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On the polarizability and capacitance of the cube

Johan Helsing∗, Karl-Mikael Perfekt

Centre for Mathematical Sciences

Lund University, Box 118, SE-221 00 Lund, Sweden

Abstract

An efficient integral equation based solver is constructed for the electrostatic problem on domains
with cuboidal inclusions. It can be used to compute the polarizability of a dielectric cube in
a dielectric background medium at virtually every permittivity ratio for which it exists. For
example, polarizabilities accurate to between five and ten digits are obtained (as complex limits)
for negative permittivity ratios in minutes on a standard workstation. In passing, the capacitance
of the unit cube is determined with unprecedented accuracy. With full rigor, we develop a natural
mathematical framework suited for the study of the polarizability of Lipschitz domains. Several
aspects of polarizabilities and their representing measures are clarified, including limiting behavior
both when approaching the support of the measure and when deforming smooth domains into a
non-smooth domain. The success of the mathematical theory is achieved through symmetrization
arguments for layer potentials.

Keywords: electrostatic boundary value problem, Lipschitz domain, polarizability, capacitance,
spectral measure, layer potential, continuous spectrum, Sobolev space, multilevel solver, cube

1. Introduction

The determination of polarizabilities and capacitances of inclusions of various shapes has a long
history in computational electromagnetics. Inclusions with smooth surfaces are, by now, rather
standard to treat. When surfaces are non-smooth, however, the situation is different. Numerical
solvers can run into problems related to stability and resolution. Particularly so in three dimensions
and for certain permittivity combinations. Solutions may not converge or results could be hard to
interpret. See [44, 45, 51] and references therein. The situation on the theoretical side is similar.
When, and in what sense do solutions exist? Such questions are in the mainstream of contemporary
research in harmonic analysis. Coincidentally, also in applied physics (plasmonics) there is a
growing interest in solving electrostatic problems on domains with structural discontinuities and a
concern about the sufficiency of available solvers [19, 54].

This paper addresses several fundamental issues related to the problems just mentioned. We
construct a stable solver for the polarizability and capacitance of a cube based on an integral
equation using the adjoint of the double layer potential. We compute solutions of unprecedented
accuracy and interpret the results within a rigorous mathematical framework. The reason for
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working with a cube are twofold. First, the cube has the advantage that its geometric difficulties
are concentrated to edges and corners, since its faces are flat. Integral equation techniques, which
often excel for boundary value problems in two dimensions, typically suffer from loss of accuracy in
the discretization of weakly singular integral operators on curved surfaces in three dimensions. Here
we need not worry about that. Secondly, cubes are actually common in plasmonic applications.

In the purely theoretical sections we begin by collecting a number of results and recent advances
in the theory of layer potentials associated with the Laplacian in Lipschitz domains. The most
obvious reason for this is that the invertibility study of layer potentials leads to the solution of
the boundary value problem implicit in the definition of polarizability, and is as such the basis
for both the mathematical and numerical aspects of this paper. Furthermore, the properties of
the polarizability for a non-smooth domain such as a cube are quite subtle, and it is our ambition
to provide a solid theoretical foundation for the problem at hand, giving a careful and detailed
exposition of a mathematical framework that clarifies a number of points.

Since the double layer potential is not self-adjoint in the L2-pairing, we develop certain sym-
metrization techniques for it, in particular extending the work of Khavinson, Putinar and Shapiro
[31] to the case of a non-smooth domain. These techniques are used to prove the unique existence of
the polarizability itself for a Lipschitz domain, as well as of a corresponding representing measure
[18]. We present a thorough discussion of the smooth case, the limiting behavior in passing from
the smooth to the non-smooth case, and ultimately the general case. Concerning the last point,
a condition ensuring that the representing measure has no singular part is given, and it is proven
that in the support of the absolutely continuous part of the measure, the polarizability can not be
given a direct interpretation in terms of a potential with finite energy solving the related boundary
value problem.

The paper is organized as follows: Section 2 formulates the electrostatic problem and defines the
polarizability. Existence issues and representations are reviewed in Section 3. For ease of reading,
rigorous statements and proofs are deferred to Sections 4 and 5. The capacitance is discussed in
Section 6. Section 7 reviews the state of the art with regard to numerical schemes. Section 8 gives
a necessary background to the present solver. New development takes place in Section 9. The last
sections contain numerical examples performed in Matlab. Section 10 illustrates the effects of
rounding corners and Section 11 is about the cube.

The main conclusion of the paper is that, from a numerical viewpoint, it is an advantage to let
cubes have sharp edges and corners as opposed to the common practice of rounding them slightly.
Furthermore, the representing measure for the polarizability of the cube is determined, and a new
benchmark for the capacitance of the unit cube is established.

2. The electrostatic problem and the polarizability

Let a domain V , an inclusion with surface S and permittivity ǫ2, be embedded in an infinite
space. The exterior to the closure of V is denoted E and has permittivity ǫ1. Let νr be the exterior
unit normal of S at position r.

We seek a potential U(r), continuous in E ∪ S ∪ V , which satisfies the electrostatic equation

∆U(r) = 0 , r ∈ E ∪ V , (1)

subject to the boundary conditions on the limits of normal derivatives

ǫ1
∂

∂νr
U ext(r) = ǫ2

∂

∂νr
U int(r) (2)
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and behavior at infinity
lim

r→∞
∇U(r) = e . (3)

Here superscripts ext and int denote limits from the exterior or interior of S, respectively, and e is
an applied unit field. Eqs. (1), (2), (3) constitute a partial differential equation formulation of the
electrostatic problem. Proposition 5.1 gives a strict interpretation of what it means for a potential
U(r) to solve this problem, in particular expressing (2) in a distribution sense.

For the construction of solutions to (1), (2), (3) we make use of fundamental solutions to the
Laplace equation in two and three dimensions

G(r, r′) = − 1

2π
log |r − r′| and G(r, r′) =

1

4π

1

|r − r′| , (4)

and represent U(r) in terms of a single layer density ρ(r) as

U(r) = e · r +

∫

S
G(r, r′)ρ(r′) dσr′ , (5)

where dσ is an element of surface area.
The representation (5) satisfies (1) and (3). Its insertion in (2) gives the integral equation for

ρ(r)

ρ(r) + 2λ

∫

S

∂

∂νr
G(r, r′)ρ(r′) dσr′ = −2λ (e · νr) , r ∈ S , (6)

where the parameter

λ =
ǫ2 − ǫ1
ǫ2 + ǫ1

. (7)

The polarizability tensor of V can be defined in terms of an integral over a polarization field.
When V features sufficient symmetry, such as the octahedral symmetry of the cube, the polariz-
ability is isotropic and reduces to a scalar α(ǫ1, ǫ2), see [48], which can be determined via

(ǫ2 − ǫ1)

∫

V
∇U(r) dr = α(ǫ1, ǫ2)e , (8)

where dr is a volume element. Using integration by parts in (8) it is possible to express α(ǫ1, ǫ2)
as an integral over ρ(r)

α(ǫ1, ǫ2) = −ǫ1
∫

S
ρ(r) (e · r) dσr . (9)

More generally, the components of the polarizability tensor can be recovered via integrals similar
to that in (9) using different applied fields e, but in what follows we tacitly assume that V is
sufficiently symmetric as to allow for a scalar valued α(ǫ1, ǫ2).

3. Theory – overview

For what surface shapes S and permittivities ǫ1, ǫ2 does the electrostatic problem have a
solution? Starting with (6) and partly following [37], this section sketches the derivation of some
important existence results. It also motivates an integral representation formula for α(ǫ1, ǫ2) and
two sum rules which are used for validation in our numerical experiments.
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3.1. Existence of solutions for smooth S

Let us rewrite (6) in the abbreviated form

(I + λK) ρ(r) = λg(r) , (10)

where I is the identity. If S is smooth, then (10) is a Fredholm second kind integral equation
with a compact, non-self adjoint, integral operator K whose spectrum is discrete and accumulates
at zero. Let K and its adjoint K∗ (the double layer potential) have eigenvectors φi and ψi with
corresponding eigenvalues zi. All eigenvalues are real and bounded by one in modulus. Non-zero
eigenvalues have finite multiplicities. Normalizing

∫

S
ψi(r)φj(r) dσr = δij , (11)

the kernel of K can be written

K(r, r′) =
∑

i

ziφi(r)ψi(r′) . (12)

See, further, the discussion in Section 5.2.
Let us introduce a new variable z and a scaled polarizability α(z) as

z = −1/λ , (13)

α(z) ≡ α(ǫ1, ǫ2)

|V |ǫ1
, (14)

where |V | is the volume of V . Then (14), with (9), can be written in the abbreviated form

α(z) =

∫

S
h(r)ρ(r) dσr . (15)

The relation (13) allows us to use the parameter λ or its negative reciprocal z, depending on what
is most convenient in a given situation.

In terms of the quantities

ui =

∫

S
h(r)φi(r) dσr and vi =

∫

S
ψi(r)g(r) dσr , (16)

and using (12) to construct the resolvent of (10), one can write

ρ(r) =
∑

i

φi(r)vi

zi − z
(17)

and
α(z) =

∑

i

uivi

zi − z
, (18)

see Theorem 5.6. This suggests that neither U(r) nor α(z) exists for z = zi when uivi 6= 0. There
is an electrostatic resonance or plasmon at zi.

For ease of interpretation, the sum in (18) can be considered as taken over distinct eigenvalues
and with uivi, for a degenerate eigenvalue, being the sum of all residues belonging to that eigenvalue.

4



Then all uivi are non-negative and plasmons can be classified as bright or dark depending on whether
uivi > 0 or not [54]. When S is a circle, there are only two eigenvalues: z1 = −1 which is simple
and corresponds to a dark plasmon and z2 = 0 which has infinite multiplicity and corresponds to
a bright plasmon. When S is a sphere, the eigenvalues are zi = 1/(1 − 2i). The multiplicity of zi
is 2i− 1. The only bright plasmon is associated with z2.

For later reference we observe that the sum of all residues is

∑

i

uivi =

∫

S
h(r)g(r) dσr = 2 . (19)

When the polarizability is isotropic one can, using techniques from [15], also derive a weighted sum
rule

∑

i

ziuivi =

∫

S

∫

S
h(r)K(r, r′)g(r′) dσ′r dσr = 2(2/d − 1) , (20)

where d = 2, 3 is the dimension.

