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Abstract

We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by
performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878
European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide
polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was
tested for ,2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We
identified a missense SNP (Thr.Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of 20.11
standard deviations [SD] per C allele, P = 6.261029). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly.Arg),
also had genome-wide significant association with forearm BMD (20.14 SD per C allele, P = 2.3610212, and 20.16 SD per G
allele, P = 1.2610215, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for
association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide
significant increased risk of forearm fracture (OR = 1.33, P = 7.361029), with genome-wide suggestive signals from the two
missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.961026 and rs2707466: OR = 1.22, P = 7.261026). We next generated a
homozygous mouse with targeted disruption of Wnt16. Female Wnt162/2 mice had 27% (P,0.001) thinner cortical bones at
the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5610213,P,5.961024) at both femur
and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate
that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture.
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Introduction

Osteoporosis is a common skeletal disease characterized by

reduced areal bone mineral density (BMD) and defects in the

microarchitecture of bone, resulting in an increased risk of fragility

fracture [1]. Osteoporotic fractures affect between one third to one

half of white women [2] and currently incur direct costs exceeding

$19 billion per year in the United States alone [3]; and this socio-

economic burden is increasing with the ageing of industrial

societies [4].

Twin and family studies have revealed that genetic factors can

explain up to 85% of the variation in peak BMD [5,6]. Since

2007, we and others have published several genome-wide

association studies (GWAS) for osteoporosis and related traits

[7,8,9,10,11,12,13,14] identifying multiple common variants

associated with BMD and highlighting biologic pathways that

influence BMD.

Most osteoporotic fractures occur at peripheral sites, mainly

containing cortical bone, after the age of 65 [15]. As indicated by a

recent study, bone loss at this age is mainly due to loss in cortical

and not trabecular bone [16]. In human cadaver femurs, cortical

bone has been reported to be the main determinant of the femoral

neck bone strength, while trabecular bone only contributes

marginally to bone strength at this site [17]. Evidence implicating

cortical thinning as a risk factor for hip fracture has also been

presented [18]. The heritability for cortical thickness, measured

using computed tomography, has been reported to be as high as

51% [19].

BMD is a complex trait, obtained from a 2-dimensional

projectional scan of the given bone with dual x-ray absorpti-

ometry (DXA). Although BMD is the most clinical useful

measure for diagnosing bone fragility (osteoporosis), it fails to

provide a detailed skeletal phenotype necessary to discern traits

such as bone geometry and volumetric BMD (vBMD) [20].

Most of the loci or genes identified have been associated with

BMD at lumbar spine and/or femoral neck, sites rich in

trabecular bone. Therefore, we hypothesized that investigating

BMD at the forearm, a primarily cortical bone site, as well

cortical bone thickness, a trait with high heritability, would

serve as successful strategies to identify novel bone related

genetic loci.

Forearm fractures are among the most common fractures,

affecting 1.7 million individuals per year. In contrast to hip

fractures [21], forearm fractures have been shown to be highly

heritable, with estimates of 54% [22]. To our knowledge, no GWA

studies for cortical bone thickness, forearm BMD or fractures have

been published. Importantly, we are aware of only one previous

locus [12] that has been associated with risk of fracture even in

large-scale meta-analytic efforts at a genome-wide significant level

(reviewed previously) [23,24,25].

In this study, we performed two separate GWA meta-analyses in

order to identify loci for cortical bone thickness of tibial diaphysis

and BMD at the distal radius. Firstly, we performed a GWA study

of three large and well-characterized independent discovery

cohorts of 5,878 samples with the aim of identifying genetic loci

for cortical thickness. SNPs meeting GWAS significance in the

discovery meta-analysis were also tested for association in a large

replication cohort (N = 1032). In the second and separate GWA

meta-analysis, we combined genome-wide association results of

5,672 samples with BMD measurement at the forearm site from

five cohorts; we then sought evidence of association of selected

genome-wide significant signals in three cohorts comprising 5,763

individuals for forearm fracture.

To determine the possible functional role of the identified genes

on cortical bone thickness and bone strength, we generated mice

with inactivated genes and investigated their skeletal phenotype.

Wnt16, Cortical Bone Thickness, BMD, and Fracture
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The resultant findings increase our understanding of the genetic

basis of osteoporosis and osteoporotic fracture.

Results

GWAS Meta-Analysis of Cortical Thickness
Anthropometrics, and bone variables for the three discovery

GWAS cohorts and one replication cohort are presented in Table

S1. Marked deviation from the null distribution amongst the

lowest observed p-values were observed for the meta-analysis

results (Figure S1). The results showed that the greatest evidence

for association between genetic variation and tibial cortical

thickness was seen for rs9525638 on chromosome 13, slightly

upstream of the RANKL gene (20.11 standard deviations [SD] per

T allele, P = 3.3610210) (Table 1, Figure S2 and Figure S3). The

second strongest genetic signal (rs2707466) for cortical thickness

was located at the WNT16 locus (20.10 SD per C allele,

P = 5.961029) (Table 1, Figure 1 and Figure S2). The SNP

rs2707466 represents a missense polymorphism (Thr.Ile) located

in the fourth exon of WNT16.

