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Abstract. Due to limitations of IoT networks including limited band-
width, memory, battery, etc., secure multicast group communication has
gained more attention, and to enable that a group key establishment
scheme is required to share the secret key among the group members.
The current group key establishment protocols were mostly designed
for Wireless Sensor Network, and they require device interaction, high
computation costs, or high storage on the device side. To address these
drawbacks, in this paper we design LMGROUP, a lightweight and mul-
ticast group key establishment protocol for IoT networks, that is based
on Elliptic Curve Integrated Encryption Scheme and HMAC verification
and does not require device interaction. We also suggest an algorithm for
unpredictable group member selection. Our experimental result of imple-
menting LMGROUP indicates it has low storage, low computation, and
low communication costs. Furthermore, the formal security verification
indicates LMGROUP is secure and robust against different attacks.

Keywords: IoT - Group Key Establishment - Key Management

1 Introduction

IoT networks have several challenges, one of the challenges is that the majority
of devices are resource constrained which means that they have limited memory,
battery, power, and limited computational resources. In IoT networks band-
width is another challenge [1,2], since increasing the number of devices makes
the bandwidth and communication resources limited as well. Due to these limi-
tations, multicast group communication has become more favorable in IoT net-
works, since, sending multicast messages to a group of devices is more efficient
than sending unicast messages and overloading the network with multiple mes-
sages. Multicast group communication is particularly important where software
updates or patches are required to be sent to a group of devices simultaneously.

In order to enable multicast secure group communication, a group key needs
to be established in advance. There have been a variety of group key establish-
ment methods proposed which will be described in detail in Section 2. Most of
these schemes have been designed for WSN (Wireless Sensor Network) which do
not take characteristics of IoT devices (limited resources) and networks (limited
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bandwidth) into account. On the other hand, most of these schemes require in-
teraction between group members to get access to the shared key, but this is
hard to achieve in IoT networks where devices have the least communications.
Examples of such networks in smart cities or smart homes are where different
sensors are placed in different places to gather information about temperature,
air pollution, etc. These sensors gather data and send aggregated data period-
ically (in a unicast way) to a central server for further analysis and device to
device communication is less likely.

The central server then should be able to send control commands or up-
dates/upgrades and patches to the sensors in a multicast way. These commands
and updates should not be sent in a broadcast way to all IoT sensors for availabil-
ity reasons, since if any unexpected error happens, it can affect the availability
of the whole network. As a result, the central server needs to group the IoT
devices and decides about group membership, this can be done manually by the
administrator or automatically to make the group membership less predictable
to attackers. In this paper, we first suggest an automatic algorithm for unpre-
dictable group member selection. After the selection of group members, a group
key needs to be established to the group members. These group keys need to
be renewed frequently due to changes in the group membership to provide for-
ward secrecy. For that, we then design LMGROUP, a new lightweight multicast
group key management scheme, that can work efficiently in small to large net-
works. LMGROUP does not have the problems of other group key establishment
schemes for WSN including interactions between group members or heavy pro-
cedures on constrained devices. We implement LMGROUP and the experiments
indicate it has efficient memory usage, communication, and computation costs.
The experiments also show the scalability of LMGROUP. Finally, the formal
security verification indicates our multicast scheme is secure against different
attacks such as replay attacks. Our main contributions are:

We suggest an algorithm for unpredictable group member selection.

— We design a new lightweight and multicast group key management scheme
based on hybrid cryptography.

We implement LMGROUP and indicate it is scalable and it has efficient
memory usage, communication, and computation costs.

We formally verify LMGROUP and indicate it is secure against different
attacks.

The rest of this paper is organized as follows: in Section 2, the related work
on group key establishment methods for WSN and IoT networks is presented.
In Section 3, the details of LMGROUP including the suggested group mem-
ber selection algorithm and our designed scheme are described. Implementation
details are presented in Section 4. Performance evaluation and formal security
verification are described in Sections 5 and 6. Finally the paper is concluded in
Section 7.
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2 Related Work

A variety of Group Key Management (GKM) methods had been proposed for
WSNs and IoT networks and they were extensively reviewed in [3-5], in the case
of used cryptography method they are divided into three categories: symmetric,
asymmetric, and hybrid. In the case of key establishment authority, these meth-
ods can be divided into centralized, distributed, and hybrid methods as well
[3]. Centralized methods are mostly applicable to networks with static topol-
ogy while distributed approaches are more suitable for dynamic networks where
nodes have high levels of mobility and they can join and leave the network quite
often. The focus of our work is on centralized schemes and we do not review dis-
tributed schemes here. Among the reviewed schemes in [3], the most lightweight
centralized approaches applicable to static small to large networks are: LKH [6],
S2RP [7], TKH [8], and LEAP [9].

