Understanding the Experience of Code Review:
Misalignments, Attention, and Units of Analysis

Emma Soderberg
emma.soderberg@cs.lth.se
Lund University
Lund, Sweden

Luke Church
luke@church.name
Lund University
Lund, Sweden

Jurgen Borstler
jurgen.borstler@bth.se
Blekinge Institute of Technology
Karlskrona, Sweden

University of Cambridge
Cambridge, United Kingdom

Diederick C. Niehorster
diederick_c.niehorster@humlab.lu.se
Lund University
Lund, Sweden

ABSTRACT

Code review is a common practice in software development and
numerous studies have described different aspects of the process;
its characteristics, the expectations on that process, issues around
reviewer allocation, and more. However, one aspect that has not
been studied to a large extent is the experience of the developers
in the code review process. This is unfortunate given the signifi-
cant amount of time that developers spend on this activity, where
problems that degrade developers’ experience on a daily basis can
create work environment issues.

In this paper, we present an extended analysis of an exploratory
mixed-method study where we focus on developers’ experience of
code review. We use semi-structured interviews to gather data from
two multi-national companies and conduct a follow-up survey. Our
results suggest that developers are frequently bothered by misalign-
ments in the code review tooling and process which is hindering
them in carrying out their code review tasks effectively. We present
an initial characterization of misalignments that may hamper the
developer experience. Based on our findings, we propose directions
for further exploration to improve the developer experience.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools.

KEYWORDS

software development, code review, user experience

ACM Reference Format:

Emma Soderberg, Luke Church, Jirgen Borstler, Diederick C. Niehorster,
and Christofer Rydenfalt. 2022. Understanding the Experience of Code Re-
view: Misalignments, Attention, and Units of Analysis. In The International
Conference on Evaluation and Assessment in Software Engineering 2022 (EASE

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9613-4/22/06.

https://doi.org/10.1145/3530019.3530037

Christofer Rydenfilt
christofer.rydenfalt@design.lth.se
Lund University
Lund, Sweden

2022), June 13-15, 2022, Gothenburg, Sweden. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3530019.3530037

1 INTRODUCTION

Code review, where developers review each other’s code changes
via tools before they add it to the code base, is a common practice
in the software industry [1, 8]. Empirical research consistently
shows that modern (tool-supported) code reviews have a positive
impact on software quality [15, 16, 18, 19, 23]. However, there is also
evidence showing that code review requires a lot of effort [3, 15, 20],
might not always be effective [8], can induce confusion [10], and
can harbor toxic conversations [6] and bullying [4].

Developers are central to the process of code review, but report-
ing on their experience in code review is nascent. Previous stud-
ies have summarized difficulties in code review [1, 14, 15, 18, 21],
understanding code [1, 18] and timely feedback [15] as primary
challenges. The report by Sadowski et al. [18] includes causes of
breakdown in the code review process leading to frustration, e.g.,
the tone and use of power in code review communication, or the
topic of the review and whether the code review tool is the best
place to conduct a design review. Related to these breakdowns,
recent work by Chouchen et al. [6] analyzed past studies on code
review and presents five anti-patterns in code review; confused
reviewers, divergent reviews, low review participation, shallow
reviews, and toxic reviews. Delving deeper into confusion, recent
work by Ebert et al. [10] studies confusion in code review; reasons
for it, the impact of it, and coping strategies.

While this existing work provides interesting insights into areas
where the code review process likely affects the developer experi-
ence, we see an opportunity for further qualitative investigations
to complement and expand on this work.

In this paper, we focus on developers’ practise and their experi-
ence of using tools in the code review process and to what extent
these aid them in the code review tasks. With this endeavour we
seek design input for possible tool-oriented interventions in the
code review process to improve the digital work environment of
software developers. Like in other domains, it seems reasonable to
assume that many small interaction issues may compound to have
larger negative effects on the digital work environment [13].

https://doi.org/10.1145/3530019.3530037
https://doi.org/10.1145/3530019.3530037

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

The interviews were analyzed thematically [6] as an extension
to an initial reading of the interview notes and transcripts [1].

We report on an exploratory mixed-method study, where we
expand on an earlier initial reading of a series of interviews of
developers, technical leads and managers carried out at two multi-
national companies [22] that develop products with significant
software components with a thematic analysis [5]. In this expanded
analysis, we identified themes centered around the experience of
the developers and misalignment between the code review task and
the tools or processes. We followed up with a survey, focused on
the misalignment between the code review task and the tools, and
found this to be a wide-spread phenomenon, reported as occurring
in every fourth code review on average. Based on this observation
and others, we propose directions for future exploration of designs
of processes and tools. The contributions of this paper, beyond [22],
are as follows:

e a preliminary characterisation of misalignments affecting
the developer experience in the code review process.

o suggestions for future explorations focused on improved
developer experience in the code review process.

The remainder of this paper is structured as follows; we start
with an overview of related work in Section 2 before we cover
methodology in Section 3, then we go through the results in Sec-
tion 4 and discuss these in Section 5, cover threats to validity in
Section 6 finally and conclude in Section 7.

2 RELATED WORK

A mapping study by Badampudi et al. [2] covering research on
modern code review 2005-2018 shows that process and tool im-
provements, impact and outcome, and reviewer selection are the
top-3 research areas in the field during this period. A recent map-
ping study by Davila and Nunes [9] further proposes a taxonomy of
the research on modern code review. In their taxonomy, the work
presented here falls into two categories!: (1) foundational studies,
i.e. works that try to understand practical aspects of modern code
reviews, more specifically, subcategory practitioners’ perceptions
of the state-of-practice and (2) evaluations, more specifically, sub-
category opinion studies. Davila and Nunes summarize challenges
and difficulties from papers covering this topic [1, 4, 14, 15, 18, 21],
listing code comprehension as the main challenge, followed by
difficulties with time pressure and tool support.

Bacchelli and Bird [1] present a study at Microsoft focused on
learning more about motivations, expectations, and challenges in
code review, gathering data via observations, interviews and a sur-
vey. The main challenge found for reviewers was understanding
the change under review from the provided information, seeking
different ways to gather missing information: reading the descrip-
tion, running the code, face-to-face communication. The authors
highlight a lack of support for program comprehension in code
review tools.

Kononenko et al. [14] present a study based on a survey on
developers’ perception of code review quality. The main challenge
found for developers when performing review tasks was to “gain
familiarity with the code” under review and in relation to this also

!Davila and Nunes [9] define 3 main categories comprising 7, 3, and 4 subcategories
respectively.

