) dy2,

where K is a compact set such that a(x, y) = 0 if y2 /∈ K. By Hölder’s inequality the

integral in the right-hand side is ≤ m(K)1/r
′∥u∥r, which completes the proof.
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Corollary 5.2.5. Let Φ ∈ C∞(R2 \ {0}) be real valued and positively homogeneous
of degree 1, and let A ∈ C∞

0 (R2 \ {0}). Set

Stf(x) =

∫
eitΦ(x−y)A(x− y)f(y) dy, f ∈ L1

loc(R
2).

If Φ′′ ̸= 0 in suppA, it follows that

∥Stf∥p ≤ Cp(t)∥f∥p, f ∈ Lp(R2), t > 2, p ≥ 2, where(5.2.12)

Cp(t) =

{
Ct−2/p(p/(p− 4))

1
4 , if p > 4,

Ct−
1
2 (log t)

1
2−

1
p , if 2 ≤ p ≤ 4.

(5.2.13)

Proof. The phase function φ(x, y) = Φ(x − y) satisfies the hypotheses of Theorem
5.2.4 when x − y ∈ suppA. In fact, Φ′′(z)z = 0 since Φ′ is homogeneous of degree 0,
and since Φ′′(z) ̸= 0 it follows that Φ′′(z)t = 0 implies that t is proportional to z, and
Φ′′′(z)z = −Φ′′(z) since Φ′′ is homogeneous of degree −1.

Let 0 ≤ χ ∈ C∞
0 (R2),

∫
χ2 dx = 1. Then the hypotheses of Theorem 5.2.4 are fulfilled

if a(x, y) = A(x− y)χ(y). If p > 4 it follows that

(5.2.14) ∥Stχ2f∥p ≤ Cp(t)∥χf∥p, f ∈ Lp(R2),

for r = p/(p− 3) < p. Theorem 5.2.1′ gives the estimate (5.2.14) when p = 2. The Riesz-
Thorin interpolation theorem (Theorem 2.3.2) gives (5.2.14) for p < 2 ≤ 4 if we apply it
between p1 = 2 and p2 = 4 + 1/ log t.

By the translation invariance of St it follows that for z ∈ R2

(5.2.15) ∥St,zf∥p ≤ Cp(t)∥χ(· − z)f∥p, where St,zf = St(χ(· − z)2f).

Since

St,zf(x) =

∫
eitΦ(x−y)A(x− y)χ(y − z)2f(y) dy,

the integral with respect to z is equal to Stf(x), and since A(x− y)χ(y− z) ̸= 0 implies a
bound for x− z, we have by Hölder’s inequality

|Stf(x)|p ≤ Cp
∫

|St,zf(x)|p dz.

If we raise the estimate (5.2.15) to the power p and integrate with respect to z it follows
that

∥Stf∥p ≤ CCp(t)∥χ∥p∥f∥p
which completes the proof.

Since Φ is homogeneous we have

(5.2.16) (Stf)(x/t) =

∫
eiΦ(x−ty)A(x/t− y)f(y) dy =

∫
eiΦ(x−y)A((x− y)/t)g(y) dy
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where g(y) = f(y/t)/t2, and (5.2.12) gives

∥(Stf)(·/t)∥p = t2/p∥Stf∥p ≤ t2/pCp(t)∥f∥p = t2Cp(t)∥g∥p

If we multiply (5.2.16) by t−1−λ and integrate with respect to t from 2 to ∞, it follows
that the operator

Kλg(x) =

∫
eiΦ(x−y)bλ(x− y)g(y) dy,(5.2.17)

bλ(z) =

∫ ∞

2

A(z/t)t−1−λdt,(5.2.18)

is bounded in Lp provided that p ≥ 2 and that

(5.2.19)

∫ ∞

2

Cp(t)t
1−λ dt <∞.

By (5.2.13) this condition is equivalent to

λ >

{
2(1− 1

p ), if p ≥ 4

3
2 , if 2 ≤ p ≤ 4.

The function b defined by (5.2.18) is positively homogeneous of degree −λ when |z| is so
large that z/t ∈ suppA implies t ≥ 2, for then we have b(z) = b0(z) where

(5.2.20) b0(z) =

∫ ∞

0

A(z/t)t−1−λ dt.

Every b0 which is positively homogeneous of degree −λ is of the form (5.2.20) with A(z) =
b0(z)ϱ(z) where ϱ ∈ C∞

0 (R2 \ {0}) is chosen so that
∫∞
0
ϱ(z/t) dt/t = 1 for z ̸= 0. This is

true for any non-negative C∞ function of |z| with support in (1, 2) after multiplication by
a suitable normalizing constant. This gives the following theorem when p ≥ 2, and when
p ≤ 2 it follows by duality.

Theorem 5.2.6. Let Φ ∈ C∞(R2 \ {0}) be real valued and positively homogeneous of
degree 1, and let a0 ∈ C∞(R2 \ {0}) be positively homogeneous of degree −λ. Assume that
Φ′′(x) ̸= 0 when a0(x) ̸= 0, x ̸= 0, and that

(5.2.21) λ > max( 32 , 2
∣∣ 1
p −

1
2

∣∣+ 1).

If a ∈ L1
loc(R

2) is equal to a0 outside a compact set, then the operator f 7→ (eiΦa) ∗ f
extends from L1(R2) ∩ L∞(R2) to a continuous operator in Lp(R2).

In fact, we have just proved the continuity of this operator for some b ∈ C∞ equal to
a0 outside a compact set. Hence b − a ∈ L1, and f 7→ (b − a) ∗ f is continuous in Lp for
every p.