3.2. Existence of solutions for non-smooth S

If S is gradually transformed from a smooth surface into a non-smooth surface, eigenvalues
zi travel and occupy a certain subset of the interval [−1, 1] ever more densely. When S ceases
to be smooth, K is no longer compact with discrete eigenvalues. Rather, K has a continuous
spectrum which on a certain function space coincides with the aforementioned subset, accompanied
by discrete values. Disregarding the discrete spectrum, which for squares and cubes turns out to
correspond to dark plasmons, the sum (18) assumes a limit

α(z) =

∫

R

dµ(x)

x− z
=

∫

σµ

µ′(x) dx

x− z
, (21)

where the measure µ(x) is real and non-negative and σµ = {x : µ′(x) > 0}. Here we have ignored
the possible presence of a singular spectrum. For further details and a condition that serves to
exclude this complication, see Theorems 5.2 and Section 5.2. The sum rules (19) and (20) assume
the forms

∫

R

µ′(x) dx = 2 , (22)

∫

R

xµ′(x) dx = 2(2/d − 1) . (23)

The numerical results in Sections 10 and 11 suggest that both the square and the cube have
σµ equal to a single, possibly punctured, interval (a, b) ⊂ [−1, 1]. The square has a = −0.5 and
b = 0.5, consistent with the exact computations of the spectral radius for a square found in [35]
and [53]. The cube has a ≈ −0.694526 and b = 0.5. For later reference we let σµsq denote σµ of
the square and σµcu denote σµ of the cube.

For a large class of non-smooth S, the potential U(r) exists when z stays away from a certain
compact set L : σµ ⊂ L ⊂ [−1, 1]. Furthermore, α(z) has a limit,

α+(x) = lim
y→0+

α(x+ iy) , (24)
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as z = x + iy approaches x from the upper half-plane for almost all x ∈ R. See Theorem 5.2
and Section 5.2. It is important in this context and when x ∈ σµ not to interpret α+(x) as a
polarizability corresponding to a meaningful solution U(r) for a negative permittivity ratio ǫ2/ǫ1 =
(x − 1)/(x + 1). On the contrary, Theorem 5.8 states that there is no U(r) with finite energy
solving (1), (2), (3) when z = x ∈ σµ. Therefore, any attempt to solve the electrostatic problem
directly at a point z ∈ σµ is bound to fail.

3.3. The limit polarizability α+(x) and its relation to µ′(x)

This paper aims at constructing an efficient scheme for computing α(z) of a cube at all z for
which this quantity exists. Still, in our numerical experiments we only compute the limit α+(x)
of (24) for x ∈ [−1, 1]. The reason for this is that the computation of α(z) is hardest for z close to
σµ ⊆ [−1, 1]. Accurate results for α+(x) therefore indicate a robust scheme. Furthermore, there is
a simple connection between α+(x) and µ′(x). Using jump relations for Cauchy-type integrals one
can show from (21) that

µ′(x) = ℑ{α+(x)}/π , x ∈ R . (25)

Knowledge of µ′(x) for non-smooth S is of great interest in theoretical materials science. Closed
form expressions seem to be out of reach, however, except for a famous example in a periodic two-
dimensional setting [10, 40]. As for numerics, merely determining σµ is a challenge [44, 51]. To
the authors’ knowledge, σµ is not known for any S exhibiting corners in three dimensions. The
accurate determination of µ′(x) is even harder [30]. Studying how (18) evolves as a smooth S
becomes non-smooth is not an efficient method. Eigenvalue problems are costly to solve. The
discretization of K on surface portions of high curvature is problematic. Conditioning is also an
issue and details of the mapping uivi → µ′(x) need to be worked out. It is desirable to find µ′(x)
in a more direct way and (25) offers precisely this. Obtaining µ′(x) is a subproblem of computing
α+(x) for x ∈ [−1, 1].

4. Theory – preliminaries

Let V ⊂ R
d, d ≥ 2, be an open and bounded set that is Lipschitz, in the sense that its boundary

S = ∂V is connected and locally the graph of a Lipschitz function in some basis. For a more precise
definition of this concept, see for example [50]. To avoid a certain technicality we will also assume
that V is star-like, meaning that there exists an r0 ∈ V such that the line segments between r0
and every other point r ∈ V are contained in V . In the applications of this paper, V will take on
the role of the square in R

2, the cube in R
3, or a set with smooth boundary approximating either

of the two. As before we will denote E = V
c
.

In this section we first record a number of results about the single and double layer potentials
associated with the Laplacian on V , to then introduce the mathematical framework in which we
will study the boundary value problem given by (1), (2), (3). Actually, in this section and the next,
we will develop the theory only for d ≥ 3. The two-dimensional case contains several anomalies
in relation to the higher-dimensional theory, and it is for the sake of clarity and brevity that we
exclude it. We shall indicate some of the differences as we progress, but we note here that the
main results about the polarizability α(z) remain true also for d = 2.

While L2(S) is a natural domain for the operator K, we will primarily focus on the action of
K on certain Sobolev spaces Hs. There is good reason for this. For one, K is not self-adjoint as
an operator on L2(S), or even normal, so that the spectral theorem can not be directly applied.
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We will therefore develop certain symmetrization techniques, and these demand that we consider
K on fractional Sobolev spaces. A second, related reason, is that the L2-spectrum of K is no
longer contained in the real line when S fails to be smooth, see I. Mitrea [42]. We shall see that
considering K on a Sobolev space amends this problem. We also note here that by the X-spectrum
of a bounded operator T on a Hilbert space X, T : X → X, we always mean the set

Spec(T,X) = {z ∈ C : K − z is not bijective on X}.

When z /∈ Spec(T,X) it is a consequence of the closed graph theorem that K − z has a bounded
inverse (K − z)−1 : X → X.

For s = 0 we have simply that H0(V ) = L2(V ) and H0(S) = L2(S). For s = 1, H1(V ) is the
Hilbert space of distributions u such that u and ∂xju, 1 ≤ j ≤ n, are members of L2(V ). The norm
is given by

‖u‖2
H1(V ) = ‖u‖2

L2(V ) + ‖∇u‖2
L2(V ).

H1(S) can be defined similarly using the almost everywhere defined tangential vectors of S, see
for example Geymonat [17]. For 0 < s < 1, Hs can be defined by real interpolation methods, but
in our situation it can alternatively be characterized by a Besov type norm. That is, u ∈ Hs(V ) if

‖u‖2
Hs(V ) = ‖u‖2

L2(V ) +

∫

V ×V

|u(r) − u(r′)|2
|r − r′|d+2s

dr dr′ <∞.

u ∈ Hs(V ) is then inductively defined for s = si + sf with si ≥ 1 an integer and 0 < sf ≤ 1 by
requiring that u ∈ Hsi and ∂βu ∈ Hsf for β = (β1, . . . , βd) with

∑

βk = si. Returning to the case
0 < s < 1, we have that u ∈ Hs(S) if

‖u‖2
Hs(S) = ‖u‖2

L2(S) +

∫

S×S

|u(r) − u(r′)|2
|r − r′|d−1+2s

dσr dσr′ <∞,

where σ denotes Hausdorff measure on S. See Adams [1] and Grisvard [20] for further information
and the equivalence of various definitions in the Lipschitz setting. For s > 0 we define H−s as the
dual space of Hs in the L2-pairing. More precisely, a distribution u lies in H−s if and only if

‖u‖H−s = sup
‖v‖Hs=1

|〈u, v〉L2 | <∞.

We shall also make use of Sobolev traces, which give us a way to assign boundary values to distri-
butions in V . We will only require the classical Gagliardo result [16] which says that there uniquely
exists a continuous, surjective linear operator Tr : H1(V ) → H1/2(S) with right continuous inverse
such that Tru = u|S for any u ∈ C∞(V ). There is also a corresponding trace from the exterior
domain with the same properties, TrE : H1(E) → H1/2(S).

The L2(S)-adjoint K∗ of the operator K is known as the double layer potential, given by the
formula

(K∗u)(r) = 2

∫

S

∂

∂νr′
G(r, r′)u(r′) dσr′ , u ∈ L2(S), r ∈ S. (26)

For d = 2, 3 the Newtonian kernel G has already been defined in (4), and for d > 3 it is given by

G(r, r′) = ωd|r − r′|2−d,
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with a normalization constant ωd chosen so that ∆rG(r, 0) = −δ in the sense of distributions.
When S is a C2-surface the kernel of K∗ is only weakly singular (for d = 2 there is no singularity
at all present), and it is a standard matter to see that (26) defines K∗ as a compact operator on
Hs(S) for 0 ≤ s ≤ 1. The compactness of K∗ makes its spectral analysis considerably easier, and
in this case it is well known that

Spec(K∗, L2(S)) ⊂ [−1, 1), (27)

see for example the results of Escauriaza, Fabes and Verchota [11] together with the fact that the
spectrum of K∗ is real in the C2-case. This latter point will be discussed further later on.

Unfortunately, when S is only a Lipschitz surface, K∗ is no longer compact in general. In fact,
when S is a curvilinear polygon in two dimensions, I. Mitrea [42] has shown that the L2-spectrum
of K∗ consists of the union of certain solid “figure eights” in the complex plane, one for each
(non-smooth) vertex of S, in addition to a finite number of real eigenvalues. In particular this
applies when S is a square in two dimensions, with only one figure eight present, since all angles
are equal. The general situation is not as well understood, but when V ⊂ R

d is convex, as it is in
our situation, it is known that the spectral radius of K∗ on L2(S) is 1, see Fabes, Sand and Seo
[13].

To even define K∗ in the general Lipschitz setting, the integral in (26) must be understood
in an almost everywhere principal value sense. We remark, however, that when S is a curvilinear
polyhedron, K∗u(r) can be evaluated in the usual integral sense, except possibly when r belongs to
an edge of S, and so it is not necessary to consider principal values in the main applications of this
paper. Proving the boundedness of K∗ on L2(S) was an accomplishment of Coifman, McIntosh
and Meyer [9] in their study of singular integrals. The boundedness of K∗ as an operator on Hs(S),
0 < s ≤ 1, also essentially follows from [9], see for example Meyer [38]. By duality we immediately
obtain that K is bounded on H−s(S), 0 ≤ s ≤ 1.

For u ∈ L2(S) one may of course also evaluate the integral (26) in V ∪E to obtain a harmonic
function. We denote

(Du)(r) = 2

∫

S

∂

∂νr′
G(r, r′)u(r′) dσr′ , r ∈ V ∪ E.

Fabes, Mendez and M. Mitrea [12] prove that for 0 < s < 1, D : Hs(S) → Hs+1/2(V ) is bounded.
The single layer potential of u, defined in all of R

d, is given by

(Su)(r) = 2

∫

S
G(r, r′)u(r′) dσr′ , u ∈ L2(S), r ∈ R

d.