Soderberg et al.

code complexity and size. Personal challenges concerning time
management, improving technical skills, and context switching
between tasks are also mentioned. The respondents in the study
were asking for better support for getting the code under review
into the editing environment from the Bugzilla review tool and for
better support for code browsing in the code review tool.

Baum et al. [4] applied grounded theory to understand why code
review is used and why it is used in a certain way. They report on
desired and undesired effects in code review, listing authors being
offended and occasionally bullied as an undesired effect.

MacLeod et al. [15] present a study at Microsoft, with obser-
vations and semi-structured contextual interviews followed by a
survey. They find several challenges in the code review process,
presented from the author perspective (e.g., receiving timely feed-
back, receiving insightful feedback) and the reviewer perspective
(e.g., difficulty managing large reviews, finding time to do reviews).
They then match challenges to best practise as recommendations to
mitigate a challenge, for instance that authors select reviewers with
the right expertise, or let reviewers self-select their review tasks to
counteract the reviewer challenge of understanding a change. Their
recommendation regarding tools is to ensure that appropriate tools
are provided on the organisational level.

Sadowski et al. [18] studied code review at Google, gathering
data via interviews, a survey, and logs analysis. Challenges for
developers are reported in terms of breakdowns and listed (after
acknowledging that understanding is a challenge as reported in [1])
as four breakdowns; in the process (organizational and geographi-
cal distance, social interaction regarding tone and power, review
subject, expectations on change context), and one related to the
tool (customization of required approvals).

Spadini et al. [21] investigated how developers review tests based
on mining of code reviews followed by interviews. They found that
review of test code is different from review of production code, and
that lack of code navigation is an issue for developers.

In relation to the works listed above [1, 4, 14, 15, 18, 21], our
work has a stronger focus on the developer experience and to what
extent the code review tools are supporting code review tasks. Our
focus on experience is closer to the recent work by Chouchen et al.
[6] and Ebert et al. [10].

Chouchen et al. [6] present anti-patterns in code review gathered
from reviewing the literature; confused reviews (e.g., reviewers ask
questions about rational for a change), divergent reviews (e.g., no
consensus in reviewer decision), low reviewer participation (e.g.,
few comments or lack of prompt feedback), shallow review (e.g.,
shallow comments on complex changes), and toxic review (e.g.,
comments with a negative sentiment). They manually inspect a
sample of 100 code reviews and find a presence of all anti-patterns
in the sample. While the existence of anti-patterns is interesting,
more research is needed in order to understand how and why they
occur, and an important part of that puzzle is likely related to
the experience and perspectives of the reviewers themselves. As
such, our study is complementary to the work by Chouchen et
al., and specifically the methods we use are different; we start out
with qualitative data gathering via interviews and follow up with
a survey to investigate broader occurrence of themes constructed
from the interview data.

Understanding the Experience of Code Review

Table 1: Interview Participants (S1 for series 1, and S2 for
series 2 participant), their role, experience, and code review
tools used.

Participant Company Role /Experience

S1-1 A Developer / Senior (10+y)

S1-2 A Developer / Junior (<1y)

S1-3 A Developer / Tech lead (10+y)
S1-4 A Developer (10+y)

S2-1 B Developer / Design lead (5+y)
S2-2 B Developer / Software designer (20y)
S2-3 B Manager / Scrum master (20+y)
S2-4 B Developer (10+y)

S2-5 B Developer / Architect (5+y)
S2-6 B Developer / Team lead (5+y)
S2-7 A Developer (5+y)

S2-8 A Developer (10+y)

Ebert et al. [10] studied confusion in code review. They investi-
gated the reason for confusion, the impact of that confusion, and the
coping strategies developers use. They survey developers for rea-
sons for confusion and analyze code review comments for sources
of confusion. They follow-up with a second survey to investigate
how common the found reasons for confusion are. Finally, they sur-
veyed the literature to investigate to what extent the top five reasons
(long and complex changes, organisation of work, dependencies
between changes, lack of documentation, and missing change ra-
tionale) were mentioned. While Ebert et al. reveal multiple reasons
for confusion, it is a cognitive aspect of the interaction related to
the reviewer. As such confusion does not capture the full phenom-
enon of the interaction between reviewer and code including its
context. Thus, we also need to explore the reviewers’ experiences
of working with code review in such way that both the context and
intention associated with their code review practice is considered.

3 METHODOLOGY

We carried out an exploratory mixed-method study with subjects
from two multi-national companies (A, B) with established code
review practices. We started with a series of semi-structured inter-
views to learn more about the developers’ experience of code review,
and conducted a follow-up survey to broaden our understanding
of the phenomena seen in the interviews.

Interviews. We gathered data via two series of interviews with
software developers. The first series consisted of 4 interviews at
company A and the second series of 8 interviews at company A
and B. In total 12 interviews were conducted. The interviewees had
between 0-20 years of experience of software development, with
all but one having more than 5 years of experience (see Table 1).
We recruited interviewees by reaching out to contact persons from
the network of the authors and the contact persons then connected
us with employees at the companies. All interviews were carried
out over video calls. For the first series of interviews we took notes,
while for the second series of interviews, we also recorded the
sessions after informed consent from the participants. The second
author conducted all the interviews with the first author taking
notes during all interviews. In the first series of interviews, we had

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

an additional note-taker. Table 1 lists the self-described roles of
the participants and their experience with software development
(referred to as S1-1 to S1-4 for the first series and S2-1 to S2-8 for
the second series of interviews). In preparation for analysis, the
recorded interviews were transcribed, this work was carried out by
the first, second, fourth and fifth author.

The interviews were analyzed thematically [5] as an extension to
an initial reading of the interview notes and transcripts [22]. As an
initial analysis, three authors (first, second, fifth) read through all
transcripts separately, looking for interesting things that stood out
in the transcripts. All authors met to discuss potential themes from
this bottom-up read-through and we discussed and unified around
four initial overall themes in the data. The first and second author
then read through the transcripts top-down connecting quotes
to these themes, with an overlap of one transcript. The coding
of this overlapping transcript was used by the first and second
author to unify and iterate on the interpretation of the themes. The
coding of the themes was sent to the fifth author for review, in
preparation of a final reflective discussion between the first, second
and fifth author where the four initial themes were unified into two
overall themes, which both consisted of multiple sub-codes that
represented different types of observed misalignments.