LKH (Logical Key Hierarchy) is a multicast rekeying approach for WSNs.
In LKH the nodes are divided into subgroups based on a logical hierarchy and
a symmetric key is assigned to each leaf node. LKH has a reasonable commu-
nication cost in most WSN networks since only the existing members in the
subgroup receive the rekeying messages, but each member of the group needs to
maintain the keys from the leaf to the root node path which causes additional
storage and computation cost on the node’s side [6]. S2RP (Secure and Scalable
Rekeying Protocol) is similar to LKH with almost the same performance results
but instead, it has added security to authenticate the rekeying messages through
the use of a one-way hash function [7].

TKH (Topological Key Hierarchy) is another variant of LKH in which the
logical key tree is mapped to the physical topology of the nodes in the network
(key tree), this further reduces the communication cost of total rekeying mes-
sages. In TKH, based on the routing tree, the key tree can be constructed, the
nodes attach to a parent node until they reach the group controller (sink node).
Although TKH reduces the storage overhead on the node side it does not provide
any key authentication mechanism.

In LEAP (Localized Encryption and Authentication Protocol) four types of
keys are established to the nodes including an individual key, a pairwise key, a
cluster key, and a global key. This scheme has low computation, communication,
and storage overhead but for broadcast authentication, it relies on yTESLA [10]
which requires synchronization between nodes, but the node synchronization is
heavy and it is hard to achieve in IoT or WSN networks.

Another lightweight and decentralized group key establishment for IoT was
proposed in [4]. This scheme is also based on logical hierarchy with one Key
Distribution Center (KDC) and several Sub Key Distribution Centers (SKDCs)
that can be used to avoid the single point of failure problem in centralized based
schemes discussed above. Same as LKH based schemes each device needs to
store the keys from the leaf to the parent path. Again, this scheme can have
high storage costs on the device side which are dependent on the subgroup size.
In [11] another centralized key distribution scheme based on key tree hierarchy
was proposed which again has high storage overhead.
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As mentioned above the problems of Key Tree Hierarchy-based key estab-
lishment methods are high storage, high computation costs, not providing any
key authentication mechanisms, or requirement of time synchronization which
makes them non-practical to use for IoT networks. Most of these methods are
dependent on the contribution of members of the same group, which is difficult
to handle in IoT networks, especially in networks where IoT nodes do not have
interactions with each other.

Other than key tree based methods, there exist a variety of non-interactive
key agreement protocols [12-16] which are applicable to WSNs or IoT networks.
A secure group key establishment based on Elliptic Curve Cryptographic (ECC)
operations was proposed in [12] for IoT networks. In this work, the authors have
used one-way cryptographic accumulators to enable the connection between the
gateway and IoT nodes to establish secure group keys and use them for further
communications. This work has high computation cost since key establishment
requires one signing and one signature verification on the IoT unit side.

In [15] two lightweight protocols based on ECC operations were proposed
which was an improvement of the schemes proposed in [13, 14]. The protocols pro-
vide authenticity, confidentiality, and integrity but they are vulnerable to replay
attacks [16] and they have high computational costs (especially protocol 1 which
requires two signature verifications on the IoT unit side) which make them non-
applicable to IoT environments. As an improvement of [15], the authors in [16]
proposed a new key establishment protocol based on the Identity-Based Creden-
tials (IBC) mechanism and ECC operations which is resistant to replay attacks
as well. In this scheme, they have used HMAC verification instead of signature
verification which is more applicable to IoT devices than heavy signature-based
operations. Although this scheme has a lower computation cost in comparison
to [15], they have a higher communication cost due to the increased number of
transferred messages, even this scheme does not consider multicast communica-
tion and group key sharing.