The kernel G is only weakly singular when S is a Lipschitz surface, so that there is no issue in
defining this integral operator. In fact, S has smoothening properties. D. Mitrea [41] shows that
for 0 ≤ s ≤ 1, S : H−s(S) → H1−s(S) is a bicontinuous isomorphism and in [12] it is proven that

S is bounded as a map S : H−s(S) → H
3

2
−s(V ) for 0 < s < 1. It is clear that S is self-adjoint in

the L2(S)-pairing and that Su is harmonic in V ∪ E.
At this stage, a peculiarity of the case d = 2 appears. In any dimension, there exists uniquely a

function u0 ∈ L2(S) such that (I+K)u0 = 0 and
∫

S u0 dσ = 1, and one can show that Su0|V ≡ c is
constant. In higher dimensions this constant can never be zero, but for d = 2 there exist domains
such that c = 0. When this occurs S clearly fails to be injective, and its range is also affected. On
the other hand, if c = 0 for a particular domain V , any non-trivial dilation of V will give a domain
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with c 6= 0 and the properties in the previous paragraph may be proven to hold for the dilated
domain, at least for s = 1/2, which will turn out to be the important case for us. See Verchota
[50] for details. Note that since our object of interest, the polarizability α(z), is scaling invariant,
this anomaly of S for d = 2 presents no real obstacle.

While the kernel of S is sufficiently nonsingular to immediately define a continuous function
Su everywhere on R

d if u is for example bounded, similar statements are never true for the kernel
of K∗. In fact, the following jump formulas hold for a function u ∈ L2(S).

S intu = Sextu = Su ∂νS intu = u+Ku

∂νSextu = −u+Ku Dintu = −u+K∗u (28)

Dextu = u+K∗u,

where a superscript int or ext denotes taking a limit from the interior or exterior of S, respectively.
In general the formulas are true in the sense of non-tangential convergence almost everywhere on
S, see [50]. These jump relations explain why the boundary condition (2) leads to the integral
equation (5). In a moment we shall make a more precise statement about this. Before doing so,
we need to show that the jump formulas hold in a certain trace sense.

For this purpose, we will also need to consider the Hilbert space H(V )/C of harmonic functions
v on V , modulo constants, with finite energy,

‖v‖2
H(V )/C

=

∫

V
|∇v|2 dr <∞.

Since this semi-norm annihilates constants we consider v and v+C, c ∈ C, to be the same element.
Note that H(V )/C is continuously contained in H1(V )/C by the classical Poincaré inequality for V .
Since V is assumed star-like, it is straightforward to use dilations in order to prove that functions
which are harmonic and smooth in V are dense in H1(V )/C. In fact, we introduced the hypothesis
that V is star-like only to facilitate such density statements.

The Dirichlet problem
v ∈ H(V )/C Tr v = u,

is well-posed for initial data u ∈ H1/2(S), see for example [12]. Equivalently, Tr : H(V )/C →
H1/2(S)/C is a bicontinuous isomorphism. Often we will simply denote Tr v = v|S when it is clear
what is meant.

It is established in a paper by Hofmann, Mitrea and Taylor [28] that Green’s formula

∫

V
〈∇φ,∇ψ〉dr +

∫

V
φ∆ψ dr =

∫

S
φ∂νψ dσ (29)

continues to hold true for S Lipschitz and φ,ψ ∈ C∞(V ). Since the functions in H(V )/C are
harmonic, this shows that its scalar product satisfies

〈v,w〉H(V )/C =

∫

V
〈∇v,∇w̄〉dr =

∫

S
v∂νw̄ dσ =

∫

S
(∂νv)w̄ dσ.

Initially these identities are valid only for smooth v and w, but as in [31] one can argue by duality
and density to interpret the normal derivatives ∂νv and ∂νw as elements of H−1/2(S) so that the

equalities remain true. If we denote by H
−1/2
0 (S) the closed subspace of those u ∈ H−1/2(S)

9



such that
∫

S udσ = 0, the implied duality argument gives rise to a bicontinuous bijective operator

∂ν : H1/2(S)/C → H
−1/2
0 (S) which should be understood as the normal derivative of the trace.

It is important for our purposes to now repeat this construction for the exterior space H(E)
of harmonic functions v in E with finite energy norm and limr→∞ v(r) = 0. We state this as a
proposition.

Proposition 4.1. The exterior trace is a bicontinuous isomorphism when considered as an operator
TrE : H(E) → H1/2(S). There is a corresponding bounded bijective operator ∂E

ν : H1/2(S) →
H−1/2(S) satisfying

〈v,w〉H(E) =

∫

E
〈∇v,∇w̄〉dr = −

∫

S
v∂E

ν w̄ dσ = −
∫

S
(∂E

ν v)w̄ dσ.

Proof. The statements about TrE follow by the well-posedness of the Dirichlet problem, see [12].
The construction of ∂E

ν again follows along the lines of [31].

Remark 4.1. When d = 2 the additional condition
∫

S udσ = 0 is required to solve the exterior
Dirichlet problem v ∈ H(E), TrE v = u. This is also reflected in the kernel G(r, r′) of the single
layer potential. Note that G(r, r′) ∼ − 1

2π log |r| as r → ∞ for d = 2, but limr→∞G(r, r′) = 0 for
d > 2.

We end this section with an interpretation of the jump relations (28) within the just established
framework.

Proposition 4.2. Let u ∈ H1/2(S), then Du ∈ H(V )/C, Du ∈ H(E) and

TrDu = −u+K∗u TrE Du = u+K∗u.

Furthermore, let v ∈ H−1/2(S). Then Sv ∈ H(V )/C, Sv ∈ H(E) and

TrSv = TrE Sv = Sv|S ∂νSv = v +Kv ∂E
ν Sv = −v +Kv.

Proof. Suppose first that u and v are smooth and harmonic on V . Then by applying Green’s
formula we find that

Du(r) = S(∂νu)(r) − 2u(r), r ∈ V. (30)

In particular, this shows thatDu|V extends continuously to V , and hence the jump relation Dintu =
−u+K∗u must hold in trace sense. That is, TrDu = −u+K∗u. Since both sides of this equation
are continuous maps of H1/2(S) by previously quoted results, it must hold for every u ∈ H1/2(S).
By the same reasoning we obtain TrSv = Sv|S for every v ∈ H−1/2(S).

To show that ∂νSv = v +Kv we note that S(∂νu) = u+K∗u by (30) and the jump formula.
The sought formula is the dual statement of this. More precisely, for any smooth harmonic ψ we
have

〈∂νSv, ψ〉L2(S) = 〈Sv, ∂νψ〉L2(S) = 〈v,S(∂νψ)〉L2(S)

= 〈v, ψ +K∗ψ〉L2(S) = 〈v +Kv,ψ〉L2(S),

which verifies that ∂νSv = v +Kv for all v ∈ H−1/2(S) by continuity and density.
The exterior statements are dealt with similarly.
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5. Theory – results

5.1. Existence of the measure µ

We are now in a position to develop the symmetrization techniques that have been alluded to
previously. Once these are in place, we can use the spectral theory of self-adjoint operators to
prove that the (scaled) polarizability α(z) = α(ǫ1,ǫ2)

|V |ǫ1
, z = ǫ1+ǫ2

ǫ1−ǫ2
∈ C, has a representing measure µ.

We begin, however, by describing the sense in which the potential U will solve the boundary
value problem given by (1), (2) and (3). Note that the following proposition furthermore expresses
the fact that if looking for a potential such that U(r) − e · r has finite energy, then H−1/2(S) is
exactly the right space to find the corresponding density distribution ρ.

Proposition 5.1. Let ρ ∈ H−1/2(S) be such that (6) holds, i.e. (K − z)ρ = g, where g(r) =
−2(e · νr). Let

U(r) = e · r +
1

2
Sρ(r), r ∈ R

d. (31)

Then U ∈ H(V )/C, U − e · r ∈ H(E), TrU = TrE U , limr→∞∇U = e and U satisfies (2) in the
sense that

ǫ1
(

∂E
ν (U − e · r) + ∂ν(e · r)

)

= ǫ2∂νU. (32)

The converse is also true. That is, if U satisfies the above properties, then there exists a ρ ∈
H−1/2(S) such that (31) and (6) hold.

Proof. This is a consequence of Proposition 4.2, the well-posedness of the interior and exterior
Dirichlet problems and the bijectivity of S : H−1/2(S) → H1/2(S).

Remark 5.1. When z 6= −1, the hypothesis that (K − z)ρ = g implies that ρ ∈ H
−1/2
0 (S).

This seen by taking into account that g = −2∂ν(e · r) and ∂νSρ both belong to H
−1/2
0 (S) in the

computation

z

∫

S
ρdσ =

∫

S
Kρ− g dσ =

∫

S
Kρdσ =

∫

S
∂νSρ− ρdσ = −

∫

S
ρdσ.

This is of importance for the case d = 2 (cf. Remark 4.1).

In the sequel we shall denote ρ = ρz and U = Uz to indicate their dependence on z. Under
the hypothesis of the preceding proposition, we can, due to the assumption of isotropy, express the
scaled polarizability as

α(z) =
ǫ2 − ǫ1
|V |ǫ1

∫

V
∇Uz(r) · edr =

ǫ2 − ǫ1
|V |ǫ1

∫

S
(∂νUz)(r)(e · r) dσr

=
ǫ2 − ǫ1
|V |ǫ1

∫

S
(e · νr +

1

2
(ρz +Kρz)(r))(e · r) dσr

=
ǫ2 − ǫ1
|V |ǫ1

z + 1

2

∫

S
ρz(r)(e · r) dσr =

∫

S
ρzhdσ,

where h(r) = −(e · r)/|V |. Since (K − z)ρz = g, this shows that the analysis of α is closely related
to the spectral theory of K.

The scalar product on H(V )/C is one of the keys to understanding the spectral theory of K
and K∗, since K∗ is self-adjoint in the H(V )/C-pairing. To be precise, the above shows that any
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element v ∈ H1/2(S)/C can also be considered as an element v ∈ H(V )/C in a bicontinuous way.
We are therefore justified in letting H1/2(S)/C inherit its scalar product from H(V )/C,

〈v,w〉H1/2(S)/C
= 〈v,w〉H(V )/C.

Since K∗ maps constants onto constants (cf. (30)), we may consider K∗ as a bounded map on
H1/2(S)/C. Let v,w ∈ H1/2(S)/C. By the fact that K∗v = S(∂νv) − v it then holds that

〈K∗v,w〉H1/2(S)/C
=

∫

S
((S(∂νv) − v)(∂νw̄) dσ

=

∫

S
v∂ν(S(∂νw̄) − w̄) dσ = 〈v,K∗w〉H1/2(S)/C

.

Theorem 5.2. There exists a compact set L ⊂ R and a positive Borel measure µ with total mass
2 and compact support contained in L, such that for z ∈ C, z /∈ L, (K − z)ρ = g has a unique

solution ρz ∈ H
−1/2
0 (S) and

α(z) =

∫

R

dµ(x)

x− z
. (33)

µ is unique in the class of compactly supported finite Borel measures such that (33) holds for all
z ∈ C+ = {z : ℑz > 0}.

