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Popular summary 

Our lifestyles influence, to a large extent, our health status. However, many other 
factors also affect our health, including genetics and social determinants, such as 
education and economy. Currently, energy-dense processed foods are often cheaper 
than healthier alternatives. Moreover, with wide-spread automation of tasks that 
only a generation ago involved physical labour, sedentary behaviours are becoming 
more frequent. As a result, the individual is exposed to adverse environments that 
have, in recent decades, increased the prevalence of overweight/obesity. Although 
the connection of environmental exposures and cardiometabolic disease has been 
widely explored, many unanswered questions remain. For instance, (i) Which 
exposures cause specific diseases? (ii) Which exposures are the most important to 
intervene upon? (iii) To what extent do specific exposures affect disease risk? (iv) 
Which are the optimal approaches to disease prevention? each of these questions 
require evidence-based responses, if the burden of chronic disease that blights so 
many societies worldwide is to be adequately addressed. 

Environmental exposures are often studied when there is prior evidence of 
association between specific agents and disease (e.g. saturated fat in the diet and 
atherosclerosis). However, to identify and elucidate unrecognized risk factors, 
hypothesis-free data-driven approaches may be required. One such example of 
novel associations related to cardiometabolic diseases are exposures related to 
heavy metals and sleep patterns. In the study described here, we conducted an 
analysis of hundreds of exposures in relation to cardiovascular biomarkers. 
Thereafter, we obtained a shortlist of candidate variables for further investigation. 
We found that the strongest signals were for well-established risk factors for 
cardiometabolic disease (cardiovascular disease, (CVD) and type 2 diabetes 
mellitus (T2D)). Physical activity, smoking, and overall health status explained 
most of the variation in cardiovascular biomarkers. Thus, it is plausible that 
intervening upon these modifiable variables will have a larger impact when 
preventing disease. 

However, correlation does not always reflect causality. The presence of an 
exposure-outcome association does not necessary mean that the exposure directly 
impacts the outcome. Therefore, observational associations help inform the design 
of interventions but may fail if the factors upon which the interventions focus are 
not causally related with the outcomes of interest. 
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Causal relationships are generally determined at a population level, yet there is often 
considerable heterogeneity between individuals in exposure and response 
relationships, with some people incurring large effects and others little or no effect. 
Clinical algorithms sometimes use cut-off values based on biomarker levels to 
diagnose disease; thus, conventional diagnostic approaches may overlook people 
with underlying pathology that does not meet diagnostic criteria. To help address 
some of the heterogeneity in disease presentation, methods to reclassify some 
diseases (e.g. T2D and obesity) into narrower diagnostic categories may be needed.  

In this project, we used a quantile approach to identify individuals that were at 
higher risk of disease based on their predicted cardiometabolic biomarker values. 
We evaluated those subgroups of the population with elevated predicted values of 
blood glucose, lipids and blood pressure. We found that these individuals were at 
higher risk of heart disease and premature death. We also found that individuals 
living with prediabetes have a higher risk to develop disease. We found that 
elevated, but non-diabetic, blood glucose levels, often considered relatively 
harmless, are causally related with clinical complications. However, prediabetes 
was not causally associated with other diabetes complications such as stroke or 
kidney disease.  

In analyses focusing on the causal effects of modifiable exposures, we found 
evidence of a causal effect of carbohydrate intake and T2D, suggesting a higher risk 
if the diet composition is predominantly carbohydrate-based over other 
macronutrients (e.g. fat, protein). However, we could not disentangle the 
independent effects of sugar intake (a type of carbohydrate often associated with 
higher risk of diabetes) or fibre (associated with a lower risk of diabetes). These 
findings imply that when recommending nutritional strategies to prevent disease, 
the direct impact of carbohydrates should be considered if individuals are especially 
sensitive to the environment or have prediabetes, emphasizing the importance of 
maintaining a healthy and balanced diet to avoid health complications. 

Overall, the exposures we are subjected to in our daily lives have a varying influence 
in our health status. We demonstrated causal associations between prediabetes and 
CVD and carbohydrate intake and T2D. Moreover, we ranked the most important 
variables for further investigation and used these to elucidate subgroups of the 
population that are at higher risk of disease without been clinically recognized by 
conventional screening methods. Our findings emphasize the notion that adopting 
and maintaining a healthy lifestyle is beneficial to prevent cardiometabolic disease 
and mortality. 
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Chapter 1 

Introduction 
Associations between environmental exposures and disease have been at the core of 
epidemiology since its inception. In recent decades, the ‘exposome-wide’ paradigm 
has been advanced by the rapid development of cheaper and accessible phenotyping 
technologies (e.g. fitness wearables, sleep trackers) that can generate large amounts 
of data for researchers to examine1. 

Though existing therapies are fairly safe and efficacious leading to an improvement 
in healthcare management and life-expectancy, chronic diseases such as type 2 
diabetes mellitus (T2D) and cardiovascular disease (CVD) remain among the most 
frequent causes of death in all countries, irrespective of income2. Although CVD 
death rates have been steadily declining in parallel with improved healthcare3, the 
clinical presentation, complications and response to interventions are highly 
heterogeneous within and between populations, indicating that ‘one-size-fits-all’ 
interventions are suboptimal. In recognition of this, a field termed ‘precision 
medicine’ has been born4. 

The primary goal of precision medicine is to ensure “the right therapy, for the right 
individual, at the right time”. Though physicians have been conducting 
individualised care for decades, the plethora of data derived from large, well-
characterised studies has allowed to operationalize the partition of individuals into 
subclasses (clusters or subgroups) according to their risk and the variation in 
biomarkers (i.e. omics). This has been done for prediabetes5, T2D6, 7, 8 and CVD9, 
with these approaches showing promise for enhanced risk prediction and treatment 
stratification. 

Traditionally, traits such as body mass index (BMI), high- and low-density 
lipoprotein cholesterol (HDL-C and LDL-C, respectively), triglycerides, total 
cholesterol, fasting glucose (FG), 2-hour glucose (2-hr glucose), and systolic and 
diastolic blood pressures (SBP and DBP, respectively) are used as biomarkers for 
cardiovascular risk assessment. However, cardiometabolic conditions such as CVD 
and T2D are diseases driven by the complex interplay between genetic 
predisposition and a myriad of environmental exposures. 

Population variance in disease explained by genetic factors is limited by the 
discovery of genome-wide variants or single nucleotide polymorphism (SNPs); for 
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complex traits, SNPs typically have small effect sizes. Moreover, it is unlikely that 
genetic contributions outweigh the effects of environmental factors in disease onset. 
The predominant role of lifestyle in cardiometabolic disease development is mostly 
drawn from results of observational studies and clinical trials, which suggest that 
CVD and T2D could, to a large extent, be prevented by adopting and maintaining a 
healthy lifestyle. Such changes convey more sustained and profound beneficial 
effects on health compared with pharmacotherapy10, 11. 

Intricacies in exposome-wide assessments include diversity in exposure sources 
(e.g. physical, chemical agents, etc.), the dynamic nature of risk factors (rarely 
remain the same through lifetime) in contrast with fixed genetic factors (see Figure 
1), and statistical challenges to harmonise and analyse exposures across populations. 

 

 
 

Figure 1. Mechanisms through which the environment interacts with the genome to 
affect health. Source reference12. 

The first section of this thesis describes the hallmarks of T2D and CVD. Section 
two, through a brief review of the literature, provides an overview of the 
mechanisms underlying both conditions; the third section revisits common 
approaches for studying the aetiology of these diseases. The last section summarise 
the findings of the papers included in the thesis and elaborate on prospective plans. 
Overall, this work explores the independent and likely causal effects of risk factors 
and their roles in disease onset, with focus on data-driven methods to identify 
subgroups of the population at higher risk of disease. 
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Cardiometabolic risk 
Cardiometabolic disorders represent a group of interrelated risk factors (e.g. LDL-
C, BMI, etc.) that may lead to the clinical outcomes of T2D and CVD, both of which 
are modifiable and preventable diseases. Early attempts to group risk factors into 
singular scores include the metabolic syndrome (MetS) (also known as ‘syndrome 
X’), which helps screen people at risk of T2D and CVD. However, there has been 
extensive criticism surrounding the true clinical value of MetS13, and it is rarely used 
today in research or practice. 

Many initiatives across the globe have called for action to prevent CVD14. However, 
many challenges are posed by multifaceted conditions like MetS, highlighting the 
need for comprehensive strategies to prevent it. One example is the ‘Life’s Simple 
7’ from the American Heart Association (AHA), which summarizes the 
cardiometabolic risk factors (see Figure 2) and recommends interventions to lower 
a person’s likelihood of developing CVD (i.e. cease smoking, improve diet, increase 
physical activity, maintain a healthy weight; lower blood pressure, cholesterol, and 
blood glucose levels)15, 16. 

 

 

 
 

Figure 2. Factors contributing to cardiovascular disease and T2D risk. Source 
reference17. 
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Diabetes and prediabetes 
A common unifying feature of diabetes is chronically elevated blood glucose 
(hyperglycaemia) whilst fasting or following consumption of food or beverages 
containing carbohydrates. Insulin is the hormone produced in the pancreas that 
facilitates glucose transport from the blood into cells in the body, where glucose can 
either be burned or converted to stored energy. The two driving features of 
hyperglycaemia are insufficient insulin secretion and the inability of the tissues to 
respond to insulin (i.e. insulin resistance). Providing enough insulin is secreted, 
blood glucose concentrations may remain within the normal range even if cells are 
resistant to insulin, and vice versa. However, a reduction in insulin production 
coupled with insulin resistance typically results in hyperglycaemia. The criteria to 
diagnose the most common form of diabetes (i.e. T2D) which accounts for > 90% 
of all diabetes cases worldwide18 are based on glycaemic measures: (i) FG ≥ 7.0 
mmol/L (126 mg/ dL), or (ii) 2-hr glucose levels ≥ 11.1 mmol/L (200 mg/ dL), or 
(iii) glycated haemoglobin (HbA1c) ≥ 6.5% (48 mmol/mol)19, 20. Moreover, elevated 
yet non-diabetic glucose levels have been grouped under the term ‘prediabetes’, 
which comprises impaired glucose tolerance (IGT) defined as 2-hr glucose of 7.8 to 
11.0 mmol (140 to 199 mg/dL) on the 75-g oral glucose tolerance test, and impaired 
fasting glucose (IFG), defined as 5.6 to 6.9 mmol/L (100 to 125 mg/dL) when 
fasting21, and impaired glucose regulation (IGR) when IFG and IGT co-occur. 

Diabetes and prediabetes cut-off values for detection remain controversial 
(summarized in Table 1). The term ‘prediabetes’ has been criticized because it 
implies that a person with this condition will inevitably progress to full-blown 
diabetes, and ‘medicalizing’ the prediabetic state may adversely affect attempts to 
minimize its detrimental impact22. Alternatively, because prediabetes is not 
typically considered a disease, but a risk factor for disease, this can impact the extent 
to which clinical interventions are initiated and/or adopted. Perhaps more 
importantly, though, there are multiple tissue- or organ-specific defects that can 
cause blood glucose to rise, with glucose levels merely one indicator of these 
underlying pathologies. Thus, the ‘glucocentric’ perspective that is embodied in the 
concept of prediabetes may inhibit recognition and use of other biomarkers that aid 
the prediction and prevention of T2D. 

Table 1. Type 2 diabetes and prediabetes diagnostic criteria values. 
 WHO/IDF ADA 

Type 2 diabetes mellitus (T2D)   

Fasting plasma glucose ≥ 7.00 mmol/L ≥ 7.00 mmol/L 

 126 mg/dL 126 mg/dL 

2-hr glucose OR, ≥ 11.1 mmol/L OR, ≥ 11.1 mmol/L 

 200 mg/dL 200 mg/dL 
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 WHO/IDF ADA 

Impaired glucose tolerance (IGT)   

Fasting plasma glucose < 7.00 mmol/L Not required 

 126 mg/dL  

2-hr glucose AND, 7.8 to 11.0 mmol/L 7.8 to 11.0 mmol/L 

 140 to 199 mg/dL 140 to 199 mg/dL 

Impaired fasting glucose (IFG)   

Fasting plasma glucose 6.1 to 6.9 mmol/L 5.6 to 6.9 mmol/L 

 110 to 125 mg/dL 100 to 125 mg/dL 

2-hr glucose If measured, < 7.8 mmol/L If measured, < 7.8 mmol/L 

 140 mg/dL 140 mg/dL 

WHO: World Health Organization; IDF: International Diabetes Federation; ADA: American Diabetes Association; 2-hr 
glucose concentration after ingestion of 75-g of glucose load. 

 

Other less common forms of diabetes include type 1 diabetes mellitus (T1D), which 
is driven by an autoimmune reaction that leads to destruction of the pancreatic -
cells23, and gestational diabetes (GDM), where it is believed that pregnancy 
hormones raise glucose to levels that exceed the exocrine function of the pancreas24, 

25. These classical diagnostic categories provide the framework for clinical 
guidelines. However, because T2D is essential a diagnosis of exclusion (of the 
known causes of hyperglycaemia), and because it is by far the most common form 
of diabetes, there is an unmet need to refine the diabetes phenotype. Several recent 
studies have attempted to do this, using combinations of data, much of which is not 
used in the classical diagnosis such as genetics, omics, and non-glucose biomarkers6, 

7, 26, 27. Moreover, some of these newly identified diabetes subtypes share clinical 
features with those autoimmune and rare forms of monogenic diabetes (e.g. 
Maturity-Onset Diabetes of the Young (MODY)). Other infrequent forms of 
diabetes include neonatal and secondary diabetes (i.e. drug-induced)28. 

Glucose metabolism 
The preferred source of energy for human cells is glucose. Glucose metabolism after 
meal ingestion (postprandial) follows two core pathways: storage (glycogenesis) or 
breakdown (glycolysis). Both processes work in a sophisticated feedback system 
that maintains the stable supply of glucose to the brain, despite significant transitory 
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shifts in the supply of glucose to other organs and tissues that occur, for example, 
when eating or exercising. 

Blood glucose levels are the product of several processes: (i) the intestinal 
absorption from macronutrient intake, (ii) the liberation of glucose from glycogen 
(glycogenolysis), and (iii) synthesis of glucose from non-carbohydrate substrates, 
mainly in the liver (gluconeogenesis). Glycogenesis is the formation of glycogen in 
liver or muscle tissue, similar to lipogenesis where energy in the form of lipids are 
stored in adipocytes. Conversely, in glycolysis, glucose is converted to adenosine 
triphosphate (ATP) by cellular respiration, the basic constituent of energy in the 
body to function29.  

Glucose homeostasis is finely regulated by the complementary action of two peptide 
hormones secreted from pancreatic islets: glucagon and insulin; the latter being 
secreted by -cells in response to increased blood glucose and amino acid levels 
after substrate intake. The action of insulin, when bound with its receptor, promotes 
glucose uptake in peripheral tissue and increases gluconeogenesis in adipose tissue 
and liver, whilst glucagon (secreted from pancreatic -cells) inhibits glucose output 
from glycogenolysis and gluconeogenesis30. Insulin has other important effects; it 
inhibits intracellular lipase, driving release of fatty acids (lipolysis) and uptake of 
triglycerides by adipose tissue. Other pancreatic hormones such as somatostatin, 
ghrelin and amylin, also have less marked but nevertheless essential roles in glucose 
homeostasis31. 

In prediabetes and T2D, an underlying condition that disrupts glucose homeostasis 
is insulin resistance where response of glucose-sensitive tissue is impaired. The 
mechanistic causes remain poorly understood, but being overweight/obese is a 
common antecedent (see Figure 3)32. A likely mechanism is the peripheral tissue 
resistance which leads to continuous insulin secretion. Moreover, as a compensatory 
response to hepatic and muscle insulin resistance, the pancreas will produce larger 
quantities of insulin, a state known as hyperinsulinemia33. Often, physical activity, 
irrespective of the exercise regime improves peripheral sensitivity which reduces 
insulin requirements during fasting status, moreover, other mechanisms such as 
glucose uptake independent of insulin (GLUT 4 transportation) are enhanced34. 
Finally, as time progresses, the -cells fail to overcome insulin resistance, which 
leads to chronic hyperglycaemia and often T2D. 
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Figure 3. Obesity’s contribution to systemic insulin resistance and -cell 
dysfunction. Source reference32.

Years before T2D onset (and during ‘prediabetes’), the body relies on the over-
production of insulin to counterbalance insulin resistance (mainly in peripheral 
tissue) to maintain glucose homeostasis. From studies assessing insulin resistance 
through the euglycemic hyperinsulinemic clamp (gold-standard for assessing 
insulin sensitivity)35, in individuals with isolated IFG, hepatic insulin sensitivity is 
reduced whilst muscle sensitivity is almost normal. This suggests inadequate 
glucose output suppression. In contrast, in IGT individuals, hepatic insulin 
resistance is lower than in individuals with IFG, but with markedly reduced 
peripheral insulin sensitivity36. Overall, insulin resistance contributes to CVD 
through promoting the release of free fatty acids, apolipoprotein B (apoB) 
production in the liver, and further synthesis of low- and very-low density 
lipoproteins (VLDL)37.

Insulin influences blood pressure in multiple ways. However, persistent elevated 
levels of insulin that are often observed in obesity, have been consistently associated 
with hypertension. Despite no clear mechanistic pathway, the activation of the 
sympathetic nervous system and reduction in urine excretion coincide with an 
inflammatory response mediated through cytokines such as tumour necrosis factor 

(TNF- ), leptin, and interleukin-6 (IL-6). This eventually contributes to 
endothelial dysfunction and increased overall CVD risk38. Other reported 
downstream biomarkers in inflammation such as fibrinogen, factor VII, and 



28 

plasminogen activator inhibitor 1 (PAI-1), are also involved in thrombotic 
processes39. 

Cardiovascular disease (CVD) 
CVD encompasses: (i) coronary heart disease (CHD), including myocardial 
infarction (MI), angina, and coronary death; (ii) cerebrovascular disease, defined by 
stroke and transient ischemic attack; (iii) peripheral arterial disease (e.g. 
claudication); and, (iv) atherosclerosis. Worldwide, CVD remains the leading cause 
of morbidity and mortality, despite improvements in life-expectancy. CHD accounts 
for almost half of total CVD cases, being the top cause of death in adults, globally40. 
Since the 1980s, CHD-mortality has declined, owing major progress in healthcare. 
However, its prevalence is on the rise due to increased aging populations, coupled 
with higher rates of T2D2, 41. CVD prevention strategies often include promoting 
healthy habits, and eradicating unhealthy lifestyles (e.g. poor-quality diet, physical 
inactivity, smoking) before or in parallel with pharmacotherapy42. With such 
measures, up to 80% of premature CVD events can be prevented43, 44. 

CVD risk factors 
The majority of individuals in the general population have one or more risk factors 
for CVD. The main five leading modifiable risk factors (hypercholesterolemia, 
diabetes, hypertension, obesity, and smoking) contribute to more than half of 
cardiovascular death45. Total cholesterol ≥ 6.22 mmol/L (≥ 240 mg/dL), SBP ≥ 140 
mmHg, DBP ≥ 90 mmHg, smoking, and T2D are considered major risk factors46. 
Other independent factors include social determinants of health and genetic 
burden47. Lowering risk factors is fundamental to disease prevention (i.e. lowering 
total cholesterol and LDL-C levels reduce CHD events and mortality). From large 
international cohorts (e.g. MONICA project48, INTERHEART study49), which 
focused on changes in risk factors with lipid-lowering medication for primary and 
secondary prevention, results showed the importance of maintaining optimal levels 
of risk markers to prevent premature death49, 50. In the INTERHEART study, after 
adjustment for conventional CVD risk factors, every 1% increase in HbA1c was 
associated with 19% higher chances for MI51, 52. Therefore, screening people at risk 
of T2D (i.e. individuals living with overweight/obesity, and those considered 
prediabetic), and monitoring cardiometabolic risk biomarkers may help prevent 
complications. 

Another major risk factor is the lack of physical activity. Exercising has beneficial 
effects in reducing blood pressure and promoting weight loss53. Obesity, which is 
defined as BMI > 30 kg/m2, is highly prevalent worldwide. This condition is 
associated with a number of risk factors for atherosclerosis, CVD and hypertension, 
including insulin resistance, prediabetes, and dyslipidaemia. 
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Link between T2D and CVD 
Insulin resistance, hyperinsulinemia and elevated blood glucose are all associated 
with CVD. Only having a diagnosis of diabetes has been considered equivalent to 
having a prior MI event in terms of relative risk54. The mechanism linking T2D and 
CVD is multifactorial, though the main pathway is through atherosclerosis, which 
is responsible for almost all cases of CHD (see Figure 4)39. This pathological process 
begins with vascular fatty deposits in major blood vessels during adolescence (or 
even earlier), which progress into plaques and eventual thrombotic occlusion. The 
formation of such lipid and atheromatous plaques promote smooth muscle cell 
proliferation and the recruitment of macrophages and inflammatory proteins in the 
intima, such as TNF-α and IL-6. In turn, these alter the release of vasoactive 
molecules (i.e. nitric oxide (NO)), thus consolidating the atherosclerotic plaque and 
subsequent overall vasoconstriction55. Local oxidative stress (through reactive 
oxygen species (ROS)) on lipoproteins increase the susceptibility of the plaque to 
rupture, with further ischaemia and necrosis56, 57. The rupture of the plaque activates 
platelets and thrombin formation that eventually leads to thromboembolism events. 
All these processes are accelerated in T2D, in the so-called ‘prothrombotic’ state 
where sustained hyperglycaemia promotes vascular dysfunction through oxidative 
stress58. Moreover, either prolonged blood glucose levels or excursions (spikes) in 
glucose levels, impair fibrinolytic proteins59. 

 

 
 

Figure 4. Atherosclerotic plaque initial process. Cell mediators that contribute to 
vessel occlusion and thrombosis. Source reference39. 

Of relevance here is that if no appropriate correction is established, sustained high 
blood glucose levels and circulating free fatty acids stimulate higher intracellular 
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concentrations of ROS leading to mitochondrial DNA damage, membrane 
permeability alterations, and apoptosis60. These processes confer systemic and 
organ-specific damage to peripheral nerves, blood vessels, heart, eyes, and kidneys. 
These pathogenic processes render T2D among the leading causes of non-traumatic 
lower limb amputation, chronic kidney disease (CKD), and visual impairment in 
relatively young populations61. 

Genetic and environmental factors  
Cardiometabolic diseases have genetic components. Genome-wide association 
studies (GWAS) have revealed thousands of relatively independent DNA variants 
(or SNPs) associated with cardiometabolic traits62. For T2D, large-scale GWAS, 
mainly in populations of European descent, have identified reproducible genetic 
associations linked with the cardiometabolic disease. Efforts like DIAGRAM 
(DIAbetes Genetics Replication and Meta-analysis) and DIAMANTE (DIAbetes 
Genetics Replication and Meta-ANalysis-TransEthnic) consortia collected data 
from 74,124 T2D cases and 824,006 controls63. For continuous glycaemic traits (i.e. 
FG64, 2-hr glucose65, and HbA1c66), genetic association data from the Meta-
Analyses of Glucose-and Insulin-related traits (MAGIC) consortium have been 
made publicly available to the research community. For CVD, several consortia 
exist; to date, the largest is the Coronary Artery Disease (C4D) Genetics 
(CARDIoGRAMplusC4D)67, which includes 60,801 cases and 123,504 controls; 
GWAS of stroke have been conducted by the MEGASTROKE consortium68. 

In the context of T2D, the latest metanalysis of GWAS63 has discovered up to 403 
relatively independent loci associated with the disease (most identified in European-
ancestry individuals), yet fewer than 20 loci localize in coding regions, many of the 
remaining variants are implicated in transcriptional regulation 69. In CVD, the latest 
GWAS discovered 163 loci at genome-wide level significance associated 
specifically with CHD70, 71, 72, and 35 loci for stroke73. As in T2D, most of the 
variants are located in non-coding regions, being related to CHD development by 
affecting different pathways such as acute phase response signals during 
inflammation74. Many genetic variants that confer risk of CHD or stroke also 
influence other traits, such as BMI, SBP and DBP. Moreover, some variants overlap 
with monogenic forms of the disease68, 75, which have aided in our understanding of 
putative mechanisms.  

In the context of precision medicine, GWAS discoveries have led to hypothesise 
about mechanisms of action. For example, the genes LDLR, PCSK9, ANGPTL4, 
and ANGPTL3 have been explored as targets for drug development to prevent 
CHD76. In contrast, for T2D, the main use of genetics has been to develop genetic, 
polygenic, and partitioned risk scores (GRS and PRS, respectively), which use 
hundreds of variants to predict disease. However, when genetic markers are added 
to clinical risk scores, the predictive value increases modestly77, 78. 