Theorem 5.2.6 gives the sufficiency of the necessary conditions in Theorem 5.1.8:
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Theorem 5.2.7. Let ϱ ∈ C∞(R2) be real valued and negative outside a compact set,
and assume that ϱ′(ξ) ̸= 0 and that ϱ′′(ξ)t ̸= 0 if ξ ∈ R2, ϱ(ξ) = 0 and 0 ̸= t ∈ R2,
ϱ′(ξ)t = 0. Then ϱα+ ∈ Mp(R

2) if

(5.2.22) α > max
(
0, 2

∣∣ 1
p −

1
2

∣∣− 1
2

)
.

Proof. The zeros of ϱ form a compact set, so a partition of unity shows that it is
sufficient to prove that for every ξ0 with ϱ(ξ0) ̸= 0 there is some φ ∈ C∞

0 with φ(ξ0) ̸= 0
such that φϱα+ ∈ Mp(R

2). If we choose φ as in the proof of Theorem 5.1.8, keeping the
notation there, we find that it is sufficient to prove Lp continuity of convolution with a
C∞ kernel K such that outside a compact set K(x) − eiΦ(x)a0(x) = O(|x|−1−λ) where
a0 is homogeneous of degree −λ and λ = 3/2 + α. Here Φ is defined in supp a0 by
Φ(x) = x1t+ x2ψ(t) where t is a C

∞ function of x, homogeneous of degree 0, determined
by the equation x1 + x2ψ

′(t) = 0; ψ′′(t) ̸= 0. Thus Φ′(x) = (t, ψ′(t)) and ∂2Φ(x)/∂x21 =
∂t/∂x1 = −1/(x2ψ

′′(t)) ̸= 0. Since (5.2.22) is identical to (5.2.21), the theorem is proved.

The hypothesis in Theorem 5.2.7 that the curvature of {ξ; ϱ(ξ) = 0} is not equal to
0 is superfluous. A fairly simple localization argument proves that the result remains
valid if there are no points which are flat of infinite order, and Sjölin [1] has proved it for
arbitrary smooth curves. (However, the necessity proved in Theorem 5.1.8 requires a non-
zero curvature at some point.) This suggests that there should exist a more natural proof
which does not aim so directly at the kernel of the convolution operator corresponding to
the multiplier, but none seems to be known.

5.3. The higher dimensional case. Our first goal is to prove an analogue of
Theorem 5.2.2 which was the key to the results in Section 5.2. Thus let φ ∈ C∞(R2n−1)
be real valued, let a ∈ C∞

0 (R2n−1), and consider the operator analogous to (5.2.4) defined
by

(5.3.1) TNf(x) =

∫
eiNφ(x,y)a(x, y)f(y) dy, f ∈ L1

loc(R
n−1).

Here the variables in R2n−1 are denoted by (x, y) where x ∈ Rn and y ∈ Rn−1. We shall
assume that

(5.3.2) rank(∂2φ(x, y)/∂x∂y) = n− 1 when (x, y) ∈ supp a.

Then there is for every (x, y) ∈ supp a a vector t ∈ Rn \ {0}, uniquely determined up to
a constant factor, such that (∂/∂y)⟨∂φ(x, y)/∂x, t⟩ = 0. The analogue of the hypothesis
(5.2.3) is that for (x, y) ∈ supp a
(5.3.3)

(∂/∂y)⟨∂φ(x, y)/∂x, t⟩ = 0 =⇒ det(∂2/∂y2)⟨∂φ(x, y)/∂x, t⟩ ̸= 0, if 0 ̸= t ∈ Rn.

The conditions (5.3.2) and (5.3.3) do not change if we add a function of x or a function
of y to φ or change the x or the y coordinates, and this does not affect LrLq estimates of
the form (5.2.5) either, apart from the size of the constants. One can therefore simplify φ
using the following lemma.
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Lemma 5.3.1. If φ satisfies (5.3.2) at the origin, then there are new x and y coordinates
such that at the origin

(5.3.4) φ(x, y)− φ(x, 0)− φ(0, y) + φ(0, 0) =
n−1∑
j=1

xjyj +
1
2xn⟨A(y)y, y⟩+O(|x|2|y|2),

where A(y) is a real symmetric n× n matrix which is a C∞ function of y.

Proof. By Taylor’s formula applied first in the x variables and then in the y variables
we can write

φ(x, y)− φ(x, 0)− φ(0, y) + φ(0, 0) =
n∑
j=1

n−1∑
k=1

cjk(x, y)xjyk.

The condition (5.3.2) at the origin means that
∑
cjk(0, 0)xjyk =

∑n−1
1 Lk(x)yk where the

linear forms Lk are linearly independent. By a linear change of the x variables we can
achieve that Lk(x) = xk which we assume now. Again by Taylor’s formula we can write

cjk(x, y) = cjk(0, 0) +
n∑
l=1

djkl(x)xl +
n−1∑
l=1

ejkl(y)yl +Rjk(x, y)

where Rjk(x, y) = O(|x||y|). This gives

φ(x, y) =

n−1∑
j=1

(
xj+

n∑
k,l=1

dkjl(x)xkxl

)(
yj+

n−1∑
k,l=1

ejkl(y)ykyl

)
+xn

n−1∑
k,l=1

enkl(y)ykyl+R(x, y)

where R(x, y) = O(|x|2|y|2). This proves the lemma.