Proof. Since K∗ is bounded and self-adjoint on H1/2(S)/C it has by the spectral theorem a
corresponding projection-valued spectral measure E with support in the spectrum of K∗. Let
L = SpecK∗. E is characterized by the fact that for every bounded Borel-measurable function f
on L, it holds that

f(K∗) =

∫

L
f(x) dE(x). (34)

For any z /∈ L note that K∗ − z̄ is invertible on H1/2(S)/C, and hence K − z is invertible on the

dual space H
−1/2
0 (S). Since h ∈ H1/2(S) and g = 2|V |∂νh ∈ H

−1/2
0 (S) we have

α(z) = 〈(K − z)−1g, h〉L2(S) = 〈g, (K∗ − z̄)−1h〉L2(S)

= 2|V |〈∂νh, (K
∗ − z̄)−1h〉L2(S) = 2|V |〈h, (K∗ − z̄)−1h〉H1/2(S)/C

= 2|V |〈(K∗ − z)−1h, h〉H1/2(S)/C
.

With µ(R) = 2|V |〈E(R)h, h〉H1/2(S)/C
for any Borel set R ⊂ R we obtain by applying (34) with

f(x) = 1/(x− z) the desired formula

α(z) =

∫

R

dµ(x)

x− z
.

The constructed measure µ is positive since µ(R) = 2|V |〈E(R)h, h〉 = 2|V |〈E(R)h, E(R)h〉 =
2|V |‖E(R)h‖2 ≥ 0, and since E(R) is the identity operator, its total mass is

‖µ‖ = 2|V |‖h‖2 = 2
1

|V |

∫

V
|e|2 dr = 2.

Equation (33) expresses that α is the Cauchy transform of µ, α(z) = Kµ(z). See Cima, Matheson
and Ross [8] for an excellent survey of the Cauchy transform, written for measures with support
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on the unit circle, but all results can be transformed to results about measures on R through
standard conformal mapping techniques. See Koosis [33] for an explanation of this latter point,
as well as results stated directly for the real line. By the classical F. and M. Riesz theorem, any
other measure µ∗ supported on R and such that Kµ∗(z) = α(z) = Kµ(z) for z ∈ C+ must be of the
form dµ∗ = dµ + ūdx, where u ∈ H1(C+) is given by the boundary values of an analytic Hardy
space-function in the upper half-plane. Since such a function u can never be compactly supported
unless it is identically zero, we obtain the uniqueness part of the theorem.

Remark 5.2. The fact that ‖µ‖ = 2 is sum rule (22). Note also that L = Spec(K∗,H1/2/C) =

Spec(K,H
−1/2
0 ) only differs from Spec(K∗,H1/2) = Spec(K,H−1/2) by the point z = −1, which is

in the latter spectrum but not in the former, see [41].

The considerations leading up to the previous theorem are quite similar in spirit to those of
Bergman [2]. Bergman considers a different potential operator which is symmetric under the inner
product

∫

V 〈∇v,∇w〉dr, although the arguments presented are somewhat incomplete since a space
of functions belonging to this inner product is not identified.

Before discussing the specific features of α and µ we shall gain some further insight into the
structure of K and K∗ by investigating a different symmetrization approach, expounded upon
in the case when S is a C2-surface by Khavinson, Putinar and Shapiro [31]. The starting point
is Plemelj’s symmetrization principle, which says that SK = K∗S on L2(S) and continues to
hold true in our situation with the same proof as in [31]. This operator equality amounts to the
statement that K is self-adjoint under the inner product 〈Su, v〉L2(S). Note that S is a strictly
positive operator on L2(S), so that the form (u, v) → 〈Su, v〉L2(S) is strictly positive definite.

Instead of working with the completion of L2(S) under 〈Su, u〉L2(S), we shall follow the approach
of [31] and introduce an operator-theoretic formalism to express the symmetrization of K. Recall
that K : L2(S) → L2(S) is compact when S is C2, and so its spectrum consists of the point 0
and a sequence (zi) of non-zero eigenvalues tending to zero, every eigenspace Hz(K) = ker(K − z)
having finite dimension when z 6= 0.

Theorem 5.3 ([31]). Suppose that S is a C2-surface. Then there exists a self-adjoint compact op-
erator A : L2(S) → L2(S) such that A

√
S =

√
SK on L2(S). When z 6= 0,

√
S : Hz(K) → Hz(A)

and
√
S : Hz(A) → Hz(K

∗) are isomorphisms of the indicated eigenspaces, and the eigenvectors of
K∗ (including those for z = 0) span L2(S). In particular, the L2(S)-spectrum of K∗ is real.

From the point of view of Khavinson et al., the proof of this theorem parallels the symmetriza-
tion theory of Krein [34], which mainly concerns compact operators. However, the theory of Hassi,
Sebestyén and de Snoo [21] assures us of the existence of A even when K is only bounded, that is,
when S is only Lipschitz. The key fact is still that SK = K∗S.

Proposition 5.4. There exists a bounded self-adjoint operator A : L2(S) → L2(S) such that
A
√
S =

√
SK on L2(S).

Proof. Given the existence of a bounded operator A on L2(S) satisfying A
√
S =

√
SK, we deduce

from the equation
√
SA

√
S = SK = K∗S =

√
SA∗

√
S, and the injectivity and dense range of S,

that A must in fact be self-adjoint.

In fact, we have the following result, contained in [31, Proposition 1] with a proof that carries
over to our setting.
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Proposition 5.5.
√
S : L2(S) → H1/2(S) is a bicontinuous isomorphism. Dually,

√
S also extends

to a bicontinuous isomorphism
√
S : H−1/2(S) → L2(S).

The existence of A gives us another way to derive the existence of a measure µ such that
α(z) =

∫

R

dµ(x)
x−z . Since

(K − z)−1 =
√
S−1

(A− z)−1
√
S (35)

as an inverse on H−1/2(S), we can write

α(z) = 〈(K − z)−1g, h〉L2(S) = 〈(A− z)−1
√
Sg,

√
S−1

h〉L2(S), (36)

where, clearly,
√
Sg,

√
S−1

h ∈ L2(S). If EA is the spectral measure of A, we therefore obtain a

measure with the desired property by letting µ(R) = 〈EA(R)
√
Sg,

√
S−1

h〉L2(S) for R ⊂ R. In this
way we immediately recover all the conclusions of Theorem 5.2, except for the positivity of µ.

To see the positivity, recall for u ∈ H1/2(S) that S(∂νu) = u +K∗u and consider the compu-
tation √

S(∂νu) =
√
S−1

(u+K∗u) = (I +A)
√
S−1

u.

In view of the identity g = 2|V |∂νh we find that

α(z) = 2|V |〈(A+ I)(A− z)−1
√
S−1

h,
√
S−1

h〉L2(S).

Clearly, it follows that µ ≥ 0 if A+ I ≥ 0, that is, if

Spec(K,H−1/2(S)) = Spec(A,L2(S)) ⊂ [−1,∞). (37)

In the C2-case we know from (27) and the compactness of K that Spec(K,H−1/2) ⊂ [−1, 1]. We
shall see in Theorem 5.7 that this continues to be true when S is merely a Lipschitz surface.

5.2. Properties of the polarizability α(z) and the measure µ

In the final part of this section we will employ all the tools introduced thus far, in order to
understand the behavior and specific features of the polarizability α(z) and its related measure
µ. We begin by discussing the case of a smooth surface S, giving a rigorous treatment of many
of the formulas and ideas that appear in the paper [37] by Mayergoyz, Fredkin and Zhang. From
there we discuss the idea of approximating a non-smooth surface by a sequence of smooth surfaces,
proving that the corresponding representing measures converge in a weak-star sense. We conclude
with an analysis of the measure µ in the general non-smooth case, in particular giving a condition
which guarantees that it does not have a singular part. Furthermore, we show that even though
the polarizability α+(x) exists in a limit sense almost everywhere x ∈ R, the potential Ux does not
exist at points where µ′(x) > 0, neither as a solution of the boundary value problem given by (1),
(2) and (3), nor in a limit sense.

Suppose now that S is a C2-surface, so that the operator A is compact. Let (f0
i ) be an

orthonormal basis for kerA, and let (f1
i ) be eigenvectors of A corresponding to the non-zero

eigenvalues (z1
i ), repeated according to multiplicity, so that (fi) = (f0

i ) ∪ (f1
i ) is an orthonormal

basis for L2(S). By Theorem 5.3, K,K∗ : L2(S) → L2(S) have the same non-zero eigenvalues (z1
i ),

and corresponding (non-orthonormal) eigenvectors are obtained as φ1
i =

√
S−1

f1
i and ψ1

i =
√
Sf1

i ,
respectively. Concerning zero eigenvectors, ψ0

i =
√
Sf0

i ∈ H1/2(S) are clearly in the kernel of
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K∗, but φ0
i =

√
S−1

f0
i are in general elements of H−1/2(S) and only zero eigenvectors of K when

considered as an operator on said space H−1/2(S). In particular, we note that the H−1/2(S)-
eigenvectors of K span the whole space H−1/2(S). With this in mind, we shall denote (φi) =
(φ0

i ) ∪ (φ1
i ) and (ψi) = (ψ0

i ) ∪ (ψ1
i ), the indexing arranged appropriately so that

〈φi, ψj〉L2(S) = δij.

As a final notational detail, we shall let (zi) denote the full sequence of eigenvalues including zeros,
so that Kφi = ziφi and K∗ψi = ziψi for every i.

Based on the spectral decomposition of A we obtain for u ∈ L2(S) that

√
SKu = A

√
Su =

∑

i

zi〈
√
Su, fi〉L2(S)fi,

with convergence in L2(S). Equivalently, we have for u ∈ H−1/2(S) the expansion

Ku =
∑

i

zi〈u, ψi〉L2(S)φi, (38)

with convergence in H−1/2(S). This is the formal interpretation of (12). In this framework it is
now easy to furthermore justify (17), (18) and (19). We state this as a theorem.

Theorem 5.6. Let S be a C2-surface. Then (38) holds with K considered as an operator on
H−1/2(S). Furthermore, let ui = 〈φi, h〉L2(S) and vi = 〈g, ψi〉L2(S). Then

Spec(K,L2(S)) = Spec(K,H−1/2(S)) = {(zi)}, (39)

and for z /∈ (zi) the unique solution ρz ∈ L2(S) of (K − z)ρ = g is given by

ρz =
∑

i

viφi

zi − z
, (40)

with convergence in H−1/2(S). The corresponding formula for the scaled polarizability is

α(z) =
∑

i

uivi

zi − z
, (41)

where the sum is absolutely convergent. Finally, it holds that
∑

i uivi = 2.

Proof. Equation (35) and Theorem 5.3 show that

Spec(K,H−1/2(S)) = Spec(A,L2(S)) = Spec(K,L2(S)).

