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Abstract 

Diffusion MRI (dMRI) sensitizes the MR signal to the diffusion of water molecules 
at the microscopic level and thereby non-invasively probes tissue microstructure. 
This is relevant when determining biological properties of tissues, for example, 
cancer type and its malignancy. The problem is, however, that dMRI lacks 
sensitivity and specificity to distinct microstructural features because an image 
voxel contains vast number of different features that are mapped onto relatively few 
dMRI observables. To tackle this issue, we aimed at solving two gaps in current 
knowledge—the first was related to what microstructural aspects are of most 
importance and the second to how adding new observables to the dMRI 
measurement could improve brain tumor imaging. 

In this work, we first investigate the biological underpinnings of dMRI 
observables—focusing on the degree to which larger-scale microstructural 
arrangements are of relevance. In Paper I, we investigated the effects of non-straight 
propagation of axons and found that they are indistinguishable from those 
originating from the diameter of a straight axon, at least for typical measurements 
with a clinical scanner. We propose that the use of short diffusion times could help 
separate them. In Paper II, in a comparison between histology and microimaging of 
meningioma brain tumors, we quantified to what degree the common biological 
interpretation of one of the most used dMRI observable holds—mean diffusivity 
(MD) as reflecting cell density and fractional anisotropy reflecting tissue anisotropy. 
We found that the local variability in MD was explained in minority of the samples 
whereas FA in majority by the common interpretations. We suggested additional 
relevant features such as tumor vascularization, psammoma bodies, microcysts or 
tissue cohesivity for explaining MD variability. 

Second, we examined whether a framework that introduces a new measurement 
observable brings value in intracranial tumor imaging. This new variable is termed 
the b-tensor shape and is derived from the tensor-valued dMRI paradigm. In Paper 
IV, we adjusted and shortened by 40 % (from 5 to 3 minutes) a tensor-valued dMRI 
protocol for clinical imaging of intracranial tumors and applied it to characterize to 
a wide range of different intracranial tumors. The protocol was also used in clinical 
studies of patients with intracranial tumors—gliomas and meningiomas—in Paper 
III and Paper V, respectively. In Paper III, we found that using so-called spherical 
b-tensor encoding leads to enhanced conspicuity of glioma hyperintensities to white 
matter in all patients and on average the signal-intensity-ratio increased by 28 %. In 
Paper V we found that it may also inform on meningiomas preoperatively. The 
standard deviation of isotropic kurtosis was associated with tumor grade and with 
and the 10th percentiles of the mean and anisotropic kurtoses with firm tumor 
consistency. Preoperative knowledge of the consistency is important for the 
neurosurgeons when choosing the optimal surgical procedure.  
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Populärvetenskaplig sammanfattning 

Cancer är en stor orsak till dödsfall i den industrialiserade världen. För att 
diagnosticera hjärntumörer och utvärdera effektivitet av terapi så spelar medicinsk 
bildtagning en stor roll. Diffusionsviktad magnetresonanstomografi (dMRT) är en 
bildtagningsteknik som ger information om vävnadens mikrostruktur. Denna 
information är av stor betydelse för både diagnostik och terapi. Det är idag dock inte 
helt uppenbart exakt vilka aspekter i vävnadens mikrostruktur som är har störst 
inflytande på bilder tagna med dMRT. Vävnad innehåller ett stort antal olika 
cellulära strukturer av olika form och storlek och dMRI ger bara information om 
deras genomsnitt. Målet med denna avhandling är att undersöka och överbrygga två 
kunskapsbrister i dMRT – den första relaterar till vilka vävnadsstrukturer som är av 
störst betydelse för dMRT bilder och den andra relaterar till huruvida en ny slags 
dMRI-mätning kan leda till förbättrad bildtagning av hjärntumörer. 

För att uppnå det första målet så undersöktes sambandet mellan egenskaper i vävnad 
och resultat från dMRT. Genom att analysera en modell av axoner i hjärnans vita 
vävnad påvisades att egenskaper hos geometrin av axonens bana inte kan särskiljas 
från dess diameter vid vanliga dMRT mätningar (Paper I). För att separera dem 
behövs variation av tiden under vilken diffusion observeras (den s.k. 
diffusionstiden), och då framför allt kortare tider. Utöver axoner undersöktes även 
meningiom, som är en slags tumör som utgår från hjärnhinnan. Genom att jämföra 
dMRT bilder och mikroskopibilder av samma tumör påvisades att inte bara 
celltäthet påverkar dMRT, utan även andra vävnadsstrukturer som till exempel 
ansamling av kalcium (Paper II).  

För att uppnå det andra målet undersöktes om en ny mätegenskap – formen på den 
så kallade ”b-tensorn”– kan förbättra resultaten vid undersökning av hjärntumörer. 
En inledande studien syftade till att förkorta undersökningstiden för dMRT med den 
nya metoden och karakterisera ett stort antal olika sorters hjärntumörer (Paper IV). 
Undersökningstiden var bara 3 minuter och metoden användes för att studera 
patienter med hjärntumörer – s.k. gliom (Paper III) och meningiom (Paper V). Den 
nya metoden visade sig ge förbättrad bildkontrast mellan gliom och vit 
hjärnsubstans hos alla patienter (Paper III). Metoden kan även vara till pre-operativ 
nytta hos patienter med meningiom, eftersom den kan ge bättre kunskap om 
tumörens egenskaper (Paper V). Exempelvis var tumörkonsistens och malignitet 
associerade med ny mätegenskap. Kännedom om dessa egenskaper kan vara till 
hjälp vid val av kirurgiskt ingrepp. Sammanfattningsvis ger den nya metoden 
information som inte kan erhållas med vanliga dMRT mätningar. 
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1. Introduction 

Diffusion MRI (dMRI) non-invasively probes tissue microstructure, i.e. the 
arrangements of cell structures on the micrometer length-scale (Le Bihan, 2003). 
Knowledge of the tissue microstructure is important for medical care, as the 
microstructure is related to important biological properties such as tumor type or 
malignancy. Diffusion MRI is sensitive to microstructure because microscopic 
structures hinder the random motion of water molecules that results from the 
molecular thermal energy and thereby leave a mark on the diffusion process (called 
Brownian or self-diffusion) (Einstein, 1905). In practice, the signal from magnetic 
resonance imaging (MRI) can be sensitized to the diffusion of water by the use of 
diffusion-encoding gradients (Stejskal and Tanner, 1965;Brown et al., 2014). This 
allows diffusion and thus microstructure to be indirectly and non-invasively probed. 

Diffusion MRI has been widely used clinically because it has shown benefits for 
patients in settings such as stroke care, cancer care and neurosurgery planning. In 
stroke, this is because the apparent diffusion coefficient (ADC) obtained from 
diffusion-weighted imaging (DWI) is sensitive to ischemia (Moseley et al., 1990). 
Interestingly, the biophysical underpinnings remain elusive (Blackband et al., 
2020). In cancer imaging, DWI and ADC maps are regularly inspected in patients 
with intracranial tumors. This is because ADC was shown to be inversely 
proportional to cell density (Chen et al., 2013) and thereby indicates viable tumor 
regions. Furthermore, presence of high-signal values on DWI scans, referred to as 
DWI-hyperintensities, is associated with worse prognosis (Kolakshyapati et al., 
2017;Zeng et al., 2018;White et al., 2019). Fractional anisotropy (FA) from 
diffusion tensor imaging (DTI) can identify displaced white matter tracts by a tumor 
and assess their disruption and tumor infiltration (Price et al., 2004;Jütten et al., 
2019) and may provide insight preoperatively concerning whether they are 
salvageable (Yen et al., 2009). Mean kurtosis (MK) from diffusion kurtosis imaging 
(DKI) can improve tumor classification and monitoring (Kang et al., 2011;Van 
Cauter et al., 2012;Vandendries et al., 2014;Delgado et al., 2017). Moreover, 
diffusion MRI is sensitive to the anisotropic diffusion in axons (Beaulieu, 2002) and 
by connecting the predominant direction of the diffusion it can be used to non-
invasively visualize major nerve tracts, which is referred to as tractography (Mori 
et al., 1999). Such methods are important in neurosurgical planning to avoid regions 
of healthy white matter during neurosurgery (Bulakbasi, 2009;Romano et al., 
2009;Essayed et al., 2017). 
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However, it is not clear which microstructural features are imprinted in a dMRI 
signal, and, moreover, at the typical image resolution each image voxel will contain 
multiple microenvironments, but these are mapped onto only relatively few dMRI 
observables (Nilsson et al., 2018;Novikov et al., 2018;Alexander et al., 2019). For 
example, the signal can be measured with respect to the diffusion encoding strength, 
i.e. the b-value, and the diffusion signal vs b-value for moderate b-values yields just 
two observables—its initial slope and its departure from exponential decay at higher 
b-values. The first observable is the one obtained with DWI and the second with 
DKI. The measurements can be performed in several directions, which adds the 
voxel-level anisotropy (difference in diffusion between directions) as another 
observable in DTI (Basser et al., 1994). 

Microstructure modelling has been proposed as a means to move from mapping 
unspecific observables such as ADC, FA, and MK to mapping specific 
microstructure quantities such as cell density in cancers or axon diameters in white 
matter. In such microstructure models, the tissue geometry is represented by a 
biophysical model and, in principle, two problems need to be solved: the forward 
problem that predicts the diffusion signal for given model parameters and a certain 
diffusion encoding protocol, and the inverse problem that estimates the model 
parameters from the measured signal. In the construction of the forward problem, it 
is not always clear which features are of most relevance (Novikov et al., 2018). 
When solving the inverse problem, one may find that the diffusion encoding 
protocol may not be sensitive to all microstructural features incorporated in the 
model, which means that many solutions may fit the observed data equally well 
(Jelescu et al., 2016;Lampinen et al., 2020a). To illustrate the problem, consider 
white matter microstructure modelling. Early models represented the axons in white 
matter as prolate ellipsoids (Stanisz et al., 1997) or straight impermeable cylinders 
(Assaf and Basser, 2005;Assaf et al., 2008;Alexander et al., 2010). Such models 
provided axon diameter estimates, but these were higher than expected from 
histology (Assaf et al., 2008;Barazany et al., 2009;Alexander et al., 2010). Although 
those early models were appealing in their simplicity, they were incomplete 
descriptions that provided biased estimates. Importantly, these early modelling 
attempts did not incorporate broader features of the whole biological system, such 
as the non-straight axon propagation known as undulations, which were later shown 
to have a strong impact on the dMRI signal (Paper I)(Nilsson et al., 2012;Lee et al., 
2020a;Lee et al., 2020b). Another feature is the variation of the axon diameter along 
its path (Abdollahzadeh et al., 2019;Lee et al., 2020b). Fine microstructural details 
such as axonal spines, leaflets, or beads could also be important to consider 
(Palombo et al., 2018;Lee et al., 2020b). This highlights that progression in dMRI 
demands a deeper understanding of which features of the microstructure are 
encoded into the signal. 
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The microstructure modelling work has also highlighted that the majority of dMRI 
experiments use methods that yield too few observables to infer specific information 
on the microstructure (Lampinen et al., 2017;de Almeida Martins and Topgaard, 
2018;Novikov et al., 2019;Jelescu et al., 2020;Slator et al., 2021). This is because 
contemporary applications rely on diffusion encoding by a pair of pulsed gradients 
(Stejskal and Tanner, 1965), developed in the 1960s. New dMRI observables can 
be added by implementing new approaches of performing diffusion encoding. A 
natural step forward is to extend the measurement by one or two pairs of gradients, 
which is referred to as double or triple diffusion encoding (DDE or TDE) (Shemesh 
et al., 2016). These and other diffusion encoding strategies can be generalized into 
so-called tensor-valued dMRI (Westin et al., 2016). This framework generalizes the 
concept of a b-value into a b-tensor that allows for a new measurement variable—
the b-tensor shape (Eriksson et al., 2013;Lasič et al., 2020). So-called b-tensor 
encoding is typically executed not by pulsed gradients but by free gradient 
waveforms (Szczepankiewicz et al., 2021b). These can be optimized to minimize 
echo time (Sjölund et al., 2015), concomitant gradient effects (Szczepankiewicz et 
al., 2019b), cross-terms with background gradients (Szczepankiewicz and Sjölund, 
2021), motion (Szczepankiewicz et al., 2021a;Lasič et al., 2022) or designed to 
exploit time-dependent diffusion (Lundell et al., 2019;Chakwizira et al., 2021). 
Tensor-valued encoding can also be used in models to disentangle the MK from 
DKI into two components—anisotropic and isotropic kurtoses (MKA and MKI, 
respectively)—where MK is its sum. This is beneficial because MKA is related to 
microscopic tissue anisotropy, whereas MKI is related to cell density variance, 
which are two orthogonal microstructural features (Szczepankiewicz et al., 2016). 
We will refer to tensor-valued dMRI performed to obtain MKA and MKI as Q-space 
Trajectory Imaging (QTI) (Szczepankiewicz et al., 2016;Westin et al., 2016). 
Tensor-valued dMRI has so far demonstrated utility in conditions such as the 
modelling of brain microstructure (Szczepankiewicz et al., 2015;Lampinen et al., 
2017;Dhital et al., 2018;Lampinen et al., 2019;Szczepankiewicz et al., 2019a;Afzali 
et al., 2020;Lampinen et al., 2020a;Afzali et al., 2021;de Almeida Martins et al., 
2021;Reymbaut et al., 2021), understanding of epileptic lesions (Lampinen et al., 
2020b) or multiple sclerosis (Andersen et al., 2020). 

The diffusion time is another variable that can be used to sensitize the signal to 
different aspects of microstructure, which is defined as the time duration during 
which random molecular displacements are sampled (Stepišnik, 1993;Latour et al., 
1994;Le Bihan, 2003). At short diffusion times, the water molecules encounter only 
their immediate surrounding (Mitra et al., 1993), but at longer times, they probe 
most of the environment (Fieremans et al., 2016;Lee et al., 2020c). By varying the 
diffusion time, we can probe various length-scales of tissue and, therefore, sensitize 
the dMRI signal to microstructural features on different length scales (Does et al., 
2003;Lasič et al., 2009;Novikov et al., 2014). 
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Although finding microstructural features of relevance and defining new 
experimental approaches is challenging, addressing these two shortcomings is 
worthwhile because dMRI could serve as substitution for biopsy. With biopsy the 
tissue needs to be invasively extracted from the body, which may not be possible if 
it is in a difficult location. Moreover, it might be painful, may not be available and 
cannot be repeated on the same tissue. This is a pressing problem especially in 
conditions affecting the brain, as in the case of intracranial tumors. Taken together, 
there is in the clinics a need for non-invasive estimates of specific tumor and white 
matter microscopic features that would inform diagnosis, classification, prognosis 
or treatment response. If the shortcomings of conventional dMRI can be solved, it 
will be valuable for a wide range of applications where the configuration of tissue 
microstructure is relevant. 