31 

Despite the many association signals discovered using GWAS, these explain only a 
small fraction of disease susceptibility. The estimated heritability from linkage 
analyses (parent to offspring) vary greatly for T2D (20 to 80%)79, stroke (30 to 
40%)80, and CHD (40 to 60%)81. The so-called ‘missing heritability’ is likely due to 
the common presence of undetected variants (with minor allele frequencies 
(MAF) ≥ 0.01) and/or rare variants not captured or imputed by standard chips82, as 
well as measurement error. CVD and T2D, like other complex diseases, develop as 
a consequence of exposure to environmental risk factors in combination with 
genetic susceptibility. Thus, to study these metabolic diseases, where environmental 
factors converge with genomic factors to confer risk, requires a systematic and 
comprehensive assessment to identify causal exposures and particular subgroups at 
elevated risk83, 84. 

Aims 
Current evidence supports the notion of varying degrees of cardiometabolic risk 
within populations, emphasised by distinctive subphenotypes of disease. The 
contribution of lifestyle to disease susceptibility suggests several mechanistic 
hypotheses, yet it is likely that disease onset is mainly driven by the complex 
interplay with genetic factors and the environment. In light of the rising numbers of 
cardiometabolic cases and its high economic and clinical burden to society, 
understanding the role of environmental exposures may inform more impactful 
preventive strategies. 

The overall aim of this thesis is to optimize exposome-wide assessment to predict 
disease and evaluate the causal links of environmental exposures and disease. This 
work focuses on data-driven approaches, paired with causal inference methods 
using primarily two independent Swedish cohort studies: Västerbottens Health 
Survey (VHU) and Malmö Diet and Cancer Study (MDCS). 

The specific aims of the papers included in this thesis are the following: 

Paper I 
In this work, the aim was to investigate free of any hypothesis, the environmental 
associations with cardiometabolic traits in a population-based cohort. We undertook 
an environmental-wide association study (EWAS) using longitudinal data from > 
31,000 adults in VHU study. Generalized linear models were used to assess the 
relationships of nearly 300 candidate exposures, where eleven modifiable prioritised 
variables were associated with most of cardiometabolic traits; most of these related 
to lifestyle i.e. smoking, coffee intake, physical activity, and alcohol intake. The 
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prioritised variables may be used for further research or to inform clinical trial 
designs. 

Paper II 
This paper was focused on evaluating the variable susceptibility to lifestyle risk 
factors for T2D and CVD, by applying machine learning methods. We aimed to 
identify individuals by estimating prediction intervals (PIs) around the association 
of the prioritised variables from Paper I with cardiometabolic traits. Moreover, we 
quantified the risk of being allocated inside and outside the PIs. Those individuals 
with ‘sensitivity’ (above 95th quantile) of blood glucose, lipids and blood pressure 
were at higher risk to developing cardiometabolic disease and premature death. In 
this investigation, we identified an environmentally sensitive subpopulation for risk 
stratification in VHU and MDCS, whether this population may or may not be 
captured by conventional screen strategies, these individuals can be prioritised for 
further evaluation or establish early preventive therapies. 

Paper III 
In this work, we combined structural equation modelling (SEM) and Mendelian 
randomization (MR) approaches to estimate the direct and mediated effect in a range 
of putative causal associations between macronutrient intake and cardiometabolic 
traits and disease. VHU was the primary dataset and freely available GWAS 
summary statistics were interrogated in an integrative genomic approach. In this 
study, we characterised the role of macronutrient intake, its association with 
cardiometabolic traits and disease to inform nutritional recommendations. 

Paper IV 
In this paper, we aggregated (in a metanalysis) secondary-data coupled with an MR 
approach to investigate whether prediabetes is causally linked with T2D-
complications or if the association is confounded by the progression of T2D. We 
evaluated the risk of prediabetes associated with cardiovascular (i.e. CHD, stroke) 
and kidney disease outcome, yet only CHD was causally associated. 
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Chapter 2 

Cohort studies 

Västerbotten Health Survey (VHU) 
The VHU (Västerbottens hälsoundersökning) is a prospective, population-based 
cohort study designed to improve health outcomes among the general population (~ 
225,000 inhabitants) in Västerbotten county, northern Sweden85, 86 that started in 
1985. This study was motivated by the highest rates of CVD and mortality 
throughout Sweden at that time87. All adults residing in the region of Västerbotten 
were invited via mail to attend their primary care centre to undertake a baseline 
clinical examination and to complete detailed lifestyle questionnaires during the 
years of their 40th , 50th , and 60th birthdays. In some locations, until 1996, 30-year-
olds were also included. Since the early 1990s, participation rates ranged between 
58 to 66%88. For this thesis, I focused on VHU participants born in Sweden, as well 
as residing in the region to minimize confounding by population stratification; 
relatively few participants were excluded on the basis of non-Swedish ancestry (~ 
6%)89. Additionally, in our analyses, we excluded people with prevalent diabetes 
and/or CVD to minimise the risk of respondent bias that can occur when people with 
diagnosed disease are asked health-related questions. Lastly, given that VHU 
participants had the opportunity to undertake several study visits, this enabled us to 
perform analyses longitudinally (Paper I) and cross-sectionally (Paper III). 
Moreover, in Paper II, we exploited the repeated measures (~ 10-year interval) data 
for a more stringent definition of subgroup populations and to reduce regression 
dilution bias. 

Lifestyle and dietary assessments 
All participants were requested to complete a self-administered lifestyle 
questionnaire during each visit. All questionnaires were optically read, and the 
domains included socio-economic factors, physical/mental health, quality of life, 
social network and support, working conditions, and alcohol/tobacco consumption. 
Physical activity was assessed using the modified version of the International 
Physical Activity Questionnaire90, 91. A validated semi-quantitative food frequency 
questionnaire (FFQ), designed to capture habitual diet over the last year, was used 
to retrieve information on dietary factors92. In 1996, the FFQ was reduced from 84 
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to 66 items by merging similar items and removing those considered redundant. 
Nutrient and energy contents were calculated based on the Swedish Food 
Composition Database, based on meal frequency and portion size. Food intake level 
(FIL) was calculated as total energy intake (TEI) divided by estimated basal 
metabolic rate. Individuals with extreme TEI (below the 5th and above the 97.5th 
percentile of food intake level) were excluded from the analyses, as per 
recommended by data managers88. The VHU data are organized, curated, and 
data/samples stored under the administrative authority of Umeå University. All 
participants provided written informed consent before they engaged in the study. 

Cardiometabolic risk markers 
Clinical measurements in VHU were performed under standardized practices. To 
calculate BMI, calibrated tools (scale and stadiometer) provided body weight in 
kilograms divided by height in meters squared from participants wearing light 
clothing and no shoes. Systolic and diastolic blood pressures were measured in 
resting participants in a supine position using either manual or automated 
sphygmomanometers, taken by trained nurses. Peripheral blood was drawn after 
overnight fasting and a venous blood sample was drawn two hours after the 
administration of a 75-g oral glucose load. Blood glucose, total cholesterol and 
triglycerides levels were then measured using a Reflotron  bench-top analyser 
(Roche Diagnostics Scandinavia AB). HDL-C was also measured in a subgroup of 
participants and LDL-C was estimated using the Friedewald formula93. In 
September 2009, blood lipids and blood pressure measurements changed: the blood 
pressure was measured twice in a sitting position and averaged, and triglycerides 
and total cholesterol levels were analysed using clinical chemical analysis in the 
Umeå University Hospital laboratory. Thus, validated conversion equations were 
used to adjust the blood pressure measurements taken before and after September 
200994. For participants on lipid lowering and/or blood pressure lowering 
medications, lipid levels and/or blood pressure levels were also corrected by adding 
published constants (+ 0.208 mmol/L for triglycerides, + 1.347 mmol/L for total 
cholesterol, − 0.060 mmol/L for HDL-C, + 1.290 mmol/L for LDL-C, + 15 mmHg 
for SBP and + 10 mmHg for DBP)95, 96. Cardiometabolic traits’ values considered 
outside the thresholds suggested by VHU data managers were removed. 

Outcome assessments 
Data pertaining to medical diagnoses or death were retrieved through record linkage 
from the National Board of Health and Welfare in Sweden until December 31st, 
2016. Using each participant’s civic registration number, their records were linked, 
and the following diagnosis codes were used to code disease: ICD-9 code 250 and 
ICD-10 codes E11.0–E11.9 for T2D; for the composite CVD outcome, MI included 
ICD-9 code 410 and ICD-10 code I21, and for stroke included ICD-9 codes 430, 
431, and 433–436 and ICD-10 codes I60, I61, I63, and I64. The first date of a 
registered event was selected as the outcome for the current analyses. 
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Malmö Diet and Cancer Study (MDCS) 
The MDCS is a prospective, population-based cohort study conducted between 
1991 and 1996. All men and women residing in the city of Malmö (south of Sweden) 
born between 1923 to 1945 and 1923 to 1950, respectively, were invited to 
participate through a personal letter or media advertisements. Participants who did 
not speak or read Swedish and those with mental incapacity were not eligible to 
participate. Participation rate was ~ 70% (30,446 participants with ~ 40% men) at 
baseline97, 98, 99. For the analyses described we focused on the same serological traits 
interrogated in VHU, thus, I utilized data from the subgroup of MDCS in whom 
these were available; these individuals were randomly selected for deeper 
cardiometabolic risk marker assessment within the MDCS cardiovascular cohort 
(MDCS-CC) (n = 6,103) carried out between 1991 and 1994100, in which fasting 
blood samples were collected to measure cardiometabolic risk markers. Just like for 
VHU, in our analysis using MDCS data, we excluded non-Swedish participants. The 
Ethical Committee at Lund University approved the MDCS (LU 51-90) and all 
participants provided written informed consent. 

Lifestyle and dietary assessments 
All participants were requested to complete a self-administered validated 
comprehensive lifestyle questionnaire at baseline and during follow-up. The 
questionnaire was designed to assess participants’ medical history, medication and 
diet supplementation, as well as socioeconomic, demographic and lifestyle factors, 
such as leisure-time physical activity, smoking/tobacco habits, alcohol consumption 
and quality of life. Disease history was assessed through Swedish national medical 
registers. The ‘MDCS modified diet history survey’ is a validated method for dietary 
data collection in this population101, 102. The method consisted of three parts: (i) a 7-
day food diary, collecting information regarding prepared meals (lunch and dinner), 
cold drinks and supplement intake; (ii) a FFQ, covering 168 items consumed 
regularly (breakfast, snacks and others not covered by the food diary) and hot drinks; 
moreover, portion sizes were estimated with the help of a picture booklet with 4 
portion sizes as reference for up to 48 food items; and (iii) a 45 to 60 minutes 
interview with a trained interviewer, covering information about cooking methods 
and portion sizes of the items recorded in the food diary. Thus, the interviewer could 
check that there was no overlap in the information collected through methods (i) 
and (ii). The combined dietary data obtained were then introduced into a software 
with the Malmö Food and Nutrient Database (based on Swedish Food Database PC 
KOST-93) to calculate nutrient and energy intake103, 104. As in VHU, participants on 
lipid lowering and/or blood pressure lowering medications, lipid levels and/or blood 
pressure levels were also corrected by adding published constants (+ 0.208 mmol/L 
for triglycerides, + 1.347 mmol/L for total cholesterol, − 0.060 mmol/L for HDL-C, 
+ 1.290 mmol/L for LDL-C, + 15 mmHg for SBP and + 10 mmHg for DBP)95, 96. 
For MDCS and VHU, we estimated the macronutrient percentage of energy intake 



36 

(E%) by multiplying intake by the metabolizable energy conversion factors and 
dividing this by TEI105, these variables were used as exposures in Paper III. 

Cardiometabolic risk markers 
Clinical measurement protocols in MDCS followed standardized practices, where 
BMI, SBP, DBP, FG, HDL-C, and LDL-C were measured as described for VHU. 
Yet, there was no change in how blood pressure was registered and peripheral blood 
was collected after fasting, moreover, HbA1c was only measured in MDCS-CC 
using standard procedures at the Department of Clinical Chemistry, University 
Hospital Malmö98, 100. 

Outcome assessments 
As in VHU, data pertaining to medical diagnoses and mortality were retrieved 
through record linkage from the National Board of Health and Welfare in Sweden, 
the Swedish National Tax Agency, and Statistics in Sweden until December 31st, 
2014. Using the participant’s civic registration numbers, records were linked, and 
the same diagnoses codes used in VHU study for T2D and composite CVD (MI and 
stroke) with the first date of a registered event was selected as the outcome for the 
analysis. 
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Chapter 3 

Methods 

Background 
Epidemiology focuses on assessing the distribution, rates, and patterns of disease 
across and within populations, as well as predicting and elucidating disease 
aetiology. Recent developments in affordable high-throughput genetic and 
molecular phenotyping technologies have driven the emergence of a new type of 
epidemiological analyses, where large, multi-dimensional datasets can be analysed 
without a priori hypothesis. The analysis of such data sometimes exceeds the 
capacity of traditional statistical methods used in epidemiology. This problem has 
been addressed through the use of machine learning (ML) methods, which are better 
suited to handling very complex datasets106 and allow both ‘supervised’ or 
‘unsupervised’ analyses to be performed. While supervised ML methods are often 
used to reinforce or ‘teach’ algorithms and to test specific hypotheses, unsupervised 
ML methods are typically used to uncover hidden structures in the data that might 
be undetectable with supervised approaches107. Although different in many ways, 
both ML approaches can be highly complementary. 

Environmental-wide association study (EWAS) 
EWAS is an approach somewhat analogous to GWAS, in which multiple 
environmental factors can be systematically screened for their associations with 
disease traits. This approach is agnostic to prior knowledge about disease 
associations, thus, bias from predetermined hypothesis is minimised. EWAS was 
first proposed in 2010, where it was used to study associations between 
environmental exposures and T2D108. We used the same approach on a Swedish 
population in a longitudinal study, to investigate the relationship between 
modifiable lifestyle exposures and cardiometabolic disease109. This approach was 
used in Paper I and the prioritised variables served as input variables in the 
predictive modelling in Paper II. 
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Principal component analysis (PCA) 
A large, multi-dimensional dataset is generally composed of observations, often 
found as rows (n) and features (i.e. variables of interest) in the columns (p). High 
dimensional data, is when p > n and this pose several important hurdles. Thus, 
techniques to reduce the dimensions are useful to retrieve the important variables 
and eliminate redundant and uninformative features. One popular approach is PCA, 
where the features are transformed into new variables (i.e. principal components) 
whilst retaining the maximum variation110, 111. In Paper III, we used PCA to 
represent real-world dietary patterns. New variables were created as linear 
combinations of the original dietary variables and were used to test linear 
associations with cardiometabolic outcomes as a complimentary analysis. 

Machine learning (ML): random forest, quantiles, and prediction intervals 
Amongst ML algorithms, a popular supervised technique is random forests. 
Decision trees have been implemented for decision making for several decades; 
however, the ensemble of different trees using bootstrapped datasets and randomly 
selecting a subset of variables for each tree decision was first introduced in 2001112. 
After averaging all trees, the model with the highest average probability is selected. 
Next, variables are ranked based on the ‘importance’ in the model. Caveats to this 
technique are that it is only suitable for complete-case analysis (i.e. does not permit 
missing values) and the relative contribution of variables to the model (e.g. variance 
explained or effect sizes) can be hard to determine. Random forests can be applied 
when the response (dependent variable) is continuous (regression) or categorical 
(classification). For the former, a quantile extension was introduced in 2006 called 
Quantile Regression Forest (QRF)113; this method does not assume any prior 
distribution and allows different quantiles of the response to be defined, such that 
responses at the tails of a distribution can be quantified. This contrasts linear models, 
which assume the response is normally distributed and focus on group average 
responses. Thus, by using quantiles, we can identify different response values 
compared with standard random forests, which like linear regression models focuses 
on group means. 

A good practice in prediction modelling is the random split of the sample into 
training, testing, and validation sets (when no external dataset is available). The 
training share of the sample (usually the largest) allows to ‘teach’ the ML algorithm 
when applied to the data; in the remaining set(s), the fitted model from the training 
step is applied to ‘unseen’ data in the testing set. This approach allows to quantify 
the performance of the built model and benchmark against other techniques and 
models. Appropriate interpretation of performance metrics from ML algorithms 
depends upon the type of response (i.e. regression or classification), the underlying 
assumptions, and the purpose of the model (e.g. predictive, diagnostic). 
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Performance metrics can be derived from building a confusion matrix, and 
allocating the number of observations classified as true or false, positives or 
negatives, respectively. Briefly, a confusion matrix is a contingency table that 
summarizes the performance of any ‘classifier’ or model (e.g. logistic regression, 
random forest classification), based on the correct or incorrect allocation of the 
predicted values against the true values (see Figure 5). The most common metrics 
to assess the performance is accuracy (defined as proportion of correctly predicted 
cases, i.e. true positives plus true negatives), sensitivity or recall (true positives 
divided by the sum of true positives and false negatives), specificity (true negatives 
divided by the sum of true negatives and false positives); and precision (true 
positives divided by the sum of true positives and true negatives). 

 

 
 

Figure 5. Confusion matrix. p: positive; n: negative; Y: yes; N: no. 

Another popular metric derived from a graphical model using sensitivity and 
specificity is the receiver operating characteristic (ROC) curve. When a ROC is 
plotted, sensitivity is usually displayed on the y-axis and 1-specificity on the x-axis; 
the ROC area under the curve (AUC) provides an indication of overall performance 
of the prediction model114, 115. 

As part of prediction modelling, the forecast of a new observation is likely to have 
error. Uncertainty arise from the methods used to measure responses and when 
fitting a model to approximate to the true response. Thus, to account for uncertainty, 
instead of having a single estimate we can calculate PIs. Those are defined as a range 
of future values where new observations are likely to fall with a given probability. 
Similar to confidence intervals (CIs), the probability range is set to include the true 
observation. However, the main difference between PIs and CIs is that the latter 
only includes the sampling uncertainty, whether PIs (which are wider) include the 
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uncertainty of the population mean plus the random variation of the individual 
observation116. I used QRF and prediction intervals in Paper II to identify 
individuals and use the allocation label to estimate the hazard ratios (HR) for 
cardiometabolic disease. Moreover, I used the AUCs to assess the performance of 
the created label when applying standardized risk scores. 

Mediation analysis 
In graphical modelling, SEM is a data analysis technique often used to explore and 
test causal relations among variables in a structure117. When written out, SEMs 
provide a graphical representation of a causal hypothesis, enabling simultaneous 
quantification of the structural relationships among the variables, defined as indirect 
effects (mediated), direct effects (causal, or the exposure effect without mediators) 
and total effects (the product of the sum of direct and indirect effects); by doing so, 
one can estimate if the effect of the exposure is likely to be causal after accounting 
for the mediators. In SEM, a pathway of relationships between variables (i.e.  
exposure, mediator, and outcomes) can be estimated as generalized linear models, 
following any graphical configuration hypothesized (see Figure 6)118. 

 

 
 

Figure 6. Graphical representation of the mediation analysis. X: independent 
variable; M: mediator; Y: Outcome. SEM Pathways: a is the coefficient of the effect 
of X on M; b is the effect of M on Y adjusting for the explanatory variable, c' is the 
coefficient of the effect of X on Y adjusting for M. 

Mendelian randomization (MR) 
Amongst the methods available with which causal relationships can be assessed, the 
instrumentalization of variables (IVs) and the use of proxy variables (i.e. a variable 
correlated with the variable of interest) were introduced to deal with confounding 
and control for measurement error when graphical modelling was first described119, 

120. A plethora of GWAS have been performed to date and summary data (and 
sometimes individual-level data) are often available through managed-access 
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repositories121. These data can be used to identify genetic variants as IVs to 
investigate the causal relationships between exposures (E) and outcomes (O)122, 123, 

124 using MR approach. MR is a versatile causal inference method that can be 
implemented using person-level or summary statistics data; the latter called two-
sample MR.

The advantage of MR is the leverage of the random and independent assortment of 
homologous chromosomes during meiosis, which makes it less prone to 
confounding or reverse causality. Two-stage least squares (2SLS) regression, is a 
pragmatic MR method where first the exposure is predicted from the genetic 
instrument, and secondly, the outcome is regressed on the predicted exposure, this 
is used in ‘one-sample MR’. On the contrary, two-sample MR relies mostly on 
summary statistics, which can be rapidly interrogated in statistical packages or in 
web-based platforms125, and the most common method used is the inverse-variance 
weighted (IVW), which combines ratios of estimates (YSNPs/XSNPs) weighted by the 
inverse of the variance.

For MR to be valid, an IV should meet some criteria to obtain an unbiased estimation 
of the causal association between E and O, thus, (i) the IV should directly be 
associated with E, (ii) the IV should not be associated with any confounder (U) of 
the E−O association, (iii) the IVs associated with O should only be through the E 
and there should not be any other causal pathway from IV to O122 (see Figure 7). If 
the latter is violated, this serves as evidence of pleiotropy.

Figure 7. Graphical representation of MR. IVs: Instrumental variables. Causal 
association between exposure and outcome (E−O) using IV as a proxy of E. Crossed 
lines highlight the violation of the IV criteria, where IV should not be associated 
with confounders (U) of E−O association and IV should be associated with O only 
via E and not through another pathway.

The first criterion for IV to be valid in MR can be verified by the strength of the 
genetic variant with the exposure of interest. In contrast, for the second assumption 
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the variants must influence the outcome only through the exposure and, thirdly, the 
instruments must not associate with measured or unmeasured confounders or with 
the outcome via other biological pathways (i.e. horizontal pleiotropy). However, 
when assumptions are violated (when there is pleiotropy, outlier variants, and weak 
instrument bias) statistical solutions and robust MR methods (i.e. Mendelian 
randomization pleiotropy residual sum and outlier (MR-PRESSO), MR-Egger, 
Mendelian randomization Robust Adjusted Profile Score (MR-RAPS))126, 127 can be 
implemented. The MR approach was used in Paper III using two-sample MR and 
robust MR methods to account for weak instrument bias. Moreover in Paper IV, 
we designed an instrument of SNPs associated with FG and HbA1c, but not T2D, 
to test the causal association of genetically-proxied prediabetes and CVD. 

Colocalization 
Genetic colocalization is a probabilistic technique to identify where genetic factors 
at particular loci are shared between two or more traits128. Overlapping genetic 
variants between traits may be driven by chance. However, colocalization aims to 
identify if (i) there is a causal variant for trait ‘A’ that is distinct from the causal 
variant for trait ‘B’ or if, (ii) the causal variant for trait ‘A’ and trait ‘B’ are shared 
whilst being at the same locus. Multiple algorithms for distinguishing between these 
two scenarios have been published129, 130. However, the common assumption in all 
these algorithms is that there is one causal variant (or a variant in very strong linkage 
disequilibrium (LD) with the true causal variant) in the region128. In Paper III, we 
utilized the Hypothesis Prioritisation for multi-trait Colocalization (HyPrColoc) 
algorithm129, which is a method to identify a putative causal variant shared between 
two traits. Colocalization is regularly used to infer putative causal relationships 
between ‘omics’ and complex traits, in our case we found evidence of colocalization 
of a likely causal variant near the transcription factor 7-like 2 (TCF7L2), yet having 
a locus colocalized to two traits is necessary but not sufficient for causality. 

Metanalytic research 
The ‘meta’ prefix denotes ‘comprehensiveness’; thus, the statistical methodology to 
aggregate quantitative evidence from studies (i.e. effect sizes, measures of 
association, p values, etc.) is called metanalysis. To pool individual- or aggregate-
level data from similar studies for further analytical procedures, involves a 
systematic and comprehensive approach to harmonize studies and collate published 
evidence with similar study designs, populations, exposures/treatments and 
outcomes. 

One example are GWAS, which typically include the statistical aggregation of 
separate GWAS to achieve larger sample sizes (e.g. ~ 700,000 individuals for BMI 
GWAS131). Another example is in MR where individual SNP effect sizes are pooled 
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for the IV and regressed on the exposure and outcome. In Paper IV, we pooled 
published studies using retrospective and prospective cohort studies. Metanalysis, 
when appropriately conducted, is often regarded as yielding unbiased estimates. 
One example are Cochrane reviews132, where findings often inform clinical 
guidelines. However, this approach is not without limitations, a major concern when 
aggregating studies is heterogeneity, arising from biological and/or statistical 
sources. To address this, solutions exist to control for differences among studies (i.e. 
subgroup analysis) and quantify heterogeneity (i.e. Cochran’s Q and I2). Moreover, 
specific biases pertaining to metanalysis of secondary data are difficult to anticipate 
before endeavouring in a systematic review. These include publication bias, which 
is a consequence of preferential reporting of positive findings. A second common 
error in metanalysis exists when an incorrect decision to use one of the two main 
statistical models is used: (i) fixed effects (if the researcher assumes the population 
are from the same source and there is a ‘true’ effect) and (ii) random-effects (where 
there is no single true effect, but rather a normal distribution of effects)133. The 
random-effects model often involves assigning a weight to each interrogated study 
according to the precision of the estimates taking into account both the within and 
between variance134. This particular approach left a profound teaching in my 
training given it was the last analysis conducted as part of my Masters’ thesis and 
the first project of my doctoral studies. 