Survey. The analysis of the interviews showed that interviewees
to a large extent mentioned misalignments between the review task
and the tools used. We decided to follow-up this finding by a survey
to explore to what extent this misalignment occurs beyond our
interview sample. The survey was developed by the third author
using the tool Unipark? and run in parallel with the analysis of the
interviews. Data was collected during 2 weeks in the Fall of 2021.
Invitations were sent to a wider sample at company A and B via
dedicated contact persons reaching ~400 employees at company A
and 680 employees at company B.

To avoid bias, survey respondents were first asked general ques-
tions about perceived benefits and obstacles with code reviews.
After that, we described the concept of tool-task misalignments
in general terms and inquired about their experience with such
misalignments, if they had any.

The free-text answers from survey questions that were directly
or indirectly concerned with misalignments (Q5, Q6 and Q8; see
Figure 2) were coded by the first and fifth author separately using
the code book developed from the interviews. The first and fifth
authors then compared their coding and discussed it until they
reached an agreement on the coding.

4 RESULTS

In this section, we presents the results of the interviews (Section 4.1)
and the follow-up survey (Section 4.2).

4.1 Interviews

We constructed two main themes centered around misalignment in
the code review process and its tools: 1) between the code review
tool and the needs of the code review task for a reviewer (Tool-Task
Misalignment), and 2) between the code review process and the

2https://www.unipark.com

https://www.unipark.com

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

code review task of a reviewer (Process-Task Misalignment). Both
themes are presented in more detail below.

4.1.1 Theme: Tool-Task Misalignment. In this theme, we are con-
sidering misalignments we saw between the task a reviewer was
trying to carry out and the extent to which this task was supported
by the code review tool. Participants mentioned cases where the
conversation facilitated by the code review tool (asynchronous
communication via comments on a change) did not support the
conversation needed by the review task, e.g., due to complexity
(“when things are particularly complex or delicate, then it usually
makes sense to have a white board session about it”, S2-2) or sensitiv-
ity (“if there’s any critical feedback in the code, I think many people
become defensive. It is better to resolve that in a meeting I think.”,
S2-3).

Within these conversations, we also saw a lack of support for
means of communication for providing information needed by
the conversation (when carried out in the code review tool). For
instance, lacking support for expressing links to resources beyond
the diff of the change (“a change somewhere that’s affecting some
other part of the code which just doesn’t happen to be part of the
patch set, then I'm not able to give comments over there, so that’s,
then you start to make references on your comments”, S2-2). Similarly,
a front-end developer in need of communicating the effect of a
change in the form of videos or images could not easily include
this in the metadata of a change (“we try to include like videos or
images as well. ... that sort of discussions can easily occur in those
tools, I think. But but like on Gerrit, I don’t think you can include like
images that at least show up in that user interface so”, S2-8).

Finding 1: We saw tool-conversation misalignment, where
the kind of conversations needed for a review task and the kind of
conversations facilitated in the code review tool were misaligned.

Several participants further mentioned that for some changes
they could not find the information they needed in the code review
tool. This lack of information would typically cause developers
to leave the review environment, by pulling down the change to
their editing environment, to find the information that they were
missing, e.g., assessing flows in the code (“It’s just when I'm unsure
if it works or not, I cannot see the flow of how it would work so I try to
try it out, so what if this scenario happens what would happen then,
I can’t see that in the flow”, S2-5), or effect beyond the change (‘T
can see that this could have a negative impact on other things, or I
can’t accurately get a sense of what it does because it touches so many
different places. If any of this is true I usually pull it down and take a
better look at it”, S2-6). Change characteristics such as complexity
and unfamiliarity were mentioned as triggers for a move to the
editing environment (“if it is a very complex change or a change
that I'm not very familiar with, then I usually check out the commit
and then I have a look at it in my IDE where I have a better syntax
highlighting and can follow code more easily”, S2-1).

In reference to the editing environment, the customized code
formatting in the editing environment (“it highlights in a different
colour than my eyes are used to”, S2-4) together with code browsing
support (“To fire it up in the code editor as well so you can click around
and use the code navigation”, S2-8), were mentioned as helpful fea-
tures for the review task. The possibility of experimenting with the

Soderberg et al.

change, to gather data for a modification suggestion in a review
comment, was also mentioned as something that was possible in
the editing environment (“You have to try a couple of things if you
want to suggest any big changes in the change request.”, S2-4).

We further saw that reviewers were looking for different in-
formation in the review, that is, that they had different "units of
attention’. For instance, a developer mentioned checking coding
standards (“the no. 1 thing which we check for is ‘are they following
the coding convention?’, no. 2 is if for example, if that makes sense
what he/she has written?”, S2-4), while an architect mentioned fo-
cusing specifically on an API at the later stages of a review of a
change (T try not to go in to too much detail when I code review
because I assume that the code there actually work and that the tests
are written and so on, of course I can see it in the review as well, so
I mainly focus on making sure nothing has been removed and that
information that would be received by the API is still there”, S2-5).

Finding 2: We saw tool-information misalignment, where
the information reviewers needed for a review task and the infor-
mation available in the code review tool were misaligned. Partic-
ipants would typically resolve this misalignment by leaving the
code review tool in favor of the editing environment.

Several participants mentioned the size of changes and how
the suitable size was to some extent mandated by the process,
advocating for smaller changes (“We also try to work in an agile way,
so that we keep changes as small as possible. That does not mean that
they are always small”, S2-7). At the same time, getting changes in
a shape that is compliant with the mandated size was described as
a something that can be challenging (“it’s not always easy to slice
up your code into 300 lines of changes that make sense”, S2-8).

The size of a change frequently came up in the interviews as
central to how the developers worked with the code review tool
and process. Size was mentioned as a key predictor for whether
a developer would pull down the change for further reviewing in
their local environment (“if the change request is huge, often we
check out that change request and run it on our local.. and just try
to understand what he or she has done”, S2-4). The experience of
reviewing a large change was described in negative terms (“the
bigger the patch sets the more difficult to review it, the more time it
takes. It’s almost exponential”, S2-6).

Size was also connected to tool performance, as in the tool be-
coming impractical and slow for changes beyond a certain size (“to
look at change lines of code is not always that easy, and if you have
large change sets, it could be horrendously slow to run their diff view
for example in the browser”, S2-7). In one case, the performance
of the tool was even mentioned as being used as a kind of test to
check if the change should be broken up into smaller pieces (“When
it comes to actually reviewing the code changes I mainly do that in
the browser, because we feel that if that is not doable anymore, then
maybe it has become too big and you need to break it down”, S2-7).