The aim of this thesis is to address two gaps in knowledge. The first gap concerns 
how larger-scale arrangements of microstructural features, sometimes referred to as 
mesoscopic properties, influence dMRI in cancer and axons in white matter. Current 
interpretations tend to rely on singular features such as cell density (in cancer) or 
simple models of axons such as straight-cylinders (white matter). Tissue features on 
the mesoscopic level, such as heterogeneity in cancer or long-range geometrical 
aspects of axons, have been insufficiently investigated. The second gap concerns 
so-called tensor-valued dMRI. It is a relatively new method for dMRI encoding. Its 
benefits for microstructure modelling are today well established, but it is still 
unknown how this translates into benefits for medical science or clinical practice. 
Evaluating this could pave the way for the adoption of a new generation of diffusion 
MRI experiments, microstructure models and encoding schemes. 
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2. Aims 

Our first set of aims concerned how mesoscopic variations of tissue influence the 
macroscopic dMRI observables. These aims were: 

1. In Paper I, to identify mesoscopic model parameters that are relevant from 
the time-dependent dMRI measurement perspective in synthetic 
simulations. We aimed to find which features of non-straight axons are 
observable with clinically achievable diffusion encoding schemes and 
whether axonal undulations could lead to misinterpretation of results based 
on approaches modelling axons as straight cylinders. 

2. In Paper II, to investigate which microstructural features in meningioma 
tumors that account for the variations in the dMRI parameters. We focused 
on the mesoscopic level, and whether structures such as cell packings, 
collagen fibers or tissue anisotropy affect the interpretations of variations in 
mean diffusivity and fractional anisotropy. 

Our second set of aims was tied to the gap in knowledge about potential 
contributions of tensor-valued diffusion MRI in imaging of intracranial tumors. 
These aims were: 

3. In Paper III, to investigate what information can be gleaned from tensor-
valued diffusion encoding in glioma tumors without the application of any 
modelling. We investigated whether diffusion-weighted imaging obtained 
by spherical b-tensor encoding (STE) can be used to suppress white matter 
and enhance the conspicuity of glioma hyperintensities unrelated to white 
matter. 

4. In Paper IV, to investigate whether we can execute a protocol with tensor-
valued diffusion encoding fast in the context of a clinical study and to 
characterize the iso- and anisotropic kurtoses in a wide range of intracranial 
tumors. 

5. In Paper V, to evaluate whether tensor-valued dMRI can bring benefits to 
the preoperative prediction of meningioma consistency, grade or type in 
comparison with conventional diffusion tensor and kurtosis imaging. 
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3. Biological substrate 

3.1. Intracranial tumors 

Cancer is a family of diseases that is characterized by uncontrollable cell growth 
that often spreads from the initial site to other parts of the body. It is the first or 
second leading cause of death before the age of 70 years in 112 of 183 countries and 
ranks third or fourth in further 23 countries (Sung et al., 2021). 

Tumors of the central nervous system contribute with 2.5 % to the overall number 
of cancer deaths (Sung et al., 2021). They can be classified based on the WHO 
classification from year 2016 (Louis et al., 2016) which was updated in 2021 (Louis 
et al., 2021). The most common primary intracranial tumors are meningiomas (36 
%) and gliomas (25 %). 

In this chapter, an overview of these two types of intracranial tumors will be 
provided. Common symptoms, treatment, radiological and histological appearance, 
and survey unsolved problems will also be described. 

3.1.1. Meningiomas 

Meningiomas are intracranial tumors that stem from the meninges. They have an 
annual incidence rate of approximately 8 in 100,000 (Wiemels et al., 2010) and are 
divided into 15 different histological types (Louis et al., 2021). Although 
meningiomas are predominately benign, they often necessitate neurosurgical 
resection because of their impact on the surrounding tissue (Maggio et al., 2021). 
Therefore, pre- and postoperative assessment and radiological differential diagnosis 
are of importance. 

Most meningiomas are asymptomatic and are therefore found incidentally. Larger 
tumors, especially with adjacent oedema, may present themselves as a headache, 
paresis, change in mental status, as well as more specific symptoms related to their 
location (Greenberg et al., 1999). 

Diagnostically, meningiomas often appear as dural masses that are isointense on T1- 
and T2-weighted images but enhancing with respect to white matter. Nonetheless, 
microcystic or angiomatous subtypes of meningiomas with respect to atypical 
(grade II or III) meningiomas may pose a diagnostic challenge. That 
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notwithstanding, dMRI has shown potential in differentiating between the subtypes 
(Jolapara et al., 2010;Xiaoai et al., 2020). 

Estimation of their consistency, which is defined as the mechanical firmness of the 
tumor tissue, is of importance pre-operatively (Shiroishi et al., 2016;Yao et al., 
2018). This is because soft tumors are associated with lower surgical morbidity, 
shorter operative time, and lower rates of recurrence (Yao et al., 2018), and thereby 
its knowledge has an impact on the neurosurgical resection strategy. T2-weighted 
MRI (Yao et al., 2018), MR elastography (Chartrain et al., 2019) and DTI 
(Kashimura et al., 2007;Romani et al., 2014) provide a useful predictive measure of 
tumor consistency but no method is widely established. 

Finally, meningiomas are interesting not only clinically but also scientifically in 
investigations of mesoscopic variations of tissue because the meningioma types are 
highly heterogeneous. Thus, collecting different sample types is of interest because 
these may span a large tissue variability and different realization of mesoscopic 
variability. 

3.1.2. Gliomas 

Gliomas comprise a wide range of tumors originating from glial cells in the brain or 
spine. They make up approximately 80 % of malignant brain tumors and can be 
divided based on their cell type, grade or location (Louis et al., 2021). The most 
common three types are glioblastoma, oligodendroglioma and astrocytoma. They 
often manifest themselves non-specifically by headaches, seizures, vomiting but 
also more specifically depending on their anatomic location. Their treatment and 
survival rate depends on the subtype but for the most common subtype, i.e. 
glioblastomas, which is only 5 % (Ricard et al., 2012). 

Histologically, the appearance of gliomas varies among the different types and 
grades, but low-grade gliomas are often composed of groups of scattered cells 
infiltrating the surrounding brain (Kumar et al., 2017). High-grade gliomas, on the 
other hand, often have a central core of a more or less compact tumor with a border 
pushing against and compressing the surroundings. 

Radiologically, glioblastomas appear as large tumors at diagnosis and often have 
thick, enhancing margins and a central necrotic core surrounded by vasogenic 
oedema, which usually contains infiltration by neoplastic cells (Brant and Helms, 
2012). On diffusion-weighted imaging, localized high-signal values relative to the 
surrounding are often seen, often referred to as tumor-related hyperintensities. Their 
presence is indicative of prognosis (Kolakshyapati et al., 2017), perhaps because 
they are linked to increased cell density (Chen et al., 2013;LaViolette et al., 2014). 
On high b-value DWI (b = 2,000–3,000 s/mm2) the hyperintensities are more 
conspicuous, more useful for discriminating high- and low-grade gliomas (Seo et 
al., 2008), and better for the prediction of overall survival for patients with 
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glioblastomas (Zeng et al., 2018). These, however, may be confounded by white 
matter because white matter also appears hyperintense at high b-value DWI. One of 
the open clinical problems is their delineation because they spread beyond 
enhancements on post-gadolinium T1w images. In summary, there is a need for 
radiological stratification that can prognosticate survival and correlate with the 
WHO classification (Kamble et al., 2022). 

3.2. Neurons and axons 

Neurons or nerve cells are cells that receive and process electrochemical 
stimulations that are further conveyed to other cells. They are the main component 
of nervous tissue and typically consist of soma (neuronal body) from which 
dendrites and single axon are extruding (Figure 1A). Dendrites are filaments that 
receive electrochemical stimulations from other cells. They may solely transfer the 
signal, control glands or muscles or process inputs from sensory organs. 

Axons are analogous to wires that connect various parts of the brain. They are 
projections of neurons that propagate the signal from the soma by controlling the 
ion concentration across ion channels embedded in the cytoplasmatic membrane 
called axolemma (Clark et al., 2010).  

One key functional part of the axon is its myelin sheath, which is an extrusion of 
oligodendrocytes consisting of lipids (Figure 1B). It plays a crucial role because it 
increases the conduction velocity. Myelin is not a continuous surface but is 
interrupted by so-called nodes of Ranvier. The myelin wraps around the axolemma 
in multiple folds (Edgar and Griffiths, 2009), and between these folds water is 
trapped (Hildebrand et al., 1993). This means that this water is highly restricted and 
not permeable, at least not for diffusion times that are typical for clinical dMRI. 

Axons are characterized by their diameter, which is important because it is also 
linked to the conduction velocity (Ritchie, 1982). The axon diameters vary within 
tracts as well as within individual axons (Figure 1B). In the corpus callosum, the 
axon diameters are in range between 0.5 and 15 μm, but the volume-weighted 
average is below 1 μm (Aboitiz et al., 1992). This was also observed with 3D 
morphometry studies of axons by electron microscopy that found that the median of 
the equivalent diameter in a corpus callosum is around 0.5 μm (Abdollahzadeh et 
al., 2019;Lee et al., 2019), with a median coefficient of variation of 4 (Lee et al., 
2019) or interquartile range of 0.35 μm – 0.55 μm (Abdollahzadeh et al., 2019) 
(Figure 1D). The equivalent diameter is defined as a diameter of a circle with the 
same area as the cross-section excluding the myelin sheath perpendicular to the axon 
skeleton. The axon diameters may also vary between different nerves; for example, 
in optic nerve, the typical diameter is around 1 μm (Jonas et al., 1990;Jeffery, 1996), 
and or in phrenic nerve it is around 5 μm (Takagi et al., 2009). Finally, the axon 
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cross section is rather elliptic rather than circular (Abdollahzadeh et al., 2019;Lee 
et al., 2019) with a median ellipse eccentricity in the corpus callosum above 0.65 
(Abdollahzadeh et al., 2019). 

Axons do not propagate straight but exhibit non-straight—often sine-like—
trajectories, referred to as undulations (Figure 1C), which are present in both the 
central (corpus callosum or optic nerve) and peripheral nervous system (phrenic 
nerve). They may be relevant functionally in tissue mechanics because they may be 
stretched or compressed in the hydrocephalus or by a tumor (Bain et al., 2003). 

 

Figure 1. Neurons and their projections-axons. Panel A shows a neuron. It consists of the soma (body) that is in the 
gray matter. From the soma dendrites extrude within the gray matter and a single axon to white matter. Myelin sheaths 
wrap around the axon. Panel B shows cross-sections of axons in an electron microscopy image in a transversal plane 
of a mouse optic nerve. The darker regions correspond to myelin sheaths. Panel C shows that axons in the longitudinal 
plane exhibit sine-like trajectories, referred to as undulations. These are ubiquitous in the central nervous system, for 
example in the corpus callosum (C1) or optic nerve (C2) but also in the peripheral nervous system, for example in the 
phrenic nerve (C3). Panel D shows segmented axons (without myelin sheaths) from a series of electron microscopic 
images in the corpus callosum. Axons are not only undulating, but they also have different orientation dispersions or 
variable intra- and inter-axon diameters, features that may need to consideration when modelling the axons. Panel B 
adapted from Stassart et al. (2018), published by Frontiers Media and licensed under CC BY 4.0. Panel C1 was adapted, 
with permission, from Schilling et al. (2018), published by Elsevier. Panel C2 was adapted, with permission, from Jeffery 
(1996), published by Wiley. Panel C3 was adapted, with permission, from Lontis et al. (2009), published by © 2011 
IEEE. Panel D was adapted, with permission, from Lee et al. (2019), published by Springer Nature. 
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3.3. Histology 

Histology studies the anatomy of tissues at the microscopic level, often by using 
microscopes. It concerns itself with different organs, the study of cells (cytology) or 
of pathological variations (histopathology) (Mescher, 2021). 

Before tissue observation, the sample needs to be prepared. First, a representative 
sample needs to be selected and extracted. Second, the tissue sample needs to be 
fixated, which means that the biochemical reactions that would otherwise lead to 
self-degradation needs to be stopped. The most used fixative is formalin, which is a 
solution of formaldehyde. Third, the sample needs to be embedded in a harder 
medium that allows it to be cut into thin layers. This is often achieved by the use of 
paraffin. Because paraffin wax is not mixable with water the tissue needs to be 
dehydrated before embedding, which is achieved with ethanol. When the wax cools 
down the sample can be sectioned into 4-15 μm thin slices. 

To emphasize specific microstructural features, various stains are available. The 
most common stain that provides overview is Hematoxylin and Eosin (H&E or HE). 
The hematoxylin stains cell nuclei with a purple color, whereas eosin attaches to the 
extracellular matrix and cytoplasm and gives them a pink color. Other structures 
have different color tones of the combination of purple and pink. Another widely 
used stain is the Nissl stain that attaches to genetic material (nuclear chromatin) 
through the use of cresyl violet acetate or toluidine blue. This stain, when applied in 
nervous tissue, highlights neuronal bodies. 
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4. Diffusion in tissue 

Diffusion MRI probes diffusion due to the random motion of molecules, often 
referred to as Brownian motion or self-diffusion (Einstein, 1905). A key feature 
characterizing diffusion is the diffusion coefficient D defined as a ratio between 
mean squared displacement, 〈∆xଶሺ𝑡ୈሻ〉, and the diffusion time, tD, which is the time 
duration during which random spin displacements are sampled (Stepišnik, 
1993;Latour et al., 1994), 

𝐷 ൌ 2 ∙
〈∆୶ሺ௧ವሻమ〉

௧ವ
ൌ 2 ∙

〈൫୶ሺ௧ವି௧బሻି୶ሺ௧బሻ൯
మ
〉

௧ವ
,  (4.1.1) 

where t0 is the starting time, x(t) is the position of the spin-bearing particle at time 
t, D is the diffusion coefficient and 〈∙〉 the average across all Brownian spin 
trajectories. In tissue, the diffusion coefficient D is lower than what would otherwise 
be measured in a free medium because displacements are hindered by 
microstructural features. This is the reason why it is referred as an apparent diffusion 
coefficient (ADC). 

To study how microstructure influences the mean squared displacement and the 
ADC, we may distinguish between three distinct types of diffusion regimes: free, 
restricted and hindered. These characteristics may be same across all directions, and 
then it is referred to them as isotropic. If they differ in any direction, they are referred 
to as anisotropic. The different types of diffusion are linked to three different types 
of environments and by studying the effects on the apparent diffusion coefficient, 
i.e. ADC as a function of diffusion time ADC(t∆) and ADC as a function of direction 
ADC(u), we could separate them (Figure 2). 

 Free diffusion arises in an environment that has barriers separated by a 
distance d that is much larger than maximal mean squared displacement, 

𝑑 ≫ ඥ〈∆xଶ〉 (Figure 2A). There are effectively no obstacles for the 
diffusing particles, so the mean squared displacement is given by reverting 
the Eq. 4.1.1 and the ADC is constant as the diffusion time is varied. 