Finally, the use of these methods and tools allowed me to optimise and assess causal 
relationships in epidemiological studies. Whether determining if an exposure-
outcome association is causal, it entails the triangulation of evidence using various 
approaches rather than a process guided by established principles (i.e. Hill’s 
criteria). However, there is no absolute criteria to establish causation, moreover, 
processes like multi-causation, dynamic competing exposures, and interactions 
among causal exposures, represent more complex challenges that still remain to be 
addressed. Traditionally, causation can only be drawn from randomised clinical 
trials, yet, novel and robust models to assess causal associations using observational 
data are now possible owing to the rapid development of techniques to analyse and 
integrate large amounts of data as discussed in this thesis. 
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Chapter 4 

Results and discussion 
The present section summarizes the papers included in this thesis. In Paper I, we 
implemented the EWAS approach to assess, in a relatively agnostic fashion, the 
relationships between modifiable lifestyle exposures and established 
cardiometabolic risk markers (i.e. BMI, LDL-C, HDL-C, triglycerides, total 
cholesterol, FG and 2-hr glucose, SBP, and DBP). This analysis enabled us to 
examine a wide range of exposures representing different domains (diet, working 
conditions, well-being). The associations were modelled using generalized linear 
regressions adjusted for standard covariates (e.g. age, sex, socioeconomic status, 
etc.). We used linear mixed models to account for longitudinal data and individual-
level variation (random effects) to screen for variables that are likely to explain 
meaningful degrees of variance in cardiometabolic traits. In addition, we fitted 
linear regression models where the outcomes were the 10-year change in the level 
of the nine cardiometabolic traits mentioned previously89. In Paper II, using pre-
selected variables (those prioritised by the EWAS in Paper I), I built non-
parametric prediction models using an ML algorithm for each cardiometabolic trait 
and estimated prediction intervals to identify individuals at the tails of the 
distribution and quantify risk attributable to this type of classification in relation to 
incident cardiovascular events and T2D. In Paper III, two causal inference methods 
(i.e. mediation analysis and MR) were employed to assess the direct and indirect 
effects of macronutrient intake and cardiometabolic traits and disease135. In Paper 
IV, we conducted a large metanalysis of published cohort studies, and enhanced this 
analysis using MR to established the directionality and magnitude of the association 
of prediabetes and CVD136. In the following paragraphs, I discuss the four papers, 
highlighting key aspects during the analysis, and some of the main findings therein. 

Paper I 
In Paper I, we conducted an EWAS in > 31,000 free-living Swedish individuals 
within VHU. Roughly 300 lifestyle exposures grouped in 10 domains: (i) alcohol 
consumption; (ii) non-alcoholic beverage consumption; (iii) food; (iv) nutrients; (v) 
general health; (vi) physical activity and fitness; (vii) psychosocial; (viii) sleep; (ix) 
social conditions; and (x) tobacco use, were interrogated for their associations with 
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BMI, LDL-C, HDL-C, triglycerides, total cholesterol, FG, 2-hr glucose, SBP and 
DBP. We assessed these associations using linear mixed models, to account for 
repeated measures, with a random intercept for each participant (equation 1). 

 

    (1) 

where 1|participant represents different random intercepts for each participant and 
 is error. 

Moreover, we utilized standard linear regressions for the change in each 
cardiometabolic trait during 10 years of follow-up (equation 2).  

    (2) 

where age.B is the age at baseline and age.F is the age at follow-up, and  is error. 

Initially, we transformed ordinal variables into continuous variables, and categorical 
variables were dichotomized. Next, we removed outliers, biologically implausible 
values, and missing observations. After adjusting for covariates such as age, sex, 
food frequency, BMI (when appropriate) and education level, the exposures 
‘physical activity’ and ‘general health’ yielded at least tentative signals in analyses 
focused on average associations with lifestyle variables. ‘Tobacco use’ was amongst 
the top-ranking exposure when the 10-year changes were the outcome. After ranking 
the top 5 variables corresponding to each domain for each cardiometabolic trait, we 
found 11 variables with a consistent effect across the majority of the 
cardiometabolic traits, including ‘Exercise during the last three months’, ‘Informed 
of having high blood pressure’, ‘Overall state of health during the last year’, ‘Years 
smoking’, and ‘Fitness status’. When we applied hierarchical clustering, we found 
the variables were grouped mostly into two groups corresponding to the smoking 
and physical activity domains. 

As the second author of Paper I, my contribution was mainly through data analysis 
(i.e. cluster analysis) to complement the standard analyses performed by the first 
author. I further contributed by critically revising the manuscript and interpreting 
the results. Then, the first author left our research unit before the review process had 
concluded, thus, I addressed most of the reviewers comments and made the 
modifications accordingly. Throughout the data analysis process, I provided 
feedback and discussion to the first author on the need to correct for overfitting by 
partitioning our dataset and pooling effect estimates. In Paper I, we utilized 
longitudinal data from the VHU (two instances), which included ~ 300 variables. 
These variables were inverse normalized to correct skewedness, scaled for 
comparability and dietary data was residualized for total energy intake (see Figure 
8). 
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Figure 8. Flowchart of the study of Paper I. 

There is growing recognition that lifestyle, physical activity, diet and 
cardiometabolic traits are intimately linked. Prior studies have identified lifestyle 
and environmental variables (i.e. sleep patterns, heavy metals exposures) associated 
with cardiometabolic traits and diseases such as T2D108, 109, that would have been 
missed with hypothesis-driven approaches137. Moreover, most of the exposures 
interrogated were categorized as either ‘non-modifiable’ (e.g. age and sex) or 
‘modifiable’ (e.g. diet and smoking). Doing so placed emphasis on variables (i.e. 
modifiable exposures) that might be components of interventions intended for 
cardiometabolic disease prevention as well as those that represent background risk 
factors (i.e. non-modifiable exposures).

Through the conducted analyses, we adjusted for multiple testing to minimise false 
positive signals; those that passed the false discovery rate (FDR; p < 0.05) were 
considered ‘tentative’ signals. For instance, these included exposures associated to
the different lipid fractions investigated in the study (see Figure 9).
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Figure 9. Manhattan plots of lipid fraction representing the distribution of p values 
in the (y-axis) of the association of lifestyle variables (x-axis) and lipid traits by 
domain. Panel A) total cholesterol; panel B) triglycerides; panel C) HDL-C, and 
panel D) LDL-C. Tentative signals are coloured and number labelled in the figure. 
The top 10 variables are listed in the plot and the rest detailed in the original paper89. 

Next, we rank-ordered the screened variables within each domain by percentage of 
the variance explained for each of the outcome traits. These variables were then 
clustered to identify domain-specific targets for subsequent analyses. We found that 
established lifestyle risk factors (i.e. ‘tobacco use’), variables within the physical 
activity domain (e.g. ‘Exercise during the last three months’), and ‘alcohol intake 
(g/day)’, explained the largest variances across all traits, whereas in the long-term 
lifestyle association analysis, most of the ‘tentative signals’ were within the 
‘tobacco use’ and ‘General health’ domains. Using the prioritised variables we fitted 
predictive models in Paper II. 

Paper II 
During the third and fourth year of my doctoral studies, Paper II was completed, it 
was a collaborative project conceptualized by another team member, my supervisor, 
and I. My role was to progress the project to the point of completion. This involved 
comparing and selecting parametric and non-parametric models with the goal to 
identify individuals susceptible to environmental exposures and assess the risk of 
cardiometabolic disease. In these analyses, we utilized data from cohorts located in 
the north (VHU) and south (MDC) of Sweden. An outline of the studies is shown 
in Figure 10. One of the main challenges was the direct comparison between a ML 
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approach and generalized linear regressions. At this time, there is no clear consensus 
about how ML and conventional statistical models should be compared. Therefore, 
I use the percentage covered by the prediction intervals as a metric of performance, 
where those models close to the 95% coverage (equivalent to the set prediction 
interval probability) were selected. 

 

 
 

Figure 10. Flowchart of the studies in Paper III. 

The input data for the models included the prioritised environmental exposures 
obtained through a comprehensive lifestyle questionnaire that queried socio-
economic factors, physical/mental health, quality of life, social network and 
support, working conditions, alcohol/tobacco use, physical activity, and also 
included an FFQ. Cardiometabolic markers and cardiovascular outcomes were 
retrieved and measured as described in the Methods section. 

To build the models, I used the prioritised exposures from Paper I. Initially, 
variables were inverse normalized and ordinal variables transformed into 
continuous variables. Next, I removed zero and near-zero variance predictors (i.e. 
mostly unique values) to avoid redundancy using the ‘caret’ R package. Variables 
were then assessed for collinearity and those with a variance inflation factor > 10 
were removed. For diet data, prior to undertaking the QRF analysis, I residualized 
macro- and micro-nutrient intake for total energy intake to control for confounding. 

Before conducting the analyses, I partitioned the data to 50% of the complete data 
(n=16,425) for validation and the remaining 50% (n=16,422) for model training. A 
common ratio to split the dataset for ML training is 70 to 80%107; however, because 

VHU (n= 42,887 )
7,477 not born in 
Sweden and/or 

with self-reported 
cardiovascular or 
Type 2 diabetes 

(T2D)Visit 1 (n= 35,440)

Random split 50/50%

485 T2D cases; 
1,563 CVD events ;
92 CVD mortality 

n= 16,425 Train n= 16,422 Test

Visit 2 (n= 35,440)

~10 y

90% Prediction 
interval estimation 

with Quantile 
regression forest 

(QRF)

Cox hazard model Pooled HR

MDCS (n= 30,446)

3,041 not born in Sweden

90% Prediction interval estimation with 
Quantile regression forest (QRF)

MDCS (n= 18,067) 

MDCS (n= 21,108 ) 

3,203 T2D cases; 
2,146 CVD events ;
270 CVD mortality 

Cox hazard model

1,869 missing outcome 
and/or 7,469 with self-

reported Type 2 diabetes 
(T2D) or cardiovascular 

disease (CVD)

5,508 in MDCS-CC
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the absolute number of disease events is relatively low in the partitioned datasets, 
we pragmatically determined a 50/50 data split. An example of input variables is 
depicted in the feature selection step from the random forest algorithm (see Figure 
11).

Figure 11. Variable importance plot of FG model in VHU per visit. The x-axis 
shows each model variable. %IncMSE: percentage in mean square error is estimated 
upon mean decrease of accuracy in predictions with out-of-bag samples; 
IncNodePurity: increase in node purity is the total decrease of squared errors for 
each decision tree.

The most informative features are included as input variables for the model testing 
step. After fitting the QRF models we determined the prediction intervals at 90% 
probability (5th and 95th quantiles) using bootstrapping to obtain a wide range of 
values where a future value is likely to fall, as in equation 3:

(3)

where for a given x, the response value lies within the interval I(x). 

Next, for observations with values above 95th quantile were considered as 
‘sensitive’, and those below 5th quantile as ‘resilient’, the remaining were considered 
as the reference group. This categorization was hypothesised to describe 
environments with more or less likely influence on intermediate cardiometabolic 
traits, and thereby identify individuals with varying degrees of susceptibility to 
adverse health consequences of the environment. To minimize misclassification 
owing to regression dilution, we used repeated-measured data where an individual 
was classified consistently on consecutive occasions (only possible in VHU). 
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In subsequent time-to-event analyses (to determine risk of fatal and non-fatal 
disease events) the reference group included all those not classified as ‘sensitive’ or 
those below their 5th quantile. Moreover, we evaluated the predictive performance 
of group membership by obtaining two known cardiovascular risk-scores (i.e. 
Framingham risk score and 2013 American College of Cardiology/American Heart 
Association Task Force score) and assessed the AUCs of two logistic regression 
models with and without a term for sensitivity classification (0/1); overall, AUCs 
were higher in the models where the sensitivity term was included (see Table 2). 

 

Table 2. AUCs of risk scores for each trait in VHU. 

Traits 

FRS non-
laboratory-
based risk 
score 

FRS non-
laboratory-
based + 
Sensitivity 
status 

FRS 
laboratory-
based risk 
score 

FRS 
laboratory-
based risk 
score + 
Sensitivity 
status 

ACC/AHA 
risk score 

ACC/AHA 
risk score + 
Sensitivity 
status 

Total 
cholesterol 0.72 0.73 - - - - 

SBP 0.73 0.74 - - - - 

DBP 0.73 0.73 - - - - 

LDL-C 0.71 0.76 0.72 0.75 0.74 0.76 

HDL-C 0.69 0.62 0.67 0.63 0.70 0.68 

BMI 0.73 0.74 0.71 0.73 0.73 0.74 

2-hr glucose 0.73 0.74 0.70 0.71 0.71 0.71 

FG 0.73 0.73 0.71 0.73 0.72 0.72 

Triglycerides 0.70 0.69 - - - - 

" - " it was not possible to estimate the number; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein 
cholesterol; FG: Fasting glucose; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; FRS: Framingham risk score; ACC/AHA: 
American College of Cardiology/American Heart Association. 

 

Although the VHU and MDCS are both prospective cohort studies of Swedish 
adults, the data collection methods differ in numerous ways, as noted in the Methods 
section. However, as MDCS represented the best available replication cohort, we 
proceeded with these analyses, resulting in similar results across studies and pooling 
them for a single measure of association to appraise risk. The findings suggest that 
identifying population subgroups that are especially sensitive to the adverse 
consequences of environmental risk factors for cardiometabolic disease may aid in 
the prevention of these diseases. 
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Paper III 
I finished Paper III during the third year of my doctoral studies, with the analytical 
methods and data analysis primarily my responsibility. It is within this project where 
I worked most independently of all those included in this thesis. The data analyses 
were conducted by me, under the guidance of my supervisor. Moreover, the analysis 
plan, which included mediation and MR analyses, was largely designed by me. 

The main goal of this analysis was to assess the causal relationships between 
genetically-predicted macronutrient intake and cardiometabolic conditions, which 
might aid to better understand the role of macronutrients in the diet and the risk of 
CVD and T2D. To assess a causal link, we utilized mediation analyses by 
accounting the mediated effects of physical activity and BMI, and to triangulate our 
findings we undertook a series of two-sample MR analyses. We utilized data from 
VHU with key input variables including macro- and micro-nutrient data, physical 
activity, BMI, education, portion size (as covariates) and summary statistics from 
large consortia studies for the genomic integrative analysis. 

Before performing the MR analysis, we undertook pairwise mediation analyses of 
the variables in VHU dataset, as it was anticipated, adiposity and physical activity 
(both variables correlated) had a large proportion of the effect mediated in 
cardiometabolic disease (see Figure 12 and 13). 
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Figure 12. Direct estimates between macronutrients and outcome in pairwise 
mediation analysis. Macronutrients are arrayed on the x-axis in colour codes. Data 
are presented as direct estimates (DE) and 95% CIs (coefficient * ±1.96 (standard 
error(coefficient)); (*) significant after FDR correction at < 0.05; Units: fasting 
glucose (FG) mmol/L; 2-hr glucose (2-h G) mmol/L; total cholesterol (TC) mmol/L; 
LDL-C mmol/L; HDL-C mmol/L; triglycerides (TG) mmol/L; For T2D and CVD, 
the unit increase corresponds to the probability. 
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Figure 13. Indirect estimates between macronutrients and outcome in pairwise 
mediation analysis. Macronutrients are arrayed on the x-axis in colour codes. Data 
are presented as indirect estimates (IDE) and 95% CIs (coefficient * ±1.96 (standard 
error(coefficient)); IDE is the estimated average increase in the dependent variable 
as a result of the mediators; (*) significant after FDR correction at < 0.05; Units: 
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fasting glucose (FG) mmol/L; 2-hr glucose (2-h G) mmol/L; total cholesterol (TC) 
mmol/L; LDL-C mmol/L; HDL-C mmol/L; triglycerides (TG) mmol/L; For T2D 
and CVD, the unit increase corresponds to the probability. 

Other mediation analyses were undertaken using two more configurations (i.e. serial 
and parallel) for building structures of more realistic scenarios. To conduct 
mediation analyses, I fitted several SEM pathways composed by linear or logistic 
regression between mediators, i.e. a pathway including BMI and physical activity 
and the outcomes (cardiometabolic trait or disease) adjusted for changes in 
macronutrient intake; another pathway including linear or logistic regression 
between macronutrient intake and outcomes, having adjusted for mediators (direct 
pathway). Given we were mainly interested in the direct effect of our exposures, we 
compared partially and fully-mediated models using the chi-squared difference test, 
an example is shown in Table 3. In addition, the statistically significant associations 
in the MR approach between carbohydrate intake and outcomes are shown in Table 
4. 
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Next, to identify shared causal pathways among traits (i.e. genetically-predicted 
dietary carbohydrate intake and T2D), we employed the HyPrColoc algorithm for 
multi-trait colocalization138, to explore a putative shared causal pathway. I 
conducted pairwise and multi-trait colocalization analyses of the shared causal 
variants between T2D, adjusted (T2DadjBMI) and unadjusted for BMI, 
carbohydrate, sugar, protein, and fat intake; where for T2DadjBMI and 
carbohydrate intake colocalized with posterior probability > 0.9 in the region 10 
near the known T2D, TCF7L2 locus139, 140 (see Figure 14). 

 

 
 

Figure 14. From left to right. Trait-trait scatterplot of 3 SNPs where rs7903146 
(diamond) is the likely causal SNP; Upper right panel: Plot of locus region (near 
TCF7L2 gene) and T2D adjusted for BMI; Lower right panel: Plot of locus region 
(near TCF7L2 gene) and carbohydrate (E%) trait. 

In summary, our analyses suggested that genetically-predicted carbohydrate intake 
and T2D have a likely causal relationship, with a putative mechanism involving 
TCF7L2 gene. 

Paper IV 
Complex diseases, like T2D and its complications, can be prevented. Although 
observational studies have been equivocal about the risk associated with high blood 
glucose levels without diabetes, clinical trials have proven effective interventions 
when reducing disease progression and complication in the context of diabetes141. 
Prediabetes was firstly discussed in 1979 by the National Diabetes Data Group 
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(NDDG) and conceptualized as a metabolic intermediate state between normal 
glucose homeostasis and T2D142. However, prediabetes, as a new clinical category, 
engenders costs, burden of disease and remains unclear whether it truly conveys a 
higher risk for CVD. In Paper IV, we hypothesized that prediabetes is associated 
with, macro- and micro-vascular complications, traditionally reserved for full-
blown and long-term T2D. Using two epidemiological approaches to triangulate 
evidence, we increase statistical power (in the metanalysis) and tested genetically-
proxied prediabetes, thus, our approach may lend credence to the notion that 
prediabetes should be intervened upon. To test this hypothesis, we conducted two 
specific analyses: (i) a systematic review and metanalysis of cohort-based studies 
and (ii) two-sample MR of published GWAS summary statistics. 

The first stage of the analyses was led by me. We designed a search strategy to 
identify studies fulfilling the inclusion criteria, next we interrogated the PubMed 
repository by conducting a systematic literature review of published 
epidemiological studies (published through November 30th, 2017) focusing on 
‘prediabetes and diabetic complications’ and extracted summary statistics that we, 
thereafter, combined through metanalysis. In brief, studies were included if 
participants were drawn from the general population, glycaemia was measured at 
baseline and the subsequent outcomes at follow-up were CHD, CKD or stroke, and 
were compared with a group of normoglycemic participants. Studies with 
individuals known to be diagnosed with diabetes or with diabetic values at baseline 
or follow-up were excluded from the analysis. Moreover, given prediabetes 
definition remains contested, we included studies using prediabetes identified by 
IGT, IFG per World Health Organization (WHO)15 or American Diabetes 
Association (ADA) criteria and HbA1c per ADA criterion16. 

For MR (led by my co-author), we defined two sets of instruments that characterized 
excursions in fasting glucose and HbA1c without reaching the diabetic range. The 
genetically-proxied prediabetes exposure was built by SNPs associated with fasting 
glucose and HbA1c at a genome-wide level of statistical significance (p < 5x10-8) 
within the MAGIC dataset143, 144, but which are not associated with T1D or T2D (p 
> 0.05) in the most recent release of the DIAGRAM dataset145, 146. The IVs derived 
were then examined within the GWAS databases for any respective ‘diabetic’ 
complication. HbA1c (exposure) data were also obtained from the latest MAGIC 
dataset. CHD GWAS summary statistics were obtained from the latest metanalysis 
data repository147; stroke data was obtained from the most recent MEGASTROKE 
consortium metanalysis; data on kidney disease was obtained from the CKDGen 
GWAS summary data repository148. Lastly, selection of glucose-associated SNPs 
from MAGIC149, resulted in 47 SNPs for FG and 10 for HbA1c. 

The observational metanalysis results suggested that prediabetes is associated with 
increased risk of CHD and stroke (relative risk (RR) =1.16; 95%CI: 1.09, 1.23; Q= 
52.5, p = 0.058; I2=27.7%; and RR=1.11; 95%CI: 1.03, 1.18; Q=28.5, p = 0.23; 
I2=16%, respectively) but not CKD (see Figure 15 and 16, respectively). In the MR 
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analysis, prediabetes conveyed a statistically significant increase in the odds of 
CHD by 26% but not stroke or CKD, without evidence of directional pleiotropy.

Figure 15. Metanalysis of the association between prediabetes and CHD. Data are 
presented as relative risks and their corresponding 95% CIs. The square and 
diamond shapes represent effect size whilst horizontal bars represent the 95% CIs. 
Source reference136.
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Figure 16. Metanalysis of the association between prediabetes and stroke. Data are 
presented as relative risks and their corresponding 95% CIs. The square and 
diamond shapes represent effect size whilst horizontal bars represent the 95% CIs. 
Source reference136. 
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In summary, our findings highlight the likely causal link between prediabetes and 
CHD; thus, interventions for the prevention of diabetes-related CHD could be more 
effective if initiated early in people with prediabetes. Curiously, the last paper of 
this thesis was my first project of my Ph.D. studies and the consolidation of my 
Master’s thesis. Indeed, I started working on this project during the last months of 
my Masters (2017) and being less experienced in research, yet, I received the most 
supervision of all papers during this project. I did most of the statistical analysis in 
a software that I learned only for this type of analysis and have not used anymore 
(STATA), nevertheless, this, like the other projects, have shown me the many 
different aspects to consider during the research process. 
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Summary and conclusions 

The overarching goal of these four papers is to optimize the assessment of 
environmental exposures and its association with cardiometabolic risk, by doing so 
we have identified subgroups of the population that may be targeted for early 
interventions and we have elucidated causal associations. Often, epidemiological 
research investigates risk factors associated with disease without attempting to 
explain causal mechanisms. Here, using genetic epidemiology tools and data-driven 
methods, I focused on the study of putative causal links of environmental exposures 
with T2D and CVD. Both of these diseases, which are intertwined and increasing in 
prevalence, represent a large burden of disease worldwide, causing immense 
suffering, serious complications, and high treatment costs. Although we could not 
fully elucidate mechanistically the pathways linking exposures and disease, our 
findings might aid when elaborating prevention strategies and point to existing 
proven interventions for sensitive subpopulations. The findings in this thesis imply 
that intervening in those at-risk or before disease onset, it is likely to delay 
cardiometabolic disease progression and its complications. 

In Paper I, we screened and prioritised variables that are modifiable and likely to 
be intervened upon, moreover, these factors can be used for further disease 
prediction modelling. By identifying a large number of exposures with 
environmental wide associations with the cardiometabolic traits, we evaluated 
whether the exposures conferred sensitivity to the environment and moderate the 
risk of T2D and CVD, using a machine learning-based approach in Paper II. The 
objective was to identify individuals at-risk yet often overlooked by conventional 
methods and assess their cardiometabolic risk. These individuals may be identified 
as populations at-risk, such as those with prediabetes or ‘sensitive’ to the 
environment, and potentially target them for more precise strategies. In Paper III, 
I focused on the environmental risk factors, specifically dietary items, and their 
direct impact on cardiometabolic traits and disease, where we conducted mediation 
analyses and an integrative genomic approach to identify the likely causal factor 
useful to inform dietary intervention studies. In Paper IV, the genetic instruments 
used therein demonstrated the likely causal role of prediabetes and CHD, 
suggesting, that intervening in those categorized as having prediabetes are likely to 
benefit from early interventions to prevent cardiovascular complications. 
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Future perspectives 

Immediate extension and other considerations to the projects described in this thesis 
are discussed as following: 

 From Paper I, as described in this thesis, the prioritised variables for this 
population can be used for other downstream analyses, for instance in 
Paper II, we used the variables for disease prediction and in Paper III for 
causal inference. Other potential venues include testing new 
epidemiological associations under more sophisticated techniques like deep 
learning to refine the identification of the most informative variables in 
disease prediction. Moreover, using other SEM configurations may allow 
us to test hypothesized associations between different environmental 
exposures and disease risk. 