Considering the problems of Key Tree Hierarchy-based methods, we address
these problems and suggested a scheme, LMGROUP, that does not require time
synchronization, has low storage (it does not require storing all the keys from
the leaves to the root), and has low communication and computation overhead.
LMGROUP is a multicast authenticated key establishment mechanism with hy-
brid cryptography. In LMGROUP we consider the advantages of the protocol
in [16] including HMAC verification and replay protection, we modified the sec-
ond protocol presented in [15], protocol 2, and proposed a new scheme that is
applicable to IoT networks which will be explained in detail in Section 3.

3 Scenario and Scheme

In this section first, we provide the assumptions about the IoT network and the
use case in which the proposed scheme is most suitable and then we present the
details of LMGROUP scheme.
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3.1 Assumptions

In our network, we assume two types of nodes: resource-rich nodes and con-
strained IoT nodes. Resource-rich nodes have not limited storage and processing
capabilities and they can be used to perform heavy operations and are used to
manage different groups of IoT nodes. Resource-rich nodes are referred to as
servers throughout this paper. We assume to have a fault-tolerant centralized
architecture with redundant servers available in the network. In order to avoid a
single point of failure having redundant servers is required. We assume a network
scenario in which IoT devices are stable or have low mobility. Devices can join
or leave the network due to any reason, e.g. physical maintenance operations,
adding new devices, or removing old devices from the network. Examples of use
case scenarios are in smart buildings with smart lights or smart doors where the
devices have fixed positions.

In our use case networks, device interaction is not possible. We consider the
devices will not contribute in any way to group key establishment, but still in
these network scenarios since there are usually many devices available, to keep
the bandwidth as low as possible, group key establishment is preferred to be
done in a multicasted way. In case during multicast group key establishment,
one of the group members fails to receive or fails to update the group key, in its’
next contact with the server, it can retrieve the group key in a unicast way.

We assume that each device has owned a symmetric master key denoted by
k., this key is provisioned by the network administrator in the setup phase,
the k,,, keys are stored with each device identity securely on the server as well.
Later, in the bootstrapping phase k,, is used to extract a session key, ks, based
on a key derivation function to establish a secure session with the server. We
assume that the server decides on the group members and the devices themselves
can not decide which group they want to belong to. The devices can belong to
multiple groups at the same time, but messages encrypted with one group key
can not be decrypted with another key.

3.2 Network scenario

In our network scenario, after the bootstrapping phase, the devices send their
aggregated data back to the server periodically based on defined time intervals.
Then after receiving an acknowledgment from the server, the devices go to sleep
mode to reduce the energy consumption. The server needs to decide in advance
about which devices need to be grouped, our suggested algorithm to decide on
group members will be described below in Section 3.3. After deciding on the
group members, the server will piggyback a hint along with the acknowledgment
of the previous message to the IoT device. This hint carries information about the
new group ID and it can be used as the seed of the key derivation function on the
IoT unit side to extract an authentication key which further is going to be used to
authenticate the group key establishment messages. The required communication
between IoT devices and the server to derive the group authentication key is
depicted in Figure 1. After receiving the new group ID by the IoT devices that
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exist inside the group, they use it to derive the key K* which is the authentication
key. The authentication key will be used during the group key establishment
phase to protect the authenticity of multicast messages.

Other than the new group ID, the wake-up time should also be sent to the
IoT devices, so that they will be able to wake up at the defined time to receive
the multicast group key establishment messages. In order to avoid heavy time
synchronization procedure on IoT unit sides, instead of sending the wake-up
time, the server sends two other parameters to the devices: T and a window
frame. T defines the number of seconds that the device needs to wake up after
receiving the acknowledgment, and the window frame (which depends on the
network latency, delay, etc., will be defined by the network administrator), de-
fines the window frame in which the device should be active. As an example, if
T is 6000 and the window frame is 60, then the device needs to be active from
5940 until 6060 seconds after receiving the acknowledgment.