 Restricted diffusion arises in an environment within impermeable barriers 
of size d, which prohibits the diffusing particles to escape (Figure 2B). The 
mean squared displacement is, at shorter diffusion times when 𝑑 ≫
ඥD଴𝑡஽/2, linearly increasing according to Eq. 4.1.1. At longer diffusion 
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times, when 𝑑 ≪ ඥD଴𝑡஽/2, the apparent diffusion coefficient ADC tends 
to 0 because 𝐴𝐷𝐶 ൎ const/ሺ2𝑡஽ሻ → 0 as 𝑡஽ → ∞ . In the Figure 2B, the 
diffusion is restricted along y-axis but free along x-axis. 

 Hindered diffusion arises in an environment with obstacles at a distance 
shorter than the mean squared displacement, 𝑑 ≪ ඥD𝑡஽/2 (Figure 2C). The 
obstacles are hindering (“slowing”) the diffusing particles. The mean 
squared displacement in the long-time limit when 𝑑 ≪ ඥD𝑡஽/2 is 
described by Eq. 4.1.1 but because the particles appear to be diffusing at a 
slower pace, the diffusion coefficient D0, which would normally correspond 
to free diffusion and is referred to as bulk diffusion coefficient, is replaced 
by lower ADC. The ratio by which the diffusion is hindered is called 
tortuosity, 𝜆ଶ ൌ 𝐴𝐷𝐶/𝐷଴. On the other hand, at very short diffusion times, 
〈∆xଶ〉 and ADC behave as free diffusion because only a minority of 
particles sense the obstacles (Mitra et al., 1993), i.e. ADC = D0. 

 

Figure 2. Free, restricted and hindered diffusion. Panel A shows free diffusion, which is characterized by a linear 
mean squared displacement (MSD) and a constant ADC. Panel B shows restricted diffusion between two planes along 
the y-axis. The restricted diffusion along this axis is characterized by increasing but bounded MSD and monotonically 
decreasing ADC. Panel C shows hindered diffusion by circular impermeable restrictions and is characterized by linearly 
increasing MSD and constant ADC except for low diffusion times. By incorporating measurements at variable diffusion 
times and measuring the diffusion along orthogonal directions, we can separate the case A, B and C. Diffusion simulated 
using the diffusion coefficient of water at 20 C, i.e. D0 = 2 μm2/ms, and simulation is available at https://github.com/jan-
brabec/kappa. 
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In summary, the microstructure leaves an imprint on the diffusion. The relevant 
length-scale for clinical dMRI is in the units of micrometers, because the square root 

of mean squared displacement (ඥ〈∆xଶ〉) is in the range of micrometers. Specifically, 
it is between 3 μm and 55 μm assuming diffusion times of tD = 8-500 ms at the 
clinical scanner (Clark et al., 2001;Does et al., 2003) and a diffusion coefficient of 
free water D = 3 μm2/ms at a body temperature of 37 C (Mills, 1973). Structures 
on this length scale will hence have an impact of the diffusion observed by clinical 
dMRI. However, the image voxel volumes are typically around 2×2×2 mm3, which 
means that dMRI does not measure individual features but rather an averaged across 
a large number of microenvironments. 
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5. Diffusion encoding and modelling 

Diffusion encoding is performed by the application of a series of time-dependent 
magnetic field gradients that impose patterns of spin phase modulations. This 
modulation leads to a signal loss that, in turn, can be related to diffusion. The 
particular choice of diffusion encoding is important because it influences what 
diffusional, and therefore microstructural, properties, are encoded into the signal. 

The obtained signal values can be turned into dMRI parameters by modelling. The 
diffusion-weighted signal S is obtained for given model parameters p and diffusion 
encoding e which referred to as the forward problem, 

𝐒 ൌ 𝑓ሺ𝐩, 𝐞ሻ,  (5.1.1) 

where f is a general mapping function of various forms that will be described in this 
chapter. From the signal and encoding we can estimate the parameters by solving 
the so-called inverse problem, 

𝐩 ൌ 𝑓ିଵሺ𝐒, 𝐞ሻ,  (5.1.2) 

where f -1 is the inverse mapping function of f. The inverse problem is solved by 
finding the model parameters that are most likely generated by the observed noisy 
signal. In practice, this is performed by minimizing the sum-of-squares distance 
between observed and predicted signals. 

Here, three types of encodings are introduced – conventional, tensor-valued and 
time-dependent. The encodings are also coupled to parameters reflecting gross 
features of diffusion (Eq. 5.1.1), and how to solve the inverse problem (Eq. 5.1.2) 
will be sketched for tensor-valued dMRI. 

5.1. Conventional diffusion encoding 

The most commonly used diffusion-weighted pulse sequence is formed by inserting 
two trapezoidal (pulsed) diffusion encoding gradients before and after the 
refocusing (180) RF pulse, as depicted in Figure 3 (Stejskal and Tanner, 1965). In 
the conventional setup, the diffusion encoding gradients can be described by their 
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strength G, duration δ, and separation between the onsets of each gradient ∆, and an 
encoding direction u (in Figure 3, the direction is along gradient x, u = gx). 

 

Figure 3. Scheme of the most commonly used diffusion encoding sequence (Stejskal and Tanner, 1965). It is a 
spin-echo diffusion encoding sequence with EPI readout. It consists of two pulsed diffusion encoding gradients placed 
before and after a refocusing pulse. These can be described by a diffusion gradient strength G, duration of the diffusion 
gradient δ, and separation between onsets of each diffusion gradient ∆. 

Due to the first diffusion encoding gradient the spins acquire a phase, and by the 
second diffusion gradient the spins are rephased. Spins that did not move between 
the first and second gradient will reacquire their original phase (effects of T2 
relaxation are neglected) and will thus not contribute to the signal loss. However, 
those spins that changed location, for example due to diffusion, do not reacquire 
their original phase. Specifically, the phase of a single spin at echo time TE is given 
by 

ϕሺ𝑇𝐸ሻ ൌ 𝛾 ׬ 𝐠ሺ𝑡ሻ ∙ 𝐫ሺ𝑡ሻd𝑡
்ா
଴ ,  (5.1.3) 

where γ is the gyromagnetic ratio (for hydrogen γ = 42.58 MHz/T), TE is the echo 
time, g(t) is the time-varying diffusion encoding gradient, r(t) is the spin position at 
time t and ሾ∙ሿ represents the dot product between two vectors. 

The diffusion signal is given by averaging over all spin contributions as 

S ൌ 〈expሺiϕሻ〉.  (5.1.4) 

A phase dispersion thus leads to a signal attenuation, and this is the overarching 
building block of dMRI, which is captured in Eq. 5.1.4. With stronger gradients or 
larger diffusion (Eq. 5.1.3), the signal attenuation increase, and by studying this 
signal loss (Eq. 5.1.4), we can infer diffusional features, which is the topic of study 
in this chapter. 
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5.1.1. Diffusion-weighted imaging (DWI) 

One of the most essential applications of dMRI is so-called diffusion-weighted 
imaging (DWI). Loosely defined, DWI is a simple method producing images that 
are strongly weighted by diffusion. It also enables estimation the ADC. In practice 
this is often achieved by the conventional spin-echo sequence (Chapter 5.1) 
(Stejskal and Tanner, 1965). The apparent diffusion coefficient ADC is estimated 
by assuming exponential attenuation,  

Sሺ𝑏ሻ ൌ S଴expሺെ𝑏 ∙ ADCሻ,  (5.1.5) 

where the b-value characterizes the diffusion encoding strength. It summarizes the 
parameters G, δ and ∆ as 

𝑏 ൌ γଶGଶδଶሺΔ െ δ/3ሻ,  (5.1.6) 

where ሺΔ െ δ/3ሻ ൌ 𝑡ୣ୤୤ is the effective diffusion time (Le Bihan, 2003). If the 
diffusion is free, the apparent diffusion coefficient is actually the bulk diffusion 
coefficient, ADC = D0. The maximum b-value should not be set too high (often it is 
set to b = 1000 s/mm2), otherwise ADC may be biased due to non-mono-exponential 
attenuation (Jones and Basser, 2004). 

Figure 4 shows a patient of age around 50 years, who had an astrocytoma of grade 
II. On the contrast-enhanced T1w image (T1w + Gd), an enhancing lesion can be 
seen (marked with a yellow arrow). On a map obtained without diffusion encoding 
(S0), a hyperintense region surrounding the enhancing lesion can also be seen. 
However, on the DWI at b = 1400 s/mm2 a bright hyperintense lesion that is not 
visible on the S0 map can be observed (also marked by a yellow arrow). The ADC 
can be averaged across several directions and a mean diffusivity (MD) can be 
obtained. The MD map of the patient shows a slight relative decrease in the 
corresponding region. 
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Figure 4. MRI in a patient with an astrocytoma of grade II. On the contrast-enhanced T1w image, an enhancing 
lesion can be seen (marked with a yellow arrow). On a map obtained without diffusion encoding (S0), a hyperintense 
region can also be seen. However, on the DWI scan at b = 1400 s/mm2 a hyperintense lesion can be seen that is not 
visible on the S0 map. The MD map shows a slight relative decrease of the MD in the corresponding region. Figure 
adapted from Paper III, published by Frontiers Media and licensed under CC BY 4.0. 

5.1.2. Diffusion tensor imaging (DTI) 

If the diffusion encoding is performed in several directions, diffusion tensor imaging 
(DTI) can be used to probe the voxel-averaged diffusion anisotropy (Basser et al., 
1994;Basser and Pierpaoli, 2011). In essence, it generalizes the concept of the 
diffusion coefficient (scalar) into a notion of a diffusion tensor D, 

𝐃 ൌ ቌ

𝐷୶୶ 𝐷୶୷ 𝐷୶୸
𝐷୷୶ 𝐷୷୷ 𝐷୷୸
𝐷୸୶ 𝐷୸୷ 𝐷୸୸

ቍ.  (5.1.7) 

The diffusion tensor D has 6 degrees of freedom due to symmetry (𝐷௜௝ ൌ 𝐷௝௜). The 
ADC from DWI is given by the projection of the diffusion tensor onto an encoding 
direction u, i.e. 𝐴𝐷𝐶 ൌ 𝐮𝐓 ∙ 𝐃 ∙ 𝐮, and the signal can be written as 

Sሺ𝐮, 𝑏ሻ ൌ S଴exp൫െ𝑏 ∙ 𝐮𝐓 ∙ 𝐃 ∙ 𝐮൯.  (5.1.8) 

It is possible to diagonalize the tensor D such that 𝐃 ൌ 𝐑𝚲𝐑ିଵ where 𝚲 is the 
diagonal representation 𝚲 of D (Basser et al., 1994), 

𝚲 ൌ ൭
λଵ 0 0
0 λଶ 0
0 0 λଷ

൱,  (5.1.9) 
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and R the rotation matrix (Kingsley, 2006). From the eigenvalues (λ1, λ2, λ3) we can 
define parameters, such as mean diffusivity (MD), 

MD ൌ
୘୰ሺ𝐃ሻ

ଷ
ൌ

ఒభାఒమାఒయ
ଷ

,  (5.1.10) 

where Trሾ∙ሿ is the trace of the tensor, and fractional anisotropy (FA) as 

FA ൌ ටଷ

ଶ
∙ ට

ሺఒభି୑ୈሻమାሺఒమି୑ୈሻమାሺఒయି୑ୈሻమ

ఒభ
మାఒమ

మାఒయ
మ .  (5.1.11) 

Note that MD and FA are orientation-independent voxel-level measures, where MD 
reflects the average diffusion across directions and FA reflects the anisotropy of the 
diffusion tensor.  

DTI necessitates diffusion data acquired at sufficiently low b-values where the 
signal decay is approximately exponential, often with b-values up to 1000 s/mm2. It 
also demands diffusion encoding in at least 6 directions, although 15 or more 
directions are recommended (Jones et al., 2013). At high b-values higher order terms 
may bias the estimates of MD and FA because DTI assumes mono-exponential 
decay of the diffusion signal (Eq. 5.1.8). 

5.1.3. Diffusion kurtosis imaging (DKI) 

To characterize the signal at higher b-values (over 1000 s/mm2), where the decay is 
not mono-exponential, so-called diffusion kurtosis imaging can be used (DKI) 
(Jensen et al., 2005). DKI yields a parameter termed mean kurtosis (MK). This can 
be obtained by fitting the diffusion-signal with (Yablonskiy and Sukstanskii, 2010) 

𝑆̅ሺ𝑏ሻ ൌ exp ቀെ𝑏 ∙ MD ൅
ଵ

଺
𝑏ଶ ∙ MDଶ ∙ MKቁ.  (5.1.12) 

Note that the Eq. 5.1.12, which contains signal averaged across several directions is 
a modification of the DKI model proposed by Jensen et al. (2005). The non-mono-
exponential signal, which leads to a non-zero MK, may be due to several reasons 
(De Swiet and Mitra, 1996). One reason is tissue heterogeneity within the image 
voxel due to the presence of environments with distinct diffusivities. Another is 
anisotropy and orientation dispersion, and tensor-valued encoding may be useful in 
this situation (Chapter 5.2). Yet another reason is the presence of obstacles that lead 
to time-dependence of the diffusion, which is arises at intermediate diffusion times 
where ADC cannot be regarded as constant. Here, time-dependent encoding may 
helpful (Chapter 5.3). 
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5.2. Tensor-valued encoding 

The concept of a b-value as a measurement variable can be generalized into a b-
tensor (Westin et al., 2016). The b-tensor can be represented by the conventional b-
value but in addition also the b-tensor shape, or b. Importantly, this parameter 
provides a complementary contrast to the conventional b-value. The b-tensor 
formalism is appealing because it allows a compact description of many seemingly 
different experiments, such as those using numerically optimized free gradient 
waveforms (Sjölund et al., 2015;Szczepankiewicz et al., 2021a), double diffusion 
encodings (Cory et al., 1990;Callaghan and Komlosh, 2002;Özarslan and Basser, 
2008;Lasič et al., 2011;Jespersen et al., 2013;Lawrenz and Finsterbusch, 
2013;Shemesh et al., 2016) or isotropic diffusion encoding used in the context of 
fast MD mapping (Mori and Van Zijl, 1995;Wong et al., 1995). The b-tensor is 
defined from the gradient waveform as (Mattiello et al., 1994;Westin et al., 2016) 

𝐁 ൌ ׬ 𝐪ሺ𝑡ሻ⨂
𝟐

d𝑡
்ா
଴ ൌ ׬ 𝐪ሺ𝑡ሻ𝐪ሺ𝑡ሻ୘d𝑡

୘୉
଴ ,  (5.2.1) 

where 𝐪ሺ𝑡ሻ ൌ γ׬ 𝐆ሺ𝑡ᇱሻd𝑡′
௧
଴  and G is the gradient. The symbol ‘⊗’ denotes the outer 

product between two tensors of order m, and n yields a tensor of order m+n with 
elements that are different product combinations between the elements of the two 
tensors such that ሺ𝐗⊗ 𝐘ሻ௜௝௞௟ ൌ 𝑋௜௝𝑌௞௟. 