We selected our top two regions, the RANKL and WNT16 loci,

with SNPs with P,161025 and carried out analyses conditional

on the most associated SNPs in each region: rs9525638 and

rs2707466, respectively. When conditioning on the most signifi-

cant SNP in the WNT16 region (rs2707466) an additional

suggestive signal (rs12706314 in C7orf58, P condition = 7.361025)

appeared, but did not achieve genome-wide significance. Using a

similar conditional analysis (with rs9525638) for the RANKL locus,

no additional SNPs with an independent signal appeared.

Cortical Thickness Replication Study
Two SNPs (rs9525638, rs2707466) were selected for replication

in the MrOS Sweden cohort. In the replication stage, SNP

rs2707466 at the WNT16 locus was significantly associated with

tibial cortical thickness (20.11 SD per C allele, P = 0.008), whilst

no strong evidence of association was seen for rs9525638 near the

RANKL locus although the estimated effect was in the same

direction as in the discovery meta-analysis (Table 1). Thus,

rs2707466 was the only SNP that was significantly associated with

cortical thickness in both the discovery and replication cohorts

(combined 20.11 SD per C allele, P = 1.5610210). Therefore,

further analysis of associations with bone traits was constrained to

rs2707466 at the WNT16 locus. Associations between rs2707466

and cortical thickness were highly similar when performed

according to sex (Figure 2). No evidence of a significant impact

of age for the association between rs2707466 and cortical thickness

was found (ALSPAC (young) vs. GOOD, YFS and MrOS

combined (adult and older): 20.09 SD vs. 20.13 SD per C allele,

P = 0.135, for heterogeneity between the two groups). In the

combined meta-analysis, rs2707466 was not associated with either

cortical vBMD or periosteal circumference (Table S2). In the

GOOD cohort, rs2707466 was associated with cortical bone

thickness also at the radius (20.12 SD per C allele, P = 0.008).

GWAS Meta-Analysis of Forearm BMD
The information of the five forearm BMD cohorts is presented

in Table S3. A quantile-quantile plot of the observed P values

showed a clear deviation at the tail of the distribution from the null

distribution (Figure S4). The meta-analysis revealed that 54 SNPs

within the 7q31 locus had genome-wide significant associations

(P,4.661028) with forearm BMD (Table S4 and Figure S5). The

most significant SNP was at rs2536189 (20.16 SD per C allele,

P = 8.5610216). Two common amino acid substitutions at

WNT16, rs2908004 (Gly.Arg) (20.16 SD per G allele,

P = 1.2610215) and rs2707466 (Thr.Ile as described in cortical

thickness study) (20.14 SD per C allele, P = 2.3610212) also

demonstrated genome-wide significance (Table 2). The highlight-

ed locus at 7q31 locus included genome-wide significant SNPs at

the WNT16 (wingless-type MMTV integration site family,

member 16), FAM3C (family with sequence similarity 3, member

C) and C7orf58 (chromosome 7 open reading frame 58) genes

(Figure 3). To identify the possible secondary signals in this locus,

we carried out a conditional analysis. When conditioning on

rs2536189, the most significant SNP at WNT16 for BMD, an

additional signal (rs1554634 in C7orf58, P = 7.861028) was

highlighted at a genome-wide suggestive level of association

(Figure S6). This SNP is in LD with rs12706314 in C7orf58

(r2 = 0.35 and D’ = 0.72 in HapMap CEU), which showed

suggestive association with cortical thickness when conditioning

on the top signal for cortical thickness.

Forearm Fracture Association Study
In order to investigate whether the variants showing association

with forearm BMD also have an effect on the risk of forearm

fracture, we selected 4 genome-wide significant SNPs from the

BMD analysis for de novo genotyping in samples with forearm

fracture and their controls (Table S5), including the two missense

SNPs in WNT16 (rs2707466 and rs2908004), one from FAM3C

(rs7776725) and one from C7orf58 (rs10274324). In the meta-

analysis for osteoporotic fracture, comprising 2,023 forearm

fracture cases and 3,740 controls, from 3 cohorts, we identified

the rs7776725 SNP in FAM3C as being genome-wide significant

for forearm fracture, with each C allele increasing the odds of

fracture by 1.33 (95% confidence interval [CI]: 1.20–1.46, P-

value = 7.361029) (Table 2 and Figure 4). The two missense SNPs

in WNT16 also demonstrated strong associations with risk of

fracture (rs2908004, risk allele G, OR = 1.22 [95% CI: 1.12–1.33],

P-value = 4.961026 and rs2707466, risk allele C, OR = 1.22 [95%

CI: 1.11–1.33], P-value 7.261026). SNP rs10274324 from C7orf58

Author Summary

Bone traits are highly dependent on genetic factors. To
date, numerous genetic loci for bone mineral density
(BMD) and only one locus for osteoporotic fracture have
been previously identified to be genome-wide significant.
Cortical bone has been reported to be an important
determinant of bone strength; so far, no genome-wide
association studies (GWAS) have been performed for
cortical bone thickness (CBT) of the tibial and radial
diaphysis or BMD at forearm, a skeletal site rich in cortical
bone. Therefore, we performed two separated meta-
analyses of GWAS for cortical thickness of the tibia in 3
independent cohorts of 5,878 men and women, and for
forearm BMD in 5 cohorts of 5,672 individuals. We
identified the 7q31 locus, which contains WNT16, to be
associated with CBT and BMD. Four SNPs from this locus
were then tested in 2,023 osteoporotic fracture cases and
3,740 controls. One of these SNPs was genome-wide
significant, and two were genome-wide suggestive, for
forearm fracture. Generating a mouse with targeted
disruption of Wnt16, we also demonstrated that mice
lacking this protein had substantially thinner bone cortices
and reduced bone strength than their wild-type litter-
mates. These findings highlight WNT16 as a clinically
relevant member of the Wnt signaling pathway and
increase our understanding of the etiology of osteoporo-
sis-related phenotypes and fracture.