The condition (5.3.3) with (x, y) = (0, 0) means that the matrix A(0) is non-singular,
so this is an invariant condition. When examining the conditions for the validity of an
LrLq estimate of the form (5.2.5) for TN we may assume that φ(x, 0) ≡ 0, φ(0, y) ≡ 0, for
otherwise φ may be replaced by the left-hand side of (5.3.4), and we assume that a = 1
in a neighborhood of the origin. Let f ∈ C∞

0 (Rn−1) have so small support that a = 1 in
a neighborhood of {0} × supp f . To examine TNf in a conic neighborhood of the xn axis
close to the origin we set x′ = (x1, . . . , xn−1) = xnz and note that with some ψ ∈ C∞

φ(x, y) = φ((xnz, xn), y) = xn(⟨z, y⟩+ 1
2 ⟨A(y)y, y⟩+ xnψ(z, xn, y)).

Hence y 7→ φ(x, y)/xn has a unique non-degenerate critical point close to the origin if xn
and z are sufficiently small. If supp f is sufficiently small it follows from the method of
stationary phase, Theorem 2.4.5, that there are positive constants c1, . . . , c4 such that

|TNf(xnz, xn)| ≥ c4(Nxn)
1
2 (1−n), if |z| < c3, c1/N < xn < c2.
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Hence, with another positive constant c5,∫
|TNf(x)|q dx ≥ c5N

1
2 (1−n)q

∫ c2

c1/N

x
(n−1)(1− 1

2 q)
n dxn.

Since (n− 1)(1− 1
2q) + 1 = nq( 1q −

1
2 + 1

2n ) and
1
2 (1− n)q − (n− 1)(1− 1

2q)− 1 = −n, it
follows if we distinguish the cases where the integral on the right converges or diverges at
0 that

lim
N→∞

∥TNf∥qN
1
2 (n−1) ≥ C

(
1
q −

1
2 + 1

2n )
− 1

q , if 1
2 − 1

2n <
1
q ≤ 1

2 ,(5.3.5)

lim
N→∞

∥TNf∥qN
1
2 (n−1)(logN)−

1
q ≥ C, if 1

q = 1
2 − 1

2n ,(5.3.6)

lim
N→∞

∥TNf∥qNn/q ≥ C( 12 − 1
q −

1
2n )

− 1
q , if 1

q <
1
2 − 1

2n .(5.3.7)

The exponent −1/q in (5.3.5) and (5.3.7) may of course be replaced by 1/2n− 1/2. When
n = 2 we have therefore proved that the growth of the constant in (5.2.5) as q → 4 cannot
be improved and also that no estimate of the form (5.2.5) is valid with q ≤ 4 no matter
how r is chosen. Also in the higher dimensional case we conclude that an estimate of the
form

(5.3.8) ∥TNf∥q ≤ CN−n/q∥f∥r
cannot be valid unless q > 2n/(n − 1). To prove a necessary condition on r also we first
observe that since

(TNf)(x/N) =

∫
eiNφ(x/N,y)f(y)dy →

∫
ei⟨x,Φ(y)⟩f(y) dy, N → ∞,

where Φ(y) = (y, 12 ⟨A(y)y, y⟩), it follows from (5.3.8) that

∥Sf∥q ≤ C∥f∥r, where Sf(x) =

∫
ei⟨x,Φ(y)⟩f(y) dy.

Now we use a scaling argument. Let f ∈ C∞
0 (Rn−1) \ {0} and set fε(y) = f(y/ε)ε(1−n)/r

with a small ε > 0. Then ∥fε∥r is independent of ε and

(Sfε)(x
′/ε, xn/ε

2)ε(1−n)/r
′
= Sεf(x) → S0f(x)

where 1/r + 1/r′ = 1 and Sε is defined as S but with A(y) replaced by A(εy). Hence

lim
ε→0

ε(n+1)/q−(n−1)/r′∥Sfε∥q ≥ ∥S0f∥q,

which proves that (5.3.8) implies (n+1)/q− (n− 1)/r′ ≤ 0. Summing up, (5.3.8) requires
that

(5.3.9) 1
q <

1
2 − 1

2n ,
n+1
(n−1)

1
q +

1
r ≤ 1.

When n = 2 these are precisely the conditions in (5.2.5).
However, when n > 2 the conditions (5.3.9) are not sufficient to guarantee that (5.3.8)

is valid. The following striking example is essentially due to Bourgain [1].
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Example. Let n = 2k + 1 be odd and set

(5.3.10) φ(x, y) =

k∑
1

( 12xj + yj + xnyk+j)
2 +

k∑
1

(xj+k − xnxj)yk+j

=

k∑
1

( 14x
2
j + y2j ) +

2k∑
1

xjyj + 2xn

k∑
1

yjyk+j + x2n

2k∑
k+1

y2j .

Note that this corresponds to ⟨A(y)y, y⟩ = 4
∑k

1 yjyk+j with the notation in Lemma 5.3.1,
which means that A(y) is independent of y and has k positive and k negative eigenvalues.
If a ∈ C∞

0 (R2n−1) and f ∈ C∞
0 (R2n−1), then the stationary phase method applied to the

integral (5.3.1) in the variables y1, . . . , yk gives

TNf(x) = cN− 1
2k

∫
exp

(
iN

k∑
1

(xj+k − xnxj)yk+j
)
A(x, y′′) dy′′ +O(N− 1

2k−1)

where y′′ = (yk+1, . . . , y2k) and A(x, y′′) = a(x, y)f(y) when yj = −xnyk+j − 1
2xj for

j = 1, . . . , k. We can choose a and f so that A(0, 0) ̸= 0. Then we obtain

TNf(x) = cN− 1
2kÂ(x,Nη) +O(N− 1

2k−1), ηj = xnxj − xj+k, j = 1, . . . , k,

where Â denotes the Fourier transform of A(x, y′′) in y′′. Hence

lim
N→∞

∥TNf∥qNk( 1
2+

1
q ) ≥ |c|

(∫
|Â(x′, xnx′, xn, x′′)|q dx

) 1
q

where x′ = (x1, . . . , xk) and x′′ = (xk+1, . . . , x2k). The right-hand side is not 0, so an
estimate of the form (5.3.8) cannot hold even with r = ∞ unless k( 12 + 1

q ) ≥
n
q , that is,

(5.3.11) q ≥ 2n+2
n−1 .