 Another consideration in Paper I, is that factors identified by EWAS 
provide a candidate shortlist of variables for further analyses, however, it 
also highlighted variables that were highly context-specific that may not 
extrapolate adequately to other populations; thus, I believe that the 
approaches in Paper I and Paper II must be applied in other populations 
before generalizing conclusions. 

 One limitation in our studies, i.e. Paper II, is how exposure data was 
captured, differences amongst data collected from different studies may 
result in bias when aggregating and pooling results, yet more likely to pull 
the estimate towards the null. Moreover, it is recognized self-reported data 
(i.e. diet) may induce bias.  

 For Paper II a potential extension, analogous to GWAS, is to derive an 
‘Environmental risk score (ERS)’. Although I did test a pilot ERS, when it 
was applied to an independent cohort did not show better predictive 
performance than conventional risk scores for cardiometabolic disease, 
perhaps, using ERS based upon novel ML algorithms may improve risk 
prediction. A potential extension is through the development and 
implementation of methods that can handle longitudinal data and 
incorporate time-varying exposures or through trajectory-based modelling. 

 Other potential venues for Paper I and Paper II, is the enrichment of the 
dataset with genetics and multi-omics, initially, we discussed the plan to 
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perform genotyping de novo on VHU cohort, however, due to time and 
budget constraints we did not proceed. GWAS studies, with large sample 
sizes (~ millions of individuals) together with more recent exome and 
whole-genome sequencing studies have successfully identified novel 
genetic loci associated with cardiometabolic traits and diseases. Therefore, 
more research questions can be addressed using summary-level data in post-
GWAS analyses. Similarly, despite having adequate power from GWAS 
data, the regular update of our analyses may aid to estimate with more 
precision the size of the effects here reported. 

 Environmental exposures do not explain all variance in cardiometabolic 
risk; much of the remainder is likely attributable to genetic susceptibility, 
and their interaction with lifestyle. To identify individuals with specific 
susceptibility, I undertook a novel approach in Paper II, where sensitivity 
to the environment emphasizes and suggests a non-environmental 
component of susceptibility, thus, this may be tested with appropriate 
statistical analysis if genetic data is obtained. Moreover, the modelling of 
genetic interactions (if genotype data is available) with ‘sensitivity’ status, 
might help us to better understand the gene-environment interaction in the 
different population subgroups. 

 Many analytical methods and data-driven approaches have successfully 
been used to identify heterogeneous subgroups of disease. Most of these 
approaches have identified these groups or clusters based upon phenotypic 
markers. In Paper II we identified a group of individuals based on their 
susceptibility to the environment in two different cohorts, the identified 
group had a distinct risk profile, however, the validation of our findings 
should be obtained in a diverse population. Thus, it is expected these 
subgroups have divergent multiomics signatures that may allow us to 
inspect putative mechanisms in greater detail in future research. 

 Similar to genotyping, another venue to enrich data in our studies (i.e. VHU 
in Paper II) is through data mining of medical records. So far, a large 
number of epidemiological studies have primarily relied on self-reported 
data to quantify environmental exposures. However, lifestyles are highly 
complex to capture and seldomly remain the same through lifetime, thus, 
there may be opportunities to obtain objective biomarkers and clinical 
variables through linking health and medical records, conditioned upon the 
informed consent is given for these analyses. 

 For Paper III, one of the limitations we had in the mediation analysis is the 
missing assessment of the role of host microbiome in carbohydrate 
metabolism and cardiometabolic disease. Whether this data is difficult to 
obtain, integrate and analyse, now is widely acknowledged the important 
role of microbiota in glucose metabolism and T2D risk. 
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 For Paper IV, a potential opportunity is to expand the causal investigation 
to other T2D microvascular complications such as retinopathy and 
neuropathy, which have also been associated with prediabetes, yet 
secondary data available for these conditions may be scarce. 

Paper II was the final project of my Ph.D. studies, which I undertook during my 
research visit to the Christensen Lab at Geisel School of Medicine, Dartmouth 
College in New Hampshire, USA, where they focus on translational cancer research. 
A potential follow-up analysis would be to explore the same approach in an 
independent epidemiological cohort in the context of cancer risk (e.g. New 
Hampshire Birth cohort). In addition, for Paper III a potential research question for 
causal inference is to explore the role of established risk factors underlying 
metabolic and cancer processes, such as oxidized cholesterol derivatives (i.e. 
oxysterols) and insulin-mediated effects using genomic integrative approaches. 

The findings in this thesis are informative for public health and nutritional 
guidelines that require causal evidence. Also the results presented may motivate 
new research questions. The methods applied in each paper represent a few of many 
possible approaches. Consequently, confirmatory analyses using alternative 
methods may yield new insights. Nevertheless, the work I have performed helps to 
assess the magnitude, directionality, and nature of associations, thereby improving 
our understanding of the relationships between environmental exposures and 
cardiometabolic traits and disease. This work also helps to ensure that when 
intervening upon targeted exposures or individuals, we anticipate it is likely to have 
a relevant clinical effect.  

Finally, this thesis helps to inform the design of clinical trials by highlighting causal 
modifiable exposures to intervene or control upon. Within the context of precision 
medicine, to establish appropriate therapeutics (either pharmacotherapy or lifestyle 
modification) we need to target, and prioritise, subpopulations including individuals 
living with prediabetes or those sensitive to the environment to prevent 
cardiometabolic disease. In addition, interventions to delay T2D onset should 
consider the impact of dietary carbohydrate intake when formulating nutritional 
recommendations. As research advances, new tools and techniques will emerge in 
the future with the possibility to disentangle the underlying biological mechanisms 
and individualise care. The integration of new technologies and fields will pave the 
way to optimise the exposome-wide assessment to move forward from standard care 
to personalised medicine. 
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The majority of non-communicable diseases are caused by the complex interplay of genetic and environmental 
factors. In the last decades, major progress has been made in discovering genetic loci predisposing to these 
diseases, facilitated by genome-wide association studies (GWAS). These studies allow high-throughput and 
systematic screening of millions of variants against quantitative traits or hard disease endpoints. Unlike popula-
tion genetics, there are no standard environment ‘chips’ that capture multiple environment exposures simultane-
ously. Therefore, environmental epidemiology typically involves approaches where hypothesized associations 
between specific environmental exposures and disease traits are separately tested. These studies are limited by 
the expectations and knowledge about the hypothesized relationships they seek to test, which may cause bias 
and inhibit  discovery1.

Environment-wide association studies (EWAS) represent an approach through which multiple environmental 
factors can be systematically screened for their associations with disease traits in a manner that is to a large degree 
agnostic to prior knowledge about disease associations; in this sense, the EWAS approach is similar to GWAS. 
EWAS was first described in the published literature in a 2010 paper reporting associations analyses between 
metabolites and type 2  diabetes2. Later, EWAS was used to identify nutrients, environmental contaminants, 
and prescribed  drugs3–9 associated with disease and disease complications. Almost all published EWAS have 
used cross-sectional epidemiological data to assess exposures at a fixed time point without consideration of the 
impact of exposures throughout an individual’s lifetime. Longitudinal data analyses may help us understand the 
associations among exposures and changes in cardiometabolic traits over time.
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The present study sought to assess the temporal relationships of more than 300 lifestyle exposures (e.g. food 
items, sleep habits, physical activity, psychosocial factors) with nine cardiometabolic traits (i.e. BMI, blood lipids, 
blood glucose, and blood pressure) and use these results to identify target lifestyle exposures/exposure groups 
that could inform lifestyle interventions focused on controlling cardiometabolic diseases.

The analyses reported here were undertaken using data from the Västerbotten Health Survey 
(Västerbottens hälsoundersökning; VHU)10. VHU is a prospective, population-based cohort study originally 
designed as a long-term project intended for health promotion among the general population in Västerbotten 
county (approx. 254,000 inhabitants), northern Sweden. Since 1985, adults residing in Västerbotten have been 
invited to undergo a clinical examination and complete lifestyle questionnaires during the years of their 30th, 
40th, 50th, and 60th birthdays.

A sub-cohort of VHU (n = 88,614) was used in the present analyses. Participants with non-Swedish origin 
(n = 14,629) were excluded from the analyses as the different cultural and lifestyle habits and disease predis-
position of non-Swedish participants may cause confounding by population stratification in EWAS analyses. 
Participants with diagnosed diabetes and cardiovascular diseases (n = 3025) were also excluded to minimize bias 
attributable to diagnostic labelling and medications. The final dataset comprised 31,362 participants including 
67,738 health examinations performed between 1990 and 2013. Written informed consent was obtained from all 
living participants as part of the VHU. The study was approved by the Regional Ethical Review Board in Umeå, 
and all research was conducted in accordance to this ethical approval and with the Declaration of Helsinki and 
other relevant guidelines and regulations.

Nine cardiometabolic traits were analysed in the study: body mass index (BMI), 
systolic and diastolic blood pressures (SBP and DBP, respectively), fasting and 2 h glucose, total cholesterol, tri-
glycerides, HDL cholesterol and LDL cholesterol. Clinical measures in VHU are described in detail  elsewhere10. 
In brief, participants’ weight (in kg) and height (in cm) were measured using calibrated scale and stadiometer, 
with participants wearing light clothing and no shoes. BMI was calculated as body weight in kilograms divided 
by height in meters squared. SBP and DBP were measured once, after 5-min rest, with the participant in a 
recumbent position using either manual or automated sphygmomanometers. Capillary blood was drawn after 
overnight fasting and a second blood sample was drawn two hours after the administration of a 75-g oral glucose 
load. Blood glucose, total cholesterol and triacylglycerol levels were then measured using a Reflotron bench-top 
analyser (Roche Diagnostics Scandinavia AB). HDL cholesterol was measured in a subgroup of participants and 
LDL cholesterol was estimated using the Friedewald  formula11. The measurement for lipids and blood pressure 
changed in September 2009. From this date onwards, blood pressure was measured twice in a sitting position 
and averaged, and total cholesterol and triglyceride levels were analysed using clinical chemical analysis in the 
laboratory. Thus, validated conversion equations were used to align the lipid and blood pressure measurements 
taken before and after September  200912. For participants on lipid and/or blood pressure lowering medications, 
lipid and/or blood pressure levels were corrected by adding published constants (+ 0.208 mmol/l for triglycer-
ides, + 1.347 mmol/l for total cholesterol, − 0.060 mmol/l for HDL cholesterol, + 1.290 mmol/l for LDL choles-
terol, + 15 mmHg for SBP and + 10 mmHg for DBP)13,14. Values of cardiometabolic traits located outside the 
normal range suggested by VHU data managers (see Supplementary Material) were considered outliers and 
excluded.

Participants were asked to complete a self-administered questionnaire during each 
visit that included questions about socio-economic factors, physical/mental health, quality of life, social network 
and support, working conditions, and alcohol/tobacco consumption. Physical activity was assessed through a 
modified version of the International Physical Activity  Questionnaire15,16. A validated semi-quantitative food 
frequency questionnaire (FFQ) designed to capture habitual diet over the last year was used to capture informa-
tion on various dietary  factors17. Up to the mid-1990s, the FFQ consisted of 84 different foods items/groups, 
but it was reduced to 66 items in 1996 by combining similar line items and by removing items that provided 
minimal unique information. For the current analysis, matching food items from different FFQ versions were 
combined in new variables and all analyses including dietary variables were adjusted for FFQ version. In the 
FFQ, participants indicated how often they consumed foods and beverages on a nine-point frequency scale. 
Information on average portion size of meat and fish, vegetables, potatoes, rice and pasta was also gathered. 
Nutrient and energy content were calculated based on the Swedish Food Composition  Database18 based on meal 
frequency and portion size. Food intake level (FIL) was calculated as total energy intake divided by estimated 
basal metabolic rate. Participants with more than 10% FFQ data missing, one or more portion indication miss-
ing, or a seemingly implausible total energy intake (the top 2.5% and bottom 5% of FIL in the original VHU 
dataset) were excluded from the analyses. Implausible values for other lifestyle variables (see Supplementary 
Material) were also removed from the analyses. Lifestyle variables were grouped in 10 different categories to 
facilitate understanding of the results: (i) alcohol consumption, (ii) non-alcoholic beverage consumption, (iii) 
food, (iv) nutrients; (v) general health, (vi) physical activity and fitness, (vii) psychosocial, (viii) sleep, (ix) social 
conditions, (x) tobacco use.

The flowchart of the study is shown in Fig. 1. Lifestyle variables were treated either as 
continuous or as categorical variables; thus, ordinal variables were treated as continuous variables. For categori-
cal variables with more than two levels dummy variables were created and dichotomized. All numeric lifestyle 
variables were inverse normalized in order to address skewness and scaled for comparability. Similarly, for cat-
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egorical variables, levels were harmonized from low to high, using the lowest one as reference. Thirty-eight cat-
egorical variables that had 90% of the observations belonging to one category were excluded from the analyses. 
In total, the analyses included 242 numeric and 45 categorical lifestyle variables. Dietary variables were regressed 
on total energy intake and their residuals along with total energy intake were included in the analyses of these 
variables to account for potential confounding by total energy  intake19. Models with glycaemic or lipid traits as 
the dependent variables were additionally adjusted for fasting status. All models (except models having BMI as 
outcome) were adjusted for BMI.

Average lifestyle associations. Linear mixed models were used to estimate an average linear effect of the lifestyle 
exposures on the cardiometabolic traits. The models were adjusted for age,  age2, sex, educational level, follow-up 
time, FFQ version (where appropriate), total energy intake (TEI; where appropriate), BMI (where appropriate) 
and fasting status (where appropriate).

where γij represents a cardiometabolic trait value at visit i for participant j, β00 is the fixed intercept, μ0j represents 
different random intercepts for each participant, the rest of the β estimates are the estimated fixed effect size 
parameters for each corresponding variable, and ε represents error.

Long-term lifestyle associations. Linear regression models were used to test if the lifestyle variables were associ-
ated with 10-year changes in the cardiometabolic traits:

where γF represents the value of the cardiometabolic trait at follow-up and γB the value at baseline, α is the inter-
cept, βi represent the estimated effect size parameter for each corresponding variable.  AgeB, FFQ  versionB,  TEIB, 
fasting  statusB and lifestyle  variableB are the age, FFQ version, TEI, fasting status and lifestyle variable values at 
baseline; fasting  statusF is the fasting status value at follow up; meanBMI is the average BMI of the baseline and 
follow-up BMI values, and ε represents error.

Tentative signals. The Benjamini and  Hochberg20 False Discovery Rate (FDR) was used to correct for multiple 
testing. Associations of lifestyle variables were considered “tentative signals” if they achieved significance at 
PFDR < 0.05 after multiple testing correction. Overall estimates were used in the description of the results and 
effect estimates are reported in Supplementary material.

(1)

γij = (β00 + μ0j) + β10ageij + β20age
2
ij + β30sexij + β40follow

− up timeij + β50FFQ versionij + β60TEIij + β70BMIij

+ β80fasting statusij + β90lifestyle variableij + εij

(2)
γF = α + β1ageB + β2age

2
B + β3sex

+ β4follow up time
+
β6γB +β7FFQ versionB + β8TEIB + β9meanBMI

+ β10fasting statusB + β11fasting statusF + β12lifestyle variableB + ε

Figure 1.  Flow chart of the method followed in the study.
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Correlation patterns. Correlations between ‘tentative signals’ on the linear mixed and/or longitudinal linear 
regression analyses were calculated and visualized using a heatmap. A hierarchical clustering algorithm was used 
to arrange lifestyle variables, so that the pair of variables with higher correlations appear closer in the heatmap.

Prioritization of modifiable lifestyle variables. Tentative signals for each of the cardiometabolic traits were gath-
ered and prioritized to identify target lifestyle exposures and exposure groups in which lifestyle interventions 
aiming at controlling cardiometabolic diseases may focus. First, variance explained for each lifestyle variable 
(and covariates) was estimated and variables were rank-ordered within each lifestyle category for each of the 
nine outcome traits. In the linear mixed models, marginal (fixed terms) variance explained was used. The top-
ranked variables (five per category per trait) were identified, and the topranked variables represented in the 
majority of the cardiometabolic traits (at least five traits) were prioritized. Target groups were evaluated using 
a hierarchical clustering algorithm based on correlations between the prioritized variables and visualized in a 
heatmap. Non-modifiable variables were excluded from the prioritization and clustering step as these variables 
could not be affected by a lifestyle intervention.

Statistical analyses and data visualization were performed using R software versions 3.5.2 and 3.6.121 (see 
Supplementary Material for the specific packages used for analyses).

Descriptive characteristics of the study population are summarized in Tables 1, S1 and S2. Mean age of partici-
pants was 47.7 years and 50.6% were women.

164 out of 286 lifestyle variables were considered tentative signals for 
BMI (S3), 37 for SBP (S4), 30 for DBP (S5), 84 for total cholesterol (S6), 96 for triglycerides (S7), 46 for HDL 
cholesterol (S8), 20 for LDL cholesterol (S9), 44 for fasting glucose (S10) and 43 for 2 h glucose (S11). ‘Physical 
activity’ and ‘General health’ were the top categories for BMI (Fig. 2) and ‘General health’ for blood pressure 
traits (Fig. 3). Regarding lipids, ‘Beverage’, ‘Nutrients’ and ‘ Physical activity’ were the categories with the highest 
number of ‘tentative signals’ for total and LDL cholesterol (Figs. 4A and D), while ‘Physical activity’, ‘Tobacco 
use’ and ‘General health’ were the top categories for triglycerides (Fig. 4B), and ‘Alcohol’ for HDL cholesterol 
(Fig. 4C). For glucose traits, ‘Physical activity’, ‘General health’ and ‘Tobacco use’ were the top categories (Fig. 5).

After multiple testing correction, 35 lifestyle variables showed a tenta-
tive association with 10-year change in BMI (S12), 3 with change in SBP and DBP (S13-S14), 15 with change in 
total cholesterol (S15), 10 in triglycerides (S16), none in HDL and LDL cholesterol (S17-S18), 5 in fasting glucose 
(S19) and 8 in 2 h glucose (S20). The majority of the ‘tentative signals’ were in the ‘Tobacco use’ category for 
BMI, lipids and fasting glucose, while for blood pressure traits the top category was ‘General health’ and for 2 h 
glucose, ‘Physical activity’, ‘Food’, and ‘General health’ were the top categories. There were no material changes in 
key outcome variables during the 9-year follow-up period (see Supplementary Material).

Patterns of correlations were identified among lifestyle variables showing tentative 
association with any of the cardiometabolic traits based on the correlation heatmap (Fig. 6). Variables related to 
meat and fish consumption, sodium, calcium, vitamin B12, and total and animal based protein intake appeared 
in close proximity showing correlations around 0.5. Variables describing fat consumption and fatty acid intakes 
were grouped together showing a high positive correlation. Variables assessing vegetable, fibre and fruit intake, 
plant lignans, whole grain intake, and carbohydrates intake also appear near each other in the heatmap showing 

Table 1.  Summary of participant characteristics. BMI Body mass index, HDL-C High-density lipoprotein 
cholesterol, LDL-C Low-density lipoprotein cholesterol, SBP Systolic blood pressure, DBP Diastolic blood 
pressure, SD Standard deviation.

Variable Number of observations mean SD
Age (years) 67,738 47.72 8.92
Height (cm) 67,476 172.04 9.21
BMI (kg/m2) 67,413 25.73 3.99
Waist circumference (cm) 28,621 92.27 12.13
Total cholesterol (mmol/L) 67,181 5.51 1.09
HDL-C (mmol/L) 27,803 1.40 0.47
LDL-C (mmol/L) 27,649 3.86 1.03
Triglycerides (mmol/L) 58,905 1.40 0.78
Fasting glucose (mmol/L) 67,339 5.39 0.75
2-h glucose (mmol/L) 64,951 6.57 1.50
SBP (mmHg) 67,193 126.42 17.54
DBP (mmHg) 67,160 78.83 11.29
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high positive correlations between them and negative correlations with fat related variables. Variables in ‘Psy-
chosocial’ category and ‘General health’ variables were grouped together.

Average lifestyle associations. Thirteen variables 
were prioritized among all the ‘tentative signals’ as they showed the most consistent associations across all the 
cardiometabolic traits (top-ranked in at least 5 out of 9 cardiometabolic traits) (S21). Two of these variables 
(‘Informed of having a high blood pressure’ and ‘Overall state of health during the last year’) were considered 
non-modifiable and excluded (S26 for modifiable and non-modifiable variables). The eleven remaining variables 
were included in a hierarchical clustering algorithm which identified four main targets suitable for interventions 
(Fig. 7). The first group included tobacco use/smoking related variables and were in general positively associ-
ated with BMI, fasting glucose, total cholesterol and triglycerides and negatively with blood pressure traits, HDL 
cholesterol and 2 h glucose (S21). The second included ‘Brewed (filtered) coffee’, which was negatively associated 
with BMI, blood pressure traits, triglycerides and 2 h glucose. The third group included physical activity related 
variables (e.g. ‘Exercise during the last three months’). The fourth included the variable ‘alcohol intake (g/day)’. 
These variables were in general negatively associated with all cardiometabolic traits except with HDL-C with 
which they showed a positive association. The fifth group was a composite of lifestyle variables which could be 
linked to the Swedish lifestyle (especially northern Swedish lifestyle), ‘Frequency of hunting or fishing during 
leisure time’ and ‘Boiled coffee’ (S26). These two variables did not show a clear common pattern of associations 
with cardiometabolic traits.

In general, BMI showed more shared tentative signals with 2 h glucose and HDL-cholesterol than with the 
rest of cardiometabolic traits and triglycerides, BMI and 2 h glucose were the cardiometabolic traits sharing the 
highest number of tentative signals with the rest of cardiometabolic traits (S22).

Figure 2.  Manhattan plot representing the distribution of P values of the association of lifestyle variables 
and BMI by lifestyle category. Tentative signals are coloured, and number labelled in the figure and the top 10 
variables are spelled out. See S25 for references to the labels.

Figure 3.  Manhattan plot representing the distribution of P values of the association of lifestyle variables 
and blood pressure traits by lifestyle category. (A) Systolic blood pressure and (B) Diastolic blood pressure. 
‘Tentative signals’ are coloured, and number labelled in the figure and the top 10 variables are spelled out. See 
S25 for references to the labels.
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Long-term lifestyle associations. None of the ‘tentative signals’ showed a consistent association with the major-
ity of cardiometabolic traits (5 out 9 traits) (S23). However, four variables in the ‘Tobacco use’ category showed 
a consistent positive association with 10-year changes in at least three cardiometabolic traits (BMI, total choles-
terol, triglycerides and/or fasting glucose).

Among all the cardiometabolic traits BMI and lipid traits shared the highest number of tentative signals (S24).

Although EWAS analyses have been reported previously, this is the first study to integrate repeated exposures 
and outcome assessments, which allows inferences about long-term exposure to these risk factors to be made. 
Here, we systematically and agnostically assessed average (across the study’s follow-up time) and ~ 10-year asso-
ciations between 286 lifestyle variables and 9 cardiometabolic traits. In analyses assessing average association of 
lifestyle variables, ‘Physical activity’ and ‘General Health’ were the categories containing the highest number of 
tentative signals and 11 modifiable variables were prioritized for lifestyle interventions focused on controlling 
cardiometabolic diseases. A cluster analyses grouped these 11 variables into five main target groups: (i) Smok-
ing, (ii) Beverage (filtered coffee), (iii) physical activity, (iv) alcohol intake, and (v) specific variables related to 
Swedish lifestyle (hunting/fishing during leisure time and boiled coffee).

Figure 4.  Manhattan plot representing the distribution of P values of the association of lifestyle variables and 
lipid traits by lifestyle category. (A) Total cholesterol, (B) Triglycerides, (C) HDL cholesterol and (D) LDL 
cholesterol. Tentative signals are coloured, and number labelled in the figure and the top 10 variables are spelled 
out. See S25 for references to the labels.

Figure 5.  Manhattan plot representing the distribution of P values of the association of lifestyle variables and 
glucose traits by lifestyle category. (A) Fasting glucose and (B) 2 h glucose. Tentative signals are coloured, and 
number labelled in the figure and the top 10 variables are spelled out. See S25 for references to the labels.
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For 10-year associations, ‘Tobacco use’ was the category including the highest number of tentative signals for 
the majority of the cardiometabolic traits. No modifiable lifestyle variable was consistently associated with the 
majority of cardiometabolic traits but four variables in the ‘Tobacco use’ category were consistently associated 
with at least three of the analysed cardiometabolic traits (BMI, total cholesterol, triglycerides and/or fasting 
glucose).

Smoking and physical activity correspond to two of the most well-known modifiable risk factors for cardio-
metabolic diseases. According to a study analysing the burden of disease caused by physical inactivity, worldwide, 
6% of the burden of coronary heart disease and 7% of type 2 diabetes was caused by physical  inactivity22. On the 
other hand, smoking alters lipid metabolism and glucose homeostasis through the increase in lipolysis, insulin 
resistance and tissue  lipotoxicity23,24 and smoking cessation restores, at least in part, these metabolic alterations. 
However, in our study the association of smoking with cardiometabolic traits was not only restricted to the 
average effect across the studied period but we also found a remarkable association of variables included in the 
‘Tobacco use’ category and cardiometabolic traits in the 10 years of follow-up.