If B is axisymmetric, it can be expressed in its principal axis system (PAS) in terms 
of its axial (𝑏∥) and radial (𝑏ୄ) eigenvalues, 

𝐁୔୅ୗ ൌ ቌ
𝑏∥ 0 0
0 𝑏ୄ 0
0 0 𝑏ୄ

ቍ.  (5.2.2) 

The B-tensor is given by 𝐁 ൌ 𝐑 ∙ 𝐁୔୅ୗ ∙ 𝐑𝐓 where R is a rotation matrix (Kingsley, 
2006), and the b-value, describing the encoding strength, is the trace of the B-tensor, 

𝑏 ൌ Trሺ𝐁ሻ ൌ 𝑏∥ ൅ 2𝑏ୄ,  (5.2.3) 

whereas b-tensor shape, b∆, is defined as (Eriksson et al., 2015) 

𝑏∆ ൌ
௕∥ି௕఼
ଷ௕

,  (5.2.4) 

where b∆ can assume values from –0.5 (referred to as planar b-tensor encoding or 
PTE), through 0 (spherical b-tensor encoding or STE) to 1 (linear or LTE). The 



39 

definition of b-tensors (Eq. 5.2.1), together with a parametrization by the b-value 
(Eq. 5.2.3) and b-tensor shape (Eq. 5.2.4), defines a family of b-tensors (Figure 5A). 

Different gradient waveforms can generate identical b-tensors. For example, linear 
b-tensors (LTE; b∆=1) can be generated by the conventional diffusion experiment 
(Stejskal and Tanner, 1965) (Figure 3) as well as by a free gradient waveform. 
Similarly, there are several ways to generate spherical b-tensors (Szczepankiewicz 
et al., 2021b) where one of such way is magic-angle spinning of the q-vector 
(qMAS) (Eriksson et al., 2013). This approach was used in earlier studies (Westin 
et al., 2016), whereas our studies (Paper III; Paper IV; Paper V) used numerically 
optimized gradient waveforms (Sjölund et al., 2015;Szczepankiewicz et al., 
2019b;Szczepankiewicz et al., 2021b). Gradient waveforms similar to the one 
shown in Figure 5B were used in our studies Paper III, Paper IV and Paper V. 

 

Figure 5. B-tensor types and encoding. Panel A shows the family of b-tensors that can be parameterized by two 
variables – the b-tensor shape and the b-value. Panel B shows an example of numerically optimized gradient waveforms 
that leads to spherical b-tensor encoding (b∆ = 0) (Sjölund et al., 2015;Szczepankiewicz et al., 2019b;Szczepankiewicz 
et al., 2021b). Similar waveforms were used in our studies Paper III, Paper IV and Paper V. 
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5.2.1. Q-space trajectory imaging (QTI) 

Tensor-valued encoding can be connected to a representation of diffusion in tissue 
that is termed the diffusion tensor distribution (DTD) (Jian et al., 2007;Westin et al., 
2016). With the DTD, the diffusion process is represented by a distribution of 
diffusion tensors D and not only by a single voxel-averaged diffusion tensor 〈𝐃〉. 
Importantly, a single voxel-averaged diffusion tensor can correspond to multiple 
distinct DTDs. The environments connected to individual diffusion tensors are 
assumed to be non-exchanging and results may be biased if diffusion-time 
dependence is present, which can be regarded as limitations of this approach.  

A DTD can describe tissue heterogeneity because it represents the tissue as multi-
gaussian, i.e., as a diffusion originating from multiple compartments that may vary 
with respect to their diffusivities or anisotropies at the microscopic level within a 
single image voxel. Based on this concept, it can be shown that the mean kurtosis 
(MK) from DKI can be disentangled into anisotropic and isotropic diffusional 
kurtoses, MKA and MKI, respectively, that are informing on different aspects of 
diffusion (Szczepankiewicz et al., 2016). Whereas MKA reflects microscopic tissue 
anisotropy, MKI rather reflects cell density variation (Szczepankiewicz et al., 2016). 
However, to estimate these, measurements with at least two different b-tensor 
shapes are needed, and we will refer to tensor-valued encoding alongside the DTD 
model for the purpose of decomposing MK into MKA and MKI as Q-space imaging 
(QTI). 

The DTD can be described by several marginal distributions or parameters. One 
such is a distribution of isotropic diffusivities DI defined as (Westin et al., 2016) 

𝐷୍ ൌ E஛ሾ𝐃ሿ,  (5.2.5) 

where operator Eఒሾ∙ሿ yields a scalar that is the average across the tensor eigenvalues 

in 3 dimensions as Eఒሾ𝐗ሿ ൌ
ଵ

ଷ
∑ 𝜆௜
ଷ
௜ୀଵ . This operator can be applied to the 

distribution, and then it yields a distribution of scalars. For completeness, the mean 
diffusivity (MD) can be defined from the voxel-level average 〈𝐃〉 as 

MD ൌ E஛ሾ〈𝐃〉ሿ ൌ 〈D୍〉.  (5.2.6) 

Both MD and DI represent mean diffusivities but are different. Whereas MD 
represents at the voxel-level, DI can be considered as the distribution of MD within 
the image voxel. 

The isotropic variance of the DTD is defined as 

V୍ ൌ 〈E஛ሾ𝐃ሿଶ〉 െ E஛ሾ〈𝐃〉ሿଶ,  (5.2.7) 
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whereas anisotropic variance is defined as 

V୅ ൌ
ଶ

ହ
〈V஛ሾ𝐃ሿ〉,  (5.2.8) 

where operator V஛ሾ∙ሿ is the variance across tensor eigenvalues,  

Vఒሾ𝐗ሿ ൌ
ଵ

ଷ
∑ ሺ𝜆௜ െ Eఒሾ𝐗ሿሻଶ
ଷ
௜ୀଵ . 

The two parameters VI and VA reflect different aspects of the DTD. The isotropic 
variance of the DTD (Eq. 5.2.7) reflects the variance of the isotropic diffusivities, 
whereas the anisotropic variance (Eq. 5.2.8) yields the average variance of the 
eigenvalues. The anisotropic diffusivity is zero only if all environments are isotropic 
in their diffusion. These distinct variances can be rescaled to yield MKE, MKI and 
MKA as (Szczepankiewicz et al., 2016) 

MK୍ ൌ 3
୚౅
୑ୈమ

,  (5.2.9) 

MK୅ ൌ 3
୚ఽ
୑ୈమ

,  (5.2.10) 

MK୉ ൌ MK୍ ൅ 𝑏∆
ଶ ∙ MK୅,  (5.2.11) 

where MKE is termed effective kurtosis. Note that the MKE depends on the value of 
b-tensor shape and by setting 𝑏∆ ൌ 1 (LTE), it yields total kurtosis, MK୘ ൌ MK୍ ൅
MK୅ (Lasič et al., 2014;Szczepankiewicz et al., 2016). 

Using the QTI formalism, the fractional anisotropy can be defined in an alternative 
way to Eq. 5.1.11 according to (Lasič et al., 2014;Szczepankiewicz et al., 
2016;Westin et al., 2016) 

FA ൌ ටଷ

ଶ
∙ ට

〈୚ಓሾ〈𝐃〉ሿ〉

〈୉ಓሾ〈𝐃〉ሿమା୚ಓሾ〈𝐃〉ሿ〉
ൌ ටଷ

ଶ
∙ ቆ1 ൅

୑ୈమ
ఱ
మ
୚ಓሾ𝐃ሿ

ቇ
ି
భ
మ

.  (5.2.12) 

Similarly, one can also define microscopic fractional anisotropy (μFA) as a measure 
of anisotropy at a microscopic level as follows (Jespersen et al., 2013;Lasič et al., 
2014;Szczepankiewicz et al., 2015;Westin et al., 2016): 

μFA ൌ ටଷ

ଶ
∙ ට

〈୚ಓሾ𝐃ሿ〉

〈୉ಓሾ𝐃ሿమା୚ಓሾ𝐃ሿ〉
ൌ ටଷ

ଶ
∙ ቆ1 ൅

୑ୈమ
ఱ
మ
୚ఽ
ቇ
ି
భ
మ

.  (5.2.13) 
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The FA (Eq. 5.2.12) and μFA (Eq. 5.2.13) differ only by order of averaging. The 
first is based on the eigenvalue variance of the average of the local diffusion tensors, 
while the second is based on the average of the local diffusion tensor eigenvalue 
variance. This means that FA represents voxel-level metric of anisotropy whereas 
μFA reflects anisotropy at the microscopic level. This also means that FA is 
conflated with orientation dispersion of the microscopic compartments 
(Szczepankiewicz et al., 2015). We can analyze microscopic anisotropy by μFA or 
MKA, because they both reflect anisotropic variance VA although they do not have 
the same absolute value (compare right hand side of Eq. 5.2.13 and definition of 
MKA in Eq. 5.2.10). 

Finally, we consider the forward model of the signal. This can be obtained by 
cumulant expansion of the phase distribution that is terminated at the fourth 
cumulant. In the absence of net flow the first and third cumulants are zero (Kiselev, 
2010), and thereby the signal is given by the sum of second and fourth cumulant as 

𝑆ሺ𝐁ሻ ൌ S଴exp ቀെ𝐁 ∶ 〈𝐃〉 ൅
ଵ

ଶ
𝐁⨂ଶ ∶ ℂቁ,  (5.2.14) 

where symbol “∶” denotes the double inner product that is defined as a sum over all 
element-wise products between two tensors, 𝐗 ∶ 𝐘 ൌ ∑ ∑ 𝑋௜௝𝑌௜௝

ଷ
௝ୀଵ

ଷ
௜ୀଵ . ℂ ൌ

〈𝐃⨂ଶ〉 െ 〈𝐃〉⨂ଶ is termed a covariance tensor (Westin et al., 2016). 

The approximation (Eq. 5.2.14) is valid for b-values up to the convergence radius. 
If stronger encodings are used, more cumulants are needed to describe the signal 
accurately (Kiselev and Il'yasov, 2007). In the context of QTI, the cumulant 
expansion can also be terminated at the sixth cumulant to include a diffusion 
skewness tensor (Ning et al., 2021). On the other hand, if the encoding strength is 
weaker, the signal can be expanded only up to the second cumulant as 

Sሺ𝐁ሻ ൌ S଴expሺെ𝐁 ∶ 〈𝐃〉ሻ.  (5.2.15) 

The signal expression in the Eq. 5.2.14 can be interpreted as the signal model for 
DKI (5.1.12) and in the Eq. 5.2.15 as the signal model for DTI (Eq. 5.1.8), but where 
b-tensor B is the measurement variable instead of the b-value and the encoding 
direction. However, both DKI and DTI were developed for use with only linear b-
tensors (𝑏∆ ൌ 1). 

5.2.2. Powder-averaged Q-space trajectory imaging 

It is useful to evaluate parameters that are independent of the orientation of the 
measured object inside the scanner in order to obtain orientationally-invariant 
parameters such as MKA and MKI. Instead of rotating physically the object and 
averaging over obtained signal, we can instead rotate the encoding directions. The 
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signal needs to be averaged across several encoding directions of the b-tensor. This 
is performed over all b-tensors with the same characteristics except the encoding 
direction, i.e. over b-tensors with the same b-value and b-tensor shape. Other 
aspects, such as time-dependence of the b-tensor, may also need to be considered, 
but these are assumed to be negligible in this text. The powder-averaged signal 
equation analogous to Eq. 5.2.14 is 

Sതሺ𝐁ሻ ൌ S଴exp ቀെ〈𝐁〉 ∶ 〈𝐃〉୍ ൅
ଵ

ଶ
〈𝐁⨂ଶ〉 ∶ ℂ୍ቁ,  (5.2.16) 

where two parameters are related to the encoding b-tensor, 

〈𝐁〉 ൌ 𝑏 ∙
ଵ

ଷ
𝐈 ,  (5.2.17) 

where I is the second-order identity tensor, and 

〈𝐁⨂ଶ〉 ൌ 𝑏ଶ ∙ ቀ𝕀ୠ୳୪୩ ൅
ଶ

ହ
𝑏∆
ଶ ∙ 𝕀ୱ୦ୣୟ୰ቁ,  (5.2.18) 

where 𝕀ୠ୳୪୩ and 𝕀ୱ୦ୣୟ୰ are two isotropic and orthogonal fourth order tensors, i.e. 

𝕀ୠ୳୪୩: 𝕀ୱ୦ୣୟ୰ ൌ 0. 𝕀ୠ୳୪୩ ൌ ቀଵ
ଷ
𝐈ቁ
⨂ଶ

ൌ
ଵ

ଽ
𝛿௜௝𝛿௞௟ and 𝕀ୱ୦ୣୟ୰ ൌ 𝕀୧ୱ୭ െ 𝕀ୱ୦ୣୟ୰ where 

𝕀୧ୱ୭ ൌ
ଵ

଺
൫𝛿௜௞𝛿௝௟ ൅ 𝛿௜௟𝛿௝௞൯ (Westin et al., 2016). Note that the averaging brackets 

around the b-tensor refers to averaging of all b-tensors with the same shape and b-
value. To obtain a powder-averaged signal, the conditions (Eq. 5.2.17 and 5.2.18) 
need to be satisfied (Paper IV)(Szczepankiewicz et al., 2019a). 

Two other parameters of the Eq. 5.2.16 are related to the diffusion, 

〈𝐃〉୍ ൌ 3MD ∙ 𝐈,  (5.2.19) 

and 

ℂ୍ ൌ 9 ቀV୍𝕀ୠ୳୪୩ ൅
ଵ

ଶ
Vஜ୅𝕀ୱ୦ୣୟ୰ቁ,  (5.2.20) 

which is termed isotropic covariance tensor, where Vஜ୅ is microscopic diffusional 

variance, Vஜ୅ ൌ
ଶ

ହ
〈V஛ሾ𝐃ሿ〉 (Westin et al., 2016). 

Finally, using the definition  b-tensor shape (Eq. 5.2.4), MKI (Eq. 5.2.9) and MKA 
(Eq. 5.2.10) and inserting these into Eq. 5.2.16, the powder-averaged signal can be 
written as (Szczepankiewicz et al., 2016;Westin et al., 2016), 

Sതሺ𝑏, 𝑏∆ሻ ൌ S଴exp ൬െ𝑏 ∙ MD ൅
ଵ

଺
𝑏ଶ ∙ MDଶ ∙ ൫MK୍ ൅ 𝑏∆

ଶ ∙ MK୅൯൰. (5.2.21) 
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5.2.3. Estimating MKA and MKI 

To estimate MKA and MKI from the powder-averaged signal, it is useful to rewrite 
the forward problem (Eq. 5.1.1) from Eq 5.2.21 in a matrix form as (Paper IV) 

ln Sതሺ𝑏, 𝑏∆ሻ ൌ 𝐞 ∙ 𝐩,  (5.2.22) 

where e is the vector containing parameters connected to the experiment,  
𝐞 ൌ ൣ1    െ 𝑏     𝑏ଶ/6     𝑏ଶ𝑏∆

ଶ/6൧, and p is the vector containing parameters 
connected to the model, 𝐩 ൌ ሾln 𝑆଴     MD     MDଶ MK୍     MDଶ MK୅ሿ. 