The preceding example combined with (5.3.9) shows that if n is odd and no hypothesis
is made about φ beyond the conditions (5.3.2) and (5.3.3), then the best result which can
be proved is the following theorem of Stein [4]:

Theorem 5.3.2. Let φ ∈ C∞(R2n−1) be real valued, let a ∈ C∞
0 (R2n−1), and assume

that (5.3.2) and (5.3.3) are valid when (x, y) ∈ supp a. Then there is a constant C such
that with TN defined by (5.3.1)

(5.3.12) ∥TNf∥q ≤ CN−n/q∥f∥r, f ∈ Lr(Rn−1), if q ≥ 2n+2
n−1 ,

n+1
n−1

1
q +

1
r ≤ 1.

Proof. Since f may be assumed to have support in a fixed compact set, the statement
is strongest when n+1

n−1
1
q + 1

r = 1. Since (5.3.12) is trivial when r = 1 and q = ∞, it
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follows from the Riesz-Thorin interpolation theorem (Theorem 2.3.2) that it suffices to
prove (5.3.12) when r = 2 and q = (2n+ 2)/(n− 1). It is then more convenient to discuss
the equivalent dual estimate

(5.3.13) ∥T ∗
Nu∥2 ≤ CN−n(n−1)/(2n+2)∥u∥(2n+2)/(n+3), u ∈ L(2n+2)/(n+3)(Rn).

The square of the left-hand side is equal to (TNT
∗
Nu, u) which by Hölder’s inequality can

be estimated by ∥TNT ∗
Nu∥(2n+2)/(n−1)∥u∥(2n+2)/(n+3). Hence (5.3.13) will follow if we can

prove that
(5.3.14)

∥TNT ∗
Nu∥(2n+2)/(n−1) ≤ C2N−n(n−1)/(n+1)∥u∥(2n+2)/(n+3), u ∈ L(2n+2)/(n+3)(Rn).

It is of course sufficient to prove (5.3.14) when φ has the form of the right-hand side in
(5.3.4) and the support of a is very close to the origin.

In the proof of (5.3.14) we shall single out the xn variable and write

(TN (xn)f)(x
′) =

∫
eiNφ(x

′,xn,y)a(x′, xn, y)f(y) dy, f ∈ L1
loc(R

n−1).

Here x′ = (x1, . . . , xn−1). Then

T ∗
Nu =

∫
TN (s)∗u(·, s) ds, u ∈ L1

loc(R
n),

(TNT
∗
Nu)(·, t) =

∫
TN (t)TN (s)∗u(·, s) ds.(5.3.15)

To complete the proof we need an estimate for TN (t)TN (s)∗:

Lemma 5.3.3. When 1 ≤ p ≤ 2 and 1/p+ 1/p′ = 1 then
(5.3.16)

∥TN (t)TN (s)∗f∥p′ ≤ C|t− s|−(n−1)( 1
2−

1
p′ )N

−(n−1)( 1
2+

1
p′ )∥f∥p, f ∈ Lp(Rn−1), s ̸= t.

Proof. By Theorem 5.2.1 we have with a constant C independent of t

∥TN (t)f∥2 ≤ CN− 1
2 (n−1)∥f∥2.

Since the same estimate is valid for the adjoint it follows that

∥TN (t)TN (s)∗f∥2 ≤ CN−(n−1)∥f∥2,

which is the estimate (5.3.16) for p = 2. By the Riesz-Thorin interpolation theorem
(Theorem 2.3.2) the estimate will follow for 1 ≤ p ≤ 2 if we can prove it when p = 1, that
is, prove that

∥TN (t)TN (s)∗f∥∞ ≤ C|t− s|− 1
2 (n−1)N− 1

2 (n−1)∥f∥1.
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Such a bound is equivalent to an estimate

(5.3.17) ∥Kt,s∥∞ ≤ C(N |t− s|)− 1
2 (n−1),

where Kt,s is the kernel of TN (t)TN (s)∗, that is,

Kt,s(x
′, z) =

∫
Rn−1

eiN(φ(x′,t,y)−φ(z,s,y)a(x′, t, y)a(z, s, y) dy, x′, z ∈ Rn−1.

First assume that z = 0, s = 0, and that the coordinates have been chosen according to
Lemma 5.3.1. Then

∂

∂y

(
φ(x′, t, y)− φ(z, s, y)

)
= x′ + t(A(y)y +O(|y|2)) +O(|x′|2 + |t|2)|y|.

If |t| ≤ |x′| and |y|, |x′| are sufficiently small, the norm is ≥ |x′|/2, and all derivatives with
respect to y are O(|x′|). Hence it follows from Theorem 2.4.1 that

|Kt,0(x
′, 0)| ≤ Ck(N |x′|)−k ≤ Ck(N |t|)−k, k ≥ 0,

if the support of a is sufficiently close to the origin. On the other hand, if |x′| < t then

∂2

∂y2
(
φ(x′, t, y)− φ(z, s, y)

)
= t(A(y) +O(|y|+ |t|)),

so the absolute value of the determinant of the quotient by t has a positive lower bound
if t and y are small enough, and all derivatives of φ(x′, t, y)/t with respect to y are also
uniformly bounded then. Hence it follows from Theorem 2.4.3 that

|Kt,0(x
′, 0)| ≤ C(N |t|)− 1

2 (n−1),

if the support of a is sufficiently close to the origin. For any other z and s close to the origin
the same conclusions are obtained after the change of coordinates achieved in Lemma 5.3.1,
which completes the proof.