Server Device 1 Device 2 Device 3

Aggregated data

____________ o
(Ackl,ANew group ID, T, "'! Derive key K*
Window frame} le=a

Aggregated data

=1
{Ackz,'New group ID, T, I Derive key K*
Window frame} le=a
Aggregated data
____________________________________ -]
{Acks, New group ID, T, -9
Window frame} |Derive key K*

e -

Fig. 1. Communication between server and three IoT devices in the same group to
derive authentication key

3.3 Group Member Selection

In WSN or IoT networks where nodes have more mobility, the nodes themselves
can join or leave the groups based on different factors, e.g. signal strength, dis-
tance, etc. There have been some methods suggested for group member selection
[17] or cluster head selection [18,19] in WSN. These algorithms do not apply to
our use case scenario or in general to the networks where nodes are stable and
they cannot choose the grouping themselves, thus, we suggest an algorithm for
group member selection that can be used by the server in our scheme.
Available IoT devices in the network are registered by the network adminis-
trator to the central server (and redundant servers). On the device registration,
information including device identity number, device master secret, device public
key, and device criticality level will be stored on the server. The device critical-
ity level will be decided by the network administrator, and it depends on how



Title Suppressed Due to Excessive Length 7

critical the device’s role is in the network. For example, in the case of smart
doors in a hospital, the main entrance door has the highest criticality while the
sub-doors have lower criticalities. We have considered three levels of criticality:
low, medium, and high. These levels will be used for group member selection.
The group member selection should not be predictable by an outsider at-
tacker, otherwise, the devices targeted for multicast group keying or update can
become a target of DoS (Denial Of Service) attacks. Our suggested group mem-
ber selection algorithm selects devices based on criticality levels and makes sure
not all critical devices are in the same group. The algorithm works as follows:

Algorithm 1 Group member selection algorithm
Require: n, the number of group members, N, the total number of registered devices
H, M, and L > 0 the number of devices with high to low criticality, respectively,
such that H+ M + L = N.
Ge+ &,
H' « [&-], M' « | &5, L' + | & ], (The remaining members will be added to the
groups later by the administrator.)
i+ 0,
while i < G. do
G[i] + Take random members from H, M, L with the size of H', M', and L’,
respectively.
1+—i1+1
end while
Return the groups, G[i]s.

As it can be seen in Algorithm 1, based on the number of available devices
with different criticality levels, the members of a group will be formed randomly.
If new devices join the network, they will get group membership on the next
round of running the algorithm. In case a device leaves the network due to
maintenance or replacement, the group will continue with previous members
until the next round of running the algorithm. Leaving a group to join another
group is not possible by the device, since the grouping process is only done
by the server. The network administrator decides how often the group member
selection algorithm should happen.

3.4 Designed scheme

As mentioned earlier in Section 2, two lightweight key establishment protocols
based on ECC operations were proposed in [15], and an improved version of
them was proposed in [16]. The second protocol presented in [15], protocol 2,
and the improved protocol presented in [16] are the basis of our scheme. In order
to better understand our designed scheme, here, we first briefly explain these
two protocols and then we suggest our scheme.
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Basis of LMGROUP The protocol 2 [15] uses ECIES or Elliptic Curve In-
tegrated Encryption Scheme algorithm to establish a shared secret among the
group members. In this scheme, an initiator (I) with several responders Ujs in
the network are considered and the group members are determined by the ini-
tiator. The random r is generated by I, then R is calculated as R = rG (G is
the base point as in ECDH). Then for each group member EC points S;s are
computed by the initiator, S; = d;Q; + R, and @; represents the public key of
group members. The point S; = (z;,y;) will be encoded to another point (u;,v;)
by calculating the hash over the point values. Then the encoded points will be
XORed and the results will be concatenated to make the set P. The secret key
of the group, k, is then the hash value over the XORed values of u;. The Auth
value is calculated as Auth = h(k | R || P), and finally, the multicast message
that will be sent to the group members is: Auth, C, R, U, P, in which C is
the counter value and finally a digital signature will be added to the message
and the message will be broadcasted to all sensor nodes in the network. Each
receiver first checks if its’ identity is included in the U part of the message, if
yes, then it verifies the signature and the counter value. If the verification is
successful it computes u; using R and its’ private key as: §; = d;Q; + R. The
node will encode the point and finally, the values of the encoded point will be
used to derive the group key. After that, the node verifies the authenticity of the
key by checking if Auth is equal to h(k || R || P). Finally, the recipient nodes will
send an acknowledgment to the initiator to finish the handshake. The problems
of the above scheme are listed below:

— It is not protected against replay attacks;

— It requires heavy signature verification on the IoT unit side;

— The first message needs to be broadcasted to all sensor nodes in the network,
this can cause many extra checking by IoT devices not belonging to the same
group and can further cause extra overhead to the whole network.