Formula (40) also follows from (35) and spectral decomposition of A, since

ρz =
√
S−1

(A− z)−1
√
Sg =

√
S−1 ∑

i

〈
√
Sg, fi〉L2(S)fi

zi − z
=

∑

i

viφi

zi − z
.

From α(z) = 〈ρz, h〉L2(S) we now deduce (41). In terms of the measure µ, this expresses the fact
that µ =

∑

i uiviδzi where δzi is the Dirac delta at zi. This makes it clear that we have already
proven that

∑

i uivi = 2 as a part of Theorem 5.2.
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Remark 5.3. The statement that the H−1/2(S)-spectrum of K is equal to its L2(S)-spectrum is
markedly untrue when S is not C2. In fact, when S is a square in two dimensions the H−1/2(S)-
spectrum of K is real, while the L2(S)-spectrum extends into the complex plane.

We will now briefly discuss the limiting process which occurs when (Sk) is a sequence of smooth
surfaces approximating a non-smooth surface S. For brevity we assume that S is the cube defined
by max1≤i≤d |ri| = 1 in d dimensions, r = (r1, . . . , rd), and that Sk is the superellipsoid defined by
∑d

i=1 |ri|k = 1. We shall also skip some rather laborious details. See [50] for detailed approximation
arguments when S is a general Lipschitz surface.

For any notation introduced so far, we denote by a subscript k that it corresponds to the
surface Sk rather than S. Via appropriately defined homeomorphisms of Sk onto S we may, in a
bicontinuous way, consider K∗

k and K∗ to be operators on the same space H1/2(S). We choose the
implied isomorphism between H1/2(S) and H1/2(Sk) so that it extends to a unitary map of L2(S)
onto L2(Sk). Similar conventions will apply throughout what follows. Using the boundedness
results collected in Section 4 and adapting the arguments in the proof of [50, Theorem 3.1], one
can verify that K∗

k converges strongly to K∗ on H1/2(S), meaning that limk K
∗
ku = K∗u in norm

for any u ∈ H1/2(S). Similarly, Kk converges strongly to K on H−1/2(S).
Let z ∈ C be a point at a distance at least ε > 0 away from the H−1/2(S)-spectra of K and

Kk, for all k. It is evident from (40) that supk ‖ρz,k‖H−1/2(S) <∞. We can hence extract a weakly
convergent subsequence ρz,k′ with limit b,

lim
k′→∞

〈ρz,k′, w〉L2(S) = 〈b, w〉L2(S), ∀w ∈ H1/2(S).

Since s− limKk = K we find that (Kk′ − z)ρz,k′ converges weakly to (K− z)b. On the other hand,
(Kk′ − z)ρz,k′ = gk′ converges to g. Hence b = ρz. Since every weakly convergent subsequence of
ρz,k has the same limit ρz, we conclude that ρz,k converges weakly to ρz. In particular, noting that
hk → h in H1/2(S),

lim
k→∞

αk(z) = lim
k→∞

〈ρz,k, hk〉L2(S) = α(z).

Since this argument remains correct no matter the choice of g ∈ H−1/2(S) and h ∈ H1/2(S),
it is not difficult to see, based on the spectral representation (36), that any z ∈ Spec(K,H−1/2)
is obtained as the limit of a sequence of eigenvalues zk ∈ Spec(Kk,H

−1/2). See Weidmann [52].
From (27) and (39) we deduce that

Spec(K,H−1/2(S)) = Spec(K∗,H1/2(S)) ⊂ [−1, 1].

However, unlike the case of convergence in operator norm, we point out that strong convergence
allows us to say very little about the character of the points in Spec(K,H−1/2). For example, they
do not need to be eigenvalues.

We summarize.

Theorem 5.7. Let S be the unit cube in R
d, and let Sk be the approximating superellipsoid given

by
∑d

i=1 |ri|k = 1, r = (r1, . . . , rd). Denoting by clR the closure of R ⊂ R, let

B = cl

[

⋃

k

Spec(Kk,H
−1/2(Sk))

]

.
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Then Spec(K,H−1/2(S)) ⊂ B ⊂ [−1, 1] and limk αk(z) = α(z) for all z /∈ B. Furthermore, the
supports of µk and µ are contained in B, and µk converges weak-star to µ as measures on B. That
is,

lim
k→∞

∫

R

f(x) dµk(x) =

∫

R

f(x) dµ(x), ∀f ∈ C(B), (42)

where C(B) denotes the continuous functions on B.

Proof. Only the final point remains to be proven. However, the argument preceding the theorem
can be repeated to show that (42) holds for f(x) = 1/(x − z)t, where z /∈ B and t ≥ 0 is
an integer. Now (42) immediately follows in general from the fact that the linear span of such
functions 1/(x−z)t is dense in C(B), which in turn follows for example from the Stone-Weierstrass
theorem.

We turn to the discussion of µ and α for a general Lipschitz surface S. First note that the
support of µ is contained in the H−1/2(S)-spectrum of K, and that µ has a unique decomposition

µ = µa + µp + µs.

Here µa is the absolutely continuous part of the measure, so that µa = µ′(x) dx, where µ′ ∈ L1(R).
µ has at most a countable number of atoms zi, corresponding to bright plasmons at zi, and µp is
the atomic part of µ,

µp =
∑

i

µ({zi})δzi .

Note that each atom arises from an eigenvalue z of K, but not necessarily every eigenvalue is
given positive measure by µ, reflecting the distinction between bright and dark plasmons. Finally,
µs denotes the singular part of µ, excluding atoms. This means that µs has no atoms, yet lives
solely on a set with Lebesgue measure zero. That is, there exists a measure zero set R0 such that
µs(R) = 0 for any Borel set R ⊂ R with R ∩R0 = ∅.

For 0 < p < ∞, let Hp
conf(C+) denote the conformally invariant Hardy space on the upper

half-plane C+, consisting of analytic functions f in C+ such that

‖f‖p
p = sup

r>0

∫

y=r

|f(z)|p
|z + i|2 dx <∞, z = x+ iy.

This is known as the conformally invariant Hardy space as

Hp
conf(C+) = {f ◦ ω : f ∈ Hp(D)},

whereHp(D) is the usual Hardy space of the unit disk and ω is a conformal map of C+ onto the disk.
Hp

conf(C+) does not coincide with the usual Hardy space of the upper half-plane. Of importance
to us is the fact that every f ∈ Hp

conf(C+) has boundary values f(x) = limy→0+ f(x+ iy) almost
everywhere, and

‖f‖p
p =

∫

R

|f(x)|p
1 + x2

dx.

See Koosis [33] for further information.
As previously mentioned in the proof of Theorem 5.2, α is the Cauchy transform of µ, α(z) =

Kµ(z). Changing variables in the Cauchy transform through ω, exploiting that µ is compactly
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supported and applying Smirnov’s theorem, see [8], leads to the fact that α ∈ Hp
conf(C+) for

0 < p < 1. Hence, α has boundary values α+(x) for almost all x ∈ R, taken as limits from the
upper half-plane. A similar discussion could be carried out for the lower half-plane, but since µ is
real, the boundary values obtained from below are related to those obtained from above simply by
conjugation.

The absolutely continuous part of µ is related to α+ through equation (25) almost everywhere,
πµ′(x) = ℑ(α+(x)). Atoms zi can be recognized as those points where |α(zi+iε)| ∼ ε−1 as ε→ 0+.
While some results are available, see [8], recovering µs from α is much more subtle. However, if it
turns out to be the case that

∫

R

|α+(x)|
1 + x2

dx <∞, (43)

it follows that α ∈ H1
conf(C+). But then f ◦ ω−1 is the Cauchy integral of its boundary values and

we infer that µ must be absolutely continuous. That is, in this case µp = µs = 0 and

α(z) =

∫

R

µ′(x) dx

x− z
, z /∈ Spec(K,H

−1/2
0 (S)). (44)

While we offer no strict proof, the numerical evidence in Sections 10 and 11 suggests that (43)
holds when S is a square in two dimensions or a cube in three, and hence that (44) holds.

To end this section we shall show that while α(z) has boundary values α+(x) almost everywhere,

the same cannot be said of the corresponding solutions ρz. Note that the limit limh→0

∫ x+h
x dµ

exists finitely almost everywhere for x ∈ R. We say that µ′(x) exists whenever this is so,

µ′(x) = lim
h→0

∫ x+h

x
dµ,

and as before we denote by σµ the set

σµ = {x ∈ R : µ′(x) > 0 exists}.

Theorem 5.8. For x ∈ R and ε > 0, let ρx+iε ∈ H−1/2(S) denote the unique solution of

(K − x− iε)ρx+iε = g.

For any x ∈ σµ, we have
lim

ε→0+
‖ρx+iε‖H−1/2(S) = ∞, (45)

and moreover, the equation (K − x)ρ = g has no solution ρ ∈ H−1/2(S). Hence, for such x,
there exists no potential Ux solving the boundary value problem (1), (2), (3) in the sense given by
Proposition 5.1.

Proof. If (45) does not hold, there is a sequence (εn) with εn → 0 as n → ∞ and such that
limn→∞ ρx+iεn exists weakly. From the proof of Theorem 5.2 we see that τx+iεn = (K∗−x−iεn)−1h
converges weakly in H1/2(S)/C to some element τx, meaning that

lim
n→∞

〈τx+iεn , w〉H1/2(S)/C
= 〈τx, w〉H1/2(S)/C

, ∀w ∈ H1/2(S)/C.

Then, clearly, it must be that
(K∗ − x)τx = h. (46)
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Let µτx be the positive measure defined by µτx(t) = 〈E(t)τx, τx〉H1/2(S)/C
, where E is the spectral

measure of K∗ on H1/2(S)/C. Recalling that µ(t) = 2|V |〈E(t)h, h〉H1/2(S)/C
, we can reformulate

(46) as
µ(t) = 2|V |(t− x)2µτx(t).

We infer
∫

R

dµ(t)

(t− x)2
<∞.

This implies that limy→0+ Pµ(x+ iy) = 0 for the Poisson integral

Pµ(z) =
1

π

∫

R

y dµ(t)

(t− x)2 + y2
, z = x+ iy ∈ C+.

On the other hand, it is well known that limy→0+ Pµ(x+ iy) = µ′(x) whenever the right hand side
exists finitely. This contradicts the hypothesis that µ′(x) 6= 0.

Suppose that there exists a ρ ∈ H−1/2(S) such that (K − x)ρ = g. Note that

(A− x− iε)−1(A− x) =

∫

R

t− x

t− x− iε
dEA(t),

where EA is the spectral measure of A on L2(S). Hence the operator norms ‖(A−x− iε)−1(A−x)‖
are uniformly bounded for ε > 0. Since

ρx+iε = (K − x− iε)−1(K − x)ρ =
√
S−1

(A− x− iε)−1(A− x)
√
Sρ

we have obtained a contradiction to (45).