Wnt16, Cortical Bone Thickness, BMD, and Fracture
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was not associated with fracture in this study (P = 0.15). These

results were consistent across the three cohorts (Table S6).

Mouse Gene Deletion Studies
Mice with a gene deletion of Wnt16 (Wnt162/2) appeared

healthy with no discernible morphological or growth defects, and

had normal body weight and femur length at 24 weeks. In

microCT analyses of the femoral diaphysis, male Wnt162/2 mice

had a trend suggestive of reduced cortical thickness (27%,

P = 0.14), and reduced cortical bone polar moment of inertia

(216%, P,0.001) (Table 3); female Wnt162/2 mice had

substantially reduced cortical cross sectional area (236%,

P,0.001) and cortical thickness (227%, P,0.001) and calculated

bone strength (polar moment of inertia, 255%) (Table 3).

Trabecular bone volume fraction (bone volume/total volume), as

measured by microCT of 5th lumbar vertebrae (LV5), was similar

in wild-type and Wnt162/2 mice (Table 3). In three-point bending

tests, measures of bone strength (stiffness, maximal force to

breakage and work to failure) were decreased between 43–61%

(6.5610213,P,5.961024) in Wnt162/2 female mice at both

femur and tibia (Figure 5). However, microCT parameters of the

femoral shaft and LV5 in male wild type and Fam3c2/2 mice did

not reveal any consistent differences across the three targeting

strategies (Table S7).

Discussion

Forearm fractures are a common and costly condition. In two

separate GWASs for forearm BMD and cortical bone thickness

we have identified variants that are genome-wide significant for

these traits and, importantly, for forearm fracture at the 7q31

locus. Further, we have provided functional data from mice

demonstrating that Wnt162/2 mice have reduced cortical bone

thickness and bone strength. These results are among the first to

demonstrate a genome-wide significant locus for osteoporotic

fracture suggesting that this locus is an important genomic

determinant of cortical bone thickness and forearm BMD and

fracture as well.

WNT16 is a member of the wingless-type MMTV integration

site family, which has been reported to mediate signaling via

canonical or non-canonical Wnt pathways. The canonical Wnt

pathway has been shown to regulate bone mass. Specifically, loss

of function mutations in the Wnt-co receptor LRP5, as seen in

osteoporosis pseudoglioma syndrome, result in a dramatic loss in

bone mass [26], while gain of function mutations give rise to

extremely high BMD (5 SD above normal) [27]. Wnt16 has been

proposed to signal via the non-canonical pathway [28], regulating

haematopoetic stem cell specification in zebra fish, but whether

this signaling system involves regulation of osteoblasts, which are

of mesenchymal origin, is unclear. Little is known of the role of

WNT16 in skeletal development and function, but Wnt16 has

previously been implicated in synovial joint development in mice

[29]. Several genes involved in the Wnt pathway have been

previously identified to be associated with BMD by GWAS. These

include known loci CTNNB [10], SOST [30], LRP4 [9,10], LRP5

[8,10], FOXC2 [10], GPR177 [10], and MEF2C [10]. Our study

adds WNT16 to this list of bone-influencing Wnt factors. In

addition to our GWA meta-analyses results for cortical bone

thickness and forearm BMD, we present a functional study

demonstrating that Wnt162/2 mice have a substantial decrease in

cortical bone thickness (27%) and bone strength (43–61%), but not

bone length. Further, Medina et al (accompanying submission)

Figure 1. SNP rs2707466 regional association plot of the discovery genome-wide meta-analysis of cortical thickness. Circles show
GWA meta-analysis p-values, with different colors indicating varying linkage disequilibrium with rs2707466 (diamond).
doi:10.1371/journal.pgen.1002745.g001
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provide data indicating that variation in WNT16 also influences

BMD in children, suggesting that WNT16 may influence peak

bone mass. Importantly, the clinical relevance of these findings at

WNT16 is supported by our observation that WNT16 influences

clinical fractures in humans and bone strength in mice.

In an experimental study using forearms from cadavers, cortical

bone thickness was highly correlated (r = 0.93) to the 3-point

bending failure load and could improve the prediction of this

strength measure, in combination with bone mineral content

derived from DXA [31]. Among individuals suffering a fracture at

the radius, cortical bone thickness at the same site was 33% lower

than in controls, which was the largest difference observed for the

cortical bone traits [32]. The present study constitutes the first

GWA study of cortical bone thickness, a trait with crucial

importance for bone strength. The SNP rs2707466, which causes

a missense amino acid substitution (Thr.Ile) at the WNT16 locus,

was consistently associated with cortical thickness in a meta-

analysis of three large discovery cohorts and in a replication cohort

(combined P = 1.5610210). In the GOOD cohort, the rs2707466

was also associated with cortical bone thickness at the radius, with

an effect size similar to what was seen for the tibia, indicating that

the WNT16 locus affects cortical bone thickness at both the

forearm and leg. Interestingly, the most significant 14 of the 54

genome-wide significant SNPs in the forearm BMD GWAS, were

all in the WNT16 or FAM3C genes, and showed high correlation

with the two WNT16 missense SNPs: rs2908004 and rs2707466

(0.58,r2,1, in HapMap CEU data). This finding might suggest

that the association signals are driven by these coding SNPs in

WNT16. These two missense variants were also strongly associated

with risk of fracture in our study, but did not achieve genome-wide

significance. All together, our results implicate the WNT16 locus as

important for fracture risk, which would likely be mediated via an

effect on cortical bone, particularly the thickness of the cortical

shell.