In [16], the authors proposed a key management scheme that is quite similar
to the work explained above [15]. In [16] HMAC verification is used instead of
signature verification which makes it more energy efficient in comparison to [15].
In [16] the replay attack protection is considered but the scheme only works in
a unicasted way and it can not be used for group key management. The other
problem of the scheme [16] is that, although it has lower computation overhead
than the work presented in [15] it causes higher communication overhead.

LMGROUP In our designed scheme, we take the advantages of these two pro-
tocols [15,16] including multicast and ECIES based operations for group key
sharing from protocol [15] and HMAC verification instead of heavy signature
verification for authenticity from protocol [16]. We design LMGROUP that is
lightweight in case of communication, computation, and storage overhead. We
also suggest a replay protection mechanism and a group member selection tech-
nique, so that the messages are not required to be sent to all devices in the
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network and they can be sent to the target devices from the beginning. We
describe the details of LMGROUP here.

The operation flow of our designed scheme is depicted in Figure 2. After
deciding about the group members and pre-establishment of the authentication
key K* to group members by the server, as can be seen in Figure 2, the operation
flow of LMGROUP which first begins on the server side is as follows:

— The server selects a random r and computes R = r(@, in which G is the base

point as in ECDH, and based on the number of group members in the range

of 1 to n, the point S; = dQ; + R = (x;,y;) will be calculated, where d is
the private key of the server and @); is the public key of group members.

A unique random session ID will then be generated by the server that is

used to protect against replay attacks.

— For each member of the group, T; = {®ix;2;} ® y; will be calculated and
then the set Se = (Z71, ..., T, ) will be formed, and the group key is calculated
as k = h(®;x;) which is the hash over XOR values of z;.

— The HMAC will be calculated over the fields of {ID, Auth,R,Se} with
the use of the authentication key K* and it will be sent along with {ID,
Auth, R, Se} to all group members.

Then the flow continues on the device side:

— The group members upon receiving the message, first verify the HMAC, then
each recipient device uses R and its own private key d; to construct the point
Sj=d;Q+ R = (x;,y;).

— Then, the device extracts its own 7 from the received set Se, and then it
can derive the group key as k = h(T; ® z; @ y;), T; contains other = and
y; value, therefore the similar values of y; values will be removed from the
calculation and only all x values will be XORed as expected.

— After key derivation, the Auth should be checked if it is equal to h(k|| R|| Se)
or not. If Auth is valid then an acknowledgment will be calculated as Ack; =
h(k||ID]|Q;), in which k is the extracted group key, ID is the received session
ID by the device and @Q); is the device public key.

— The acknowledgment along with device ID (device identity number) will be
sent back to the server.

The flow then is finalized on the server side:

— The server uses the group key and device public key @; to verify the ac-
knowledgment. On a successful verification, the authenticity of the derived
group key by the device is verified as well.

4 Implementation

We have implemented LMGROUP in a real testbed setup. For the implemen-
tation, we have used ESP32-S2! a popular IoT development board representing

! https://www.espressif.com/en/products/socs/esp32-s2
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Server Device j
Select r and compute R = rG,
Compute S; = dQ; + R = (x;,5;)

vj € {1,..,n},

Select arandom ID,

Calculate X; = {@,‘1, xi} Dyj,
Calculate the set Se = (X7, ..., %),
Calculate the group key k = h(®; x;),
Compute the Auth = h(k Il R |l Se), {ID, Auth, R, Se}, HMAC
Calculate HMAC (k*,{ID, Auth, R, Se})

Verify HMAC,

Compute S; = d;Q +R,

Compute k = h()?, D x; @y,),

Check if Auth is equal to h(k || R || Se),

Compute Ack; = h(k I ID || Q;)
{Ack;, Device ID} / /

Verify Ack;

Fig. 2. Operation flow between server and a sample device in LMGROUP

IoT devices (the implemented code for device side and server side is available?).
ESP32-S2 is a low power and single core Wi-Fi Microcontroller SoC, which has
high performance with a rich set of IO capabilities. ESP32-S2 has cryptographic
hardware accelerators for enhanced performance, and it integrates a rich set of
peripherals, with different programmable GPIOs that can be configured to pro-
vide USB OTG, LCD interface, UART, and other common functionalities and
in our implementation, in order to annotate measurements we have used UART
interface. In our measurements, we used Otii Arc? device as a power analyzer to
record and measure real time currents and voltages using UART logs.