Finding 3: We saw tool-size misalignment, where the size of
a change and the size suitable for review were misaligned.

4.1.2 Theme: Process-Task Misalignment. In this theme, we con-
sider the coordination of the code review process, between the
individuals in the review and between the organization and the

Understanding the Experience of Code Review

process. For instance, developers described a team practice where
the review load is evenly shared within the team (“It’s the team
practice, everyone has to review the code of others”, S2-4), but the
actual review work is not shared evenly in practice (“even though
it’s like everyone is responsible, not everyone does”, S2-1).

We also saw this implicit assignment of review tasks beyond
the internal team practice, for instance, one architect described
a process where review tasks would manually be inspected and
self-selected for review (“I’'m not really asked to review it, it’s kind
of like ‘for your information’... I tend to just, yeah, when I look I just
tend to inspect it whether I should review this or no”, S2-5).

We also saw a misalignment in who is responsible to follow up on
comments given in the review, where a system designer described
it as being up to the author in some cases (“sometimes you are just
sharing your thoughts and your opinions on things and leave it up
to the patch set author to decide whether or not he will bring it up or
not or make that change or not”, S2-2) and an architect described
a team practice where the reviewer is responsible (“if you have
a lot of people reviewing the same patch and the author just keeps
pushing new stuff, what tends to happen is that some of your reviews
get forgotten, your comments get forgotten, so you have to follow it
up, you have to follow up your own comments, it’s kind of one of the
rules we have as well, that is you post a comment on a patch it’s your
responsibility to follow up on that comment as well, to make sure the
author has seen it and has taken some kind of action”, S2-5).

Finding 4: We saw process-responsibility misalignment,
where the person expected to do a task in the review and the
person actually performing the task were misaligned.

Participants further conveyed frustration from both the author
side (“if you want something reviewed it’s kind of; it can take a while
before it gets reviewed I think that’s the most frustrated part”, S2-5)
and the reviewer side (“when it comes to this massive patch set I
won’t be able to just look at the code and see how it all works. That
definitely causes frustrating as it takes much more time from me to
do it”, S2-6) about when review tasks were not completed within
the expected time.

The risk of blocking colleagues in the review process was de-

scribed by one developer as a motivation for doing reviews (‘T feel
like doing your reviews is a way to unblock my colleagues, right, mak-
ing sure that nobody is just sitting there waiting, and I hope people
will do the same for me in the end because I just hate it when things
are unreviewed for days”, S2-2).
A team lead involved in most reviews on the team described a
common use of side-channels to unblock the code review process,
and remorse for having to be reached via these side channels on a
regular basis (“Sometimes when I'm very busy I don’t see the mail,
someone will ping me and say ‘can you look at this patch’?”, S2-6).

The manager we interviewed described the code review process
with more focus on the people in the process rather than the tools
(“It’s more of a people’s problem, getting people involved”, S2-3).

Finding 5: We saw process-completion misalignment, where
the expected time for a review task and the actual time for com-

pleting a task were misaligned.

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

Some participants mentioned that the individual style for how
an author writes code may collide with the mandated style of auto-
mated review comments and how these are configured. One devel-
oper described an initial reluctance to the introduction of automated
style comments that changed to a sense of relief when discussions
of style could reduced in the review (‘T was sort of against it at first,
I think, but it’s been hugely like liberating actually, cause, you don’t
have to think anything about you know how the code is formatted
and or and you don’t have to review that stuff either. Yeah, it just
happens and it doesn’t look like super nice all the time, but yeah, you
don’t have to care about that right”, S2-8).

Another developer described a view where the authors should
have freedom to write code in their own style beyond the line drawn
by the automated review tools (“as long as you follow what the linter
and the formatter does, I am like, then you should let the person have,
not try to change their code to what you would have written. Cause
then I think you’re on the wrong track with your review, then you are
like rewriting someone else’s stuff like you would have done it”, S2-7),
implicitly accepting the automated style recommendations, while
another developer expressed doubt about the style being manifested
by the automated comments (“What configurations are good, what
configurations are bad? Those preloaded configurations for IDE are
based on someone’s experience. We can’t claim that his experience, or
her experience, is the only good thing or the only right thing”, S2-4).

Finding 6: To some extent we saw developer-automation mis-
alignment, where the expected automation in the process and
the actual automation taking place were misaligned.

One developer expressed concerns about how new developers
are being exposed via the code review tool (“Gerrit can be very
public and if you are a person with insecurities then it can be bad”,
S2-1), while the manager we interviewed expressed no concern
with the tool (T think the tool works well, I don’t see any problems
with Gerrit.”, S2-3). When asked about developers pulling down
changes in order to review, the manager had not seen this behavior
(“I'm not sure why they would need to do that [leave the code review
tool]. Maybe they feel they can’t review the code because they’re not
experienced in this area, and so they need to play around a little to
understand how the code is to give proper reviews. I have not seen
that”, S2-3).

Finding 7: We saw developer-experience misalignment,
where the expected experience by participants of the code review
process and the actual experience were misaligned.

4.2 Survey

Of the ~1080 employees who received an invitation, 119 opened
the survey. Of those 119, 78 started answering the survey and 44
completed it. The results presented below are based on all available
data, i.e. n=[44..78].

4.2.1 Participant background. The survey results show that most
of the respondents have different developer roles, with 68.2% of
respondents identifying themselves as developers. The remaining
32.8% identified themselves as system architects (13.6%), team lead-
ers (11.4%), testers (2.3%), or “other” (4.6%). No-one identified him-
or herself as a manager or a researcher. They also have substantial

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

practical experience as software developers and with code reviews
(Q1 and Q2 in Table 2) and spend 6.2 hours per week on average
on code reviews with a median of 1 hour per day for an average
work day (Q3 in Table 2). The answers to the questions about code
review processes and tools suggest the existence of established code
review processes (Q15, see Table 3).

Table 2: Experience of survey participants (n=76).

Aspect min max avg med stdev
Years of practical experience as 1 30 11.3 10 7.6
prof. software developer (Q1)

Years of practical experience 1.2 27 8.8 7 6.1
with code reviews (Q2)

Hours per week on average 0.5 20 6.2 5 4.4

spent with code reviews (Q3)

Table 3: Level of agreement with statements about code re-
view processes and tools (Q15, n=44). Agreement is on a Lik-
ert scale from 1 (completely disagree) to 5 (fully agree).