Remark 5.4. As to be expected, a similar argument shows that the conclusions of Theorem 5.8
are valid also when x ∈ R is such that µ({x}) > 0, that is, when there is a bright plasmon at x.

Nevertheless, x 7→ ρx for x ∈ R can always be given an interpretation as a H−1/2(S)-valued
distribution, for example in the following weak sense. Let u : R → C be a C∞

0 -function, let
w ∈ H1/2(S), and consider the functional

ρ+(u,w) = lim
ε→0+

∫

R

u(x)〈ρx+iε, w〉L2(S) dx.

Observe that
∫

R

u(x)〈ρx+iε, w〉L2(S) dx =

∫

R

u(x)

∫

R

dµg,w(t)

t− x− iε
dx = −

∫

R

Ku(t− iε) dµg,w(t),

where µg,w(t) = 〈EA(t)
√
Sg,

√
S−1

w〉L2(S). Due to the high regularity of u, passing to the limit in
the Cauchy transform Ku(t− iε) poses no problems, and we obtain

ρ+(u,w) = −
∫

R

Ku(t) dµg,w(t).

Furthermore, ρ+ solves the equation (K − x)ρ+ = g in the sense that

ρ+(u(x),K∗w) − ρ+(xu(x), w) = 〈g,w〉L2(S)

∫

R

u(x) dx.
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Of course, we could equally well have introduced a solution ρ−,

ρ−(u,w) = lim
ε→0+

∫

R

u(x)〈ρx−iε, w〉L2(S) dx.

We point out also that ℜρ = (ρ+ + ρ−)/2 and ℑρ = −i(ρ+ − ρ−)/2 give us two real-valued
distributions satisfying (K − x)ℜρ = g and (K − x)ℑρ = 0.

6. Capacitance

The electrical capacitance C of an isolated charged conducting body V can be defined as
the ratio of its total charge to its constant potential U(r). The problem of calculating C for V
being a (unit) cube has “long been considered one of the major unsolved problems of electrostatic
theory” [46] and attracted interest by researchers in computational electromagnetics for half a
century. See [3, 29, 43] for recent contributions along with reviews of previous work and tables
of historical progress. The highest relative precision for C so far, 10−7, was achieved in 2010 by
parallelizing a Monte Carlo method and running it on a PC cluster [29]. See also Table 1.

The problem of determining C can be modeled as an integral equation much in the same way
as the problem of determining α(z) and we omit details. If one solves

(I +K +Q) ρ(r) = 1 , (47)

where K is as in (10) and Q is the surface integral operator

Qρ =

∫

S
ρ(r) dσr , (48)

then the (normalized) capacitance can be evaluated as

C =
1

4πU(r)
, r ∈ V , (49)

where

U(r) =

∫

S
G(r, r′)ρ(r′) dσr′ . (50)

7. Strategies for computing α
+(x)

The difficulties with computing α+(x) when S has edges and corners relate to issues of stability
and resolution. We know from Theorem 5.8 that the electrostatic problem does not have a finite
energy solution U(r) and that (6) does not have a solution ρ(r) ∈ H−1/2(S) for z ∈ σµ. Close
to σµ, stability problems can be expected. A computational mesh needs to be extremely refined
(locally) in order to resolve U(r) or ρ(r) and the solver must have the capability of dealing with
strongly singular solutions.

One strategy for alleviating these problems is to round edges and corners so that S becomes
smooth. Then U(r) has finite energy and ρ(r) ∈ L2(S), except for at z = zi, and α(z) assumes the
form (18). Some distance above the real axis, corresponding to bigger losses, α(z) may resemble
α+(x) and can be evaluated using commercial software. This is essentially the approach in [30, 51,
54], where finite element solvers are chosen.
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Figure 1: Meshes on the boundary S of a square. Left: the coarse mesh and the corner vertices sk. Middle: a mesh
that is refined nsub = 3 times. Right: local meshes Ma, Mb and Mc centered around the corner vertex s3.

It is, however, possible and advantageous to take the limit z → σµ in α(z) numerically while
letting S retain its sharp shape. The rounding of edges and corners, while smoothing solutions,
introduces new length-scales which is an unnecessary complication. In fact, there has been an
intense activity in the area of constructing numerical algorithms for solving integral equations on
non-smooth curves in recent years [4, 5, 6, 7, 23, 24, 26, 27]. See [25, Section 1.3] for an overview
and a comparison of various approaches. Sharp corners and other boundary singularities can be
treated extremely efficiently using fast direct and fully automatic solvers and by taking advantage
of asymptotic self-similarity. An algorithm to this effect for a quantity analogous to α(z) for squares
in a periodic setting is assembled and tested thoroughly in [25]. This paper continues along the
lines of that work.

8. Algorithm for the square

This section is a summary of results from Refs. [23, 25] applied to the solution of (10) for V
being a square. We construct two meshes on S – a coarse mesh and a fine mesh. The coarse
mesh has 16 quadrature panels. The fine mesh is constructed from the coarse mesh by nsub times
subdividing the panels closest to each corner vertex sk in a direction towards the vertex. See Fig. 1.

8.1. Preconditioning and discretization

Let S⋆
k denote a segment of S covering the four panels on the coarse mesh that lie closest to

the corner vertex sk – two panels on each side of sk. The S⋆
k are disjoint and their union is S. Let

K(r, r′) denote the kernel of K in (10). Split K(r, r′) into two functions

K(r, r′) = K⋆(r, r′) +K◦(r, r′) , (51)

where K⋆(r, r′) is zero except for when r and r′ simultaneously lie on the same S⋆
k. In this latter

case K◦(r, r′) is zero.
The kernel split (51) corresponds to an operator split K = K⋆ +K◦ where K◦ is a compact

operator. Discretization of (10), using a Nyström method based on composite 16-point Gauss–
Legendre quadrature and a coarse or a fine mesh on S, leads to an equation of the form

(I + λK⋆ + λK◦) ρ = λg , (52)

where I, K⋆, and K◦ are square matrices and ρ and g are columns vectors. The matrix K⋆ assumes
a block-diagonal structure since the S⋆

k are disjoint. This will be important in what follows.
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The change of variables
ρ(r) = (I + λK⋆)−1 ρ̃(r) (53)

makes (52) read
(

I + λK◦ (I + λK⋆)−1
)

ρ̃ = λg . (54)

This right preconditioned equation corresponds to the discretization of a Fredholm second kind
equation with a composed compact operator. The solution ρ̃ is the discretization of a function
that is piecewise smooth and can be resolved by piecewise polynomials.

From now on we let subscripts fin and coa indicate what type of mesh is used for the discretiza-
tion. The collection of discretization points on a mesh is called a grid. The number nsub is assumed
to be high enough so that ρfin resolves ρ(r) to the precision sought in our computations.

8.2. Compression

The following decomposed low-rank approximation of the discretization of K◦ on the fine mesh
holds to very high accuracy:

K◦
fin ≈ PK◦

coaP
T
W . (55)

Here K◦
fin is a (256+96nsub)×(256+96nsub) matrix, K◦

coa is a 256×256 matrix, P is a prolongation
matrix from the coarse grid to the fine grid and

PW = WfinPW−1
coa , (56)

where W is a diagonal matrix containing the quadrature weights of the discretization, see [23,
Section 5]. Superscript T denotes the transpose.

The relation (55) has powerful consequences for computational efficiency in the context of
solving (54). As we soon shall see, it allows us to compress that equation and obtain the accuracy
offered by the fine grid while working chiefly on the coarse grid. Only (I + λK⋆)−1 needs the fine
grid for resolution. We introduce the compressed quadrature-weighted inverse

R = PT
W (Ifin + λK⋆

fin)
−1 P . (57)

With (57), the discretization of (10) assumes the final form

(Icoa + λK◦
coaR) ρ̃coa = λgcoa , (58)

where all matrices are 256 × 256. For later reference we introduce

ρ̂coa = Rρ̃coa (59)

as a weight-corrected density [27, Section 5].

8.3. Recursion

The compressed inverse R has a block diagonal structure with four identical 64 × 64 blocks
Rk associated with the vertices sk. The construction of a block Rk from the definition (57) is
costly when nsub is large. Fortunately, this construction can be greatly sped up via a recursion.
In general situations this recursion uses grids on hierarchies of local meshes, see [23, Section 6]
and [24, Section 5]. For wedge-like corners, thanks to scale invariance of K(r, r′), only two local
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meshes Mb and Mc are needed, see right image of Fig. 1. The recursion for block Rk assumes the
form of a simple fixed-point iteration

Rik = PT
Wbc

(

F{R−1
(i−1)k} + I◦b + λK◦

bk

)−1
Pbc , i = 1, . . . , nsub , (60)

where Rik = Rk for i = nsub. The quadrature weighted and unweighted prolongation matrices
PWbc and Pbc act from a grid on a local mesh Mc to a grid on a local mesh Mb. The superscript
◦ in (60) has a similar meaning as in (51) and the operator F{·} expands a matrix by zero-padding,
see [25, Section 6].

The derivation of (60) relies on a low-rank approximation similar to (55)

K◦
a ≈ PabK

◦
bP

T
Wab , (61)

where Ka is a discretization of K on a multiply refined local mesh Ma. See [26, Section 7] for
details. Conceptually, one could think of (60) as a process on a multiply refined local mesh, going
outwards from the vertex, where step i inverts and compresses contributions to Rk involving the
outermost panels on level i.

The number nsub needed for resolution of Rk may grow without bounds as z approaches σµsq

(in infinite precision arithmetic). In order to accelerate the recursion we activate a combination
of numerical homotopy and Newton’s method when deemed worthwhile, see [25, Section 6]. The
Newton iterations are continued until the relative update in Rik is smaller than 100ǫmach or a
maximum number of 20 iterations is reached, which roughly corresponds to a local mesh Ma that
is refined nsub ≈ 220 ≈ 106 times.

8.4. Solution, post-processing and interpretations

Once the 256 × 256 linear system (58) is solved for ρ̃coa, various quantities of interest can be
computed. For example, the polarizability (15) becomes

α(z) = hT
coaWcoaRρ̃coa , (62)

where h is the discretization of h(r). Results produced in this way are extremely accurate and fully
confirm 24 of the entries for α(z) with |z| ≥ 1 in Table 1 of [39]. The remaining 5 entries differ in
the last digit. Section 8 of [25] gives error estimates for results produced in periodic settings.

The original density ρfin can be reconstructed from ρ̃coa by, in a sense, running the recursion (60)
backwards (inwards on a multiply refined local mesh). If this process is interrupted part-way, one
is left with a mix of discrete values of the original density ρ (on outer panels) and quantities which
can be easily converted into discrete values of a weight-corrected density ρ̂ (on the innermost
panels). Details of the process are given in [23, Section 7]. Here it suffices to observe that there
exists a rectangular matrix Y, say, whose action on ρ̃coa produces entries of ρfin.