Among the prioritized dietary variables, boiled (unfiltered) coffee but not brewed (filtered) coffee was found 
positively associated with lipid traits, specifically with total cholesterol, triglycerides, and LDL cholesterol. 

Figure 6.  Heat map showing all the correlations for tentative signals. Pairs of factors where correlations could 
not be computed are shown in white. Figures were plotted using ‘ggplot2’, ‘ggrepel’, ‘gridExtra’, ‘RColorBrewer’ 
and ‘gplots’ packages in R software versions 3.5.2 and 3.6.121.
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Previous studies have also identified associations between unfiltered coffee and dose-dependent increase of 
plasma concentrations of total and LDL  cholesterol25,26. The effects of coffee in the lipid profile are probably 
caused by two diterpenes (i.e. kahweol and cafestol), which sometimes get trapped in the filter used to make 
coffee which can explain the differential effects of filtered and unfiltered  coffee26. On the other hand, brewed 
(filtered) coffee was found negatively associated with BMI, blood pressure, triglycerides, and 2 h glucose in the 
present study which is in agreement with previous studies showing an inverse association between habitual coffee 
intake and risk of several cardiometabolic  diseases27,28.

Plant lignans (biphenolic compounds found in tea, coffee, whole-grain products, berries, vegetables, fruit, nuts 
and seeds) were among the top tentative signals for fasting and 2 h glucose, showing a negative association with 
both traits. Previous studies have suggested that lignans and their metabolites may protect against cardiovascular 
disease and metabolic syndrome by reducing lipid concentrations, lowering blood pressure, and decreasing oxi-
dative stress and  inflammation29. A study conducted in Finland found that men with high serum concentrations 
of enterolactone (a lignan produced by the intestinal microflora) had a lower risk of acute coronary events than 
men with lower  concentrations30.

Figure 7.  Heat map showing clusters of correlations between top-ranked modifiable lifestyle variables. Figures 
were plotted using ‘ggplot2’, ‘ggrepel’, ‘gridExtra’, ‘RColorBrewer’ and ‘gplots’ packages in R software versions 
3.5.2 and 3.6.121.
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An interesting observation emerging from our analysis is that several variables that are featured in public 
health recommendations were not broadly associated with the cardiometabolic traits studied here. Recommended 
dietary patterns emphasize the importance of limiting the consumption of sugar-rich products, particularly 
sweet  drinks31. However, variables related to sweets and sweet drink consumption (e.g. “Sodas, soft drinks, juice” 
and “Sweets”) were not identified as tentative signals for any of the cardiometabolic traits. Salt content is also 
usually limited in diets recommended to lower risk of cardiometabolic diseases but “Sodium intake” was not 
consistently associated with cardiometabolic traits, being identified as a tentative signal only for BMI, total and 
HDL cholesterol. In the same way, fish and shellfish are frequently recommended in healthy dietary patterns but 
“Lean fish” and “Shellfish” variables were not tentative signals for any cardiometabolic traits, and “Fatty fish” was 
associated with lipid traits except for LDL cholesterol.

There are also limitations to the present study. EWAS and GWAS are not entirely analogous. However, both 
are experiment-wide association studies that adopt a so called ‘agnostic’ approach to consider a multitude of 
exposure-outcome relationships in parallel. This is hence a ‘data-driven’ approach that contrasts traditional 
association studies, where specific hypotheses are formulated and only those relationships consistent with the 
hypothesis are tested. The present sample is limited to a Swedish population between 30–70 years and thus 
caution should be used when extrapolating the findings to other countries and age groups, especially since 
lifestyle variables affecting cardiometabolic traits in Swedish population might differ from other populations. 
Dietary variables were characterized using an FFQ, which suffer from systematic and random measurement 
errors. However, to minimize this source of error the FFQ used in this study was validated against repeated 
24 h  recalls17. VHU cohort is exceptionally well-powered for analyses of the nature performed here and there 
were, consequently, a large number of associations that passed conventional statistical thresholds. Most of these 
statistically robust associations emerged due to the complex correlation structure (Fig. 6) found within the set 
of exposure variables. The EWAS analyses undertaken here, like those reported elsewhere, involve parallel tests 
of association with cardiometabolic traits for an array of variables, in this case modifiable lifestyle exposures. As 
with all observational analyses in free-living populations, including EWAS, there is a risk that the relationships 
observed are prone to confounding and reverse-causality. To mitigate these risks, we adjusted the regression 
models for putative confounding variables and assessed the key findings in both average and long-term models. 
Even with these attempts, it is important to highlight that one or more of the findings are false-positive owing to 
residual confounding. To assess this thoroughly requires appropriately designed experimental studies. Our find-
ings highlight key variables, along with their respective effect estimates, that might be prioritised for subsequent 
prediction models and lifestyle interventions. However, it is important to keep in mind that epidemiological 
associations of this nature may not be causal. Thus, intervention studies are needed to test the causal nature of 
these associations.

In conclusion, using an EWAS approach in a large prospective Swedish cohort a large number of associations 
between lifestyle exposures and cardiometabolic traits were identified. Eleven modifiable exposures were consist-
ently top-ranked among the majority of cardiometabolic traits and were identified as target lifestyle exposures 
that could inform lifestyle interventions aiming at controlling cardiometabolic diseases. These variables belonged 
to four target groups: (i) Smoking, (ii) Beverage (specifically brewed (filtered) coffee) and (iii) Leisure time physi-
cal activity and (iv) a group of lifestyles more specific to the Swedish lifestyle.
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Abstract: People appear to vary in their susceptibility to lifestyle risk factors for cardiometabolic
disease; determining a priori who is most sensitive may help optimize the timing, design, and delivery
of preventative interventions. We aimed to ascertain a person’s degree of resilience or sensitivity to
adverse lifestyle exposures and determine whether these classifications help predict cardiometabolic
disease later in life; we pooled data from two population-based Swedish prospective cohort studies
(n = 53,507), and we contrasted an individual’s cardiometabolic biomarker profile with the profile
predicted for them given their lifestyle exposure characteristics using a quantile random forest
approach. People who were classed as ‘sensitive’ to hypertension- and dyslipidemia-related lifestyle
exposures were at higher risk of developing cardiovascular disease (CVD, hazards ratio 1.6 (95% CI:
1.3, 1.91)), compared with the general population. No differences were observed for type 2 diabetes
(T2D) risk. Here, we report a novel approach to identify individuals who are especially sensitive to
adverse lifestyle exposures and who are at higher risk of subsequent cardiovascular events. Early
preventive interventions may be needed in this subgroup.

Keywords: cardiometabolic risk factors; risk assessment; quantile random forests; prediction interval;
sensitivity; lifestyle

1. Introduction

There is growing recognition that people vary in their susceptibility to environmental
risk factors for cardiometabolic diseases, suggesting that one-size-fits-all public health
recommendations are unlikely to yield optimal results. Early identification of individuals
who are most likely to develop diseases like type 2 diabetes (T2D) and cardiovascular
disease (CVD) is desirable, as efficacious therapies (both lifestyle and pharmacologic) exist
that can help prevent these diseases [1]. Moreover, once manifest, T2D and CVD often
cause life-threatening health complications that are often difficult and costly to treat [2].

Most statistical models examining susceptibility to lifestyle risk factors, from which
public health recommendations are drawn, assume that a given lifestyle exposure conveys
a similar effect on disease risk throughout the target population, with variability in these
effects either viewed as a consequence of measurement error [3] or ignored. However, some
of this variability is likely to reflect between-person differences in the effects of unhealthful
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lifestyle exposures, with some people more susceptible to the adverse effects of these
exposures than others.

Predictive modeling often provides a point estimate that represents a response to
be anticipated for; yet, in precision medicine a range of values where an effect would be
expected to fall may prove more informative for the design of preventive measures rather
than a single estimate. Thus, prediction intervals (PIs) allow examining a future series of
values for each individual with a given probability, making them potentially useful for
identifying where the future value is likely to appear.

Identifying subpopulations who are especially sensitive to adverse lifestyle exposures
may help optimize the delivery of cardiometabolic disease prevention programs, especially
when resources are lacking [1,4]. In aging and diseased individuals, conditions such as
frailty syndrome and nutritional deficiencies often coexist with cardiometabolic disease
(i.e., T2D and hypertension) [5]; however, it remains unclear whether vulnerability status
associated with adverse environments can be present in disease-free individuals. Here, we
used a machine learning approach [6] to differentiate error from true between-individual
variability in susceptibility to lifestyle risk factors for T2D and CVD. Accordingly, we
identified the subgroup of sensitive individuals and assessed the degree to which this
classification aids the prediction of incident disease and premature mortality.

2. Materials and Methods

2.1. Study Design and Participants

The Västerbotten Health Survey (Västerbottens hälsoundersökning; VHU) [7,8] is
a prospective, population-based cohort study designed to monitor and improve health
of the general population in Västerbotten county, northern Sweden. Adults residing in
Västerbotten are invited to attend their primary care center to undertake a baseline clinical
examination and complete detailed lifestyle questionnaires during the calendar years of
their 40th, 50th, and 60th birthdays. We used data derived from VHU (n = 42,887) in
our analyses. A total of 7039 of these participants were born outside Sweden, and the
current analysis focused only on the Swedish-born contingent of VHU. Participants in
whom diabetes or cardiovascular disease were diagnosed at baseline (n = 408) were also
removed to minimize biases that can occur when people with disease diagnoses are asked
to self-report their lifestyle behaviors. Participants with two health examinations between
1985 through 2016 (with ~10 years between each visit) were included in the final dataset,
which comprised 35,440 participants.

2.2. MDCS

The Malmö Diet and Cancer Study (MDCS) is a prospective, population-based cohort
study conducted between 1991 and 1996. All men and women residing in the city of
Malmö, southern Sweden born between 1923 to 1950 were invited to participate. Up
to 30,446 participants (~40% men) completed the baseline assessment [9–11]. Glycemic
and lipid traits were assessed in a subset of participants, the MDCS Cardiovascular Cohort
(MDCS-CC; n = 6103), who were randomly selected for assessment of cardiometabolic risk
markers between 1991 and 1994 [12]. As with the VHU cohort, data from non-Swedish
participants and those with prevalent diabetes or CVD were removed prior to analysis. In
total, a maximum of 18,067 CC participants were included in the analysis from MDCS or
MDCS-CC (see flowchart in Figure 1).
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Figure 1. Study flowchart of VHU and MDC studies, data processing, and model training. VHU:
Västerbotten Health Survey; MDCS: Malmö Diet and Cancer Study; MDCS-CC: MDCS Cardiovascu-
lar Cohort.

2.3. Cardiometabolic Risk Markers

Clinical assessment methods in VHU [7] and MDCS are reported elsewhere [9,12].
Briefly, height and weight were measured with calibrated stadiometer and weighing scales
respectively, with participants wearing light clothing and no shoes. Body mass index
(BMI) was calculated as the body weight in kilograms divided by height in meters squared.
Systolic and diastolic blood pressures were measured with participants resting supine,
using either manual or automated sphygmomanometers. Peripheral blood was drawn
after overnight fasting, and a venous blood sample was drawn two hours after the admin-
istration of a 75 g oral glucose load (the latter only in VHU). Blood glucose (i.e., fasting and
2 h glucose), total cholesterol, and triglyceride levels were then measured using a Reflotron
bench-top analyzer (Roche Diagnostics Scandinavia AB); HbA1c was measured only in
MDCS-CC using standard procedures at the Department of Clinical Chemistry, Univer-
sity Hospital Malmö. High-density lipoprotein cholesterol (HDL-C) was also measured,
and low-density lipoprotein cholesterol (LDL-C) was calculated using the Friedewald
formula [13]. In September 2009, blood lipids and blood pressure measurements in VHU
changed; thereafter, blood pressure was measured twice in a sitting position and averaged.
Triglycerides and total cholesterol levels were analyzed using standardized chemical analy-
sis in the hospital clinical biochemistry laboratory. Validated conversion equations were
used to adjust the blood pressure and lipids measurements taken before and after September
2009 [14]. For participants on lipid-lowering and/or blood pressure lowering medications,
lipid levels and/or blood pressure levels were corrected by adding published constants
(+0.208 mmol/L for triglycerides, +1.347 mmol/L for total cholesterol, −0.060 mmol/L for
HDL-C, +1.290 mmol/L for LDL-C, +15 mm Hg for systolic, and +10 mm Hg for diastolic
blood pressure) suggested in the literature [15,16]. Cardiometabolic trait values outside the
thresholds for plausible values suggested by VHU data managers were considered outliers
and removed in all datasets (Supplementary Table S1 in Supplementary Materials).
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2.4. Lifestyle and Dietary Assessments

For both Swedish cohorts, all participants were requested to complete a self-administered,
validated, comprehensive lifestyle questionnaire during each visit, which queried socioeco-
nomic factors, physical/mental health, quality of life, social network and support, working
conditions, and alcohol/tobacco use. In VHU, physical activity was assessed using the
modified version of the International Physical Activity Questionnaire [17,18], and a vali-
dated semiquantitative food frequency questionnaire (FFQ), designed to capture habitual
diet over the last year, was used to obtain information on various dietary factors [19]. In
1996, the FFQ was reduced from 84 to 66 items by merging similar items and removing
those deemed redundant. For MDCS, a modified diet history method consisting of a 7-day
food diary covering all cooked meals and a 168-item FFQ covering the noncooked meals
for the previous year were administered. Moreover, a 1 h interview was used to determine
portion sizes, cooking methods and food choices. Nutrient and energy contents were
calculated using the Swedish Food Composition Database (https://www.livsmedelsverket.
se/en/food-and-content/naringsamnen/livsmedelsdatabasen; accessed on 16 February
2021), which is based on meal frequency and portion size. In VHU, food intake level
(FIL) was calculated as total energy intake (TEI) divided by estimated basal metabolic
rate; individuals with extreme TEI (below the fifth and above the 97.5th percentile of food
intake level) were excluded from the analyses [20]. Observations with lifestyle values
considered biologically implausible were removed (Supplementary Table S2). Written,
informed consent was obtained from all living participants at enrolment into VHU and
MDCS. VHU study was approved by the Region Ethical Review Board in Umeå and MDCS
by the Ethical Committee at Lund University (LU 51-90).

2.5. Outcome Ascertainment

Data pertaining to medical diagnoses and mortality were retrieved through record
linkage from the National Board of Health and Welfare in Sweden until 31 December 2019.
Using each participant’s unique personal identification number, the following diagnosis
codes were retrieved: ICD-9 code 250 and ICD-10 codes E11.0–E11.9 for T2D; for the
composite CVD outcome, ICD-9 code 410 and ICD-10 code I21 were used for myocardial
infarction (MI), and ICD-9 codes 430, 431, and 433–436 and ICD-10 codes I60, I61, I63 and
I64 for stroke. The first date of a registered event was selected as the outcome for the
current analyses.

2.6. Statistical Analysis

All numeric predictors were inverse-normalized to correct skewness, and the derived
ordinal variables were treated as continuous variables in subsequent analyses. From an
environment-wide association study (EWAS) described elsewhere [21], we prioritized
(~300) environmental risk factors that were statistically significant at the corrected p-value
threshold after multiple testing. We retrieved 167 predictors for BMI, 49 for systolic blood
pressure, 47 for diastolic blood pressure, 87 for total cholesterol, 108 for triglycerides, 50
for HDL-C, 21 for LDL-C, 43 for fasting glucose, and 58 for 2 h glucose [22]. Categorical
exposure variables with more than two levels were dichotomized into dummy variables.
Nutrient data were adjusted for TEI with the residual method [23] to minimize confounding
by energy intake and basal energy requirement. We removed correlated (>80%) and zero-
variance predictors to minimize the multiple testing burden [24] (Supplementary Tables
S3 and S4). For all datasets, we assumed missingness at random [25], and environmental
predictor variables with <50% missingness were imputed with the missForest package
from R software using a nonparametric approach for mixed data type, to allow a complete
case analysis suitable for the random forest algorithm; continuous predictor variables were
verified by the mean squared error (MSE) and categorical predictors were verified by the
proportion falsely classified (PFC) [26].

We randomly partitioned each dataset into training (50%) and testing (50%) sets to
ensure a sufficient number of events per category for the time-to-event analysis in the
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testing set. The training set was used to fit quantile regression forest (QRF) models for
predictors associated with the cardiometabolic traits, and the testing set was used to predict
future intervals. Multicollinearity of the variables within these models was assessed using
the variance inflation factor, with variables with values > 10 removed [27]. All models were
adjusted for age, age2, sex, FFQ version, BMI (when not as response variable), follow-up
time, and fasting status (for glycemic and lipid models). We utilized QRFs [6], an extension
of the supervised machine learning technique random forest, which is an ensemble of
simultaneous decision trees derived from bootstrapped samples [28]. Furthermore, we set
PIs at 90% probability (fifth and 95th quantiles) to minimize false positives ((1 − α) × 100%).
The PIs were constructed from the conditional quantiles of the trait response predicted
by QRFs. Briefly, the prediction intervals of a trait response Y given the environmental
predictors X was built by I(x) = [q α/2 (Y|X = x), q 1 − α/2 (Y|X = x)]. Thus, the 90%
prediction interval for the trait value was estimated using Equation (1).

I(x) = [q 0.05 (Y|X = x), q 0.95 (Y|X = x)], (1)

where, for a given x, the trait response lies within the interval I(x) with high probability. For
VHU, on the basis of the obtained PIs per trait, we defined two groups of persistence: those
above the 90% PI (‘sensitive’) and below 90% PI (‘resilient’). However, in MDCS, it was not
possible to consider two consecutive measures. Instead, QRFs were obtained only for the
baseline visit. In addition, when obtaining the quantiles, variable importance was estimated
as the percentage in mean square error (%IncMSE), calculated by permuting sample values
of the out-of-bag (OOB) in the test dataset, and increase in node purity (incNodepurity),
calculated on the basis of the reduction in sum of squared errors for each decision tree; we
rank-ordered the most important variable across all models in Supplementary Table S5 and
Supplementary Figures S1–S9) [29].

2.7. Predictive Performance

We estimated two CVD risk scores, (i) the Framingham risk score laboratory- and
nonlaboratory-based [30], and (ii) the 2013 American College of Cardiology/American
Heart Association Task Force [31]. Overall, both algorithms comprise data on age, sex,
smoking, diabetes diagnosis, systolic blood pressure and its treatment, total cholesterol, and
HDL-C. For the nonlaboratory-based risk model, BMI was used instead of lipids. We further
compared the predictive ability (i.e., area under the receiver operating characteristic curve;
ROC AUC) of two logistic regression models, one with the generated risk scores and one
with risk score plus a variable indicating risk factor ‘sensitivity’ (Supplementary Table S6).

2.8. Time-to-Event Analysis

Cox proportional hazards regression models were used to estimate hazard ratios
(HRs) and corresponding 95% confidence intervals (CIs) between sensitivity categories
for each cardiometabolic trait derived from the QRF approach and the risk of diabetes
and CVD-incidence and mortality. The proportional hazards assumption was tested with
Schoenfeld residuals. The ‘neutral’ category was used as the reference group. Statistical
significance (p-value) was set at the 5% level. Per cardiometabolic trait, a model including
age and sex (and BMI, where this was not the outcome), fasting status, FFQ version, TEI,
educational level (education was previously used as a proxy of socioeconomic status in
this population [32]), smoking status, physical activity, and alcohol consumption. The
covariates were selected a priori owing to their previously established associations with
cardiovascular mortality in the Swedish population [33]; if a covariate was already in the
environmental QRF model, it was not included. The timescale was the elapsed time from
baseline in years until an event occurred or the study ended, whichever came first. HRs
and 95% CIs were pooled for each cardiometabolic trait by sensitivity category to obtain
an overall estimate under a random-effects model [34]; heterogeneity was assessed with
Cochran’s Q statistic [35,36]. All statistical analyses were performed using R software
version 3.6.1 [37]; statistical packages are listed in Supplementary Table S7.
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3. Results

Baseline characteristics for each cohort are shown in Table 1. Median follow-up time
(interquartile range (IQR)) for VHU was 9.7 (5.8) years and 21.1 (4.9) years for MDCS.
In both cohorts, individuals classified as being ‘sensitive’ to lifestyle exposures affecting
blood pressure and lipids had more cardiovascular events and deaths compared with the
remainder of the population (all hazard ratios (HRs) and 95% CIs for CVD events, T2D,
and CVD-mortality are in Supplementary Table S8).

Table 1. Baseline characteristics of study cohorts.

VHU MDCS

n 35,440 18,067

Male (%) 15,599 (46.8) 6772 (37.5)

Age 42.96 (7.02) 57.72 (7.71)

BMI (kg/m2) 25.10 (3.71) 25.30 (3.78)

Total cholesterol (mmol/L) 5.47 (1.14) 6.20 (1.11)

HDL-C (mmol/L) 1.32 (0.57) 1.40 (0.37)

LDL-C (mmol/L) 3.92 (1.16) 4.19 (1.02)

Triglycerides (mmol/L) 1.32 (0.76) 1.47 (0.75)

Fasting glucose (mmol/L) 5.31 (0.63) 5.02 (0.83)

2 h glucose (mmol/L) 6.39 (1.30) -

HbA1c (mmol/mol) a - 31.4 (5.05)

Systolic blood pressure (mm Hg) 123.27 (15.77) 138.58 (18.97)

Diastolic blood pressure (mm Hg) 77.25 (10.86) 84.02 (9.53)
All values are the mean (SD) unless otherwise stated. VHU: Västerbotten intervention program; MDCS: Malmö
Diet and Cancer; BMI: body mass index; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density
lipoprotein cholesterol; HbA1c: glycated hemoglobin; 2 h glucose: 2 h glucose tolerance. a Raw value collected in
DCCT (Diabetes Control and Complications Trial) units, transformed to mmol/mol units using formula HbA1c
(mmol/mol) = 10.929 × (HbA1c (%) − 2.15) [38]. Note: To convert to mg/dL multiply cholesterol by 38.67, blood
glucose by 18.0182, and triglycerides by 38.67.

3.1. Cardiovascular Events

In VHU, the risk of CVD in those who were classified as ‘sensitive’ to the lifestyle
exposures affecting diastolic blood pressure was doubled, whereas, in MDCS, the risk in
this same subgroup was increased by 32%, compared to the reference group. The risk of
nonfatal and fatal CVD in people classified as sensitive to the lifestyle exposures affecting
systolic blood pressure was ~60% and ~50% higher than the reference population for
MDCS and VHU, respectively. When hazard estimates were pooled, the overall systolic
and diastolic blood pressure ‘sensitive’ HRs were statistically significant under a random-
effects model. In addition, the pooled groups of ‘sensitive’ individuals for systolic and
diastolic blood pressure were also at higher risk for early death (Figure 2).
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Figure 2. Forest plots of pooled studies by persistence category and CVD event. (A,C) Systolic
blood pressure (SBP (mm/Hg)); (B,D) diastolic blood pressure (DBP (mm/Hg)). Random- and
fixed-effects meta-analysis of the association between trait-persistence category and CVD and CVD
mortality. For (C,D), the number of events did not allow to obtain pooled estimates for the ‘resilient’
group. The square and diamond shapes represent summary estimates, while the horizontal bars
represent the 95% confidence intervals. HR: hazard ratio; ES: effect estimate; SE: standard error; CVD:
cardiovascular disease.

The risk of CVD in people classified as sensitive to LDL-C-related risk exposures was
doubled in VHU and ~60% higher in MDCS, with the pooled estimate being statistically
significant. In MDCS, those who were sensitive to lifestyle exposures lowering HDL-C
were at higher risk of CVD, but this was not the case in VHU.

3.2. T2D Incidence

For glycemic traits, those classified as ‘sensitive’ in MDCS to the lifestyle risk factors
for elevated fasting glucose had a fourfold increased risk of T2D. However, when risk
estimates from MDCS were pooled with those from VHU, this result was not statistically
significant (Table 2).
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4. Discussion

Overall, a 50% to 60% higher risk of CVD and fatal CVD was observed in those indi-
viduals sensitive to the environments associated with blood pressure traits. Similarly, those
with sensitivity to the environment related to LDL-C had 74% higher risk of CVD incidence.
These findings are in line with others where higher blood pressure and dyslipidemia were
shown to be associated with cardiovascular risk [39].

Public health guidelines to reduce disease risk rely on population-averaged estimates
of risk factor susceptibility, often focusing on intermediate markers of cardiometabolic
risk such as blood pressure or serum cholesterol levels. This strategy assumes that broad
recommendations work well for most people, yet risk factor susceptibility and treatment re-
sponse are highly heterogeneous [40], justifying public health interventions that are tailored
to subgroups of the population. To explore whether doing so might be of clinical value,
we used machine learning to identify, avoiding distributional assumptions, a population
subgroup that is especially sensitive to modifiable lifestyle exposures for cardiometabolic
disease. We showed that those who are especially sensitive to these risk exposures tended
to develop CVD more rapidly. This type of risk classification is important, as it highlights
individuals with ‘normal’ or ‘low’ levels of intermediate cardiometabolic markers, who
are at relatively high risk of clinical events overlooked by conventional screening and risk
classification approaches.