An estimate of the model parameters 𝐩ෝ can be obtained solving the inverse problem 
(Eq. 5.1.2) by linear least square fitting, 

𝐩ෝ ൌ ൫𝐄୘ ∙ 𝐂 ∙ 𝐄൯
ିଵ
𝐄୘ ∙ 𝐂 ∙ 𝐥𝐧 𝐒ത,  (5.2.23) 

where 𝐄୘ ൌ ൣ𝒆ଵ
୘    𝒆ଶ

୘     … 𝒆௡୘൧ is a 4×n matrix containing the encoding protocol with 
𝒆௜
୘, ሺ𝑖 ൌ 1, 2, …𝑛ሻ given by a unique combination of b and b∆. Furthermore, n 

corresponds to a number of such combinations or repetitions, 𝐒ത is the signal vector 
of size n×1, and C is the n×n diagonal matrix correcting for the heteroscedasticity 
induced by the logarithm operation (Jones and Cercignani, 2010) and possibly a 
different number of acquisition directions (m) per shell such that its diagonal 
elements are given by 𝐂୧୧ ൌ 𝐒୧

ଶ𝑚୧, where i is the shell index. 

5.3. Time-dependent encoding 

The spectral frequency formulation of time-dependence allows for the study of 
which of aspects of the underlying tissue are relevant from a time-dependent 
perspective and which are encoded into the signal (Stepišnik, 1993). Using this 
formalism, the signal can be decomposed into two independent quantities from 
which one describes the encoding, termed the encoding power spectrum |qሺ𝑓ሻ|ଶ, 
and another that describes the effects of structure on the diffusion, termed the 
diffusion spectrum D(f), which is independent from the encoding (Stepišnik, 1993). 

The phase ϕሺ𝜏ሻ at time τ from Eq. 5.1.3 can be expressed as a spin velocity along a 
q-vector by integrating by parts, 

ϕሺ𝜏ሻ ൌ 𝛾 ׬ gሺ𝑡ሻrሺ𝑡ሻd𝑡
ఛ
଴ ൌ െ׬ qሺ𝑡ሻvሺ𝑡ሻd𝑡

ఛ
଴ ,  (5.3.1) 

where qሺ𝜏ሻ is the q-vector, 
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qሺ𝜏ሻ ൌ 𝛾 ׬ gሺ𝑡ሻd𝑡
ఛ
଴ .  (5.3.2) 

The signal given by the average over all phase ϕ contributions (Eq. 5.1.4) can be 
expanded into its cumulants (Kiselev, 2010) as 

〈exp൫𝑖ϕሺ𝜏ሻ൯〉 ൌ ∑ expሺ𝑖௡𝑐௡ሻ
ஶ
௡ୀଵ   (5.3.3) 

where 𝑐ଵ and 𝑐ଶ are given by 

𝑐ଵ ൌ ׬ qሺ𝑡ሻ〈vሺ𝑡ሻ〉d𝑡
ఛ
଴ ,  (5.3.4) 

𝑐ଶ ൌ
ଵ

ଶ
∬ qሺ𝑡ଵሻqሺ𝑡ଶሻ〈vሺ𝑡ଵሻvሺ𝑡ଶሻ〉d𝑡ଵd𝑡ଶ

ఛ
଴ ,  (5.3.5) 

where brackets 〈∙〉 indicate averaging over all spin trajectories and the double 
integral averages over all times from 0 to τ. In the absence of net spin-flow the first 
cumulant c1 is zero. The second cumulant c2 includes the spin velocity 
autocorrelation function 〈vሺ𝑡ଵሻvሺ𝑡ଶሻ〉 and the signal is by cumulant expansion up to 
the second order thus given by 

Sሺ𝜏ሻ ൎ exp ቀെ
ଵ

ଶ
∬ qሺ𝑡ଵሻqሺ𝑡ଶሻ 〈vሺ𝑡ଵሻvሺ𝑡ଶሻ〉 d𝑡ଵd𝑡ଶ

ఛ
଴ ቁ.  (5.3.6) 

By assuming that the average of the diffusion process is ergodic, (〈vሺ𝑡ଵሻvሺ𝑡ଶሻ〉 ൌ
〈vሺ𝑡ଵ ൅ 𝑡ሻvሺ𝑡ଶ ൅ 𝑡ሻ〉), the double integral can be reduced to a single dimension. 
Performing a Fourier transform then yields 

Sሺ𝜏ሻ ൎ expቀെ׬ Dሺ𝑓ሻ ∙ |qሺ𝑓ሻ|ଶ d𝑓
ାஶ
ିஶ ቁ,  (5.3.7) 

where the signal is separated conveniently into two quantities. The first is termed 
diffusion spectrum, D(f), which is as a Fourier transform of the velocity 
autocorrelation function, 

Dሺ𝑓ሻ ൌ ℱሼ〈vሺ𝑡ଵሻvሺ𝑡ଶሻ〉ሽ ൌ
ଵ

ଶ
׬ 〈vሺ𝑡ଵሻvሺtଶሻ〉 ∙ eିଶ୧஠∙௧∙௙  d𝑡
ஶ
ିஶ ,  (5.3.8) 

where 𝑡 ൌ |𝑡ଵ െ 𝑡ଶ|, and the second term is the encoding power spectrum, |qሺ𝑓ሻ|ଶ, 
defined from an encoding spectrum q(f) as 

qሺ𝑓ሻ ൌ ℱሼqሺ𝑡ሻሽ ൌ ℱ൛γ ׬ gሺ𝑡ሻ d𝑡
ఛ
଴ ൟ ൌ ׬ qሺ𝑡ሻeିଶ஠୧∙௧∙௙  d𝑡

ାஶ
ିஶ ,  (5.3.9) 

where g(t) is the gradient waveform. We can observe that the central equation of the 
diffusion signal (Eq. 5.3.7) is given by multiplying the diffusion spectrum D(f) that 
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characterizes correlations within the microstructure up to the first order, and the 
encoding spectrum |qሺ𝑓ሻ|ଶ that dictates which part of the diffusion spectrum that is 
encoded into the signal. This framework is useful because it enables the separation 
of the effects of the biological model and studies what features of the model are of 
relevance for the time-dependent diffusion. It also is instructive in the design of an 
experiment that optimally encodes these features into the signal. 
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6. Microstructural features of axons 
relevant for diffusion MRI 

In this chapter, we will investigate which features of the axons are relevant for 
clinical diffusion MRI experiments from the perspective of time-dependent 
diffusion MRI. We focus on the intra-axonal space, which can be studied 
independently from the extra-axonal space because the two spaces are separated by 
a myelin sheath that can be considered impermeable as it acts as a diffusion barrier 
at clinically achievable diffusion times (Sen and Basser, 2005). The findings from 
the study of intra-axonal space can later be incorporated into a broader model of 
white matter by also considering the extra-axonal space. 

The question is which features of axons are relevant for a gross description of their 
diffusion (Figure 1). By observing the axon microstructure in the transversal plane 
with respect to the axon propagation, it may seem natural to represent them as 
cylinders (Figure 1B), which has already been widely considered (Assaf and Basser, 
2005;Assaf et al., 2008;Barazany et al., 2009;Alexander et al., 2010). However, by 
observing axons in the longitudinal plane provides a different intuition. Then may 
be more natural to represent axons as thin fibers propagating in a non-straight sine-
like fashion, referred to as undulations (Figure 1C). The effects of undulations have 
not so far been widely studied and are considered here (Paper I)(Nilsson et al., 
2012;Lee et al., 2020a;Lee et al., 2020b). Furthermore, investigations of the 3D 
structure of axons (Abdollahzadeh et al., 2019;Lee et al., 2019), features beyond 
those originating from cylinder-diameter or undulations, might be of relevance 
(Figure 1D). Example of these may be intra-axon diameter variations (Lee et al., 
2020a;Lee et al., 2020b). 

This chapter studies the effects of undulations on the diffusion. In particular, 
parameters of the diffusion spectrum in the perpendicular direction to the 
propagation of the axons are determined analytically and verified numerically. The 
undulating thin fiber model and straight cylinder model are compared as competing 
models of the intra-axonal diffusion and assessed concerning whether the models 
that assume straight cylinders overestimate the axon diameter in the presence of 
axonal undulations. 
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6.1. Diffusion spectrum of straight cylinders 

The cylinder diffusion spectrum that characterizes the diffusion perpendicular to the 
restrictions between planes (1D), cylinders (2D) or a sphere (3D) is given by the 
infinite sum of Lorentzians (Stepišnik, 1993;Lasič et al., 2009) as 

Dሺ𝑓ሻ ൌ D଴ ∑
ୟೖ୆ೖ௙మ

ୟೖ
మୈబ

మା௙మ
ஶ
௞ୀଵ ,  (6.1.1) 

where ak and Bk are coefficients depending on the geometry given by 

a௞ ൌ ቀ஖ೖ
ୖ
ቁ
ଶ
,  (6.1.2) 

B௞ ൌ
ଶሺୖ/஖ೖሻ

஖ೖ
మାଵିୢ

.  (6.1.3) 

ζ௞ are the kernels of 

ζJୢ/ଶିଵሺζሻ െ ሺ𝑑 െ 1ሻJୢ/ଶሺζሻ,  (6.1.4) 

where J஝ሺζሻ is the ν-th order Bessel function, d = 1,2, or 3 for planar, cylindrical or 
spherical restrictions and 2R is the diameter of the restrictions. Eq. 6.1.1 describes 
analytically the aspects of the time-dependent diffusion of straight-cylinders 
characterized by diameter d. 

6.2. Effects of undulating thin fibers 

To study the effects of undulations, we need to isolate them from other features of 
axons and represent them by a model that captures their primary structure but also 
disregards their unimportant details (Nilsson et al., 2012). We proposed an 
undulating thin-fiber model as a toy-model of undulations (Figure 6A), inspired by 
histology images (Figure 1C). Three different cases of the model with an increasing 
degree of complexity were studied: first, thin fibers propagating like sine waves 
with a single set of amplitude and wavelength, referred to as 1-harmonic case; 
second, which combines multiple sine wave fibers characterized by a distribution of 
amplitudes and wavelengths, referred to as the n-harmonic case; and third, the effect 
of disorder is considered by adding a noise to the phase of the sine wave, referred 
to as the stochastic case. 
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The question is how to represent the diffusion spectrum perpendicular to the 
propagation of axons. Numerical simulations showed that diffusion spectra arising 
from undulating thin-fibers as well as from straight-cylinders can be approximated 
by a single Lorentzian term (Figure 6B), 

Dሺ𝑓ሻ ൎ 𝐷୦୧
௙మ

௙∆
మା௙మ

.  (6.2.1) 

This parameterization is useful because it means that only two free parameters need 
to be analyzed: Dhi, which a parameter that describes the height of the spectrum at 
high frequencies and f∆, the frequency of half-width half maximum, i.e., when 
Dሺ𝑓∆ሻ ൌ 𝐷୦୧/2. The infinite sum of Lorentzian that analytically predicts the 
diffusion spectra arising from straight-cylinders (Eq. 6.1.1) can also be 
approximated by the single Lorentzian term (Eq. 6.2.1). 

The question arises how features of the undulating fibers maps onto the spectral 
width f∆ and the spectral height Dhi. Here it is useful to consider what we refer to as 
the microscopic orientation dispersion (μOD). It is a measure of dispersion within 
fibers, and defined as 

μOD ൌ 〈sinଶ൫θሺ𝑥ሻ൯〉,  (6.2.2) 

where x is the position of the segment, 〈∙〉 denotes averaging over all fiber segments, 
and θ is the angle between the direction of the fiber segment and the main fiber 
direction. In the 1-harmonic and stochastic case, the f∆ and spectral height Dhi can 
be predicted as 

𝐷୦୧ ൌ 𝐷଴ ∙ μOD,  (6.2.3) 

𝑓∆ ൎ k୦ ∙
ୈబ
ୟమ
∙ μOD,  (6.2.4) 

where kh is a proportionality constant. In the n-harmonic case the Eqs. 6.2.3 and 
6.2.4 need to be modified to consider average orientation dispersion and weighting 
by μOD, 

𝐷୦୧ ൌ 𝐷଴ ∙ 〈μOD௜〉,  (6.2.5) 

𝑓∆ ൎ kୱ ∙ D଴
〈ஜ୓ୈ೔

మ/௔೔
మ〉

〈ஜ୓ୈ౟〉
,  (6.2.6) 

where ks is a proportionality constant. These predictions were verified by numerical 
simulations (Figure 6C). Note that the diffusion spectrum is uniquely given by Eqs. 
6.2.3-6.2.6, but that does not apply in the opposite direction because a vast number 
of undulating thin-fibers, which may be any of the 3 cases, map onto a single 
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diffusion spectrum. It follows that it is also not possible to use dMRI to map all the 
features of undulating thin-fibers. At best, at least in principle, its amplitude and 
μOD can be estimated from dMRI data. 

6.3. Implications for axon diameter mapping 

By comparing diffusion spectra of undulating fibers with undulating cylinders we 
found that at low diameters the properties of the diffusion spectrum are mainly 
determined by features of the undulations (the microscopic orientation dispersion 
and the undulation amplitude), whereas at larger diameters, the properties are 
mainly determined by the cylinder diameter (Figure 6D). We found that undulating 
thin fibers have a diffusion time dependence that is similar to that of cylinders, at 
least for lower frequencies (longer diffusion times). This can lead to overestimated 
axon diameters when interpreting data from undulating thin axons using models that 
represent axons by straight cylinders. When diffusion-weighted signals are 
simulated using the encoding protocol by Alexander et al. (2010) in an undulation 
model, yet analyzed with a model assuming straight cylinders, the cylinder diameter 
is overestimated by an amount determined by the undulation amplitude (Paper I). 
Observed effects of time‐dependent diffusion in brain white matter may be 
attributed to undulation parameters rather than the axon diameter. 