Statement Disagree (1-2) Agree (4-5)
My team follows a commonly 18.2 % 77.3 %
agreed process for code reviews

My team’s code review process is 91% 713 %
supported by tools

My team’s code reviews are fair and 6.8 % 88.6 %
objective

Without tools thorough code review 273 % 63.6 %

would not be possible

4.2.2 Perceived benefits of code reviews. We asked respondents to
rank, according to their personal experience, a number of state-
ments regarding presumed benefits of code review (Q4). The results,
listed in Table 4, show that “improved software quality” was ranked
highest followed by “improved knowledge sharing”; “reduced time
to market” and “improved customer satisfaction” were ranked at
the bottom. The top rankings of knowledge sharing and software
quality are in agreement with what previous studies have found

regarding the expected benefits from code reviews [1, 18].

Table 4: Ranking of presumed benefits of code reviews (Q4,
n=78). The n/a column lists the number of responses not
mentioning this benefit.

Presumed benefit avg med stdev n/a
Improved overall software quality 1.83 1 1.21 3
Improved knowledge sharing 287 25 1.58 8
Improved collaboration 3.55 3 1.63 16
Improved ability to integrate new orless 3.66 4 1.33 7
experienced team members

Improved adherence to common stan- 3.72 4 1.81 11
dards and guidelines

Reduced overall project costs 5.4 5 1.68 36
Improved customer satisfaction 5.71 7 2.34 44
Reduced time to market 6.87 7 1.31 47

Soderberg et al.

4.2.3 Perceived review obstacles or challenges. After asking about
benefits, we asked respondents to describe review obstacles or
challenges. To avoid bias, the first of these questions (Q5) was
asked before the concept of tool-task misalignment was introduced.
Questions Q6-Q11 asked about respondents’ experience with tool-
task misalignments, if they had any. The survey questions were
presented in a way that respondents could neither see any mention
of the concept up until and including Q5, nor could they go back to
Q5 or earlier questions after the introduction of the concept.

Our results show that respondents experienced tool-task mis-
alignments in about every fourth code review on average (see Fig-
ure 1).

Finding 8: Survey respondents experienced tool-task misalign-
ment in every fourth code review on average.

12
10
8
6
4
z B
0
<5

5-14 15-24 25-34 3549 50-74 >=75

Figure 1: Percentage* of typical code reviews where respon-
dents experienced tool-task misalignments; avg 24.5%, me-
dian 17.5% (Q7, n=54).

"The grouping into ranges is by the authors. Responses were in terms of specific
approximate numbers that were elicited using a slider from 0-100.

Respondents’ free-text descriptions of review obstacles or chal-
lenges (Q5) and experience with tool-task misalignments (Q6 and
Q8) were coded with the misalignment codes from Section 4.1 to
facilitate comparison of interview and survey results. Figure 2 gives
an overview of all codes for survey questions Q5, Q6 and Q8 for each
misalignment code (leftmost boxes), and then splits them based on
respondents code review experience, role, and hours spent in code
review each week (from left to right).

In the responses to Q5, we note that the respondents had several
things on their mind, with process-completion (Proc.-Comp.) being
the most dominant code, regardless of how we divide the coded
answers on code review experience, role or hours in code review
per week. In the left-most scatter plot, we see tool-information
(Tool-Info) as the second most used code followed by tool-size
(Tool-Size), and they are present to some extent for all data division
variants. The tool-size code stands out as an obstacle or challenge
that almost all team leads are concerned about.

Finding 9: All misalignments seen in the interviews appear in
the survey responses. The top three misalignments reported by
survey respondents were process-completion, followed by tool-
information and then tool-size.

When further analysing the responses to Q5, we saw additional
focus on lack of knowledge (related to tool-information) about a
code base (e.g., “It’s hard to carry out code reviews if you have no
previous understanding of the underlying code that is being modified

Understanding the Experience of Code Review EASE 2022, June 13-15, 2022, Gothenburg, Sweden

Codes Codes / Experience Codes / Role Codes / Hours
T T T T T T T T T T
Tool-Conv. - ® -0 2 4 3 0 0 HD [(=
Q5 Tool-Info- (19) 4 @ 6 @ @ 1 (I(D (4) 5
“Briefly describe -
the most important Tool-Size |- 13] -0 6 7 3 @ 4 L5) 5
obstacles or challenges
Proc.-Resp. |- | - 4 k1 0 0|
that make it difficult P 5 ® 8 @ /® N // \\ @
for you to carry out Proc.-Comp. |- - 6 12| 12 ‘ 3 “ 3 ‘ 12 @
code reviews effectively AN 4 \\ ,//’
and thoroughly” Dev.-Auto. - ® Lo 1 4 |3 01 Lo o
Dev-Exp. - @ @ 5 3| e @ '@ 5 o
! | | | | | | | |
Answers <=3y 4-10y 10+y Dev. Arch. Lead <=4h 5-8h 8+h
(75) (14) (36) (250 (29 (6) 5y (33 (27) (15)
T T T T T T T T T T
Tool-Conv.- 8 - @ 0 @] |e @ 0 Lo 2 0
Tool-Info - I @ (8: 12 @ 4 110 @ 3
Tool-Size - 0 -0 0 0| |0 0 0 0 0 0
Q6
“Please describe briefly, Proc.-Resp. |- i N 0 0 L i 0 0 0 ¢ 0
a typical tool-task Proc.-Comp. | 8 N o " o P 0 0] o 2 0|
misalignment for you”
Dev.-Auto. |- (8 @ 2 4 6 0 <2: - 4 3
Dev-Exp.- 0 | -0 0 04 [0 0 0 -0 0 0
| | | | | | | | | |
Answers <=3y 4-10y 10+y Dev. Arch. Lead <=4h 5-8h 8+h
(52) ®) (24) (20) (30 (6) 6) (20 (22) (10)
T T T T T T T T T T
Tool-Conv. [~ 1 -0 0 (= - 0 0 [0 ® 0
Tool-Info - N @ @ @ 3 @ @ @ .
Q8 Tool-Size| 2 | [0 2 0 |2 0 04 [0 0
“Briefly describe the
main reasons for the Proc.-Resp. |- 0 1 -0 0 0 -0 0 0 0 0 0
tool-task misalignments Proc.-Comp. 1 N o i 0] |4 0 ol Lo 9 0
that you experience ' p-
in your work” Dev-Auto.|- 8 | 2 0 vl |3 0 0 e) 3
Dev-Exp.- 1 | |0 0 {0 @ 04 [0 0
| | | | | | |

| | |
Answers <=3y 4-10y 10+y Dev. Arch. Lead <=4h 5-8h 8+h
(53)) (26) (19) (30) (6) (5) (20) (22) (11)