We have used SHA256 for the hash function and for HMAC we have used
HMAC-SHAZ256. For the hash function, we have used hardware acceleration on
ESP32-S2. On the IoT device side for the ECC point addition and multiplication,
we have used the Mbed TLS library.

4.1 Testbed and Environmental Setup

Our testbed consists of 10 ESP32-S2 boards and 7 out of these 10 boards are
grouped by the server to receive the group key. After the server decides the group
members, it calculates: S, Z; (j in range of 1 to 7), Se, k. Auth and HMAC (as
explained in Section 3.4). The calculation of these values can be done at any
time between the time the group members have been decided until the time
the devices wake up, based on the server workload during this time. During the
specified wake-up time window, the devices wake up and wait to receive the group
key information from the server. Our testbed setup and further communications
between the server and IoT devices are depicted in Figure 3. As shown in Figure
3, the multicast group key message will be sent to all of the grouped devices

2 https://github.com/pegahnikbakht /Multi-key-share
3 https://www.qoitech.com/otii/
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by the server. The devices after receiving, verifying the message, and extracting
the group key will send back an acknowledgment to the server. Whenever the
server receives acknowledgment from all members, the group key is established
and can be used for further communications. The server has a specified timeout
for receiving the acknowledgments from all group members, if the server does
not receive the acknowledgment from any of the group members, it will send
again the group key information to those members in a unicast way later.

Q)

Group key
information

<
Acknowkedgements

Fig. 3. Testbed setup for LMGROUP

5 Performance Evaluation

In order to show the efficiency of our group key establishment scheme, we mea-
sure the communication, computation, and storage overhead of our scheme.

5.1 Communication and Computation Cost

In order to calculate the communication overhead, the number of transferred
bytes between the server and IoT devices during the group key establishment
have been calculated, in the calculations, the number of bytes in the acknowl-
edgment is also included. The number of bytes in the first message from server
to the devices are 1454 32x%n bytes (n is the number of devices inside the group),
which consists of 16 bytes of ID, 32 bytes of HMAC, 32 bytes of Auth, 64 bytes
of R, and 32 x n bytes of Se which depends to the number of group members n.
The response back from the device includes an acknowledgment (32 bytes) and
a Device ID (12 bytes) which is in total 44 bytes. Therefore the total number of
transmitted bytes between server and devices are 189 + 32 x n bytes.

In order to compute the computation overhead on the device side, the energy
consumption and the time was measured from the time the device receives the
group key information from the server until it sends back the acknowledgment.
We have done the measurements using two different elliptic curves with the same
security level, Secp256r1 (prime field curve) and Secp256k1 (Koblitz curve). The
total time elapsed for the key establishment on the server was also measured
which is the time from when the key establishment message was sent until all
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acknowledgments from the devices in the multicast group have been received
and verified. The results of computation overhead are indicated in Table 1. As
can be seen single EC point addition and multiplication of Secp256r1 consumes
more energy and requires more time than Secp256kl since prime field curves
are few bits stronger than Koblitz curves [20]. Therefore using the prime field
curve Secp256rl for the group key establishment would require more time and
energy on both the device side and the server side. The required time for single
acknowledge verification does not depend on the curve type and it is almost
equal for both curves as can be seen in Table 1, but since Secp256rl requires
more processing time on the device side, the time between the arrival of different
acknowledgments as well as the total key establishment time will increase. From
Table 1, we can also conclude that the majority of used energy and time on the
IoT side is due to ECC operations, therefore hash function and MAC function
operations are considered negligible.