FAM3C, which is predicted to be expressed in osteoblasts and

encodes a newly identified cytokine necessary for epithelial to

mesenchymal transition and retinal laminar formation in verte-

brates [33]. We identified the SNP rs7776725 within the first

intron of FAM3C to be genome-wide significant for forearm BMD

(P = 8.5610215) and forearm fracture (P = 8.661029). Since the

fracture cohorts do not have available BMD data, except for the

AOGC cohort, which comprised only 7% of the fracture case

population, no meaningful conclusions could be drawn for the

independence of the association between fracture and forearm

BMD. While candidate gene studies have previously described

relationships between genetic variants and fracture [34,35,36], we

are aware of only one other variant that has been demonstrated to

be genome-wide significant for any type of osteoporotic fracture,

arising from the ALDH7A1 gene [12]. Interestingly, SNP

rs7776725 in FAM3C was previously reported to be associated

with speed of sound (SOS) as analyzed by quantitative ultrasound

at the radius (P = 1.0610211) in an un-replicated GWAS carried

out in Asian populations [13]. This SNP was also associated with

BMD in a Caucasian population [37]. The high-throughput

DEXA and microCT screen which initially identified reduced

cortical bone thickness and bone strength in Wnt16 knockout mice

failed to observe any skeletal phenotype changes in three

independent knockouts of mouse Fam3c. Since the sample size of

Fam3c2/2 mice was small (N = 18), the possibility of a false

negative result cannot be excluded. All together, our functional

studies indicate that Wnt16 rather than Fam3c is responsible for the

observed genetic signal arising from this locus. However, we

provide no data as to whether or not gain of functions variants inT
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Fam3c could have effects on the studied bone traits and fracture

risk.

C7orf58 (FLJ21986), which codes for a hypothetical protein, has

recently been identified to be associated with blood pressure in a

study on Nigerians [38]. As an open reading frame, C7orf58 has no

known function. In the forearm GWAS, the other 40 out of the 54

genome wide significant SNPs are from C7orf58, and show low LD

with rs2908004 and rs2707466 (r2,0.2, in HapMap CEU data),

when conditioning for the top SNP (rs2536189) in WNT16,

resulted in an additional signal (rs1554634) in C7orf58. Similarly,

conditioning for rs2707466 at the WNT16 locus, in the GWAS for

cortical bone thickness, resulted in an additional, suggestive signal

(rs12706314, which was in LD with rs1554634) located in C7orf58.

Furthermore, Medina et al (accompanying submission) demon-

strate in a conditional analysis that a separate signal, other than

the signal derived from WNT16,, located in C7orf58 was associated

with total body BMD. Thus, these studies reveal an independent

genetic signal for several bone traits, arising from C7orf58,

indicating a possible functional role of this protein. Even though

our functional studies imply that Wnt16 determines the bone

effects of the 7q31 locus, further studies are necessary to elucidate

the role of C7orf58.

In summary, we provide the first evidence of association of

common variants across the genome with cortical bone thickness,

forearm BMD and forearm fracture. We also provide functional

data implicating WNT16 at this locus. Importantly, our findings

report one of two genome-wide significant variants for osteopo-

rotic fracture. These results suggest a critical role of Wnt signaling

pathway on cortical bone thickness and bone strength determina-

tion as well as fracture susceptibility.

Materials and Methods

Ethics Statement
All study participants provided informed written consent.

Approval by local institutional review boards was obtained in all

studies.

Study Samples of Bone Cortical Thickness GWAS
GOOD cohort. The Gothenburg Osteoporosis and Obesity

Determinants (GOOD) study was initiated to determine both

environmental and genetic factors involved in the regulation of

bone and fat mass [39] [40]. Young men were randomly identified

in the greater Gothenburg area in Sweden using national

Figure 2. The genome-wide meta-analysis with cortical thickness according to sex.
doi:10.1371/journal.pgen.1002745.g002
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population registers, contacted by telephone, and invited to

participate. Enrolled subjects were between 18 and 20 years of

age. There were no other exclusion criteria, and 49% of the study

candidates agreed to participate (n = 1068). Genotypes from 938

individuals passed the sample quality control criteria (Table S8).