Similar considerations were proposed based on numerical simulations in segmented 
axons from 3D electron microscopy images of white matter (visualized in Figure 
1C) (Abdollahzadeh et al., 2019;Lee et al., 2019). (Lee et al., 2020a;Lee et al., 
2020b) found that the estimate of the axon diameter is confounded by undulations 
as well as diameter variations within individual axons. The effects of undulations 
were found to be most prominent at low b-values, and therefore effects of 
undulations can be considerably reduced by using higher b-values where the 
estimated diameter is mostly given by a combination of the axon caliber (dominated 
by the thickest axons) and axon diameter variations. 
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Figure 6. Time-dependent characteristics of undulating thin fiber and cylinder models. Panel A shows three cases 
of the undulating thin fiber model (1-harmonic, n-harmonic and stochastic) as well as two cases of the cylinder model 
(straight and undulating). The 1-harmonic case are sine waves with a single amplitude and wavelength, n-harmonic has 
a distribution of amplitudes and wavelengths and the stochastic has a stochastic phase. Panel B shows that the 1-
harmonic case of undulating thin-fiber and straight-cylinders are well approximated by a single Lorentzian term. Both n-
harmonic and stochastic cases are also well approximated by a single Lorentzian (Paper I). Panel C shows that diffusion 
spectra parameters can be predicted by the properties of the undulating thin fiber model in all three cases. Finally, panel 
D shows that for low diameters the diffusion spectra of the undulating cylinders are virtually due to its undulation because 
the spectra coincide with the 1-harmonic case of undulating thin fibers. On the other hand, at high cylinder diameters 
the spectral features are mainly determined by the cylinder diameter. Figure adapted from Paper I, published by Wiley 
and licensed under CC BY 4.0. 
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6.4. Conclusions 

In Paper I, we presented a toy-model of axonal undulations—a sine wave—which 
we used to study the diffusion perpendicular to the direction of propagation of the 
axons. We showed that two distinct axonal features—undulations and restriction at 
biologically relevant undulation parameters and axonal diameters—have virtually 
identical diffusional characteristics at intermediate to long diffusion times. This 
means that they are experimentally indistinguishable in this regime. Axonal 
undulations can therefore bias diameter estimation strategies if straight cylinders are 
used to model the intra‐axonal diffusion. Diffusion encoding with encoding power 
at frequencies higher than those enabled by pulsed gradient schemes may help to 
disentangle effects of undulations and sizes. 
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7. Contrasts by tensor-valued 
encoding 

Tensor-valued encoding yields an experimental variable, termed b-tensor shape, b∆, 
and this chapter provides an overview of the effects of varying the b-tensor shape 
without modelling to “see what is in the signal.” To retain clarity, the simplest 
case—diffusion-weighted images at low and high b-values obtained with spherical 
b-tensor encoding (referred to as STE-DWI, b∆= 0)—is investigated (Westin et al., 
2016). This is compared to the conventional DWI obtained with a linear b-tensor 
that is averaged across several directions (LTE-DWI, b∆ = 1) (Stejskal and Tanner, 
1965). 

7.1. Contrasts mechanism of STE-DWI 

STE-DWI provides a contrast complementary to LTE-DWI at higher b-values. At 
lower b-values both LTE and STE encode for average diffusivity because the 
contribution of higher order terms in the signal equation (Eq. 5.2.14) are negligible. 
This means at lower b-values the signal equation becomes essentially the one from 
DTI (Eq. 5.2.15) where MD is the sole parameter. On the other hand, at higher b-
values the contribution from higher order terms is not negligible (Eq. 5.2.14, Eq. 
5.2.21). The Eq. 5.2.21 shows that LTE encodes for average diffusivity and a 
combination of diffusion anisotropy and isotropic heterogeneity, whereas STE 
encodes only for average diffusivity and isotropic heterogeneity (Szczepankiewicz 
et al., 2016;Westin et al., 2016). This is because at higher b-values, in the case of 
STE (b∆= 0), MD and MKI contributes to the signal but the contribution from MKA 

is zero (Eq. 5.2.21). On the other hand, in the case LTE (b∆= 1) all three parameters 
contribute to the signal. 

The power of tensor-valued encoding lies in its ability to separate the presence of 
diffusion anisotropy with orientation dispersion from isotropic heterogeneity. For 
example, consider white matter tracts that have high MKA due the anisotropy and 
orientation dispersion of the axons (Beaulieu, 2002;Jeurissen et al., 2013). The MKI, 
on the other hand, is low to intermediate (Paper III; Paper IV)(Szczepankiewicz et 
al., 2015). Therefore, STE and LTE are different at higher b-values (from 
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approximately 1400 s/mm2 and above). STE attenuates the white matter signal more 
than LTE does (orange arrows in Figure 7A)(Paper III), as the contribution to the 
signal from MKA vanishes with STE. 

7.2. STE-DWI increases conspicuity in gliomas 

STE-DWI can be used at higher b-values (b = 2000 s/mm2) to increase the 
conspicuity of tumor-related hyperintensities by suppressing the white matter signal 
(Paper III). The underlying mechanism is that white matter is predominately 
composed of elongated and orientationally dispersed axons (Jeurissen et al., 2013), 
which means we expect that they yield high diffusion anisotropy (Beaulieu, 2002). 
Glioma tumor tissue is, on the other hand, composed of predominately tightly 
packed, small, and tightly packed approximately spherical cells which means that 
we can expect them to yield low diffusivity with low diffusion anisotropy 
(Szczepankiewicz et al., 2015;Szczepankiewicz et al., 2016). Therefore, we expect 
STE-DWI to suppress the signal in white matter but not in regions with dense tumor 
cells. 

To test whether glioma hyperintensities are more conspicuous to white matter with 
STE-DWI rather than LTE-DWI, we investigated 25 patients diagnosed with glioma 
tumors (Paper III). We compared the signal-intensity ratio of glioma 
hyperintensities and normally appearing contralateral white matter (NAWM), which 
is defined as 

SIRሺ𝑋ሻ ൌ
〈ୗ౞౯౦౛౨౟౤౪౛౤౩౟౪౯ሺ௑ሻ〉

〈ୗొఽ౓౉ሺ௑ሻ〉
,  (7.2.1) 

where X is a signal either obtained from STE-DWI at b-value 2000 s/mm2 or from 
LTE-DWI at the same b-value, and 〈∙〉 represents the mean value across region-of-
interest (ROI). 

We found that the SIR increased in all (100 %) cases and was significantly higher 
for STE-DWI than LTE-DWI, with a median (interquartile range) of 1.9 (1.6 – 2.1) 
vs. 1.4 (1.3 – 1.7) (p < 10-4; paired Wilcoxon signed-rank test; Figure 7B) (Paper 
III). With STE-DWI, the SIR increased on average by 28 %. Moreover, in 10 of the 
25 patients (40 %) that had a hyperintensity unrelated to white matter, the SIR for 
STE-DWI was above 2, but with LTE-DWI, the SIR was below 2 for all patients. 
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Figure 7. Contrast mechanism of STE and increased conspicuity in gliomas. Panel A shows that at higher b-values 
STE attenuates white matter more than LTE compared. Orange arrows: corticospinal tract, yellow arrows: glioma tumor-
related hyperintensity. Panel B shows that the signal-intensity-ratios (SIR) obtained by conventional encoding (LTE-
DWI) and spherical tensor encoding (STE-DWI) at a b-value of 2000 s/mm2. In all (100 %) cases, the SIRs from STE-
DWI were higher than those obtained by LTE-DWI (median ± standard deviation; SIR 1.46 ± 0.24 vs 1.91 ± 0.40; paired 
Wilcoxon signed-rank test, p < 10-4). Figure adapted from Paper III, published by Frontiers Media licensed under CC 
BY 4.0. 

STE-DWI could thus help to improve diagnostic confidence on the individual 
patient level. Figure 8 shows images of a glioblastoma patient compared with 
images from a patient without a brain tumor-related MRI abnormality. Here, several 
LTE-DWI and STE-DWI hyperintensities can be observed. Some hyperintensities 
are found on both LTE- and STE-DWI and may be due to a T2 shine-through effect 
(blue arrows). Some hyperintensities that are related to white matter are suppressed 
with STE-DWI but not by LTE-DWI (orange arrows). Importantly, some STE-DWI 
hyperintensities (green arrows) may be otherwise “hidden” with LTE-DWI under 
these white matter-related hyperintensities. These hyperintensities that coincide are 
in the example surrounded by Gd-enhancements (green arrows in the panel A). 
Thereby, STE-DWI amplifies the contrast from non-white-matter tissue. 

The results show that STE-DWI could be used to visualize tumor-related 
hyperintensities infiltrating or disrupting the white matter tracts (Figure 8B). This is 
important, as the tracts are a route of spreading for glioma tumor cells (Giese et al., 
1996;Giovanna and Kaye, 2007). STE-DWI could also improve hyperintensity 
delineation and detection because, unlike with LTE-DWI, a confounding factor 
(white matter) is suppressed. That is because STE-DWI at higher b-values (b = 2000 
s/mm2) attenuates anisotropic tissue components and emphasizes isotropic low-
diffusion components contributing to the diffusion-weighed signal at higher b-
values. STE-DWI emphasizes tissues, such as dense glioma tumors, with spherical 
and tightly packed cells that exhibit low diffusivity in all directions. 
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Figure 8. Suppression of white-matter-related hyperintensities by STE-DWI could improve diagnostic 
confidence. Figure shows a 31-year-old male diagnosed with glioblastoma grade IV. Panel A shows a T1w + Gd image 
of a patient with glioblastoma grade IV. Green arrows: Gd-enhancing lesions. Panel B shows a zoom-in on LTE- and 
STE-DWI in the patient (yellow borders). STE-DWI suppresses hyperintensities related to white matter (orange arrows) 
and thereby makes more apparent those that are unrelated to white matter (blue, yellow and green arrows). Panel C 
illustrates that in a subject without relevant MRI abnormalities all white-matter-related hyperintensities seen with LTE-
DWI disappear with STE-DWI (orange arrows). Figure adapted from Paper III, published by Frontiers Media and 
licensed under CC BY 4.0. 

7.3. STE-DWI for dot fraction imaging 

STE-DWI at even higher b-values (b over 4000 s/mm2) can be used to serve as a 
marker for small and isotropically restricted water compartments, often referred as 
the dot fraction (Lundell et al., 2019;Tax et al., 2020). These can arise from e.g. 
spherical cell bodies, where the diffusion is restricted in all directions. In such 
conditions, the diffusion signal is non-zero and nearly non-decaying at high enough 
b-values and, thereby, the ADC is near-zero. 

In cerebellar gray matter, a signal signature of a dot fraction has been found using 
STE-DWI (Vis et al., 2021). Figure 9 shows a coronal slice of a healthy volunteer. 
Panel A shows a T1w image and panel B STE-DWI at b = 4000 s/mm2. Panel C 
shows a Nissl-stained histology image (not same subject) that visualizes genetic 
material. 
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Figure 9. STE-DWI at high b-values for a dot fraction specific contrast. Panel A shows a coronal slice of T1w image 
of a healthy volunteer. Panel B shows the same anatomical location where STE-DWI at b = 4000 s/mm2 emphasizes 
gray matter in cerebellum. Panel C shows estimated dot-fraction. Panel D shows a similar anatomical location of a Nissl-
stained histology. Figure adapted from (Vis et al., 2021), published by Elsevier and licensed under CC BY 4.0. 

STE-DWI is more suitable than LTE-DWI to identify the dot fractions because at 
high b-values it has a high signal only where the isotropic diffusion is low, whereas 
with LTE-DWI a high signal could be attributed to either low isotropic diffusion or 
high diffusion anisotropy and measurements not perfectly aligned with all fibers in 
the voxel (Szczepankiewicz et al., 2015). 

7.4. Conclusions 

STE-DWI at higher b-values can be used to increase the conspicuity of glioma-
tumor-related hyperintensities relative to white matter. It can also be used as an 
imaging marker for small isotropic spaces, referred to as dot fraction imaging. This 
is because the STE-DWI signal at higher b-values is high only where there are 
microenvironments with low diffusivity in all directions. 
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8. Q-space trajectory imaging of 
intracranial tumors 

In this chapter, the application of Q-space trajectory imaging (QTI) to intracranial 
tumors is examined. The discussion builds on the previously introduced coupling 
between tensor-valued encoding and the diffusion tensor distribution (DTD) for 
separating MK into its components—MKA and MKI—where MK is the sum of the 
two (Chapters 5.2.1, 5.2.2 and 5.2.3). This approach is here referred to as QTI. The 
analysis can also be performed by considering μFA (Eq. 5.2.13) instead and the 
results of studies based on μFA will be briefly reviewed. 

QTI may be beneficial for studies of intracranial tumors for several reasons. First, 
considering only DWI (Chapter 7) yields non-specific signal values, which need to 
be interpreted based on experience rather than conceptual knowledge. This 
limitation is the same for STE-DWI as for conventional LTE-DWI, although some 
extra knowledge can be obtained by comparing the two as discussed in the previous 
chapter. Second, the DTD, which is an essential part of QTI, is suitable for 
modelling of multi-gaussian diffusion. This is appealing for capturing cancer 
heterogeneity because within an image voxel there may be many intra-voxel 
compartments characterized by distinct anisotropies or apparent diffusivities. Third, 
initial applications of QTI showed that distinct values of MKA and MKI were 
associated with glioma and meningioma tumors but both tumor types yielded similar 
MK values (Paper IV)(Szczepankiewicz et al., 2016). 

QTI has already been applied in several conditions affecting the human brain. In 
epilepsy, MKA offered a more robust differentiation of cortex and white matter in 
the presurgical evaluation of malformations of cortical development (Lampinen et 
al., 2020b). In multiple sclerosis, μFA showed a significant association with 
physical disability, cognitive dysfunction and lesion load in specific tract systems 
when FA did not (Andersen et al., 2020). In schizophrenia, an increase in the 
variance of isotropic diffusivity was observed (Westin et al., 2016). QTI has also 
been applied to healthy brain microstructure to facilitate model parameter 
estimation (Szczepankiewicz et al., 2015;Dhital et al., 2018;Lampinen et al., 
2019;Szczepankiewicz et al., 2019a;Afzali et al., 2020;Afzali et al., 2021;de 
Almeida Martins et al., 2021;Reymbaut et al., 2021). 
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This chapter reviews results obtained when QTI is adapted and applied for brain 
tumors imaging. First, the QTI imaging protocol is adjusted for intracranial tumors 
imaging where the focus is on fast execution of the protocol and on estimating the 
range of MKA and MKI values for distinct tumors (Paper IV). We also investigated 
whether MKA and MKI can answer some of the pressing clinical questions in a more 
detailed study of meningioma tumors (Paper V). We will thus compare what can be 
achieved with conventional parameters—FA from DTI and MK from DKI. 

8.1. QTI is feasible in intracranial tumors 

To minimize the scan time of a QTI protocol for intracranial tumors, we designed a 
protocol that can provide estimates of QTI parameters with a minimal number of 
measurements. We refer to this protocol as the minimal one, and it achieved a scan 
time of 3 minutes. We compared the minimal protocol to a protocol that we refer to 
as the full one, which had scan time of 5 minutes. 

In the design of the minimal protocol, three aspects need to be considered: matrix 
inversion (Eq. 5.2.2) and powder-averaging of the signal at low (Eq. 5.2.17) and 
high b-values (Eq. 5.2.18). Firstly, at least 4 independent measurement shells are 
needed to invert the matrix (Eq. 5.2.2) to estimate 4 parameters (S0, MD, MKA and 
MKI, Eq. 5.2.21). Secondly, the powder averaging needs a sufficient number of 
directions so that orientational variance is minimized. A reduced number of 
directions can be used in tumor imaging because the voxel-level anisotropy of 
intracranial tumors is relatively low (FA < 0.5) (Szczepankiewicz et al., 2019a). To 
find out the number of rotations needed for the signal to be sufficiently rotationally-
invariant we can calculate the coefficient of variation (CV) across b-tensor rotations 
for a signal simulated with a given FA and b-value, and consider the signal to be 
sufficiently rotationally invariant when its coefficient of variation (CV) is less than  
1 % (Szczepankiewicz et al., 2019a). The results showed that at higher b-values of 
2000 s/mm2 it is sufficient to use only six directions from the icosahedral scheme to 
obtain powder-averaged signal (Eq. 5.2.18) when the FA is below 0.5. 