The approach we used focuses on sensitivity to modifiable risk factors trained on
intermediate biomarkers of clinical disease. Not all of these intermediate marker sets
proved informative. For example, sensitivity to obesogenic lifestyle factors did not raise
the risk of T2D or CVD. Indeed, we found no clear evidence that sensitivity to lifestyle
exposures in any biomarker set raised the risk of T2D. This may be because diagnosis of
T2D is one of exclusion, where all known causes of chronically elevated blood glucose
are eliminated, leaving the idiopathic label of T2D to be applied. Thus, T2D is highly
heterogeneous in etiology and clinical presentation, making it harder to predict than more
precisely defined diagnoses such as CVD. Nevertheless, as the wide confidence intervals
around some of the risk estimates reported here indicate, it is likely that these analyses are
underpowered, and some negative findings may be false positive.

Although these analyses benefited from comprehensive assessments of lifestyle ex-
posures in these cohorts, a limitation is that they are predominantly self-reported data.
Such data are prone to reporting biases, and some lifestyle factors are likely to have been
assessed more precisely than others. Moreover, many variables prioritized from VHU were
unavailable or captured differently in MDCS, which makes it difficult to isolate biological
from statistical heterogeneity when pooled. The observational nature of the studies makes
causal inference challenging, and one cannot rule out the possibility that some associations
are confounded. There is little one can do to mitigate this common limitation of epidemio-
logical studies. It might also be argued that to be classified as sensitive to adverse lifestyle
exposures is a function of regression dilution, as this subgroup lies at the extreme of the pre-
diction distributions, where measurement error will be greatest. However, this is unlikely
in this setting, as sensitivity to lifestyle exposures persists across many years of follow-up.
Nevertheless, trials are needed that assess whether people defined as sensitive, yet with
apparently healthy biomarker profiles, are more susceptible to cardiovascular events than
those who are not defined as sensitive and also benefit from intensive lifestyle interventions.

Most current clinical guidelines for T2D and CVD discuss the importance of person-
alized care, yet include generic lifestyle recommendations [41,42], overlooking between-
person variability in susceptibility to environmental risk factors. There has been extensive
debate about the role of precision medicine in disease prevention, which typically focuses
on population subgroups with distinct risk factor and treatment response profiles, such that
efficacy is maximized, and costs and risks are minimized [1]. The approach described here
is aligned with the objectives of precision prevention, by identifying people at high risk of
cardiometabolic disease and helping determine which modifiable exposures to intervene
in. Strategies to prevent disease in this subpopulation may include nutritional support [43],



Nutrients 2022, 14, 3171 11 of 13

lifestyle modification, and pharmacotherapy [44]; however, further investigation from
randomized clinical trials is needed to discern which modality is more appropriate.

5. Conclusions

In conclusion, the approach to cardiometabolic risk stratification presented here may
help improve the precision with which at-risk subgroups of the population are identified.
In practice, the implementation of this approach would require combined assessments of
modifiable risk exposures and intermediate markers of cardiometabolic risk. Calculating an
individual’s level of risk using the current approach is more complicated than convention
risk algorithms, because it leverages conditional probabilities. However, this could be
managed through app-based assessment and decision support systems, which have proven
successful elsewhere [45].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14153171/s1, Table S1: VHU Criteria for exclusions on car-
diometabolic traits; Table S2: VHU Criteria for implausible values for lifestyle variables; Table S3:
Variables removed during data processing; Table S4: VHU variable meaning; Table S5: Rank-ordered
most important variables among 9 cardiometabolic traits in VHU; Table S6: AUCs for each trait in
VHU; Table S7: R packages used for the analyses in the current study; Table S8: Hazard ratios and
95%CI of prediction interval categories and clinical outcomes; Figure S1: Variable importance plot of
fasting glucose (FG) model in VHU per visit; Figure S2: Variable importance plot of 2-hour glucose
(2hr G) model in VHU per visit; Figure S3: Variable importance plot of body mass index (BMI) model
in VHU per visit; Figure S4: Variable importance plot of Cholesterol (total cholesterol) model in VHU
per visit; Figure S5: Variable importance plot of diastolic blood pressure (DBP) model in VHU per
visit; Figure S6: Variable importance plot of high-density cholesterol (HDL-C) model in VHU per
visit; Figure S7: Variable importance plot of low-density cholesterol (LDL-C) model in VHU per visit;
Figure S8: Variable importance plot of systolic blood pressure (SBP) model in VHU per visit; Figure
S9: Variable importance plot of triglycerides model in VHU per visit.
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Abstract: Assessing the causal effects of individual dietary macronutrients and cardiometabolic
disease is challenging because distinguish direct effects from those mediated or confounded by
other factors is difficult. To estimate these effects, intake of protein, carbohydrate, sugar, fat, and its
subtypes were obtained using food frequency data derived from a Swedish population-based cohort
(n~60,000). Data on clinical outcomes (i.e., type 2 diabetes (T2D) and cardiovascular disease (CVD)
incidence) were obtained by linking health registry data. We assessed the magnitude of direct and
mediated effects of diet, adiposity and physical activity on T2D and CVD using structural equation
modelling (SEM). To strengthen causal inference, we used Mendelian randomization (MR) to model
macronutrient intake exposures against clinical outcomes. We identified likely causal effects of
genetically predicted carbohydrate intake (including sugar intake) and T2D, independent of adiposity
and physical activity. Pairwise, serial- and parallel-mediational configurations yielded similar results.
In the integrative genomic analyses, the candidate causal variant localized to the established T2D
gene TCF7L2. These findings may be informative when considering which dietary modifications
included in nutritional guidelines are most likely to elicit health-promoting effects.

Keywords: macronutrient intake; mediation; causal inference; cardiometabolic risk; cardiovascular
disease; adiposity; physical activity

1. Introduction

Global patterns of food consumption and energy expenditure have changed drastically
in recent decades. Increased sedentary behavior, coupled with the availability of cheap,
energy-dense foods, has led to the rapid rise in overweight and obesity worldwide [1].
Excess weight (i.e., body mass index (BMI) > 25 kg/m2) is one precursor to type 2 diabetes
(T2D) and cardiovascular disease (CVD). Hence, an imbalance between energy intake,
physical activity and lifestyle behaviors has a major impact on BMI, CVD and T2D risk.
Indeed, the Global Burden of Disease Study 2017 reported that dietary risk accounted for
11 million deaths and 255 million disability-adjusted life year (DALYs) in adults [2].

Recent studies have revealed genetic variants associated with food preferences, dietary
patterns and food intake [3–7]. Among those macronutrients ingested, total or specific
fats and carbohydrates have been associated with obesity, CVD and T2D, yet controversy
remains about whether it is energy density that mediates such associations or if single
nutrients (e.g., saturated fat, fructose) increase risk of disease [8]. Clinical trials have
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indicated that macronutrients might influence glucose metabolism; for example, as part of a
lifestyle intervention, a low-energy, low-carbohydrate diet reduced T2D risk [9,10]. Whilst it
is plausible that each nutrient could affect disease risk, some might be of greater relevance.

Understanding the causal role of each macronutrient, therefore, could elucidate path-
ways for more precise dietary intervention strategies [11]. We sought to disentangle the
causal role of macronutrients through an integrative analysis using Mendelian randomiza-
tion (MR) and colocalization obtained through published genome-wide association studies
(GWAS) of T2D and CVD. Moreover, we characterize the direct and indirect effects of
mediators (i.e., adiposity and physical activity (PA)) on metabolic traits, such as plasma
lipids, blood sugar and cardiometabolic disease.

2. Materials and Methods

2.1. Study Design and Population

The Northern Sweden Diet Database (NSDD) contains data from participants collected
within the Västerbotten Health Survey (VHU) [12]. Briefly, VHU is an ongoing, prospective,
population-based cohort study started in 1985, where adult residents in the county of
Västerbotten in Northern Sweden have been invited to a health examination at 40, 50 and
60 years of age (<1% of 30-year-olds were included initially, then discontinued). For this
study, participants screened between 1991 and 2016 were eligible, as they had undergone an
extensive health examination by trained nurses and family physicians at their local primary
care center, including anthropometry, blood lipids and glucose levels before and after a
75 g oral glucose load, and completed surveys, i.e., food frequency questionnaire (FFQ),
socio-economic and lifestyle conditions. Values outside normal ranges suggested by VHU
data managers were considered outliers and excluded (see Tables S1 and S2). The study
protocol and data handling procedures were approved by the Regional Ethical Review
Board of Northern Sweden, Umeå, and written informed consent was obtained from all
study participants.

2.2. Exposure, Mediator and Outcome Measures

Exposure data were derived for participants who completed the FFQ. Two ver-
sions were used during the study: a long version (84 items) and a shortened version
(64–66 items). The FFQs have been validated against repeated 24 h dietary records and/or
biological markers [13]. Daily energy intake and macronutrient subtypes were calcu-
lated for each participant from the food composition database provided by the National
Food Agency of Sweden (www.livsmedelsverket.se/en/foodand-content/naringsamnen/
livsmedelsdatabasen/; accessed 25 June 2021). This included proteins (animal- and plant-
based), carbohydrates and added sugar, the latter being estimated by adding all sucrose
and monosaccharides intake minus sugars from fruits and vegetables. Total sugar was
further calculated as the sum of all monosaccharides and disaccharides in diet. Saturated,
trans-and total fat were also obtained per participant. The macronutrient percentage of
energy intake (E%) was calculated by multiplying intake by the metabolizable energy
conversion factors and dividing this by total energy intake (TEI) [14]. Those that reported
taking dietary supplements or vitamins in the last 14 days were not included.

Since fats, proteins and carbohydrates are rarely consumed in isolation, we added the
micronutrients queried from the FFQ and obtained nutrient patterns through principal
component (PC) analysis to represent a comprehensive characterization of diet in a real-
world setting.

As mediators, adiposity was defined as body mass index (BMI), calculated as body
weight in kg (using a calibrated weighing scale) divided by height in m2, obtained from
participants wearing light clothes and no shoes. For physical activity (PA), we calculated a
PA index, ranging from 1 = inactive to 4 = active, as described elsewhere [15]. We further
included the ‘exercise in leisure time’ variable, reported in five different ordered categories
ranging from (1 = never exercise to 5 = more than three times/week). Both were treated as
continuous in analyses.
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The primary outcomes (T2D and CVD), expressed as binary variables, were obtained
through record linkage to the health databases of the National Board of Health and Welfare
in Sweden (www.socialstyrelsen.se/register; accessed 25 June 2021). Clinical endpoints
were retrieved using ICD-9 code 250 and ICD-10 codes E11.0–E11.9 for T2D. For the
composite CVD outcome, ICD-9 code 410 and ICD-10 code I21 were applied for MI. For
stroke cases, ICD-9 codes 430, 431 and 433–436 and ICD-10 codes I60, I61, I63 and I64 were
used. Secondary outcomes were lipid traits (i.e., high- and low-density lipoprotein (HDL-C,
LDL-C, respectively), total cholesterol (TC) and triglycerides (TG)). Glycemic traits included
fasting glucose (FG) and two-hour glucose (2 h glucose). For FG, blood was drawn after
overnight or 4 h fasting; for 2 h glucose, a blood sample was drawn two hours after the
administration of a 75 g oral glucose load, then measured using a Reflotron bench-top
analyzer (Roche Diagnostics Scandinavia AB). HDL-C was only measured in a subgroup
of participants (n = 23,581) and LDL-C was obtained using the Friedewald formula [16].
TG and TC levels were analyzed using standardized chemical analysis [12]. Validated
conversion equations were used to adjust blood lipid measurements taken before and
after September 2009 [17]. For participants on lipid lowering medication, lipid levels were
corrected by adding published constants (+0.208 mmol/L for TG, +1.347 mmol/L for TC,
−0.060 mmol/L for HDL-C, +1.290 mmol/L for LDL-C), as recommended elsewhere [18].

2.3. Statistical Analysis

The distribution of all continuous explanatory variables was assessed for normality. A
constant (0.1) was added to all dietary variables prior to log-transforming to correct skew-
ness. We retrieved complete cases for glycemic (n = 55,613) and lipid models (n = 23,581).
Mediation models were employed to decompose total effects into direct and indirect ef-
fects [19]. We used structural equation modelling (SEM) to study the extent to which
PA and BMI influenced associations between macronutrient intake and changes in T2D
and CVD status, as well as lipid and glycemic traits. In mediation analysis, a pathway of
relationships between variables (i.e., exposure, mediator and outcome) can be modelled
using generalized linear regression equations according to a prespecified configuration [20];
these analyses also allow covariance between variables to be determined (see below). For
indirect pathways, the two hypothesized mediators of macronutrient intake (PA and BMI)
were fitted into pairwise models (Figure 1A) [21].

Next, we fitted parallel mediation models (i.e., exposure → PA → outcome and
exposure → BMI → outcome) (Figure 1B) [20] and, given PA and BMI are often correlated,
serial mediation models were also tested (exposure → PA → BMI → outcome in Figure 1C).
Estimates and standard errors (SE) were obtained through bootstrapping (5000 draws),
as recommended elsewhere [22]. To represent real-world dietary habits, all raw nutrient
variables were adjusted for TEI using the residual method [23], then centered and scaled to
obtain PCs of dietary patterns.

2.3.1. Mediation Analysis

Overall, the mediation analysis is constructed using three linear equations:

Y = i1 + cX + ε1 (1)

Y = i2 + c′X + bM + ε2 (2)

M = i3 + aX + ε3 (3)

where i1, i2 and i3 are intercepts, Y is the outcome, X is the explanatory variable, M is
the mediator and ε represents the error term. Thus, under the sequential ignorability
assumption [24], the model equation can be expressed as:

Y = i2 + bi3 + (c′ + ab) X + ε2 + bε3 (4)
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For pathways a, b, c′, the following models were fitted: (i) a linear regression assessing
the association between each macronutrient (or PC) and the mediators BMI and/or PA,
either in serial or in parallel form (pathway a); (ii) a linear or logistic regression between
mediators BMI and/or PA and the outcome, adjusted for changes in macronutrient intake
(pathway b); (iii) linear or logistic regression assessing associations between macronutrient
intake (or PC) and outcomes, having adjusted for mediators (pathway c′). The indirect
effect (a × b) was quantified as the effect of the mediators (BMI and PA), and the total effect
by the sum of indirect and direct effects (c′ + ab in Equation (4)). To assess multicollinearity
between variables, the variance inflation factor (VIF) was calculated (variables > 10 were
removed). All models were adjusted for putative confounders for each outcome (i.e., age,
sex, education, TEI, portion size of potatoes, meat and vegetables, fiber intake (g/day),
and alcohol intake (g/day)). For the CVD composite outcome, we further adjusted for
tobacco use. Statistical significance was p < 0.05 (two-tailed test); in pairwise analyses, a
false discovery rate (FDR) correction was set at PFDR < 0.05 under the Benjamini–Hochberg
procedure [25].

Figure 1. Hypothetical directed acyclic graph models. (A) Pairwise mediation model; (B) Parallel
mediation model; (C) Serial mediation model; (D) Mendelian randomization model. X: independent
variable; M: mediator; Y: outcome; IV: instrumental variable; U: confounding. SEM Pathways: a is the
coefficient of the effect of X on M; a1 and a2 are coefficient effects between X and mediators 1 (M1)
and 2 (M2), respectively. b is the effect of M on Y adjusting for the explanatory variable; b1 and b2 are
coefficient effects between mediators 1 (M1) and 2 (M2), and Y, respectively; c′ is the coefficient of
the effect of X on Y adjusting for M (direct effect), and d is the coefficient effect between mediators.
For (D) in MR, the IV must not be related to confounders (dotted line) of the exposure–outcome
association and affect the outcome only via the exposure and not through another via (dotted lines).
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2.3.2. Two-Sample Mendelian Randomization and Bayesian Colocalization

Genetic variants, used here as instrumental variables (IVs) for dietary intake, are
randomly assorted during conception [26] and, thus, can be employed for causal inference.
For IVs to be valid, they should be associated with the exposure, unrelated to confounders
of the exposure–outcome association; they should also affect the outcome only via the
exposure (Figure 1D). We assessed the causal impact of dietary carbohydrates, sugars, fat
and protein intake with glycemic and lipid traits, T2D and CVD (i.e., stroke and CHD),
in a two-sample MR framework (2SMR). The SNPs for exposure data were retrieved
from public GWAS summary data from Meddens et al. [5], which were derived from the
Social Science Genetic Association Consortium (SSGAC) in 268,922 European ancestry
participants. A more detailed description of the dataset is available in their website (https:
//www.thessgac.org/data; accessed 1 July 2021). Briefly, all dietary intake data were
obtained through self-reported food frequency questionnaires and single 24 h diet recalls
(only for UK Biobank), and macronutrients were reported as % of energy intake (E%).
Owing to the low number of GWAS-significant SNPs in the exposures (6 for fat, 7 for
protein, 13 and 10 for carbohydrate and sugar intake, respectively), we relaxed the GWAS
threshold to p-value < 5 × 10−6. Further, proxies were used if genetic variants were in
linkage disequilibrium (LD) at r2 ≥ 0.8 in any of the two-samples. To minimize correlations
between the IVs, we performed LD-clumping (where SNPs with lowest p-value are retained)
restricted to r2 < 0.2 in a 1000 kb window for the final sets. To disentangle the effect of
carbohydrates from sugar (considered a subcomponent in the original GWAS [5]), we
combined the significant sugar- and carbohydrate-associated SNPs (n = 79) at the set
threshold (p-value < 5× 10−6). Those overlapping (n = 4) were removed to avoid pleiotropy.
To construct the IVs for the outcome variables, we used GWAS available in European
ancestry populations. CAD GWAS summary statistics were derived from the Coronary
Artery Disease (C4D) Genetics consortium (CARDIoGRAMplusC4D) [27], which included
60,801 cases of CAD and 123,504 controls. For stroke, summary statistics were obtained
from the MEGASTROKE consortium, which includes 40,585 cases and 406,111 controls [28].
For T2D, we obtained the unadjusted and BMI-adjusted summary statistics, which include
48,286 cases and 250,671 controls from the DIAGRAM consortium [29]. We used data
derived from the MAGIC consortium for fasting [30] and 2 h glucose [31]. For lipid traits,
we used data derived from a recent secondary analysis in UK Biobank for TG, HDL-C, and
LDL-C [32]. For TC, we used data from a recent GWAS [33]. Characteristics of all GWAS
utilized in this study are in Table S3.

We used the inverse variance weighted (IVW) method for our main analysis to estimate
the effects of the IVs. Moreover, we used MR-Egger and weighted median estimators to
address consistency. As the number of instruments was expected to be low, we used the
median F-statistic to measure the IV strength. We further employed the robust adjusted
profile score (MR-RAPS) method, by weighing each variant for the effect and precision of
the SNP-exposure association, as recommended when using weaker instruments (i.e., below
the conventional GWAS threshold [34]). To quantify heterogeneity, bias from horizontal
pleiotropy and outliers, we estimated the Cochran’s Q statistic for MR-Egger and IVW,
and the MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) global test at p level
of >0.05 [35]. Exposure and outcome data were harmonized to ensure alleles were aligned,
with ambiguous and/or palindromic variants being removed. In addition, we estimated the
potential of sample overlap according to Burgess et al. [36] (Table S22). We also performed
a leave-one-out sensitivity analysis to assess the impact of each SNP (Figure S5). To
identify shared causal pathways among traits, we employed the Hypothesis Prioritization
for multi-trait Colocalization (HyPrColoc) algorithm [37], which identifies genome-wide
regions with evidence of shared variants (putative of a causal pathway) across traits
(Figure S5). All statistical analyses were performed with R version 3.6.2. Mediation analyses
were performed with the ‘mediation’ [21] and ‘lavaan’ R packages [38]. Two-sample MR
analysis was conducted using ‘TwoSampleMR’ [39] and ‘MendelianRandomization’ [40].
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Colocalization was performed with the ‘HyPrColoc′ [37] and ‘coloc’ R packages [41], and
PC analysis was visualized with ‘PCATools’, ‘ComplexHeatmap’.

3. Results

Data from a total of 63,862 participants were analyzed. The mean (SD) age of the
cohort was 46.5 (8.37) years and 50.3% were female. The means (SD) of glycemic and lipid
traits were FG 5.44 (0.93) mmol/L; 2 h glucose 6.55 (1.53) mmol/L; TC 5.39 (1.09) mmol/L,
LDL-C 3.59 (1.06) mmol/L and HDL-C 1.37 (0.46) mmol/L, and the median TG was
1.40 (0.81) mmol/L (see Table S4). Genetic correlations were computed using LD Score
Regression [42] for traits for which GWAS summary statistics were available, and Pearson’s
pairwise correlations among mediators and outcomes are shown in Figure S1. For PC
analysis, we selected the top three PCs that explained >52% of the total variance (Figure S2)
to maintain distinctive dietary patterns. The ten variables contributing the most to the top
three PCs are plotted in Figure S3. From these, ‘polyunsaturated fat’ and ‘total fat’ were
observed in PC1 and PC3. The variable with the largest loading value for PC 1 was ‘fiber’,
for PC 2 it was ‘sucrose’ and for PC 3 ‘polyunsaturated fat’. The correlation among traits,
nutrients and PCs are shown in Figure 2.

Figure 2. Heatmap of FFQ with 57 items and 3 PCA factor loadings. Correlation key: blue represents
positive Pearson’s correlations and red represents negative Pearson’s correlations. Direction key: red
represents a negative direction and green represents a positive direction, large loadings (bars) mean
that a variable has greater effects on the principal component.

3.1. Mediation Analysis

The direct and indirect effects for each macronutrient (or PC)–mediator associations
are depicted in Figure 3 and summarized in Tables S5–S12. In parallel and serial mediation
models, given that we were mainly interested in the direct effect of our exposures, we
compared partially and fully mediated nested models (i.e., Figure 1B,C with and without
pathway c′, respectively) using the chi-squared difference test [43]. The bootstrapped
direct and indirect effect estimates, standard errors, and fit indices for parallel and serial
mediation models are summarized in Tables S13–S20.

For those macronutrients that remained significant after correction (PFDR < 0.05) with
glycaemic traits, i.e., FG, we identified nine direct effects (Table S5)—these included added
sugar, total sugar, trans-fat, total carbohydrates with positive direction, and with negative
effects—saturated and total fat. For 2 h glucose, negative direct effects were observed for
saturated, trans-, and total fat (Table S6). Moreover, either in serial or in parallel form, the
fully mediated models were not statistically different from the partially mediated model
(Tables S13 and S14).
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Figure 3. Direct and indirect estimates between macronutrients and outcome in pairwise mediation
analysis with body mass index, 5-level physical activity and physical activity index as mediators.
Macronutrients are organized on the x-axis in colour codes, ordered consecutively (from left to right)
for body mass index, 5-level physical activity and physical activity index. Data are presented as
(A) indirect and (B) direct estimates and 95% confidence intervals; Indirect effect is the estimated
average increase in the dependent variable as a result of the mediators; (*) significant after FDR
correction at p < 0.05; HDL-C, LDL-C: high- and low-density lipoprotein, respectively; TC: total
cholesterol; TG: triglycerides; FG: fasting glucose; 2-h G: two-hour glucose; Units: FG mmol/L;
2-h G mmol/L; TC mmol/L; LDL-C mmol/L; HDL-C mmol/L; TG mmol/L; For T2D and CVD, the
unit increase corresponds to the probability.

With respect to lipids, there were four direct effects for HDL-C, these consisted of
total carbohydrates, added and total sugar with negative direction, and total fat with
positive effects; all macronutrients in their fully mediated models were statistically different
from the partially mediated model, favoring the latter. Three direct effects from total fat
and plant-based protein (negative) and trans-fat (positive) were observed for LDL-C; For
TC, plant-based proteins and total fat (negative), trans-and saturated fat (positive) had
evidence of direct effect. Only total fat and its subtypes had negative direct effects on TG
(Tables S7–S10 and S15–S18).

For T2D, total carbohydrates and trans-fat had positive significant effects, whilst satu-
rated and total fat had an opposite effect; the partially mediated models were significantly
different from the fully mediated models, favoring the former (Tables S11 and S19). With
respect to CVD, total protein intake was the only macronutrient without significant direct
and total effects, irrespective of mediational configuration (Tables S12 and S20).