Figure 2: Observed misalignment codes in answers to free-text survey questions Q5, Q6, and Q8. The questions are included ver-
batim below the question numbers. The misalignment codes to the right of the question texts correspond to the 7 highlighted
misalignments discussed in Section 4.1 (e.g., Tool-Conv. refers to tool-conversation misalignment). The numbers in parenthe-
ses under each scatter plot column show the total number of answers for the respective group (e.g., Q5 had 75 answers in total
shown under “Codes”, and 29 answers from respondents classifying themselves as developers under “Codes/Roles”). Bubble
sizes are relative to the totals of a group (e.g., 12 developers of 29 mentioned process-completion for Q5).

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

or added to” and “The largest obstacle/challenge is when you are
unfamiliar with the code base. Then it is difficult properly to put
the code you are reviewing in to context with the rest of the code.
Something that looks fine might break something else which is perhaps
something a more experienced person would have caught.”).

We further saw answers related to developer-experience (Dev.-
Exp.) where respondents would express negative emotions about
the review process in a way that we did not see in the interview
study, e.g., lack of interest (“Lack of technical interest in the code
under review makes it hard to provide good feedback.”), code review
being boring (Tt is extremely boring and monotone”), discomfort
with giving critique (“They are monotonous and repetitious. Not as
creative as other part of software development. You get the feeling
that you are always complaining when you are leaving comments”).

Finding 10: Survey respondents mentioned lack of knowledge of
the code base and lack of engagement, due to code review being
perceived as boring and monotone, as obstacles to carry out code
review tasks.

After introducing the concept of tool-task misalignment (before
Q6), we can see that tool-information (Tool-Info) dominates respon-
dents’ answers in any way we split the data. Almost all team leads
mentioned the tool-information misalignment in their answers.

When asked for “how much or little do tool-task misalignments
disturb you on average when they occur while carrying out a code
review” on a scale from 1-7 (Q10), 60.4% answered “not disturbing”
(1-3), 22.6% answered “disturbing” (5-7) and 5.7% that they do not
experience tool-task misalignments (n=53).

We continued with a question where we asked respondents to
“describe the main reasons for the tool-task misalignments that you
experience” (Q8). The bottom row in Figure 2 shows the results of
coding the free-text responses for survey question 8 (Q8). Again,
tool-information dominates the coding. Interestingly, the team leads
that displayed a substantial agreement earlier for Q6 do not stand
out any more with regard to any code.

Finding 11: Tool-information misalignment stands out as the
main tool-task misalignment in the survey responses, where 22.6%
report finding tool-task misalignment disturbing.

We asked respondents about how they typically handle a tool-
task misalignment (“What do you typically do to resolve a tool-
task misalignment”) and found an overarching trend of leaving
the code review tool in this situation, either seeking a different
kind of conversation (e.g., “Talk on a different tool about the review’
or “Pasting screen shots and comments in a mail instead of using a
review tool”), or seeking information available in the IDE (e.g., “For
complex reviews, I sometimes need to download the change and open
it in my IDE to get the full view” or “Mostly, I load the code into IDE
and explore dependencies or check completeness there”).

2]

Finding 12: The survey respondents would primarily leave the
code review environment to resolve a tool-task misalignment, ei-
ther to seek a richer communication channel or more information
available in the IDE.

Soderberg et al.

5 DISCUSSION

We set out to study the developers’ experience of the code review
process, starting with a series of interviews. In our analysis of the
interviews we find several misalignments; the code review tool may
not support the kind of conversation needed by the code review task
(tool-conversation, Finding 1), it may not provide the information
needed for a review (tool-information, Finding 2), and the size of
a code change may not align with the size suitable for review (tool-
size, Finding 3). We recognize some aspects of these misalignments
from the literature, for instance, Ebert at al. [10] report 'long or
complex code changes’ and ’organization of work’ as top reasons
for confusion which connect to tool-size and tool-information. They
further report that ’off-line discussion’ is used as a coping strategy
to resolve communication issues which relates to tool-conversation.
We further see that tool-information misalignment is connected
to the previously reported challenge of code understanding [1, 18]
and to previously reported information needs of reviewers in code
review [17]. However, we have not seen any extensive report on
how developers are managing tool-information misalignment. The
closest we have seen is in a brief mention of the behavior by Spadini
et al. in their study on review of tests [21] (“That’s why I pull the
PR every-time and I lose a lot of time doing it”, p. 685).

We further see in the interviews that misalignment in expec-
tations in the code review process may cause frustration, in that
the responsibility of review tasks may not align with who actually
performs tasks (process-responsibility, Finding 4), and the com-
pletion of review tasks may not happen when expected (process-
completion, Finding 5). This connects to the work by Ebert et al.
[10], who report ’organization of work’ as a top reason for con-
fusion, connecting to process-responsibility (but their focus is on
status of changes, e.g., ready to review?). They further also report
delays as a possible impact of "organization of work’ which con-
nects to process-completion. MacLeod et al. [15] also mention lack
of timely feedback in code review as a challenge.

Further in the interviews, we saw a misalignment between a
developer’s expectation on automation in the code review process
(developer-automation, Finding 6), as well as, the expected expe-
rience of the code review process (developer-experience, Finding
7). In the case with automation, the code review tool comes across
as a shared space where individual preferences and the norms of
the group meet, and where challenges to the norm may result in
disagreements. In the case with expected experience, participants
highlight the experience of getting into the code review process
which can be harsh for developers new to the process, especially
as the process involves being criticized in a public space. In both
these cases, we see little in the literature on these topics and see
them as possible directions for future work.