End of the proof of Theorem 5.3.2. When p = (2n+ 2)/(n+ 3) and p′ = (2n+
2)/(n− 1) we obtain from (5.3.16) using (5.3.15) and Minkowski’s inequality

V (t) ≤ C

∫
|t− s|−(n−1)/(n+1)N−n(n−1)/(n+1)U(s) ds, where

V (t) = ∥(TNT ∗
Nu)(·, t)∥p′ , U(s) = ∥u(·, s)∥p.

Since 1/p− 1/p′ = 2/(n+ 1) = 1− (n− 1)/(n+ 1), it follows from the Hardy-Littlewood
potential estimate (see the example following Theorem 4.1.2) that(∫

|V (t)|p
′
dt
) 1

p′ ≤ CN−n(n−1)/(n+1)
(∫

|U(s)|p ds
) 1

p

,

that is,
∥TNT ∗

Nu∥p′ ≤ CN−n(n−1)/(n+1)∥u∥p,
which is the estimate (5.3.14). The proof is complete.

From this point on we can to a large extent repeat the arguments in Section 5.2. The
special case of Theorem 5.3.2 where φ is linear in x merits a special emphasis, as in
Corollary 5.2.3:
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Corollary 5.3.4. Let Y be an open subset of Rn−1, n ≥ 3, and let Y ∋ y 7→ Φ(y) ∈
Rn be an immersed hypersurface with total curvature ̸= 0. Set

(5.3.18) Sf(x) =

∫
ei⟨x,Φ(y)⟩a(y)f(y) dy, f ∈ L1

loc(R
n−1), x ∈ Rn,

where a ∈ C∞
0 (Y ). Then it follows that

(5.3.19) ∥Sf∥q ≤ C∥f∥r, f ∈ Lr(Rn−1), if q ≥ 2n+2
n−1 and n+1

n−1
1
q +

1
r ≤ 1.

With ĝ denoting the Fourier transform of g ∈ L1(Rn) ∩ L2(Rn) we have

(5.3.20) ∥a(ĝ ◦ Φ)∥r ≤ C∥g∥q, if 1 ≤ q ≤ 2n+2
n+3 and n+1

n−1
1
q +

1
r ≥ n+1

n−1 .

Proof. The function φ(x, y) = ⟨x,Φ(y)⟩ satisfies (5.3.2), (5.3.3) when y ∈ Y . In fact,
since Φ′(y) is injective, the rank of ∂2φ(x, y)/∂x∂y = ∂Φ(y)/∂y is n − 1. The condition
(∂/∂y)⟨Φ(y), t⟩ = 0 means that t is orthogonal to the tangent plane at Φ(y). Thus (5.3.2)
means that det(∂2/∂y2)⟨Φ(y), t⟩ ̸= 0 when t is a normal ̸= 0, that is, that the total
curvature is not 0. Choose b ∈ C∞

0 (Rn) with b(0) = 1. If we apply Theorem 5.3.2 with
a(x, y) replaced by b(x)a(y) it follows that

Nn/q
(∫

|b(x)(Sf)(Nx)|q dx
) 1

q ≤ C∥f∥r, if q ≥ 2n+2
n−1 and n+1

n−1
1
q +

1
r ≤ 1.

The estimate (5.3.19) follows if we let N → ∞ after introducing Nx as a new integration
variable. The estimate (5.3.20) is dual as in the proof of Corollary 5.2.3, and we do not
repeat the proof.

The estimate (5.3.20) is known as the restriction theorem. A weaker form was first
proved by Tomas [1]. It has been proved by Bourgain [1] that it is valid for a wider range
of q but the precise range is not known. One should note that the motivation we gave
for the condition q ≥ (2n+ 2)/(n− 1) in Theorem 5.3.2 assumed that no information was
given on φ beyond conditions (5.3.2) and (5.3.3). Linearity in x is a strong additional
hypothesis which extends the permissible range.

Next we prove an analogue of Theorem 5.2.4:

Theorem 5.3.5. Let a ∈ C∞
0 (Rn ×Rn), n ≥ 3, let φ ∈ C∞(Rn ×Rn) be real valued,

and assume that when (x, y) ∈ supp a the rank of ∂2φ(x, y)/∂x∂y is at least n−1 and that

(5.3.21) rank ∂2⟨t, ∂φ(x, y)/∂x⟩/∂y2 ≥ n−1, if 0 ̸= t ∈ Rn, ∂⟨t, ∂φ(x, y)/∂x⟩/∂y = 0.

If TN is defined by (5.2.1) then

(5.3.22) ∥TNu∥q ≤ CN−n/q∥u∥r, u ∈ Lr(Rn), if q ≥ 2n+2
n−1 and n+1

n−1
1
q +

1
r ≤ 1.