3.2. MR Causal Effects

In MR analyses, carbohydrate intake was associated with T2D per E% unit increase:
ORIVW 0.1 (95% CI: 0.013, 0.71; p = 0.02); however, the MR-Egger estimate was not signifi-
cant, yet when using T2D adjusted for BMI (T2DadjBMI), the effect decreased to ORIVW
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0.47 (95% CI: 0.3, 0.75; p = 0.001) with βMR-RAPS −0.82 (se 0.3; p = 0.004) and no evidence of
pleiotropy PMR-PRESSO = 0.43 (Figure 4 and Table 1).

Figure 4. Forest plot of 5-SNP instrument and scatter plot of SNP effects on exposures versus
outcomes using different MR methods. For the forest plot, effect size and 95% confidence intervals
(standard deviation (SD) change) of the impact of carbohydrates intake SNPs. (A,B) correspond
to carbohydrates (E%)→T2D; (C,D) correspond to carbohydrates (E%)→T2D adjusted for BMI
(T2DadjBMI).



N
ut

ri
en

ts
2

0
2

2
,1

4,
12

18
9

of
14

T
a
b

le
1
.

Tw
o-

sa
m

pl
e

M
R

ex
po

su
re

–o
ut

co
m

e
as

so
ci

at
io

ns
pe

r
m

ac
ro

nu
tr

ie
nt

ty
pe

.

IV
W

M
R

-E
g

g
e

r
M

R
-P

R
E

S
S

O
M

R
-R

A
P

S

E
x

p
o

su
re

O
u

tc
o

m
e

N
u

m
b

e
r

o
f

S
N

P
s

F
β

9
5

%
C

I
p-

V
a
lu

e
Q

S
ta

ti
st

ic
p-

V
a

lu
e

β
9

5
%

C
I

p-
V

a
lu

e
Q

S
ta

ti
st

ic
p-

V
a

lu
e

G
lo

b
a

l
T

e
st

p-
V

a
lu

e
D

is
to

rt
io

n
T

e
st

p-
V

a
lu

e
β

β
S

E
p-

V
a

lu
e

S
u

g
a

r
FG

26
5

−0
.0

9
−0

.1
8

0.
01

0.
07

24
.4

8
0.

18
−0

.1
1

−0
.5

0.
29

0.
6

24
.3

9
0.

14
0.

17
-

−0
.0

8
0.

05
0.

15
2

h
gl

uc
os

e
24

5
−0

.0
7

−0
.5

4
0.

41
0.

79
16

.0
2

0.
85

−0
.9

3
−2

.9
1.

05
0.

36
15

.2
4

0.
85

-
-

−0
.0

4
0.

25
0.

86
H

D
L-

C
40

4
−0

.0
5

−0
.2

5
0.

16
0.

66
12

65
.6

6
3.

62
×

10
−2

40
−0

.2
1

−0
.8

9
0.

48
0.

55
12

53
.7

6
2.

02
×

10
−2

38
<1

×
10
−4

0.
6

−0
.0

4
0.

06
0.

49
LD

L-
C

40
4

0.
43

0.
05

0.
82

0.
03

37
87

.1
7

-
1.

06
−0

.2
1

2.
33

0.
1

36
95

.8
6

-
<1

×
10
−4

<1
×

10
−4

0.
1

0.
08

0.
16

TC
40

4
0.

32
0.

00
4

0.
64

0.
05

67
3.

38
1.

29
×

10
−1

16
0.

88
−0

.1
7

1.
91

0.
1

65
7.

34
6.

04
×

10
−1

14
<1

×
10
−4

<1
×

10
−4

0.
12

0.
09

0.
17

TG
40

4
0.

17
0.

02
0.

32
0.

03
61

9.
14

1.
65

×
10
−1

05
0.

32
−0

.1
7

0.
82

0.
2

61
1

1.
87

×
10
−1

04
<1

×
10
−4

9.
00

×
10
−4

0.
05

0.
05

0.
28

T2
D

2
7

0.
04

0.
00

2
0.

84
0.

04
22

.3
2

2.
30

×
10
−6

-
-

-
-

-
-

-
-

−2
.4

2
1.

3
0.

06
St

ro
ke

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
*

T2
D

2
6

3.
9

0.
02

96
9.

07
0.

02
0.

24
0.

63
-

-
-

-
-

-
-

-
1.

36
2.

91
0.

64
C

H
D

40
4

1.
15

0.
85

1.
56

0.
47

89
.6

9
7.

20
×

10
−6

2.
02

0.
64

6.
32

0.
32

87
.4

9.
20

×
10
−6

<1
×

10
−4

<1
×

10
−4

0.
09

0.
14

0.
51

F
a

t
FG

22
5

0.
02

−0
.0

7
0.

11
0.

68
28

.1
6

0.
14

−0
.2

3
−0

.4
9

0.
04

0.
09

24
.9

0.
21

0.
15

-
0.

01
0.

06
0.

92
2h

gl
uc

os
e

22
5

0.
09

−0
.4

3
0.

62
0.

73
18

.7
3

0.
6

−0
.3

1
−2

.2
7

1.
65

0.
76

18
.3

7
0.

56
0.

62
-

0.
17

0.
29

0.
56

H
D

L-
C

34
5

−0
.1

6
−0

.3
4

0.
02

0.
09

69
6.

01
3.

65
×

10
−1

25
−0

.0
7

−0
.5

3
0.

38
0.

75
69

1.
01

8.
50

×
10
−1

25
<1

×
10
−4

<1
×

10
−4

−0
.0

1
0.

05
0.

76
LD

L-
C

34
5

−0
.3

8
−0

.7
9

0.
04

0.
08

30
12

.0
2

-
−0

.8
2

−1
.8

4
0.

19
0.

11
29

40
.3

5
-

<1
×

10
−4

<1
×

10
−4

−0
.1

9
0.

09
0.

05
TC

34
5

−0
.2

8
−0

.6
2

0.
06

0.
11

55
0.

56
3.

74
×

10
−9

5
−0

.6
2

−1
.4

4
0.

21
0.

15
53

8.
59

2.
56

×
10
−9

3
<1

×
10
−4

<1
×

10
−4

−0
.1

6
0.

1
0.

11
TG

34
5

0.
11

−0
.2

2
0.

43
0.

51
20

18
.2

9
-

−0
.1

3
−0

.9
2

0.
67

0.
75

19
95

.2
8

-
<1

×
10
−4

3.
00

×
10
−4

0.
04

0.
06

0.
57

T2
D

5
13

2.
91

0.
47

17
.8

1
0.

25
90

-
0.

05
1.

17
×

10
−4

22
.0

7
0.

34
55

.7
8

-
2.

00
×

10
−4

<1
×

10
−4

−0
.0

6
0.

67
0.

93
**

St
ro

ke
1

-
0.

92
0.

52
1.

63
0.

78
-

-
-

-
-

-
-

-
-

-
−0

.0
8

0.
3

0.
79

*
T2

D
5

13
0.

94
0.

59
1.

51
0.

81
5.

11
0.

28
0.

77
0.

1
5.

83
0.

82
5.

04
0.

17
0.

55
-

−0
.0

6
0.

22
0.

77
C

H
D

31
5

0.
81

0.
58

1.
12

0.
29

81
.7

1
1.

10
×

10
−6

0.
69

0.
36

1.
32

0.
21

80
.8

3
9.

00
×

10
−7

<1
×

10
−4

0.
82

−0
.2

1
0.

14
0.

12
C

a
rb

o
h

y
d

ra
te

s
FG

28
5

−0
.0

7
−0

.1
7

0.
03

0.
16

44
.2

5
0.

02
−0

.1
2

−0
.5

9
0.

35
0.

61
44

.1
6

0.
01

0.
02

-
−0

.1
3

0.
06

0.
02

2h
gl

uc
os

e
31

5
−0

.0
8

−0
.6

0.
44

0.
76

36
.6

0.
16

−0
.1

6
−2

.8
3

2.
5

0.
91

36
.5

8
0.

13
0.

16
-

−0
.0

9
0.

27
0.

74
H

D
L-

C
44

4
−0

.1
2

−0
.3

2
0.

09
0.

27
12

72
.1

3
1.

59
×

10
−2

38
−0

.3
5

−0
.9

8
0.

28
0.

28
12

54
.8

8
1.

22
×

10
−2

35
<1

×
10
−4

0.
75

63
−0

.1
3

0.
05

0.
02

LD
L-

C
44

4
0.

44
0.

05
0.

82
0.

03
37

84
.4

1
-

1
−0

.1
7

2.
18

0.
1

36
98

.3
2

-
<1

×
10
−4

<1
×

10
−4

0.
08

0.
07

0.
25

TC
45

4
0.

33
0.

03
0.

63
0.

03
65

2
3.

30
×

10
−1

09
0.

76
−0

.1
9

1.
7

0.
12

63
8.

86
3.

95
×

10
−1

07
<1

×
10
−4

<1
×

10
−4

0.
11

0.
08

0.
16

TG
44

4
0.

19
0.

03
0.

34
0.

02
66

3.
34

4.
11

×
10
−1

12
0.

37
−0

.1
0.

84
0.

13
65

3.
47

1.
06

×
10
−1

10
<1

×
10
−4

0.
13

38
0.

15
0.

02
0

T2
D

6
5

0.
1

0.
01

0.
71

0.
02

80
.3

-
0.

19
6.

56
×

10
−5

56
0.

9
0.

69
79

.5
5

-
2.

00
×

10
−4

<1
×

10
−4

−1
.6

8
0.

63
0.

01
St

ro
ke

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
*

T2
D

5
5

0.
47

0.
3

0.
75

0.
00

1
3.

51
0.

48
0.

18
0.

04
0.

72
0.

02
1.

42
0.

7
0.

43
43

-
−0

.8
2

0.
29

0.
00

4
C

H
D

44
4

1.
23

0.
92

1.
64

0.
2

95
.9

4
6.

50
×

10
−6

1.
12

0.
44

2.
87

0.
76

95
.8

5
4.

30
×

10
−6

<1
×

10
−4

0.
26

03
0.

17
0.

12
0.

16
P

ro
te

in
s

FG
24

5
−0

.1
2

−0
.3

2
0.

09
0.

26
15

6.
55

-
0.

24
−0

.4
4

0.
92

0.
49

14
8.

81
-

<1
×

10
−4

0.
87

97
−0

.1
0.

08
0.

24
2h

gl
uc

os
e

24
5

0.
14

−0
.5

8
0.

86
0.

7
52

.9
3.

78
×

10
−4

−0
.9

8
-3

.4
3

1.
47

0.
43

51
.5

9
3.

56
×

10
−4

3.
00

×
10
−4

0.
08

05
−0

.0
7

0.
32

0.
83

H
D

L-
C

38
5

−0
.1

8
−0

.3
4

−0
.0

1
0.

03
65

6.
82

1.
81

×
10
−1

14
−0

.2
8

−0
.7

0.
15

0.
2

65
3.

96
1.

63
×

10
−1

14
<1

×
10
−4

<1
×

10
−4

−0
.0

7
0.

05
0.

14
LD

L-
C

38
5

−0
.1

9
−0

.3
6

−0
.0

3
0.

02
56

4.
08

1.
75

×
10
−9

5
−0

.4
7

−0
.9

−0
.0

5
0.

03
54

0.
64

2.
63

×
10
−9

1
<1

×
10
−4

<1
×

10
−4

0.
1

0.
06

0.
09

TC
38

5
−0

.1
9

−0
.4

1
0.

03
0.

09
27

5.
49

8.
63

×
10
−3

8
−0

.5
3

−1
.0

6
0.

01
0.

05
26

2.
63

8.
45

×
10
−3

6
<1

×
10
−4

0.
08

76
−0

.1
4

0.
08

0.
09

TG
38

5
0.

04
−0

.2
6

0.
34

0.
78

19
27

.2
1

-
−0

.3
7

−1
.1

3
0.

38
0.

33
19

93
.8

4
-

<1
×

10
−4

0.
02

3
−0

.0
7

0.
06

0.
24

T2
D

4
6

1.
78

0.
03

10
5.

08
0.

78
21

9.
15

-
0.

01
4.

81
×

10
−2

7
1.

57
×

10
22

0.
88

21
5.

3
-

<1
×

10
−4

-
−0

.7
6

1.
63

0.
64

St
ro

ke
38

5
0.

93
0.

72
1.

19
0.

68
58

.9
5

0.
01

0.
84

0.
43

1.
66

0.
51

58
.7

9
0.

01
0.

01
0.

13
−0

.0
3

0.
12

0.
81

*
T2

D
4

6
0.

61
0.

07
5.

38
0.

66
87

.4
-

9.
77

1.
19

×
10
−1

4
7.

99
×

10
15

0.
91

86
.4

-
<1

×
10
−4

<1
×

10
−4

−0
.4

4
1.

07
0.

68
C

H
D

38
5

1.
09

0.
83

1.
43

0.
46

66
.1

9
2.

20
×

10
−3

0.
95

0.
46

1.
96

0.
82

1.
90

×
10
−3

-
0.

07
0.

11
0.

53

Fo
r

T2
D

,S
tr

ok
e,

*
T2

D
an

d
C

H
D

ou
tc

om
es

th
e

ef
fe

ct
es

ti
m

at
e

co
rr

es
po

nd
to

O
dd

s
ra

ti
o

(O
R

);
*

ad
ju

st
ed

fo
r

BM
I;

**
W

al
d

ra
ti

o
m

et
ho

d
fo

r
si

ng
le

SN
P;

(-
)N

ot
po

ss
ib

le
to

es
ti

m
at

e;
W

e
co

ns
id

er
ed

si
gn

ifi
ca

nt
if

th
e

d
ir

ec
ti

on
s

of
th

e
es

ti
m

at
es

by
IV

W
,w

ei
gh

te
d

m
ed

ia
n

(T
ab

le
S2

1)
an

d
M

R
-E

gg
er

w
er

e
d

ir
ec

ti
on

al
ly

co
ns

is
te

nt
w

it
h

p
<

0.
05

,a
nd

no
si

gn
ifi

ca
nt

ev
id

en
ce

of
p

le
io

tr
op

y
te

st
ed

by
M

R
-P

R
E

SS
O

(p
>

0.
05

).
F

st
at

is
ti

cs
(m

ed
ia

n)
fo

r
th

e
st

re
ng

th
of

co
rr

el
at

io
n

be
tw

ee
n

in
st

ru
m

en
ta

nd
ex

p
os

u
re

.
IV

W
:i

nv
er

se
va

ri
an

ce
w

ei
gh

te
d

;M
R

-R
A

P
S:

R
ob

us
ta

dj
us

te
d

pr
ofi

le
sc

or
e;

M
R

-P
R

ES
SO

:P
le

io
tr

op
y

re
si

du
al

su
m

an
d

ou
tli

er
.T

2D
:T

yp
e

2
di

ab
et

es
;C

H
D

:C
or

on
ar

y
he

ar
td

is
ea

se
;F

G
:f

as
tin

g
gl

uc
os

e;
2

h
gl

uc
os

e:
tw

o-
ho

ur
gl

uc
os

e;
H

D
L-

C
:h

ig
h-

de
ns

it
y

lip
op

ro
te

in
;L

D
L-

C
:l

ow
-d

en
si

ty
lip

op
ro

te
in

;T
G

:t
ri

gl
yc

er
id

es
;T

C
:t

ot
al

ch
ol

es
te

ro
l.

F-
st

at
is

ti
c

co
rr

es
po

nd
s

to
th

e
m

ed
ia

n.



Nutrients 2022, 14, 1218 10 of 14

Regarding the effect of carbohydrate intake on lipid levels, TC, LDL-C and TG per E%
unit change 9βIVW 0.32 (95% CI: 0.02, 0.63; p = 0.03, βIVW 0.44 (95% CI: 0.05, 0.82; p = 0.03),
and βIVW 0.1 (95% CI: 0.01, 0.2; p = 0.03), respectively), yet there was evidence of pleiotropy.
For the carbohydrate adjusted for sugar intake instrument (6 SNPs instrumentalized) per
E% unit change and T2D, the effect estimate was βIVW 0.09 (95% CI: −7.7, 7.9; p = 0.9),
and not significant MR-Egger and MR-RAPS models (Tables S26–S28). Moreover, for fat
when undertaking MR-Egger, there were no significant associations with any outcome
(Table S21).

4. Discussion

We report a comprehensive analysis investigating mediational and causal effects of
macronutrient intake and cardiometabolic traits and diseases in >60,000 Swedish par-
ticipants. To our knowledge, this is the first study reporting the likely causal role of
macronutrient intake and the risk of cardiometabolic disease, triangulating evidence from
observational and genetic studies. Implications of our findings indicate carbohydrate intake
(with predominance of fiber) is likely followed by reduction in T2D risk. By contrast, sugar
intake likely raises T2D risk. Due to the modest magnitude of observed effects, it is unlikely
to prove a useful target when intervening only through diet for disease prevention. These
findings reinforce the notion that complex carbohydrates may be recommended in dietary
modifications, alongside other lifestyle changes, to lower individuals’ risk of T2D.

The apparent protective effects of dietary carbohydrates in T2D suggests that the
quality of carbohydrate is key in T2D prevention. Previous observational studies indicate
that associations with T2D can vary according to the carbohydrate type [44], i.e., fiber
(sourced from fruits, vegetables or cereals) had a protective effect [45], whereas starch had
deleterious effects [46]. In our MR analyses, it was not possible to interrogate carbohydrate
or sugar subtypes. Mechanistic studies show that carbohydrate metabolism is heavily
dependent on insulin action. However, the fiber effect is believed to be secondary to
the transformation to β-glucans, a water-soluble gel-forming substance that decreases
surface of exposure in the small intestine, delaying the gut absorption of glucose and
reducing postprandial plasma glucose [47]. Moreover, dietary fiber has been associated
with lower energy intake and increased satiety [48]. The most probable causal locus,
TCF7L2, is an established T2D-associated gene [49] which appears to interact with intake of
dietary fiber [50], fat [51] and whole grains [52]. Nevertheless, TCF7L2’s mechanisms of
action, especially in the context of interactions with dietary factors, remains poorly defined.
Recent evidence suggests a key role of glucagon-like peptide 1 (GLP-1), secreted after meal
ingestion [53], or serotonin [54]. More recent findings from pooled clinical trials in T2D
have emphasized the role of gut microbiome in the transformation of fiber-rich foods and
glycemic markers [55]. With respect to lipid markers, our observational findings are in line
with those reported in previous studies [56], where carbohydrate intake has been linked to
LDL-C, HDL-C, TC and TG. Yet, in our MR findings, there was no evidence of causality.
For protein intake, studies evaluating protein subtypes have shown a protective effect of
plant-based proteins against CVD [57]; conversely, proteins from animal sources increased
CVD risk [58]. It was not possible to interrogate protein subtypes with MR; yet this source
of heterogeneity may explain the observed pleiotropy.

Our study had limitations. Firstly, although SEM allows direct effect modelling, and
despite the multiple configurations explored, our hypothesized models do not cover all
possible pathways. Moreover, conditioning on a potential mediator or a shared outcome can
induce bias. Secondly, inconsistent mediation (positive direct and negative indirect effects or
vice versa) was observed for some of the pairwise associations between the independent and
mediating variable, suggesting the mediator was not a significant predictor of the outcome
when including both. Thirdly, in MR analysis, horizontal pleiotropy and population
stratification were addressed using conventional statistical solutions, yet bias cannot be
completely ruled out given the paucity of variants available to construct the IVs and other
genetically driven individual features (e.g., microbiome composition) [59] may influence the
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observed associations, moreover, evidence of weak instrument bias may still be present, as
indicated by the F-statistics. Fourth, not all macro- and micronutrients (including subtypes)
had corresponding genetic instruments; thus, we cannot assess with sufficient granularity
the causal effect of single-nutrient intake. Further caveats are that dietary patterns seldomly
remain the same over the life course, in contrast to a person’s nuclear DNA variation, which
is fixed at conception. Moreover, observational FFQ data were self-reported and estimated
effects may be larger than those observed in a real-world setting. Thus, we cannot rule
out residual confounding. Another consideration is the generalizability of our findings.
Given that the populations included for mediation analysis and MR were predominantly
of European ancestry, our findings may not generalize to other ethnicities. Nevertheless,
consistent findings across and within methods help ensure detected relationships are robust
to confounding and bias, thereby minimizing false positive association, and support the
contemporary view that carbohydrates play a causal role in T2D beyond PA and adiposity.

5. Conclusions

Our analyses highlight the direct effect of carbohydrate intake in T2D risk, helping
to quantify the role of higher-quality carbohydrates (which lower risk). These findings
warrant confirmation through clinical trials; however, they may enhance current nutritional
guidelines by helping distinguish the dietary factors that are likely to be causal from those
that are mostly mediated.

Supplementary Materials: The following supporting information can be downloaded at: https://
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Prediabetes is a state of glycaemic dysregulation below the diagnostic threshold of type 2

diabetes (T2D). Globally, ~352 million people have prediabetes, of which 35–50% develop

full-blown diabetes within five years. T2D and its complications are costly to treat, causing

considerable morbidity and early mortality. Whether prediabetes is causally related to dia-

betes complications is unclear. Here we report a causal inference analysis investigating the

effects of prediabetes in coronary artery disease, stroke and chronic kidney disease, com-

plemented by a systematic review of relevant observational studies. Although the observa-

tional studies suggest that prediabetes is broadly associated with diabetes complications, the

causal inference analysis revealed that prediabetes is only causally related with coronary

artery disease, with no evidence of causal effects on other diabetes complications. In con-

clusion, prediabetes likely causes coronary artery disease and its prevention is likely to be

most effective if initiated prior to the onset of diabetes.
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Prediabetes is an impaired state of glucose metabolism
defined by elevated but not yet diabetic levels of fasting or
2-h glucose, or HbA1c. The specific cutoffs used to define

prediabetes vary but the widely adopted American Diabetes
Association (ADA) definitions are: impaired fasting glucose
(IFG)= fasting glucose 5.6–6.9 mmol L−1; impaired glucose
tolerance (IGT)= 2-h glucose 7.8–11.0 mmol L−1; HbA1c=
39–46 mmol mol−1 (or 5.7–6.4%). The cooccurrence of IFG and
IGT is termed “impaired glucose regulation”.

Whilst the global prevalence of prediabetes in adults is about
7.3% (n= 352 million people), in Europe and the US, roughly
4.6% (n= 36 million people) and 33.9% (n= 84.1 million people)
of the adult populations, respectively, are estimated to have
prediabetes1. In the short term, a relatively small proportion
(5–10% annually) of those with prediabetes will progress to full-
blown diabetes; however, after 5 years, about half will have
developed the disease2.

As diabetes progresses, it becomes increasingly difficult to treat,
as the capacity to endogenously produce insulin diminishes and
life-threatening complications arise. About five million people
died from diabetes-related complications in 2015, of which more
than 50% of the deaths were cardiovascular in nature, with costs
attributable to diabetes amounting to about one trillion USD
globally as of 20171.

Many observational studies have shown that prediabetes is a risk
factor for cardiovascular disease (CVD), suggesting that the
pathogenic effects of dysregulated glucose metabolism have already
begun even before diabetes is manifest3. However, these observa-
tions cannot be directly interpreted as causal effects owing to the
limitations of observational epidemiology. Nevertheless, if pre-
diabetic blood glucose variation was known to cause micro- and/or
macro-vascular disease, this could profoundly impact clinical
guidelines for the prevention of micro- and macro-vascular disease.

Following a cohort of participants who remain in the pre-
diabetic state for many years would help determine if blood
glucose variations within the prediabetic range are associated with
CVD; however, such a study is probably unfeasible and would
(owing to its observational nature) be prone to confounding and
reverse causality. In theory, one could design a clinical trial in
which people with prediabetes are randomized to interventions
that either (i) maintain blood glucose at the prediabetic level (e.g.,
by clamping blood glucose and insulin concentrations), or (ii)
cause blood glucose control to deteriorate through diabetes and
thereafter assess the impact of these interventions on the devel-
opment of complications. However, for ethical and other prag-
matic reasons, such trials are unlikely to be conducted.

Mendelian randomization (MR) is a recently popularized
adjunct to randomized controlled trials (RCTs) that makes use of
epidemiological data for causal inference. The approach leverages
the strengths (stability and random assortment of alleles) of
germline DNA variation to generate so-called “instrumental
variables” that serve as proxies for environmental exposures4.
Whilst not without limitations5, MR is less prone to confounding
and reverse causality than observational epidemiology and has
been used extensively to validate causal relationships indicated by
observational studies.

For the purpose of the current analysis, we have designed an
instrumental variable that isolates the exposure of prediabetes
from diabetes by selecting single nucleotide polymorphisms
(SNPs) with robust signals for variation in nondiabetic glycaemic
traits only, with no signal for risk of type 2 diabetes (T2D). We
use these instrumental variables to test whether nondiabetic
variations in fasting blood glucose (FG) and glycated hemoglobin
(HbA1c) are causally related with the most common micro- and
macro-vascular complications of diabetes: heart disease, occlusive
and hemorrhagic stroke, and renal disease.

Results
Observational and MR results. Thirty-seven articles were
included in the meta-analysis of observational studies. The pooled
sample size was 1,326,915 participants, with mean (±SD) age
53.2 ± 10.2 years and follow-up duration of 9.6 ± 4.8 years.