Table 1. Computation overhead of LMGROUP with two different curves

Curve Energy (uwh) Time (ms)
Secp256k1|Total key establishment (IoT side) 32.0809 405.7857
Total key establishment (Server side) - 570.3442
Single Ack verification (Server side) - 0.1129
Time between arriving Acks (Server side) - 0.8210
Singel EC point addition and multiplication 25.6172 321.3448
Secp256r1|Total key establishment (IoT side) 39.0281 494.0000
Total key establishment (Server side) - 692.0681
Single Ack verification (Server side) - 0.1226
Time between arriving Acks (Server side) - 1.3483
Singel EC point addition and multiplication  33.5333 414.1000

According to the measured values in Table 1, we tried to simulate how long
the whole key establishment time (from the time the server sends the key es-
tablishment message until it receives and verifies all the acknowledgments from
group members) takes on the server side for larger group sizes. The results for
different group sizes are depicted in Figure 4. As can be seen the key establish-
ment time increases by increasing the group size, and for large group sizes (larger
than 100) this increase is more noticeable. Although the key establishment time
for larger group sizes increases but for instance this increase for a group of 448
nodes is still less than a second, hence LMGROUP is scalable to large size net-
works as well. Note that based on the latency threshold in the network [21] an
appropriate group size should be selected. As mentioned earlier curve Secp256k1
has better performance than Secp256rl as can be seen in Figure 4.

We have also compared the computation and communication overhead of
LMGROUP to the schemes presented in [15,16], and the results are depicted in
Table 2. Different operations are indicated as follows: PM for ECC point mul-
tiplications, PA for point addition, A for hash function operation, SV for signa-
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Fig. 4. Total key establishment time of LMGROUP for different group sizes

ture verification, HM for HMAC operation, MM for modular multiplication, SE
for symmetric encryption, and SD for symmetric decryption. As hash function
and HMAC operations are negligible, we can conclude from Table 2 that the
protocols presented in [15, 16] obviously have more computation overhead than
LMGROUP due to heavy signature verification operation and also having more
ECC or modular operations in schemes [15, 16], respectively. In scheme [15], the
authors have originally used the curve Secp160rl, which has less byte overhead
than Secp256r1 or Secp256k1 (the curves used in LMGROUP), in order for the
scheme [15] to be comparable with our scheme, we have considered a curve with
256 bits modules in [15] as well. The results of computation overhead comparison
are also indicated in Table 2. Considering the communication overhead repre-
sented in Table 2, we calculate the communication overhead for different values
of n or the group size, and the results are depicted in Figure 5, as can be seen
LMGROUP has slightly higher overhead than the protocol [15] and this is due
to the fact that in scheme [15] SHA128 was used as the hash function which
generates 16 bytes lower overhead than SHA256 which was used in LMGROUP.
The protocol [16] is not a multicast protocol and as can be seen, it has the high-
est byte overhead, increasing the group size will cause a significant increase in
its’ communication overhead.

Table 2. Communication and computation overhead comparison of LMGROUP with
the protocols presented in [15, 16]

LMGROUP Protocol [15] Protocol [16]
2PM+-2MM+
h+2HM+SE4SD

189 +32x%n 146 + 18 x n 128 x n

Computation Overhead
(number of operations)
Communication Overhead
(number of bytes)

PM+PA+3h+HM PM+PA+5h+SV
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5.2 Storage Overhead

In LMGROUP the following information needs to be stored on the device side:
public key of the server, device private and public keys, device ID and some other
variables regarding the used ECC curve. We measured the memory footprints
of our multicast key establishment scheme using ESP32-S2 and the results are
shown in Table 3. DRAM specifies the RAM usage which is assigned to zero and
non-zero values at the startup of the program. IRAM indicates the total exe-
cutable code which is executed from IRAM, and D/IRAM specifies the total size
of DRAM and IRAM together. Flash code specifies the total size of executable
code which is executed from the flash cache or IROM. Flash rodata on the other
hand indicates the total size of read-only data that is loaded from the flash cache
or DROM. Finally, total image size indicates the estimated total binary file size
of the program which includes the whole size of all used memory types. As in-
dicated in Table 3, RAM and ROM usage of LMGROUP are reasonable on the
IoT device side, and considering the limitations of resource constrained devices
LMGROUP is applicable to be used in such devices.

Table 3. Memory footprints of LMGROUP

D/IRAM(B) Flash Code(B) Flash rodata(B) Total image size(B)
LMGROUP| 110855 467427 102736 681018

6 Formal Security Verification

In order to formally verify the security properties of LMGROUP, we have used
ProVerif [22]. ProVerif uses Dolev-Yao model [23] for the adversary model and
it can be used to formally verify the security properties of cryptographic proto-
cols. Applied pi calculus [24] is used in ProVerif as the modeling language. In
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our protocol modeling, we first start with the declaration phase where differ-
ent components of the protocol including variables, functions, and channels are
declared. We used different types in our ProVerif model to declare the type of
variables such as key, nonce (used for session ID), point (used for ECC point),
and bitstring. The term [private] in front of some variable definitions indicates
that those variables are not known by the attacker. Our modeled protocol using
ProVerif is also available?.