Proof. Since r′ ≤ q(n − 1)/(n + 1) < q, thus r > q′, the estimate (5.3.22) follows
from (5.2.2) with p = q′ if det ∂2φ(x, y)/∂x∂y ̸= 0 in supp a. It is therefore sufficient
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to prove (5.3.22) when supp a is contained in a small neighborhood of a point (x0, y0)
where ∂2φ(x, y)/∂x∂y has rank n − 1 and (5.3.21) is applicable. Choose t ∈ Rn \ {0} so
that (∂/∂y)⟨t, ∂φ/∂x⟩ = 0 at (x0, y0). Since the rank of (∂2/∂y2)⟨t, ∂φ/∂x⟩ is ≥ n − 1
at (x0, y0) by (5.3.21), we can make an affine change of y coordinates preserving y0 such

that in the new coordinates the rank of (∂2φ(x, y)/∂xj∂yk)
k=1,...,n−1
j=1,...,n is equal to n− 1 and

det(∂2⟨t, ∂φ/∂x⟩/∂yj∂yk)n−1
j,k=1 ̸= 0 at (x0, y0). In fact, both conditions are fulfilled for

a generic direction of the coordinate plane where yn = y0n. Then Theorem 5.3.2 can be
applied for fixed yn to

TNu(x, yn) =

∫
eiNφ(x,y)a(x, y)u(y) dy1 . . . dyn−1.

Since TNu(x) =
∫

TNu(x, yn) dyn we obtain

∥TNu∥q ≤
∫
K

∥TNu(·, yn)∥q dyn ≤ CN−n/q
∫
K

∥u(·, yn)∥Lr(Rn−1) dyn,

where K is a compact set ⊂ R such that a(x, y) = 0 when yn /∈ K. By Hölder’s inequality

the right-hand side is ≤ m(K)1/r
′∥u∥r, which completes the proof.

Corollary 5.3.6. Let Φ ∈ C∞(Rn \ {0}) be real valued and positively homogeneous
of degree 1, n ≥ 3, and let A ∈ C∞

0 (Rn \ {0}). Set

Stf(x) =

∫
eitΦ(x−y)A(x− y)f(y) dy, f ∈ L1

loc(R
n).

If Φ′′(x) has rank n− 1 for every x ∈ suppA and n ≥ 3, it follows that

∥Stf∥p ≤ Cp(t)∥f∥p, f ∈ Lp(Rn), t > 2, p ≥ 2, where(5.3.23)

Cp(t) =

{
Ct−n/p, if p ≥ 2n+2

n−1 ,

Ct−(n−1)( 1
4+

1
2p ), if 2 ≤ p ≤ 2n+2

n−1 .
(5.3.24)

Proof. The phase function φ(x, y) = Φ(x − y) satisfies the hypotheses of Theorem
5.3.5 when x − y ∈ suppA. In fact, Φ′′(z)z = 0 since Φ′ is homogeneous of degree 0,
and since Φ′′(z) is of rank n − 1 it follows that Φ′′(z)t = 0 implies that t = cz, hence
Φ′′′(z)t = −cΦ′′(z) since Φ′′ is homogeneous of degree −1. This is of rank n − 1 when
c ̸= 0.

Let 0 ≤ χ ∈ C∞
0 (Rn),

∫
χ2 dx = 1. Then the hypotheses of Theorem 5.3.5 are fulfilled

if a(x, y) = A(x− y)χ(y). If p ≥ (2n+ 2)/(n− 1) it follows that

(5.3.25) ∥Stχ2f∥p ≤ Cp(t)∥χf∥p, f ∈ Lp(Rn),

for 2n/(p(n − 1)) ≤ n/(n + 1) < 1. Theorem 5.2.1′ gives the estimate (5.3.25) when
p = 2, and then it follows from the Riesz-Thorin interpolation theorem (Theorem 2.3.2)
for 2 ≤ p ≤ (2n+ 2)/(n− 1).
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By the translation invariance of St it follows that for z ∈ Rn

(5.3.26) ∥St,zf∥p ≤ Cp(t)∥χ(· − z)f∥p, where St,zf = St(χ(· − z)2f).

Since

St,zf(x) =

∫
eitΦ(x−y)a(x− y)χ(y − z)2f(y) dy,

the integral with respect to z is equal to Stf(x), and since a(x− y)χ(y − z) ̸= 0 implies a
bound for x− z, we have by Hölder’s inequality

|Stf(x)|p ≤ Cp
∫

|St,zf(x)|p dz.

If we raise the estimate (5.3.26) to the power p and integrate with respect to z it follows
that

∥Stf∥p ≤ CCp(t)∥χ∥p∥f∥p
which completes the proof.

Since Φ is homogeneous we have

(5.3.27) (Stf)(x/t) =

∫
eiΦ(x−ty)A(x/t− y)f(y) dy =

∫
eiΦ(x−y)A((x− y)/t)g(y) dy

where g(y) = f(y/t)/tn, and (5.3.23) gives

∥(Stf)(·/t)∥p = tn/p∥Stf∥p ≤ tn/pCp(t)∥f∥p = tnCp(t)∥g∥p
If we multiply (5.3.27) by t−1−λ and integrate with respect to t from 2 to ∞, it follows
that the operator

Kλg(x) =

∫
eiΦ(x−y)bλ(x− y)f(y) dy,(5.3.28)

bλ(z) =

∫ ∞

2

A(z/t)t−1−λdt,(5.3.29)

is bounded in Lp(Rn) provided that p ≥ 2 and that

(5.3.30)

∫ ∞

2

Cp(t)t
n−1−λ dt <∞.

By (5.3.24) this condition is equivalent to

λ >

{
n(1− 1

p ), if p ≥ 2n+2
n−1

3n+1
4 − n−1

2p , if 2 ≤ p ≤ 2n+2
n−1 .

The function b defined by (5.3.29) is positively homogeneous of degree −λ when |z| is so
large that z/t ∈ suppA implies t ≥ 2, for then we have b(z) = b0(z) where

(5.3.31) b0(z) =

∫ ∞

0

A(z/t)t−1−λ dt.