In the observational data meta-analysis, prediabetes was
associated with a 16% elevated risk of coronary artery disease
(CAD) (RR= 1.16; 95% CI: 1.09, 1.23; Q= 52.5, PQstat= 0.058;
I2= 27.7%; Fig. 1). In the MR analysis, nondiabetic fasting
glucose variation was also significantly associated with CAD, such
that 1 mmol L−1 higher fasting glucose conveyed an OR of 1.26
(95% CI: 1.16, 1.38) for CAD, with no evidence of directional
horizontal pleiotropy (Egger intercept= 1, P= 0.76) (Table 1 and
Fig. 2). Sensitivity analyses (MR-Egger and weighted median
regression) yielded consistent results. Hba1c yielded eight SNPs,
which were not classifiable as erythrocytic or glycemic. The
association between HbA1c and risk of CAD was not statistically
significant (OR= 1.03; 95% CI: 0.64, 1.64) and there was evidence
of directional horizontal pleiotropy (Egger intercept= 1.03, P=
0.01; Table 1).

In observational analyses, prediabetes conveyed a RR of 1.11
(95% CI: 1.03, 1.18; Q= 28.5, PQstat= 0.23; I2= 16%) for stroke
(Fig. 3), these remained virtually unchanged in the subgroup
analysis (Supplementary Data 2); however, in the MR analysis,
prediabetes was not causally associated with overall stroke (any
stroke (AS), OR= 0.88, 95% CI: 0.69, 1.13) or any of the subtypes
of stroke (Table 1). Prediabetes was not associated with chronic
kidney disease (CKD) in the observational analysis (RR= 1.05;
95% CI: 0.98, 1.12; Q= 27.2, PQstat= 0.002; I2= 63.3%), Fig. 4, or
in the MR analyses (OR= 1.04; 95% CI: 0.87, 1.25), see below. In
the latter, there was no evidence of horizontal pleiotropy.

Sensitivity analyses. In further sensitvity and validation analyses
of the prediabetes-only instrument, as defined in our study,
prediabetes-only SNPs were not significantly associated with T2D
risk across all MR methods used, P > 0.05 (Table 2). However,
when using all FG SNPs that were genome-wide significant (P <
5 × 10−8) regardless of whether or not they were nominally
associated with T2D, there was a strong causal relationship
between FG and T2D, P < 0.01 across all methods. There was,
however, a high degree of horizontal pleiotropy, PEgger intercept <
0.01, which underscores the complex nature of T2D (Table 3). All
observational pooled estimates remained virtually unchanged in
the sensitivity analysis (Supplementary Figs. 1–3).

We further tested for pleiotropy and presence of outliers using
the Mendelian Randomization Pleiotropy RESidual Sum and
Outlier (MRPRESSO) method for outcomes where outliers were
detected—coronary artery disease (CAD), AS and any ischemic
stroke (AIS). This method detects horizontal pleiotropy, corrects
for it, and also tests the distortion between the corrected and
uncorrected causal estimates6. The outlier-corrected results did
not differ with the inverse-variance weighted (IVW) results for
these outcomes (Table 4). In addition, we conducted leave-one-
out sensitivity analyses of the relationship between prediabetes
and CAD, one using the original 28 SNPs and another using
SNPs corrected for outliers using MRPRESSO, to assess whether
this association was being driven by one or more influential SNPs.
Our results show that the relationship between prediabetes and
CAD is not driven by a single (or more) influential genetic variant
(s) (Fig. 5). When we used 2-h glucose levels as an instrumental
variable for prediabetes, only two SNPs remained after routine
quality control (QC) and use of all genome-wide significant SNPs
(n= 7 after QC) did not return significant results in association
with CAD (Supplementary Note 2 and Supplementary Table 1).
Further sensitivity assessments of the relationship between our
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Fig. 1 Meta-analysis of the association between prediabetes and CAD. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. A total of 21 studies are included. All P values are two-sided. Source data are provided as
Source Data file.
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prediabetes instruments and other cardiovascular risk factors
(Total, LDL, and HDL cholesterol levels; tryglyceride levels; and
body mass index) did not show any significant association
(Supplementary Note 2 and Supplemetary Tables 2–6).

Discussion
It is unclear if prediabetes is pathogenic or merely a prelude to the
disease state of diabetes. We sought to address this important
question using MR to estimate the causal effect of nondiabetic
variations in FG on the major complications of diabetes. We
compared these findings with those obtained through meta-
analysis of published observational data from 1,326,915 partici-
pants. In the observational analysis, prediabetes was modestly
associated with CAD and stroke, but not with CKD. In the MR
analyses however, only prediabetic blood glucose was associated
with CAD, with a 26% higher odds of CAD per mmol L−1

increase in fasting glucose. Elevation in genetically determined
HbA1c did not confer a statistically significant increase in the odds
of CAD or any other outcomes, though the number of instru-
ments was less (n= 8) and the instruments were unclassifiable.

To date, there has been no medicinal products approved for the
treatment of prediabetes in the EU or US. While lifestyle mea-
sures are clearly recommended as first-line intervention to
improve glycaemia in people at high risk of developing diabetes, it
is widely acknowledged that additional drug therapy may be
beneficial in people with prediabetes, if their risk of diabetes is
elevated for other reasons.

Current regulatory requirements for supportive evidence
include showing that delay in disease progression is accompanied
by other indicators of clinical benefit7. To provide this evidence,
large, long-term clinical trials are needed, the high cost of which
inhibits the development of prediabetic medicinal products.
Moreover, there are reimbursement challenges of treating very

Table 1 Causal relationship between genetically determined prediabetes and vascular outcomes.

Trait associated with FG IVWrobust (OR (95% CI)) MR-Egger (OR (95% CI)) Egger intercept
P value

Weighted median (OR (95% CI))

CAD 1.26 (1.14, 1.38) 1.30 (1.09, 1.567) 0.76 1.29 (1.13, 1.47)
Any stroke 0.88 (0.68, 1.13 0.71 (0.47, 1.08) 0.34 0.82 (0.64, 1.07)
AIS 0.92 (0.73, 1.16) 0.70 (0.48, 1.02) 0.16 0.88 (0.67, 1.15)
LAS 0.83 (0.49, 1.40) 0.66 (0.33, 1.35) 0.48 0.79 (0.43, 1.46)
CES 1.10 (0.75, 1.63) 0.79 (0.39, 1.58) 0.21 1.04 (0.63, 1.73)
SVS 0.78 (0.46, 1.31) 0.49 (0.19, 1.22) 0.23 0.61 (0.33, 1.11)
CKD 1.04 (0.87, 1.25) 0.83 (0.56, 1.22) 0.32 0.93 (0.75, 1.16)
HbA1c-CADa 1.03 (0.64, 1.64) 0.17 (0.04, 0.79) 0.01 0.83 (0.53, 1.31)

Data are presented as odds ratios and 95% CI for three methods of the Mendelian randomization analysis. Source data are provided as Source Data file.
IVW inverse-variance weighted, CAD coronary artery disease, AIS any ischemic stroke, LAS large artery stroke, CES cardioembolic stroke, SVS small vessel stroke, CKD chronic kidney disease.
aTwo-sample MR results of the association between genetically determined HbA1c levels and CAD using robust IVW.
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Fig. 3 Meta-analysis of the association between prediabetes and stroke. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. A total of 14 studies are included. All P values are two-sided. Source data are provided as
Source Data file.
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large numbers of people with prediabetes. Determination of the
health implications and risk assessment of prediabetes would,
therefore, aid design of smaller, shorter, and potentially less
expensive, clinical trials by providing alternative health benefits. It
would also help address the value of treating large populations
over longer periods, by showing cost effectiveness.

MR is often considered an analogue of RCTs. In the latter,
treatment allocation is randomized to help ensure that any
potential confounding factors that exist within the cohort prior
to treatment assignment are distributed evenly between treat-
ment arms, thus neutralizing their impact. In MR analyses,
germline DNA variants are used as proxies (instrumental vari-
ables) for the exposure of interest (in this case, prediabetes). The
random assortment of alleles during meiosis and the stability of
DNA variants across the lifespan reduce to a bare minimum the
possibility that the observed effect of the instrumental variable
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Fig. 4 Meta-analysis of the association between prediabetes and CKD. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. In total, eight studies are included. All P values are two-sided. Source data are provided as
Source Data file.

Table 2 Causal association between prediabetes only and
risk of T2D.

Method OR Lower 95% CI Upper 95% CI P value

Weighted median 0.98 0.82 1.14 0.79
IVW 1.02 0.90 1.16 0.76
Robust IVW 1.02 0.90 1.15 0.77
MR-Egger 0.91 0.73 1.14 0.42
InterceptMR-Egger 1.00 1.00 1.01 0.23
Robust MR-Egger 0.91 0.77 1.07 0.25
InterceptRobust MR-

Egger

1.00 1.00 1.01 0.15

n= 28 SNPs. Results are from two-sample Mendelian randomization analyses and P values are
two-sided. Results are unadjusted for multiple comparisons. Source data are provided as Source
Data file.
IVW inverse-variance weighted, OR odds ratio.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18386-9

6 NATURE COMMUNICATIONS | (2020)11:4592 | https://doi.org/10.1038/s41467-020-18386-9 | www.nature.com/naturecommunications



on the outcome is confounded or attributable to reverse
causality4.

Here, we specifically sought to isolate the causal effects of
prediabetes from those of diabetes by selecting variants that are
robustly associated with fasting glucose and HbA1c variation but
not with diabetes. It is hard to envisage a clinical trial where this
could be recapitulated, as participants would need to be exposed
to prediabetes without progressing to diabetes long enough for
complications to occur. Consider, too, that the method used to
maintain the prediabetic state would need to function without
directly affecting the trial’s outcomes, excluding virtually all
known blood glucose therapeutics. Thus, for this specific research
question, MR is an especially powerful method for causal
inference.

One of few naturally occurring examples where blood glucose
can remain in the prediabetic state for long periods is a rare form
of monogenic diabetes (MODY2), caused by mutations in the
glucokinase gene (GCK). In MODY2, the blood glucose set-point
is elevated, but is generally not linked with progressively dete-
riorating glycemic control. Moreover, most MODY2 patients do
not develop macro- and micro-vascular complications8. As
intriguing as this is, the physiological idiosyncrasies of the disease
limit inferences about vascular risk in prediabetes. For example,
unlike many people with prediabetes, MODY2 patients have
normal post-prandial glycemic responses, virtually no insulin
resistance and cardioprotective lipid profiles9.

Although this is the first study to our knowledge to undertake a
comprehensive systematic literature review coupled with a
detailed MR analysis to specifically examine the causal effects of
prediabetic blood glucose variation in micro- and macro-vascular
disease, previous studies have examined the cardiogenic effects of
diabetic and nondiabetic blood glucose variations. In general, the
findings from these studies support the clinical consensus that
T2D causes heart disease10.

At least one previous MR study examined fasting glucose
variation (inclusive of diabetes) in ischemic stroke and found no
statistically robust evidence of effect11. However, a published MR
analysis that, like our study, harnessed genetic variants associated
with glucose but not diabetes12, also reported evidence of causal
associations with CAD. Another measure of glycemia, HbA1c,
which reflects average glucose levels over the preceding 3 months,
was shown in a recent study to be causally associated with car-
diovascular complications13. However, as shown here, these
results may not be independent of the effects of fasting glucose
in CVD.

MR is not without limitations. Canalization is a widely described
caveat of MR analyses; the phenomenon occurs when genetic
perturbations are offset by coexisting and compensatory mechan-
isms, effectively short-circuiting the exposure-outcome relationships
that MR analyses seek to assess4. There are no established methods
to detect canalization in MR analyses. Canalization could invalidate
MR findings by altering the effect of the genetic instrument on the
outcome of interest without affecting the association between gen-
otype and exposure of interest4. There are other established
methodological limitations of MR, such as horizontal pleiotropy
and population stratification, which were overcome in the current
analysis using established statistical solutions. A further important
consideration is that the exposures characterized in MR experi-
ments should be viewed as having lifelong effects, whereas the
timeframe for prediabetes exposure will be confined to a much
shorter duration. Thus, the estimated effect of prediabetes in CAD
derived from our MR analysis may be greater in magnitude than
one would observe in the real world. However, the results from our
observational meta-analysis are largely consistent with our MR
estimates.

A major limitation of observational studies is the potential that
participants progress to diabetes. Therefore, we went to great
lengths to identify and stratify those studies which excluded
individuals with diabetes in the analysis. Those which we deemed
having the most likelihood of enrolling diabetics (i.e., those
recruiting participants only with HbA1c or fasting glucose) were
further stratified into a specific subgroup for re-analysis; results
remained virtually unchanged (see Supplementary Material 2,
Table 1, subgroup analysis). By no means do we claim that the
observational evidence is definitive; on the contrary, this moti-
vated us to contest these observational data and explore causality
through the MR approach.

In conclusion, we report the synthesis of a very large body of
epidemiological evidence linking prediabetes with the life-
threatening complications caused by diabetes and validate these
findings using MR. We found that prediabetes is likely to be
causal in CAD, whereas it is not likely to cause kidney disease or
stroke. The major implication of this finding is that interventions
for the prevention of diabetes-related CAD may be more effective

Table 3 Causal association between fasting glucose (all GWA significant) and risk of T2D.

Method OR Lower 95% CI Upper 95% CI P value

Weighted median 1.55 1.23 1.94 1.67 × 10−4

IVW 2.26 1.37 3.74 1.43 × 10−3

Robust IVW 2.35 1.50 3.67 1.75 × 10−4

MR-Egger 0.46 0.19 1.12 0.09
InterceptMR-Egger 1.05 1.03 1.08 5.05 × 10−5

Robust MR-Egger 0.96 0.45 2.03 0.91
InterceptRobust MR-Egger 1.03 1.01 1.04 5.54 × 10−3

n= 74. Results are from two-sample Mendelian randomization analyses and P values are two-sided. Results are unadjusted for multiple comparisons. Source data are provided as Source Data file.
IVW inverse-variance weighted, OR odds ratio.

Table 4 MRPRESSO analysis of relationship between
prediabetes and outcomes with detected outliers.

Outcome MR analysis OR (95% CI) P value

Coronary artery
disease

Raw 1.27 (1.09, 1.47) 4.9 × 10−3

Outlier-corrected 1.24 (1.12, 1.38) 5.8 × 10−4

Any stroke Raw 0.92 (0.73, 1.17) 0.51
Outlier-corrected 0.90 (0.72, 1.11) 0.32

Any
ischemic stroke

Raw 0.95 (0.75, 1.22) 0.71
Outlier-corrected 0.90 (0.74, 1.09) 0.28

All P values are two-sided. “Raw” refers to original FG SNPs (n= 28). Source data are provided
as Source Data file.
OR odds ratio, CI confidence interval.
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if initiated prior to diabetes onset. This may also help explain why
CAD prevention in people with established diabetes has proven
extremely challenging14.

Methods
Observational data meta-analysis. We first performed a systematic literature
review of published epidemiological studies focusing on “prediabetes and diabetic
complications” and extracted summary statistics that we, thereafter, combined
through meta-analysis. We then tested the hypothesis that these observational
associations were of a causal nature using MR and compared effect estimates
derived from the observational meta-analysis and the MR analyses.

A combined medical subject headings term and text search strategy was
formulated restricted to “humans” and English language articles (Supplementary
Data 1 shows the search strategy in detail). A search of the electronic database
PubMed was carried out for all cohort studies published through November 30th,
2017, according to the following criteria: prediabetes defined by IGT, IFG per
WHO15 or ADA criteria, and glycated hemoglobin (HbA1c) per ADA criterion16.
Studies were included if participants were drawn from the general population,
glycaemia was measured at baseline, and the subsequent outcomes at follow-up
were CAD, CKD, or stroke, and were compared with the group of normoglycaemic
participants. Studies with individuals known to be diagnosed with diabetes or with
diabetic values at baseline or follow-up were excluded from the analysis. Figure 6
shows the study selection procedure.

Data extraction: two authors (H.P-.M. and P.M.M.) independently identified,
screened, and reviewed for eligibility the papers identified using the approach
defined above. We systematically abstracted data relating to: author(s), year

published, country or region, prediabetes definition, prevalence (%), sample size,
gender ratio of the study population (%), participants’ age, duration of follow-up,
glycaemic status at baseline, outcome definition and ascertainment, covariates and
approach used to control for confounding, risk estimates and 95% confidence
intervals, in a standard form (Supplementary Data 2 shows the studies’
characteristics). Discrepancies in study identification were adjudicated by a third
researcher (G.N.G.). Quality of the studies and bias assessment was determined
using the Newcastle–Ottawa scale15 (Supplementary Data 2). Reported findings by
subgroups (i.e., sex or ethnicity) were included separately by strata for statistical
analysis. Effect estimates (relative risk, hazard ratio, and odds ratio, converted to
RR) were logarithmically transformed and standard errors calculated16. A priori,
we assumed there would be heterogeneity across the cohorts given the differences
in population characteristics, follow-up duration, research methods, and outcome
definitions. Therefore, the DerSimonian and Laird random-effects model for meta-
analysis was used, which is considered more conservative than fixed-effect
models16. Heterogeneity between and within studies was explored through
subgroup analysis (Supplementary Data 2).

Publication bias was assessed using funnel plots and the Begg’s and Egger’s test.
Sensitivity analysis was carried out by omitting one study at a time. All statistical
meta-analyses were undertaken with the software Stata 13.0 (Stata Corp LP, College
Station, TX).

MR analyses. MR is a method that employs instrumental variables to assess the
causal association between a given exposure and an outcome4. For an instrument
to be valid, it must mediate its effect on the outcome only through the exposure
and not via other pathways. Further, it should only be associated with the exposure
and not be associated with cofounders of the exposure-outcome association17. To
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reduce potential bias due to population stratification, we restricted MR analyses to
participants of European descent.

We defined two sets of instruments that specifically characterized variations in
fasting glucose and HbA1c within the nondiabetic range. We achieved this by
selecting SNPs that are associated with fasting glucose and HbA1c at a genome-wide
level of statistical significance (P < 5 × 10−8) within the most recent MAGIC
database18,19, but which are not associated with type 1 or T2D (P > 0.05) in the most
recent release of the Diabetes Genetics Replication and Meta-analysis database20,21.
The sets of instruments derived from these variants were then examined within
GWAS databases for any respective “diabetic” complications. Specifically, we used
publicly available GWAS meta-analysis summary statistics from various consortia.
Fasting glucose (exposure) data were obtained from the Meta-Analyses of Glucose
and Insulin-related traits Consortium (MAGIC, n= 133,010 for fasting glucose)22.
The MAGIC GWAS meta-analysis includes 32 cohorts, which comprised participants
of European descent adjusted for age and sex. Fasting glucose was expressed in mmol
L−1 and was untransformed in the analyses18.

HbA1c (exposure) data were also obtained from the latest MAGIC transethnic
genome-wide association meta-analysis of genetic variants associated with HbA1c.
This meta-analysis included 159,940 participants from 82 cohorts of different
ancestries (European, South and East Asian, and African). Individuals of European
ancestry were the majority, about 120,962 across 55 cohorts. All participants were
diabetes free and studies reported HbA1c as percentage19.

CAD GWAS summary statistics were obtained from the latest cardiomics meta-
analysis data repository23. This data comprised of 34541 cases of CAD and 26,1984
controls from the UK Biobank and replication was done in 88,192 cases and
162,544 controls from Coronary Artery Disease (C4D) Genetics consortium
(CARDIoGRAMplusC4D)24,25.

Summary statistics for five phenotypes of stroke (AS, AIS, large artery stroke,
cardioembolic stroke, and small vessel stroke) were obtained from the most recent
MEGASTROKE consortium meta-analysis data repository26 in which the analysis
for European only ancestry consisted of 40,585 cases and 406,111 controls27.

Data on renal disease were obtained from the CKDGen GWAS summary data
repository28. GWAS meta-analysis for CKD (defined as eGRFcrea <60 ml per min
per 1.73 m2) was performed on a sample of 745,348 and replicated in a sample of
280,722 giving a combined sample size of more than one million29.

Selection of glucose-associated SNPs from MAGIC30, as outlined above,
resulted in 47 SNPs for fasting glucose and 10 for HbA1c that we considered
reflective of prediabetic glucose variation. To rule out linkage disequilibrium (LD)
between SNPs, we performed LD-clumping restricted to r2 < 0.2, a 1000 kb window
and retained SNPs with the lowest P value resulting in final sets of 28 uncorrelated
fasting glucose SNPs and 8 HbA1c SNPs. For each outcome, these genetic variants
were further validated for use in the final analysis. Specifically, the exposure-
outcome datasets were harmonized to ensure the same number of SNPs in
exposure and outcome sets, similar strand orientation, correct direction of effect
sizes, and correcting for palindromic SNPs31.

Statistical analysis. All MR analyses were conducted with the R statistical soft-
ware v3.6.1 using the MendelianRandomization32 and TwoSampleMR packages33.

We used the robust IVW method for the main analysis and the robust MR-
egger and weighted median methods for sensitivity analyses. IVW is a widely-
accepted approach for MR analyses, which involves regressing the effect sizes of the
SNP-outcome association on the SNP-exposure association with the inverse of the
variance used as weights. In robust regression, extreme values are penalized to
minimize bias.

MR-Egger is used to test for directional horizontal pleiotropy, a violation of the
instrumental variable assumption where the effect of the instrumental variable on
the outcome is mediated via another pathway other than the exposure of interest.
MR-Egger tests for violation of IV assumptions and bias in the inverse variance-
weighted (IVW) methods and includes the intercept as part of the regression
(unlike IVW, where the intercept is forced to zero)34. The resulting coefficient,
therefore, provides an asymptotically consistent estimate of the causal effect, even if
all variants are pleiotropic with the outcome35. This holds when the Instrument
Strength Independent of Direct Effect assumption is true, i.e., the instrument
strength is independent of its pleiotropic effect. When this criterion is met, MR-
Egger provides an unbiased assessment of the association between the exposure
and outcome, providing the intercept, which provides the average pleiotropic effect,
does not significantly differ from the null. When the intercept is significantly
different from the null, it represents an estimate of the directional horizontal
pleiotropic effect of the genetic variants35. The median-weighted method provides
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Fig. 6 Outline of study selection procedure. Source data are provided as Source Data file.
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a reliable estimate of the causal association between exposure and outcome when at
least half of the instrumental variables are valid36.

Sensitivity analyses and instrument validation. To rule out false positive asso-
ciations, we conducted sensitivity analyses to further test the veracity of our
instrumental variables. First, we tested the association between the prediabetes
instruments with T2D to demonstrate that our instruments represented pre-
diabetes only and rule out any pleiotropic relationship with T2D. Second, we tested
the association between all fasting glucose SNPs that reached GWA significance
(n= 74 after QC) and the risk of T2D, to cement the above facts. Further, we tested
if there was any causal relationship between fasting glucose and other cardiome-
tabolic risk factors i.e., BMI, cholesterol levels (total, LDL, and HDL), and trigly-
ceride levels. We also additionally used MRPRESSO to test for horizontal
pleiotropy and outliers6.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics data analyzed here are available in the following public
repositories. CAD (Dataset: CAD_META.gz): https://data.mendeley.com/datasets/
gbbsrpx6bs/1#file-67c31537-5906-40bb-9820-8764b1554666 (https://doi.org/10.17632/
gbbsrpx6bs.1)23. CKD (Dataset: CKD overall European ancestry): http://ckdgen.imbi.
uni-freiburg.de/28. T2D (Dataset: T2D GWAS meta-analysis—Unadjusted for BMI20):
https://www.diagram-consortium.org/downloads.html21. Fasting glucose, 2-h glucose,
and HbA1c: https://www.magicinvestigators.org/downloads/22. The fasting and
2-h glucose datasets are filed under Metabochip replication datasets, and the
zipped file contains both datasets (ftp://ftp.sanger.ac.uk/pub/magic/
MAGIC_Metabochip_Public_data_release_25Jan.zip). The HbA1c dataset can be
retrieved at ftp://ftp.sanger.ac.uk/pub/magic/HbA1c_METAL_European.txt.gz. Stroke:
https://megastroke.org/download.html26. The dataset (MEGASTROKE_data.zip) is
accessible after agreeing to terms of use and submitting a brief project description. Lipids:
http://csg.sph.umich.edu/willer/public/lipids2013/37. The datasets are filed under
”RESULT FILES,” subheading “JOINT ANALYSIS OF METABOCHIP AND GWAS
DATA.” The names of the files are LDL Cholesterol, HDL Cholesterol, Triglycerides, and
Total Cholesterol. Body mass index: http://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files38. The dataset is filed under “BMI and Height
GIANT and UK BioBank Meta-analysis Summary Statistics.” The name of the file is
“Meta-analysis Wood et al.+UKBiobank 2018 GZIP”. Source data are provided with
this paper.
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