We carried out imputation to HapMap2 using Mach 1.0, Markov

Chain Haplotyping [41], giving a total of 2,608,508 SNPs

YFS cohort. The Cardiovascular Risk in Young Finns

Study (YFS) is an ongoing multi-centre follow-up of atheroscle-

rosis risk factors in young Finns [42]. The first cross-sectional

survey conducted in 1980 comprised a total of 3,596 subjects

(83% of those invited) aged 3, 6, 9, 12, 15 and 18 years. The

subjects were randomly selected from the national population

register from five university cities in Finland (Helsinki, Turku,

Tampere, Kuopio and Oulu) and the rural municipalities in

their vicinity. In 2008, 1,884 subjects (1,058 women and 826

men) aged 31–46 years participated in pQCT measurements

organized in five study centers (Turku, Helsinki, Tampere, Oulu

and Kuopio) between February and December 2008. Trained

technologists in each center performed the measurements. The

same pQCT device was used in all study centers (Stratec XCT

2000R). Pregnant women were excluded from the pQCT

measurements. Subjects gave written informed consent. Bone

measures are described in detail elsewhere [43]. Both pQCT

measurements and genotype information were available for

1558 study subjects. Genotype imputation was performed using

MACH 1.0 [41] and HapMap II CEU samples as the reference

set. See more detail in Table S8.

Figure 3. Scatter plots of the observed association of 7q31 locus with forearm BMD. The P values of SNPs (shown as 2log10 values in y-
axis, from the genome-wide single-marker association analysis using the linear regression model) are plotted against their map position (b36) (x-axis).
The color of each SNP spot reflects its r2 with rs2908004. Missense SNPs are plotted as triangles, and other SNPs are plotted as circles.
doi:10.1371/journal.pgen.1002745.g003

Table 2. Association results of forearm BMD meta-analysis and fracture for selected SNPs.

Meta Analysis of BMD GWAS Meta Analysis of Fracture Results

CHR SNP POSITION EA NEA EAF Beta P-Value RA NEA OR (95% CI) P-Value I2 Gene Annotation

7 rs7776725 120820357 T C 0.74 20.17 8.54E215 T C 1.33 (1.20–1.46) 7.27E209 11 FAM3C

7 rs2908004 120757005 G A 0.58 20.16 1.17E215 G A 1.22(1.12–1.33) 4.90E206 0 WNT16 Missense

7 rs2707466 120766325 C T 0.59 20.14 2.25E212 C T 1.22 (1.11–1.33) 7.19E206 0 WNT16 Missense

7 rs10274324 120686577 T G 0.94 20.21 3.82E208 T G 1.13 (0.92–1.35) 1.50E201 0 C7orf58

EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency; RA: risk allele.
See Table S4 for a list of all genome-wide significant SNPs.
doi:10.1371/journal.pgen.1002745.t002
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ALSPAC cohort. The Avon Longitudinal Study of Parents and

their Children (ALSPAC) is a geographically based birth cohort

study investigating factors influencing the health, growth, and

development of children. All pregnant women resident within a

defined part of the former county of Avon in South West England

with an expected date of delivery between April 1991 and

December 1992 were eligible for recruitment, of whom 14,541

were enrolled (http://www.alspac.bris.ac.uk) [44]. Both mothers

and children have been extensively followed from the 8th gestational

week onwards using a combination of self-reported questionnaires,

medical records and physical examinations. Blood samples were

taken and DNA extracted as previously described [45]. 3382 study

subjects had both pQCT measurements and genotype information.

We carried out imputation using MACH 1.0.16, Markov Chain

Haplotyping [41], using CEPH individuals from phase 2 of the

HapMap project as a reference set. See more detail in Table S8.

Study Samples of Bone Cortical Thickness Replication
Study

MrOS Sweden cohort. The Osteoporotic Fractures in Men

(MrOS) study is a prospective multicenter study including older men

in Sweden (3014), Hong Kong (.2000), and the United States

(.6000). In the present study, associations between candidate

polymorphisms and skeletal parameters were investigated in the

Swedish cohort (Table 1), which consists of three sub-cohorts from

three different Swedish cities (n = 1005 in Malmö, n = 1010 in

Gothenburg, and n = 999 in Uppsala). Study subjects were

randomly identified using national population registers, contacted

and asked to participate. To be eligible for the study, the subjects

had to be able to walk without assistance, provide self reported data,

and sign an informed consent; there were no other exclusion criteria

[46]. See more detail in Table S8.

Study Samples of Forearm BMD GWAS
5,672 samples from five cohorts of European descent partici-

pated in this meta-analysis (Tables S3 and S9). BMD at forearm in

all cohorts was measured by dual-energy X-ray absorptiometry

following standard manufacturer protocols.

TwinUK1 and TwinUK23 cohorts. TwinsUK (http://

www.twinsuk.ac.uk/) is a population-based registry of British

Twins representative of the general British population [8,36,47].

Genotyping of the TwinUK1 was done by Illumina Human

Hap300, and TwinUK23 by HumanHap610Q. Imputation was

performed using the IMPUTE software package version 2 [48]

based on HapMap2, release 22.

AFOS cohort. The Amish Family Osteoporosis Study (AFOS)

study was designed to identify genetic determinants of osteoporosis

in the Old Order Amish (OOA) population from Lancaster

Figure 4. Forest plots of association of top SNPs for forearm fracture.
doi:10.1371/journal.pgen.1002745.g004
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County, PA USA [49,50]. Genotyping was done using either the

Affymetrix 500K or 6.0 genotyping chip. The Birdseed genotype-

calling algorithm was used. Imputation was performed using

MACH on the HapMap2, rel 22 data.

GOOD cohort. The GOOD study subjects (study inclusion

criteria described under the cortical bone thickness GWA study) were

contacted and invited to participate in a five-year follow-up exam [51].

Forearm BMD measurements were available in 731 men (Table S3).