For every b0 which is positively homogeneous of degree −λ we have (5.3.31) if A(z) =
b0(z)ϱ(z) where ϱ ∈ C∞

0 (Rn \ {0}) is chosen so that
∫∞
0
ϱ(z/t) dt/t = 1 for z ̸= 0. This is

true for any non-negative C∞ function of |z| with support in (1, 2) after multiplication by
a suitable normalizing constant. This gives the following theorem when p ≥ 2, and when
p ≤ 2 it follows by duality.
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Theorem 5.3.7. Let Φ ∈ C∞(Rn \ {0}) be real valued and positively homogeneous of
degree 1, n ≥ 3, and let a0 ∈ C∞(Rn \ {0}) be positively homogeneous of degree −λ. If
Φ′′(x) has rank n− 1 when a0(x) ̸= 0 and

(5.3.32) λ > max(n−1
2

∣∣ 1
p −

1
2

∣∣+ n+1
2 , n

∣∣ 1
p −

1
2

∣∣+ n
2 ),

and a ∈ L1
loc(R

n) is equal to a0 outside a compact set, then the operator f 7→ (eiΦa) ∗ f
extends from L1(R2) ∩ L∞(Rn) to a continuous operator in Lp(Rn).

In fact, we have just proved the continuity of this operator for some b ∈ C∞ equal to
a0 outside a compact set. Hence b − a ∈ L1, and f 7→ (b − a) ∗ f is continuous in Lp for
every p.

Theorem 5.3.7 gives the sufficiency of the necessary conditions in Theorem 5.1.8 when
p ≥ (2n+ 2)/(n− 1) but a weaker result otherwise:

Theorem 5.3.8. Let ϱ ∈ C∞(Rn) be real valued and negative outside a compact set,
n ≥ 3, and assume that ϱ′(ξ) ̸= 0 and that ϱ′′(ξ)t ̸= 0 if ξ ∈ Rn, ϱ(ξ) = 0 and 0 ̸= t ∈ Rn,
ϱ′(ξ)t = 0. Then ϱα+ ∈ Mp(R

n) if

(5.3.33) α > max
(
n−1
2

∣∣ 1
p −

1
2

∣∣, n∣∣ 1p − 1
2

∣∣− 1
2

)
.

Proof. The zeros of ϱ form a compact set, so a partition of unity shows that it is
sufficient to prove that for every ξ0 with ϱ(ξ0) ̸= 0 there is some φ ∈ C∞

0 with φ(ξ0) ̸= 0
such that φϱα+ ∈ Mp(R

n). If we choose φ as in the proof of Theorem 5.1.8, keeping the
notation there, we find that it is sufficient to prove Lp continuity of convolution with a
C∞ kernel K such that outside a compact set K(x) − eiΦ(x)a0(x) = O(|x|−1−λ) where
a0 is homogeneous of degree −λ and λ = (n + 1)/2 + α. Here Φ is defined in supp a0
by Φ(x) = ⟨x′, t⟩ + xnψ(t) where t is a C∞ function of x, homogeneous of degree 0,
determined by the equation x′ + xnψ

′(t) = 0; detψ′′(t) ̸= 0. Thus Φ′(x) = (t, ψ′(t)) and
∂2Φ(x)/∂x′∂x′ = ∂t/∂x′ = −(xnψ

′′(t))−1 is non-singular. Since (5.3.33) is identical to
(5.3.32), the theorem is proved.



NOTES

Chapter I. The discussion of general finite commutative groups in Sections 1.1 and 1.2
is only intended to give the algebraic side of the motivation for Fourier analysis. Apart from
the simple explicit formulas (1.2.4) for Zn it can be bypassed with no loss of continuity.
Alternatively one can find further results in a textbook on algebra such as Lang [1]. The
discussion of the fast Fourier transform follows Auslander and Tolmieri [1] to a large extent.
In this reference one can also find an interesting discussion of the eigenvalues of the finite
Fourier transform with applications to the quadratic reciprocity theorem. See also Strang
[1] for a discussion of the virtues of the fast Fourier transform in applications.

Chapter II. Most of the material in Section 2.1 is by now so classical that we shall
only give references to the origin of two of them. The Bernstein theorem (Th. 2.1.8) has
been treated here following Achieser [1]. The theorem of supports (Th.2.1.11) was first
proved by Titchmarsh [1].

The Hausdorff-Young theorem (Th. 2.3.1) was actually proved by these authors for
Fourier series while the extension to Fourier integrals is due to Titchmarsh. The proof
given here is that of M. Riesz [2] who proved a somewhat restricted version of Theorem
2.3.2 using real variable methods. The proof given here is due to Thorin [1]. The classical
background of Theorem 2.3.8 is another theorem of Bernstein stating that the Fourier
series of a function which is Hölder continuous of order > 1

2 is absolutely convergent. We
shall not try to trace the deep historical roots of the method of stationary phase. Instead
we would like to refer to Hörmander [1, Section 7.7] for a much more extensive study.

Chapter III. We have here followed Daubechies [1] to a very large extent, first in
discussing multiresolution analyses with scale functions which are only in L2. (Proposi-
tion 3.1.4 rounds off her results which only give sufficient conditions at that point.) The
construction of wavelets in several dimensions in Section 3.2 is mainly taken from Meyer
[2] though. Both Daubechies [1], Meyer [1], [2] and Meyer-Coifman [1] should be consulted
for further results on wavelets and their applications. Only the mathematical framework
is presented here.