The main functions used in the modeling of our key establishment scheme are
hash function, ECC point multiplication and addition, MAC, and XOR, these
functions are modeled as follows:

fun hash(bitstring ): bitstring.

fun mul(bitstring ,bitstring): bitstring.

fun add(bitstring ,point):point.

fun mac(key ,nonce, bitstring ,point , bitstring) : bitstring.
fun xor(bitstring ,bitstring ): bitstring.

The functions can have different input and output types, as an example MAC
function takes five inputs of type key, nonce, bitstring, point, and bitstring and
it generates an output of type bitstring.

After declaring variables and functions, we defined different queries, these
queries are used to check whether the protocol has specific security properties
or not. We verified security properties including secrecy, authentication, and
correspondence through different queries. These security properties can protect
against various attacks including: 1) Man in The Middle attack, 2) Replay and
Impersonation attacks, and 3) Denial Of Service attack. The queries used to
verify the secrecy properties to protect against these attacks are described below.

6.1 Man in The Middle Attack Protection

Man in The Middle Attack (MITM) can be protected through secrecy property.
To verify secrecy we have used the following queries:

query attacker ( da ).
query attacker ( db ).

In our ProVerif model, we modeled two devices, Device A and B, modeled as
Da and Db, and a server modeled as S. In the above queries, da and db represent
the private keys of devices A and B, and the queries check whether the attacker
can gain any knowledge about the private keys of those devices or not. The result
of ProVerif verification indicates that the above queries are successfully verified
and the attacker can not get access to da and db and further can not get access
to the information required in generating the group key.

* https://anonymous.4open.science/r/Multi-key-share-C4AF /
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6.2 Replay and Impersonation Attacks Protection

We have used correspondence property to verify protection against replay and
impersonation attacks. To prove correspondence, we have used these queries:

query a:bitstring ,b:nonce,c:bitstring ,d:point ,e: bitstring;
event (termDevice(a,b,c,d,e))==>event (initserver (a,b,c,d,e)).

query a:bitstring ,b:bitstring;
event (termserver (a,b))==>event (initDevice(a,b)).

As it can be seen four different events are used in the above queries: initDe-
vice and termDevice refer to initiating and terminating the device respectively,
and initserver and termserver refer to initiating and terminating the server.
The inputs of the events in the first query represent HMAC, Session ID, Auth,
R, and Se and the inputs of events in the second query are device ID and ac-
knowledgement. The above queries are satisfied if for each occurrence of the
event termDevice, there is a previous execution of initserver, and also if for
each occurrence of termserver there is a previous execution of initDevice. These
correspondence relations protect against replay and impersonation attacks. The
above queries are successfully verified in ProVerif.

6.3 Denial Of Service Attack Protection

To protect against DoS attacks, we have used the authentication property, if all
of the messages are authenticated in the protocol then it can protect against DoS
attacks, we have used HMAC verification to verify the message in LMGROUP.
To prove authentication again the correspondence assertion (the relationships
between the execution of events) is used in ProVerif and the same queries used
in Section 6.2 are used to verify authentication. ProVerif has successfully verified
correspondence as well.

7 Conclusion

In this paper, we propose LMGROUP a lightweight and multicast group key
establishment scheme for IoT networks. In LMGROUP the IoT devices do not
need to interact with each other to gain the shared key, instead, a central server
is used to select the group members and send group information to the members
(having some redundant servers is preferred to avoid single point of failure). In
this paper, we suggest an unpredictable group member selection algorithm based
on the criticality level (which is decided by the network administrator) of the
devices in the network. LMGROUP uses ECIES based operations for sharing the
group key and it uses HMAC verification instead of heavy signature verification
to authenticate the group key establishment messages. The evaluation result of
implementing LMGROUP on a real testbed setup indicates it is lightweight and
scalable and can be used in small to large size networks. The results also indicate
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LMGROUP has low storage, low communication, and computation costs. Fur-
thermore, we also formally verify LMGROUP and prove it is secure and robust
against different attacks including replay and DoS attacks.
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