The minimal protocol featured 9 measurements: 3 STE at b-values 0, 1000 and 2000 
s/mm2 and only 6 rotations of LTE at b-value 2000 s/mm2 because FA is below 0.5 
for most intracranial tumors (Szczepankiewicz et al., 2019a). We found that the 
minimal protocol provides estimates of MD, MKA and MKI with similar parameter 
values and similar errors as the full protocol (Figure 10). 
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Figure 10. Numerical simulations of accuracy and precision for the minimal protocol. Panel A shows the dMRI 
acquisition using the linear b-tensors. Panel B shows on the left side values of MD, MKA and MKI (error bars show 
standard deviation and dashed lines true values). On the right side are shown errors originating from rotation variance 
and noise. Figure adapted from Paper IV, published by Wiley and licensed under CC BY-NC 4.0. 

We found that the estimation of MKA and MKI is feasible in clinically relevant scan 
times and unbiased when compared to the full protocol (Paper IV). A wide range of 
MKA and MKI values was found across different types of intracranial tumors (Paper 
IV). Glioblastomas had a lower average MKA than meningiomas (MKA = 0.29 ± 
0.06 vs. 0.45 ± 0.08, p = 0.003, U-test), and metastases had higher MKI (MKI = 0.57 
± 0.07) than both the glioblastomas (0.44 ± 0.06 p < 0.001, U-test) and meningiomas 
(0.46 ± 0.06, p = 0.03, U-test). The glioma category included a diverse set of 
gliomas, and they showed high variability. When compared with normal‐appearing 
white matter, all tumors except for two had lower MKA, higher MKI, and lower MK. 
In Figure 11, we showcase MD, MKA and MKI in 4 different tumor types. 
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Figure 11. MRI parameter maps in different intracranial tumor types. Both the glioblastoma and brain metastasis 
cases exhibited low MKA, whereas the pituitary adenoma and the meningioma cases exhibited higher MKA. All tumors 
in this figure, except the meningioma, displayed regions with markedly elevated MKI. Figure adapted from Paper IV, 
published by Wiley and licensed under CC BY-NC 4.0. 

8.2. QTI for presurgical meningioma evaluation 

We applied QTI to meningioma tumors in an exploratory study and aimed at 
investigating whether MKA and MKI in comparison with MK from DKI and FA 
from DTI can add to the preoperative prediction of meningioma consistency, grade 
and type (Paper V). We investigated these parameters in two different ROIs – in the 
ROI encompassing the whole tumor (referred to as whole-tumor ROI) and in the 
surrounding tissue outside of tumor region, which is maximally 2 voxels wide, to 
capture the effects of the tumor on the surrounding tissue (referred to as rim-ROI). 
The whole-tumor ROI was defined based on the contrast-enhanced T1w + Gd 
images to include the maximum extent of the tumor.  The rim-ROI was defined just 
outside of the enhancement. 

As for meningioma consistency, we found that the lower 10th percentiles of MK and 
MKA in the whole-tumor were associated with firm consistency compared with 
pooled soft and variable consistency (n = 7 vs 9; U-test, p = 0.02 for MKA 10 and p 
= 0.04 for MK10) and the lower 10th percentile of MD with variable against soft and 
firm (n = 5 vs 11; U-test, p = 0.02). Therefore, the firm consistency is associated 
with the presence of voxels that have lower MK as well as MKA. 
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As for meningioma grade, a higher standard deviation of MKI in the rim was 
associated with lower grade (n = 22 vs 8; U test, p = 0.04) and in the MKI maps we 
observed an elevated rim-like structure that could be associated with grade. 

As for meningioma type, higher median MKA and lower median MKI was associated 
with psammomatous type from other pooled meningioma types (n = 5 vs 25; p = 
0.03 for MKA and p = 0.03 and p = 0.04 for MKI; U-test). 

 

Figure 12. Association with consistency, grade and type with FA, MK, MKA and MKI parameters. Panel A shows 
pooled distributions of parameter-values of FA, MK and MKA in the whole-tumor ROI among soft, variable, and firm 
meningioma consistency. The histograms suggests that percentiles or the standard deviation (yellow arrows) could be 
useful for differentiating the consistency. Panel B shows that the firm consistency is significantly different from the pooled 
soft or variable consistency tumors based on the 10th percentile within the whole-tumor ROI of MK10 and MKA 10 but not 
FA10 (p = 0.04 for MK10 and p = 0.02 for MKA 10; U-test). Panel C shows the MKI distribution in grade I and II meningiomas 
within the rim ROI. The standard deviation within the rim ROI of MKI of grade I was significantly higher than that of grade 
II meningioma (n = 22 vs 8; p = 0.04; U-test). Finally, panel D shows distributions of MK and MKA in psammomatous 
and other meningioma types in the whole-tumor ROI. The psammomatous type is significantly different from the others 
in median of MKA but not in MK (n = 5 vs 24; p = 0.03; U-test). Significant parameters marked with an asterisk (*), or 
yellow arrows. Figure adapted from Paper V, published by Elsevier and licensed under CC BY 4.0. 
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Considering MKA and MKI instead of MK could be useful for separating several 
intracranial tumor types because different values of MKA and MKI are associated 
with gliomas, metastases or meningiomas but MK may be similar (Paper 
IV)(Szczepankiewicz et al., 2016). For example, the majority of MK in 
meningiomas originates from a high MKA component because MKI in meningiomas 
is low (Szczepankiewicz et al., 2016), which also explains why not only MKA but 
also MK is associated with firm consistency (Figure 12A and 12B). 

Considering MKI and MKA rather than MK is also of relevance in meningioma 
grading and typing. The MKI in the rim was the only parameter to be associated 
with meningioma grade (Figure 12C) (Paper V), and MKA was associated with 
psammomatous type but not MK (Figure 12D). In all of the associations, however, 
an important limitation is the low statistical power (below 80 %) because of the 
limited number of patients included in the cohort. 

8.3. QTI in glioma tumors 

Other studies have also applied QTI to study intracranial tumors (Afzali et al., 2022). 
(Li et al., 2021) studied whether QTI could be associated with glioma grade or 
molecular classification. On a group level, most metrics (FA, MKA, MKI, MK, μFA) 
were significantly higher in high-grade than in low-grade gliomas (FA: p = 0.047; 
others p < 0.001)., while MD was significantly lower ( MD: p = 0.037). All metrics 
distinguished IDH wild-type from IDH mutation (MKI: p = 0.003; others: 
p < 0.001). The metrics that were the most strongly associated with high-grade and 
low-grade and wild-type and mutated IDH tumors were MK and FA respectively 
(AUC 0.866 and 0.881). All diffusion metrics except FA showed significant 
correlation with the Ki-67 labeling index, which is a cellular marker of proliferation 
and a prognostic marker in meningiomas (Liu et al., 2020), where MKI had the 
highest correlation coefficient (r = 0.618). Furthermore, Szczepankiewicz et al. 
(2020) related QTI to grade, tumor recurrence and presence of enhancements on 
post-gadolinium T1w maps. Average MKI was reported to be significantly 
associated with the grades. MK was the strongest predictor of the presence of 
enhancements on T1w scans and both MK and MKI predicted tumor recurrence. 
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8.4. Conclusions 

We found that QTI is feasible in intracranial cancer imaging and provides a 
complementary contrast. Its clinical utility remains to be tested and for this larger 
cohorts are needed. 

 In Paper IV, we evaluated the feasibility of a QTI protocol with a 3-minute-
long scan time for assessment of MKA and MKI in patients with intracranial 
tumors. We found that evaluation of the MKA and MKI in intracranial tumor 
patients is feasible in clinically relevant scan times in a wide range of 
tumors. 

 In Paper V, we investigated whether tensor-valued diffusion MRI can add 
to the preoperative prediction of meningioma consistency, grade and type 
and found that parameters from tensor-valued dMRI are associated with 
consistency, grade and type. 
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9. Microstructural features of 
intracranial tumors relevant to 
diffusion MRI 

The central question in cancer modelling is what microstructural features of the 
tissue that influence the diffusion process. The number of potential candidates for 
microstructural features is vast because cancer microstructure is heterogeneous on 
several levels. It is diverse among tumor types in different organs. It is also diverse 
across tumor subtypes, for example, it differs substantially among meningioma 
tumor subtypes as visualized in the Figure 13A. The microstructure is also different 
with respect to a tumor mass among different image voxels but also within a single 
one, where it can contain different types of components, such as microvasculature, 
densely packed cells, fibrotic tissue, psammoma bodies, collagen fiber, microcysts, 
scarring or necrosis (Nilsson et al., 2018). These components have a different 
imprint on the diffusion process and therefore on the dMRI parameters. 

The problem is that we do not know what microstructural features of cancer are 
relevant for the dMRI parameters. Current interpretations tend to rely on singular 
features such as cell density for the explanation of MD (Eq. 5.1.10) or tissue 
anisotropy for FA (Eq. 5.1.11). As the true cell density and tissue anisotropy is not 
known, we need to use proxies for these. Often cell nuclei count density from 
histology is used as a proxy for cell density (CD) and image anisotropy (IA) 
obtained from structure tensor analysis of histology images (Bigun, 1987;Budde and 
Frank, 2012) as a proxy for tissue anisotropy. Using such proxies, MD has been 
found to be inversely proportional to cell density in different types of tumors (Chen 
et al., 2013) but also within glioma tumors (LaViolette et al., 2014). This means that 
MD is often used to identify viable tumor regions with high CD. 

The problem is that MD is also affected by tissue properties other than CD, 
including cell size (Szafer et al., 1995), nuclear sizes (Xu et al., 2009), membrane 
permeability (Colvin et al., 2011) and the presence of collagen (Egnell et al., 2020) 
or necrosis (Patterson et al., 2008). Moreover, the inverse relation with CD is not 
always found and the role of the tumor stroma is highlighted (Squillaci et al., 
2004;Yoshikawa et al., 2008). Furthermore, FA has been interpreted as reflecting 
tissue anisotropy, that is, the presence of elongated cellular structures. The problem 
is that fractional anisotropy is a measure of voxel-level averaged anisotropy. Tissue 
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composed of elongated cells with high orientation dispersion would yield low FA 
just as one composed of isotropic cells (Szczepankiewicz et al., 2015). 

This chapter focuses on the interpretation of dMRI parameters in terms of tumor 
microstructure. The central question is to what degree cell density and image 
anisotropy are associated with MD and in-plane fractional anisotropy (FAIP), 
respectively, from DTI measurements. The in-plane fractional anisotropy is 
analogous to the common FA, but it disregards diffusion in the out-of-plane 
direction so that it can be more straightforwardly compared to the anisotropy 
observed in thin histological slices. To test this, high-resolution dMRI and 
microscopy was performed on the same samples to test whether features from the 
microscopy images can predict local variations of MD and FAIP.  

9.1. Study design 

A total of 16 meningioma tumor samples were obtained after neurosurgical excision 
and the tissue was sliced into blocks of approximately 35×20×2 mm3 to fit a 3D 
printed mold and scanned at a Bruker 9.4 T BioSpec Avance III scanner (Figure 
13B). Diffusion tensor imaging (DTI) was performed with TR=2.5 s, TE=30 ms, 
resolution=200×200×200 μm3, and b-values of 100, 1000 and 3000 s/mm2, applied 
in 6 directions. Measured parameters were MD, FA and in-plane FA (FAIP). The 
maps were smoothed using a Gaussian kernel with a width of 40 μm to reduce the 
impact of coregistration errors. After imaging, specimens were sliced into 4–5 µm 
thick slices, stained with Hematoxylin & Eosin (H&E) and scanned with a light 
microscope at resolution 0.5×0.5 μm2. MR and histology images were coregistered 
by a non-rigid landmark-based approach. These were defined on the MD and FAIP 
maps and matched with features on the histology slices. In particular, some were 
placed at the edges of the slices but also in tumor microfeatures, such as tumor 
microvasculature, which could have been identified both in the histology slices and 
MR images. 

Cell nuclei from histology images were detected by the QuPath (version 0.23) cell 
detection algorithm (Bankhead et al., 2017) and downsampled to MR resolution, by 
which a cell density (CD) map was generated. 

Histology-resolution image anisotropy was obtained from a structure tensor analysis 
based on Budde and Frank (2012). This consists of computing a structure tensor H 
(Bigun, 1987;Budde and Frank, 2012), 

𝐇 ൌ ൬
𝐻୶୶ 𝐻୶୷
𝐻୶୷ 𝐻୷୷

൰,  (9.1.1) 
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where Hxx, Hyy and Hxy are partial spatial image derivatives along x or y directions. 
These were computed as convolution of the histology image with derivative filter 
along x or y direction smoothed with a Gaussian filter of size 4.5 μm and standard 
deviation σ = 0.25 μm. Finally, the obtained structure tensor H was smoothed by 
another Gaussian filter of size 25.5 μm and σ = 15 μm and downsampled to the MR. 
Image anisotropy was calculated from the eigenvalues λ1 and λ2 of the downsampled 
H as 

IA ൌ
ఒభିఒమ
ఒభାఒమ

,  (9.1.2) 

where λ1 > λ2. Finally, the IA maps were smoothed with the same Gaussian kernel 
as the dMRI maps (σ = 40 μm) for comparability and to reduce the impact of 
coregistration errors. 

We used a similar approach based on Eq. 9.1.1 and Eq. 9.1.2 to compute FAIP. Here, 
we replaced image derivatives, such as Hij, from structure tensor H (Eq. 9.1.1) with 
the apparent diffusion coefficients Dij selected from the full diffusion tensor D (Eq. 
5.1.7) by setting Dxz = Dyz = Dzz = 0. 

The calculated features from histology, IA and CD, were used in a regression 
analysis to predict measured dMRI maps, MD and FAIP. First, scatter plots of CD 
vs MD as well as IA vs FAIP were investigated to find out which fitting function 
best explains the data: by first-, second- and third-degree polynomials. We settled 
on the second-order polynomial for both modalities and all cases. Second, we 
randomly selected 80 % of the voxels within each single sample and used them to 
fit the second-order polynomial and then predict the dMRI maps individually for 
both modalities and all cases. 

We also predicted both MD and FAIP using an artificial neural network (ANN). The 
network was trained to predict values in an individual voxels using a spatially 
corresponding 360×360 pixels patch of the histology images (Figure 13B, part 5). 
After experimentation, we settled on using an EfficientNetV2 network pretrained 
on the ImageNet dataset (Tan and Le, 2021) and fine-tuned it for the patch-to-value 
regression task. The training was performed separately on each sample and 
individually for both modalities. We used horizontal and vertical image flipping for 
data augmentation and a train-validation-test split of 60/20/20 %. 