In the follow-up survey focused on the tool-task misalignment
theme, we saw all misalignment codes from the interviews appear
in the survey data (Finding 9), with process-completion being the
most dominant code. We note that this occurrence of misalignment
appears in responses to question Q5 on obstacles, which was asked
before the concept of tool-task misalignment was introduced to
the survey respondents. We additionally see two aspects of the
code review experience appearing in the survey responses and not
in the interviews; lack of knowledge of the code base and lack

Understanding the Experience of Code Review

of engagement due to code review being perceived as boring and
monotone work (Finding 10). These obstacles relate to the work
by Ebert at al. [10], reporting "lack of familiarity with existing code’
as a reason for confusion, and to the work by Chouchen et al. [6],
where ’low reviewer participation’ and ’shallow review’ are listed
as code review anti-pattern.

When we ask specifically about tool-task misalignment in the sur-
vey, respondents report that they experience this in in every fourth
review on average (Finding 8), with 22.6% of respondents reporting
this as a disturbance (Finding 11). The responses further primarily
mention tool-information misalignment as the cause (Finding 11).
When asked about how they resolve tool-task misalignments the an-
swers were focused on resolution of tool-information misalignment
and moving to the editing environment to find missing information
(Finding 12) which aligns well with the behavior mentioned by
interview participants (Finding 2).

In the following paragraphs, we present reflections along with
suggestions for further exploration into the design of processes and
tools, expanding on an initial reading of the interviews [22].

Reflection 1. Unit of Analysis vs Unit of Attention When
reflecting on tool-information (Finding 2) and tool-size misalign-
ment (Finding 3), we note that when developers (both authors and
reviewers) interact via a code review tool, the code is packaged
into a single unit of analysis. In both Gerrit and GitHub, this unit
of analysis is implicitly derived from the lines of code that have
changed. This is different from the unit of attention, that is, where
developers need to look in order to review the code. Whilst this
attention is correlated with the changes, and by necessity starts
there, it often doesn’t align perfectly. Sometimes there are cases
where many changes aren’t meaningful for developers to review
(e.g. lists of hashes), but more commonly, the reviewer’s attention
needs to go beyond the context of the unit of analysis presented
to them by the review tool causing them to have to exit the tool to
see the wider codebase.

Suggestion 1: explore process and tool designs for better align-
ment of the ‘unit of attention’ and the ‘unit of analysis’. It may be
worth considering whether missing information should be brought
into the code review tool, or if the code review task should be

brought to the information (e.g., into the IDE).

Reflection 2: Task Coordination When considering the unit of
analysis and the unit of attention together with tool-conversation
(Finding 1), process-responsibility (Finding 4) and process-com-
pletion (Finding 5), we see a further possible misalignment when
the reviewers want to play a particular role in the review. For
instance, not reviewing all of the code but only looking at the big
picture, assuming for example that the code-level changes have
been taken care of by others. Sometimes the developers of the code
try and assist the reviewer by commenting where they should look
— trying to help them focus their attention on a smaller unit of
analysis than the tool provides, but this is mostly done in an ad hoc
way using secondary notations [11] and without explicit support
in the tool.

Suggestion 2: explore designs for explicit and visual task coordi-
nation, to counter-act hidden [11] implicit coordination.

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

Reflection 3: Levels of Attention When reflecting on process-
responsibility (Finding 4) and tool-information (Finding 2), we
note that developers at different levels of experience take on dif-
ferent roles in the review, and in doing so they look for different
things. We hypothesise that rather than it being the case that more
experienced developers always look at a higher level, it is their ex-
pertise that allows them to look at different levels at once, or switch
rapidly between them. However, they do this largely without tool
support, and often in a way that causes friction with the single,
fixed, implicit unit of analysis (see above).

Suggestion 3: explore tool designs supporting different levels of
attention and support for switching between these.

Reflection 4: Level of Control As a reflection connecting to tool-
size (Finding 3) and tool-information (Finding 2), we note that
the developer’s ability to manipulate their change sets to create
the right unit of analysis is an important aspect of the review task.
However, we have seen in previous work [7] that this is by no-
means easy, version control systems can be hard to manipulate and
developers often fall back to adopted ritual behaviours; they are so
glad when they have got something, anything, into version control
effectively that shaping it as a social space is not their priority.
The effective result of this is that the unit of analysis is often left
essentially determined by chance and the path the developer took,
interfering with the efficiency of the review process, causing delays
and cost.

Suggestion 4: explore designs for increased level of control of
the unit of analysis.

Summary. In well established, well resourced, centralised prac-
tices, the inflexibility of review tools and practices may help enforce
central authority and provide mobility for people already familiar
with the practices. However, we know that software engineering
contexts vary greatly in what would be the most effective mode
for a given circumstance. In these contexts, the implicit nature of
the unit of analysis, and the lack of tools for explicit co-ordination,
between reviews or of management of attention within them may
well hinder rather than the help the goal of building better software
and more effective teams. We see a possible connection between
the challenge that "one size does not fit all’ and the superlativism
hypothesis rebutted by Green et al. [12]. Outlining that rather than
designing a solution assumed to be the best, it is necessary to
study the alignment between different models of understanding
and action of the involved stakeholders. This may offer a produc-
tive theoretical approach to further developing this research in the
future.

6 THREATS TO VALIDITY

Internal threats. In the interview situation, we represented the
code review process which may have caused a response bias, where
participants limited their critique of the practice of code review. We
believe we counteracted this effect in the study by the use of trian-
gulation and the follow-up survey, where we saw more critique of
the process and respondents admitting to the process being mono-
tone and boring. In the survey design, we introduced the tool-task

EASE 2022, June 13-15, 2022, Gothenburg, Sweden

misalignment concept and then asked respondents about this phe-
nomenon, and in doing so biasing the follow-up questions towards
our description of tool-task misalignment. To limit this effect we
asked about obstacles and challenges (Q5) before introducing the
concept of tool-task misalignment (making it appear first on the
next page of the survey). We also included a question where we
asked respondents to describe a typical tool-task misalignment (Q6).
There is also a risk of a selection bias in how we selected interview
participants, where we selected a contact person and the contact
person carried out the selection by asking colleagues. Furthermore,
we cannot exclude that some of the interviewees also answered the
survey. We have tried to ask interviewees to refuse from participat-
ing in the survey but could not get many confirmations from the
interviewees. If all 12 interviewees had participated in the survey,
their answers could amount to 15-27% of the survey answers. This
could lead to some bias. However, we believe that few, if any, of
the interviewees did participate and that the survey results show
similar trends largely independently from the interview results.
Since the response rate for the survey was low, there might be a
risk for self-selection bias.