Chapter IV. The estimate of the conjugate function (Th. 4.1.1) is due to M. Riesz
[1], but the proof we have chosen is due to P. Stein [1]. In the n-dimensional case studied
in Section 4.2 we follow the methods of Calderón and Zygmund [1]. The Hardy-Littlewood
maximal theorem is due to Hardy and Littlewood [1] but the proof of Theorem 4.1.2
is due to F. Riesz [1]. In the n-dimensional case in Section 4.2 we have instead used
covering theorems which can be found for example in Aronszajn and Smith [1]. The
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potential estimate in the following example comes from Hardy and Littlewood [2]. The
refined maximal theorem of Carleson in Theorem 4.1.2′ originates from Carleson [1], [2].
A simplification and generalisation given in Hörmander [2] is used in Section 4.2 here and
has been adapted to the method of F. Riesz in the one-dimensional case. The proof of
Theorem 4.1.3 comes from Calderón and Zygmund [1]. Proposition 4.1.7 has mainly been
taken from Stein [4]. The discussion of the Hardy space H 1 and the duality with BMO
in Sections 4.1 and 4.2 follows Fefferman and Stein [1]; see also Stein [2]. In both these
references there is also a discussion of the Hardy space H p with 0 < p < 1. The Mihlin
theorem giving the Lp analogue of Corollary 4.2.18 is due to Mihlin [1] under somewhat
more restrictive hypotheses and Hörmander [3] in a somewhat stronger form. Actually
the result goes back to Marcinkiewicz [1]. His interpolation theorem first appeared in a
somewhat special form in Marcinkiewicz [2]. The general statement, containing that given
here, was published much later by Zygmund [1]. For examples of applications of the Hardy
space in the theory of non-linear differential equations one can consult Coifman, Lions,
Meyer and Semmes [1].

The proof in Section 4.3 that compactly supported wavelets give bases in Lp and in
H 1 follows Daubechies [1] and Meyer [1,2]. They use weaker hypotheses which make the
proofs technically harder but the main points are the same as here.

The John-Nirenberg theorem (Th. 4.4.1) is the simplest of a number of related results
proved by John and Nirenberg [1]. Spanne [1] has proved the interpolation Theorem 4.4.7
using the more refined results from that paper. (At that time the duality between H 1

and BMO was not known.) Here we have instead used the properties of the function f ♯

due to Fefferman and Stein [1].

Chapter V. The basic facts on multipliers belong to the folklore which is hard to trace
back. The striking Theorem 5.1.6 is due to Fefferman [1], while the necessary condition
in Theorem 5.1.8 undoubtedly has many discoverers, for it is an immediate consequence
of the stationary phase theorem. The important results in Section 5.2 are due to Carleson
and Sjölin [1]. The proof given here is a simplification due to Hörmander [4], where The-
orem 5.2.1 has been taken. Questions concerning analogues of the crucial Theorem 5.2.2
for higher dimensions were also raised there, but the example (5.3.10) due to Bourgain [1]
proved that further conditions than anticipated in Hörmander [4] will be required then.
(See Bourgain [1], [2] for further improvements of the results in Section 5.3.) Theorem
5.3.2 is due to Stein [5]; a weaker form of the restriction theorem (Th. 5.3.4) was proved
before by Thomas [1]. The proof of Theorem 5.3.2 here follows Sogge [1] which is highly
recommended for further study of the topics in Chapter V. Estimates of the type dis-
cussed in Section 5.3 are essential for the study of low regularity to non-linear hyperbolic
differential equations.
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L. Hörmander [3], Estimates for translation invariant operators in Lp spaces, Acta Math. 104 (1960),
93–140.
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Verh. Int. Kongr. Zürich I, 1932, pp. 258–269.

M. Riesz [1], Sur les fonctions conjuguées, Math. Z. 27 (1927), 218–244.

154
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Index of notation

General notation

Lp space of measurable functions with integrable pth power
∥ ∥p the norm ∥ ∥Lp

Ck(X) functions in X with continuous derivatives of order ≤ k
Ck0 (X) functions in Ck(X) with compact support
D ′(X) Schwartz distributions in X
E ′(X) Schwartz distributions in X with compact support
S Schwartz space of rapidly decreasing C∞ functions
S ′ temperate distributions
f ∗ g convolution of f and g
suppu support of u
sing suppu singular support of u
X b Y closure of X is a compact subset of Y
{X complement of X (in some larger set)
∂X boundary of X
α usually a multiindex α = (α1, . . . , αn)
|α| length α1 + · · ·+ αn of α
α! multifactorial α1! . . . αn!
xα monomial xα1

1 . . . xαn
n in Rn

∂α partial derivative, ∂j = ∂/∂xj
Dα partial derivative, Dj = −i∂/∂xj
f̂ Fourier(-Laplace) transform of f
Zν Z/νZ where Z denotes the integers
H(s) Sobolev space of order s
∥ ∥(s) norm in H(s)

Section 1.2

Ĝ dual group

Section 4.1

f̃ conjugate function of f
f∗HL Hardy-Littlewood maximal function (4.1.6)
f∗∗HL the refined maximal function (4.1.6)′′

f∗CZ Calderón-Zygmund maximal function (4.1.9)
H 1(R) Hardy space in R
BMO(R) functions of bounded mean oscillation in R

Section 4.2

f∗HL Hardy-Littlewood maximal function (4.2.16)
f∗∗HL the refined maximal function (4.2.16)′′

f∗M maximal function for a singular integral operator with kernel M
Rj Riesz kernels (4.2.21)
H 1(Rn) Hardy space in Rn

BMO(Rn) functions of bounded mean oscillation in Rn

156



157

P0 Poisson kernel (4.2.22)
Pj conjugates (4.2.23) of Poisson kernel

Section 4.4

f ♯ maximal function defined by (4.4.14)

Section 5.1

Mp multipliers on the Fourier transform of Lp
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