Let Q denote a restriction matrix from the fine grid to the coarse grid. Then

ρcoa = QYρ̃coa (63)

and
K◦

coaRρ̃coa = K◦
coaR (QY)−1

ρcoa . (64)

We see that the blocks of the block-diagonal matrix R (QY)−1 have an interpretation as multi-
plicative weight corrections needed if K◦

coa is to act accurately on ρcoa. Other useful interpretations
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Figure 2: Meshes on the surface S of a cube. Left: the coarse mesh. Middle: a mesh that is refined nsub = 3 times.
Right: local meshes Ma, Mb and Mc centered around a corner vertex. Compare Fig. 1

of the matrices introduced include: The columns of Y are discrete basis functions for ρ(r) on the
fine grid; The columns of R are discrete basis functions for ρ(r) on the coarse grid multiplied with
quadrature weights; the rectangular matrix Y (QY)−1 maps ρcoa to ρfin. These observations will
be used in what follows.

The machinery of Sections 8.1, 8.2 and 8.3 is useful in several ways. The preconditioning aspect
of (58) reduces numerical error and improves the convergence of iterative solvers. The compression
aspect of (58) saves degrees of freedom and makes the algorithm fast and memory efficient. The
recursion (60) resolves the singular nature of ρ(r) close to corner vertices in an automated fashion
and provides efficient basis functions and quadrature weights contained in the matrix R. No
asymptotic analysis is required – we simply use Gauss-Legendre quadrature on the coarse mesh
and on the local meshes Mb and Mc on which the recursion (60) takes place. Most, but not all,
of these features can be retained as we step up into three dimensions.

9. Algorithm for the cube

Our algorithm for the cube mimics that of Section 8. A problem, however, arises in the split (51).
Unlike the square, the cube has both sharp edges and sharp corners and it is not possible to identify
suitably disjoint surface elements S⋆

k that allow for an operator split K = K⋆ +K◦ where K◦ is a
compact operator. Thus, one cannot construct a block-diagonal matrix R which contains weighted
basis functions for ρ(r) that simultaneously resolve the singularities stemming from the edges and
from the corners. We shall circumvent this difficulty by focusing solely on the cube corners and
construct the coarse and the fine mesh with square quadrature panels according to Fig. 2, that is,
in complete analogy with Fig. 1. As to compensate for the lack of refinement towards the edges,
the discretization of K⋆ and K◦ will incorporate ready-made one-dimensional basis functions and
weights constructed for a square with the same λ according to Section 8.4.

9.1. Preconditioning and discretization

This section is a counterpart to Section 8.1. Let the eight corner vertices of the cube be denoted
sk and introduce surface element S⋆

k that cover the 12 quadrature panels on the coarse mesh that
lie closest to sk. Furthermore, let the smaller surface elements S⋆⋆

k be such that they cover the
three panels on the coarse mesh that lie closest to sk. The S⋆

k are disjoint, their union is S, and the
kernel split (51) results in an operator split where the part of K◦ which accounts for interaction
between points in S \ S⋆

k and S⋆⋆
k is compact. This restricted compactness is sufficient for our

purposes since mesh refinement only takes place on the S⋆⋆
k , see the middle image of Fig. 2.
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We discretize (10) and make the change of variables that leads to (54). The discretization of
K proceeds in three steps. First, we use the Nyström method applying tensor products of np-
point Gauss–Legendre quadrature formulas on all quadrature panels to get an initial K. Then, for
columns of K acting on discrete densities on panel pairs neighboring a single cube edge, but not a
corner, we correct the Gauss–Legendre weights in the direction perpendicular to the edge. These
corrections are realized by multiplying submatrices of K with blocks of Rsq (QsqYsq)

−1, where
subscript sq indicates the square. See Section 8.4. This is our basic discretization. The resulting
K acts accurately on ρ in situations describing the convolution of K(r, r′) with ρ(r′) both for r′

away from edges and corners and for r′ close to an edge but away from corners and r away from
r′.

Lastly, we change blocks of K describing interaction between panel pairs neighboring each other
on opposite sides of an edge. Such interaction requires special attention due to the non-smooth
nature of K(r, r′) close to edges. We use interpolatory quadrature based on polynomial basis
functions in the direction parallel to the edge and on the basis functions of Ysq in the direction
perpendicular to the edge. This gives our final K. The total number of discretization points on
the coarse mesh is n = 96n2

p. The fine mesh has (96 + 72nsub)n2
p points.

The choice of the columns of Ysq as discrete basis functions for ρ(r) in the direction perpendic-
ular to edges should be asymptotically correct, assuming that the singularities ρ(r) are dominated
by two-dimensional effects away from the corner. Still, these basis functions are not optimal and
they are responsible for the slower rate of convergence that we shall see when solving (58) for the
cube, compared to when solving (58) for the square.

9.2. Compression, recursion and post-processing

The compression of (54) for the cube is analogous to that for the square in Section 8.2. The
only difference, apart from that various matrices have different sizes, is that W, which contains
the quadrature weights of the basic discretization and enters into the definition of prolongation
matrix PW of (56), is no longer diagonal. The blocks of Rsq (QsqYsq)

−1, used as multiplicative
weight corrections, are generally full matrices.

The recursion for R of the cube, from now on denoted Rcu, follows Section 8.3 exactly. Some
λ allow for a rapid convergence in (60). Other λ, corresponding to z close to parts of σµcu, require
that we resort to Newton’s method and numerical homotopy. Note that recursions are carried out
twice in the scheme: both for Rsq, needed for the discretization, and for Rcu.

The polarizability α(z) of the cube can be computed from (62) once the 96n2
p×96n2

p system (58)
is solved. The matrix Wcoa in (62) is now weight-corrected as described in the first paragraph of
this section. We use the GMRES iterative solver for (58) and make some use of symmetry in order
to reduce memory requirements.

10. From circle to square

In a series of numerical experiments we now study the spectrum of K and the polarizability
α(z) for a surface S that is gradually transformed from smooth to non-smooth. Such a study is of
interest for several reasons. Due to the difficulties associated with solving electrostatic problems
on non-smooth domains, see Section 7, it is common to round sharp boundary features prior to
discretization [30, 51, 54]. Numerical effects, similar to those caused by rounding, could also
result from insufficient resolution [44]. Furthermore, no edge or corner in real world physics is
infinitely sharp and the degree of edge smoothness can be critical in the design of, for example,
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Figure 3: The eigenvalues zi of K (locations of plasmons) for the superellipse varies with k. Left: zi with 2 ≤ k ≤ 1016.
The eigenvalue at −1, a dark plasmon, is omitted. Right: zoom of positive eigenvalues with 2 ≤ k ≤ 10.

nanoantennas [19]. Finally, the experiments illustrate the theory overview of Section 3 in a setting
which allows for high accuracy. All experiments are executed on a workstation equipped with an
IntelCore2 Duo E8400 CPU at 3.00 GHz and 4 GB of memory.

Similar to Klimov [32] we let S be the superellipse

|r1|k + |r2|k = 1 , (65)

which for k = 2 is a circle and for k → ∞ approaches a square. We first compute eigenvalues of
K using a discretization based on composite 16-point Gauss–Legendre quadrature and adaptive
mesh refinement. Particular care is taken in the parameterization of S as to allow for resolution at
boundary portions of high curvature. The accuracy in these computations varies with k. A rough
estimate is a relative error of log10(k) · ǫmach.

Eigenvalues and the nature of their corresponding plasmons are shown in Fig. 3. The only
bright plasmon at k = 2 is a dipole. When k > 2, the bright plasmons have potential fields
that are a mix of modes (dipoles, octupoles, etc.). The left image of Fig. 3 shows that K of the
superellipse at k = 1016, which is close to a square in double precision arithmetic, has a spectrum
that does not look continuous to the eye. The right image of Fig. 3 zooms in on the spectrum
at low k. Klimov [32], in an analogous study for a superellipsoid with 2 ≤ k ≤ 6, observes a
phase-transition at k = 2.5 and a critical point at k ≈ 3.

The number of eigenvalues zi with comparatively large residues uivi in α(z) of (18) depends
on k. Fig. 4 shows residues and polarizabilities α(z) for k = 1012. Fig. 4 also shows how α(z)
approaches a slowly varying function as z migrates from σµsq = [−0.5, 0.5].

Fig. 5 compares α+(x) with α(x + 0.05i) for a square. The algorithm of Section 8 is used.
Each data point takes only a fraction of a second to compute and is accurate almost to machine
precision except for x very close to {−0.5, 0, 0.5}. For example, the relative difference between the
computed value of α+(1) and its known value −Γ(1

4)4/8π2, see [49], is 2 · 10−16. The left image
of Fig. 5 shows that the square has no bright plasmons (no poles in α+(x)) and stands in forceful
contrast the top right image of Fig. 4, which exhibits a myriad of plasmons for the superellipse at
k = 1012.

It is interesting to compare the right image of Fig. 5 with the lower right image of Fig. 4. Already
at a distance of 0.05 away from the real axis, α(z) of the square and α(z) of the superellipse at
k = 1012 are similar, as to be expected in view of Theorem 5.7. The convergence as k → ∞ is
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Figure 4: The number of eigenvalues zi with comparatively large residues uivi for the superellipse (dominant plasmon
modes) depends on k, and α(z) of (18) decays away from z ∈ [−0.5, 0.5]. Here k = 1012. Upper left: the 208 largest
residues. Upper right: α(x) with x ∈ [−1, 1]. Lower left: α(x + 0.01i). Lower right: α(x + 0.05i). Compare Figs. 3
and 5.
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Figure 5: Polarizability of a square. Left: α+(x). The curves are supported by 16492 data points whose relative
accuracies range from machine precision to five digits. No convergent results were obtained within a distance of 10−7

from x = 0. The values of ℜ{α+(x)} at x = ∓0.5 are ±10.3121215292. The sum rule (22), evaluated via (25) using
a composite trapezoidal rule, holds to a relative precision of 10−6. Right: α(x + 0.05i).

uniform in z in compact sets away from [−1, 1]. The accuracy achieved and the time required
to evaluate α(z), however, are very different. While the accuracy in α(z) of the superellipse,
computed via (18), is perhaps four digits and involves the eigenvalue decomposition of a 5376×5376

27



10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

The cube: convergence

Number of discretization points n

E
st

im
at

ed
 r

el
at

iv
e 

er
ro

r 
in

 α
+
(x

) 
an

d 
 C

 

 

α+(−1)

α+(−0.6)

α+(0.25)

α+(1)

C
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resonance along edges (x = 0.25), and cube with zero permittivity (x = 1). See Table 1 for reference values used in
error estimates.

matrix, the accuracy in α(z) of the square, computed via (58), is much higher and involves only
computations with matrices of size 256 × 256. We conclude that even when corners need not be
strictly sharp from a physical viewpoint, it pays off to keep them sharp from a numerical viewpoint.

