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Abstract: City-wide climate adaptation for pluvial flood mitigation requires fast and reliable simulation 

tools. Considering the limitations of hydrodynamic models at city-scale simulations, data driven models 

have high potential in the development of surrogate tools. This study explores the Google DeepMind 

WaveNet™ model architecture to map hydrological response of catchments onto hydraulic parameters of 

the pipe network in a physically informed approach to deep learning. The WaveNet-based surrogate 

model successfully predicted hydraulic head and pipe flow in the network at average Normalized Nash-

Sutcliffe Model Efficiency Indices of above 0.8, while boosting simulation speed by a factor of 1000. 

The developed AI model can be used for different assessment and optimization studies on the drainage 

network, thanks to its physics-informed structure. 
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Background 

Optimization for efficient sizing-siting of blue-green urban infrastructure is an essential 

step in climate adaptation of drainage in cities, requiring fast and reliable models 

(Seyedashraf et al., 2021; Haghighatafshar et al., 2019). Current hydrodynamic 

simulations at the city-scale are expensive; through simplified models, speed can be 

increased at the cost of spatiotemporal resolution and model reliability. To increase 

simulation speed while maintaining model reliability, this study aims to develop an AI-

based tool that is fast and reliable, to be used as a surrogate-model in lieu of a 

mechanistic hydrodynamic model for efficient optimization/planning of blue-green 

urban infrastructure. 

Methodology 

For the neighbourhood in Malmö, Sweden, which was chosen as the pilot area for this 

proof-of-concept study, rainfall measurements are available in long timeseries suitable 

for machine learning, but actual measured pipe flow data is not. Therefore, an existing 

hydrodynamic model (MIKE+, DHI), was fed measured rainfall data from 2007 (full 

year) to produce rainfall-runoff and the subsequent hydraulic head and pipe network 

discharge data (Figure 1.1), similarly as presented by Zahura et al. (2020).  

This expensive computation was performed once, creating a dataset the AI model can 

be trained on, to replace the hydrodynamic model. A WaveNet-architecture (van den 

Oord et al., 2016) deep-learning model was developed utilizing Keras and TensorFlow 

to translate rainfall-runoff timeseries into network hydraulics (levels and flows). The 

AI model was trained/validated on compiled data of only rainy days from the 

hydrodynamic simulation dataset corresponding to 11.5 weeks, using the normalized 
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Nash-Sutcliffe Model Efficiency Index (NNSE) (Nash and Sutcliffe, 1970) for AI 

model accuracy assessment (compared to the hydrodynamic model results).  

Results and discussion 

Figure 1.2 shows target (hydrodynamic simulation time 21 minutes) and AI-predicted 

timeseries (WaveNet simulation time 1.2 seconds; boost factor ~1000) over the entire 

range of the dataset for 3 example manholes with corresponding pipes. As shown, the 

WaveNet model was able to simulate network hydraulics with high accuracy, i.e., 

NNSE > 0.7 for level predictions in manholes and NNSE > 0.9 for flow predictions in 

pipes over the entire dataset.  
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Figure 1.1 A schematic of the physics-informed methodology for the surrogate-modelling data structure.

Catchment properties are conventional MIKE+ parameters, e.g. catchment area (A) and runoff coefficient (C).
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Figure 1.2 Illustration of WaveNet predictions versus target timeseries for water levels in manholes (graphs to the

left) and flows in pipes (graphs to the right).



 
 

Based on the categories by Moriasi et al. (2007), the predictive skill of the AI model 

is above satisfactory/good for level predictions, and very good for flow predictions. 

Given the boost factor of 1000, the WaveNet-model demonstrates great promise as a 

surrogate model.  

 

To further assess generalizability of the WaveNet model, the NNSE indices presented 

in Figure 1.3 were computed exclusively over the Test dataset, i.e., the final 3 weeks of 

the full dataset the model did not see during training/validation. The AI-model is highly 

successful in predicting flows, as expected, (yielding NNSE > 0.8) while level 
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Figure 1.3 Predictive performance of the trained AI-model on the test dataset in terms of NNSE.
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Figure 1.4 Target timeseries of Manhole 32 (8.06  0.0007 m) and Pipe 31 (7.44 10-6  3.53 10-6 m3/s) for 

which the AI model yielded poor NNSE, as marked on Figure 1.3.



 
 

prediction is not as accurate (NNSE > 0.65), due to the complexity of hydraulic head 

dynamics. One possible solution would be to develop two parallel AI models to predict 

water levels and flows separately.  

There are also some outliers with NNSE < 0.5 both in level and flow predictions. The 

corresponding target timeseries exhibit insignificant dynamic behaviour, being 

seemingly decoupled from the rainfall-runoff process, (see Figure 1.4). Therefore, these 

timeseries are difficult to capture by the model because the algorithm learns the 

common behaviour in the majority of timeseries, ignoring drastically deviating patterns, 

e.g., near-constant timeseries.  

 

Conclusions 

The combined WaveNet model for predicting water levels and flows from rainfall-

runoff was found to be a highly interesting alternative for surrogate modelling, 

providing proof-of-concept. However, the accuracy discrepancy between water level 

predictions and flow predictions, as shown by the NNSE, suggests that future work 

should focus on developing methods to improve accuracy for water level prediction in 

the drainage network. 
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