AOGC cohort. The Anglo-Australasian Osteoporosis Genet-

ics Consortium (AOGC) study collected unrelated individuals with

extreme BMD phenotypes as a powerful strategy for gene

discovery in quantitative traits [11,52]. Genotyping was performed

Figure 5. Decrease of bone strength of Wnt16 knockout mice at femur and tibia. In Femur group, the sample size are 23 wide type (WT)
mice and 13 knock out (KO) mice, and in Tibia group, the sample size are 12 WT mice and 9 KO mice. The P values for each group are shown in the
figure.
doi:10.1371/journal.pgen.1002745.g005

Table 3. Body weight, femoral length, and MicroCT data in Wnt162/2 mice, males (WT = 9; Wnt162/2 = 11) and females (WT = 24,
Wnt162/2 = 16).

Parameter
Male WT
Mice

Male Wnt162/2

Mice Statistics
Female WT
Mice

Female Wnt162/2

Mice Statistics

Body Weight (grams) 35.461.8 37.661.3 D= q10%, P = 0.35 27.360.8 25.961.3 D= Q5%, P = 0.34

Femur Length (mm) 16.360.2 16.260.2 D= q1%, P = 0.58 16.260.1 16.160.1 D= 0%, P = 0.86

LV5 BV/TV (%) 20.061.7 22.961.1 D= q15%, P = 0.15 15.061.2 16.061.1 D= q7%, P = 0.54

Femur Shaft Total Area (mm2) 1.8360.09 1.6060.08 D= Q13%, P = 0.07 1.5760.04 1.0760.03 D= Q32%, P,0.001

Femur Shaft Bone Area (mm2) 0.9960.04 0.8860.04 D= Q11%, P = 0.08 0.8860.02 0.5660.01 D= Q36%, P,0.001

Femur Shaft Marrow Area (mm2) 0.8460.06 0.7260.06 D= Q15%, P = 0.15 0.6960.03 0.5160.02 D= Q24%, P,0.001

Femur Shaft Cortical Thickness (mm) 25169 23368 D= Q7%, P = 0.14 24664 18664 D= Q27%, P,0.001

Femur Shaft Polar MOI (mm4) 0.50760.047 0.42860.49 D= Q16%, P,0.001 0.37660.016 0.16860.008 D= Q55%, P,0.001

doi:10.1371/journal.pgen.1002745.t003
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using Illumina Infinium II HumHap370CNVQuad chips at the

University of Queensland Diamantina Institute, Brisbane, Aus-

tralia. Subsequent imputation was done based on the HapMap2

release 22 data using MACH program.

Study Samples of Forearm Fracture Association Study
Four genome-wide significant SNPs for forearm BMD were

selected to test the association with forearm fracture in 2,142 cases

and 3,697 controls from three cohorts. Forearm fracture was

defined as fractures resulting from low trauma (such as a fall from

standing height) occurring at the wrist, ulna, radius, forearm, as

well as Colles’ fractures.

UFO cohort. The Umeå Fracture and Osteoporosis (UFO)

study is a nested case-cohort, population-based study from Sweden

designed to identify the genetic and gene-by-environmental

determinants of osteoporotic fracture. This cohort is sampled

from a population-based cohort study from Northern Sweden

initiated to identify the risk factors for diabetes and cardiovascular

disease [53,54]. In total, 1,068 cases and 1,218 age-matched

controls were included from this cohort. All fractures were

confirmed by radiographic or surgical report. De-novo genotyping

in the UFO study was undertaken at Kbiosciences (England).

CaMos and ManMc cohort. The Canadian MultiCentre

Osteoporosis study (CaMos) is a population-based prospective

study of 9,423 men and women from across Canada, followed for

fourteen years for osteoporotic outcomes and risk factors [55]. All

fractures in the CaMos study at forearm were confirmed with

radiographic or surgical report. The Manitoba-McGill (ManMc)

fracture study is a population-based cohort of women undergoing

surgical repair of wrist and hip fractures within the Province of

Manitoba, Canada [56]. All individuals had no prior history of

concomitant disease or use of bone-altering drugs. All fractures

occurred at forearm and were confirmed with surgical report.

ManMc was designed to complement the CaMos cohort by

recruiting individuals suffering osteoporotic fractures in the most

heritable age range (prior to age 70) and compare them to controls

from the CaMos cohort that had not suffered an osteoporotic

fracture after up to fourteen years of follow-up and subjects

reaching at least 70 years of age. Weight and height at time of

fracture are not collected for these study participants. 800 cases

with forearm fracture and 855 controls were included from the

combined CaMos/ManMc study. De novo genotyping for the

CaMos and ManMc cohorts at the 4 SNPs assessed for fracture

was undertaken at Kbiosciences (England).

AOGC cohort. This in silico association study included 155

forearm fracture cases and 1,672 controls from the AOGC GWAS

[11]. In some samples the level of trauma was not known. In these

cases, if the fracture occurred after age 60 years, it was considered

to be an osteoporotic low trauma fracture, fractures occurring

prior to this age with unknown trauma level were conservatively

excluded. Fracture cases were identified by self-report.