11. The cube

This section presents numerical results for the polarizability α+(x) and capacitance C of the
unit cube produced by the algorithm of Section 9. While computing C has a long history in
computational electromagnetics [3, 29, 43], computing α+(x) is less explored territory [48] that only
recently, with the rapid growth of the field of nanotechnology, has become fashionable. For example,
σµcu = {x : µ′(x) > 0} seems to be largely unknown. Fuchs [14] and Langbein [36], over thirty years
ago, found six or eleven approximate eigenvalues for K of the cube (“major/dipole absorption
peaks”) in the intervals [−0.573, 0.408] and [−0.586, 0.274], respectively and which supposedly
account for around 95% of the sum (19). In view of the findings of the present paper, so far, one
could suspect that these peaks are an artifact of insufficient resolution or unintended rounding of
edges. Be as it may, this pioneering and highly cited work is now of interest in nanoplasmonics where
the coupling of plasmon modes in metallic nanostructures such as nanocube dimers is important
and interpretations seem to rely on these peaks [19, 32, 47, 54].

In our algorithm for α+(x) via (58), a complex valued R generally implies a complex valued
solution ρ̃coa, complex valued basis functions Y, and ℑ{α+(x)} > 0. The square exhibits complex
valued limits of Rsq whenever z = x + iy ∈ C+ → x ∈ σµsq. The cube, which uses Rsq and Ysq

for the discretization of K and which in turn enters into the recursion (60) for Rcu, will therefore
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have complex valued limits of Rcu and ℑ{α+(x)} > 0 whenever x ∈ σµsq. We refer to this as
resonance along edges. The reason being that ℑ{α+(x)} > 0 implies x ∈ Spec(K,H−1/2) and, as
a consequence of the symmetrization arguments in Section 5 and the fact that the spectrum of a
self-adjoint operator consists of eigenvalues and approximate eigenvalues, each such x is either an
eigenvalue or an approximate eigenvalue of K on H−1/2(S). Moreover, Rcu may remain complex
valued throughout the numerical homotopy process as z = x+ iy ∈ C+ → x for other x ∈ [−1, 1]
as well, that is, where limits of Rsq are real valued. We refer to this as resonance in corners.

Fig. 6 shows results from convergence tests. The total number of discretization points on the
cube surface is n. The examples with n & 2 · 104 were executed on a workstation equipped with
an IntelXeon E5430 CPU at 2.66 GHz and 32 GB of memory. Out of the chosen values of x, one
can see that the error in α+(x) is largest for x = 0.25. This is not surprising. A weakness in
our algorithm is the assumption that the columns of Ysq are efficient basis functions for ρ(r) in
the direction perpendicular to an edge. When x = 0.25, there is resonance along edges and the
shortcomings of this assumption should be particularly visible. When x = −1, x = 1 and for C
there are real valued solutions ρ(r) ∈ L2(S) which are easier to resolve.

Table 1: Reference values, estimated relative errors, and best previous estimates for the limit polarizability α+(x)
and the capacitance C of the cube.

present reference values relerr previous results Ref. relerr

α+(−1) 3.644305190268 10−11 3.6442 [48] 3 · 10−5

α+(−0.6) 5.85574775 + 16.64205643i 10−8

α+(0.25) −2.76289925 + 3.08034035i 10−7

α+(1) −1.638415712936517 10−14 −1.6383 [48] 6 · 10−5

C 0.66067815409957 10−13 0.66067813 [29] 10−7

The recursion (60) for Rcu requires a substantial amount of memory when np is large and
Newton’s method is activated. This explains why the test series for α+(−0.6) in Fig. 6 had to be
interrupted at n = 69984, that is, for np = 27. Timings vary greatly with x, np, and the error
tolerances that are set in recursions and iterative solvers. For safety, we set tolerances low and
quote the following approximate computing times for n = 9600: α+(−1), α+(1), and C took one
minute each; α+(0.25) took two minutes; α+(−0.6) took ten minutes. The test series for α+(−1),
α+(1) and C all confirm previous available results, see Table 1, and improve on these with between
six and nine digits.

Fig. 7 is our main numerical result. It shows that the isolated cube has no bright plasmons (no
poles in α+(x)). For validation, see the figure caption, we have used the two sum rules (22), (23)
and a third sum rule

∫

R

x2µ′(x) dx = 0.433464767896 , (66)

which has been determined numerically for the cube [22]. Fig. 7 also shows that σµcu is approx-
imately equal to the interval (−0.694526, 0.5), possibly punctured at {−0.5, 0}, and raises the
intriguing question of what surface shapes S lead to connected σµ. Our computed σµcu is broader
than those estimated by earlier investigators [14, 32, 36] using other techniques. We conclude,
again, that working with sharp edges and corners is an advantage.
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Figure 7: Polarizability of a cube. The curves are supported by 1195 data points whose relative accuracies range
from ten to five digits. No convergent results were obtained for α+(x) within a distance of 10−10 from x = −0.5 and
within a distance of 10−5 from x = 0. The maximum value of ℜ{α+(x)} is 20.00826 and occurs at x ≈ −0.694526.
The sum rules (22), (23), and (66), evaluated via (25) using a composite trapezoidal rule, hold to a relative precision
of 3 · 10−5, 4 · 10−5, and 6 · 10−5, respectively.

12. Conclusions and outlook

We have constructed an electrostatic solver for cube-shaped domains and used it to produce
new results for some canonical problems. A particular characteristic of the solver is that it takes
advantage of sharp edges and corners, rather than being a victim of them.

A mathematical framework capturing the symmetric features of the double layer potential and
its adjoint has been identified, allowing for analysis of the polarizability α(z) through spectral
theory for self-adjoint operators. Moreover, this framework and its corresponding machinery is
natural and satisfactory also from a physical viewpoint, as the potentials produced to solve the
electrostatic problem are exactly those of finite energy. With full mathematical rigor we have shown
how to, with respect to polarizabilities, interpret the limit process which occurs when deforming a
smooth surface into a cube, a point which has generated a fair amount of discussion in the materials
science community.

Furthermore, we have shown that while the polarizability via limits can be extended to a
function α+(x) defined almost everywhere on the real axis, the same statement fails for the cor-
responding potentials whenever the representing measure µ has a non-zero absolutely continuous
part. That is, no finite energy potential can be associated with a point x ∈ R where µ′(x) > 0 exists
and is non-zero, neither as a direct solution to the electrostatic problem, nor as a limit from the
upper half-plane. We remark, however, that while the density distributions ρx hence fail to exist
for such x, the whole map x 7→ ρx can still be interpreted naturally as a vector-valued distribution.

For the cube, the mathematical theory in conjunction with the numerical findings show that
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dµ(x) = µ′(x) dx is purely absolutely continuous, and that the set where µ′(x) > 0 is given by the
interval (a, b) ≈ (−0.694526, 0.5), possibly excepting the two points x = −0.5 and x = 0. Hence the
integral representation (44) for α(z), in terms of µ′(x), holds. Finally, µ′(x) has been determined
numerically. These discoveries, we hope, will be of use in plasmonics where absorption peaks of
nanocubes play an important role.

Future efforts will be directed towards solving the Helmholtz equation, compare [4, 5, 6]. Should
the polarizability of clusters of cubes or the effective permittivity of cubes in periodic arrangements
be of interest, our solver requires only minor modifications.
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lipschitziennes, Ann. of Math. (2) 116 (1982) 361–387.

[10] R.V. Craster and Yu.V. Obnosov, Four-Phase Checkerboard Composites, SIAM J. Appl. Math. 61 (2001) 1839–
1856.

[11] L. Escauriaza, E. B. Fabes, G. Verchota, On a regularity theorem for weak solutions to transmission problems
with internal Lipschitz boundaries, Proc. Amer. Math. Soc. 115 (1992) 1069–1076.

[12] E. Fabes, O. Mendez, M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the
Laplacian in Lipschitz domains, J. Funct. Anal. 159 (1998) 323–368.

[13] E. Fabes, M. Sand, J. K. Seo, The spectral radius of the classical layer potentials on convex domains, Partial
differential equations with minimal smoothness and applications (Chicago, IL, 1990), 129–137, IMA Vol. Math.
Appl., vol. 42, Springer, New York, 1992.

[14] R. Fuchs, Theory of the optical properties of ionic crystal cubes, Phys. Rev. B 11 (1975) 1732–1739.
[15] R. Fuchs and S. H. Liu, Sum rule for the polarizability of small particles, Phys. Rev. B 14 (1976) 5521–5522.
[16] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili,

Rend. Sem. Mat. Univ. Padova 27 (1957) 284–305.
[17] G. Geymonat, Trace theorems for Sobolev spaces on Lipschitz domains. Necessary conditions, Ann. Math. Blaise

Pascal 14 (2007) 187–197.
[18] K. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continua-

tion, Comm. Math. Phys. 90 (1983) 473–491.

31



[19] N. Grillet, D. Manchon, F. Bertorelle et al., Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting
Induced by Edge Rounding, ACS NANO 5 (2011) 9450–9462.

[20] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman
(Advanced Publishing Program), Boston, MA, 1985.

[21] S. Hassi, Z. Sebestyén, H. S. V. de Snoo, On the nonnegativity of operator products, Acta Math. Hungar. 109
(2005) 1–14.

[22] J. Helsing, Third-order bounds on the conductivity of a random stacking of cubes, J. Math. Phys. 35 (1991)
1688–1692.

[23] J. Helsing, Integral equation methods for elliptic problems with boundary conditions of mixed type, J. Comput.
Phys. 228 (2009) 8892–8907.

[24] J. Helsing, A fast and stable solver for singular integral equations on piecewise smooth curves, SIAM J. Sci.
Comput. 33 (2011) 153–174.

[25] J. Helsing, The effective conductivity of arrays of squares: large random unit cells and extreme contrast ratios,
J. Comput. Phys. 230 (2011) 7533–7547.

[26] J. Helsing and R. Ojala, Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature,
and compressed inverse preconditioning, J. Comput. Phys. 227 (2008) 8820–8840.

[27] J. Helsing and R. Ojala, Elastostatic computations on aggregates of grains with sharp interfaces, corners, and
triple-junctions, Int. J. Solids Struct. 46 (2009) 4437–4450.

[28] S. Hofmann, M. Mitrea, M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-
Toro domains, Int. Math. Res. Not. 2010, no. 14, 2567–2865.

[29] C.-O. Hwang, M. Mascagni, and T. Won, Monte Carlo methods for computing the capacitance of the unit cube,
Math. Comput. Simulat. 80 (2010) 1089–1095.

[30] H. Kettunen, H. Wallén, and A. Sihvola, Electrostatic resonances of negative-permittivity hemisphere, J. Appl.
Phys. 103 (2008) 094112.
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