External threats. We carried out our study at two multi-national
companies. From the data we gathered, the companies are using
a common setup for code review with tools like Gerrit, GitHub,
and GitLab. We believe this common code review setup makes our
results more generalizeable, but at the same time our study is initial
and exploratory with a limited number of participants in both the
interview study and in the survey. From the data we gathered, the
code review process at the selected companies appear to be mature
and well-established (Table 3), which may limit the extent to which
what we found would transfer to a context were code review is new.
The subjects in our study were fairly experienced in code review
(Table 2), which may limit to what extent our results would transfer
to a group of subjects with less code review experience. We further
note that the subjects in our study report on use of mainly three
review tools (Gerrit, GitHub, GitLab), with a bias towards Gerrit,
which may limit to what extent the results can be transferred to
other tools. We believe the broad use of the tools mentioned in our
study helps to reduce this risk.

7 CONCLUSIONS

Driven by a wish to further understand the developer’s experience
of the code review process we have carried out an initial exploratory
mixed-method study with interviews followed by a survey, with
subjects from two multi-national companies. In analysing the gath-
ered data, we have characterized what we have seen in terms of
misalignments between the reviewer, the tool, and the process.
We have focused on the phenomenon of tool-task misalignment,
where developers leave the code review tool (e.g., due to lack of
information), and have found this to be a broader phenomenon.

Based on our results, we have provided reflections paired with
suggestions for future exploration of interventions into the code
review process via tools and processes. These suggestions provide
several opportunities for future explorations and provide fertile
ground for an extended study beyond our initial exploration pre-
sented in this paper.

Soderberg et al.

ACKNOWLEDGMENTS

This work has been partially supported by ELLIIT - the Swedish
Strategic Research Area in IT and Mobile Communications, the
Swedish Foundation for Strategic Research (grant no. FFL18-0231),
and the Swedish Research Council (grant no. 2019-05658).

REFERENCES

[1] A.Bacchelli and C. Bird. 2013. Expectations, outcomes, and challenges of modern
code review. In Proceedings of the International Conference on Software Engineering
(ICSE). 712-721.

[2] D.Badampudi, R. Britto, and M. Unterkalmsteiner. 2019. Modern code reviews —
preliminary results of a systematic mapping study. In Proceedings of the Evaluation
and Assessment on Software Engineering (EASE). 340-345.

[3] T. Baum, H. LeBmann, and K. Schneider. 2017. The choice of code review process:
A survey on the state of the practice. In Proceedings of the International Conference
on Product-Focused Software Process Improvement (PROFES). 111-127.

[4] T.Baum, O. Liskin, K. Niklas, and K. Schneider. 2016. Factors Influencing Code
Review Processes in Industry. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE). 85-96.

[5] V.Braun and V. Clarke. 2006. Using thematic analysis in psychology. Qualitative
research in psychology 3, 2 (2006), 77-101.

[6] M. Chouchen, A. Ouni, R. G. Kula, D. Wang, P. Thongtanunam, M. W. Mkaouer,
and K. Matsumoto. 2021. Anti-patterns in modern code review: Symptoms and
prevalence. In Proceedings of the International Conference on Software Analysis,
Evolution and Reengineering (SANER). 531-535.

[7] L. Church, E. Soderberg, and E. Elanga. 2014. A case of computational thinking:
The subtle effect of hidden dependencies on the user experience of version control.
In PPIG’14.

[8] M. Ciolkowski, O. Laitenberger, and S. Biffl. 2003. Software reviews, the state of
the practice. IEEE Software 20, 6 (2003), 46-51.

[9] N.Davila and I. Nunes. 2021. A systematic literature review and taxonomy of

modern code review. Journal of Systems and Software 177 (2021), 110951.

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2021. An exploratory study on

confusion in code reviews. Empirical Software Engineering 26, 1 (2021), 1-48.

[11] TR.G. Green. 1989. Cognitive Dimensions of Notations. People and Computers V.
(1989), 443-460.

[12] Thomas Green, Marian Petre, and Rachel Bellamy. 1991. Comprehensibility of

visual and textual programs: A test of superlativism against the ‘'match-mismatch’

conjecture. Empirical Studies of Programmers: Fourth Workshop (01 1991).

Persson J. and Rydenfalt C. 2021. Why Are Digital Health Care Systems Still

Poorly Designed, and Why Is Health Care Practice Not Asking for More? Three

Paths Toward a Sustainable Digital Work Environment. Journal of Medical Internet

Research 23 (2021). Issue 6.

[14] O. Kononenko, O. Baysal, and M. W. Godfrey. 2016. Code Review Quality: How
Developers See It. In Proceedings of the International Conference on Software
Engineering (ICSE). 1028-1038.

[15] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka. 2018. Code

Reviewing in the Trenches: Challenges and Best Practices. IEEE Software 35, 4

(2018), 34-42.

S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. 2016. An empirical study

of the impact of modern code review practices on software quality. Empirical

Software Engineering 21, 5 (2016), 2146-2189.

L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli. 2018. Infor-

mation Needs in Contemporary Code Review. Proc. ACM Hum.-Comput. Interact.

2, Article 135 (2018).

[18] C. Sadowski, E. Séderberg, L. Church, M. Sipko, and A. Bacchelli. 2018. Mod-
ern Code Review: a Case Study at Google. In Proceedings of the International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
181-190.

[19] J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi. 2016. A study
of the quality — Impacting practices of modern code review at Sony Mobile. In
Proceedings of the International Conference on Software Engineering Companion
(ICSE Companion). 212-221.

[20] SmartBear. 2020. The 2020 State of Code Review 2020 Report. Technical Report.
SmartBear. https://smartbear.com/resources/ebooks/the-state-of-code-review-
2020-report.

[21] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli. 2018. When

Testing Meets Code Review: Why and How Developers Review Tests. In Proceed-

ings of the International Conference on Software Engineering (ICSE). 677-687.

E. Soderberg, L. Church,]J. Borstler, D. C. Niehorster, and C. Rydenfalt. 2022.

What'’s bothering developers in code review?. In Proceedings of the International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[23] T. Winters, T. Manshreck, and H. Wright. 2020. Software Engineering at Google:
Lessons Learned from Programming over Time. O’Reilly Media.

=
S

=
&

(16

[17

[22

https://smartbear.com/resources/ebooks/the-state-of-code-review-2020-report
https://smartbear.com/resources/ebooks/the-state-of-code-review-2020-report

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	4.1 Interviews
	4.2 Survey

	5 Discussion
	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