The two approaches (prediction by calculated features and the ANN) were evaluated 
using the coefficient of determination (R2) on the test sets. The residual map 
(difference between predicted measured map) was also investigated and voxels with 
large positive or negative residuals were investigated in order to define additional 
features that may be of relevance (Figure 13C). 
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Figure 13. Meningioma tumor heterogeneity and methods overview. Panel A shows that the microstructure is 
heterogeneous among different meningioma subtypes and even within a single image voxel (Paper II). Panel B shows 
methods overview of the meningioma study. Part 1 shows a schematics of a 3D-printed sample holder that was used 
to facilitate voxel-to-voxel coregistration. Panel 2 shows a meningioma sample in the holder. Panel 3 shows obtained 
dMRI maps: mean diffusivity (MD), fractional anisotropy (FA) and also in-plane fractional anisotropy (FAIP) which 
disregards in-and-out plane diffusion. For example, in the upper right part of the tumor (yellow arrows) the anisotropy is 
dominant in the out-of-plane direction and thus FA is high but FAIP low. Panel 4 shows a coregistered histology slice 
(H&E stained) that was processed to obtain cell density (CD, cell nuclei count density) and image anisotropy (IA from 
structure tensor analysis). Panel 5 shows an overview of the artificial neural network architecture (ANN). Panel C shows 
how MD was predicted from CD. We predicted MD based on second-degree polynomial fit in all cases and generated 
maps that show the residual in individual voxels. Red color shows underestimated voxels where a “free” compartments 
may need to be added to yield unbiased predictions whereas green color shows overestimated MD where rather a 
“restriction” should be added. Part 1 shows a sample where MD was relatively well predicted by CD whereas part 2 
shows a sample where MD was not well predicted by CD. Figure adapted from Paper II. 

9.2. CD and IA as explanations for MD and FAIP? 

Across tumors on the whole-sample level, we reproduced linear associations 
between CD and MD (R2 = 0.58 between CD and MD), as well as between IA and 
FAIP (R2 = 0.82 between IA and FAIP). However, within tumors on the mesoscopic 
level (200 μm) the second-order degree polynomial of CD and IA poorly explained 
the intra-tumor variability of the corresponding dMRI observables. MD had R2 = 
0.06 (0.01 – 0.29) (median (interquartile range)) with R2 ranging from 0 to 0.43 
(Figure 14A) and FAIP had R2 = 0.16 (0.06 – 0.20) and values from 0 to 0.32 (Figure 
14B). The intra-tumor variability in MD and FAIP was slightly better explained by 
the ANN. Across samples, MD had R2 = 0.19 (0.09 - 0.29) with R2 ranging from 0 
to 0.61 (Figure 13A) and FAIP had R2 = 0.18 (0.09 - 0.34) and R2 ranging from 0 to 
0.39) (Figure 13B).  

In summary, lower R2 of predictions on the mesoscopic level compared to the 
whole-sample indicates that CD and IA are more useful when explaining global 
rather than local variability. Furthermore, the discrepancy between the R2 of 
prediction from ANN and that of CD or IA at the mesoscopic level indicates that 
features apart from CD and IA may be important for the explanation of the local 
variability of MD and FAIP. The variability of MD in a substantial number of 
samples (6 out of 16) was not explained by CD, although it was much better 
explained by ANN. 
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Figure 14. Variability in MD and FAIP. The variability is explained by cell density (CD) and image anisotropy (IA), 
respectively, as well as artificial neural network (ANN). Panel A shows intra-tumor sample variability (R2) in MD 
explained by CD (blue bars corresponds to median, black error bars show interquartile range) and by an artificial neural 
network (ANN; red bars), respectively. Panel B shows intra-tumor sample variability (R2) in FAIP explained by IA (blue 
bars corresponds to median, black error bars show interquartile range) and by artificial neural network (ANN; red bars), 
respectively. Figure adapted from Paper II. 

9.3. Relevant features to MD beyond cell density 

We studied what microstructural features correspond to MR voxels where the MD 
predicted by the second-degree polynomial of CD was underestimated (marked by 
blue borders), overestimated (purple borders) or well estimated (black borders) 
(Figure 13C). We separated these into three categories, because it was instructive 
concerning what impact the features may have on the diffusion. In the case of 
underestimated MD a “free” compartment may be added to yield unbiased 
prediction. In the case of overestimated MD a “restriction” should be added, and in 
the case of well-estimated MD no additional features are needed. 

First, both low and high CD can lead to similar MD even though that both voxels 
have low residuals and MD is overall well explained by CD (R2 = 0.36). The left 
image in the Figure 15A shows a voxel with low CD that contains tumor stroma, 
vessels and microcysts, whereas the right image has high CD and is characterized 
by a tumor mass, fewer microcysts and vessels. This is illustrative because despite 
high R2 there is still significant variability and the discrepancy in this case may be 
explained by the fact that tumor stroma with few cells may restrict the diffusion 
more than a tumor mass with more cells. Second, in some cases, cell sizes may 
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explain why low and high CD are associated with similar MD. Figure 15B shows a 
case with low CD that contains cells with a rather large cytoplasm volume, whereas 
the voxel with high CD shows smaller cells with small cytoplasm volume. Both 
voxels have low residual, and the MD of the whole sample was overall not explained 
by CD (R2 = 0). This indicates that it is the intracellular volume fraction rather than 
cell density that is relevant for MD. Third, tissue cohesivity may also be also 
relevant for explaining of the under- and overestimated MD. The Figure 15C shows 
tightly-packed tissue with collagen with underestimated MD. The in voxel on the 
right shows rather loose tissue with few vessels with overestimated MD. Fourth, 
tumor vasculature was associated with underestimated MD. This is shown in Figure 
15D on the left, and for comparison a voxel without residual that contains tumor 
mass is shown on the right. Therefore, tumor vasculature could provide a “free” 
additional compartment by which the MD underestimation could be partially 
corrected. Fifth, tightly packed microcysts were associated with an overestimated 
MD. This is shown in Figure 15D on the left and on the right is shown a voxel 
without residual that contains tumor mass. Small and tightly packed microcysts may 
represent a “restrictive” compartment that may correct the overestimated MD. 
Finally, psammoma bodies tend to be associated with overestimated MD as shown 
in Figure 15F on the left. On the right is shown a voxel that contains tumor mass 
and has low residual. 
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Figure 15. Histological features beyond cell density that may affect MD. Panel A shows a case where both low and 
high cell density leads to similar MD in a voxel where MD is well predicted (without residual; marked by black borders) 
and the sample has overall strong association between CD and MD (R2 = 0.36). The left image shows a voxel with low 
CD that contains tumor stroma, vessels and microcysts while the one on the right has high CD and is associated rather 
with denser tumor mass and fewer microcysts. Panel B shows a similar case in another sample but with no association 
(R2 = 0.00). The voxel on the left with low CD has larger cell with larger cytoplasm whereas the opposite holds for the 
voxel with high CD. Panel C shows that MD can be linked to tissue cohesivity. The overestimated voxel (purple border) 
is associated with tightly-packed tissue with collagen whereas the underestimated one (blue) features loose tissue with 
few vessels. Panel D shows that overestimated MD can be linked to tightly packed microcysts. The control voxel (without 
residual) features tumor mass and fewer microcysts. Panel E shows that a voxel with underestimated MD contains 
tumor vasculature, while the control voxel contains no large vessels but only tumor mass. Finally, panel F shows a voxel 
with overestimated MD that could also be attributed to psammoma bodies because the control voxel does not feature 
them. S = sample number, ε = residual (measured MD – predicted MD in a particular voxel). A MR voxel with MD and 
with low residual is shown with black borders, and overestimated MD with purple and underestimated with blue border. 
Figure adapted from Paper II. 
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9.4. FAIP linked to IA offset by tissue orientation 
dispersion 

Image anisotropy is a feature of an image that is not directly linked to the tissue 
microstructure. This means that it is not evident what type of microstructure is 
associated with elevated or decreased IA and that is why we investigated voxels 
with high and low IA without residuals in samples with overall high R2. 

High IA and high FAIP reflected anisotropic tissue with structures oriented along a 
single direction, whereas low IA and low FAIP reflected tissue that is oriented in 
multiple directions on the scale of the image voxel, although it can be anisotropic 
on a scale smaller than the image voxel. In particular, panel A of Figure 16 shows 
three microstructure examples corresponding to voxels with high IA and high FAIP 
without residual in a sample with high R2. The left and middle images show 
anisotropic tissue that is dominantly oriented along a single direction, whereas the 
image on the right shows tissue with few orientations. Panel B shows another three 
microstructure examples corresponding to voxels with low IA and low FAIP without 
residual in a sample with high R2. Unlike in the previous panel, the tissue is not 
oriented along a single direction, even if it is slightly anisotropic. On the voxel-level 
it appears isotropic due to the high orientation dispersion. Panel C shows cases that 
may not intuitively be associated with high tissue anisotropy but that regardless 
gives high IA: the boundary between tumor and vessels (left); transition from tumor 
tissue to microcysts (middle); or tissue looseness with white transparent areas 
(right). These cases showed low to intermediate FA, and they illustrate a limitation 
of the structure tensor analysis. 

These considerations may explain why MKA from QTI was positively associated 
with firm meningioma consistency while FA was not, as described in the chapter 
8.2. This is because FA and MKA both reflect diffusion anisotropy but on different 
length-scales. Whereas FA (Eqs. 5.1.11 and 5.2.12) corresponds to the 
“macroscopic” voxel-level average diffusion anisotropy, MKA (Eq. 5.2.10) reflects 
“microscopic” diffusion anisotropy in the microenvironments (Szczepankiewicz et 
al., 2016). This means that FA is lower than MKA due to low orientation dispersion. 

Low FA may be due to isotropic diffusivity in the microenvironments or due to high 
microscopic diffusion anisotropy combined with high orientation dispersion 
(Szczepankiewicz et al., 2016). High FA values are found only due to high 
microscopic diffusion anisotropy in combination with low orientation dispersion. 
On the other hand, MKA is not sensitive to the orientation dispersion and is high 
when the diffusion anisotropy is high and low when the diffusion anisotropy is low, 
which means that it has more specific interpretation. 

We could hypothesize that meningioma firmness is related to the presence of voxels 
that have lower diffusion anisotropy and lower orientation dispersion than soft or 
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variable consistency because MKA 10 was significantly lower in firm meningiomas, 
but FA was similar (Figure 12AB) (Paper V). Other studies found that FA 
preoperatively predicts meningioma consistency (Kashimura et al., 2007), whereas 
others found it did not (Ortega-Porcayo et al., 2015). As low FA can be both due to 
high orientation dispersion or low diffusion anisotropy, it is difficult to interpret 
such findings in terms of microstructure. Future studies using MKA would be better 
positioned to do so. 

 

Figure 16. Interpretation of local variations of FAIP and image anisotropy (IA). Panel A illustrates that tissue with 
elongated structures that are dominantly oriented along a single direction yield high diffusion anisotropy (high IA and 
high FAIP). Panel B features tissue structures oriented without any single preferential direction, which yield low diffusion 
anisotropy and thus appears as isotropic tissue (low IA and low FAIP). Panel C shows tissues with boundaries between 
tumor and vessels (left), transition from tumor tissue to microcysts (middle) or tissue looseness with white transparent 
areas (right). These yield high IA but have little influence of the diffusion and thus yield low to intermediate FAIP and 
illustrates a limitation of the technique. Figure adapted from Paper II. 
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9.5. Conclusions 

In Paper II, we reproduced associations between CD and MD (R2 = 0.58) and IA 
and FAIP (R2 = 0.82) across samples. However, within samples the association 
between CD and MD was weak or even absent in some samples. The ANN approach 
performed slightly better, meaning there is information in the histology images 
capable of explaining additional variation in the dMRI maps. Based on a qualitative 
analysis, we speculate that features such as tumor vascularization, psammoma 
bodies, microcysts or tissue cohesivity apart from CD are of importance for the local 
interpretability of MD. 
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10. Conclusions 

Diffusion MRI is typically interpreted in terms of simple features of the 
microstructure such as the cell density in the case of MD or the axon diameter in the 
case of time-dependent diffusion. However, we found that mesoscopic features of 
the tissue need to be considered when interpreting dMRI. 

 In Paper I, we found that fiber undulations contribute to a diffusion time-
dependence similar to that of straight-cylinders. Axonal undulations can 
thus bias diameter estimation strategies if straight cylinders are used to 
model the intra-axonal diffusion for axons with non-straight trajectories. 
Diffusion encoding with encoding power at higher frequencies might help 
resolve effects of undulations and sizes. 

 In Paper II, we found that cell density and image anisotropy account for 
variability in MD and in-plane FA across tumors but not generally within 
tumors. Features such as tumor vascularization, psammoma bodies, 
microcysts and cell cohesivity likely all contribute to the dMRI observables. 

In our second group of aims we found that advanced diffusion MRI encoding is 
feasible in a clinical setting and can add value to cancer imaging. 

 In Paper III, we investigated the potential utility of diffusion-weighted 
imaging (DWI) with spherical tensor-valued encoding (STE) in glioma 
hyperintensities unrelated to white matter. We found that high b-value STE-
DWI results in a stronger suppression of white matter than conventional 
LTE-DWI and may therefore be more sensitive and specific for the 
assessment of glioma tumors and DWI-hyperintensities. 

 In Paper IV, we found that evaluation of the iso- and anisotropic kurtoses 
(MKI and MKA) in intracranial tumor patients is feasible in clinically 
relevant scan times. An imaging protocol with 3-minutes of scan time 
yielded performance similar to that of the full longer protocol. 

 In Paper V, we found that parameters from tensor-valued dMRI may 
facilitate the prediction of meningioma consistency, grade and type. For 
example, the lower 10th percentiles of MK and MKA were associated with 
firm consistency, higher standard deviation of MKI was associated with 
lower grade. Parameters specific to tensor-valued dMRI (MKA and MKI) 
were the only ones that could separate the psammomatous meningiomas. 
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Applications of diffusion MRI

In this thesis, we address two shortcomings of diffusion MRI (dMRI).
First, we investigated which microstructural features are of relevance to 
dMRI. We found that the effects of non-straight propagation of axons are 
indistinguishable from those originating from the axon diameter for typical 
measurements with a clinical scanner (panel A). Furthermore, we found that, 
quantitively, the interpretation of local variability of mean diffusivity and frac-
tional anisotropy by cell density and tissue anisotropy is valid in some but not all 
tumors (B). Second, we studied what contrasts tensor-valued dMRI can add to 
the imaging routine of patients with intracranial tumors. We found that it can 

be applied in a short scan time, enhances the conspicuity of 
glioma hyperintensities compared to white matter (C) and 
preoperatively may help to classify meningiomas.
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