Statistical Analysis
Genome-wide meta-analysis and replication method for

bone cortical thickness study. The ALSPAC (n = 3382), YFS

(n = 1558) and GOOD (n = 938) discovery cohorts contributed to

the genome-wide meta-analysis. We analyzed only those imputed

SNPs which had a minor allele frequency of .0.01 and an r2

imputation quality score of .0.3 in all 3 sets (n = 2,401,124). We

carried out genome-wide association analyses for cortical

thickness using additive linear regression in Mach2QTL for

ALSPAC, ProbABEL [57] for YFS and using GRIMP [58] for

the GOOD analyses. We included age, sex, height and weight(ln)

as covariates. We carried out meta-analyses of the results from

the three cohorts using the inverse variance method. Standard-

ized betas and standard errors from each study are combined

using a fixed effect model which weights the studies using the

inverse variance and applying genomic control to individual

studies and the combined results. Genome-wide significance was

taken to be p,561028. We selected one SNP from each

independent region that had a p,561028 for replication in the

MrOS Sweden cohort. We also repeated the analyses in each of

the three discovery cohorts, conditional on these top SNPs, to

identify any additional independent associations in the regions.

Additive linear regression analyses were carried out for the

associations between these SNPs and cortical thickness in SPSS

Statistics 17.0 for MrOS Sweden, using age, sex, height and

weight(ln) as covariates. The results of all four cohorts were

combined using a fixed effects inverse-variance meta-analysis in

Stata (version 11.2). Correlations between bone traits in the

MrOS cohort were tested and presented as Spearman’s rank

correlation coefficients (rho).

Genome-wide meta-analysis method for forearm BMD

study. All cohorts independently conducted the association

analysis of SNP allele dosage with standardized BMD residuals,

while adjusting for age, age2, gender, weight and population

substructure where applicable, for centre of recruitment (AOGC),

and for family structure in cohorts with family members. The

analyses were performed for men and women combined. Details

of each study’s GWAS are found on Table S9. A meta-analysis of

the GWAS results was conducted using the GWAMA software

(Genome-Wide Association Meta Analysis) (http://www.well.ox.

ac.uk/gwama/) [59], with which meta-analyses are performed for

both directly genotyped and imputed SNPs using estimates of the

allelic effect size and standard error for BMD, and estimates of the

allelic odds ratio and 95% confidence interval for fracture. Poorly

imputed SNPs (r2 in MACH,0.3 or proper_info in IM-

PUTE2,0.40) and SNPs with low MAF (,0.01) were excluded.

The summary effect estimates for BMD and fracture risk were

computed using fixed-effects inverse variance meta-analysis [60].

Cochran’s Q statistic and I2 estimates were used to evaluate the

heterogeneity. To control for possible inflation of statistics due to

population stratification and family relations, genomic control was

applied to each study as well as the overall meta-analysis [61].

Statistical significance for genome-wide BMD association study

was set at P,561028.

Fracture association analysis. Four of the 54 genome-wide

significant SNPs, in the forearm BMD GWAS, were selected to

test the association with fracture. The rationale for picking these

SNPs included: 1) Given that the Wnt pathway is central to

osteoporosis etiology, two missense SNPs (rs2908004 and

rs2707466) from WNT16 were selected, considering that missense

SNPs may have more functional consequence than synonymous or

non-coding SNPs, and that these two SNPs can fully tag the top

SNP rs2536189 (r2.0.98); 2) The SNP rs7776725, which is in

FAM3C, was selected because it was previously reported to be

associated with speed of sound through bone, as analyzed by

quantitative ultrasound at the radius [13] and was in only

moderate LD with the rs2908004 (r2 = 0.58); 3) The SNP

rs10274324 was selected based on its genome wide significance

(20.21 SD per T allele, P = 3.861028 for forearm BMD), LD

information (r2 = 0.04 with the top SNP rs2536189) and location

(in C7orf58 gene). Therefore, the SNP selection provided

assessment across all three genes at this locus (WNT16, FAM3C

and C7orf58). SNPs were assessed for association with fracture risk

using logistic regression models adjusted for sex, height and

weight. Age was included as an additional covariate where this was

not controlled for through the study design. Again, a fixed effect

Wnt16, Cortical Bone Thickness, BMD, and Fracture
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meta-analysis was undertaken assessing the effect of allelic dose on

risk of fracture.

Generation of Knockout Mice
Wnt162/2 mice. Mice with a gene deletion of Wnt16 were

generated using homologous recombination techniques. The first

three exons were disrupted, with confirmation by Southern

hybridization analyses (Figure S7). F2 hybrid littermates, derived

from C57BL/6J and 129 SvEv parental strains, were examined at

24 weeks of age.

Fam3c2/2 mice. Three separate knockout strategies were

employed to inactive mouse Fam3c: 1) gene trap disrupting the

intron between the first two exons with confirmation by lack of

gene expression by RT-PCR in kidney and spleen (Figure S8), 2)

homologous recombination removing the first two coding exons

with confirmation by Southern hybridization analysis (Figure S9),

3) homologous recombination involving replacement of the mouse

gene by the human gene resulting in loss of function (Figure S10).

F2 hybrid littermates, derived from C57BL/6J and 129 SvEv

parental strains, were examined at 16 weeks of age. All studies

were performed in accordance with institutional and regulatory

guidelines for animal care.

Imaging. Male and female mice were scanned using a

microCT (Scanco mCT40, Switzerland). The fifth lumbar

vertebrae (LV5) were scanned with a voxel size of 16 mm.

Midshaft femurs were scanned with a voxel size of 20 mm. All

scans used a threshold of 240, an X-ray tube voltage of 55 keV, a

current of 145 microamperes and an integration time of 200

microseconds. Three-point bending tests were performed using

Mach-1TM Micromechanical System A300.100 (Bio Syntech

Canada inc., Laval, Quebec, Canada). The extrinsic parameters

(ultimate force [Fult], stiffness [K or S], and work to failure [W or

U]) were determined from a force-displacement curve. The span

of two support points was 7 mm. The de-formation rate was 50

mm/s.

Statistical analysis. Two-sided student’s t-test was employed

to determine statistical significance of the effect of gene

inactivation for each gender. Results are shown as mean+SEM.

Supporting Information

Figure S1 Quantile-quantile plots of the observed P values

versus the expected P values for association for GWAS Meta-

Analysis of cortical thickness. The scatters in black showed a clear

deviation at the tail of the distribution from the null distribution

(the red line).

(DOCX)

Figure S2 Manhattan plot for GWAS Meta-Analysis of cortical

thickness. Genome-wide P values (2log10 P) of the linear

regression analysis plotted against position on each chromosome.

(DOCX)

Figure S3 SNP rs9525638 regional association plot of the

discovery genome-wide meta-analysis of cortical thickness. Circles

show GWA meta-analysis p-values, with different colors indicating

varying linkage disequilibrium with rs9525638 (diamond).

(DOCX)

Figure S4 Quantile-quantile plots of the observed P values

versus the expected P values for association of Forearm BMD. The

scatters in blue were based on the entire set of SNPs, whereas the

scatters in black were obtained after removing WNT16 region

SNPs (+/2400KB either side of rs2908004). The black line was

the distribution expected if there were no association.

(DOCX)

Figure S5 Manhattan plot for GWAS Meta-Analysis of Forearm

BMD. Genome-wide P values (2log10 P) of the linear regression

analysis plotted against position on each chromosome.

(DOCX)

Figure S6 Scatter plots of the observed association of 7q31 locus

with forearm BMD after condition on the top SNP rs2536189.

The P values of SNPs (shown as 2log10 values in y-axis, from the

genome-wide single-marker association analysis using the linear

regression model) are plotted against their map position (b36) (x-

axis).

(PDF)

Figure S7 A: Restriction map of the Wnt16 gene and

construction of the neomycin-resistance (neo) vector. Wnt16

exons are shown as filled boxes. Sequence information

(deletion, insertion site, flanking sequence) is provided on the

Taconic Farms website (http://www.taconic.com/wmspage.

cfm?parm1=16 catalogue number TF3785). B: confirmation

by Southern blots.

(DOCX)

Figure S8 A: Retroviral insertion disrupted Fam3c gene prior to

the exon encoding amino acid 19 in a protein of 227 amino acids.

Sequence information (deletion, insertion site, flanking sequence)

is provided on the Taconic Farms website (http://www.taconic.

com/wmspage.cfm?parm1 = 16 catalogue number TF3786). B:

RT-PCR analysis revealed that the wild-type transcript was absent

in the (2/2) mouse analyzed. Larger transcripts were detected at

low levels in both tissues of the (2/2) mouse due to the splicing of

fragments from the retroviral vector into the target transcript as

determined by nucleotide sequence analysis. However, the in-

frame stop codon in the retroviral vector sequence was predicted

to disrupt translation of this transcript.

(DOCX)

Figure S9 A: homologous recombination removing the first two

coding exons of Fam3c. Sequence information (deletion, insertion

site, flanking sequence) is provided on the Taconic Farms website

(http://www.taconic.com/wmspage.cfm?parm1 = 16 catalogue

number TF3787). B: confirmation by Southern hybridization

analysis.

(DOCX)

Figure S10 A: homologous recombination involving replace-

ment of the mouse gene by the human gene resulting in loss of

function of Fam3c. Sequence information (deletion, insertion site,

flanking sequence) is provided on the Taconic Farms website

(http://www.taconic.com/wmspage.cfm?parm1 = 16 catalogue

number TF3788). B: confirmation by Southern hybridization

analysis.

(DOCX)

Table S1 Characteristics of the included cohorts for GWAS

meta-analysis of cortical bone thickness.

(DOCX)

Table S2 SNP rs2707466 associations with pQCT derived bone

parameters at different ages and meta-analyses results for cortical

bone thickness study.

(DOCX)

Table S3 Characteristics of the included cohorts for GWAS

meta-analysis of forearm BMD.

(DOCX)

Table S4 54 genome-wide significant SNPs in 7q31 for forearm

BMD GWAS meta-analysis.

(XLSX)

Wnt16, Cortical Bone Thickness, BMD, and Fracture

PLoS Genetics | www.plosgenetics.org 11 July 2012 | Volume 8 | Issue 7 | e1002745



Table S5 Characteristics of the included cohorts for fracture

study.

(DOCX)

Table S6 Association results for the 3 fracture cohorts.

(DOCX)

Table S7 Micro CT parameters of the femoral shaft and fifth

lumbar vertebra (LV5) in male wild type and Fam3c2/2 mice.

Data are presented for each of the three KO strategies and also for

the combined cohorts (WT = 2; Fam3c2/2 = 4 for each of the

individual cohorts).

(DOCX)

Table S8 Bone measurement, genotyping, quality control,

imputation by study for cortical bone thickness meta-analysis.

(XLSX)

Table S9 Genome-wide genotyping, imputation and genotype-

phenotype analysis by study for BMD meta-analysis.

(XLSX)
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